ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Studijní program:N2301Studijní obor:2302T041zařízení

N2301 Strojní inženýrství 2302T041 Stavba jaderně energetických

DIPLOMOVÁ PRÁCE

Optimalizace průtočné části parní turbíny

Autor: Bc. Petr Kollross

Vedoucí práce: Ing. Pavel Žitek

Akademický rok 2014/2015

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta strojní Akademický rok: 2014/2015

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Bc. Petr KOLLROSS
Osobní číslo:	S13N0055P
Studijní program:	N2301 Strojní inženýrství
Studijní obor:	Stavba jaderně energetických zařízení
Název tématu:	Optimalizace průtočné části průmyslové parní turbíny
Zadávající katedra:	Katedra energetických strojů a zařízení

Zásady pro vypracování:

Cílem práce je optimalizace průtočné části průmyslové parní turbíny. Bude sestaven 1D model proudění stupněm parní turbíny. Na základě tohoto modelu bude vytvořen jednoduchý program pro návrh a analýzu proudění průtočnou částí parních turbín. Optimalizace bude probíhat formou variantních výpočtů. U zvolené varianty bude proveden detailní návrh lopatkování v SW TuFPaD (interní SW společnosti Doosan Škoda Power).

Máte za úkol provést:

- 1. Vytvoření jednoduchého programu pro 1D analýzu proudění stupněm parní turbíny.
- 2. Variantní výpočet průtočné části (různé počty stupňů, patní průměry, úrovně reakce) v rámci rozměrů turbíny s cílem nalezení funkčně-ekonomického optima.
- 3. Detailní návrh průtočné části finální varianty v SW TuFPaD.
- 4. Závěr shrnutí výsledků.

Rozsah diplomové práce:

a) textová část:	50-70 stran formátu A4
b) grafická část	1 – 2 diagramy
Forma zpracování diplomové práce:	tištěná a elektronická (CD)

Doporučená literatura:

- 1. Kadrnožka J.: Tepelné turbíny a turbokompresory I základy teorie a výpočtů, CERM, 2005, ISBN 9788072043460.
- 2. Dixon S. L., Hall C.A.: Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier, 2010, ISBN 978-1-85617-793-1.
- 3. Chen Naixing: Aerothermodynamics of Turbomachinery: Analysis and Design, Wiley, 2010, ISBN 978-0-470-82500-6.
- 4. Schobeiri M.: Turbomachinery Flow Physics and Dynamic Performance, Springer, 2005, ISBN 3-540-22368-1.
- 5. Interní materiály Doosan Škoda Power s.r.o.

Vedoucí diplomové práce:

Ing. Pavel Žitek

Konzultant diplomové práce:

Ing. Petr Milčák, Ph.D. Doosan Škoda Power

Datum zadání diplomové práce: 3.11.2014 Termín odevzdání diplomové práce: 22. 5. 2005

L.S.

Doc. Ing. Milan Edl, Ph.D. děkan

Ing. Zdeněk Jůza, Ph.D., MBA vedoucí katedry

V Plzni dne: 30. 10. 2014

Prohlášení o autorství

Předkládám tímto k posouzení a obhajobě diplomovou práci, zpracovanou na závěr studia na Fakultě strojní Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce.

V Plzni dne:

podpis autora

ANOTAČNÍ LIST DIPLOMOVÉ PRÁCE

AUTOR	Příjmení Kollross		Jméno Petr		
STUDIJNÍ OBOR	2302T041 "Stavba jaderně energetických zařízení"				
VEDOUCÍ PRÁCE	Příjmení (včetně titul Ing. Žitek	Jméno Pavel			
PRACOVIŠTĚ	ZČU - FST - KKS				
DRUH PRÁCE	DIPLOMOVÁ BAKALÁŘSKÁ N			Nehodící se škrtněte	
NÁZEV PRÁCE	Optimalizace průtočné části parní turbíny				

FAKULTA	strojní		KATEDRA	KKS		ROK ODEVZD.	2015
---------	---------	--	---------	-----	--	----------------	------

POČET STRAN (A4 a ekvivalentů A4)

CELKEM	71	ΤΕΧΤΟΥ	Á ČÁST	57		GRAFICKÁ ČÁST	14
--------	----	--------	--------	----	--	------------------	----

STRUČNÝ POPIS (MAX 10 ŘÁDEK) ZAMĚŘENÍ, TÉMA, CÍL POZNATKY A PŘÍNOSY	Diplomová práce obsahuje 1D návrh průtočné části parní turbíny. Součástí je i vytvořený program, ve kterém je zohledněn i pevnostní návrh. Pomocí programu byly napočítány různé varianty průtočných částí a ta nejlepší byla přepočtena v interního programu DSPW
KLÍČOVÁ SLOVA ZPRAVIDLA JEDNOSLOVNÉ POJMY, KTERÉ VYSTIHUJÍ PODSTATU PRÁCE	Turbína, průtočná část, lopatky, expanze, pevnost, rychlosti, stupně, návrh Matlab

SUMMARY OF DIPLOMA SHEET

AUTHOR	Surname Kollross			Name Petr	
FIELD OF STUDY	2302T041 "N	NuclearPowe	erEquipemen	t Design"	
SUPERVISOR	Surname (InclusiveofDe Ing. Žitek	grees)	Name Pavel		
INSTITUTION		ZČU - FST - KKS			
TYPE OF WORK	DIPLOMA BACHELOR Deletew applied				
TITLE OF THE WORK	Optimalization flow part of steam turbine				

FACULTYMechanical EngineeringDEPARTMENT	Machine Design	SUBMITTED IN	2015
--	-------------------	-----------------	------

NUMBER OF PAGES (A4 and eq. A4)

TOTALLY	71	TEXT PART	57	GRAPHICAL	14
				PART	

BRIEF DESCRIPTION TOPIC, GOAL, RESULTS AND CONTRIBUTIONS	In this thesis is contained 1D design of flow part of steam turbine. In this thesis is reflected strenght design. By this program was calculated various variants of flow parts and the best was recalculate in internal program of Doosan Škoda Power.
KEY WORDS	Turbine, flow part, blades, expansion, strength, velocities, stages, design in matlab

Poděkování

Rád bych poděkoval svému konzultantovi p. Ing. Petru Milčákovi, Ph.D., ze společnosti Doosan Škoda Power za jeho obětavou a trpělivou pomoc a za podporu při zpracování diplomové práce. Mimo jiné bych chtěl vyjádřit díky za bohaté znalosti a zkušenosti, které mně během tvorby diplomové práce po celou dobu s ochotou předával. Rovněž bych rád vyjádřil díky pracovníkům Doosan Škoda Power, kteří mi se vším vždy rádi pomohli a vyšli vstříc. V neposlední řadě patří díky mému vedoucímu p. Ing. Žitkovi a všem dalším lektorům ZČU za znalosti, které mně během studia předávali.

		(Obsa	h	
1		Úvc	od	1	3
2		Teo	rie 1	D výpočtu turbínového stupně1	4
	2.	1	Přer	něna energie v turbínovém axiálním stupni1	4
	2.2	2	Průl	oěh rychlostí ve stupni axiální turbíny1	4
	2.3	3	Exp	anze v turbinovém stupni1	5
	2.4	4	Rea	kce stupně2	1
	2.5	5	Ryc	hlostní poměr (u/c)2	4
	2.0	б	Změ	ěna parametrů po výšce lopatky2	5
		2.6.	1	Změna reakce po výšce lopatky2	5
		2.6.	2	Nakroucení lopatek - zákon zachování průtoku2	6
	2.7	7	Teri	nodynamická lopatková účinnost2	7
	2.8	8	Lab	yrintové ucpávky2	9
		2.8.	1	Výpočet průtoku labyrintovými ucpávkami2	9
		2.8.	2	Snížení termodynamické účinnosti vlivem mísení ucp. páry s hl. proudem3	1
		2.8.	3	Stupeň bez odlehčovacího otvoru	2
		2.8.	4	Stupeň s odlehčovacím otvorem	3
	2.9	9	Urč	ení délky lopatek	4
	2.1	10	Výp	očet namáhání oběžných lopatek a stanovení jejich geometrie3	5
	2.1	11	Odh	ad účinnosti lopatkových mříží3	8
		2.11	.1	Výpočet účinnosti dle Soderberga	8
		2.11	.2	Výpočet účinnosti dle Traupla	9
		2.11	.3	Korekce ztrát pro prismatické lopatky	9
		2.11	.4	Volba výstupního úhlu β_2 4	0
3		Nur	neric	ká řešení použitá v programu4	.3
	3.	1	Itera	ace metodou sečen4	.3
	3.2	2	Nev	vtonova interpolace funkce4	4
4		Pop	is pr	ogramu4	.5
	4.	1	Obe	cný popis programu4	-5
	4.2	2	Zad	ávání vstupních parametrů4	.5
		4.2.	1	Způsoby zadávání vstupních parametrů4	.5

Záp	adočeská univerzita v Plzni. Fakulta strojní.	Diplomová práce, akad.rok 2014/15
Kat	edra energetických strojů a zařízení	Petr Kollross
5	Návrh průtočné části	47
5	.1 Vstupní parametry	
5	.2 Postup řešení a výsledky výpočtu z vytvořenéh	o programu48
5	.3 Detailní návrh v interním programu Doosan Šk	oda Power52
5	.4 Porovnání výsledků 1D programu oproti progra	amu DSPW54
5	.5 Technicko-ekonomické zhodnocení	
6	Závěr	
7	Citovaná literatura	
8	Publikace na internetu	
9	Seznam použitých programových zdrojů	
10	Přílohy	

Název veličiny	Značka veličiny	Jednotky	Název veličiny	Značka veličiny	Jednotky
Tlak	p _i	bar(a), Pa	Otáčky	n	1/s
Teplota	T _i	К	Absolutní rychlost	С	m/s
Teplota	t _i	°C	Relativní w rychlost		m/s
Měrná entalpie	i	J/kg	Unášivá rychlost	u	m/s
Entalpický spád	Н	J/kg	Úhel	α, β,δ	°, rad
Měrná entropie	S	J/kg·K	Průměr rotoru	D	mm
Hustota	ρ	kg/m ³	Hydraulický průměr	D _h	mm
Měrný objem	v _i	m ³ /kg	Lopatková rozteč	t	mm
Objem	V _i	m ³	Radiální vůle	$\delta_{\rm r}$	mm
Účinnost	η	%	Délka lopatky	L	mm
Ztrátový součinitel	ζ	-	Šířka kola	В	mm
Výkon	Р	W	Délka tětivy	b	mm
Vlhkost	X	-	Obvodová síla	F_u	N
Výkon	Р	W	Axiální síla	F _a	N
Měrná práce	а	J/kg	Celková síla	F	N
Hmotnostní průtok	ṁ	kg/s	Kroutící moment	М	N∙m
Hmotnost	m	kg	Moment setrvačnosti	J	m ⁴
Machovo číslo	Ma	-	Průřezový moment	W_0	m ³
Reynoldsovo číslo	Re	-	Napětí	ιpětí σ	
Dynamická viskozita	μ	Pa·s	Ztrátový součinitel	μ	-

Přehled veličin a jednotek

Západočeská univerzita v Plzni. Fakulta strojní. Katedra energetických strojů a zařízení

Opravný	k	_	Úhlová	ω	rad/s	
koeficient	K	_	rychlost	ω	140/5	
Měrná			Měrná			
tepelná	0	lr I/lr o V	tepelná		li I/li a V	
kapacita při	C _p	KJ/Kg·K	kapacita při	C _v	KJ/Kg·K	
p = konst.			v = konst.			
			Koeficient			
Reakce	ρ	-	zaplnění	ε _r	Ν	
			průřezu			
Valilzagt hudla	0	122122	Rychlostní	d yr		
venkost nrdia	S	mm	součinitel	φ, ψ	-	
Součinitel	10					
využitelnosti	κ_1	-				

Zkratky a indexy

DSPW		Doosan Škoda Power
T-T	[.]	total to total
S-S		static to static
T-S		total to static
OUT	۰	výstupní
IN		vstupní
OL		oběžná lopatka
RL	1	rozváděcí lopatka
band	1	bandáž
opt		optimální
dov	·	dovolené
ucp		ucpávka
hust	1	hustota
st		stupeň
ax		axiální
pč]	průtočná část
ro	1	rotor
sr	·	stator
iz	:i	izoentropický
a		absolutní
Т	۰t	total
р]	profil
S		sekundární
р]	patní
S		střední
š		špička
i	i	index
r	۱۱	radiální / poloměr
u	1	unášivá
t	:t	technická
Z ₀]	počet lopatek
0		ohybové
25		pro šířku 25mm
*	- 1	nominální

1 Úvod

Tato diplomová práce se zabývá optimalizací průtočné části turbíny. Pro účely optimalizace, která je provedena na bázi 1D výpočtu, je součástí této diplomové práce vytvořený výpočetní 1D program. Program je vytvořen v programovém prostředí Matlab R2010b. Tímto programem jsou napočítány různé varianty průtočných částí turbín. Technicky nejvhodnější varianta, která vyplynula z 1D programu, byla dále zvolena pro detailní návrh v interním programu Doosan Škoda Power (dále jen DSPW). Důsledkem optimalizace je navýšení účinnosti a výkonu parní turbíny. Metoda výpočtu, jenž je níže popsána, umožňuje uživateli prvotní návrh a počáteční predikci účinnosti. Diplomová práce dále porovnává výhody přetlakového stupně, stupně se zvýšenou reakcí na patě oproti rovnotlakému stupni, a to včetně popisu geometrických a termodynamických změn po výšce lopatky.

Program vytvořený pro potřeby této diplomové práce pokrývá celou průtočnou část turbíny až na I. stupeň zvaný též jako "A-kolo popř. regulační stupeň". Zároveň je nevhodné zmíněný program použít pro výpočet relativně dlouhých lopatek například posledních stupňů, kde metodika 1D výpočtu výrazně ztrácí na přesnosti, a to bez ohledu na další vlivy, kterými jsou dlouhé lopatky vystaveny, ať už se jedná o enormní namáhání odstředivými silami nebo zvýšenou vlhkost v posledních stupních, která má vliv nejen na účinnost, ale také na erozi lopatek. Zmíněné výpočetní problémy související s A-kolem a s relativně dlouhými lopatkami se musí řešit odděleně jako separátní úloha. Je-li získán vypočet regulačního stupně, tak s následně zjištěnými výstupními parametry je možno dále operovat jako se vstupy pro výpočet ostatních stupňů prostřednictvím vytvořeného programu.

Při návrhu průtočné části se nejprve provede jednoduchý 1D výpočet. Do tohoto programu je implementována i část pro pevnostní návrh lopatek. Mezi podstatné charakteristiky získané z výpočtu bych vyzdvihl termodynamickou účinnost dle Soderberga a Traupla, počet stupňů průtočné části, rychlostní trojúhelníky, úhly oběžných a rozváděcích lopatek, měrnou práci a výkon. Jedná se o prvotní výpočet a v programu se vyskytuje řada zjednodušení a to proto, aby bylo reálné porovnat více variant a řešení v přijatelném čase a s rozumnou přesností. Po tomto základním návrhu je vybráno nejpřijatelnější řešení a s tímto se dále postupuje detailněji do fáze tzv. definitivního výpočtu. Definitivní výpočet byl vytvořen právě v interním programu DSPW. V tomto programu proběhla řada iterací a výsledky jsou detailními výpočty průtočné části turbíny. Součástí výstupů z interního programu DSPW byly rovněž grafické modely průtočné části. Výstupem samotné diplomové práce je optimalizování průtočné části turbíny a získání základních charakteristik turbíny pro daný typ stroje. V úvahu je bráno i ekonomické zhodnocení, a toto je zaměřeno zejména na výrobce turbosoustrojí.

2 Teorie 1D výpočtu turbínového stupně

2.1 Přeměna energie v turbínovém axiálním stupni

Parní turbína je tepelný stroj, který mění tlakovou a kinetickou energii média (vodní páry) na mechanickou práci. Turbinový rotor se skládá z jednoho (tzv. točivé redukce) nebo několika stupňů. Obvykle je turbína hnána přehřátou parou, ale v posledních stupních, nebo u jaderných elektráren se může jednat i o páru mokrou.

Stupeň se skládá z rozváděcích a oběžných lopatek. V rozváděcích lopatkách pára expanduje a mění svoji tlakovou energii na kinetickou. Tato pohybová energie se v rozváděcích lopatkách co nejvíce usměrní do obvodového směru, tedy do směru rotace oběžného kola. Kinetická energie působící na lopatky oběžného kola, vyvozuje otáčení rotoru a dále se přeměňuje na mechanickou práci. Tato kapitola čerpala zejména z literatury, popsané v citaci pod čísly [1], [4], [7] a [8].

2.2 Průběh rychlostí ve stupni axiální turbíny

Pára vstupuje na lopatky rozváděcího kola rychlostí c_0 . Z rozváděcích lopatek vystupuje absolutní rychlostí c_1 . Relativní rychlost w_1 vstupující následně do oběžné lopatkové mříže je rovna vektorovému součtu unášivé složky rychlosti u a absolutní složky rychlosti c_1 . Z oběžných lopatek pára vystupuje relativní rychlostí w_2 . Absolutní rychlost c_2 je dána vektorovým součtem obvodové složky u a relativní rychlostí w_2 . Vše zmíněné je nakresleno na obrázku 1.

Obr. 1: Zobrazení rychlostí v přetlakovém stupni axiální stupni turbíny

2.3 Expanze v turbinovém stupni

Expanze v turbinovém stupni je znázorněna v i-s diagramu na obrázku 3. Je patrné, že se jedná o expanzi, kde lopatkování má vyšší reakci (tedy $p_1 \neq p_2$). Červená křivka na tomto obrázku představuje průběh skutečné expanze v rozváděcí lopatkové mříži a modrá křivka prezentuje expanzi v oběžné lopatkové mříži.

Spád na stupeň je možné zadat prostřednictvím parametrů p_{0s} , i_{0s} , p_2 nebo p_{0s} , i_{0s} a bezrozměrného parametru (u/c). Bezrozměrným parametrem (u/c) se blíže zabývá kapitola 2.5. Ve výpočtu prezentovaném níže je použita první možnost, kde s využitím tlaku p_{0s} a entalpie i_{0s} je určen bod O_s . V dalším kroku je nutné vyjádřit unášivou složku rychlosti a s její pomocí pak fiktivní rychlost c_{iz}^{S-S} . Touto fiktivní rychlostí je definován izoentropický spád stupně H_0 .

$$u = \frac{\pi \cdot (D_p + L) \cdot n}{60} \tag{2.1}$$

$$c_{iz}^{S-S} = \frac{1}{\left(\frac{u}{c}\right)} \cdot u \tag{2.2}$$

$$H_0 = \frac{\left(c_{iz}^{S-S}\right)^2}{2} = i_{0s} - i_{2iz}$$
(2.3)

Z izoentropického spádu H_0 lze vyjádřit entalpii i_{02iz} a společně s výstupním tlakem p_2 je určen izoentropický bod 2_{iz} .

$$i_{2iz} = i_{0s} - H_0 \tag{2.4}$$

Z rovnice (2.5), která dává do souvislosti reakci (reakce je blíže popsána v kapitole 2.4), podíl entalpického spádu v oběžné lopatkové mříži ku entalpickému spádu stupně, je možné obdržet vztah (2.6), ze kterého je vyjádřena entalpie i_{1iz} .

$$\varrho_{S-S} = \frac{i_{1iz} - i_{2iz}}{i_{0s} - i_{2iz}}$$
(2.5)

$$i_{1iz} = \varrho_{S-S} \cdot (i_{0s} - i_{2iz}) + i_{2iz}$$
(2.6)

Nyní je nutné nalézt entropii v bodě O_s . Entropie je získána následující funkcí dvou parametrů a to: $s_0 = f(p_{0s}, i_{0s})$. V této fázi výpočtu lze určit dělící tlak p_1 a rovněž i bod I_{iz} pomocí entalpie i_{1iz} a entropie s_0 .

