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Abstrakt

Popis tíhového pole Země a jeho ekvipotenciální plochy zvané geoid je jedním ze základ-

ních úkolů geodézie. Předkládaná disertační práce se zabývá určením lokálního modelu

geoidu z leteckých tíhových dat z oblasti Taiwanu.

V teoretické části disertační práce je popsána teorie tíhového pole Země včetně určení

geoidu z měřených tíhových dat a popisu již existujících lokálních modelů geoidu v oblasti

Taiwanu. Dále je popsána stručná historie letecké gravimetrie, významné letecké gravi-

tační kampaně z posledních let a základní principy leteckých gravitačních měření.

Pro určení lokálního modelu geoidu byla použita data ze třech leteckých gravitačních

kampaní realizovaných v oblasti Taiwanu. Kvůli frekvenčnímu rozsahu dostupných letec-

kých gravitačních dat a jejich lokálnímu charakteru byla při zpracování těchto dat použita

metoda zvaná “remove-compute-restore”. Okrajová úloha pro určení frekvenčně limito-

vaného poruchového tíhového potenciálu z frekvenčně limitovaných leteckých tíhových

poruch byla formulována ve sférické aproximaci. Pro výpočet frekvenčně limitovaného

poruchového tíhového potenciálu byly použity dva přístupy, při jejichž numerické reali-

zaci jsme využili různé numerické metody. Jedná se o “jednokrokový postup” s numeric-

kou integrací realizovanou pomocí Newton-Cotesových vzorců a s vlnkovou transformací

a o dvoukrokový postup. Tyto metody byly vybrány ze dvou důvodů. Prvním cílem bylo

porovnání dvou vybraných známých postupů, které se využívají v letecké gravimetrii,

a určení vhodnějšího postupu pro zpracování lokalních leteckých dat v oblasti Taiwanu.

Druhým cílem bylo testování nové numerické metody, 4D vlnkové transformace, na jejímž

vývoji se autorka disertační práce podílela. Kvůli požadavku na harmoničnost frekvenčně

limitovaného tíhového potenciálu byl při zpracování leteckých gravitačních dat uvažován

také vliv topografie na měřená data.
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V numerické části disertační práce byla nejdříve určena přesnost použitých numeric-

kých metod (Newton-Cotesovy vzorce pro numerickou integraci, 4D vlnková transfor-

mace a Taylorova řada) pomocí syntetických tíhových dat. Poté byly pomocí “jednokro-

kového postupu” a dvoukrokového postupu vypočteny z dostupných leteckých gravitač-

ních dat lokální modely geoidu v oblasti Taiwanu. Přesnost vypočtených modelů geoidu

byla odhadnuta pomocí GNSS/nivelačních bodů a následně porovnána s přesností modelu

geoidu určeného pouze z globálního gravitačního modelu.

Pro výpočet lokálního modelu geoidu byly v disertační práci použity tři metody.

Výsledky zpracování všech dostupných leteckých tíhových dat ukazují, že nejpřesnější

model geoidu byl určen “jednokrokovým postupem” s numerickou integrací realizovanou

pomocí Newton-Cotesových vzorců. Zlepšení modelu geoidu spočteného pouze z EGM08

bylo na úrovni milimetrů. Vysoká přesnost EGM08 se nicméně vztahuje spíše k nížinným

oblastem, jelikož GNSS/nivelační body se nachází především podél cest v pobřežních

nížinách. V oblasti vysokých pohoří, kde je nedostatek pozemních dat, předpokládáme

při použití leteckých tíhových dat výraznější zlepšení modelu určeného pouze z EGM08.

Přesnost našeho řešení je také nižší než přesnosti lokálního modelů geoidu v jiných geo-

grafických oblastech. Porovnávané modely se však liší např. metodami zpracování nebo

použitými tíhovými daty (letecká, pozemní, . . . ). Lze předpokládat, že použití dalších

lokálních tíhových dat nebo vytvoření hybridního modelu geoidu by zvýšilo přesnost

našeho modelu geoidu na srovnatelnou úroveň.
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Abstract

Description of the Earth’s gravity field and one of its equipotential surfaces called geoid

is one of the basic tasks of geodesy. In this thesis, the determination of the local geoid

model from aerial gravity data in the area of Taiwan is discussed.

In the theoretical part of the thesis the theory of the Earth gravity field is presented,

including a determination of the geoid from measured gravity data. The available local

geoid models of Taiwan are also introduced. Then, a historical overview including the

recent major aerial gravitational surveys is described as well as the basic principles of

aerial gravitational measurements.

Aerial gravitational data from three aerial gravitational surveys performed in the area

of Taiwan were processed in order to determine the local geoid model. The limited fre-

quency range of available aerial gravitational data and their geographic restriction lead to

using the “remove-compute-restore” concept. The boundary-value problem for determi-

nation of the band-limited disturbing gravity potential from the band-limited aerial grav-

ity disturbances is formulated in the spherical approximation. The two approaches with

different numerical methods are used for the evaluation of the band-limited disturbing

gravity potential: “one-step approach” with both Newton-Cotes formulas for numerical

integration and wavelet transform, and two-step approach. These methods were chosen

for two reasons: to compare the two selected known approaches used in aerial gravimetry

and to determine the more convenient approach for processing the aerial gravity data in

the area of Taiwan; to test the new numerical method, 4D wavelet transform. The author

of the thesis took part in development of this numerical method. Since the band-limited

disturbing gravity potential is assumed to be harmonic outside the geoid, the gravitational

effect of topography on measured aerial gravitational data (the second Helmert method of
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gravity reduction) is taken into account.

In the numerical part of the thesis different numerical methods, the Newton-Cotes

formulas for numerical integration, 4D wavelet transform and the Taylor series, are tested

first using synthetic gravity data. Then, “one-step approach” and two-step approach are

applied on available aerial gravitational data in order to determine the local geoid model

of Taiwan. The accuracies of evaluated local geoid models are determined by comparing

them with the GNSS/levelling points and subsequently compared with the accuracy of the

EGM08-only geoid model.

