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Abstract

Our aim in future is to computer simulate the mechanical stimulated postnatal heart development (normal

growth, heart hypertrophy, etc.). We are now interested in the study of the form of growth law [1], which we could

use for the simulation. We follow the theory of volumetric growth in [1]. This theory is based on the theory of

generalized continuum [2] and describes the volumetric growth of tissue from macroscopic point of view.
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1. Introduction

The heart is compound from four chambers, two of them are thick walled ventricles - right

and left ventricle. Due to the different changes in haemodynamics during the pumping function

becomes the left ventricle bigger and thicker than the right ventricle, after birth on. This differ-

ence is a sufficient example of soft tissue adaptation to the change in applied both volume and

pressure load. We summarize volume and pressure overload in the second section.

We would like to apply the theory of volumetric growth in [1], based on the theory of gen-

eralized continuum in [2], to the computer simulation of ventricle adaptation to the mechanical

load, after birth on. This theory takes into account microstructure of tissue from macroscopic

point of view, thanks the addition of other degree of freedom. We will discuss the main idea

of this theory in the third section. We refer the readers to the article [1] to better understanding

of the idea of volumetric growth theory, which we use here.

In the last section we will discuss some results from the study of the form of growth law. We

studied the form of growth law for two cases; the simulation of the uniform stress distribution

in the ventricle wall (known as residual stress) (see section 4.3.1. ) and the simulation of the

normal ventricle growth as the case of volume overload (see section 4.3.2. ). The simulation

was done on the geometry of horizontal cut of the ventricle, for simplicity. We assume only

ventricle volume and shape changes, without change in tissue properties - tissue compliance,

fibre orientation.

2. Mechanical load of ventricle

2.1. Definition of growth

There exist more definition of the term ”growth”. We are agree with those listed in [5].
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M. Tringelová / Applied and Computational Mechanics XX (YYYY) XXX - YYY

Maintenance - normal programmed or adaptive processes during maturity that consist of a ba-

lanced turnover of cells and extracellular matrix at an unchanging configuration or subset of

configurations; hence, there is not net change in mass, structure, or properties.

Growth - an increase in mass that is achieved locally via an increase in the number (e.g., via

proliferation, hyperplasia, or migration) or size (hypertrophy) of cells and (or) via a synthesis

of extracellular matrix that exceeds removal; growth may or may not change the mass density

or material properties.

For simplicity, we are concentrated on a maintenance of the ventricle pumping function,

when cell hypertrophy becomes the main growth process.

2.2. Volume and pressure overload

The mechanical load could lead to physiological or pathological adaptation. We assume now

only physiologic changes as the result in the differentiation of the right and the left ventricle to

the mechanical stimuli after birth on. The main aim of the ventricle adaptation is to preserve

its pumping function if there is the increase (decrease) in mechanical load. This effort could

be mainly physiological in the first period of life; if the mechanical load increases slowly and

gradually, see [3].

The cardiac growth is associated with progressive myocardial cell enlargement (hypertro-

phy) in some months after birth on. Substantial increases in ventricular diameter and wall thick-

ness result from the addition of new contractile proteins in series and parallel within a virtually

constant population of cardiac muscle cells, we refer to [3].

Volume overload. When the ventricular volume overload - the increase of blood volume at the

end-diastole - becomes the stimulus, increased fiber stress at the end-diastole leads to series add-

ition of new sarcomeres, fiber elongation and chamber enlargement. The progressive chamber

enlargement will lead to increase systolic wall stress, which causes wall thickening to normalize

systolic wall stress.

Pressure overload. When pressure overload - inner ventricle pressure necessary for blood ejec-

tion - becomes the stimulus, the increase in systolic pressure and wall stress leads to the addition

of new myofibrils in parallel and wall thickening. The systolic wall stress will be normalized.

In [4] there are named more ventricle characteristics which are holt quasi constant during the

volume overload. These are the end-diastole fibre strain, systolic wall stress, fibre contraction,

etc. We assume in our computer simulation wall stress to be kept constant.

3. Theory of volumetric growth

The theory of volumetric growth in [1] stays on several fundamental points of the theory

of generalized continuum, see [2]. The first point of them is the refinement of the process

of motion. In classical continuum mechanics is the process of motion introduced by the place-

ment which maps the body B onto the Euclidean space E

p : B → E . (1)

If we would like to assume the microstructure from macroscopic point of view, the process

of motion must be refine. The added degree of freedom is represented by the tensorial compo-

nent which could express the gradient matrix (not necessary skew). In the theory of volumetric

growth is added the so called growth tensor P, which is characterized as the mapping of the

tangential space of body B onto vectorial Euclidean space E
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P : TbB → VE . (2)

The refined motion is then given by the process (p, P).