Dalším postupem bude získání bodu O_c . Nejprve je nutné vypočítat plochu S. Dále lze z rovnice kontinuity (vztah (2.8)) vyjádřit rychlost c_0 (rovnice (2.9)). Celkovou entalpii i_{0c} lze určit součtem statické entalpie i_{0s} a rychlosti c_0 , jenž je převedena na energetický tvar, jak je ukázáno v rovnicí (2.10). Nyní je možné určit bod O_c s pomocí celkové entalpie i_{0c} a entropie s_0 .

$$S = \pi \cdot (D_p + L) \cdot L \tag{2.7}$$

 $\langle \mathbf{A} \mathbf{O} \rangle$

$$\dot{m} = c_0 \cdot S \cdot \rho_{hust} \tag{2.8}$$

$$c_0 = \frac{\dot{m}}{S \cdot \rho_{hust}} \tag{2.9}$$

$$i_{0c} = i_{0s} + \frac{c_0^2}{2} \tag{2.10}$$

Dále bude následovat vyšetření bodů, které jsou charakteristické pro reálnou expanzi. Ze vztahu (2.11), dávajícího do souvislosti účinnost rozváděcí lopatkové mříže a entalpické spády, lze elementárními úpravami vyjádřit vztah (2.12). Účinnost rozváděcí lopatkové mříže je vstupním parametrem, který se získá ze ztrátového modelu. Tomuto ztrátovému modelu se budeme blíže věnovat v kapitole 2.11. Z entalpie i_{1s} obdržené z rovnice (2.12) a tlaku p_1 vyšetřeného již o několik řádku výše lze určit bod I_s . Bod I_s definuje stav po skutečné expanzi v rozváděcí lopatkové mříži.

$$\eta_{RL} = \frac{i_{0c} - i_{1s}}{i_{0c} - i_{1iz}}$$
(2.11)

$$i_{1s} = i_{0c} - \eta_{RL} \cdot (i_{0c} - i_{1iz})$$
(2.12)

V rovnici (2.13) je uveden zjednodušený 1. zákon termodynamiky. Z tohoto výrazu je možné jednoduchou úpravou získat vztah (2.14) vyjadřující výpočet absolutní složky rychlosti c_1 pomocí rozdílu entalpií.

$$\frac{c_1^2}{2} = i_{oc} - i_{1s} \tag{2.13}$$

$$c_1 = \sqrt{2 \cdot (i_{oc} - i_{1s})} \tag{2.14}$$

V této fázi výpočtu je možné vyšetřit úhel α_1 vyjádřený z rovnice kontinuity zapsané ve vztahu (2.15). Ze znalosti absolutní složky rychlosti c_1 , úhlu α_1 a unášivé složky rychlosti u lze obdržet relativní složku rychlosti w_1 , a to nejprve rozložením absolutní rychlosti c_1 do směru unášivého c_{1u} a do směru axiálního c_{1ax} viz. rovnice (2.16)-(2.18). Výsledná relativní rychlost w_1 je uvedena v rovnici (2.19) a je popsána jako odmocnina ze součtu kvadrátů axiální a unášivé složky relativní rychlosti.

$$\dot{m} = c_1 \cdot S \cdot \rho_{hust} \cdot \sin\alpha_1 => \alpha_1 = \arcsin\left(\frac{\dot{m}}{c_1 \cdot S \cdot \rho_{hust}}\right)$$
(2.15)

$$c_{1u} = c_1 \cdot \cos \alpha_1 \tag{2.16}$$

(2 17)

$$c_{1ax} = w_{1ax} = c_1 \cdot \sin \alpha_1 \tag{2.17}$$

$$w_{1u} = c_{1u} - u \tag{2.18}$$

$$w_1 = \sqrt{w_{1u}^2 + w_{1ax}^2} \tag{2.19}$$

Z podobnosti trojúhelníků a pomocí goniometrické funkce lze vyjádřit vztah (2.20). S využitím inverzní funkce *arcsin* k funkci *sinus* lze vyjádřit z rovnice (2.20) vztah (2.21) pro výpočet úhlu β_1 . Dále určíme relativní rychlost w_2 . Na levé straně rovnice (2.22) je rozdílem relativních rychlostí převedených na energetický tvar definován skutečný entalpický spád na oběžné lopatkové mříži. Na pravé straně rovnice (2.22) je uvedena fiktivní izoentropická rychlost, která v energetickém stavu definuje entalpický spád na stupeň. Součinem tohoto entalpického spádu a reakce získáme entalpický spád zpracovaný oběžnou lopatkovou mříží. Vynásobením účinností oběžné lopatkové mříže obdržíme entalpický spád pro reálnou expanzi. Účinnost oběžné lopatkové mříže se opět určí ze ztrátového modelu, kterým se zabývá kapitola 2.11. Osamostatněním relativní rychlosti w_2 z předešlého vztahu získáme výsledný tvar (2.23).

$$\sin\beta_1 = \left(\frac{w_{1ax}}{w_1}\right) \tag{2.20}$$

$$\beta_1 = \arcsin\left(\frac{w_{1ax}}{w_1}\right) \tag{2.21}$$

$$\frac{w_2^2}{2} - \frac{w_1^2}{2} = \frac{\left(c_{iz}^{S-S}\right)^2}{2} \cdot \rho \cdot \eta_{OL}$$
(2.22)

$$w_{2} = \sqrt{2 \cdot \left(\frac{\left(c_{iz}^{S-S}\right)^{2}}{2} \cdot \rho \cdot \eta_{OL} + \frac{w_{1}^{2}}{2}\right)}$$
(2.23)

Rychlost w_2 se následně rozloží pomocí zadaného úhlu β_2 do axiálního w_{2ax} a unášivého w_{2u} směru (rovnice (2.24)-(2.26)). Vyšetřením těchto rovnic získáme axiální a unášivou složku absolutní rychlosti c_2 . Výsledná absolutní rychlost c_2 je získána jako odmocnina ze součtu axiální c_{2ax} a unášivé c_{2u} složky absolutní rychlosti. Tento vztah je uveden v rovnici (2.27).

$$w_{2u} = w_2 \cdot \cos \beta_2 \tag{2.24}$$

$$w_{2ax} = c_{2ax} = w_2 \cdot \sin \beta_2 \tag{2.25}$$

$$c_{2u} = w_{2u} - u \tag{2.26}$$

$$c_2 = \sqrt{c_{2u}^2 + c_{2ax}^2} \tag{2.27}$$

Z podobnosti trojúhelníků a pomocí goniometrické funkce je možné odvodit vztah (2.28). Úhel α_2 je možné vypočítat s použitím inverzní funkce k funkci sinus a z rovnice (2.28) je následně získán vztah (2.29).

$$\sin \alpha_2 = \left(\frac{c_{2ax}}{c_2}\right) \tag{2.28}$$

$$\alpha_2 = \arcsin\left(\frac{c_{2ax}}{c_2}\right) \tag{2.29}$$

Převedením relativní rychlosti w_1 na energetický tvar a přičtením ke statické entalpii i_{1s} (rovnice (2.30)) je získána entalpie v bodě i_{1w} , nutná k vyjádření skutečné entalpie na výstupu z oběžné lopatkové mříže.

$$i_{1w} = i_{1s} + \frac{w_1^2}{2} \tag{2.30}$$

V rovnici (2.31) se nalézá vztah dávající do souvislosti účinnost oběžné lopatkové mříže, skutečné a ideální entalpické spády oběžné lopatkové mříže. Algebraickými úpravami rovnice (2.31) lze docílit vztahu (2.32) vyjadřujícího entalpii i_{2s} . Bod 2s je dostatečně definován tlakem p_2 a zjištěnou entalpií i_{2s} .

$$\eta_{OL} = \frac{i_{1w} - i_{2s}}{i_{1w} - i_{2iz}}$$
(2.31)

$$i_{2s} = i_{1w} - \eta_{0L} \cdot (i_{1w} - i_{2iz})$$
(2.32)

Na závěr je možné dopočítat bod 2c. Tento bod je určen entropií v bodě 2s (entropie lze vyjádřit takto: $s_{2s} = f(p_2, i_{2s})$) a výstupní absolutní rychlostí c_2 zapsanou v energetickém tvaru. Vše je uvedeno v rovnici (2.33).

$$i_{2c} = i_{2s} + \frac{c_2^2}{2} \tag{2.33}$$

Aby bylo možné vypočítat výkon stupně, tak je nejprve nutné zjistit unášivou složku síly, kterou popisuje rovnice (2.34), a to pomocí průtočného množství m a absolutních složek rychlostí c_1 , c_2 a úhlů α_1 , α_2 .

$$F_u = \dot{m} \cdot (c_{1u} - c_{2u}) = \dot{m} \cdot (c_1 \cdot \cos\alpha_1 + c_2 \cdot \cos\alpha_2)$$

$$(2.34)$$

Výkon získaný z kinetické energie páry je stanoven pomocí krouticího momentu a úhlové rychlosti, a to takto:

$$P_{st} = M_k \cdot \omega = F_u \cdot r \cdot \omega = \dot{m} \cdot (c_{1u} - c_{2u}) \cdot u$$

= $\dot{m} \cdot (c_1 \cdot \cos \alpha_1 + c_2 \cdot \cos \alpha_2) \cdot u$ (2.35)

Měrná práce je popsána Eulerovou větou a stanoví se jako podíl výkonu a průtočného množství, a to následovně:

$$a_{t}^{T} = \frac{P_{st}}{\dot{m}} = (c_{1u} - c_{2u}) \cdot u = \Delta c_{u} \cdot u$$
(2.36)

Energetické ztráty statorové mříže popisuje rovnice (2.37) a energetické ztráty rotorové mříže popisuje rovnice (2.38).

$$z^{RL} = \frac{c_{1iz}^2}{2} - \frac{c_1^2}{2}$$
(2.37)

$$z^{OL} = \frac{w_{2iz}^2}{2} - \frac{w_2^2}{2}$$
(2.38)

Výsledkem výše uvedeného postupu jsou jednotlivé vektory rychlostí zobrazených na obrázku 2 a expanze ve stupni zobrazena na obrázku 3.

Ve vytvořeném programu jsou rychlosti w_1 , c_2 , a úhly α_2 , a β_1 řešeny nikoli rozkladem na jednotlivé složky rychlosti, ale pomocí vztahů pro Kosinovu větu.

Obr. 2: Rychlostní trojúhelníky na oběžné a rozváděcí lopatce

Obr. 3: Expanze v přetlakovém stupni parní turbíny

2.4 Reakce stupně

Pojem reakce stupně vyjadřuje poměr tepelného spádu oběžné lopatkové mříže ku tepelnému spádu celého stupně viz. rovnice (2.39) a (2.40). V případě, že se v oběžné lopatkové mříži tlak nesnižuje (pára neexpanduje), jedná se o čistě rovnotlaký stupeň. Při vyšších tlakových spádech na oběžné lopatkové mříži hovoříme o stupních s mírnou reakcí a v případě velkých tlakových spádů o přetlakových stupních. Expanze v takovém případě probíhá i v oběžné lopatkové mříži. To má významný vliv i co do konstrukce bandážových ucpávek, kterým musí být věnována patřičná pozornost. U stupňů s vyšší reakcí se rotory konstruují v bubnovém uspořádání a u stupňů s nižší reakcí v uspořádání kolovém.

Reakce definovaná k počátečnímu celkovému stavu

$$\varrho_{T-S} = \frac{i_{1iz} - i_{2iz}}{i_{0c} - i_{2iz}} = \frac{H_{iz}^{OL}}{H_{izT-S}^{ST}}$$
(2.39)

Reakce definovaná k počátečnímu statickému stavu

$$\varrho_{S-S} = \frac{i_{1iz} - i_{2iz}}{i_{0s} - i_{2iz}} = \frac{H_{iz}^{OL}}{H_{iz}^{ST} - S}$$
(2.40)

Velikostí reakce je možné určit, o jaký druh stupně se jedná. Například při:

- $q_p = 0$ hovoříme o čistě rovnotlakém stupni, to znamená, že nedochází k expanzi v oběžné lopatkové mříži
- $\rho_p = \sim 5\%$ hovoříme o rovnotlakém stupni
- $\rho_p = \sim 15 20\%$ hovoříme o stupni se zvýšenou reakcí
- $\rho_s = \sim 50\%$ hovoříme o přetlakovém stupni

Obecně platí, že obvodová účinnost je větší, je-li větší reakce. Důvodem je obtékání lopatek. Tedy u lopatek s vyšší reakcí vychází rychlost proudu páry v turbínovém kanále nižší a jsou tedy nižší i ztráty. Další důvod je i ten, že u stupňů s nižší reakcí dochází k velkému ohnutí proudu. Nevýhodou u stupňů s vyšší reakcí je zvýšení axiální síly, která působí na oběžnou lopatkovou mříž. Stupně s vyšší reakcí zpracovávají menší spád než rovnotlaké stupně, je-li patní průměr konstantní. Tuto hypotézu si potvrdíme v příkladu 1. To je často důvodem ke zvýšení počtu stupňů, aby bylo možné docílit výstupního úhlu z oběžných lopatek blízký $\alpha_2 = 90^{\circ}\pm 5^{\circ}$. Pokud bychom chtěli u stupně s vyšší reakcí zpracovat stejný entalpický spád H_0 jako u stupně s nižší reakcí, tak by bylo nutné zvětšit unášivou rychlost, a to buď navýšením otáček, nebo zvětšením patního průměru tak, aby součin v rovnici (2.41) byl shodný jak u přetlakového, tak i u rovnotlakého stupně. Další možností je přidat počet stupňů, což je zřetelné z Eulerovy tubínové věty (rovnice (2.41)). Význam této věty bude názornější pomocí rychlostních trojúhelníků na obrázku 4. Na zmíněném obrázku je rovněž vidět, jak se rychlosti (vyjma unášivé složky rychlosti) společně s rostoucí reakcí zmenšují. Zmenšení rychlostí má přirozeně pozitivní dopad do účinnosti.

$$a_t^T = \frac{P_{st}}{\dot{m}} = \Delta c_u \cdot u \tag{2.41}$$

Kde

$$\Delta c_u = c_1 \cdot \cos\alpha_1 + c_2 \cdot \cos\alpha_2 \tag{2.42}$$

Obr. 4: Tvary rychlostních trojúhelníků vztažených na velikost reakce

Příklad 1

Zadané parametry:

Nechť je unášivá složka rychlosti u konstantou a nechť je tato rychlost u = 1m/s

Pro rovnotlaký stupeň zvolme z ilustrativního obrázku 5 rychlostní poměr $\left(\frac{u}{c}\right) = 0,5$

$$c = \frac{u}{0.5} = \frac{1}{0.5} = 2 \tag{2.43}$$

platí, že

$$h = \frac{c^2}{2} = \frac{2^2}{2} = 2 \tag{2.44}$$

Pro přetlakový stupeň zvolme z obrázku 5 rychlostní poměr $\left(\frac{u}{c}\right) = 0,7$

$$c = \frac{u}{0,7} = \frac{1}{0,7} = 1,42857 \tag{2.45}$$

platí, že

$$h = \frac{c^2}{2} = \frac{1,42857^2}{2} = 1,02$$
(2.46)

Výsledky ukazují, že rovnotlaký stupeň zpracuje téměř dvojnásobný entalpický spád než stupeň přetlakový. V případě použití přetlakového stupně je nutné použít dvojnásobný počet stupňů.

Obr. 5: Závislost účinnosti na u/c definovaný pro různé reakce

2.5 Rychlostní poměr (u/c)

Rychlostní poměr (u/c_{iz}) je bezrozměrný parametr vytvořený účelně pro turbinářské potřeby. Dává do poměru unášivou složku rychlosti oběžné lopatkové mříže a fiktivní rychlost c_{iz} (pro jednoduchost budeme dále nazývat jako c). Volbou optimálního $(u/c)_{opt}$ dosáhneme nejlepší termodynamické účinnosti. Hodnota optimálního $(u/c)_{opt}$ je funkcí reakce. Pro každou reakci lze nalézt $(u/c)_{opt}$, jak ukazuje obrázek 5.

Proud páry vstupující do rozváděcí lopatkové mříže je často navržen (není pravidlem) na úhel $\alpha_0 \sim 90^\circ$. Tento úhel odpovídá absolutní výstupní rychlosti c_2 vycházející z přecházející oběžné lopatkové mříže proudící axiálním směrem, tedy pod úhlem $\alpha_2 \sim 90^\circ$. Při volbě tohoto úhlu lze dosáhnout nejmenších ztrát v rozváděcí lopatkové mříži, a tedy optimálního rychlostního poměru.

V případě, že bychom snížili rychlostní poměr $u/c < (u/c)_{opt}$, tak se jedná o přetížený stupeň. Stupeň v takovém případě zpracovává příliš velký spád a účinnost klesá (obr. 6). Pokud bychom zachovali unášivou rychlost (u = konstantní - stejný patní průměr a otáčky) a zvyšovali rychlost c tak, aby platilo $u/c < (u/c)_{opt}$, nastane zvýšení tepelného spádu na stupeň, což vede k dalšímu snížení účinnosti. Kladným efektem přetíženého stupně je však možné snížení počtu stupňů popřípadě patního průměru.

V případě, že bychom naopak zvolili $(u/c) > (u/c)_{opt}$, bude se jednat o odlehčený stupeň. Při tomto stavu stupeň zpracovává malý tepelný spád a je nedostatečně vytížen. Následkem je opět snížení účinnosti. Vše je graficky znázorněno na obrázku 6. Při příliš vysokém rozdílu $(u/c) >> (u/c)_{opt}$ může dojít až k ventilaci. Ventilace je stav, kdy oběžné lopatky pracují v neostříknutém párou naplněném prostoru. Oběžné lopatky pracují jako ventilátor, tj. lopatky nejsou poháněny párou, ale naopak. Následkem tohoto je vznik ventilačních ztrát.

Obr. 6: Závislost účinnosti na bezrozměrném parametru u/c

2.6 Změna parametrů po výšce lopatky

2.6.1 Změna reakce po výšce lopatky

Vlivem rovnice radiální rovnováhy vzrůstá reakce směrem od paty ke špičce. Rovnice radiální rovnováhy vychází z Eulerovy pohybové rovnice pro radiální směr a vyjadřuje změnu tlaku v závislosti na změně poloměru viz. rovnice (2.47). Reakce se po výšce lopatky mění, a proto je třeba řešit rychlostní trojúhelníky na více poloměrech. Obvykle se změna parametrů po výšce lopatky řeší na třech poloměrech, a to na patě, středu a špičce. Prostorový tvar lopatky je vytvořen proložením získaných profilů křivkou spline. Pro řešení na několika poloměrech je nutné vybrat jednu z metod zkroucení lopatek a touto metodou po výpočtu rychlostních trojúhelníků aerodynamicky napočítat profily lopatek na patě, středu a špičce. Mezi základní metody nakroucení lopatky patří zákon volného víru (free-vortex), který uvažuje součin $r \cdot c_{1u}$ za konstantní. Další metodou je nakroucení lopatek dle zákonu konstantního úhlu α_l . V neposlední řadě uvedeme zákon konstantního průtoku. Tato metoda je využita ve vytvořeném 1D programu a blíže se s ní zabývá kapitola 2.6.2. Ve společnosti DSPW se kombinuje metoda volného víru společně s metodou řízeného průtoku pro rozváděcí lopatkovou mříž. Důvodem této kombinace je co největší snížení okrajových ztrát.

$$\frac{1}{\rho_{hust}} \cdot \frac{\partial p}{\partial r} = \frac{c_u^2}{r} - c_a \cdot \frac{\partial c_r}{\partial a} - c_r \cdot \frac{\partial c_r}{\partial r}$$
(2.47)

Se změnou poloměru se mění i obvodová složka rychlosti. Závislost změny obvodové rychlosti lze vyjádřit takto: $du = dr \cdot \omega$. Změna rychlosti u, je zejména v prostoru mezi statorovou a rotorovou lopatkovou mříží, kde je tato složka rychlosti významná. Tento jev je spřažen se změnou entalpického spádu ve statorové $H_{RL}=i_{0s}$ - i_{1s} a rotorové řadě $H_{OL}=i_{1s}-i_{2s}$. Pro výpočet reakce vyjdeme ze zjednodušené rovnice radiální rovnováhy (2.47), a to zanedbáním radiální složky rychlosti oproti obvodové a axiální složce.

Nechť je změna tlaku závislá pouze na odstředivém zrychlení. Vztah pro stav před oběžnou lopatkovou řadou je dán rovnicí (2.48) a vztah pro statorovou lopatkovou řadu je dán rovnicí (2.49). Pomocí těchto rovnic a rovnic pro entalpický spád rozváděcí a oběžné lopatkové mříže docílíme vztahů (2.50) a (2.51), které nám vyjadřují reakci na špičce a patě, a to jako funkci poloměrů, reakce na středu a exponentu n. Exponent n je závislí na typu lopatkování lišící se jak průběhem rychlostí, tak i změnou parametrů.

$$\frac{1}{\rho_{hust1}} \cdot \frac{dp_1}{dr} = \frac{c_{1u}^2}{r}$$
(2.48)

$$\frac{1}{\rho_{hust2}} \cdot \frac{dp_2}{dr} = \frac{c_{2u}^2}{r}$$
(2.49)

$$\rho_{\S} = 1 - (1 - \rho_{S}) \cdot \left(\frac{r_{\S}}{r_{S}}\right)^{n-1}$$
(2.50)

$$\rho_p = 1 - (1 - \rho_s) \cdot \left(\frac{r_p}{r_s}\right)^{n-1}$$
(2.51)

2.6.2 Nakroucení lopatek - zákon zachování průtoku

Snahou u rozváděcích lopatkových mříží je usměrnění proudu do středu lopatky. Důvodem je zmenšení sekundárních ztrát v následné oběžné lopatkové mříži. Tento způsob usměrnění proudu nazveme rozváděcí lopatková mříž s řízeným průtokem. Mechanizmus je poměrně prostý. Nejprve nadefinujeme tzv. ekvivalentní úhel. Nechť je průtok s ekvivalentním úhlem konstantním po výšce lopatky roven průtočnému množství s proměnlivým úhlem. Tento proměnlivý úhel je definovaný pomocí paraboly a je nezávislí na jakýchkoli ztrátových modelech. Řízený průtok (respektive charakteristika úhlu α_1) je zobrazen na obrázku 7.

Úhel oběžné lopatkové mříže β_I je definovaný rostoucí lineární funkcí, a to v obrázku 7. Opět je zde definovaný ekvivalentní úhel. Průtočné množství s ekvivalentním úhlem konstantním po výšce lopatky je rovno průtočnému množství s proměnlivým úhlem. Tento proměnlivý úhel je určený pomocí rostoucí lineární funkce, která ve středu lopatky protíná právě ekvivalentní úhel.

Funkce byla vyvinuta a poskytnuta pro účely vytvořeného 1D programu firmou Doosan Škoda Power. Vstupními parametry jsou konstanty δ , ekvivalentní úhel, poloměry na špičce, středu a patě.

Obr. 7: Průběh úhlů po výšce lopatky

2.7 Termodynamická lopatková účinnost

Termodynamická účinnost rozváděcí a oběžné lopatkové mříže dává do poměru reálný entalpický spád a entalpický spád při konstantní entropě. Termodynamická účinnost lze kromě tohoto poměru rovněž popsat pomocí bezrozměrných rychlostních součinitelů ψ a φ , jak ukazuje rovnice (2.52) a (2.53). Tyto rychlostní součinitele se používaly ve starší turbínářské praxi.

Termodynamická účinnost rozváděcí lopatkové mříže:

$$\eta_{RL} = \frac{\frac{c_1^2}{2}}{\frac{c_{1iz}^2}{2}} = \overline{\varphi^2} = \frac{i_{0c} - i_{1s}}{i_{0c} - i_{1iz}}$$
(2.52)

Termodynamická účinnost oběžné lopatkové mříže:

$$\eta_{OL} = \frac{\frac{w_2^2}{2}}{\frac{w_{2iz}^2}{2}} = \overline{\psi^2} = \frac{i_{1w} - i_{2s}}{i_{1w} - i_{02iz}}$$
(2.53)

Termodynamická účinnost stupně dává do poměru měrnou mechanickou práci vztaženou na jeden kilogram páry a měrnou energii přenesenou do lopatkových mříží. Rozdělme tuto účinnost na dvě skupiny:

 a) Termodynamickou účinnost pro stupně uvnitř průtočné části, kdy je výstupní rychlost z oběžných lopatek využita v následujícím stupni lze zapsat do rovnice následovně:

$$\eta_{T-T}^{ST} = \frac{i_{0c} - i_{2c}}{(i_{0c} - i_{2iz}) - \frac{c_2^2}{2}} = \frac{a_t}{H_{iz}^{T-T}}$$
(2.54)

 b) Termodynamickou účinnost pro poslední stupeň turbíny nebo jednostupňové turbíny, kdy výstupní rychlost lze uvažovat jako ztrátu. Tato ztráta je nazývána ztráta výstupní rychlostí. A je možné ji vyjádřit ve tvaru:

$$\eta_{T-S}^{ST} = \frac{i_{0c} - i_{2c}}{i_{0c} - i_{2iz}} = \frac{a_t}{H_{iz}^{T-S}}$$
(2.55)

Obecněji je možné rovnice (2.54) a (2.55) popsat jedinou rovnicí (2.56), ve které se vyskytuje součinitel využitelnosti κ_1 . Tento součinitel se může pohybovat v intervalu $\langle 0; 1 \rangle$. Pokud uvažujeme plnou ztrátu výstupní rychlostí, tak je součinitel $\kappa_1 = 0$. Oproti tomu, v případě, že předpokládáme, že využijeme veškerou energii z výstupní rychlosti, tak $\kappa_1 = 1$. Realita je však taková, že nikdy nevyužijeme veškerou energii ve formě výstupní rychlosti.

$$\eta^{ST} = \frac{a_t}{(i_{0c} - i_{2iz}) - \kappa_1 \cdot \frac{c_2^2}{2}}$$
(2.56)

Účinnost celé průtočné části lze vyjádřit rovnicemi (2.57) a (2.58). Tyto vztahy jsou zobrazeny na obrázku 8.

$$\eta_{P\check{C}}^{T-T} = \frac{a_t}{H_1} = \frac{H_i}{H_1}$$
(2.57)

$$\eta_{P\check{C}}^{T-S} = \frac{a_t}{H_0} = \frac{H_i}{H_0}$$
(2.58)

Na ilustrativním obrázku 8 lze shlédnout, jak vlivem škrcení ve ventilové komoře dojde k přemístění z celkového bodu 0 o tlaku p na nižší tlak o stejné entalpii i, a to do bodu 0c. Tento celkový tlak se rozdělí na tlak dynamický $p = (\rho . c_0^2/2)$ a tlak statický p_{0s} . Z tohoto tlaku následně nastává expanze. Na obrázku je patrné, že první stupeň – "A-kolo" zpracovává velkou část tepelného spádu. Následně jsou zobrazeny dílčí expanze zprvu rovnotlaké, tedy až do sedmého stupně. Poslední dva stupně zobrazené obrázkem jsou přetlakové.