The three methods for computation of the local geoid model in the area of Taiwan were

compared in the thesis. Results based on the available aerial gravitational data show that

the “one-step approach” computed using Newton-Cotes formulas for numerical integra-

tion with the topographical effects evaluated by the integration is the optimal method pro-

viding the most accurate local geoid model of Taiwan. The improvement of EGM08-only

geoid is just at the level of millimetres. Nevertheless, the very high accuracy of EGM08

relates rather to the lowlands than to the entire island, because the GNSS/levelling points

are located mostly along routes within coastal lowlands. The improvement of EGM08

could be more significant in the mountainous areas of Taiwan because the lack of avail-

able terrestrial gravity data in these areas. The accuracy of our solution is lower than the

accuracy of the local geoid models from the other areas. However, these models differ,

e.g., in processing methods or the used gravity data (aerial, terrestrial, . . . ). It can be

assumed that using the other local gravity data in the area of Taiwan or creating a hybrid

geoid model could lead to the local geoid model with the comparable accuracy.

viii



Contents

Abstrakt v

Abstract vii

List of figures xii

List of tables xvii

Nomenclature xviii

Introduction 1
0.1 Aerial gravimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Earth’s gravity field 6
1.1 Introduction to the potential theory . . . . . . . . . . . . . . . . . . . . . 8

1.2 Normal gravity field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Disturbing gravity field . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Gravity disturbance and gravity anomaly . . . . . . . . . . . . . 13

1.3.2 Other definitions of telluroid . . . . . . . . . . . . . . . . . . . . 17

1.4 Geoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Low-frequency component of the geoid . . . . . . . . . . . . . . 20

1.4.2 Global gravitational model . . . . . . . . . . . . . . . . . . . . . 22

1.4.3 High-frequency component of the geoid . . . . . . . . . . . . . . 23

1.4.4 Local geoid models of Taiwan . . . . . . . . . . . . . . . . . . . 26

ix



2 Aerial gravimetry 27
2.1 Historical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The principle of aerial gravimetry . . . . . . . . . . . . . . . . . . . . . 29

3 Aerial data of Taiwan 31
3.1 Taiwan Island Survey 2004-2005 . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Kuroshio Current Survey 2006-2008 . . . . . . . . . . . . . . . . . . . . 32

3.3 Taiwan Strait Survey 2008-2009 . . . . . . . . . . . . . . . . . . . . . . 33

4 Processing of aerial gravity data 35
4.1 Formulation of BVPs for aerial gravity . . . . . . . . . . . . . . . . . . . 35

4.1.1 Methods of transformation of δg(R +D) to T (R) . . . . . . . . 41

4.2 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Introduction to wavelet transform in geodesy . . . . . . . . . . . 44

4.3.2 Wavelet decomposition and reconstruction in 1D . . . . . . . . . 46

4.3.3 N-dimensional wavelet analysis . . . . . . . . . . . . . . . . . . 51

4.3.4 Computation of the local geoid model using 4D wavelet transform 54

4.4 Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Topographical effects on observed gravity . . . . . . . . . . . . . . . . . 56

4.5.1 Direct topographical effect on gravity . . . . . . . . . . . . . . . 58

4.5.2 Indirect topographical effect on potential . . . . . . . . . . . . . 60

5 Testing numerical methods using synthetic gravity data 62

6 Application to aerial data of Taiwan – numerical results 68
6.1 Remove step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Computation step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Restore step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Comparison with GNSS/levelling points . . . . . . . . . . . . . . . . . . 76

6.5 Accuracy of numerical results . . . . . . . . . . . . . . . . . . . . . . . 78

x



7 Conclusions and recommendations 83
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 91

List of Publications 109

A Geocentric coordinate system 110

B Coordinates 111
B.1 Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.2 Spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.3 Gauss ellipsoidal coordinates (geodetic coordinates) . . . . . . . . . . . . 112

B.4 Astronomical (natural) coordinates . . . . . . . . . . . . . . . . . . . . . 114

C Mathematical operators 115
C.1 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C.2 Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.3 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.4 Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

D Numerical results – synthetic gravity data 117

E Numerical results – aerial gravity data 122
E.1 Remove step – test area . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E.2 Remove step – all available gravity data . . . . . . . . . . . . . . . . . . 128

E.3 Restore step – test area . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

E.4 Restore step – all available gravity data . . . . . . . . . . . . . . . . . . 160

E.5 Comparison with GNSS/levelling points – test area . . . . . . . . . . . . 172

E.6 Comparison with GNSS/levelling points – all available gravity data . . . 178

E.7 Comparison with GNSS/levelling points – GGMs only . . . . . . . . . . 183

xi



List of figures

1.1 Gravity vector g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Definition of heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Telluroid Σ as an approximation to the Earth’s surface S . . . . . . . . . 17

3.1 Aerial gravity data – Taiwan Island Survey . . . . . . . . . . . . . . . . . 33

3.2 Aerial gravity data – Taiwan Strait and Kuroshio Current Surveys . . . . 34

4.1 Band-limited integration kernel Ib – dependence on degree n . . . . . . . 39

4.2 Band-limited integration kernel Ib – dependence on spherical distance ψ . 40

4.3 Multi-resolution analysis (MRA) of L2(R) . . . . . . . . . . . . . . . . . 46

4.4 Scheme of the Mallat algorithm . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Scheme of the inverse Mallat algorithm . . . . . . . . . . . . . . . . . . 51

4.6 Schemes of the n-dimensional Mallat (left) and inverse Mallat (right) al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Daubechies wavelet ψ (D4) . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Scheme of testing using synthetic gravity . . . . . . . . . . . . . . . . . 64

5.2 Random noise ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Diagram of the evaluation of geoidal heights from gravity disturbances . . 69

6.2 Aerial gravity data – test area . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Distribution of GNSS/levelling points in Taiwan . . . . . . . . . . . . . . 77

B.1 Cartesian coordinates x, y and z . . . . . . . . . . . . . . . . . . . . . . 112

B.2 Spherical coordinates r, θ and λ . . . . . . . . . . . . . . . . . . . . . . 113

xii



D.1 Histograms of the geoid noise εN for NC, ε = 0 mGal . . . . . . . . . . . 118

D.2 Histograms of the geoid noise εN for NC, ε = 3 mGal . . . . . . . . . . . 119

D.3 Histograms of the geoid noise εN for WT, ε = 0 mGal . . . . . . . . . . . 120

D.4 Histograms of the geoid noise εN for WT, ε = 3 mGal . . . . . . . . . . . 121

