
Homogenization method for elastic materials

F. Seifrt∗

Faculty of Applied Sciences, UWB in Pilsen, Univerzitnı́ 22, 306 14 Plzeň, Czech Republic
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Abstract

In the paper we study the homogenization method and its potential for research of some phenomenons con-

nected with periodic elastic materials. This method will be applied on partial differential equations that describe

the deformation of a periodic composite material. The next part of the paper will deal with applications of the

homogenization method. The importance of the method will be discussed more detailed for the exploration of the

so called bandgaps. Bandgap is a phenomenon which may appear during vibrations of some periodically heteroge-

neous materials. This phenomenon is not only observable during vibrations for the aforementioned materials, but

we may also observe similar effects by propagation of electromagnetic waves of heterogeneous dielectric medias.
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1. Introduction

The aim of this paper is to study the homogenization method applied on elastic materials.

We would like to show for which problems is the method particularly important and what are

the advantages that this method brings. The author was inspired by the book [2].

The two-scale method of homogenization was firstly introduced by G. Nguetseng in a year

1989 ([3]). Among other quite often cited authors belongs G. Allaire ([1]). The aim of homog-

enization method is to simplify description of behaviour of heterogeneous materials. Heteroge-

neous material is replaced by a ’homogenized’, fictive material which is a good approximation

of the original heterogeneous material.

2. Description of geometry

In the following we describe the geometry of the problem (cf. fig. 1). The macro-structure

is composed of N × N cells each of size ε and fills a bounded domain Ω. The domain Ω is

split into domain Ωε
1
made of elastic material 1 and domain Ωε

2
which includes periodically

distributed inclusions made of material 2. The reference cell Y = [0, 1[3 is composed from the

elementary inclusion Y2, Y2 ⊂ Y and the matrix Y1 = Y \ Y2, hence we have

Ωε
2

=
⋃

k∈Kε

ε(Y2 + k), K
ε = {k ∈ Z

3, ε(Y2 + k) ⊂ Ω}, (1)

Ωε
1

= Ω \ Ωε
2
. (2)

The size of the whole domain is fixed. What changes with ε is the size of periodically repeating
cells.
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Fig. 1. Description of geometry.

Let us now establish the macro and micro coordinates system. The couple (x1, x2) repre-
sents macro coordinates system which corresponds with the position in the structure of N × N
cells. The couple (y1, y2) matches with the micro coordinates system and provide position

within the reference cell Y .

3. State equations

The state equations will in our case describe the deflection of a loaded board. Let cijkh(y)
be material coefficients of the reference cell. Then we see that the function1

cε
ijkh(x) = cijkh

(x

ε

)

(3)

is periodical and corresponds with the material coefficients of a board composed from N × N
cells. The material coefficients cε

ijkh(x) are defined on Ω and for smaller ε provide finer and
finer periodic structure. The board is loaded with a force f . The board responds with the

deflection uε. The situation is described by the following equations in the classical sense2







−
∂

∂xj

(

cε
ijkh(x)

∂uε
k

∂xh

)

= fi v Ω,

uε(x) = 0 na ∂Ω
(4)

and corresponding variational form






Find uε ∈ H1

0
(Ω) such that

∫

Ω

cε
mnklekl(u

ε)emn(Φ) =

∫

Ω

f · Φ ∀Φ ∈ H1

0
(Ω),

(5)

1As foresaid x = (x1, x2) are global coordinates and y = (y1, y2) =
x

ε
are the local coordinates on the

reference cell.
2Latin exponents and indices take their values in the set {1, 2}. Einstein convention for repeated exponents and

indices is used. Bold face letters represent vectors or vector spaces.

F. Seifrt / Applied and Computational Mechanics 1 (2007) 641 - 646

642



F. Seifrt / Applied and Computational Mechanics XX (YYYY) XXX - YYY

where under ekl we mean the Cauchy tensor of small deformations

ekl(v) =
1

2

(

∂vk

∂xl

+
∂vl

∂xk

)

(6)

and the space H1

0
(Ω) is the Sobolev space H1(Ω) with compact support from which we take

the state and test functions.

Nowwe get closer to the equations of homogenized fictive material. Material coefficients for

heterogeneous material cε
ijkh in the equation (4) will be replaced by homogeneous coefficients

c∗ijkh, the state equation will be then rewritten as follows







−
∂

∂xj

(

c∗ijkh(x)
∂uk

∂xh

)

= fi in Ω,

uε(x) = 0 on ∂Ω.
(7)

Homogeneous coefficients (sometimes also called effective parameters) equal to the differ-

ence of integral average of heterogeneous material coefficients over the domain of the reference

cell Y and corrector coefficients

c∗ijkh = caverageijkh − ccorrectorijkh . (8)

Integral average of heterogeneous material coefficients is defined by the following relation

caverageijkh =
1

|Y |

∫

Y

cijkh(y) dy. (9)