Obr. 8: Expanze v celé průtočné části turbíny

2.8 Labyrintové ucpávky

2.8.1 Výpočet průtoku labyrintovými ucpávkami

V této kapitole předepíšeme rovnice vyjadřující množství uniklé páry přes ucpávky, a to jak přes ucpávky vnější, tak i přes ucpávky vnitřní. Množství uniklé přes ucpávky má za následek snížení výkonu turbíny, a to z důvodu, že pára nevykoná mechanickou práci v oběžné lopatkové mříži. Další možnou ztrátou spojenou s prouděním páry přes ucpávky je zpětné mísení proudu páry z ucpávek s hlavním proudem páry. Tímto problémem se zabývají kapitoly 2.8.2, 2.8.3 a 2.8.4.

V ucpávkové části se snažíme o maximalizaci tlakových ztrát tak, aby proteklo co nejmenší množství páry při konstantní tlakové diferenci. Principem je rozdělení expanze na z expanzí. Rychlost ucpávkové páry vzniklá expanzí je za břitem z velké míry disipována na energii tepelnou. Množství páry proteklé labyrintovou ucpávkou lze vypočíst například dle vztahů, které byly odvozeny prof. A. Stodolou pomocí rovnice kontinuity a stavové rovnice. Toto vyjádření platí pro pravý i nepravý labyrint a jsou popsány rovnicí (2.59). V případě, že v posledním labyrintu nastane kritická rychlost, tak je rovnice upravena na tvar (2.60). Opravný koeficient *k* je pro pravý labyrint roven jedné a pro nepravý je závislý na počtu břitů a je funkcí poměru radiální vůle a rozteče. Závislost koeficientu *k* je graficky znázorněn v příloze č. 3. Ztrátový součinitel μ je závislí na tvaru břitu (obr. 9) a je funkcí poměru radiální vůle a šířky břitu. Tento součinitel je zobrazen v příloze č. 2. Oba grafy byly součástí odborné literatury. Pro potřeby programu byly převedeny numerickou interpolací popsanou v kapitole 3.2 na funkce. Veškeré interpolované funkce se staly součástí programu.

Z obrázku 9 je patrné, že tvary byly rozděleny pouze na dva druhy, protože první tři charakteristiky tvaru 1 jsou si podobné. To se týká rovněž posledních dvou tvarů 2 a jejich charakteristik. Geometrie uvedená v níže popsaných rovnicích je zobrazena na obrázku 10.

Vztah pro množství ucpávkové páry proteklé ucpávkou:

$$\dot{m} = \mu \cdot S \cdot \sqrt{\frac{p_1^2 - p_2^2}{p_1 \cdot v_1 \cdot z}} \cdot k$$
(2.59)

Vztah pro množství ucpávkové páry proteklé ucpávkou v případě, že v posledním stupni nastane kritická rychlost:

$$\dot{m} = \mu \cdot S \cdot \sqrt{\frac{p_1}{v_1 \cdot z}} \cdot k \tag{2.60}$$

Kde plocha je popsána rovnicí:

$$S = \pi \cdot D \cdot \delta_r \tag{2.61}$$

zde průměr D může být buď D_{ucp} nebo D_{band} .

Obr. 9: Tvary břitů ucpávek

Obr. 10: Geometrické charakteristiky na stupni

2.8.2 Snížení termodynamické účinnosti vlivem mísení ucp. páry s hlavním proudem

Hlavní proud páry expandující v rozváděcí lopatkové mříži popřípadě v oběžné lopatkové mříži má za následek pokles entalpie. Oproti tomu seškrcená ucpávková pára proudící přes labyrinty si téměř veškerou entalpii zachová. Pokud dojde ke smísení hlavního proudu páry s ucpávkovou párou, tak se statická entalpie směsi oproti entalpii hlavního proudu navýší. Statickou entalpii na výstupu z rozváděcí lopatkové mříže prezentuje detail *A* na obrázku 11. Statickou entalpii na výstupu z oběžné lopatkové mříže je možno vidět na detailu *B* obrázku 11. Je patrné, že nárůst entalpie zhoršuje účinnost stupně.

Obr. 11: Průběh expanze ve stupni s uvažováním mísení hřídelové a bandážové ucpávky s hlavním proudem

2.8.3 Stupeň bez odlehčovacího otvoru

Ucpávková pára m_{u-RL} protéká mimo funkční průtočnou část rozváděcí lopatkové mříže a připojuje se k hlavnímu proudu až v prostoru mezi rozváděcí a oběžnou lopatkovou mříží. Množství proteklé rozváděcí lopatkovou mříží je popsáno rovnicí (2.62). V případě, že reakce > 0, tak dochází k úniku páry přes bandáže oběžných lopatek a hlavní proud je právě o toto množství ponížen, jak je znázorněno v rovnici (2.63). Výše popsané si lze lépe představit s pomocí obrázku 12.

Vztahy pro množství uniklé přes ucpávky

$$m_{RL} = m_{celk} - m_{u-RL} \tag{2.62}$$

$$m_{OL} = m_{celk} - m_{u-OL} \tag{2.63}$$

Statická entalpie za rozváděcí lopatkovou mříží je definována takto:

$$i_{1s} = \frac{(i_{0c} - \eta_{RL} \cdot (i_{0c} - i_{1iz})) \cdot m_{RL} + i_{0s} \cdot m_{u-RL}}{m_{RL} + m_{u-RL}}$$
(2.64)

Statická entalpie za oběžnou lopatkovou mříží je definována takto:

$$i_{2s} = \frac{i_{1w} - \eta_{OL} \cdot (i_{1w} - i_{2iz}) \cdot m_{OL} + i_{1s} \cdot m_{u-OL}}{m_{OL} + m_{u-OL}}$$
(2.65)

2.8.4 Stupeň s odlehčovacím otvorem

Ucpávková pára m_{u-RL} opět protéká mimo funkční průtočnou část rozváděcí lopatkové mříže, ale následně se již nepřipojuje k hlavnímu proudu v prostoru mezi rozváděcí a oběžnou lopatkovou mříží, ale toto množství dále pokračuje odlehčovacím otvorem (za předpokladu dimenzování odlehčovacího otvoru na plný průtok m_{u-RL}). Míšení s hlavním proudem brání jednak konstrukční řešení prostoru mezi mřížemi a také setrvačnost proudu ucpávkové páry. Množství proteklé rozváděcí lopatkovou mříží je popsáno rovnicí (2.66). Odlehčovací otvor vyrovnává tlak před a za diskem, tudíž snižuje osové síly, které by při diferenci tlaku působily na rotor. Vyrovnávací otvor odvádí hřídelovou ucpávkovou páru, která by mohla po smísení s hlavním proudem zvednout statickou entalpii v prostoru mezi rozváděcí a oběžnou lopatkovou mříží. Nutno rovněž říci, že vyrovnávací otvor odebírá páru $(m_{\mu-RL})$, která by jinak mohla vykonat práci v oběžné lopatkové mříži. V případě, že reakce > 0, tak dochází k úniku páry přes bandáže oběžných lopatek a hlavní proud je právě o toto množství a o množství odlehčovacím otvorem ponížen, jak ukazuje rovnice (2.67). Výše popsané si lze lépe představit s pomocí obrázku 13. Odlehčovací otvory je možné umístit i pro stupně s vyšší reakcí. Je ale vhodné umístit mezi průtočnou část a odlehčovací otvor krycí plech.

Obr. 13: Rozdělení průtoku páry průtočnou částí turbíny s odlehčovacím otvorem

Vztahy pro množství uniklé přes ucpávky:

$$m_{RL} = m_{celk} - m_{u-RL} \tag{2.66}$$

$$m_{0L} = m_{celk} - m_{\mu - 0L} - m_{\mu - RL} \tag{2.67}$$

Statická entalpie za rozváděcí lopatkovou mříží s odlehčovacím otvorem je definována rovnicí (2.68). Tato rovnice platí v případě, že odlehčovací otvor je dimenzován na plný průtok hřídelové ucpávkové páry.

$$i_{1s} = i_{0c} - \eta_{RL} \cdot (i_{0c} - i_{1iz})$$
(2.68)

Statická entalpie za oběžnou lopatkovou mříží je definována takto:

$$i_{2s} = \frac{(i_{1w} - \eta_{OL} \cdot (i_{1w} - i_{2iz})) \cdot m_{OL} + i_{1s} \cdot m_{u-OL}}{m_{OL} + m_{u-OL}}$$
(2.69)

2.9 Určení délky lopatek

Délka oběžných lopatek je omezena její pevností tedy dovoleným napětím materiálu. Délku lopatek lze určit z průtokových podmínek. Důležitou rovnicí pro výpočet délky lopatek je rovnice kontinuity, kterou popisuje vztah (2.70). Délka lopatek je následně popsána rovnicí (2.71).

Délka oběžné lopatky se určí z rovnice kontinuity:

$$\dot{m} = S_{OL} \cdot c \cdot \rho_{hust} \tag{2.70}$$

$$L = \frac{\dot{m}}{\pi \cdot D \cdot c_1 \cdot \sin\alpha_1 \cdot \varepsilon_r} = \frac{\dot{m}}{\pi \cdot D \cdot c_{1ax} \cdot \varepsilon_r}$$
(2.71)

Kde součinitel ε_r je definován následovně:

$$\varepsilon_r = \frac{t'}{t} = \frac{t - \frac{s}{\sin \alpha_1}}{t} = 1 - \frac{s}{t \cdot \sin \alpha_1}$$
(2.72)

Obr. 14: Výstupní geometrie lopatek

V případě konstantního patního průměru lze z rovnice (2.73) odvodit vztah (2.74)

$$\dot{m} = \frac{((2 \cdot L^{0L} + D_p)^2 - D_p^2) \cdot \pi \cdot \rho_{hust} \cdot c_{IN}}{4}$$
(2.73)

$$L^{OL} = \frac{\sqrt{D_p^2 + \frac{4 \cdot \dot{m}}{\pi \cdot \rho \cdot c_{ax}}} - D_p}{2}$$
(2.74)

Délka rozváděcích lopatek se pro předběžný výpočet určí pomocí doporučení Doosan Škoda Power ze znalosti délky oběžných lopatek a doporučeného radiálního přesahu, jak ukazuje tabulka 1.

délka Lol	Radiální přesah	vypočtená délka Lrl
Lol <= 60	0,5	Lrl = Lol - 0,5
60 < Lol <= 70	1	Lrl = Lol - 1
70 < Lol <= 80	1,5	Lrl = Lol - 1,5
80 < Lol <= 95	2	Lrl = Lol - 2
95 < Lol <= 110	2,5	Lrl = Lol - 2,5
70 < Lol	3	Lrl = Lol - 3

Tab. 1: Určení délky RL pomocí zadané OL

Rovnice (2.73) včetně Tab. 1 je programově zakomponována ve vytvořeném programu.

2.10 Výpočet namáhání oběžných lopatek a stanovení jejich geometrie

Na namáhání oběžných lopatek lze pohlížet dvěma rozličnými pohledy. První přístup ke stanovení namáhání u rovnotlakých stupňů využívá předpokladu, že rozdíl tlaků působící na oběžnou lopatkovou mříž je zanedbatelný a stačí tedy, když je bráno v úvahu pouze prosté namáhání od výkonu. Druhým přístupem u stupňů s vyšší reakcí je namáhání šikmým ohybem, kde se využívá předpokladu, že oběžná lopatková mříž je namáhána nejen ohybem od výkonu, ale i axiální sílou od přetlaku a rychlosti. Namáháním šikmým ohybem se bude blíže věnovat následující text a tento přístup je implementován do vytvořeného 1D programu.

Oběžné lopatky jsou namáhány zejména ohybem a tahem. Namáhání ohybem je namáhání od obvodové složky síly (rovnice (2.75)) odpovídající výkonu připadajícího na jeden stupeň. V případě parciálního ostřiku mohou být oběžné lopatky více namáhány zejména při nižších výkonech, kdy u skupinové regulace jsou uzavřeny některé regulační ventily a sníží se počet neostříknutých lopatek. Při snížení výkonu také dojde k velkému poklesu tlaku za regulačním stupněm, a tedy i ke zvětšení entalpického spádu na stupeň.

Na oběžné lopatky působí kromě unášivé složky síly ještě axiální síla popsaná rovnicí (2.76). První člen této rovnice vyjadřuje sílu od změny hybnosti proudu páry. V druhém členu je popsána síla vyvozená z rozdílů tlaku před a za lopatkou. Výsledná síla (viz. obrázek 15) těchto dvou složek je popsána rovnicí (2.77).

$$F_{u} = \frac{P}{u \cdot z_{0}} = \dot{m} \cdot \frac{c_{1u} - c_{2u}}{z_{0}}$$
(2.75)

$$F_a = \frac{m}{z_0} \cdot (c_{1ax} - c_{2ax}) + \Delta p \cdot \mathbf{L} \cdot t$$
(2.76)

$$F = \sqrt{F_u^2 + F_a^2}$$
 (2.77)

Nyní je výsledná síla *F* převedena do směru maximálního a minimálního momentu setrvačnosti pomocí rovnic (2.78) a (2.79).

$$F' = F \cdot \cos \delta \perp k \cdot J_{min} \tag{2.78}$$

$$F'' = F \cdot \sin \delta \perp k \cdot J_{max} \tag{2.79}$$

Maximální ohybový moment působící na lopatku lze vyjádřit tvarem (2.80).

$$M_{max} = F' \cdot \frac{l}{2} \tag{2.80}$$

Nyní již zbývá než ověřit, zda je ohybový moment menší než dovolený ohybový moment pro daný materiál (2.81).

$$\sigma_0 = \frac{M_{max}}{W_{min}} < \sigma_{dov} \tag{2.81}$$

Kde průřezový modul W_{min25} je již zjistitelný ze závislosti β_2 a výstupního Machova čísla (příloha č. 3). Tato příloha čerpá z databáze profilů, která je sestavena ve skriptech prof. Škopka [8] a rovněž je součástí vytvořeného 1D programu co by funkce. Pomocí těchto dvou veličin (β_2 , Ma) je možné vyhledat b_{025} . Přičemž se jedná o profil o šířce $B_0 = 25$ mm.

Pro vytvořený program byly z přílohy č. 3 vybrány pouze charakteristiky lopatek pro podkritické rychlosti. Z tabulky dále byly vybrány hodnoty pro oběžnou přetlakovou lopatku, kde úhly byly v těchto intervalech $\beta_1 = 40-140^\circ$ a $\beta_2 = 12-20^\circ$. V příloze č. 4 je zanesena závislost úhlu β_2 na b_0 pro přetlakový stupeň. V příloze č. 5 je zanesena závislost úhlu β_2 na W_{0min} pro přetlakový stupeň. Pro nízkoreakční lopatku byl vybrán úhel v intervalu $\beta_1 = 20-80^\circ$ a pro úhel $\beta_2 = 12-25^\circ$. V příloze č. 6 je zanesena závislost úhlu β_2 na b_0 pro přetlakový stupeň. V příloze č. 7 je zanesena závislost úhlu β_2 na W_{0min} pro přetlakový stupeň. Pro rozváděcí lopatku byly z tabulky vybrány úhly $\alpha_0 = 70-120^\circ$ a $\alpha_2 = 12-20^\circ$, a to jak pro rovnotlaký, tak i přetlakový stupeň. V příloze č. 8 je zanesena závislost úhlu α_2 na b_0 pro přetlakový stupeň. V příloze č. 9 je zanesena závislost úhlu α_2 na W_{0min} pro přetlakový stupeň. Vše, co je v grafech vyneseno a následně interpolováno, bylo jako podklad pro pevnostní analýzu převzato ve tvaru polynomů do vytvořeného programu. Nechť platí takováto závislost pro výpočet minimálního momentu odporu:

$$W_{min} = W_{\min 25} \cdot \left(\frac{B_0}{B_{025}}\right)^3$$
 (2.82)

z rovnice (2.82) vyjádříme šířku lopatky B_0 následovně rovnicí (2.83).

$$B_0 = \sqrt[3]{\frac{W_{min}}{W_{min25}}} \cdot B_{025}$$
(2.83)

Analogický je i postup pro výpočet tětivy z rovnice (2.84), ze které vyjádříme délku tětivy rovnicí (2.85).

$$W_{min} = W_{\min 25} \cdot \left(\frac{b_0}{b_{025}}\right)^3$$
 (2.84)

$$b_0 = \sqrt[3]{\frac{W_{min}}{W_{min25}}} \cdot b_{025}$$
(2.85)

Obr. 15: Zatížení oběžné lopatky od axiální a unášivé síly

2.11 Odhad účinnosti lopatkových mříží

Jednou z velmi důležitých součástí návrhu průtočných částí je odhad účinnosti rozváděcí a oběžné lopatkové mříže. Způsob výpočtu patří k nejstřeženějšímu know-how výrobců parních turbín, neboť v sobě zahrnuje nejen rozsáhlé experimentální a výpočtové znalosti, ale především mnohaleté provozní zkušenosti.

Ve veřejně dostupné literatuře je možné nalézt popisy tzv. ztrátových modelů připravených různými výzkumnými institucemi. K nejznámějším patří formulace Ainley-Mathinson respektive její doplnění dle Dunham-Came označované ve zkratce AMDC. Z dalších lze imenovat například formulace dle Craig-Cox, Traupel či Soderberg.

Všechny výše uvedené modely používají k odhadu účinnosti mříží různé geometrické a proudové parametry.

V následující kapitole je popsán postup dle Soderberga, který patří k jednodušším, bohužel tato jednoduchost se promítá do přesnosti výpočtu.

Ztrátové modely byly čerpány zejména z literatury, která je uvedená v citaci pod čísly [10] a [3].

2.11.1 Výpočet účinnosti dle Soderberga

Pro výpočet účinnosti dle Soderberga je nutnou podmínkou provedení výpočtu namáhání lopatky, protože hlavními vstupy pro výpočet účinnosti jsou tyto geometrické charakteristiky: B_0 , W_0 , b_0 . Výpočetní proces je velice jednoduchý a nenáročný na vstupní parametry. Bohužel tato jednoduchost se promítá do přesnosti výpočtu. První část rovnice zohledňuje profilové a druhá část okrajové (sekundární) ztráty. Samotný výpočet je rozdělen na dvě části dle velikosti Reynoldsova čísla. Po provedení samotného výpočtu lze zjistit celkové ztrátové součinitele ζ_1 pro oběžnou a rozváděcí lopatku. Pro výpočetní model je nejprve nutné definovat součinitel ε . Tento součinitel, jenž je roven součtem dvou úhlů $\propto_1 a \propto_2$ a vyjadřuje míru ohnutí proudu v lopatkovém kanále, je popsán v rovnici (2.86). V případě výpočtu rotorové části je ε definováno jako součet β_1 a β_2 a je znázorněné v rovnici (2.87).

$$\varepsilon = \alpha_1 + \alpha_2 \tag{2.86}$$

$$\varepsilon = \beta_1 + \beta_2 \tag{2.87}$$

Následně je určen nominální ztrátový součinitel ζ^* :

$$\zeta^* = 0.04 + 0.06 \cdot \left(\frac{\varepsilon}{100}\right)^2 \tag{2.88}$$

Nyní lze vyjádřit ztrátový součinitel ζ_1 pro $Re = 10^5$. Tento součinitel je popsán následovně pro rozváděcí lopatku:

$$1 + \zeta_1 = (1 + \zeta^* b) \cdot (0.993 + 0.021 \cdot b/L_{rl})$$
(2.89)

A pro oběžnou lopatku platí tento vztah:

$$1 + \zeta_1 = (1 + \zeta^*) \cdot (0.975 + 0.075 \cdot b/L_{ol})$$
(2.90)

Pro další postup je nutné spočítat Reynoldsovo číslo, které je dle ztrátového modelu podle Soderberga definované takto.

$$Re = \frac{\rho_2 \cdot c_2 \cdot D_h}{\mu} \tag{2.91}$$

Kde D_h je hydraulický průměr vyjádřený rovnicí (2.92).

$$D_h = \frac{2 \cdot t \cdot L \cdot \cos \alpha_2}{(t \cdot \cos \alpha_2 + L)}$$
(2.92)

A nyní můžeme přistoupit k výpočtu konečného ztrátového součinitele ζ_2 – korekce pro vyšší Reynoldsova čísla než 10⁵:

$$\zeta_2 = \left(\frac{10^5}{Re}\right)^{1/4} \cdot \zeta_1 \tag{2.93}$$

V programu je zakomponován ještě další člen vyjadřující ztrátu vlhkostí pro lopatky pracující v mokré páře. Tento součinitel ξ_3 je zde popsán základním Baumannovým pravidlem vyjádřeným v rovnici (2.94). Tedy pro zjednodušený popis stupně pracujícího v mokré páře uvažujeme 1% vlhkosti za 1% účinnosti.

$$\zeta_3 = 1 - x$$
 (2.94)

Definujme účinnost oběžného nebo rozváděcího kola jako rozdíl popsaný rovnicí (2.95):

$$\eta = 1 - \zeta_2 - \zeta_3 \tag{2.95}$$

2.11.2 Výpočet účinnosti dle Traupla

Postup společně se vzorci výpočtu je popsán literaturou prof. Waltera Traupla "Thermische Turbomaschinen". Funkce na výpočet ztrát ve vytvořeném 1D programu byla poskytnuta společností Doosan Škoda Power, jenž tento veřejně dostupný ztrátový model naprogramovala. Výstupem je účinnost pro 3D lopatky.

2.11.3 Korekce ztrát pro prismatické lopatky

Účinnosti 2D a 3D rozváděcích lopatek jsou rozdílné. Důvodem rozdílných účinností je změna geometrie profilového kanálu po výšce lopatky a tomu přísluší změny profilových a sekundárních ztrát. V případě 2D lopatek jsou sekundární ztráty vyšší, nežli u 3D lopatek. Vzorec pro korekci "na prizmatičnost" byl obdržen ze společnosti DSPW a je popsán rovnicí (2.96). Použití opravného součinitele je názorně ukázáno v rovnici (2.97). Předpokladem je, že je známa účinnost rozváděcí lopatkové mříže a to například z nějakého ztrátového modelu. V tomto případě je použit ztrátový model dle Traupla.

$$Z_{\left(\frac{L}{D}\right)} = 0.4 \cdot \left(\frac{L}{D_p \cdot \left(1 + \frac{L}{D_p}\right)}\right)^2$$
(2.96)

$$\eta_{RL} = \eta_{RL}^{Traupel} \cdot \left(1 - Z_{\left(\frac{L}{D}\right)}\right)$$
(2.97)

2.11.4 Volba výstupního úhlu β_2

Volba výstupního úhlu β_2 je funkcí několika parametrů. V horní části obrázku 17 je zobrazena závislost profilových ztrát na velikost úhlu β_2 . Z této části obrázku je zřejmé, že by bylo v zájmu snížení profilových ztrát úhel, co nejvíce zvětšit, ale toto zvětšení vede ke změně štíhlosti lopatky, což může negativně ovlivnit hodnotu sekundárních ztrát a to proto, že sekundární ztráty mají opačnou tendenci růstu v závislosti na úhlu β_2 (ovlivnění štíhlosti lopatky). Tyto dva obrázky protínají tři pomyslné řezy a superpozicí profilových a sekundárních ztrát byl získán celkový ztrátový součinitel ζ_T , jenž je vynesen pro jednotlivé tvary lopatek v dolní části obrázku.