E.1 Test area (H1 = 5156 m), remove step – GOCO03s to degree and order

n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E.2 Test area (H1 = 5156 m), remove step – EGM08 to degree and order

n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

E.3 Test area (H1 = 5156 m), remove step – EGM08 to degree and order

n = m = 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

E.4 Test area (H1 = 5156 m), remove step – EGM08 to degree and order

n = m = 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

E.5 Test area (H1 = 5156 m), remove step – EGM08 to degree and order

n = m = 2160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

E.6 Central area (H1 = 5156 m), remove step – GOCO03s to degree and

order n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

E.7 Central area (H1 = 5156 m), remove step – EGM08 to degree and order

n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

E.8 Central area (H1 = 5156 m), remove step – EGM08 to degree and order

n = m = 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.9 Central area (H1 = 5156 m), remove step – EGM08 to degree and order

n = m = 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

E.10 Central area (H1 = 5156 m), remove step – EGM08 to degree and order

n = m = 2160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

E.11 Western and eastern area (H2 = 1620 m), remove step – GOCO03s to

degree and order n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . 135

E.12 Western and eastern area (H2 = 1620 m), remove step – EGM08 to degree

and order n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

E.13 Western and eastern area (H2 = 1620 m), remove step – EGM08 to degree

and order n = m = 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



E.14 Western and eastern area (H2 = 1620 m), remove step – EGM08 to degree

and order n = m = 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . 138

E.15 Western and eastern area (H2 = 1620 m), remove step – EGM08 to degree

and order n = m = 2160 . . . . . . . . . . . . . . . . . . . . . . . . . . 139

E.16 Test area, restore step (N-NC, I) – GOCO03s to degree and order n =

m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

E.17 Test area, restore step (N-NC, FS) – GOCO03s to degree and order n =

m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

E.18 Test area, restore step (N-NC, I) – EGM08 to degree and order n =

m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

E.19 Test area, restore step (N-NC, FS) – EGM08 to degree and order n =

m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

E.20 Test area, restore step (N-NC, I) – EGM08 to degree and order n =

m = 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

E.21 Test area, restore step (N-NC, FS) – EGM08 to degree and order n =

m = 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

E.22 Test area, restore step (N-NC, I) – EGM08 to degree and order n = m =

1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

E.23 Test area, restore step (N-NC, FS) – EGM08 to degree and order n =

m = 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

E.24 Test area, restore step (N-NC, I) – EGM08 to degree and order n = m =

2160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

E.25 Test area, restore step (N-WT, AC+H) – GOCO03s to degree and order

n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

E.26 Test area, restore step (N-WT, AC+H) – EGM08 to degree and order n =

m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

E.27 Test area, restore step (N-WT, AC+H) – EGM08 to degree and order n =

m = 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

E.28 Test area, restore step (N-WT, AC+H) – EGM08 to degree and order n =

m = 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xiv



E.29 Test area, restore step (N-WT, AC+H) – EGM08 to degree and order n =

m = 2160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

E.30 All available data, restore step (N-NC) – GOCO03s to degree and order

n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

E.31 All available data, restore step (N-WT, AC+H) – GOCO03s to degree and

order n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

E.32 All available data, restore step (N-NC) – EGM08 to degree and order

n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

E.33 All available data, restore step (N-WT, AC+H) – EGM08 to degree and

order n = m = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

E.34 All available data, restore step (N-NC) – EGM08 to degree and order

n = m = 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

E.35 All available data, restore step (N-WT, AC+H) – EGM08 to degree and

order n = m = 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

E.36 All available data, restore step (N-NC) – EGM08 to degree and order

n = m = 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

E.37 All available data, restore step (N-WT, AC+H) – EGM08 to degree and

order n = m = 1080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

E.38 All available data, restore step (N-NC) – EGM08 to degree and order

n = m = 2160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

E.39 All available data, restore step (N-WT, AC+H) – EGM08 to degree and

order n = m = 2160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

E.40 Histograms of the differences – test area (GOCO03s to n = m = 200) . . 173

E.41 Histograms of the differences – test area (EGM08 to n = m = 200) . . . 174

E.42 Histograms of the differences – test area (EGM08 to n = m = 360) . . . 175

E.43 Histograms of the differences – test area (EGM08 to n = m = 1080) . . . 176

E.44 Histograms of the differences – test area (EGM08 to n = m = 2160) . . . 177

E.45 Histograms of the differences – all available gravity data (GOCO03s to

n = m = 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

E.46 Histograms of the differences – all available gravity data (EGM08 to n =

m = 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

xv



E.47 Histograms of the differences – all available gravity data (EGM08 to n =

m = 360) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

E.48 Histograms of the differences – all available gravity data (EGM08 to n =

m = 1080) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

E.49 Histograms of the differences – all available gravity data (EGM08 to n =

m = 2160) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

E.50 Histograms of the differences – GGMs only . . . . . . . . . . . . . . . . 183

xvi



List of tables

1.1 Selected parameters of the actual, normal and disturbing gravity fields . . 14

5.1 Synthetic geoidal heights N from EGM08 . . . . . . . . . . . . . . . . . 65

5.2 Geoid noise εN for NC . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Geoid noise εN for WT . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Statistics of aerial gravity data in the “remove” step – test area . . . . . . 73

6.2 Statistics of aerial gravity data in the “remove” step – all available gravity

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Differences between the GNSS/levelling and the computed geoidal heights

– test area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Differences between the GNSS/levelling and the computed geoidal heights

– all available gravity data . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Differences between the GNSS/levelling and the computed geoidal heights

– GGMs only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

E.1 Statistics of aerial gravity data in the “remove” step – central area . . . . 134

E.2 Statistics of aerial gravity data in the “remove” step – western area . . . . 140

E.3 Statistics of aerial gravity data in the “remove” step – eastern area . . . . 141

E.4 Statistics of the parameters in the “restore” step (N-NC) – test area . . . . 152

E.5 Statistics of the parameters in the “restore” step (N-WT, AC+H) – test area 159

E.6 Statistics of the parameters in the “restore” step (N-NC, N-WT, AC+H) –

all available gravity data . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xvii



Nomenclature

Acronyms

AC+H – two-step approach (Analytic Continuation + Hotine’s formula)

BVP – Boundary-Value Problem

CHAMP – CHAllenging Minisatellite Payload

DGNSS – Differential Global Navigation Satellite Systems

DLR – Deutsche Forschungsanstalt für Luft und Raumfahrt

DTE – Direct Topographical Effect

EGM96 – Earth Gravitational Model 1996

EGM08 – Earth Gravitational Model 2008

ESA – European Space Agency

FFT – Fast Fourier Transform

FS – Finite Series

GFZ – GeoForschungsZentrum

GGM – Global Gravitational Model

GMT – Generic Mapping Tools

xviii



GNSS – Global Navigation Satellite Systems

GOCE – Gravity field and steady-state Ocean Circulation Explorer

GOCO03s – GGM from the project GOCO (Combination of GOCE data with comple-

mentary gravity field information; Gravity Observation Combination)

