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Abstract  

Contribution contains the short description of the general theory of growth and remodeling based on 

Di�Carlo�s approach. This theory is applied to the one dimensional continuum using the quadratic form of the 

free energy function. Two different forms of loading are dealt � isometric and isotonic one. For both cases the 

corresponding equations describe the dynamical system. Its properties are analyzed using the methods of nonlin-

ear dynamics. It�s shown the influence of the constant growth and remodeling parameters on the stability of the 

equilibrium point.  
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1. Introduction  

Further we will assume growth as a volume change and remodeling as a change of mate-

rial parameters or anisotropy. Then a lot of different changes in the material behavior can be 

thought as a growth or remodeling. As example we can take the growth of tissue during de-

velopment and aging but also the changes in muscle during its stimulation. In the last case we 

can observe also some changes in its stiffness � kind of remodeling. Another example is e.g. 

the piezoelectric material � under influence of electric potential it changes its length. 

In literature we can find different mathematical models of growth and remodeling. This 

contribution is based on the DiCarlo�s theory [1]. This theory leads to the system of evolution 

differential equations for parameters describing volume, deformation or material properties. 

The form of these equations depends on the particular material. This is expressed by a set of 

material parameter (some of these are constants, some are time dependent). In any cases this 

system can be thought as a dynamical system and be analyzed with the adequate means. The 

properties of this system, e.g. the stability, depend on the above parameters. To find the criti-

cal values of these parameters is crucial from two points of view: At first same instabilities 

can occur in the modeled system and we can see, where is the source of this behavior. This 

can happen e.g. in the modeling of muscles using the mentioned theory. The question is if the 

causes of the observed instability of muscle under some outer conditions are the mechanical 

properties of the muscle tissue or the nerve control. The second reason is that when we iden-

tify the parameters using some results of experiment we need to know their limits.    

This is the goal of this contribution. To be simple as possible the 1D continuum is taken in 

account. In [1] and [3] can be found some concrete application of the used growth theory and 

therefore here is introduced only very brief introduction and summarization of this theory. 

Main attempt is devoted to the analysis of some chosen types of dynamical systems.   
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2. Basic equations 

The process of growth and remodeling can be expressed at first by the tensor P (further 

growth tensor) that relates the initial configuration to the relaxed one Br with zero inner stress. 

To the real configuration Bt where the inner stress invoked by growth and geometrical re-

modeling and external loading can already exists, it is related by deformation tensor Fr. The 

whole deformation gradient between configurations B0 a Bt can be written as ( p is the place-

ment) 

PFp r=∇ . (1) 

For simplicity we will further take into account only the small deformations and therefore 

we will not distinguish between Lagrangian and Eulerian approach. Applying the principle of 

virtual working the following equations are obtained 

 

0=+ bτDiv  on 0B , 0CB =+ on 0B , nτnτ =� on 0B∂ , (2)  

 

where τ is the Cauchy stress tensor, b is the volume force, z is the vector of inner effects, B

the inner remodeling generalized force and C is the generalized external remodeling force, 

 is prescribed stress on boundary and n is the vector of outer normal. The stress τ can be 

decomposed into the elastic part τel and the dissipative part τdis. If we assume the specific free 

energy related to the relaxed volume in form )( KF,ψ where K represents the material pa-

rameters occurring in the expression of the free energy, which can be changing during the ma-

terial remodeling and K& is the corresponding velocity, we can obtain from the 2. thermody-

namical law (see e.g. [4]) the following constitutive equations.  
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M, H and G are generally positively definite matrices1
*. Let we have now 1D continuum of the 

initial length 0l . Its actual length after growth, remodeling and loading will be l. The relaxed 

length � it means after growth and remodeling- is rl . For the corresponding deformation gra-

dients we can write 
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The deformation energy will have the simplest form 

 

( )
2

1
2

1
−= Fkψ , (5) 

 

where k is the material parameter (stiffness). Than we can write for the relaxation or isometric 

stimulation (l = const) the following system of equations 

 
1

It is necessary to mention that the above property of M, H and G sufficient condition of the fulfilling of the 

second law of thermodynamics. In [3] was shown, that under certain circumstances this condition need not be 

fulfilled. 
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on the state space lr, k. We obtained these equations putting (4) and (5) into (3). Instead of 

matrices M, H and G we have here the real parameters of growth and remodeling m, h and g.

They needn�t be constant but further we will assume they are constant. 

For creep or isotonic loading (τ = const) we have the system 
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on the state space lr, k, l.

3. Relaxation 

We start with the equations (6), (7), (8). Further we will assume C = const. Equilibrium 

point coordinates are 
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==== , (12) 
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It can be shown that the physical meaning has the upper sign +. 

In the special case when k = const ( ∞∞∞∞→→→→m ), then 
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To analyze the stability conditions of this equilibrium points we constructed the Jacobian 

matrix of this system and evaluated its eigenvalues. As a result of numerical calculation we 

can declare that the stability can be achieved only for m < 0. According footnote at page 2, 

this is allowed. In the Fig. 1 the phase portrait and stress relaxation of this system for m = -0.2 

(l = 1.1; g = 1; h = 1; C = 0.1; r = 0.02; l0 = 1) are shown.  Corresponding eigenvalues in an 

equilibrium point lr = 0.9167, k = 0.4545 are -0.2750±0.1805i. The influence of r is visible in 

Fig. 2. With r = 0.01 the intermitent burst are occuring and r = 0 is the bifurcation point. 

It�s necessary to mention that the equilibrium point depends only on C and r! Its stability for 

0≠≠≠≠C depends only on the sign of m. For 0<<<<m this point is stable. C = 0 is unstable if m is 

not infinite, it means k is changing. 
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Fig. 1. Phase portrait and stress relaxation process.  
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Fig. 2. Stress relaxation for r = 0.04 (left) and 0.01 (right). 