Dalším parametrem při volbě úhlu β_2 je štíhlost lopatek. Tento bezrozměrný parametr je definován poměrem *L/b* a udává vztah mezi délkou lopatky a její tětivou. Se zvýšenou štíhlostí lopatek se zvyšuje i jejich rozkroucení. Z obrázku 16 (závislost sekundárních ztrát na štíhlosti) je zřejmé, že ztráty přestávají výrazně klesat, pokud se štíhlost pohybuje v rozmezí od 2 do 3. Tento graf byl sestrojen s použitím rovnice (2.89).

V případě, že je štíhlost lopatek nižší tj. pod hodnotu 2:

lopatky jsou velice robustní s výraznými profilovými ztrátami (malé hrdlo v oběžné lopatce)

- je výhodné úhel β_2 zmenšit a díky tomuto zmenšení se délka lopatky prodlouží

V případě, že je štíhlost lopatek vyšší než hodnota 3:

- je výhodné úhel β_2 zvětšit a důsledkem tohoto dojde ke zmenšení délky lopatky

- lopatky jsou příliš štíhlé a v některých případech se vyskytují pevnostní problémy (zejména s únosností závěsu a s dynamickým chováním)

Zvolený úhel β_2 je nepřímo svázán i s úhlem α_1 prostřednictvím rovnice kontinuity. Za předpokladu, že hmotnostní tok rozváděcím (rovnice (2.98)) a oběžným kolem (rovnice (2.99)) je neměnný, jsou si tyto dva vztahy vzájemně rovny.

• • • •

Důsledkem různých reakcí jsou rozličné tvary rychlostních trojúhelníků. Těmto souvislostem byla věnována kapitola 2.4. Vlivy reakcí na rychlostní trojúhelníky jsou zobrazeny na obrázku 4.

- V případě čistě přetlakového lopatkování jsou rychlosti c_1 a w_2 velmi podobné a při zachování plochy *S* a hustoty ρ_{hust} jsou podobné i úhly β_2 a α_1 .
- V případě lopatkování s nižší reakcí vychází rychlost w_2 nižší, nežli c_1 .

Závěr k problematice závislosti vlivu β_2 na α_1 pro různé reakce je takový, že pokud by byl volen výstupní úhel β_2 podobný u lopatkování nízkoreakčního jako u lopatkování přetlakového ($\beta_2 = cca \ 14,5^\circ$), tak aby byla splněna podmínka rovnice kontinuity, je nutné, aby výstupní úhel α_1 byl výrazněji nižší pro nízkoreakční stupeň ($\alpha_1 = cca \ 11,5^\circ$). Takto nízký výstupní úhel je však nepřijatelný, protože by rapidně vzrostly profilové ztráty. Na základě tohoto konstatování je vhodnější volit úhel β_2 vyšší ($\beta_2 = cca \ 18-19^\circ$). V závislosti na úhlu β_2 dojde ke zvýšení úhlu α_1 ($\alpha_1 = cca \ 14^\circ$), což je již akceptovatelná hodnota.

$$\dot{m}_{RL}^{ax} = c_1 \cdot S \cdot \rho_{hust} \cdot sin\alpha_1 \tag{2.98}$$

$$\dot{m}_{0L}^{ax} = w_2 \cdot S \cdot \rho_{hyst} \cdot \sin\beta_2 \tag{2.99}$$

Obr. 17: Závislost ztrátového součinitele na výstupním úhlu β₂

3 Numerická řešení použitá v programu

Diplomová práce potažmo vytvořený 1D program obsahuje některé numerické metody. Těmito metodami jsou řešeny zejména dvě obecnější úlohy. První úlohou je řešení iterací v krátkém časovém úseku. Pro tento účel bylo v některých případech, kdy bylo nutné použít iterační postup vybrána metoda iterace sečen, která je popsána v kapitole 3.1. Další úlohou byla interpolace funkce. Tato interpolace je důležitým nástrojem pro nalezení vztahu v případě, že máme k dispozici diskrétní vstupy. Pro toto zadání byla vybrána Newtonova interpolace funkce. Tato metoda je popsána v kapitole 3.2. Výstupem této metody jsou polynomy, které jsou aplikovány v programovém řešení.

3.1 Iterace metodou sečen

Tato metoda se používá k numerickému řešení soustav nelineárních rovnic. Jedná se vždy o dvojici bodů, které se po první iteraci nachází na křivce. Tyto body jsou v našem případě iterovaná průtočná množství. Tato iterovaná průtočná množství se mění v závislosti na zvyšování délky lopatky. Průnik bodů definuje nejprve přímku, která protne zadané množství. Kolmice z průniku zadaného množství a přímky definuje nový bod důležitý pro iteraci. Jedná se o velmi rychlý a jednoduchý postup.

Obr. 18: Iterování hmotnostního průtoku v závislosti na délce lopatky

3.2 Newtonova interpolace funkce

Pomocí této interpolace jsme schopni získat polynom *n*-tého stupně ze zadaných hodnot pomocí poměrných derivací. Postup metody je popsán níže. Tato metoda byla aplikována na nalezení funkcí při průtoku labyrintovou ucpávkou. Výsledky jsou vidět v příloze č. 1 a v příloze č. 2.

Poměrné diference I. řádu:

$$f[x_i, x_{i+1}] = \frac{f[x_i, x_{i+1}] - f(x_i)}{x_{i+1} - x_i}$$
(3.1)

Poměrné diference II. řádu:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$
(3.2)

Další diference vyjádříme analogickým postupem.

Tato interpolační metoda slouží k přibližnému odhadu funkce. Názorný postup pro polynom III. řádu lze možné vidět v tabulce 2.

j	xj	<i>f</i> (xj)	1. řád	2. řád	3. řád
0	x0	<i>f</i> (x0) = a0			
1	x1	<i>f</i> (x1)	$\frac{f(x1)-f(x0)}{x1-x0} = a1$		
2	x2	<i>f</i> (x2)	$\frac{f(x2)-f(x1)}{x2-x1} = b0$	$\frac{b0-a1}{x^{2}-x^{0}} = a^{2}$	
3	x3	<i>f</i> (x3)	$\frac{f(x3)-f(x2)}{x3-x2} = b1$	$\frac{b1\text{-}b0}{x3-x1} = b2$	$\frac{b2-a2}{x^3-x^0} = a3$

Tab. 2: Postup řešení Newtonovi interpolační metody

Z této tabulky získáme interpolovanou funkci pomocí vztahu (3.3).

$$P_{3(x)} = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0) \cdot (x - x_1) + a_3 \cdot (x - x_0) \cdot (x - x_1) \cdot (x - x_2)$$
(3.3)

4 Popis programu

4.1 Obecný popis programu

Program na výpočet průtočné části turbíny byl vytvořen v prostředí Matlab. Zadávání vstupních parametrů bylo provedeno tak, aby uživatel měl co nejvíce stupňů volnosti a mohl tak napočítat průtočnou část turbíny dle svého uvážení. Zjednodušený princip programu popisuje vývojový diagram v příloze č. 10. V této příloze je popsána hlavní struktura programu. Z velké míry je v této části vývojového diagramu popsán iterační postup a princip zapisování výsledků do textové podoby. V následující příloze č. 11 je zobrazen samotný postup termodynamického výpočtu dle teorie uvedené v kapitole 2. Vytvořené interaktivní grafické rozhraní programu je k nahlédnutí v příloze č. 12. Jednotky jednotlivých vstupních parametrů jsou uvedeny přímo v uživatelském rozhraní. Vše výše uvedené je náležitě popsáno v samotném programu pod tlačítkem nápověda spolu s příkladem. Printscreen nápovědy, kterou program obsahuje, je uvedena v příloze č. 15. Výsledky jsou zapisováný do dvou textových souborů.

- První textový soubor zobrazuje vypočtené parametry po každém stupni. Příklad výstupu tohoto textového souboru je uveden v příloze č. 16. Výhodou tohoto výstupu je přehlednost.
- Druhý textový soubor zobrazuje výsledky ve sloupcích. Část těchto výsledků je jako vzor uvedena v příloze č. 17. Tento druhý soubor umožňuje načtení výsledků například v programu Excel. Tento výstup je užitečný zejména pro potřeby vynesení grafů anebo je vhodný pro použití jako vstup pro interní program DSPW.

4.2 Zadávání vstupních parametrů

Pro usnadnění uživatelského zadávání vstupních údajů bylo v programu GUIDE v Matlabu připraveno jednoduché uživatelské rozhraní. Logika zadávání byla vytvořena pro potřeby uživatele, a to tak, aby mohl zadávat jak konkrétní hodnoty, tak i třeba několik málo hodnot, které se v programu rozpočítají na jednotlivé stupně. Způsoby zadávání se zabývá kapitola 4.2.1.

4.2.1 Způsoby zadávání vstupních parametrů

Vstupy jsou zadávány dvěma způsoby, a to buď jako skaláry anebo vektory. Jedná-li se o zadávání pomocí vektorů, tak oddělovacími znaky jsou čárka, mezera nebo středník. Čárka s mezerou jsou vzájemně zaměnitelné znaky $[a_1, a_2, a_3] = [a_1 \ a_2 \ a_3]$ a tyto vstupy se v programu dále neupravují v případě, je-li velikost matice m > (1, 2). Pokud je velikost matice m = (1, 2) a matice obsahuje hodnoty $[a_1, a_n]$, tak program rozpočte zadaný vektor dle zadaného počtu stupňů n mezi hodnoty a_1 a a_n . Předpis posloupnosti, ze kterého získáme rozpočtený vektor je vyjádřen pomocí vzorce pro *i*-tý člen:

$$a_i = a_1 + (i-1) \cdot \frac{a_n - a_1}{n-1}$$
(4.1)

Výsledný vektor je zapsán do tohoto tvaru:

$$[a_1, a_2, a_3, \dots a_{n-2}, a_{n-1}, a_n]$$
(4.2)

Oproti tomu středník má odlišný význam. Nechť jsou vloženy hodnoty a nechť jsou odděleny středníkem $[a_1; k]$ (tedy uspořádání do řádků). Tyto hodnoty jsou postupně převáděny na sloupcový vektor dle vzorce posloupnosti pro *i*-tý člen a jsou zapisovány podle tohoto předpisu:

$$a_i = a_1 + (i-1) \cdot k \tag{4.3}$$

Proměnná n vyjadřuje číslo stupně. Výsledná matice je opět v tvaru vyjádřeném ve vztahu (4.2).

Hodnoty zapisované pomocí vektorů jsou patní průměry D_p , výstupní úhel β_2 , účinnost η_{RL} , η_{OL} , reakce ρ , průměr ucpávek D_{ucpR} a D_{ucpO} . V případě labyrintových ucpávek je možné vložit matici o velikosti m = (1, 1), která předefinuje konstantu k uvedenou v předcházejícím výkladu a jako parametr a_1 se uvažuje patní (špičkový) průměr D_p (D_H) pro hřídelovou (bandážovou) ucpávku. Jinými slovy parametr k je jakýmsi přírůstkem k patnímu případně špičkovému průměru. Výsledkem jsou nové průměry pro ucpávku zapsané do sloupců viz. vztah (4.2).

Pro navolení pravé nebo nepravé labyrintové ucpávky popřípadě odlehčovacího otvoru je v uživatelském rozhraní vytvořené zaškrtávací políčko. Tvar břitu lze navolit s pomocí rolovacího seznamu. Tvary břitů jsou zobrazeny na obrázku 9, který se nachází v kapitole 2.8 (výpočet labyrintových ucpávek).

Zbylé vstupní parametry se zadávají pouze jednou hodnotou. Jedná se o tyto parametry:

- tlak p_{0s}

- průtočné množství m
- výstupní tlak p_2
- otáčky n
- počet stupňů
- dovolené napětí σ_D
- šířka břitu sirkaR popř. sirkaO
- počet břitů brituR popř. brituO
- radiální vůle vuleR popř. vuleO
- rozteč mezi břity *roztecR* popř. *roztecO*
- rychlostní poměr (u/c) nebo (U/C)

⁻ entalpie i_{0s}

Velké písmeno R značí hřídelovou ucpávku, velké písmeno O značí bandážovou ucpávku. Rychlostní poměr popsaný malými písmeny (u/c) vystihuje rychlostní poměr na středu a rychlostní poměr popsaný velkými písmeny (U/C) vystihuje rychlostní poměr na patě. Vždy je nutné, aby si uživatel vybral, s jakým rychlostním poměrem bude dále pracovat. Po zvolení je důležité zapsat do příslušné kolonky číselnou hodnotu. Do nenavoleného rychlostního poměru je nutné zapsat číselnou hodnotu rovnou nule. Výsledky jsou vždy po úspěšném proběhnutí výpočtu automaticky uloženy do textových souborů Vysledek.txt a Vysledky.txt v daném adresáři.

5 Návrh průtočné části

Navržený výpočetní program byl ověřen na výpočtu již existující průmyslové parní turbíny Växjo. Její původní koncepce byla založena na použití rovnotlakého lopatkování. Toto lopatkování bylo nejdříve nasimulováno vytvořeným programem pro ověření funkčnosti. Dále byly navrženy další varianty s lopatkováním se zvýšenou patní reakcí a s přetlakovým lopaktováním. Text níže se zabývá pouze vysokotlakou částí parní turbíny, a to počínaje 1. stupněm, tedy stupněm následujícím po "A-kole". Vyspecifikovaná část je zvýrazněna v řezu turbíny, který se nachází v příloze č. 20.

5.1 Vstupní parametry

Vstupní parametry uvedené níže jsou charakteristické pro výpočet, kdy již máme vybraný kotel a jsou již známé výstupní parametry z přehříváku, jenž jsou jasně zadané tlakem p_{0s} , entalpií i_{0s} a hmotnostním průtokem páry *m*. Rovněž musí být definováno množství chladiva a teplota chladícího okruhu, aby bylo možné určit výstupní tlak (tlak v kondenzátoru) p_2 . Rozhodující je rovněž i velikost stroje. Pro menší turbosoustrojí, kdy je stroj méně namáhán odstředivou silou působících lopatek, je možné zvolit převodovku vloženou mezi turbínu a generátor. Turbína by v tomto případě mohla být navržena na vyšší otáčky, což je tento případ. Otáčky turbíny byly zvoleny 5500 1/min. Průměr rotoru by měl být volen s ohledem na únosnost ložiskového stojanu. Pro rotor s přetlakovými stupni se volí bubnové řešení zobrazené v příloze č. 20 v červeném rámečku.

Průtočná část

Hřídelová ucnávka

i i utočna čast	maciova ucpavita
$p_{0s} = 98,74 \text{ bar}(a)$	tvar břitu = 1
$i_{0s} = 3359,38 \text{ kJ/kg}$	šířka břitu = 0.3 mm
n = 5500 1/min	počet břitů = 3
$\dot{m} = 41,82 \text{ kg/s}$	vůle břitů = 0.5 mm
počet stupňů = 14	roztec britu = 9 mm
$p_{2s} = 29,09 \text{ bar}(a)$	$D_{ucp} = [25]$
Odlehcovaci otvor = ne	ucpavka = prava
$\sigma_{\rm D} = 20 \text{ Mpa}$	
Odhadneme (u/c) Přesná hodnota se doiteruje.	
$(u/c)_s^{s-s} = 0,658$	Bandážová ucpávka
$\left(\frac{u}{c}\right)_{p}^{s-s} = 0$	tvar břitu = 1
Dp = 476 mm - konstantní	šířka břitu = 0.3 mm
$\beta_2 = 14,5^\circ$ - ekvivalentní	počet břitů = 3
$\eta_{\rm RL}$ = [0.929, 0.942]	vůle břitů = 0,5 mm
$\eta_{OL} = [0.914, 0.927]$	roztec britu = 9 mm
Reakce ρ je volbou uživatele	$D_{ucp} = [6]$
	ucpavka = neprava

Obecné zadání

Tab. 3 – Zadání do vytvořeného 1D programu

Účinnosti jednotlivých stupňů η_{OL} , a η_{RL} byly zadány v závislosti na ztrátových modelech vypočtených ve vytvořeném 1D programu. Jedná se o dva ztrátové modely (dle Traupla popřípadě Soderberga) popsané v kapitolách 2.11.1 a 2.11.2.

5.2 Postup řešení a výsledky výpočtu z vytvořeného programu

Pro výpočet průtočné části bylo vybráno několik variant. Pro jednotlivé varianty byly zvoleny různé reakce. Reakce, jenž byly vstupními hodnotami pro program, byly voleny takto:

- rovnotlaké, lépe řečeno s velmi nízkou reakcí a to 3%
- se zvýšenou reakcí 16%
- čistě přetlakové 50%

Pro rovnotlaké stupně a pro stupně se zvýšenou reakcí se reakce udává na patě. Kolová konstrukce rotoru je typická pro průtočné části s rovnotlakými stupni. Pokud by bylo použito řešení s přetlakovým lopatkováním působily by na rotor výrazné axiální síly od rozdílu tlaku před a za oběžnou lopatkovou mříží. Pokud bychom u rovnotlakých stupňů zadali reakci na středu, tak by u delších lopatek mohla vyjít reakce na patě záporná, a proto je výhodné zadávat reakci přímo na patě.

Z pohledu účinnosti se jeví výhodné navolit patní průměry tak, aby výstupní proud vycházel zhruba v axiálním směru (výstupní úhel $\alpha_{2s} \sim 90^\circ$, kde indexem je míněno na středu). Důvodem, proč je nutné, aby proud byl směřován do axiálního směru, se blíže zabývá kapitola 2.5.

K řešení je možné použít dvou postupů:

Zaprvé změnou patního průměru čímž, je docíleno změny unášivé rychlosti. Při součtu rychlostních trojúhelníků způsobí vyšší unášivá rychlost navýšení úhlu α_{2s} je-li β_{2s} konstantní. Úhel β_{2s} ekvivalentní byl volen pro:

- 3% reakci 22,5°
- pro 16% reakci byl úhel zvolen 19,8°
- pro 50% reakci byl zvolen 14,5°

Důvodem, proč byly vybrány právě tyto hodnoty, je, aby štíhlost lopatek byla maximální možná a aby byl zachován konstantní průtok. Problematikou výběru výstupních úhlů se zabývá kapitola 2.11.4. V příloze č. 13 a v příloze č. 14 si je možné všimnout, jak se vlivem prodlužení lopatky mění geometrie rychlostních trojúhelníků na patě, středu a špičce u 1. a 14. stupně při reakci 50%.

Zadruhé je možné navýšit počet stupňů, což má za následek snížení entalpického spádu na jeden stupeň a s tím související snížení rychlostí (kromě unášivé složky rychlosti). Při zachování úhlu β_{2s} se zvětšuje úhel α_{2s} .

Pokud vycházejí lopatky příliš malé, nastane problém s výrobou a montáží. V praxi se tento problém řeší parciálním ostřikem. Díky použití přetlakového stupně vycházejí lopatky delší a parciální ostřik se v některých případech vytvářet nemusí. Řešení bez parciálního ostřiku vede ke zlepšení účinnosti, neboť se vyhneme segmentovým ztrátám a ztrátám ventilací neostříknutých lopatek. Výhodou delších lopatek je také jejich vhodnost k prostorovému modelování.

V případě, že vypočtená délka tětivy je příliš malá, tj. pod 18mm pro oběžnou lopatku a pod 20 mm pro rozváděcí lopatku, nastane problém s výrobou a navíc má profil velké ztráty. Důvodem velkých ztrát je radius na odtokové hraně. Tento radius (r = 0,2) DSPW zachovává pro všechny profily. Čím bude poměr mezi radiusem a tětivou blíže k jedné, tak tím větší bude vlivnost odtokové hrany. Vytvořený 1D program má v sobě zakomponovanou funkci, která při nižší vypočtené délce tětivy navolí novou minimální délku tětivy, a to 18mm pro oběžnou lopatku a 20mm pro rozváděcí lopatku.

V tabulce 4 až tabulce 6 jsou uvedeny průtočné části, jenž byly v programu řešeny. Pro všechny průtočné části turbíny byly použity shodné vstupní parametry, až na tyto následující: Dp, počet stupňů, účinnosti rozváděcí a oběžné lopatkové mříže, reakce, odlehčovací otvor (ano / ne), úhel β_2 .

Západočeská univerzita v Plzni. Fakulta strojní. Katedra energetických strojů a zařízení

	Zadané parametry									
Varianta	Reakce pata	Reakce střed	Počet stupňů	Odlehčovací	Dp [mm]	Množství [kg/s]	η RL	ηOL		
1	0.03	0.11 - 0.18	9	Ne	445	41.82	0.8900 - 0.9060	0.8630 - 0.8860		
2	0,03	0,10 - 0,17	9	Ano	452	41,82	0,8900 - 0,9060	0,8630 - 0,8860		
3	0,16	0,23 - 0,30	9	Ne	486	41,82	0,9160 - 0,9270	0,8810 - 0,9140		
4	0,16	0,22 - 0,28	11	Ne	445	41,82	0,9160 - 0,9300	0,8810 - 0,9200		
5	0,16	0,22 - 0,28	9	Ano	494	41,82	0,9160-0,9270	0,8810 - 0,9140		
6	0,45 - 0,39	0,5	13	Ne	486	41,82	0,9290 - 0,9420	0,9140 - 0,9270		
7	0,45 - 0,39	0,5	14	Ne	486	41,82	0,9290 - 0,9420	0,9140 - 0,9270		
8	0,45 - 0,38	0,5	14	Ne	476	41,82	0,9290 - 0,9420	0,9140 - 0,9270		

Tab. 4: Vstupní parametry pro 1D výpočet

	Vypočtené parametry									
Varianta	$\eta^{T \text{-} T}$	$\eta^{\mathrm{T}\text{-}S}$	Výkon [kW]	Délka lopatky Lrl [mm]	Délka lopatky Lol [mm]	u/c pata	u/c střed			
1	0,8591	0,858	12174	18,23 - 39,80	18,73 - 40,30	0,46	0,48 - 0,50			
2	0,8795	0,8791	12504	16,61 - 38,47	17,11 - 38,97	0,46	0,48 - 0,50			
3	0,8866	0,8857	12461	17,28 - 38,53	17,78 - 39,03	0,5	0,52 - 0,54			
4	0,8938	0,8931	12609	20,31 - 44,70	20,81 - 45,20	0,51	0,53 - 0,56			
5	0,9058	0,9055	12767	15,75 - 36,92	16,25 - 37,42	0,51	0,53 - 0,55			
6	0,9097	0,91	12748	21,93 - 50,33	22,43 - 50,83	0,62 - 0,58	0,64			
7	0,9105	0,9108	12777	22,69 - 52,07	23,19 - 52,57	0,64 - 0,60	0,67			
8	0,9112	0,9109	12770	23,18 - 52,88	23,68 - 53,38	0,63 - 0,59	0,66			

Tab. 5: Vypočtené parametry z 1D programu

Vypočtené parametry na středu								
Varianta	Alfa1	Beta1	Alfa2	Beta2				
	[°]	[°]	[°]	[°]				
1	13,13 - 14,20	27,37 - 31,63	92,45 - 85,80	22,51 - 22,55				
2	13,87 - 14,24	28,36 - 31,65	90,85 - 88,17	22,51 - 22,55				
3	13,28 - 13,98	32,48 - 37,06	91,15 - 85,06	19,81 - 19,84				
4	13,37 - 14,49	33,96 - 41,06	93,42 - 86,67	19,81 - 19,86				
5	14,02 - 14,20	33,56 - 37,71	90,23 - 86,70	19,81 - 19,84				
6	14,96 - 14,23	82,42 - 78,57	84,36 - 80,53	14,51 - 14,56				
7	14,96 - 14,24	90,57 - 86,99	93,04 - 89,16	14,51 - 14,57				
8	14,94 - 14,24	86,80 - 83,16	89,08 - 85,28	14,52 - 14,57				

Tab. 6: Vypočtené parametry z 1D programu

Z tabulek je zřejmé, jak společně s rostoucí reakcí roste i délka lopatek. Příčina růstu lopatek je ta, že lopatka se navrhuje s více zavřeným úhlem β_2 . S délkou lopatek se zvyšuje i potřeba prostorového modelování lopatky. Delší lopatky tedy vycházejí více rozkroucené.