GPS NAVSTAR – Global Positioning System - NAVigation System with Timing And

Ranging

GRACE – Gravity Recovery And Climate Experiment

GRAV-D – Gravity for the Redefinition of the American Vertical Datum

GRS 80 – Geodetic Reference System 1980

I – numerical Integration

ICGEM – International Centre for Global Earth Models

ITE – Indirect Topographical Effect

LTS – Linear part of the Taylor Series

MRA – Multi-Resolution Analysis

NASA – National Aeronautics and Space Administration

NC – Newton-Cotes formulas for numerical integration

N-NC – “one-step approach” (solution of Neumann’s BVP) using the Newton-Cotes for-

mulas for numerical integration

N-WT – “one-step approach” (solution of Neumann’s BVP) using the Wavelet Trans-

form

OSU91a – GGM produced by the Ohio State University in 1991

QTS – Quadratic part of the Taylor Series

xix



TRF – Terrestrial Reference Frame

TRS – Terrestrial Reference System

WT – Wavelet Transform

Symbols

Scalars and functions

a – major semi-axis of the ellipsoid of revolution; equatorial radius of the Earth

b – minor semi-axis of the ellipsoid of revolution

cm,k, dm,k – coefficients of the linear combination of the scaling functions and wavelets,

respectively (used in the Mallat algorithm)

e – first eccentricity

f(x) – continuous space dependent signal

g – actual gravity

gk – coefficients of the mother wavelet

h – Gauss’s ellipsoidal (geodetic) height

hn – scaling coefficients

l – minimum degree in terms of the spherical harmonic expansion

m – order of the spherical harmonic expansion

n – degree of the spherical harmonic expansion

x, y, z – Cartesian coordinates

A – direct topographical effect on gravity

xx



Ab – band-limited direct topographical effect on gravity

An,m, Bn,m – Stokes’s coefficients

An,m, Bn,m – fully-normalized Stokes’s coefficients

D – flight height above the geocentric sphere

G – Newton’s gravitational constant

GM – geocentric gravitational constant

H(ψ) – Hotine’s spherical kernel function

HN – normal (Molodensky’s) height

HO – orthometric height

H2
n, H

3
n – Laplace harmonics of the squared and cubed topographical height functions

J2 – dynamical form factor of the Earth (Stokes’s zonal coefficient)

J1(r, R, ψ), J2(r, R, ψ) – integration kernels in the evaluation of DTE

Ib(r, R, ψ) – band-limited integration kernel in the “one-step approach”

K(r, R, ψ) – Green’s integral kernel

L – maximum degree in terms of the spherical harmonic expansion

M – mass of the Earth

M1(ψ), M2(ψ) – integration kernels in the evaluation of ITE

N – geoidal height; transverse radius of curvature of the reference ellipsoid

NGGM – low-frequency part of the geoid

NGNSS/lev – GNSS/levelling points

NL – filtered geoidal heights

xxi



NH
b – Helmert’s residual co-geoid

NH – co-geoid (Helmert’s geoid)

P – indirect topographical effect on the geoid (also point on the geoid)

Pb – band-limited indirect topographical effect on the geoid

Pn(t) – Legendre’s polynomials

Pn,m(t) – associated Legendre’s functions of the first kind

P n,m(t) – fully-normalized associated Legendre’s functions of the first kind

R – radius of a geocentric sphere

Rn,k(t) – Paul’s coefficients

S(ψ) – Stokes’s spherical kernel function

T – disturbing gravity potential

Tb – band-limited disturbing gravity potential

TGGM – low-frequency part of the disturbing gravity potential

TL – filtered disturbing gravity potential

THb – Helmert’s residual disturbing gravity potential

TH – Helmert’s disturbing gravity potential

T ε – disturbing gravity potential with propagated noise εT

Tn(Ω) – surface spherical harmonics

U – gravity potential of the ellipsoid of revolution (normal gravity potential)

Uc – centrifugal part of the normal gravity potential

Ug – gravitational part of the normal gravity potential

xxii



U0 – normal gravity potential on the reference ellipsoid

Vn(D,ψ0) – truncation coefficients

V ct – gravitational potential of condensed topography

V t – gravitational potential of topography

W – gravity potential of the Earth’s gravity field (actual gravity potential)

Wc – centrifugal part of the actual gravity potential

Wg – gravitational part of the actual gravity potential

W0 – actual gravity potential on the geoid

αn, αn,m – normalization factor

γ – normal gravity

γe – normal gravity on the equator

γp – normal gravity on the poles

δj,k – Kronecker delta

ε – random noise for testing numerical methods

εN – noise propagated to the geoidal heights

εT – noise propagated to the disturbing gravity potential

εt – truncation error

θ – spherical co-latitude

κ – wavelength of a function

λ – Gauss ellipsoidal (geodetic) longitude; spherical longitude

xxiii



ρ – mass density

ϕ – Gauss ellipsoidal (geodetic) latitude; scaling function

ψ – spherical distance between two points; mother wavelet

ω – angular velocity of the Earth’s rotation

Θ – deflection of the vertical

Λ – astronomical longitude

Φ – astronomical latitude

Ω – geocentric direction (Ω = (θ, λ))

Ω0 – solid angle corresponding to the limited geographical area (spherical cap)

ΩS – solid angle of the whole sphere

δg – gravity disturbance

δgb – band-limited gravity disturbance

δgGGM – low-frequency part of the gravity disturbance

δgL – filtered gravity disturbance

δgHb – Helmert’s residual gravity disturbances

δgε – gravity disturbance with random noise

δV – indirect topographical effect on the disturbing gravity potential (Helmert’s residual

potential)

δVb – band-limited indirect topographical effect on the disturbing gravity potential

∆g – gravity anomaly

xxiv



Vectors, matrices and sequences

ac – centrifugal acceleration vector

ag – gravitational acceleration vector

f – vector of the non-gravitational acceleration (specific force vector)

g – gravity vector

i, j,k – unit vectors of the coordinate system

n – tangent to the plumbline of the normal gravity field (the ellipsoidal normal)

o – zero vector

r – position vector of the point of interest

re – position vector of the point on the reference ellipsoid

rg – position vector of the point on the geoid

t – tangent to the plumbline of the actual gravity field

γ – normal gravity vector

δg – gravity disturbance vector

∆g – gravity anomaly vector

A – matrix of the coefficients in the Galerkin method

I – identity matrix

M – matrix of the second derivatives of the normal gravity potential U

R – rotation matrix

Ωl
ie, Ωl

el – skew-symmetric matrices

d – multi-index in the n-dimensional wavelet transform

xxv



Localization of points

P – point on the geoid (also indirect topographical effect on the geoid)

P ′ – point on the topography

Q – point on the reference ellipsoid

Q′ – point on the telluroid

S – the Earth’s surface

Σ – telluroid

Sets

Z – integers

R – real numbers

Spaces and projectors

L2(R) – space of square integrable functions on R

l2(Z) – space of square summable sequences on Z

Vi ⊂ L2(R), Wj ⊂ L2(R) – subspaces of L2(R)