The second point of the here mentioned theory of volumetric growth is theory of gradi-

ent order in the construction of the balance laws (balance of forces, growth law). The theory

of gradient order is explained in [6]. It is not necessary, that every element of the process be

of same gradient order. A first-order gradient theory clearly describes usual continua (called

”simple materials”) and is, most often, quite sufficient. A first-order gradient theory is applied

to the placement p. A zero-order gradient theory is used for the growth tensor P, for simplicity.

This choice restricts the theory of volumetric growth only on the growth in mass due to cell

enlargement. The placement p and the growth tensor P are related by

F = ∇pP−1, (3)

where warp F preserves the compatibility of growing body, see [7].

Once is chosen the process of motion, the principle of working (principle of virtual power)

and the principle of dissipation is used to construct the balance equation and the growth law

with corresponding constitutive relation. We assume elastic continuum. For more information

see [1].

Balance equation expressed on the relaxed - ”stress-free”, see [7] - configuration

DivS = b on B & Sn∂B = t∂B ∂B, (4)

where S is the stress tensor (inner force)1, b is the bulk force (outer force), n is the normal to

the boundary of body B and t is the boundary force (outer force).

The relation between stress tensor S expressed on relaxed configuration and stress tensor T

expressed on current configuration (also known as Cauchy stress tensor) is given

T = J−1
F
SF
T, JF = detF. (5)

Growth law expressed on the relaxed configuration

GṖP
−1 = B− ψI+ FTS on B, Pt=0 = I, (6)

where G should be positive-definite matrix of constants (or time variables), see [1], ψ is the free

energy, I is the identity tensor and B is the couple stress (outer force) which could represent

an outer control of the growing process given by implicit processes, chemical processes etc.,

which are not included directly into the here used model of volumetric growth.

We refer the readers to article [1] to understand the creation of both balance and growth law.

4. Study of form of growth low

4.1. Model of ventricle

The right and the left ventricles have very complicated geometry. For simplicity, we assume

that the ventricle could be represented by a prolate spheroid. For our computer simulation we

take only very thin horizontal cut from the equatorial plane of prolate spheroid, represented by

the geometry of an annulus (Ri = 0.02m - inner radius, Ro = 0.05m - outer radius) , see fig. 1.

We solve the problem of plain strain.

1The dichotomy inner/outer does not pertain to the physics of forces, but to the limitations of the model.
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Fig. 1. Horizontal cut from the equatorial plane of prolate spheroid.

Ventricle wall is moulding as incompressible material (7)

S = Sext − pIP
∗, 2
Sext = 2F

∂W (C)

∂C
, 3 (7)

where p is hydrostatic pressure (don’t replace by the notation p for body placement).

We assume the tissue as fiber reinforced material. The constitutive relation used for the

simulation is composed from two parts, the first one which represents the matrix and the second

one which represents the contractile fibers

W (C) =Wm +Wf = C1(e
(a(I1−3)) − 1) + C2(e

(b(α−1)2) − 1), (8)

where I1 = trC, α = e ⊗ e : C, a vector e characterizes the fiber orientation (here only in
circumferential direction), C1 = 0.001[MPa], C2 = 1[MPa], a = 0.001, b = 1.5 are here used
material constants, ψ = W(C) is the strain energy and C is the deformation measure (called left

Cauchy-Green deformation tensor).

Fig. 2. Dependence of stress in circumferential (fiber) direction (Tc) and inner ventricle pressure pi to

prescribed displacement.

We are interested in the form of matrix G and tensor B of relation (6). Matrix G could

express the tissue compliance to adaptation. B - couple stress - introduces the outer control

of adaptation (growth) process. If we assume the growth only in radial (r) and circumferential

(c) direction, the relation (6) could be rewritten

2P∗= detP P−1

3C = FFT
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G11
Ṗr

Pr

+G12
Ṗc

Pc

= Br −W + FrSr,

G21
Ṗr

Pr

+G22
Ṗc

Pc

= Bc −W + FcSc. (9)

4.2. Passive growth

Firstly, we tested the relation (6), if B was neglected - passive growth. The bulk force b was

neglected too and the Dirichlet boundary condition in (4) was applied. The matrix G should be

positive-definite. We tasted three different cases of G rewritten into matrix form

G =

[

G11 G12

G21 G22

]

= a)

[

1 0
0 1

]

, b)

[

1 0
0 10

]

, c)

[

10 0
0 1

]

. (10)

Fig. 3. Time dependence of deformation (P-black, F-dark grey, ∇p - light grey) and stress (Tc - dark

grey, Tr - black) for G ((a) - solid line, (b) - solid line(�), (c) - solid line(∗)).