Západočeská univerzita v Plzni. Fakulta strojní.	Diplomová práce, akad.rok 2014/15
Katedra energetických strojů a zařízení	Petr Kollross

Z tabulky 5 je patrné, že největší účinnost stupně přinese čistě přetlakový stupeň. Pro názornost jsou účinnosti společně s výkony zaneseny do grafu v obrázku 19 a v obrázku 20. Účinnost η uvedená v tabulce 5 se zvyšuje s počtem stupňů. Pokud spád rozdělíme na více stupňů, sníží se rychlosti ve stupni a tím pádem se sníží i třecí ztráty.

Z výše uvedeného textu je patrné, že použitím přetlakových lopatek se 14 stupni se účinnost významně zlepší a proto bude tato varianta dále použita pro detailní návrh v interním programu DSPW.

Obr. 19: Závislost účinnosti průtočné části rozložená dle reakcí

Obr. 20: Závislost výkonu průtočné části rozložená dle reakcí

5.3 Detailní návrh v interním programu Doosan Škoda Power

Výstupy z vytvořeného 1D programu byly následně použity jako vstupy pro výpočet v interním programu Doosan Škoda Power, kde se hodnoty dále precizovaly. Změna aerodynamických parametrů je v programu DSPW po výšce lopatky řešena proudnicovou metodou. Návrh průtočné části byl proveden s ohledem na montáž lopatek. Tedy s ohledem na axiální mezery.

V programu se iteruje několik parametrů:

- Iterace na optimální poměr t/b, jenž ovlivňuje ztrátový součinitel ζ .
- Reakce byla naiterována v intervalu $\rho = 0.48 0.51$.
- Průtočné množství bylo iterováno otvíráním a přivíráním výstupního úhlu na odtokové hraně rozváděcí lopatky na všech třech poloměrech. Změna geometrie výstupní hrany rozváděcí lopatky je zobrazena na obrázku 21. V části a) na obrázku 21 je hrdlo více otevřené nežli v části b). Nově obdržené parametry vzniklé zavíráním hrdla jsou označeny s indexem " ". Se změnou hrdla je úzce spjata i změna reakce. V případě, že nebylo možné dojít shody vhodného průtoku a požadované reakce, tak bylo nutné nepatrně upravit délku lopatky.
- Poměr počtu rozváděcích lopatek ku poměru oběžných lopatek byl nastaven v intervalu 1,05 – 1,2.
- Incidence, tedy rozdíl mezi návrhovým a proudovým výpočtem u rozváděcích a oběžných lopatek, byly naiterovány na patě, středu a špičce v rozsahu ±0,5°. Dá se říci, že pokud není zcela možné incidenci odstranit, tak se incidence naiterují se záporným znaménkem dle obrázku 22. Záporné incidence tedy nenávrhový stav, kdy proud vstupuje na hřbet lopatky, přináší nižší ztráty, než kdyby proud vstupoval na tlakovou stěnu kanálu lopatky. V případě, že by v praxi mohlo docházet vlivem změny provozů k nenávrhovému proudění na lopatku, tak je nutné náběžnou hranu více zaoblit.

Rozdíl hmotnostního průtoku zadaného vs. skutečného byl iterován na $\pm 1\%$.

Obr. 21: Změna hrdla v kanále rozváděcích lopatek

Obr. 22: Směr incidence při náběhu proudu

Co se týká geometrie, tak šířka disku rozváděcího kola je definována následovně:

- Přesah na vstupní hraně rozváděcí lopatky musí být o 1,5mm větší než šířka disku rozváděcího kola na špičce i patě.
- Přesah na odtokové hraně rozváděcí lopatky byl zvolen 1mm a to jak na špičce, tak i na patě.
- Šířka bandáže lopatky byla navolena o 10% větší než šířka oběžné lopatky na špičce.
- Šířka disku oběžného kola je rovněž o 10% větší než šířka na patě oběžné lopatky.
- Minimální sklon disku rozváděcího kola a bandáže je dle doporučení DSPW 2°.
- Sklon disků a bandáže špičky u rozváděcí a oběžné lopatky byl vytvořen s ohledem na směr proudnic. U prvních tří stupňů vycházel sklon disků špičky pod úhel 2° - tedy nebyl uvažován sklon na špičce. Sklon byl u čtvrtého stupně navolen 2° a dále pokračoval se vzrůstající tendencí.
- Patní průměr je po celé průtočné části konstantní.
- Všechny měřitelné parametry včetně délky lopatek byly zaokrouhleny na pět desetin a to s ohledem na výrobu.
- Každý stupeň byl prověřen pevnostní analýzou obsaženou v programu a každý stupeň pevnostně vyhovoval.

Grafické znázornění průtočné části je zobrazena v příloze č. 18. V příloze č. 19 jsou zobrazeny i 3D vymodelované lopatky.

Výstupní parametry, které jsou níže uvedeny v tabulce 8, jsou již definitivním výpočtem a jsou určeny pro oddělení pevnostních a dynamických výpočtů.

Zadané parametry							
Reakce pata	Reakce střed	Počet stupňů	Dp [mm]	Množství [kg/s]			
0,45 - 0,38	0,5	14	476	41,82			

Tab. 7 – vstupní parametry do interního programu DSPW

Vypočtené parametry na interním programem DPSW								
u/c střed	η^{TT}	η^{T-S}	Výkon [kW]	Délka lopatky Lrl [mm]	Délka lopatky Lol [mm]	Reakce pata	Reakce střed	
0,66	0,9108	0,9088	12818	23 - 53	23,5 - 53,5	0,4565 - 0,3708	0,4724 - 0,5	

Tab. 8 – výstupy z interního programu DSPW

5.4 Porovnání výsledků 1D programu oproti programu DSPW

Výsledné účinnosti vypočtené ve vytvořeném programu a v interním programu DSPW se až na malé odchylky shodují, jak ukazuje tabulka 9. Rozdíl ve výkonech mezi vytvořeným programem a interním programem DPSW je rovněž velmi zanedbatelný. Tyto nepatrné odchylky zřejmě vznikly pouze při zaokrouhlování. Závěr je takový, že vytvořený 1D program pracuje velmi přesně bez výrazných odchylek.

Výsledky - porovnání									
Vypočtené parametry	Vypočtené parametry interním programem DPSW	Odychylka							
$\eta^{T-T} = 0,9112$	$\eta^{T-T} = 0,9108$	0,044%							
$\eta^{T-S} = 0,9109$	$\eta^{T-S} = 0,9088$	0,12%							
Výkon [kW] = 12770	Výkon [kW] = 12818	0,3%							

Tab. 9 – porovnání výsledků vytvořeného programu vs. interní program DSPW

5.5 Technicko-ekonomické zhodnocení

Technicko-ekonomické zhodnocení bylo provedeno pouze ze stran výrobce turbosoustrojí. Postup vyhodnocování byl následující:

- Nejprve byly vyhledány výrobní náklady původního turbosoustrojí.
- Následně nákupní oddělení provedlo nacenění nově navržené průtočné části pro čistě přetlakové lopatkování při zachování výrobních nákladů, které byly při výrobě původního turbosoustrojí. Důvodem je umožnění porovnání mezi starou a nově navrhovanou průtočnou částí.
- Výsledek byl podělen přínosem výkonu a tím bylo získáno vyhodnocovací kritérium.

Vyhodnocovací kritérium je finanční pobídka, kterou v některých případech uplatňuje zákazník, má-li v úmyslu maximalizovat výkon turbogenerátoru. Obecně lze říci, že se vyhodnocovací kritéria odvíjejí dle smluveného kontraktu. Tato pobídka se obvykle udává jako podíl peněžní hodnoty za kW. Jednoduchým porovnáním vyhodnocovacího kritéria výrobce a zákazníka lze určit, kdy je výhodnější zvolit levnější rovnotlaké řešení a kdy naopak je výhodnější zvolit řešení dražší tj. přetlakové. Minimální výše vyhodnocovacího kritéria, při kterém se vyplatí aplikovat technické řešení s přetlakovým lopatkováním je pro tento případ 111 Eur/kW.

Vyhodnocovací kritérium ze strany zákazníka je poměrně obtížně zjistitelná suma, která může dosahovat hodnot až několik tisíc Euro za kW. Tato suma je závislá na mnoha faktorech. Příkladem mohou být tyto:

- Výkupní cena elektřiny v dané lokalitě
- Účel elektrárny (výroba elektřiny, teplofikace, odpadní teplo)
- Predikce vývoje prodejní ceny elektřiny
- Dotovaná výroba elektřiny (biomasa, solární zdroje)
- Cena přelopatkování rotoru (při retrofitu)
- atd.

Naceňovací oddělení tzv. "costing" provedl průzkum trhu. Tento průzkum trhu pro lokalitu pro níž byl původní stroj vyroben, tj. pro Skandinávii ukázal, že vyhodnocovací kritérium se pohybuje průměrně okolo 3000 Eur/kW. Velmi ale záleží na účelu zařízení tedy na tom, zda se má jednat o elektrárny popřípadě teplárny a zda je důležitým parametrem nízká cena nebo vysoký výkon. Vyhodnocovací kritérium se v této lokalitě může pohybovat v rozmezí od 800 Eur/kW do 4000 Eur/kW. Z výše uvedeného lze usoudit, že by se výrobci turbosoustrojí s velkou pravděpodobností vyplatilo vyrobit stroj s přetlakovým lopatkováním.

6 Závěr

Cílem diplomové práce bylo vytvoření 1D programu určeného na výpočet průtočné části turbíny. Výstupy tohoto programu jsou zejména textového charakteru jako například podrobný popis expanze a geometrie průtočné části, a to jak v axiálním směru, tak i po výšce lopatky. Dalším výstupem je grafické znázornění rychlostních trojúhelníků pro jednotlivé stupně. Vytvořený program má vlastní interaktivní rozhraní a několik vylepšení pro snadné ovládání. Na základě toho programu byla napočtena série výpočtů průtočných částí turbíny. Varianty byly napočteny pro různé počty stupňů, různé patní průměry a rovněž pro různé reakce. Z této série výpočtu vyšla nejlépe průtočná část s reakcí 50% pro 14 stupňů o daném patním průměru. Tato průtočná část byla následně navržena v interním programu DSPW. V tomto programu byla dále průtočná část upravena a vyprecizována. Výsledky z vytvořeného a z interního programu jsou uvedeny v kapitolách 5.1 a 5.2. Součástí přílohy je namodelovaný tvar průtočné části turbíny. Výsledky interního programu DSPW byly následně porovnány a zaznamenána jejich odchylka v kapitole 5.3.

Provedené technicko-ekonomické zhodnocení ukázalo, že více stupňů přináší i větší výrobní a montážní náklady. Je zřejmé, že i navýšení patního průměru přináší větší nároky na ložiskové stojany a samozřejmě i na hmotnost, tedy cenu turbíny. Nicméně účinnost turbíny je u přetlakových stupňů nesporně vyšší než u rovnotlakých, a to je velice důležitý faktor pro zákazníka. Pro všechny varianty průtočných částí byla použita stejná geometrie ucpávek. Pokud bychom použili průtočnou část s vyšší reakcí, tak bychom použili i ucpávky s lepšími těsnícími vlastnostmi a zlepšili bychom tak i celkovou účinnost turbíny.

Rovnotlaká průtočná část VT dílu ve vyrobeném stroji má délku 560mm a měla 9 stupňů. Nově navržená přetlaková průtočná část má délku 625mm a má 14 stupňů. Tedy lze říci, že průtočná část se rozšířila o 5 stupňů, ale prodloužila jen o 65mm (cca 12%) a neměla by tedy výraznější dopad na ložiskovou vzdálenost.

Čistě ekonomické hledisko ukázalo, že pro výrobce turbosoustrojí je nejlepší varianta s přetlakovými stupni, je-li vyhodnocovací kritérium rovno nebo větší než 111 Eur/kW. Tento závěr, ale není aplikovatelný obecně pro každý projekt. Tato kalkulace je podmíněna několika předpoklady daných pouze pro tento případ a projekt. Technicko-ekonomické vyhodnocení je představeno v kapitole 5.5. Z průzkumu trhu vyplývá, že pro řešení do Skandinávie by lopatkování s přetlakovými stupni bylo s největší pravděpodobností výhodné.

7 Citovaná literatura

[1] BEČVÁŘ, J. 1968. *Tepelné turbíny*. Praha : SNTL, 1968.

[2] BENDA, J., ČERNÁ R. 1981. Numerická matematika. Praha : ČVUT, 1981.

[3] DIXON, S., HALL, C. 2010. Fluid Mechanics and Thermomechnics of

Turbomachinery. Oxford : Elsevier, 2010.

[4] KADRNOŽKA, J. 2004. Tepelné turbíny a turbokompresory. Brno : CERM, 2004.

[5] KRAJÍC, L. Přednášky - Parní turbíny a příslušenství. Plzeň : autor neznámý.

[6] LINHART, J. Termomechanika - stručné texty. Plzeň : ZČU.

[7] ŠČEGLJAJEV, A. 1983. Parní turbíny. Moskva : MIR, 1983.

[8] ŠKOPEK, J. 2003. Parní turbína, tepelný a pevnostní výpočet. Plzeň : ZČU, 2003.

[9] ŠMÍD, V. 1990. Teorie proudových strojů. Praha : ČVUT, 1990.

[10] TRAUPEL, W. 1958. *Thermische Turbrbomachinen*. Berlin : Springer-Verlag OHG., 1958.

8 Publikace na internetu

[11] steam, X Steam - Properties for water and. 1997. [Online] International Association for Properties of Water and Steam Industrial Formulation 1997 (IAPWS IF-97), 1997. [Citace: 25. 9 2014.] http://xsteam.sourceforge.net/.

[12] Power, Doosan Škoda. © **2015.** [Online] Doosan Škoda Power, © 2015. [Citace: 6. 1 2015.] http://www.doosanskodapower.com/cz/main.do.

[13] The MathWorks, Inc. © 1994-2015. [Online] The MathWorks, Inc., © 1994-2015. http://www.mathworks.com/products/matlab/.

[14] Manufacturing, C*Blade S.p.a. Forging &. © 2007-2015. [Online] C*Blade S.p.a., © 2007-2015. [Citace: 8. 1 2015.] http://www.cblade.it/steam-turbine-blades.html.

9 Seznam použitých programových zdrojů

- Matlab
- knihovny X-steam
- Microsoft Office
- AutoCAD 2014
- Interní program DSPW

10 PŘÍLOHY

Příloha č. 1

závislost průtokového součinitele k na podílu rozteče/radiální vůle

závislost součinitele k na podílu rozteče/radiální vůle

PTO ODEZNOU IOPa	itku pro pre	uuennovanei							
β ₂	β1	+	NA Opt NA Opt	b ₀	S ₀	J _{0 min}	W _{0 min}		
(°)	(°)	τ _{opt}	IVI _{1s} ', IVI _{1s} '	(cm)	(cm ²)	(cm ⁴)	(cm ³)		
			Pro nižsí Machova čísla						
12 až 16	20 až 30	0,60 až 0,7	do 0,95	2,59	2,35	0,387	0,331		
15 až 19	23 až 35	0,60 až 0,70	do 0,95	2,57	1,81	0,152	0,165		
19 až 24	25 až 40	0,58 až 0,68	do 0,90	2,56	1,85	0,205	0,234		
22 až 28	30 až 50	0,55 až 0,65	do 0,85	2,54	1,62	0,131	0,168		
25 až 32	44 až 60	0,45 až 0,58	do 0,85	2,56	1,22	0,71	0,112		
30 až 36	47 až 65	0,43 až 0,55	do 0,85	2,56	1,02	0,044	0,079		
35 až 42	55 až 75	0,41 až 0,51	do 0,85	2,61	0,76	0,018	0,035		
			Pro vyšší Machova čísla						
15 až 19	23 až 45	0,57 až 0,65	0,80 až 1,15	2,54	2,06	0,296	0,296		
16 až 20	19 až 24	0,60 až 0,70	1,30 až 1,60	2	1,16	0,118	0,142		
19 až 24	25 až 40	0,55 až 0,65	0,85 až 1,10	2,01	1,11	0,073	0,101		
20 až 24	23 až 27	0,54 až 0,67	1,35 až 1,60	2	0,99	0,084	0,1		
22 až 28	30 až 50	0,55 až 0,65	0,85 až 1,10	2,52	1,51	0,126	0,159		
Platí pro profily o	šířce $B_0 = 2$	5 mm							
	-								
Pro rozváděcí lop	atku pro pře	eddefinované	moduly						
<u>a</u> .	<u> </u>			h.	So	یار میں اور ا	Wamin		
u ₁	u ₀	t _{opt}	M_{1s}^{opt} , M_{1s}^{opt}		-0	-0 min	0 min		
1 1 1 1	1 1 1			(cm)	(cm^2)	(cm^4)	(cm^3)		
(*)	(°)	-	Pro nižsí Machova čísla	(cm)	(cm²)	(cm⁴)	(cm³)		
(ř)	(°)	0.72 až 0.85	Pro nižsí Machova čísla	(cm)	(cm²)	(cm [*])	(cm ³)		
(ř) 8 až 11 10 až 14	(°) 70 až 120 70 až 120	0,72 až 0,85	Pro nižsí Machova čísla do 0,90 do 0.85	(cm) 6,06	(cm ²) 3,45	(cm [*]) 0,416	(cm ³) 0,471		
(ř) 8 až 11 10 až 14 13 až 14	(°) 70 až 120 70 až 120 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85	Pro nižsí Machova čísla do 0,90 do 0,85 do 0 85	(cm) 6,06 6,25 5 15	(cm ²) 3,45 4,09	(cm [*]) 0,416 0,591 0.36	(cm ³) 0,471 0,575		
(ř) 8 až 11 10 až 14 13 až 14 12 až 18	(°) 70 až 120 70 až 120 70 až 120 45 až 75	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4 5	(cm ²) 3,45 4,09 3,3 4,41	(cm*) 0,416 0,591 0,36	(cm ³) 0,471 0,575 0,45		
(ř) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20	(°) 70 až 120 70 až 120 70 až 120 45 až 75 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,80	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,85 do 0,90 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72	(cm*) 0,416 0,591 0,36 1,195 0 243	(cm ³) 0,471 0,575 0,45 0,912 0 333		
(ř) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,80 0,70 až 0,80	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,85 do 0,90 do 0,90 do 0,90 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4 15	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15	(cm*) 0,416 0,591 0,36 1,195 0,243 0 273	(cm ³) 0,471 0,575 0,45 0,912 0,333 0 275		
(ř) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 75	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,80 0,70 až 0,80 0,70 až 0,85	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0 338	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0 348		
(ř) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,87 0,70 až 0,80 0,70 až 0,85 0,60 až 0,75 0,70 až 0,80	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,338 0,167	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120 35 až 65	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,88 0,70 až 0,80 0,70 až 0,85 0,60 až 0,75 0,70 až 0,80	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,273 0,338 0,167 0,703	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,536		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28 22 až 28	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 75 45 až 85 70 až 120 35 až 65 55 až 90	0,72 až 0,85 0,72 až 0,87 0,70 až 0,87 0,70 až 0,87 0,70 až 0,80 0,70 až 0,80 0,70 až 0,80 0,60 až 0,75 0,60 až 0,75 0,60 až 0,75 0,50 až 0,67	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5 4,5 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86	(cm*) 0,416 0,591 0,36 1,195 0,243 0,243 0,273 0,338 0,167 0,703 0,242	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,536 0,235		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28 22 až 28 24 až 30	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120 35 až 65 55 až 90 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,87 0,70 až 0,80 0,70 až 0,85 0,60 až 0,75 0,70 až 0,80 0,60 až 0,75 0,50 až 0,67 0,65 až 0,75	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5 4,5 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86 2,03	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,273 0,338 0,167 0,703 0,242 0,116	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,536 0,235 0,195		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28 22 až 28 24 až 30 27 až 34	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120 35 až 65 55 až 90 70 až 120 45 až 85	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,88 0,70 až 0,80 0,70 až 0,85 0,60 až 0,75 0,70 až 0,80 0,60 až 0,75 0,50 až 0,67 0,65 až 0,75 0,52 až 0,70	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5 4,5 4,5 4,5 3,46	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86 2,03 1,49	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,273 0,273 0,338 0,167 0,703 0,242 0,116 0,118	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,536 0,235 0,195 0,154		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28 22 až 28 24 až 30 27 až 34 30 až 36	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120 35 až 65 55 až 90 70 až 120 45 až 85 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,87 0,70 až 0,87 0,70 až 0,87 0,70 až 0,80 0,70 až 0,80 0,60 až 0,75 0,50 až 0,75 0,50 až 0,67 0,55 až 0,75 0,52 až 0,70	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5 4,5 4,5 4,5 3,46 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86 2,03 1,49 1,84	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,273 0,338 0,167 0,703 0,242 0,116 0,118 0,09	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,536 0,235 0,195 0,154 0,163		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28 22 až 28 24 až 30 27 až 34 30 až 36 35 až 42	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120 35 až 65 55 až 90 70 až 120 45 až 85 70 až 120 45 až 85 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,85 0,70 až 0,80 0,70 až 0,85 0,60 až 0,75 0,50 až 0,75 0,50 až 0,75 0,52 až 0,70 0,62 až 0,75 0,60 až 0,73	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5 4,5 4,5 3,46 4,5 4,5 4,5 3,46 4,5 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86 2,03 1,49 1,84 1,75	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,273 0,273 0,338 0,167 0,703 0,242 0,116 0,118 0,09 0,081	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,536 0,235 0,195 0,154 0,163 0,141		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28 22 až 28 24 až 30 27 až 34 30 až 36 35 až 42	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120 35 až 65 55 až 90 70 až 120 45 až 85 70 až 120 45 až 85 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,88 0,70 až 0,80 0,70 až 0,85 0,60 až 0,75 0,50 až 0,75 0,55 až 0,75 0,52 až 0,70 0,62 až 0,75 0,60 až 0,73	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5 4,5 4,5 3,46 4,5 4,5 4,5 3,46	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86 2,03 1,49 1,84 1,75	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,338 0,167 0,703 0,242 0,116 0,118 0,09 0,081	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,235 0,235 0,195 0,154 0,163 0,141		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28 22 až 28 24 až 30 27 až 34 30 až 36 35 až 42 10 až 14	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120 35 až 65 55 až 90 70 až 120 45 až 85 70 až 120 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,87 0,70 až 0,87 0,70 až 0,87 0,70 až 0,80 0,70 až 0,85 0,60 až 0,75 0,50 až 0,75 0,50 až 0,75 0,52 až 0,70 0,62 až 0,75 0,60 až 0,73	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90 Pro vyšší Machova čísla 0,85 až 1,15	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5 4,5 3,46 4,5 4,5 3,46 4,5 5,66	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86 2,03 1,49 1,84 1,75 3,31	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,273 0,338 0,167 0,703 0,242 0,116 0,118 0,09 0,081 0,388	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,235 0,195 0,195 0,154 0,163 0,141		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28 22 až 28 24 až 30 27 až 34 30 až 36 35 až 42 10 až 14 10 až 14	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120 35 až 65 55 až 90 70 až 120 45 až 85 70 až 120 70 až 120 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,85 0,70 až 0,80 0,70 až 0,85 0,60 až 0,75 0,50 až 0,75 0,50 až 0,75 0,52 až 0,70 0,62 až 0,75 0,60 až 0,75 0,60 až 0,75 0,52 až 0,70	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90 l,40 až 1,80	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5 4,5 3,46 4,5 3,46 4,5 4,5 3,46 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86 2,03 1,49 1,84 1,75 3,31 2,3	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,273 0,273 0,273 0,273 0,273 0,242 0,116 0,118 0,09 0,081 0,388 0,237	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,536 0,235 0,195 0,154 0,163 0,141		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 17 až 23 20 až 24 21 až 28 22 až 28 24 až 30 27 až 34 30 až 36 35 až 42 10 až 14 10 až 14 13 až 17	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 45 až 85 70 až 120 35 až 65 55 až 90 70 až 120 45 až 85 70 až 120 70 až 120 70 až 120 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,85 0,72 až 0,87 0,70 až 0,85 0,70 až 0,80 0,70 až 0,80 0,60 až 0,75 0,50 až 0,75 0,50 až 0,75 0,52 až 0,75 0,66 až 0,75 0,62 až 0,75 0,60 až 0,75 0,60 až 0,75	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90 Jacoba 2 1,15 1,40 až 1,80 1,40 až 1,70	(cm) 6,06 6,25 5,15 4,5 4,71 4,15 4,5 4,5 4,5 4,5 4,5 3,46 4,5 3,46 4,5 4,5 3,46 4,5 4,5 4,5 3,46 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86 2,03 1,49 1,84 1,75 3,31 2,3 2	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,273 0,273 0,273 0,242 0,167 0,703 0,242 0,116 0,118 0,09 0,081 0,388 0,237 0,153	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,235 0,235 0,195 0,154 0,163 0,154 0,163 0,141		
(°) 8 až 11 10 až 14 13 až 14 12 až 18 16 až 20 17 až 23 20 až 24 21 až 28 22 až 28 24 až 30 27 až 34 30 až 36 35 až 42 10 až 14 10 až 14 13 až 17 13 až 17	(°) 70 až 120 70 až 120 45 až 75 70 až 120 45 až 75 70 až 120 45 až 85 70 až 120 35 až 65 55 až 90 70 až 120 70 až 120 70 až 120 70 až 120 70 až 120 70 až 120 70 až 120	0,72 až 0,85 0,72 až 0,87 0,70 až 0,87 0,70 až 0,87 0,70 až 0,87 0,70 až 0,80 0,70 až 0,80 0,70 až 0,75 0,50 až 0,75 0,50 až 0,75 0,52 až 0,75 0,66 až 0,75 0,66 až 0,75 0,66 až 0,75 0,52 až 0,70 0,62 až 0,75 0,58 až 0,68 0,55 až 0,65 0,70 až 0,85	Pro nižsí Machova čísla do 0,90 do 0,85 do 0,90 Pro vyšší Machova čísla 0,85 až 1,15 1,40 až 1,80 1,40 až 1,70 0,85 až 1,15	(cm) 6,06 6,25 5,15 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,	(cm ²) 3,45 4,09 3,3 4,41 2,72 2,15 2,26 2,35 3,3 1,86 2,03 1,86 2,03 1,49 1,84 1,75 3,31 2,3 2 3,21	(cm*) 0,416 0,591 0,36 1,195 0,243 0,273 0,243 0,273 0,338 0,167 0,703 0,242 0,167 0,703 0,242 0,116 0,118 0,09 0,081 0,388 0,237 0,153 0,326	(cm ³) 0,471 0,575 0,45 0,912 0,333 0,275 0,348 0,265 0,235 0,235 0,195 0,154 0,163 0,163 0,141 0,42 0,324 0,324 0,238 0,413		