U ⊕ V – direct sum of the spaces U and V

Pi, Qi – projectors into subspace Vi and the corresponding orthogonal complement Wi

Operators and mathematical notations

H, G – decomposition operators of the Mallat algorithm

H∗, G∗ – adjoint operators of the decomposition operators H , G

xxvi



f · g – scalar product of the vectors f and g

f × g – cross product of the vectors f and g

curlF – curl of the vector field F

divF – divergence of the vector field F

∇f – gradient of the vector f

∆f – the Laplace operator of the vector f (Laplacian)

〈f, g〉L2 – discrete scalar product of two complex functions f and g in L2(R)

xxvii



Introduction

Description of the Earth’s gravity field is one of the basic tasks of geodesy. Determina-

tion of a certain equipotential surface of this gravity field called geoid (vertical datum for

orthometric heights, i.e., heights above the mean-sea level) is very important for conver-

sion of ellipsoidal heights obtained by GNSS (Global Navigation Satellite Systems) to

orthometric heights obtained by levelling. The geoid can be replaced by the quasigeoid in

order to convert the ellipsoidal heights to the normal (Molodensky) heights. The height

system based on the normal heights is used for example in the Czech Republic. The

precise description of the gravity field of the Earth is also very useful in geophysics and

geodynamics for studying anomalous mass structures within the Earth, tectonic forces

(e.g., earthquake prediction), oceanic lithosphere, Earth rotation, as well as ocean tides,

currents and sea surface topography.

The gravity field of the Earth can be described by a scalar function of position and time

called the gravity potential. The gravity potential cannot be directly measured. Neverthe-

less, his directional derivatives are measurable. Gravimetry1 deals with measurements of

the first directional derivatives - gradient of the gravity potential. Gradiometry2 deals with

a measurement of the second directional derivatives of the gravity potential – Marussi3

tensor. The gravity potential can be computed from his directional derivatives. Measure-

ments are performed on the ground (terrestrial gravity and gradiometry), on board of an

1The beginnings of gravimetry are connected with Galileo Galilei (1564-1642), an Italian physicist,

mathematician, engineer, astronomer and philosopher. The gal, an unit of acceleration used extensively in

gravimetry, is named after him (1 Gal = 10−2 ms−2).
2The unit used in gradiometry is Eotvos (1 E = 10−9 s−2), named after Hungarian physicist Loránd

Eötvös (Vásárosnaményi Báró Eötvös Loránd, 1848-1919).
3Marussi, Antonio (1908-1984) - Italian geodesist and geophysicist.
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aircraft (aerial gravity and gradiometry), of a ship (marine gravity and gradiometry) and

of a satellite (satellite gravity and gradiometry).

Gravity-dedicated satellite missions CHAMP4, GRACE5 and GOCE6 provide gravity

data that cover almost a whole surface of the Earth, except of polar regions. Since orbital

altitudes of these satellites are at a level of hundreds of kilometres, only a global (low-

frequency/long-wavelength) part of the gravity potential can be determined from their

data. Local gravity data are obtained from terrestrial, aerial and marine gravity surveys

or satellite altimetry. Measurements are performed on the ground or at locations very

close to the Earth surface, thus, a local (high-frequency/short-wavelength) part of the

gravity potential is determined. The main disadvantage of local gravity data is their space

limitation. These gravity data are usually available just within limited areas. In the case of

terrestrial data, moreover, measurements cannot be performed within inaccessible areas

(mountains, jungles, . . . ).

Methods often used in the geoid determination include a least-squares collocation

(Krarup 1969; Moritz 1980; Forsberg and Kenyon 1994; Marchenko et al. 2001; Forsberg

2002), radial base functions (Schmidt et al. 2007; Klees et al. 2008; Antoni, Keller

and Weigelt 2009), variational methods (Holota 1995, 1997; Holota and Nesvadba 2008)

and integral formulas for the solution of geodetic boundary-value problems as the Stokes

integral (Stokes 1849), the Hotine integral (Hotine 1969) and the Molodensky integral

series (Molodensky, Eremeev and Yurkina 1960). The numerical approaches include the

fast Fourier transform (FFT) techniques (Sideris and Schwarz 1986; Schwarz, Sideris

and Forsberg 1990), wavelet transform (WT) techniques (Freeden and Windheuser 1997;

4CHAMP (CHAllenging Minisatellite Payload) – German small satellite mission for geoscientific and

atmospheric research and applications, managed by GFZ (GeoForschungsZentrum – German research cen-

ter for geoscience) in Potsdam, launched in July 2000, ended in September 2010. Source: http://www.gfz-

potsdam.de/champ/.
5GRACE (Gravity Recovery And Climate Experiment) – joint partnership between the National Aero-

nautics and Space Administration (NASA) in the United States and Deutsche Forschungsanstalt für Luft und

Raumfahrt (DLR) in Germany, launched in March 2002, currently operating in an extended mission phase,

which is expected to continue through at least 2015. Source: http://www.nasa.gov/mission_pages/Grace/.
6GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) - first of ESA’s Living Planet

Programme satellites intended to map the Earth’s gravity field, launched in March 2009, ended in November

2013. Source: http://www.esa.int/.

2



Freeden and Schneider 1998; Keller 2004; Kuroishi and Keller 2005; Roland and Denker

2005) and the spherical harmonic expansion (Heiskanen and Moritz 1967).

Spherical harmonic expansion of the gravity potential provides an effective way for

modelling of the long-wavelength gravity field in order to get a reference field for a lo-

cal approximation. The geopotential models are therefore used in all methods of pre-

cise geoid determination. There are many geopotential models that differ in maximum

degree and order of the harmonic expansion or in types of input data sets (see, e.g.,

http://icgem.gfz-potsdam.de/ICGEM/). The Earth Gravitational Model 2008 (EGM08,

Pavlis et al. 2012) has the maximum degree and order of the harmonic expansion from

all available official geopotential models. It was developed up to the degree and order

2160 and corresponds to a set of global mean gravity data with the equiangular resolution

(half-wavelength) of 5′ (approximately 10 km at the Earth’s surface).

The medium-wavelength and short-wavelength part of the gravity potential can be

obtained from local gravity data using the collocation, FFT, WT or integral formulas (the

Stokes integral, the Hotine integral and the Molodensky series).

0.1 Aerial gravimetry

Aerial gravimetry is a fast and efficient method of gravitational data collection. Whereas

ground gravity data are measured mostly along roads or in flat terrain, aerial gravimetry

can cover areas with more complicated relief as well as inaccessible regions (mountains,

rainforests, seas, glaciers, off-coast regions, . . . ). It is an ideal technique to complement

satellite-only gravity models. It is also an efficient tool to provide a transition between

terrestrial and marine gravity data.