Corrector coefficients may be obtained as integral average for which we have to introduce aux-

iliary periodic functions χkh

ccorrectorijkh =
1

|Y |

∫

Y

cijlm(y)
∂χkh

l

∂ym

dy. (10)

Auxiliary functions χkh are the solution of the following variational formulas

∫

Y

cε
ijkheij(χ

ij)ekh(v) dy =

∫

Y

cε
lmkhekh(v) dy ∀v ∈ W 1

per(Y ), (11)

where W 1

per(Y ) is the space of Y-periodic functions with a zero integral average

W 1

per(Y ) =

{

v
∣

∣v ∈ H1(Y ),

∫

Y

vi dy = 0, i = 1, 2

}

. (12)

4. Discretization

Discretization of the state equations was done by the classical approach of the finite element

method (for details we recommend the well known book [6]). We used linear finite elements on

a triangular mesh with isoparametric representation. The problem of linear elasticity (5) may

be formulated as follows

Kεuε = f , (13)
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Fig. 2. Magnitude value of the displacement uε corresponding to the heterogeneous material.

where Kε is the global stiffness matrix defined as

Kε =
∑

e

Kε
e , (14)

and the right hand side corresponds to the force

f ε =
∑

e

f ε
e . (15)

The element stiffness matrix Kε
e depends on heterogeneous material coefficients cε

ijkh(x).
Similarly we may formulate the discrete version of the state equation (7) for the fictive homog-

enized material

K∗u = f . (16)

5. Numerical results

In our example we consider only a 2D case - plane deformation. The board is composed

from 5 × 5 cells. Each cell is a composition of epoxy inclusion and aluminium matrix. The

force acts on the whole domain in the direction of the axis of the first quadrant in the x −
y plane. On the figures 2 and 3 we display the magnitude of the displacements uε (u) of

heterogeneous (homogeneous) material. By the magnitude values we mean the euclidean norms

of displacements evaluated at each node. On the last figure 4 you may see the L2 norm of

displacements for different values of ε. We observe that for ε < 1/2 the norms of displacements
uε, u are relatively near. Convergence analysis is beyond this text (again we refer to [2]).

On this place we would like to emphasize the main advantage of the homogenization method.

This approach reduces computational costs very significantly. In the case of heterogeneous ma-

terial we have to use a relatively fine mesh to catch details on interfaces between materials. We

don’t have to take care of this problem in the case of the fictive material. And therefore tasks of

greater complexity may be solved.
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Fig. 3. Magnitude value of the displacement u corresponding to the fictive material.

On the other side the range of problems on which the method of homogenization may be

applied is limited and in particular cases one should always answer the question how good

approximation the fictive material really is.

6. Bandgaps

Recently it has been shown that heterogeneous elastic material with a periodic structure can

exhibit acoustic band gaps (cf. [5]). Phononic band gaps are certain frequency ranges for which

elastic or acoustic waves cannot propagate. Therefore these materials (often called phononic

crystals) could be used as frequency filters, vibration dampers or waveguides. One possible

approach for studying the phenomena mentioned above are homogenization techniques.

The state equation for amplitudes of elastic waves is formulated similarly as the previous

state equation for the linear elasticity (5)

ω2

∫

Ω

rεuε · Φ −

∫

Ω

cε
mnklekl(u

ε)emn(Φ) = −

∫

Ω

f · Φ ∀Φ ∈ H1

0
(Ω), (17)

where rε is the mass density and ω is a given angular frequency of the incident elastic wave.

The reader surely noticed that according to the previous example we have to manage with one

additional term coming from the inertial force. For the zero angular frequency we get exactly

(5)3. For ω different from the resonance values the variational problem has a unique solution

uε ∈ H1

0
(Ω).

In the discrete case additionally to the stiffness matrix K and the right hand side vector of

forces f we obtain the mass matrix M .

(Kε − ω2M)uε = f . (18)

Now the method of homogenization provide us the homogenized mass and stiffness matrix

and the homogenized right hand side. Studying of the homogenized mass matrix provide as

valuable information about the bandgaps. Detailed report on this topic may be found in [4].

3Except that in this case we assumed a different elastic material with a strong heterogeneity - relation (3) is

more complex (see [4])
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Fig. 4. L2 norm of displacements uε, u.

7. Conclusion

We have demonstrated an idea of homogenization. Further we have mentioned some ad-

vantages and disadvantages of this approach. The method has been applied on a linear elastic

material which is a composition of epoxy and aluminium. We saw that the resulting fictive

material is a relatively good approximation of the original heterogeneous material. Since the re-

duce of computational cost by the use of the homogenization method is essential it’s reasonable

to continue in this direction. The author’s future plan is to study the method of homogenization

and perhaps apply it in the case of electromagnetic waves.
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