Příloha č. 3 – geometrie lopatek a charakteristiky průřezu

Příloha č. 4 - interpolace funkce pro oběžnou lopatku

Příloha č. 5 - interpolace funkce pro oběžnou lopatku

Příloha č. 6 - interpolace funkce pro oběžnou lopatku

Příloha č. 7 - interpolace funkce pro oběžnou lopatku

Příloha č. 8 - interpolace funkce pro rozváděcí lopatku

Příloha č. 9 - interpolace funkce pro oběžnou lopatku

Petr Kollross

Příloha č. 11 - vývojový diagram funkce stvořené pro termodynamický výpočet

upni parametry				
ypracoval (Jméno):	Kollross		Hride	ová ucpávka vytvotello. Ped tolinoss
p0s [bara]	98.74		Tvar břitu:	Tvar 1 🔹
p2OUT [bara]	29.09		Šířka břitu [mm]	0.3
i0s [kJ/kq]	3359 38		Počet břitů [-]	3
n [1/min]	55500		Radiální vůle [mm]	0.5
nţinning	5500		Rozteč břitů [mm]	9
m [kg/s]	41.82		Průměr ucp [mm]	23
Stupnu [-]	14		Druh ucpávky [-]	Prava O Neprava
Vefuk. otvor [-]	◎ ANO		Bandá	žová ucpávka
Napětí dov. [Mpa]	19.5	SPUSTIT VÝPOČET	Tvar břitu:	Tvar 2
Střední (u/c)s-s [-]	0.658		Šiřka břitu [mm]	0.3
Patní (u/c)s-s [-]	0	Stare Zadani Napoveda Nacist Zadani	Počet břitů [-]	4
Patní pr. Dp.[mm]		476-0	Radiální vůle [mm]	0.5
		470,0	Rozteč břitů [mm]	9
Uhel ekv. Beta2 [*]		14.45;0	Průměr ucp [mm]	6
Reakce stred [-]		0.5;0	Druh ucpávky [-]	Prava Neprava

Příloha č. 13 – rychlostní trojúhelníky při reakci 0,5 u 1. stupně

Příloha č. 14 – rychlostní trojúhelníky při reakci 0,5 u 14. stupně

Příloha č. 15 - nápověda 1D programu (příklad uživatelských vstupů)

Příloha č. 16 – výsledky 1D programu řešení 1

----> Výpočet průtočné části <----14 Stupeň i[kJ/kg] 3068.2258 p[bar] Bod Oc = 32.4400 t[°C] 332.4288 s[kJ/kg.K] 6.6332 3067.4922 Bod 0s = 32.3486 332.0343 6.6332 Bod 1iz = 30.7141 324.8194 3054.0725 6.6332 Bod 1s = 30.7141 325.2272 3055.0674 6.6348 Bod 18 = 30.7141 Bod 1w = 30.8109 Bod 2iz = 29.1442 Bod 2iz"= 29.1442 3055.8754 325.6619 6.6348 317.6035 3040.6528 6.6332 3041.6274 318.0070 6.6348 318.5385 3042.9304 325.4954 3055.8754 Bod 2s = 29.1442Bod 2w = 30.65496.6370 6.6370 Reakce pa, str, hl = 0.38U/C pata, stred.... = 0.59 [-] 0.50 [-] 0.59 0.66 Pocet RL a OL.... = 98.00 140.00 Rychl. 1 špička = 148.18 40.79 Rychl. 1 střed = 162.22 40.20 Rychl. 1 pata = 178.11 54.87 u[m/s] 167.53 152.45 Rychl. 1 pata = 178.11 54.87 13 úhel[°] úhel[°] Alfa,Beta 1 špička = 13.08 124.66 137.08 Alfa,Beta 1 střed = 14.24 83.16 Alfa,Beta 1 pata = 13.39 48.73 Alfa,Beta 2 spička = 13.39 48.73 c[m/s] w[m/s] u[m/s] Rychl. 2 špička = 39.37 173.73 167.82 Rychl. 2 střed = 40.42 160.90 152.45 Rychl. 2 pata = 40.91 147.99 137.08 Úhel[°] Úhel[°] Alfa,Beta 2 špička = 87.96 13.09 Alfa,Beta 2 střed = 85.28 14.57 Alfa,Beta 2 pata = 82.64 15.91 PL[ka/s] OL[ka/s] OL[ka/s] Otvor RL[kg/s] OL[kg/s] Otvor[kg/s] Průtočné množství = 41.23 40.90 Množství ucpávkami = 0.59 0.92 0.00 RL[mm] OL[mm] Pélka lenatok = 52.82 Délka lopatek = 52.88 53.38 Lopatková rozteč OL = 10.69 Lopatková rozteč RL = 15.40 [-] Mach nr. bod 1,2..... = 0.28 ō.28 Mach nr. bod 1,2..... = 0.28 Účinnost TS, TT..... = 0.8878 Účinnost RL, OL (zadáno)..... = 0.9420 Účinnost RL, OL (dle Soderberg)..... = 0.9479 Účinnost RL, OL (dle Traupel).... = 0.9286 Ztráty primární ksiRL, ksiOL (dle Traupel) = 0.0597 Ztráty sekundár ksiRL, ksiOL (dle Traupel) = 0.0172 Celková účinnost průtočné části T-5 = 0.9109 Celková účinnost průtočné části T-T = 0.9112 Výkon 0.9149 0.9270 0.9444 0.9197 0.0716 0.0158 Výkon....[kw] Celkový výkon průtočné části....[kw] Síla Fax, Fu [N] = 13913.23 6715.24 Prace.....[J] = 24.48 = 1001.28= 12769.86RL[mm] OL[mm] = 476.00 476.00 Patní průměr Průměr ucpávky = 451.00 535.38 Šířka mříže = 18.39 Šířka tětivy OL = 18.76 Šířka tětivy RL = 20.00 Datum: 25-Feb-2015 20:17 Vypracoval: Kollross