The beginning of aerial gravimetry is dated to the fifties of the 20th century. In the

late 1950’s, the first test of aerial gravity meter systems based on gravimetry was per-

formed and others followed (Lundberg 1957; Thompson and LaCoste 1960). Although

first results were promising, their accuracy was affected by a lack of accurate navigation

data (Nettleton, LaCoste and Harrison 1960). The major breakthrough came with a devel-

opment of Global Navigation Satellite Systems (GNSS) during the mid 1980’s (Hammer

1983; Brozena and Peters 1988). Since then many wide-area aerial gravitational surveys
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have been performed with increasing spatial resolution and accuracy.

In aerial gravimetry, gravitational data are obtained along a flight trajectory. An aerial

gravitational system measures a non-gravitational acceleration7, that is subsequently sep-

arated into two parts – the dynamic acceleration of an aircraft and gravitation acceleration

(Li 2000). The non-gravitational acceleration is measured either by strapdown inertial

navigation systems, that determine the orientation of the sensors (three accelerometers)

mathematically (Schwarz and Wei 1993; Wei and Schwarz 1998), or by platform inertial

navigation systems, that stabilize a gravimeter in a vertical direction physically (Knick-

meyer 1990; Salychev et al. 1994). Aircraft dynamic acceleration is obtained by differ-

entiating in time the accurate position and velocity provided by DGNSS measurements

(Wei, Ferguson and Schwarz 1992; Czompo 1994).

Since the beginning of the nineties, the aerial gravimetry has been used for a large-

scale surveys. Campaigns were performed for example over Greenland (Brozena 1992;

Brozena and Peters 1994; Brozena, Peters and Salman 1997; Forsberg and Kenyon 1994;

Forsberg and Rubek 1998; Forsberg, Olesen and Keller 1999; Olesen et al. 2000),

Switzerland (Klingelé et al. 1995; Verdun et al. 2003), Antarctica (Bell et al. 1992;

Bell et al. 1999), Skagerrak and Azores (Forsberg et al. 1997; Hehl et al. 1997), Nordic

Baltic region (Forsberg and Solheim 2000) and Arctic ocean (Childers et al. 2001; Fors-

berg et al. 2003). Recent major projects represent the national geoid and regional surveys

of Malaysia, Mongolia and Ethiopia (Olesen and Forsberg 2007), Taiwan (Hwang et al.

2007, 2012, 2014), Alabama (Huang et al. 2013; Wang et al. 2013) and the United States

(GRAV-D, http://www.ngs.noaa.gov). The reported accuracies of these campaigns were

at the mGal level (about 1.5− 3 mGal for the spatial resolution of 5− 6 km).

In geodesy, one of the main applications of aerial gravitational data is local geoid de-

termination. By combining them with the accurate low-frequency satellite gravitational

models, the geoid can be determined from aerial gravimetry data with the decimetre-

level accuracy or better. However, for the conversion of ellipsoidal heights to orthometric

heights, the geoid with the centimetre-level accuracy is required. The better spatial resolu-

tion and accuracy of aerial gravimetry can be achieved either by improving of the sensors

or by developing improved methodologies for processing of aerial gravitational data. In

7The measured non-gravitational acceleration is also called specific force (Torge 1980, p. 186).
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this thesis, the focus is on processing of aerial gravitational data, in particulary on the

transformation of measured aerial gravitational data to the geoid.

0.2 Outline of the thesis

The determination of the local geoid model from aerial gravitational data in Taiwan is

discussed in the thesis. The first section is an introduction to the potential theory. The

Earth’s gravity field, the normal gravity field of an ellipsoid of revolution and the disturb-

ing gravity field are introduced. The determination of the disturbing gravity potential from

gravimetric measurements are also described in this section. Since there is a difference in

determination of the global and local parts of the disturbing gravity potential, each case

is discussed separately. A spherical harmonic synthesis is used for the evaluation of the

global component. The local part is obtained as the solution of boundary-value problems.

The second section deals with the aerial gravimetry. After a short historical overview,

the principle of the aerial gravimetry are described.

In the third section, the available aerial gravitational data in the area of Taiwan are

presented.

The fourth section introduces the conversion of aerial gravitational data to the disturb-

ing gravity potential. First, the boundary-value problem is formulated in the spherical

approximation. Then, the mathematical background of each step of the conversion is de-

scribed. As a new method of transformation of aerial gravity disturbances to the disturbing

gravity potential, the 4D wavelet transformation in presented.

Results of testing the different numerical methods using synthetic gravity data are

presented in the fifth section.

The numerical results for the aerial gravitational data from Taiwan are introduced in

the sixth section. The comparison of the evaluated models of the local geoid in the area of

Taiwan with the “real” geoid at GNSS/levelling points is also presented. The accuracy of

the geoid obtained just using EGM08 and the improvement of this model using EGM08

and the aerial gravitational data is discussed.

In the last section, the conclusions and recommendations are given.

5



Chapter 1

Earth’s gravity field

The Earth as every rotating massive body generates a gravity field. This vector field can

be characterized, e.g., by the gravity vector g. The total force on a unit mass – gravity g

– is the resultant of the gravitational acceleration ag and the centrifugal acceleration ac

g = ag + ac . (1.1)

The gravitational acceleration directs approximately to the centre of mass of the Earth

while the centrifugal acceleration vector is orthogonal to the axis of rotation of the Earth

and points out, outward this axis (see Fig. 1.1).

Although the magnitude of the gravity vector is measurable (at least in the direction

of a plumbline), it is not practical to describe the gravity field this way because in a three-

dimensional space the gravity vector has three components. Therefore, its description by

some scalar function of position and time is much more convenient.

A vector field described by the vector g′ is called conservative if for each simple

piecewise smooth oriented closed curve C holds∮
C

g′(r) · dr = 0 , (1.2)

where “·” stands for a scalar product and r stands for the position vector (see Appendix B.1)

of the point of interest. Assume that the vector field is defined on an open set1. Then there

1Definition of an open set can be found in (Lebedev and Vorovich 2003), p. 18.
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CHAPTER 1. EARTH’S GRAVITY FIELD

Figure 1.1: Gravity vector g

exists a scalar function W ′ for which holds

g′(r) = ∇W ′(r) , (1.3)

where “∇” is the gradient (see Appendix C.1). Using the operator curl g′ = ∇× g′, see

Appendix C.2, on Eq. (1.3) yields

∇× g′(r) = ∇×∇W ′(r) , (1.4)

where “×” stands for a cross product. We get from the definition of the gradient and the

curl

∇×∇W ′(r) = o , (1.5)

where o is the zero vector (|o| = 0). Substituting Eq. (1.5) to Eq. (1.4) gives

∇× g′(r) = o , (1.6)

i.e., the vector field is irrotational. Therefore, the conservative vector field is always

irrotational.