Fig. 4. Time dependence of radius (inner - black, outer - dark grey) for G ((a) - solid line, (b) - solid

line(�), (c) - solid line(∗)).

The compliance to the adaptation - expressed by matrix G - depends on the value of the

components of G. If G is diagonal matrix; whereby is the diagonal G component greater

thereby is the growth in that direction slower, see fig. 3 right. The case (b) stopped, because it

did not fulfil the condition of incompressibility detF = 1. If diagonal G component for both

radial and circumferential direction is same (case (a)), the annulus becomes thinner for passive
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growth then in the (case (c)), see fig. 4. G could also depend on the time. This could be useful

by the simulation of the ventricle adaptation, when the stimulus to adaptation depends on the

different mechanical load in diastole and systole separately.

4.3. Active growth

Secondly, we tested the relation (6), if B was taken into account, see (11) - active growth.

The bulk force b was neglected and the Dirichlet boundary condition in (4) was applied.

B =W I− (detF)FTT⊙
F

−T, (11)

where components of T⊙ represent the desired value (control value) of stress in radial T⊙
r

and circumferential T⊙
c direction, if we consider the plain strain problem and the growth only

in radial and circumferential direction. If we assume the relation (11), then the relations (9)

could be rewritten

G11
Ṗr

Pr

+G12
Ṗc

Pc

= Fr(Tr −T
⊙
r )Fr,

G21
Ṗr

Pr

+G22
Ṗc

Pc

= Fc(Tc −T
⊙
c )Fc. (12)

4.3.1. Uniform wall stress

The stress in fiber (here circumferential) direction was observed to be uniform at the end-

diastole [8]. This even was observed on the horizontal cut of the ventricle, the ring opened if it

was cut radially, see fig. 1.

We simulated tree different cases, which could lead to the uniformity of stress in circumfer-

ential direction controlled by

T
⊙ =

[

T
⊙
r 0
0 T

⊙
c

]

= a)

[

Tr 0
0 pi

Ri

Ro−Ri

]

, (13)

where pi
Ri

Ro−Ri

is Laplace law for thin walled annulus, pi is the inner ventricle pressure.

The first (1) case represents the possibility, that the tissue growths only in circumferential

direction. The second (2) case expresses the growth both in circumferential and radial direction.

The third (3) case simulates the growth in circumferential direction and the atrophy in radial di-

rection. The matrix G should be positive-definite. We tasted three different cases of G rewritten

into matrix form

G =

[

G11 G12

G21 G22

]

= 1)

[

1 0
0 1

]

, 2)

[

1 −0.5
−0.5 1

]

, 3)

[

1 0.5
0.5 1

]

. (14)

We show in the following figures the difference in the radial Pr and the circumferential Pc

growth, the angle opening, the change of wall thickness h, the stress in the radial Tr (cross

fiber) direction and the pass to the uniform stress in the circumferential Tc (fiber) direction

for inner (black line) and outer (grey line) radius of the annulus. The time of simulation was

t ∈ 〈0, 600〉[s]. Case (1) is represented by solid line, case (2) by solid line ∗, and case (3) by
solid line �.

We observed the differences in the geometry proportions for these three cases. These dif-

ferences lead to the different inner ventricle pressure after the circumferential stress became
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uniform across the wall. At the time t = t0 = 0 is shown in fig. 5 the difference between the
fiber (circumferential) stress (grey line) across the wall and control value (black line).

Fig. 5. Initial difference between fiber stress and control value across the wall.

The stress in fiber (circumferential) direction Tc, see fig. 6 left, passed to the control value

at the time of simulation t = 600s. In the case (3) (� line) was the passing the fastest for both

inner (black line) and outer (grey line) radius. In the case (2) was the passing the slowest for

the outer radius (grey line ∗). In all three cases, the difference in stress in cross-fiber (radial)
direction Tr, see fig. 6 right, for inner radius (black line) expresses the difference in inner

ventricle pressure after the circumferential stress became uniform across the wall - at time

t = 600s. For the outer radius (grey line) there is no change in the stress in radial direction, the
outer boundary is free to move.

Fig. 6. Simulation of the fiber stress uniform distribution across the wall - left figure, and change in the

radial stress for the inner radius (black line) - right figure.