Příloha č. 17 – výsledky 1D programu řešení 2

			>	Výpočet	t průtočné	é části	<																												
p	Oc pOs	p1iz	p1s	p1w	, p2iz	p2iz"	p2s	p2w	t0c	tOs	t1iz	t1s	t1w	t2iz	t2iz"	t2s	t2w	i0c	i0s	i1iz	i1s	i1w	i2iz	i2iz"	i2s	i2w	sOc	sOs	s1iz	s1s	s1w	s2iz	s2iz"	s2s	s2w
[t	ar] [bar]	[bar]	[bar]	[bar]	[bar]	[bar]	[bar]	[bar]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
1 Stupeň 98	.96 98.74	95.15	95.15	95.38	91.67	91.67	91.67	94.90	493.71	493.33	486.93	487.41	487.82	480.53	481.01	481.62	487.58	3360.10	3359.38	3347.42	3348.67	3349.43	3335.47	3336.70	3338.29	3349.43	6.43	6.43	6.43	6.60	6.60	6.43	6.60	6.81	6.81
2 Stupeň 91	.88 91.67	88.28	88.28	88.49	84.98	84.98	84.98	88.05	482.01	481.63	475.19	475.66	476.07	468.74	469.22	469.83	475.84	3339.00	3338.29	3326.27	3327.49	3328.25	3314.25	3315.46	3317.02	3328.25	6.81	6.81	6.81	6.97	6.97	6.81	6.97	6.18	6.18
3 Stupeň 85	.17 84.98	81.77	81.77	81.97	78.66	78.66	78.66	81.56	470.21	469.83	463.35	463.81	464.22	456.86	457.33	457.93	464.00	3317.73	3317.02	3304.92	3306.12	3306.88	3292.83	3294.03	3295.56	3306.88	6.18	6.18	6.18	6.35	6.35	6.18	6.35	6.56	6.56
4 Stupeň 78	.83 78.66	75.62	75.62	75.80	72.68	72.68	72.68	75.43	458.31	457.93	451.40	451.87	452.27	444.87	445.33	445.93	452.05	3296.27	3295.56	3283.39	3284.56	3285.32	3271.21	3272.39	3273.89	3285.32	6.56	6.56	6.56	6.72	6.72	6.56	6.72	6.93	6.93
5 Stupeň 72	.84 72.68	69.81	69.81	69.98	67.03	67.03	67.03	69.64	446.31	445.93	439.36	439.81	440.22	432.78	433.23	433.82	440.01	3274.61	3273.89	3261.64	3262.79	3263.56	3249.38	3250.54	3252.02	3263.56	6.93	6.93	6.93	6.09	6.09	6.93	6.09	6.31	6.31
6 Stupeň 67	.19 67.03	64.33	64.33	64.49	61.71	61.71	61.71	64.17	434.20	433.82	427.20	427.64	428.05	420.57	421.01	421.59	427.85	3252.73	3252.02	3239.67	3240.80	3241.57	3227.33	3228.46	3229.91	3241.57	6.31	6.31	6.31	6.47	6.47	6.31	6.47	6.68	6.68
7 Stupeň 61	85 61.71	59.16	59.16	59.31	56.69	56.69	56.69	59.02	421.98	421.59	414.91	415.36	415.77	408.23	408.67	409.24	415.57	3230.63	3229.91	3217.47	3218.58	3219.35	3205.03	3206.13	3207.56	3219.35	6.68	6.68	6.68	6.84	6.84	6.68	6.84	6.05	6.05
8 Stupeň 56	.83 56.69	54.29	54.29	54.43	51.97	51.97	51.97	54.16	409.63	409.24	402.50	402.94	403.35	395.76	396.19	396.76	403.16	3208.28	3207.56	3195.02	3196.11	3196.88	3182.47	3183.55	3184.96	3196.88	6.05	6.05	6.05	6.22	6.22	6.05	6.22	6.43	6.43
9 Stupeň 52	.10 51.97	49.71	49.71	49.84	47.53	47.53	47.53	49.60	397.14	396.76	389.95	390.39	390.80	383.15	383.57	384.13	390.61	3185.68	3184.96	3172.30	3173.37	3174.15	3159.64	3160.70	3162.09	3174.15	6.43	6.43	6.43	6.59	6.59	6.43	6.59	6.80	6.80
10 Stupeň 47	.65 47.53	45.41	45.41	45.53	43.36	43.36	43.36	45.31	384.52	384.14	377.26	377.69	378.11	370.39	370.81	371.36	377.92	3162.81	3162.09	3149.30	3150.36	3151.14	3136.51	3137.56	3138.92	3151.14	6.80	6.80	6.80	6.96	6.96	6.80	6.96	6.18	6.18
11 Stupeň 43	.47 43.36	41.37	41.37	41.48	39.45	39.45	39.45	41.28	371.75	371.36	364.41	364.83	365.26	357.46	357.88	358.43	365.08	3139.65	3138.92	3126.00	3127.04	3127.83	3113.08	3114.11	3115.46	3127.83	6.18	6.18	6.18	6.34	6.34	6.18	6.34	6.55	6.55
12 Stupeň 39	.55 39.45	37.58	37.58	37.69	35.78	35.78	35.78	37.50	358.82	358.43	351.40	351.82	352.24	344.37	344.78	345.33	352.07	3116.18	3115.46	3102.38	3103.41	3104.20	3089.31	3090.33	3091.66	3104.20	6.55	6.55	6.55	6.72	6.72	6.55	6.72	6.93	6.93
13 Stupeň 35	.88 35.78	34.03	34.03	34.13	32.35	32.35	32.35	33.96	345.72	345.33	338.21	338.62	339.05	331.09	331.50	332.03	338.88	3092.39	3091.66	3078.42	3079.43	3080.23	3065.18	3066.18	3067.49	3080.23	6.93	6.93	6.93	6.10	6.10	6.93	6.10	6.32	6.32
14 Stupeň 32	.44 32.35	30.71	30.71	30.81	29.14	29.14	29.14	30.65	332.43	332.03	324.82	325.23	325.66	317.60	318.01	318.54	325.50	3068.23	3067.49	3054.07	3055.07	3055.88	3040.65	3041.63	3042.93	3055.88	6.32	6.32	6.32	6.48	6.48	6.32	6.48	6.70	6.70
Účinnost cprůt Účinnost cprůt Celkový vyprůt	očné části očné části očné části	T-S [-]: T-T [-]: [kW]:	0.9109 0.9112 12769.8	36																															
Datum: 25-201	5 20:1 7 Vy	pracova	al: Kollross	s																															
Datum: 25-201 Reak-Pa	5 20:1 7 Vy Reak-Stř	pracova Reak-Šp U	al: Kollross J/C-Pa U	s J/C-Stř	Nr-RL N	Nr-OL c1-	Šp w1-	-šο μ-š	n c1-S1	ř w1-S	tř u-Stř	c1-Pa	w1-Pa	u-Pa	Alfa1-	Šp Beta1-	50 Alfa1-S	tř Beta1-	Stř Alfa1-P	°a Beta1-	Pa c2-Šp	w2-Šp	u-Šp	c2-Stř	w2-Stř	u-Stř	c2-Pa	w2-Pa	u-Pa	Alfa2-Šp	Beta2-Šp	Alfa2-Stř F	Beta2-Stř	Alfa2-Pa	}eta2-Pa
Datum: 25-201 Reak-Pa [-]	5 20:1 7 Vy Reak-Stř [-]	pracova Reak-Šp U	al: Kollross I/C-Pa U, [-]	s I/C-Stř [-]	Nr-RL N [-]	۱r-OL c1-۱ [-] [m.	Šp w1- /s] [m/	-šp u-š /s] [m/	p c1-S1 's] [m/s	.ř w1-S 1 [m/s	tř u-Stř l [m/s]	c1-Pa [m/s]	w1-Pa [m/s]	ı u-Pa [m/s]	Alfa1- [°]	Šp Beta1- [°]	ۇp Alfa1-S [°]	tř Beta1-3	Stř Alfa1-P	'a Beta1-∣ [°]	Pa c2-Šp [m/s]	w2-Šp [m/s]	u-Šp [m/s]	c2-Stř [m/s]	w2-Stř [m/s]	u-Stř [m/s]	c2-Pa [m/s]	w2-Pa [m/s]	u-Pa [m/s]	Alfa2-Šp [°]	Beta2-Šp [°]	Alfa2-Stř E [°] [Beta2-Stř '°l	Alfa2-Pa [[°] [3eta2-Pa °l
Datum: 25-201 Reak-Pa [-] 0.45	5 20:1 7 Vy Reak-Stř [-] 0.50	pracova Reak-Šp U [-] 0.54	al: Kollross I/C-Pa U, [-] 0.63	s I/C-Stř [-] 0.66	Nr-RL N [-] 98	Nr-OL c1- [-] [m, 146 144	Šp w1- /s] [m/ .75 36.0	-Šp u-Š /s] [m, 06 150	p c1-S1 's] [m/s .43 151.:	.ř w1-5] [m/s 18 39.03	tř u-Stř] [m/s] 3 143.9	c1-Pa [m/s] 0 156.9	w1-Pa [m/s] 1 40.88	u u-Pa [m/s] 137.0	Alfa1- [°] 3 13.86	Šp Beta1- [°] 105.92	5p Alfa1-S [°] 14.94	tř Beta1-: [°] 86.80	Stř Alfa1-P [°] 14.00	°a Beta1- [°] 68.22	Pa c2-Šp [m/s] 36.97	w2-Šp [m/s] 154.58	u-Šp [m/s] 150.72	c2-Stř [m/s] 37.37	w2-Stř [m/s] 149.25	u-Stř [m/s] 143.90	c2-Pa [m/s] 37.66	w2-Pa [m/s] 143.82	u-Pa [m/s] 137.08	Alfa2-Šp [°] 90.97	Beta2-Šp [°] 13.84	Alfa2-Stř E [°] [89.08 1	Beta2-Stř [°] 14.52	Alfa2-Pa [[°] [87.37 2	3eta2-Pa °] .5.16
Datum: 25-201 Reak-Pa [-] 0.45 0.45	5 20:1 7 Vy Reak-Stř [-] 0.50 0.50	pracova Reak-Šp U [-] 0.54 0.55	al: Kollross I/C-Pa U, [-] 0.63 0.63	s I/C-Stř [-] 0.66 0.66	Nr-RL N [-] 98 98	Nr-OL c1-: [-] [m, 146 144 146 144	Šp w1- /s] [m/ 1.75 36.1	-šp u-š /s] [m, 06 150 09 151	p c1-Sf 's] [m/s .43 151.: .23 151.:	:ř w1-S] [m/s 18 39.0: 77 39.0:	tř u-Stř] [m/s] 3 143.9 3 144.3	c1-Pa [m/s] 0 156.9 0 157.9	w1-Pa [m/s] 1 40.88 5 41.36	u u-Pa [m/s] 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79	Šp Beta1- [°] 105.92 106.81	5p Alfa1-S [°] 14.94 14.87	tř Beta1-: [°] 86.80 86.48	Stř Alfa1-P [°] 14.00 13.94	7a Beta1- [°] 68.22 66.91	Pa c2-Šp [m/s] 36.97 37.10	w2-Šp [m/s] 154.58 155.54	u-Šp [m/s] 150.72 151.52	c2-Stř [m/s] 37.37 37.53	w2-Stř [m/s] 149.25 149.86	u-Stř [m/s] 143.90 144.30	c2-Pa [m/s] 37.66 37.83	w2-Pa [m/s] 143.82 144.08	u-Pa [m/s] 137.08 137.08	Alfa2-Šp [°] 90.97 90.71	Beta2-Šp [°] 13.84 13.80	Alfa2-Stř [[°] [89.08 1 88.79 1	Beta2-Stř [°] 14.52 14.52	Alfa2-Pa [[°] [87.37 2 87.03 2	3eta2-Pa °] 15.16 .5.20
Datum: 25-201 Reak-Pa [-] 0.45 0.45 0.44	5 20:1 7 Vy Reak-Stř [-] 0.50 0.50 0.50	pracova Reak-Šp U [-] 0.54 0.55 0.55	al: Kollross I/C-Pa U, [-] 0.63 0.63 0.62	s I/C-Stř [-] 0.66 0.66 0.66	Nr-RL N [-] 98 98 98	Nr-OL c1- [-] [m, 146 144 146 144 146 145	Šp w1- /s] [m/ 1.75 36.0 1.97 36.0 5.19 36.1	-Šp u-Š /s] [m, 06 150 09 151 16 152	p c1-Si Si [m/s .43 151.: .23 151.: .09 152.:	ř w1-S] [m/s 18 39.03 77 39.03 39 39.03	tř u-Stř] [m/s] 3 143.9 3 144.3 3 144.3	c1-Pa [m/s] 0 156.9 0 157.9 3 159.0	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90	u u-Pa [m/s] 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79 3 13.72	Šp Beta1- [°] 105.92 106.81 107.78	5p Alfa1-S [°] 14.94 14.87 14.81	tř Beta1-: [°] 86.80 86.48 86.17	5tř Alfa1-P [°] 14.00 13.94 13.88	Pa Beta1- [°] 68.22 66.91 65.57	Pa c2-Šp [m/s] 36.97 37.10 37.24	w2-šp [m/s] 154.58 155.54 156.57	u-Šp [m/s] 150.72 151.52 152.38	c2-Stř [m/s] 37.37 37.53 37.69	w2-Stř [m/s] 149.25 149.86 150.50	u-Stř [m/s] 143.90 144.30 144.73	c2-Pa [m/s] 37.66 37.83 38.01	w2-Pa [m/s] 143.82 144.08 144.34	u-Pa [m/s] 137.08 137.08 137.08	Alfa2-Šp [°] 90.97 90.71 90.47	Beta2-Šp [°] 13.84 13.80 13.76	Alfa2-Stř E [°] [89.08 1 88.79 1 88.51 1	Beta2-Stř [°] 14.52 14.52 14.52	Alfa2-Pa [[°] [87.37 2 87.03 2 86.70 2	3eta2-Pa °] L5.16 L5.20 .5.24
Datum: 25-201 Reak-Pa [-] 0.45 0.44 0.44	S 20:1 7 Vy Reak-Stř [-] 0.50 0.50 0.50 0.50	pracova Reak-Šp U [-] 0.55 0.55 0.55 0.55	al: Kollross I/C-Pa U, [-] 0.63 0.63 0.62 0.62	s I/C-Stř [-] 0.66 0.66 0.66 0.66	Nr-RL N [-] 98 98 98 98	Nr-OL c1- [-] [m, 146 144 146 144 146 145 146 145	Šp w1- /s] [m/ 3.75 36.(3.97 36.(3.19 36.) 3.42 36.)	-šp u-š /s] [m, 06 150 09 151 16 152 27 153	p c1-Si (s) [m/s .43 151.: .23 151.: .09 152.: .01 153.0	ř w1-S] [m/s 18 39.03 77 39.03 39 39.03 04 39.06	tř u-Stř] [m/s] 8 143.9 8 144.3 8 144.3 5 145.1	c1-Pa [m/s] 0 156.9 0 157.9 3 159.0 9 160.2	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90 2 42.52	u u-Pa [m/s] 137.0 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79 3 13.72 3 13.66	Šp Beta1- [°] 105.92 106.81 107.78 108.83	5p Alfa1-S [°] 14.94 14.87 14.81 14.75	tř Beta1-5 [°] 86.80 86.48 86.17 85.87	5tř Alfa1-P [°] 14.00 13.94 13.88 13.82	°a Beta1- [°] 68.22 66.91 65.57 64.20	Pa c2-Šp [m/s] 36.97 37.10 37.24 37.39	w2-šp [m/s] 154.58 155.54 156.57 157.66	u-Šp [m/s] 150.72 151.52 152.38 153.30	c2-Stř [m/s] 37.37 37.53 37.69 37.87	w2-Stř [m/s] 149.25 149.86 150.50 151.18	u-Stř [m/s] 143.90 144.30 144.73 145.19	c2-Pa [m/s] 37.66 37.83 38.01 38.20	w2-Pa [m/s] 143.82 144.08 144.34 144.62	u-Pa [m/s] 137.08 137.08 137.08 137.08	Alfa2-Šp [°] 90.97 90.71 90.47 90.21	Beta2-Šp [°] 13.84 13.80 13.76 13.72	Alfa2-Stř E [°] [89.08 1 88.79 1 88.51 1 88.22 1	Beta2-Stř [°] 14.52 14.52 14.52 14.52	Alfa2-Pa [[°] [87.37 2 87.03 2 86.70 2 86.35 2	3eta2-Pa °] I5.16 I5.20 I5.24 .5.28
Datum: 25-201 Reak-Pa [-] 0.45 0.44 0.44 0.44	Reak-Stř [-] 0.50 0.50 0.50 0.50 0.50	pracova Reak-Šp U [-] 0.54 0.55 0.55 0.55 0.55	al: Kollross I/C-Pa U, [-] 0.63 0.62 0.62 0.62 0.62	s J/C-Stř [-] 0.66 0.66 0.66 0.66 0.66	Nr-RL N [-] 98 98 98 98 98	Nr-OL c1- [-] [m, 146 144 146 144 146 145 146 145 146 145	Šp w1- /s] [m/ 1.75 36.1 1.97 36. 1.19 36. 1.42 36. 36.5 36.4	-šp u-š /s] [m, 06 150 09 151 16 152 27 153 42 154	p c1-Si (s) [m/s .43 151.: .23 151.: .09 152.: .01 153.(.00 153.)	ř w1-S] [m/s 18 39.03 77 39.03 39 39.03 04 39.06 72 39.10	tř u-Stř] [m/s] 3 143.9 3 144.3 3 144.7 5 145.1 0 145.6	c1-Pa [m/s] 0 156.9 0 157.9 3 159.0 9 160.2 8 161.4	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90 2 42.52 7 43.22	u -Pa [m/s] 137.0 137.0 137.0 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79 3 13.72 3 13.66 3 13.59	Šp Beta1- [°] 105.92 106.81 107.78 108.83 109.96	5p Alfa1-S [°] 14.94 14.87 14.81 14.75 14.69	tř Beta1-3 [°] 86.80 86.48 86.17 85.87 85.57	5tř Alfa1-P [°] 14.00 13.94 13.88 13.82 13.77	'a Beta1- [*] 68.22 66.91 65.57 64.20 62.80	Pa c2-šp [m/s] 36.97 37.10 37.24 37.39 37.54	w2-šp [m/s] 154.58 155.54 156.57 157.66 158.83	u-Šp [m/s] 150.72 151.52 152.38 153.30 154.29	c2-Stř [m/s] 37.37 37.53 37.69 37.87 38.06	w2-Stř [m/s] 149.25 149.86 150.50 151.18 151.91	u-Stř [m/s] 143.90 144.30 144.73 145.19 145.68	c2-Pa [m/s] 37.66 37.83 38.01 38.20 38.40	w2-Pa [m/s] 143.82 144.08 144.34 144.62 144.92	u-Pa [m/s] 137.08 137.08 137.08 137.08 137.08	Alfa2-Šp [°] 90.97 90.71 90.47 90.21 89.94	Beta2-Šp [°] 13.84 13.80 13.76 13.72 13.72	Alfa2-Stř [[°] [89.08 1 88.79 1 88.51 1 88.22 1 87.91 1	Beta2-Stř [°] 14.52 14.52 14.52 14.52 14.52 14.53	Alfa2-Pa [[°] [87.37 2 87.03 2 86.70 2 86.35 2 85.98 2	Beta2-Pa [*] 15.16 15.20 15.24 15.28 15.33
Datum: 25-201 Reak-Pa [-] 0.45 0.45 0.44 0.44 0.44 0.44	Reak-Stř [-] 0.50 0.50 0.50 0.50 0.50 0.50 0.50	pracova Reak-Šp U [-] 0.54 0.55 0.55 0.55 0.55 0.55	al: Kollross //C-Pa U, [-] 0.63 0.62 0.62 0.62 0.62 0.62	s 1/C-Stř [-] 0.66 0.66 0.66 0.66 0.66 0.66	Nr-RL N [-] 98 98 98 98 98 98	Nr-OL c1- [-] [m, 146 144 146 145 146 145 146 145 146 145 146 145	Šp w1- /s] [m/ .75 36. .97 36. .19 36. .19 36. .19 36. .59 36. .89 36.	-Šp u-Š /s] [m, 06 150 09 151 16 152 27 153 42 154 62 155	p c1-Si [s] [m/s] .43 151 .23 151 .09 152 .00 153 .00 153 .06 154.	ř w1-S] [m/s 18 39.0; 77 39.0; 39 39.0; 39 39.0; 14 39.0(72 39.1(15 39.1)	tř u-Stř] [m/s] 3 143.9 3 144.3 5 144.7 5 145.1 0 145.6 5 146.2	c1-Pa [m/s] 0 156.9 0 157.9 3 159.0 9 160.2 8 161.4 2 162.8	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90 2 42.52 7 43.22 1 44.00	u -Pa [m/s] 137.0 137.0 137.0 137.0 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.72 3 13.66 3 13.72 3 13.66 3 13.59 3 13.54	Šp Beta1- [°] 105.92 106.81 107.78 108.83 109.96 111.18	 ⁵p Alfa1-S [°] 14.94 14.87 14.81 14.75 14.69 14.64 	tř Beta1-5 [°] 86.80 86.48 86.17 85.87 85.57 85.28	5tř Alfa1-P [°] 14.00 13.94 13.88 13.82 13.77 13.72	'a Beta1- [°] 68.22 66.91 65.57 64.20 62.80 61.38	Pa c2-Šp [m/s] 36.97 37.10 37.24 37.39 37.54 37.71	w2-Šp [m/s] 155.54 155.54 157.66 158.83 160.08	u-Šp [m/s] 150.72 151.52 152.38 153.30 154.29 155.35	c2-Stř [m/s] 37.37 37.53 37.69 37.87 38.06 38.27	w2-Stř [m/s] 149.25 149.86 150.50 151.18 151.91 152.70	u-Stř [m/s] 143.90 144.30 144.73 145.19 145.68 146.22	c2-Pa [m/s] 37.66 37.83 38.01 38.20 38.40 38.62	w2-Pa [m/s] 143.82 144.08 144.34 144.62 144.92 145.25	u-Pa [m/s] 137.08 137.08 137.08 137.08 137.08 137.08	Alfa2-Šp [°] 90.97 90.71 90.47 90.21 89.94 89.96	Beta2-Šp [*] 13.84 13.80 13.76 13.72 13.67 13.63	Alfa2-Stř [[°] [89.08 1 88.79 1 88.51 1 88.22 1 87.91 1 87.58 1	Beta2-Stř [°] 14.52 14.52 14.52 14.52 14.53 14.53	Alfa2-Pa [[°] [87.37 2 86.70 2 86.35 2 85.38 2 85.98 2	Beta2-Pa [*] 15.16 15.20 15.24 15.28 15.33 15.37
Datum: 25-201 Reak-Pa [-] 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.43	Reak-Stř [-] 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	pracova Reak-Šp U [-] 0.54 0.55 0.55 0.55 0.55 0.56 0.56	al: Kollross //C-Pa U, [-] 0.63 0.63 0.62 0.62 0.62 0.62 0.62 0.62	s //C-Stř [-] 0.66 0.66 0.66 0.66 0.66 0.66 0.66	Nr-RL N [-] 98 98 98 98 98 98 98 98	Nr-OL c1- [-] [m, 146 144 146 145 146 145 146 145 146 145 146 145 146 145	Šp w1- /s] [m/ .75 36. .97 36. .19 36. .42 36. .65 36. .89 36. .13 36.	-Šp u-Š /s] [m, 06 150 09 151 16 152 27 153 42 154 62 155 87 156	p c1-Si [s] [m/s .43 151. .23 151. .09 152. .01 153. .00 153. .00 154. .21 155.	ř w1-S] [m/s 18 39.03 77 39.03 39 39.03 39 39.06 72 39.10 72 39.11 15 39.10	tř u-Stř] [m/s] 3 143.9 3 144.3 5 144.7 5 145.1 5 145.6 5 146.7	c1-Pa [m/s] 0 157.9 3 159.0 9 160.2 8 161.4 2 162.8 9 164.2	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90 2 42.52 7 43.22 1 44.00 4 44.88	u-Pa [m/s] 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79 3 13.72 3 13.66 3 13.59 3 13.54 3 13.48	Šp Beta1- [°] 105.92 106.81 107.78 108.83 109.96 111.18 112.50	 ⁵p Alfa1-S [°] 14.94 14.81 14.75 14.69 14.64 14.59 	tř Beta1-3 [°] 86.80 86.48 86.17 85.57 85.57 85.28 85.00	5tř Alfa1-P [°] 14.00 13.94 13.88 13.82 13.77 13.72 13.68	'a Beta1- [°] 68.22 66.91 65.57 64.20 62.80 61.38 59.91	Pa c2-šp [m/s] 36.97 37.10 37.24 37.39 37.54 37.54 37.71 37.89	w2-Šp [m/s] 154.58 155.54 156.57 157.66 158.88 160.42	u-Šp [m/s] 150.72 151.52 152.38 153.30 154.29 155.35 156.50	c2-Stř [m/s] 37.37 37.53 37.69 37.87 38.06 38.27 38.49	w2-Stř [m/s] 149.25 149.86 150.50 151.18 151.91 152.70 153.53	u-Stř [m/s] 143.90 144.30 144.73 145.19 145.68 146.22 146.79	c2-Pa [m/s] 37.66 37.83 38.01 38.20 38.40 38.62 38.86	w2-Pa [m/s] 143.82 144.08 144.34 144.62 144.92 145.25 145.58	u-Pa [m/s] 137.08 137.08 137.08 137.08 137.08 137.08 137.08	Alfa2-Šp [°] 90.97 90.71 90.47 90.21 89.94 89.96 89.66 89.38	Beta2-Šp [°] 13.84 13.80 13.76 13.72 13.67 13.63 13.57	Alfa2-Stř E [°] [89.08 1 88.79 1 88.51 1 88.52 1 87.91 1 87.58 1 87.58 1 87.24 1	Beta2-Stř [°] 14.52 14.52 14.52 14.52 14.53 14.53 14.53	Alfa2-Pa [[*] [87.37 2 87.03 2 86.70 2 86.35 2 85.98 2 85.59 2 85.59 2	Beta2-Pa [*] 15.16 15.20 15.24 15.28 15.33 15.37 15.43
Datum: 25-201 Reak-Pa [-] 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.43 0.43	Reak-Stř [-] 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	pracova Reak-Šp U [-] 0.54 0.55 0.55 0.55 0.55 0.56 0.56 0.56	al: Kollross //C-Pa U, [-] 0.63 0.63 0.62 0.62 0.62 0.62 0.62 0.61 0.61	s //C-Stř [-] 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.6	Nr-RL N [-] 98 98 98 98 98 98 98 98 98 98	Nr-OL c1- [-] [m, 146 144 146 145 146 145 146 145 146 145 146 146 146 146	Šp w1- (s] [m/) 1.75 36. 1.97 36. 1.97 36. 1.19 36. 1.42 36. 1.42 36. 1.65 36. 1.89 36. 1.13 36. 1.13 36. 1.38 37.	-šp u-š /s] [m, 06 150 09 151 16 152 27 153 42 154 62 155 87 156 17 157	p c1-Si [m/s] [m/s .43 151 .09 152.2 .00 153 .00 153 .00 153 .06 154 .21 155 .45 156.	r w1-S] [m/s 18 39.03 77 39.03 39 39.00 72 39.10 72 39.10 73 39.11 73 39.12 73 39.24 23 39.24 23 39.24	tř u-Stř] [m/s] 3 143.9 3 144.3 5 144.7 5 145.1 0 145.6 5 146.2 4 146.7 2 147.4	c1-Pa [m/s] 0 156.9 0 157.9 3 159.0 9 160.2 8 161.4 2 162.8 9 164.2 1 165.7	w1-P2 [m/s] 1 40.88 5 41.36 5 41.90 2 42.52 7 43.22 1 44.00 4 44.88 7 45.87	u u-Pa [m/s] 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79 3 13.72 3 13.66 3 13.59 3 13.54 3 13.48 3 13.48	Šp Beta1- [°] 105.92 106.81 107.78 108.83 109.96 111.18 112.50 113.91	 5p Alfa1-S [*] 14.94 14.87 14.81 14.75 14.69 14.59 14.53 	tř Beta1-: [*] 86.80 86.48 86.17 85.87 85.28 85.00 84.72	Stř Alfa1-P [°] 14.00 13.94 13.88 13.82 13.77 13.72 13.68 13.63	 Beta1- [°] 68.22 66.91 65.57 64.20 62.80 61.38 59.91 58.41 	Pa c2-šp [m/s] 36.97 37.10 37.24 37.39 37.54 37.71 37.89 38.07	w2-Šp [m/s] 154.58 155.54 156.57 157.66 158.83 160.08 161.42 162.83	u-Šp [m/s] 150.72 151.52 152.38 153.30 154.29 155.35 156.50 157.74	c2-Stř [m/s] 37.37 37.53 37.69 37.87 38.06 38.27 38.49 38.71	w2-Stř [m/s] 149.25 149.86 150.50 151.18 151.91 152.70 153.53 154.40	u-Stř [m/s] 143.90 144.30 144.73 145.19 145.68 146.22 146.79 147.41	c2-Pa [m/s] 37.66 37.83 38.01 38.20 38.40 38.40 38.62 38.86 39.11	w2-Pa [m/s] 143.82 144.08 144.34 144.62 144.92 145.25 145.58 145.91	u-Pa [m/s] 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08	Alfa2-Šp [*] 90.97 90.71 90.47 90.21 89.94 89.66 89.38 89.13	Beta2-Šp [*] 13.84 13.80 13.76 13.72 13.67 13.63 13.57 13.52	Alfa2-Stř E [°] [89.08 1 88.79 1 88.51 1 88.22 1 87.91 1 87.58 1 87.58 1 87.24 1 86.93 1	Beta2-Stř [*] 14.52 14.52 14.52 14.53 14.53 14.53 14.53 14.53	Alfa2-Pa [[°] [87.37 2 86.70 2 86.35 2 85.98 2 85.98 2 85.59 2 85.19 2 84.81 2	Beta2-Pa [⁷] 15.16 15.20 15.24 15.28 15.33 15.37 15.43 15.43
Datum: 25-201 Reak-Pa [-] 0.45 0.45 0.44 0.44 0.44 0.44 0.43 0.43 0.43 0.42 0.42	Reak-Stř [-] 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	pracova Reak-Šp U [-] 0.54 0.55 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.56	 HC-Pa U, [-] 0.63 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.61 	s //C-Stř [-] 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66	Nr-RL N [-] 98 98 98 98 98 98 98 98 98 98 98	Nr-OL c1- [-] [m, 146 144 146 145 146 145 146 145 146 145 146 145 146 146 146 146 146 146	Šp w1- (s] [m) (75 36. (19 36.) (19 36.) (-Šp u-Š /s] [m, 06 150 09 151 16 152 27 153 42 154 62 155 87 156 87 156 17 157 54 158	p c1-Si s] [m/s .43 151 .23 151 .09 152 .01 153 .06 154 .106 154 .45 156 .80 156	ř w1-S] [m/s] 18 39.03 77 39.03 39 39.03 39 39.03 39.10 15 39.14 15 39.14 21 39.22 39.33 38 39.42	tř u-Stř] [m/s] 3 143.9 3 144.3 3 144.7 5 145.1 0 145.6 5 146.2 4 146.7 2 147.4 2 148.0	c1-Pa [m/s] 0 156.9 0 157.9 3 159.0 9 160.2 8 161.4 2 162.8 9 164.2 1 165.7 8 167.4	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90 2 42.52 7 43.22 1 44.00 4 44.88 7 45.87 3 46.97	u u-Pa [m/s] 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79 3 13.72 3 13.66 3 13.59 3 13.54 3 13.48 3 13.42 3 13.42	Šp Betal- [*] 105.92 106.81 107.78 108.83 109.96 111.18 112.50 113.91 115.44	p Alfa1-S [*] 14.94 14.87 14.81 14.75 14.69 14.64 14.59 14.53 14.48	tř Beta1-3 [*] 86.80 86.48 86.17 85.87 85.57 85.58 85.00 84.72 84.45	Stř Alfa1-P [*] 14.00 13.94 13.88 13.82 13.77 13.72 13.68 13.63 13.59	 Beta1-1 [*] 68.22 66.91 65.57 64.20 62.80 61.38 59.91 58.41 56.88 	 2a c2-Šp [m/s] 36.97 37.10 37.54 37.54 37.54 37.54 37.54 37.54 38.07 38.26 	w2-Šp [m/s] 154.58 155.54 156.57 157.66 158.83 160.08 161.42 162.83 164.33	u-Šp [m/s] 150.72 151.52 152.38 153.30 154.29 155.35 156.50 157.74 159.09	c2-Stř [m/s] 37.37 37.53 37.69 37.87 38.06 38.27 38.49 38.71 38.95	w2-Stř [m/s] 149.25 149.86 150.50 151.18 151.91 152.70 153.53 154.40 155.31	u-Stř [m/s] 143.90 144.30 144.73 145.19 145.68 146.22 146.79 147.41 148.08	c2-Pa [m/s] 37.66 37.83 38.01 38.20 38.40 38.62 38.86 39.11 39.36	w2-Pa [m/s] 143.82 144.08 144.34 144.62 144.92 145.25 145.58 145.58 145.91 146.23	u-Pa [m/s] 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08	Alfa2-Šp [*] 90.97 90.71 90.47 90.21 89.94 89.66 89.38 89.13 88.91	Beta2-Šp [*] 13.84 13.80 13.76 13.72 13.67 13.63 13.57 13.52 13.46	Alfa2-Stř [[°] [89.08 1 88.79 1 88.51 1 88.22 1 87.58 1 87.58 1 87.24 1 86.93 1	Beta2-Stř [°] 14.52 14.52 14.52 14.53 14.53 14.53 14.53 14.54	Alfa2-Pa [[*] [87.37 2 87.03 2 86.70 2 86.35 2 85.59 2 85.59 2 85.59 2 85.59 2 85.19 2 84.81 2	Beta2-Pa [*] 15.16 15.20 15.24 15.23 15.33 15.43 15.48 15.54
Datum: 25-201 Reak-Pa [-] 0.45 0.45 0.44 0.44 0.44 0.44 0.43 0.43 0.43 0.42 0.42 0.42	Reak-Stř [-] 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	pracova Reak-Šp U [-] 0.54 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.57 0.57	H: Kollross (/C-Pa U, [-] 0.63 0.63 0.62 0.62 0.62 0.62 0.61 0.61 0.61 0.61	s I/C-Stř [-] 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.6	Nr-RL N [-] 98 98 98 98 98 98 98 98 98 98 98 98	Nr-OL c1- [-] [m, 146 144 146 145 146 145 146 145 146 145 146 146 146 146 146 146 146 146	Šp w1- (s] [m) (r) 36. (19 36. (19 36. (19 36. (13	Šp u-Š /s] [m, 06 150 09 151 16 152 27 153 42 154 62 155 87 156 17 157 54 158 99 160	p c1-Si s] [m/s .43 151 .23 151 .09 152 .01 153 .06 154 .21 155 .45 156 .80 156 .26 157.1	ř w1-S] [m/s] 18 39.03 17 39.03 39 39.03 34 39.04 35 39.11 15 39.12 21 39.22 38 39.43 30 39.54	tř u-Stř] [m/s] 3 143.3 3 144.3 5 144.7 5 145.1 0 145.6 5 146.2 146.7 2 147.4 2 148.0	c1-Pa [m/s] 0 156.9 0 157.9 3 159.0 9 160.2 8 161.4 2 162.8 9 164.2 1 165.7 8 167.4 1 169.2	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90 2 42.52 7 43.22 1 44.00 4 44.88 7 45.87 3 46.97 2 48.21	u-Pa [m/s] 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0	Alfa1- ["] 3 13.86 3 13.79 3 13.72 3 13.66 3 13.59 3 13.54 8 13.48 3 13.48 3 13.42 3 13.37	Šp Beta1- [*] 105.92 106.81 107.78 108.83 109.96 111.18 112.50 113.91 115.44 117.07	 Alfa1-S [*] 14.94 14.87 14.81 14.75 14.69 14.69 14.59 14.53 14.48 14.44 	tř Beta1-3 [*] 86.80 86.48 86.17 85.87 85.57 85.28 85.00 84.72 84.45 84.18	Stř Alfa1-P [°] 14.00 13.94 13.88 13.82 13.77 13.72 13.63 13.59 13.55	 Beta1-1 [*] 68.22 66.91 65.57 64.20 62.80 61.38 59.91 58.41 56.88 55.31 	 ²a c2-Šp [m/s] 36.97 37.10 37.24 37.39 37.54 37.54 37.71 37.89 38.07 38.26 38.46 	w2-Šp [m/s] 154.58 155.54 156.57 157.66 158.83 160.08 161.42 162.83 164.33 165.95	u-Šp [m/s] 150.72 151.52 152.38 153.30 154.29 155.35 156.50 157.74 159.09 160.55	c2-Stř [m/s] 37.37 37.53 37.69 37.87 38.06 38.27 38.49 38.71 38.95 39.21	w2-Stř [m/s] 149.25 149.86 150.50 151.18 151.91 152.70 153.53 154.40 155.31 156.29	u-Stř [m/s] 143.90 144.30 144.73 145.19 145.68 146.22 146.79 147.41 148.08 148.81	c2-Pa [m/s] 37.66 37.83 38.01 38.20 38.40 38.62 38.86 39.11 39.36 39.64	w2-Pa [m/s] 143.82 144.08 144.34 144.62 144.92 145.25 145.58 145.91 146.23 146.57	u-Pa [m/s] 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08	Alfa2-Šp [*] 90.97 90.71 90.47 90.21 89.94 89.66 89.38 89.13 88.91 88.91 88.68	Beta2-Šp [*] 13.84 13.80 13.76 13.72 13.63 13.57 13.52 13.52 13.46 13.40	Alfa2-Stř [[°] [89.08 1 88.79 1 88.51 1 88.22 1 87.58 1 87.58 1 87.24 1 86.93 1 86.64 1	Beta2-Stř [*] 14.52 14.52 14.52 14.53 14.53 14.53 14.53 14.54 14.54 14.54	Alfa2-Pa [[°] [87.37 2 87.03 2 86.70 2 86.35 2 85.59 2 85.59 2 85.19 2 84.81 2 84.81 2 84.45 2	3eta2-Pa [*] 15.16 15.20 15.24 15.28 15.33 15.37 15.43 15.43 15.43 15.43 15.43 15.43 15.43 15.43 15.43 15.43 15.43 15.43 15.43 15.44 15.24 15.45 1
Datum: 25-201 Reak-Pa [-] 0.45 0.45 0.44 0.44 0.44 0.44 0.43 0.43 0.42 0.42 0.42 0.41 0.40	Reak-Stř [-] 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	pracova Reak-Šp U [-] 0.54 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.57 0.57 0.57	HC-Pa U, [-] 0.63 0.62 0.62 0.62 0.62 0.61 0.61 0.61 0.61 0.61 0.60	s I/C-Stř [-] 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.6	Nr-RL N [-] 98 98 98 98 98 98 98 98 98 98 98 98 98	Nr-OL c1 [-] [m, 146 144 146 145 146 145 146 145 146 145 146 146 146 146 146 146 146 146	Šp w1- (s] [m/ .75 36.6 .19 36. .19 36. .142 36. .13 36. .13 36. .38 37. .38 37. .92 37. .20 38.	Šp u-Š /s] [m, 06 150 09 151 16 152 27 153 42 154 62 155 87 156 17 157 54 158 99 160 51 161	p c1-Si s] [m/s .43 151.1 .23 151.1 .09 152.3 .01 153.3 .06 154.4 .21 155 .45 156.6 .80 156.1 .26 157.4	ř w1-S] [m/s] 88 39.03 77 39.03 39 39.03 14 39.04 15 39.16 21 39.22 23.93 33.4 38 39.44 300 39.54 79 39.66	tř u-Stř] [m/s] 3 143.3 3 144.3 3 144.7 5 145.1 0 145.6 5 146.2 4 146.7 2 148.8 5 149.6	c1-Pa [m/s] 0 156.9 3 159.0 9 160.2 8 161.4 2 162.8 9 164.2 1 165.7 8 167.4 1 169.2 1 171.1	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90 2 42.52 7 43.22 1 44.00 4 44.88 7 45.87 3 46.97 2 48.21 7 49.59	u-Pa [m/s] 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79 3 13.72 3 13.66 3 13.59 3 13.54 3 13.42 3 13.42 3 13.37 3 13.31 3 13.25	Šp Beta1- [*] 105.92 106.81 107.78 108.83 109.96 111.18 112.50 113.91 115.44 117.07 118.83	 5p Alfa1-S [°] 14.94 14.87 14.81 14.75 14.69 14.69 14.53 14.48 14.48 14.38 	tř Beta1-3 [*] 86.80 86.48 86.17 85.87 85.57 85.28 85.00 84.72 84.45 84.18 83.91	Stř Alfa1-P [°] 14.00 13.94 13.88 13.82 13.77 13.72 13.68 13.63 13.59 13.55 13.50	 Beta1-1 [*] 68.22 66.91 65.57 64.20 61.38 59.91 58.41 56.88 55.31 53.69 	 2a c2-Šp [m/s] 36.97 37.10 37.24 37.39 37.54 37.71 37.89 38.07 38.26 38.46 38.65 	w2-Šp [m/s] 154.58 155.54 156.57 157.66 158.83 160.08 161.42 162.83 164.33 165.95 167.62	u-Šp [m/s] 150.72 151.52 152.38 153.30 154.29 155.35 156.35 156.74 159.09 160.55 162.14	c2-Stř [m/s] 37.37 37.53 37.69 37.87 38.06 38.27 38.06 38.27 38.95 38.71 38.95 39.21 39.47	w2-Stř [m/s] 149.25 149.86 150.50 151.18 151.91 152.70 153.53 154.40 155.31 156.29 157.27	u-Stř [m/s] 143.90 144.30 144.73 145.19 145.68 146.22 146.79 147.41 148.08 148.81 149.61	c2-Pa [m/s] 37.66 37.83 38.01 38.20 38.40 38.62 38.86 39.11 39.36 39.64 39.90	w2-Pa [m/s] 143.82 144.08 144.34 144.62 144.92 145.25 145.58 145.91 146.23 146.57 146.84	u-Pa [m/s] 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08	Alfa2-Šp [*] 90.97 90.71 90.47 90.21 89.94 89.66 89.38 89.13 88.91 88.91 88.68 88.56	Beta2-Šp [*] 13.84 13.80 13.76 13.72 13.67 13.63 13.57 13.52 13.46 13.40 13.33	Alfa2-Stř [[*] [89.08 1 88.79 1 88.51 1 88.22 1 87.58 1 87.24 1 86.93 1 86.64 1 86.64 1 86.34 1	Beta2-Stř (°) 14.52 14.52 14.52 14.53 14.53 14.53 14.53 14.54 14.54 14.54 14.54 14.55	Alfa2-Pa [[*] [87.37 2 86.70 2 86.35 2 85.59 2 85.59 2 85.19 2 84.81 2 84.41 2 84.45 2 84.41 2 84.41 2	3eta2-Pa [*] 15.16 15.20 15.24 15.28 15.33 15.37 15.43 15.43 15.43 15.54 15.54 15.54 15.54
Datum: 25-201 [-] 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.43 0.42 0.42 0.42 0.41 0.40 0.40	Reak-Stř [-] 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	pracova Reak-Šp U [-] 0.54 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.56 0.57 0.57 0.57 0.58	 HC-Pa U, [-] 0.63 0.62 0.62 0.62 0.62 0.61 0.61 0.61 0.60 0.60 	s I/C-Stř [-] 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.6	Nr-RL N [-] 98 98 98 98 98 98 98 98 98 98 98 98 98	Nr-OL c1 [-] [m, 146 144 146 145 146 145 146 145 146 145 146 146 146 146 146 146 146 146 146 147 146 147	Šp w1- /s] [m/ .75 36. .19 36. .19 36. .42 36. .42 36. .13 37. .13 36. .13 37. .13 37. .13 37. .13 37. .13 37. .13 37. .13 37. .14 37. .15	Šp u-Š /s] [m, 06 150 09 151 16 152 27 153 42 154 62 155 87 156 17 157 54 158 99 160 51 161 14 163	p c1-Si s] [m/s .43 151.1 .23 151.1 .09 152.3 .01 153.0 .00 153.3 .06 154.4 .21 155. .45 156.6 .80 156.6 .80 156.5 .26 157.4 .85 158.3 .58 159.4	ř w1-S] [m/s] 18 39.03 17 39.03 39 39.03 14 39.04 15 39.11 121 39.22 22 39.33 38 39.44 300 39.54 79 39.66 35 39.82	tř u-Stř] [m/s] 3 143.3 3 144.3 3 144.7 5 145.1 0 145.6 5 146.2 4 146.7 4 146.7 2 148.8 5 149.6 2 150.4	c1-Pa [m/s] 0 156.9 3 159.0 9 160.2 8 161.4 2 162.8 9 164.2 1 165.7 8 167.4 1 169.2 1 171.1 7 173.2	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90 2 42.52 7 43.22 1 44.00 4 44.88 7 45.87 3 46.97 2 48.21 7 49.59 8 51.14	u-Pa [m/s] 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79 3 13.72 3 13.66 3 13.59 3 13.54 3 13.48 3 13.48 3 13.42 3 13.37 3 13.31 3 13.25 3 13.19	Šp Beta1- [*] 105.92 106.81 107.78 108.83 109.96 111.18 112.50 113.91 115.44 117.07 118.83 120.67	 5p Alfa1-S [°] 14.94 14.87 14.81 14.75 14.69 14.64 14.59 14.48 14.44 14.38 14.33 	tř Beta1-3 [*] 86.80 86.48 86.17 85.87 85.57 85.28 85.00 84.72 84.45 84.18 83.91 83.66	Stř Alfa1-P [°] 14.00 13.94 13.88 13.82 13.77 13.72 13.63 13.59 13.55 13.50 13.46	 Beta1-1 [*] 68.22 66.91 65.57 64.20 61.38 59.91 58.41 58.85 55.31 53.69 52.06 	 2a c2-Šp [m/s] 36.97 37.10 37.24 37.39 37.54 37.71 37.89 38.06 38.46 38.65 38.87 	w2-Šp [m/s] 154.58 155.54 156.57 157.66 158.83 160.08 161.42 162.83 164.33 165.95 167.62 169.50	u-Šp [m/s] 150.72 151.52 152.38 153.30 154.29 155.35 156.53 156.74 159.09 160.55 162.14 163.87	c2-Stř [m/s] 37.37 37.53 37.69 37.87 38.06 38.27 38.06 38.27 38.47 38.95 39.21 39.47 39.76	w2-Stř [m/s] 149.25 149.86 150.50 151.18 151.91 152.70 153.31 154.40 155.31 156.29 157.27 158.38	u-Stř [m/s] 143.90 144.30 144.73 145.19 145.68 146.22 146.79 147.41 148.08 148.81 149.61 150.47	c2-Pa [m/s] 37.66 37.83 38.01 38.20 38.40 38.62 38.86 39.11 39.36 39.36 39.90 40.21	w2-Pa [m/s] 143.82 144.08 144.34 144.62 144.92 145.25 145.58 145.91 146.23 146.57 146.84 147.20	u-Pa [m/s] 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08	Alfa2-Šp [*] 90.97 90.71 90.47 90.21 89.94 89.63 89.13 88.91 88.68 88.56 88.56 88.36	Beta2-Šp [°] 13.84 13.80 13.76 13.72 13.67 13.63 13.57 13.52 13.46 13.40 13.33 13.25	Alfa2-Stř [[°] [89.08 1 88.79 1 88.51 1 88.22 1 87.58 1 87.24 1 86.93 1 86.64 1 86.34 1 86.34 1 86.15 1	Beta2-Stř [*] 14.52 14.52 14.52 14.53 14.53 14.53 14.54 14.54 14.54 14.54 14.55 14.55	Alfa2-Pa [["] [87.37 2 86.70 2 86.35 2 85.59 2 85.59 2 84.81 2 84.81 2 84.45 2 84.45 2 84.45 2 84.81 2 84.81 2 84.81 2	3eta2-Pa [*] 15.16 15.20 15.24 15.33 15.37 15.43 15.43 15.54 15.54 15.54 15.60 .5.67 .5.75
Datum: 25-201 Reak-Pa [-] 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.43 0.43 0.42 0.42 0.42 0.41 0.40 0.40 0.39	Reak-Stř [-] 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	pracova Reak-Šp U [-] 0.54 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.57 0.57 0.57 0.57 0.58 0.58 0.58	al: Kollross //C-Pa U, [-] 0.63 0.63 0.62 0.62 0.62 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.63	s //C-Stř [-] 0.66 0	Nr-RL N [-] 98 98 98 98 98 98 98 98 98 98 98 98 98	Nr-OL c1 [-] [m, 146 144 146 145 146 145 146 145 146 145 146 146 146 146 146 146 146 147 146 147 146 147	Šp w1- /s] [m/, /s] 36. 197 36. 199 36. 199 36. 199 36. 109 36. 103 36. 133 37. 135	Šp u-Š /s] [m, 06 1550 27 153 42 154 62 155 87 156 17 157 54 158 99 160 51 161 14 163 90 165	p c1-Si s] [m/s .43 151.1 .23 151.2 .09 152.3 .00 153.3 .00 153.3 .00 154.4 .21 155.4 .45 156.4 .80 156.4 .80 156.4 .85 158.3 .58 159.4 .47 160.9	ř w1-5] [m/s] 88 39.00 77 39.00 39 39.00 74 39.00 72 39.10 72 39.11 73 39.20 72 39.31 83 39.42 83 39.42 83 39.42 83 39.42 83 39.42 83 39.42 83 39.42 83 39.42 83 39.66 85 39.82 99 40.00	tř u-Stř [[m/s] 3 144.3 3 144.7 5 145.1 0 145.6 5 146.2 4 146.7 2 147.4 2 147.4 5 148.6 4 148.6 5 149.6 2 150.4 0 151.4	c1-Pa [m/s] 0 156.9 9 160.2 8 161.4 2 162.8 9 164.2 1 165.7 8 167.4 1 169.2 1 171.1 7 173.2 2 175.5	w1-Pa [m/s] 1 40.88 5 41.36 5 41.90 2 42.52 7 43.22 1 44.00 4 44.88 7 45.87 3 46.97 2 48.21 7 49.59 8 51.14 9 52.90	u-Pa [m/s] 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0 137.0	Alfa1- [°] 3 13.86 3 13.79 3 13.72 3 13.66 3 13.59 3 13.54 3 13.48 3 13.42 3 13.31 3 13.25 3 13.19 3 13.14	 Šp Beta1- [*] 105.92 106.81 107.78 108.83 109.96 111.18 112.50 113.44 117.07 118.83 120.67 122.61 	 5p Alfa1-S [°] 14.94 14.87 14.81 14.75 14.69 14.64 14.59 14.43 14.44 14.38 14.33 14.29 	tř Beta1-1 [*] 86.80 86.48 86.17 85.87 85.28 85.00 84.72 84.45 84.18 83.91 83.66 83.41	Stř Alfa1-P [°] 14.00 13.94 13.88 13.82 13.77 13.72 13.68 13.63 13.59 13.55 13.50 13.46 13.42	Pa Beta1- [*] 68.22 66.91 65.57 64.20 61.38 59.91 58.41 58.41 53.69 52.06 50.41	 2a c2-Šp [m/s] 36.97 37.10 37.24 37.39 37.54 37.71 37.89 38.06 38.46 38.465 38.87 39.11 	w2-Šp [m/s] 154.58 155.54 156.57 157.66 158.83 160.08 161.42 162.83 164.33 165.95 167.62 169.50 171.53	u-Šp [m/s] 150.72 151.52 152.38 153.30 154.29 155.35 156.50 157.74 159.09 160.55 162.14 163.87 165.76	c2-Stř [m/s] 37.37 37.53 37.69 37.87 38.06 38.27 38.49 38.71 38.95 39.21 39.47 39.76 40.08	w2-Stř [m/s] 149.25 149.86 150.50 151.18 151.91 152.70 153.31 154.00 155.31 156.29 157.27 158.38 159.60	u-Stř [m/s] 143.90 144.30 144.73 145.19 145.68 146.22 146.79 147.41 148.08 148.81 149.61 150.47 151.42	c2-Pa [m/s] 37.66 37.83 38.01 38.20 38.40 38.62 38.86 39.11 39.36 39.36 39.90 40.21 40.55	w2-Pa [m/s] 143.82 144.08 144.34 144.62 144.92 145.25 145.58 145.58 145.91 146.23 146.57 146.84 147.20 147.59	u-Pa [m/s] 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08 137.08	Alfa2-Šp [*] 90.97 90.71 90.47 90.21 89.94 89.63 89.13 88.91 88.68 88.56 88.56 88.36 88.36	Beta2-Šp [°] 13.84 13.80 13.76 13.72 13.67 13.67 13.55 13.55 13.46 13.40 13.33 13.25 13.17	Alfa2-Stř [[°] [89.08 1 88.79 1 88.51 1 87.24 1 86.93 1 86.64 1 86.34 1 86.34 1 86.15 1 85.87 1	Beta2-Stř [*] 14.52 14.52 14.52 14.53 14.53 14.53 14.54 14.54 14.54 14.55 14.56 14.56	Alfa2-Pa [[*] [87.37 2 86.70 2 86.35 2 85.59 2 85.59 2 84.81 2 84.45 2 83.44 2 83.44 2	3eta2-Pa [*] 15.16 15.20 15.24 15.28 15.33 15.33 15.33 15.43 15.54 15.54 15.50 15.67 15.67 15.75 15.83