Since the static gravity field is a conservative and irrotational vector field, the gravity

vector g in any point relates, according Eq. (1.3), to the scalar function W (Heiskanen

and Moritz 1967, p. 47)

g(r) = ∇W (r) , (1.7)
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which is called the gravity potential. The surfaces, on which the gravity potential W is

constant, i.e., W (r) = const., are called equipotential surfaces.

The most important equipotential surface of the Earth’s gravity field is called the geoid

(Gauss 1828; Listing 1873), see Sec. 1.4. The geoid is a (mean) surface of the ideal oceans

with the gravity potential W (rg) = W0 = const., rg is the position vector of the point

on the surface of the geoid. The determination of the constant W0 is one of the tasks of

geodesy which is not discussed in the thesis. In the following text, the constant W0 is

assumed to be known.

The geoid is a vertical datum for orthometric heights that are usually obtained by spirit

levelling. In Molodensky’s theory of normal heights, the geoid is replaced by the quasi-

geoid (Molodensky 1945). The quasigeoid is no longer an equipotential surface of the

Earth’s gravity field. It differs from the geoid inside topographic masses but the differ-

ences are small, within the range of±1.5 m (higher the mountains, larger the differences).

The normal heights are used in many countries, including the Czech Republic.

1.1 Introduction to the potential theory

Since the gravity vector g consists of the gravitational acceleration ag and the centrifugal

acceleration ac, see Eq. (1.1), the gravity potential W also has two parts corresponding to

these vectors – gravitational potential Wg and centrifugal potential Wc. The gravitational

potential can be evaluated by Newton’s integral (Newton 1686; Pick, Pícha and Vyskočil

1973, p. 21)

Wg(r) = G

∫∫∫
B

ρ(r′)

|r′ − r|
dB(r′) , (1.8)

where G stands for Newton’s gravitational constant, B is the volume of the Earth, |r′− r|
is the Euclidean distance between the volume element dB (with the position vector r′) of

the mass density ρ and the point of interest r. The centrifugal potential is determined by

(Huygens 1703; Heiskanen and Moritz 1967, p. 47)

Wc(r) =
1

2
p2ω2 , (1.9)

where all inputs are known (ω is the angular velocity of the Earth’s rotation, p is the

distance of the point determined by the geocentric vector r from the rotation axis of the

8
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Earth, p = |r| sin θ in the spherical coordinates, see Appendix B.2). Unfortunately, since

the distribution of mass density inside the Earth, see Eq. (1.8), is not known with the

sufficient accuracy, Newton’s integral cannot be used directly. Therefore, one has to de-

termine the gravitational potential in a different way, from available data measured on and

outside the Earth’s surface, see Sec. 1.4. Since the centrifugal potentialWc can accurately

be evaluated for the known position r through Eq. (1.9), it is required to determine only

the gravitational potential Wg from available gravity data.

In the case of measuring data at points connected with the Earth, both gravitational

and centrifugal accelerations are present. Only the gravitational acceleration is present if

measurement relates to points outside the Earth.

The gravitational potentialWg may be shown to satisfy Poisson’s differential equation

(Heiskanen and Moritz 1967, p. 5)

∆Wg(r) = −4πGρ(r) , (1.10)

where “∆” is the Laplace operator (Laplacian), see Appendix C.4, which in Cartesian

coordinates (x, y, z), see Appendix B.1, has the form

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (1.11)

and in the spherical coordinates (r, θ, λ), see Appendix B.2,

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂λ2
. (1.12)

Assume the geocentric position of a point of interest is defined by the triplet of Cartesian

coordinates r = (x, y, z). Consider the gravity potential W in the form

W (r) = Wg(r) +Wc(r) = G

∫∫∫
B

ρ(r′)

|r′ − r|
dB(r′) +

1

2
p2ω2 , (1.13)

where Wc could be expressed in the Cartesian coordinates (Heiskanen and Moritz 1967)

Wc(x, y) =
1

2
ω2(x2 + y2) . (1.14)

By differentiating Eq. (1.14), we get

∆Wc(r) =
∂2Wc(r)

∂x2
+
∂2Wc(r)

∂y2
+
∂2Wc(r)

∂z2
= 2ω2 . (1.15)

9
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Applying the Laplacian on Eq. (1.13) and taking Eq. (1.10) into account finally yields

(Heiskanen and Moritz 1967, p. 47)

∆W (r) = ∆Wg(r) + ∆Wc(r) = −4πGρ(r) + 2ω2 , (1.16)

which is the Poisson equation for the actual gravity potential W . Consider the point of

interest r above the Earth, i.e., outside the masses that generate the gravity potential W ,

then ω = 0 because the point is not connected with the Earth. If we neglect the density of

all masses outside the Earth (e.g., an atmosphere), then also ρ(r) = 0. Thus, Eq. (1.16)

becomes (Heiskanen and Moritz 1967, p. 5)

∆W (r) = 0 , (1.17)

which is the Laplace equation for the actual gravity potential W . A function, that satisfies

the Laplace equation (1.17) at every point of a region v, is called harmonic in v. If the

region v is the exterior of a certain closed surface S, e.g., the exterior of the solid Earth,

then the function must in addition vanishes like 1/l for l → ∞ (Heiskanen and Moritz

1967, p. 15)

1.2 Normal gravity field

Since the Earth resembles closely an ellipsoid of revolution, its actual gravity field can

successfully be approximated by the “normal” gravity field of the homogeneous rotating

geocentric ellipsoid. The ellipsoid of revolution (reference ellipsoid) can be made an

equipotential surface of the normal potential U :

U(re) = U0 = const. , (1.18)

where re is the position vector of the point on the surface of the ellipsoid. The functional

value U is uniquely determined by means of the ellipsoidal surface (semi-axes a, b), the

enclosed mass M and the angular velocity ω. Any other system of four independent

parameters may be also used as defining constants. The reference ellipsoid of the Geodetic

Reference System 1980 (GRS 80), based on the theory of the geocentric equipotential

ellipsoid 2, is defined by the following conventional constants (Moritz 1984):
2The theory of the equipotential ellipsoid was first given by Italian mathematicians Paolo Pizzetti (1860-

1918) (Pizzetti 1911) and Carlo Somigliana (1860-1955) (Somigliana 1929).