The difference in the inner ventricle pressure for three cases will be better shown in the

following figures. If we have in mind the Laplace law for thin walled vessel (15)

Tc = pi
Ri

Ro −Ri

, (15)

if Tc is constant, then the value of the inner ventricle pressure pi depends on the relation of the

inner Ri and the outer Ro radius
Ri

Ro−Ri

.
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Fig. 7. Growth in circumferential Pc and radial Pr direction for three cases. Inner radius (black line),

outer radius (grey line).

Fig. 8. Left fig. - Change of inner radius Ri (black line), outer radius Ro (grey line). Right fig. - Time

evolution of angle opening for inner radius (black line), outer radius (grey line).

After simulation when the stress in circumferential direction became uniform:

Case 1 - solid line. The inner radius Ri increased about the value 2.7mm but

the wall thickness R0 −Ri did not change. The inner pressure must decrease

(see fig. 6 right - opposite value to Tr for inner radius (black solid line)).

Case 2 - solid line ∗. The inner radius Ri changed as in case 1. The outer

radius increased significantly about the value 4.3mm, so the wall thickness

R0 − Ri increased. The inner ventricle pressure decreased less then in the

case 1 (see fig. 6 right (black solid line ∗)).

Case 3 - solid line �. The outer radius R0 changed about the value 2.9mm.

The inner radius increased less then in case 1 about the value 1.8mm, so

the wall thickness increased with the smaller inner radius. This leads to the

greater decrease in the inner ventricle pressure then in case 1 (see fig. 6 right

(black solid line �)).

The opening of radial cut of the annulus is shown by the time simulation of angle α[◦], see
fig. 8 right. The difference in time t = 100s depends on the difference in growth in circumfer-
ential direction Pc, see fig. 7 left, and change in proportion, see fig. 8 left. At time t = 100s
there are no significant changes in proportions for both three cases, but the difference in the

growth in circumferential direction is significant. At the end of simulation the opening angle

stops nearly on the same value around 8◦.
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4.3.2. Normal growth

The lass computer simulation is dedicated to the normal growth of the left ventricle. The

adaptation on the increase in both volume and pressure load after birth on leads to normalize

systolic wall stress, which is necessary for valve opening and blood ejection [3]. The pressure

in the ventricle must achieve the value of the pressure in artery during the isovolumic systole.

The end-diastole sarcomere length should be kept constant; equal to the value 2.2µm which is

an optimal sarcomere length for its contraction. We simulate the normal growth in two steps.

The first step (time of simulation t ∈ 〈0, 600〉 [s]) simulates the passing of stress in the

circumferential direction on the constant value (uniform stress distribution in circumferential

direction at the end-diastole) which could represent the uniform optimal sarcomere length in the

wall. The first step is same as in section 4.3.1.case (1). The tissue growth only in circumferential

direction.

The second step (time of simulation t ∈ 〈600, 3000〉 [s]) simulates the achievement of

constant value of inner pressure. The stress in circumferential direction and the inner radius are

holt constant in the second step, equal to the value reached in the first step. The stress in radial

direction Tr passes to the control value T
⊙
r , see fig. 9.

Fig. 9. Initial conditions for stress in circumferential direction for 1th step of simulation (left figure) and

radial direction for 2nd step of simulation (right figure)(grey solid line ∗), control value (black solid line).

The following figures (on the next page) show the time evolution of the stress in circumfer-

ential direction and inner ventricle pressure. The tissue responds to the increase in end-diastole

volume and efforts to balance the inner vessel pressure on the control value by the credit of the

change in inner and outer radius of the annulus. The calculations served only as a model. The

parameters used for the simulation were not real.

5. Conclusion

The contents of this work was the study of the form of growth low which we will used in

future for the computer simulation of left ventricle adaptation to the mechanical stimuli. The

response of tissue (here represented by fiber reinforced annulus) on the mechanical load, which

is driven by here studied growth low, depends on the form of bothGmatrix andB couple stress.

We could conclude that the velocity of growth process depends on the compliance to the growth

- expressed byGmatrix, whileB couple stress drives the growth to desire values (here the value

of uniform stress in circumferential direction). The initial calculation was done on the geometry

of the annulus. The simulation for the model of prolate spheroid with helical fiber orientation

is still in progress.
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Fig. 10. Passing of stress in circumferential direction (grey solid line ∗) on constant value (left figure)
and balance of inner ventricle pressure (grey solid line ∗) on control value (right figure).

Fig. 11. Time evolution of inner (black solid line) and outer (grey solid line ∗) radius and angle opening
for inner (black solid line) and outer (grey solid line ∗) radius.
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