••• Eta-TS Eta-TT Eta-danoRL Eta-danoOL Soder-RL Soder-OL Traup-RL Traup-OL rPRIM-KsiRL TrPRIM-KsiOL TrSEC-KsiRL TrSEC-KsiOL Vykon Fax L-OL RoztOL RoztRL Mac Maw Fu m-RL m-OL ucp-RL ucp-OL Otvor L-RL. [kg/s] [kg/s] [kg/s] [kg/s] [kg/s] [mm] [mm] [mm] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-] [kW] [N] [N] 40.44 39.79 1.38 2.3 0.00 23.18 23.68 10.26 15.40 0.24 0.23 0.8570 0.8820 0.9290 0.9140 0.9483 0.9326 0.9343 0.9013 0.057 0.074 0.013 0.036 839.75 13003.32 6134.3 40.51 39.90 1.31 1.92 0.00 24.57 25.7 10.26 15.40 0.24 0.24 0.8595 0.8847 0.9300 0.9150 0.9485 0.9339 0.9347 0.9030 0.057 0.074 0.013 0.034 849.04 13054.96 6167. 40.59 40.00 1.23 1.82 0.00 26.6 26.56 10.26 15.40 0.24 0.24 0.8620 0.8873 0.9310 0.9160 0.9487 0.9352 0.9353 0.9046 0.058 0.074 0.012 0.032 858.61 13108.49 6202. 40.66 40.10 1.16 1.72 0.00 27.66 28.16 10.26 15.40 0.24 0.24 0.8644 0.8899 0.9320 0.9170 0.9488 0.9364 0.9165 0.9061 0.058 0.074 0.033 0.030 868.56 13163.30 6238. 40.73 40.20 1.9 1.62 0.00 29.38 29.88 10.26 15.40 0.24 0.8669 0.8926 0.9330 0.9180 0.9489 0.9375 0.9180 0.9075 0.058 0.074 0.031 0.028 878.98 13219.00 6277. 0.25 13276.00 6317.3 40.79 40.29 1.3 1.53 0.00 31.23 31.73 10.26 15.40 0.25 0.25 0.8695 0.8953 0.9340 0.9190 0.9489 0.9385 0.9194 0.9089 0.058 0.074 0.029 0.027 889.90 40.86 40.38 0.96 1.44 0.00 33.22 33.72 10.26 15.40 0.25 0.25 0.8720 0.8980 0.9350 0.9200 0.9489 0.9395 0.9207 0.9102 0.058 0.074 0.028 0.025 901.34 13335.79 6359. 40.92 40.47 0.90 1.35 0.00 35.38 35.88 10.26 15.40 0.26 0.25 0.8744 0.9006 0.9360 0.9210 0.9489 0.9404 0.9220 0.9115 0.059 0.074 0.026 0.023 913.27 13400.53 6403.0 925.76 13470.91 6448. 40.97 40.55 0.85 1.27 0.00 37.71 38.21 10.26 15.40 0.26 0.26 0.8768 0.9031 0.9370 0.9220 0.9489 0.9413 0.9233 0.9127 0.059 0.074 0.024 0.022 1.19 0.00 939.01 13545.14 6495.9 41 03 40 63 0 79 40.25 40 75 10 26 15.40 0.26 0.26 0 8791 0 9056 0 9380 0 9230 0 9488 0 9421 0 9244 0 9138 0.059 0 074 0.023 0.021 41.08 40.70 0.74 1.12 0.00 43.02 43.52 10.26 15.40 0.27 0.27 0.8810 0.9076 0.9390 0.9240 0.9487 0.9428 0.9255 0.9149 0.059 0.074 0.021 0.019 952.72 13632.99 6543. 41.13 40.77 1.5 0.00 46.02 15.40 0.27 0.8832 0.9100 0.9250 0.9486 0.9435 0.9266 0.9160 0.074 967.73 13720.06 6596. 0.69 46.52 10.26 0.27 0.9400 0.059 0.020 0.018 41.18 40.84 0.64 0.98 0.00 49.29 49.79 10.27 15.40 0.28 0.28 0.8855 0.9125 0.9410 0.9260 0.9484 0.9441 0.9276 0.9170 0.060 0.074 0.018 0.017 983.90 13812.16 6654. 15.40 0.28 1001.28 13913.23 6715.3 41.23 40.90 0.59 0.92 0.00 52.88 53.38 10.69 0.28 0.8878 0.9149 0.9420 0.9270 0.9479 0.9444 0.9286 0.9197 0.060 0.072 0.017 0.016

$\bullet \bullet \bullet$

...

	Prace	DpR	DpO	DpUCPol	DpUCPr	šíř-mříž	tětivaOL	tětivaRL
	[1]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
.34	21.11	476.00	476.00	451.00	505.68	17.64	18.00	20.00
.96	21.28	476.00	476.00	451.00	507.07	17.64	18.00	20.00
.61	21.46	476.00	476.00	451.00	508.56	17.64	18.00	20.00
.83	21.66	476.00	476.00	451.00	510.16	17.64	18.00	20.00
.04	21.87	476.00	476.00	451.00	511.88	17.64	18.00	20.00
.36	22.9	476.00	476.00	451.00	513.73	17.64	18.00	20.00
.50	22.32	476.00	476.00	451.00	515.72	17.64	18.00	20.00
.07	22.57	476.00	476.00	451.00	517.88	17.64	18.00	20.00
.13	22.83	476.00	476.00	451.00	520.21	17.64	18.00	20.00
.91	23.11	476.00	476.00	451.00	522.75	17.64	18.00	20.00
.63	23.41	476.00	476.00	451.00	525.52	17.64	18.00	20.00
.93	23.74	476.00	476.00	451.00	528.52	17.64	18.00	20.00
.27	24.9	476.00	476.00	451.00	531.79	17.67	18.3	20.00
.24	24.48	476.00	476.00	451.00	535.38	18.39	18.76	20.00

Příloha č. 19 – namodelovaná průtočná část z programu DPSW

Příloha č. 20 – řez jednotělesovou turbínou bez přihřívání (Växjo)