 

The above mentioned criteria of stability can be confirmed analytically. For this reason we 

rewrite the basic equations into the form (h = 0,
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The corresponding system of equation for perturbations in the neighbourhood of fix point 
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The eigenvalues are 
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Immediately we can see, that the fix point will be stable if 0<<<<m but −∞−∞−∞−∞≠≠≠≠m . For r = 0

then we obtain the non-hyperbolicity and according the Grobman-Hartman theorem the sys-

tem will be structural non-stable � the bifurcation is occurring. This corresponds with results 

obtained numerically. 

Till now we took in account C = const what corresponds with f(t) = const⋅ u(t) where u(t) 

is the unite jump. Now we try to analyze the case, when f(t) is periodical function what corre-

sponds with the skeletal muscle stimulation. This stimulation will be approximated with the 

function 

 tCCC ωsin10 ++++==== . (20) 

Then we have a non-autonomous dynamical system 
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We will again suppose h = 0. 

 For the most simple case k = const we can obtain only one equation for 
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For the perturbation ξ gilt 
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The fundamental solution of this equation is exp(λt). Putting this into (23) we will see that 

it must be  
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The same expression can be obtained if we find the solution of (23) in the known form 

(see e.g. [2]) 
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After integration we obtain 
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====t we obtain again (25). 

The condition for the stability of the periodical solution is therefore if we assume 0>>>>g
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A numerical example is shown in Fig. 3. 
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Fig. 3. Time dependence of rl for l = 1.1, g = 1, h = 0, m = -10000000, C = -0.45 (right), C = -0.55 (left), 

r = 0.02, l0 = lr0 = l, k = 1.   
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For the perturbation we obtain  
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kxk xx
m

ξξξ ⋅⋅⋅⋅++++









−−−−====

−−−−−−−−
01

2

1
2

3

2

1

& . (32) 

We will analyze the autonomous system ( CCC ======== 01 ,0 ). We put the coordinates of the 

fix point (12) and (13) into (31) and (32) 

(((( )))) rr

C
k

r
x

2
,

21

1
2

++++
====

++++
==== . (33) 

We obtain the system of equations 

(((( ))))
kxx

rgrrg

C
ξξξ












++++
−−−−++++









++++
++++−−−−====

2

21

1
1

1

2

1
2& , (34) 

(((( )))) kxk r
m

r
ξξξ ⋅⋅⋅⋅++++++++==== 021

2

2 3
& . (35) 

Eigenvalues of the corresponding matrix are 

 (((( ))))(((( ))))












++++++++++++
















++++
++++±±±±









++++
++++−−−−==== rr

mg

r

rrg

C

rrg

C
2221

4

2

1
2

2

1
2

2

1
2

2,1λ . (36) 

Non-hyperbolic point will occure if 0====r . This is the bifurcation point.  

4. Creep � isotonic loading 

Similar analysis can be done in case of creep. Here we can observe the special situation � 

in three equations for the calculation of the equilibrium point (RHS of (9), (10) and (11) equal 

zero) are only two unknowns � k and 
rl

l . To fulfill all three equations, the relation between 

C and r has to be satisfied 









++++==== 1

2r

r
C τ . (37) 

Then the coordinates of the equilibrium point in the phase space are 

r
k

2

τ
==== , (38) 

12 ++++==== r
l

l

r

. (39)  

The situation for m = -1 ( τ = 1; g = 1; h = 2; r = 0.5; l0 = 1) is shown in fig. 4. C is then 

equal according (37) 1.5.  
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Fig. 4. l � t, lr - l and k - t dependence for creep for m = -1. 

 

When we slightly increase C than we will observe the shortening of this 1D continuum � 

see Fig. 5. It corresponds to the elevation of load through the muscle stimulation.   

For comparison you can see the same situation for k = 1 = const (m→ ∞) in Fig. 6. Here 

the fix point coordinates are 

1,
2

2

++++====++++====
kl

l

k
C

r

τ
τ

τ
. (40) 

Because the analytical integration is here possible, we obtain the corresponding value of l

(((( )))) 







++++====

2

2
0

4
exp

gk

h
k

k

l
l

τ
τ . (41) 

Now we can analyze the stability of the fix point (37), (38), (39). Instead of analyzing the 

system (9), (10), (11) we use the dependence only on 
rl

lx ==== . Then the corresponding sys-

tem of equation will be 

(((( )))) 




 −−−−−−−−====
2

1
2

11
xr

m
k& , (42) 

 

(((( ))))[[[[ ]]]]1
1

−−−−−−−−==== xk
h

x τ& . (43) 
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Fig. 6. lr - t and l - t dependence for k = 1 = const.

The equations for perturbation in the given fix point have the form 

kxx
h

r

rh
ξξ

τ
ξ

2

2
−−−−−−−−====& , (44) 
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kxk
m

r
ξξξ .0

2
++++−−−−====& . (45) 

Corresponding eigenvalues are 














++++








±±±±−−−−====

mh

r

rhrh

8

222

1
2

2,1

ττ
λ . (46) 

Both eigenvalues will be non-positive if m < 0 for positive values of r and h. That is the 

same condition as above in case of relaxation.  

5. Conclusion 

The aim of this contribution was introduce the model of growth and remodeling as a dy-

namical system and show some of its properties. For simplicity was chosen 1D continuum 

with the quadratic form of free energy function. From the analysis can be seen the importance 

of the growth and remodeling parameters for stability of equilibrium points. In the chosen ap-

proach were these parameters chosen as constants. Important result is the necessity of negativ-

ity of m for the stability of the whole system. This is mainly in application on living tissues, 

e.g. muscles, not the case. This will be the direction of further research.  
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