10
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• equatorial radius of the Earth

a = 6378137 m,

• geocentric gravitational constant (including the Earth’s atmosphere)

GM = 3986005× 108 m3 s−2,

• dynamical form factor of the Earth (excluding the permanent tidal deformation)

J2 = 108263× 10−8,

• angular velocity of the Earth

ω = 7292115× 10−11 rad s−1.

The constant U0 is defined by

U0 = W (rg) = W0 , (1.19)

where W0 is the actual gravity potential W on the geoid (rg is the geocentric position

vector of the point on the geoid).

Following the case of the actual gravity potential W of the Earth, the normal gravity

potential U can be split into two parts – normal gravitational potential Ug and normal

centrifugal potential Uc (Hofmann-Wellenhof and Moritz 2005, p. 65)

U(r) = Ug(r) + Uc(r) , (1.20)

where

Uc(x, y) =
1

2
ω2(x2 + y2) , (1.21)

in the Cartesian coordinates. Outside the reference ellipsoid the normal gravitational

potential Ug satisfies the Laplace equation (note that inside the reference ellipsoid the

normal gravitational potential Ug is not defined), i.e.,

∆Ug(r) = 0 , |r| > |re| . (1.22)

Applying the Laplacian on Eq. (1.20), we get Poisson’s equation for the normal gravity

potential U at the points outside the ellipsoid

∆U(r) = ∆Ug(r) + ∆Uc(r) = 0 . (1.23)

11
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The normal gravity field is also conservative and irrotational as well as the actual

gravity field, therefore also (Hofmann-Wellenhof and Moritz 2005, p. 69)

γ(r) = ∇U(r) , (1.24)

where γ stands for the normal gravity vector. Since the normal gravity field can be de-

scribed mathematically (Pizzetti 1911; Somigliana 1929), a rigorous formula exists for

the magnitude of the normal gravity vector on the reference ellipsoid (Moritz 1984)

|γ| = γ(ϕ) =
aγe cos2 ϕ+ bγp sin2 ϕ√
a2 cos2 ϕ+ b2 sin2 ϕ

, (1.25)

where the constant γe stands for the magnitude of the normal gravity vector on the equator,

γp for the magnitude of the normal gravity vector on the poles and ϕ for the geodetic

latitude, see Appendix B.3.

1.3 Disturbing gravity field

The difference of the actual gravity field from the normal gravity field is called the disturb-

ing gravity field. The difference between the actual gravity potential W and the normal

gravity potential U is called the disturbing gravity potential T (Hofmann-Wellenhof and

Moritz 2005, pp. 90-91)

T (r) = W (r)− U(r) , |r| > |re| , (1.26)

where re is the position vector of the point on the surface of the ellipsoid. The rotation

of the ellipsoid of revolution is chosen to have the same angular velocity as the Earth’s

rotation, thus, Uc(r) = Wc(r). Because of this equality, we get

T (r) = Wg(r)− Ug(r) . (1.27)

Therefore in the case of the disturbing gravity potential T the adjectives “gravitational”

and “gravity” can be interchanged. Applying the Laplacian ∆ on Eq. (1.27) and con-

sidering only points outside both the Earth and the reference ellipsoid yields Laplace’s

equation for the disturbing gravity potential T

∆T (r) = ∆[Wg(r)− Ug(r)] = ∆Wg(r)−∆Ug(r) = 0 . (1.28)

12
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Equation (1.28) is valid, i.e., the disturbing gravity potential T is harmonic, in every point

outside the Earth and the ellipsoid (mass-free space).

We can represent the disturbing gravity field by the vector δg (Heiskanen and Moritz

1967, p. 84)

δg(r) = g(r)− γ(r) , (1.29)

which is called the gravity disturbance vector. Since

g(r) = ∇W (r) ,

γ(r) = ∇U(r) , (1.30)

the gravity disturbance vector becomes (Heiskanen and Moritz 1967, p. 85)

δg(r) = ∇(W − U)(r) = ∇T (r) . (1.31)

The magnitude of δg(r) is the gravity disturbance

δg(r) = |δg(r)| = |g(r)| − |γ(r)| = g(r)− γ(r) . (1.32)

The difference in the direction of the actual gravity vector and normal gravity vector is

called the deflection of the vertical

Θ(r) = ∠[γ(r),g(r)] = ∠[n(r), t(r)] , (1.33)

where n is the tangent to the plumbline of the normal gravity field, which is approxi-

mately the ellipsoidal normal, and t is the tangent to the plumbline of the actual gravity

field. Parameters describing the actual, normal and disturbing gravity fields are listed in

Tab. 1.1.

1.3.1 Gravity disturbance and gravity anomaly

To obtain the gravity disturbance δg, see Eq. (1.29), we need to know the actual gravity

g and the normal gravity γ at the same point. Let us assume now the point with the

geocentric radius vector r lies on the topography. We denote it P ′. The actual gravity

g can be measured at the point P ′ whereas the normal gravity γ at the point P ′ has to

be evaluated. Since the rigorous formula for the magnitude of the normal gravity vector

13
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ACTUAL NORMAL DISTURBING

gravity field gravity field gravity field

Gravity potential W U T

Gravity vector ∇W (r) = g(r) ∇U(r) = γ(r) ∇T (r) = δg(r)

“Direction” of

gravity vector plumbline t normal n Θ(r) = ∠[n(r), t(r)]

Table 1.1: Selected parameters of the actual, normal and disturbing gravity fields

γ = |γ| on the reference ellipsoid is known, see Eq. (1.25), one can use the Taylor series

to get the value γ in the particular point P ′ above the reference ellipsoid (Abramowitz and

Stegun 1972, p. 880)

γ(P ′) = γ(Q) +
∞∑
j=1

1

j!

∂jγ

∂nj
|Qhj , (1.34)

where Q is the orthogonal projection of the point P ′ onto the reference ellipsoid and h is

the geodetic (Gauss ellipsoidal) height of the point P ′, i.e., the distance between points

P ′ and Q reckoned along the ellipsoidal normal, see Fig. 1.2.

However, the geodetic height h is available only due to use of GNSS positioning. In

the times “before” GNSS, only levelled heights (orthometric heights HO, normal heights

HN , . . . ) were available. Therefore, the other parameter called the gravity anomaly ∆g

had to be introduced instead of the gravity disturbance δg. The gravity anomaly ∆g is

also defined as a difference between the actual gravity g and the normal gravity γ. Un-

like the gravity disturbance, which corresponds just to one point P ′, the gravity anomaly

corresponds to two points – P ′ and Q′. The point Q′ satisfies two conditions

• points P ′ and Q′ lie on the same ellipsoidal normal ,

• actual gravity potential W at P ′ is equal to the normal gravity potential U at Q′,

i.e., W (P ′) = U(Q′) .

Considering the point P ′ on the topography, the point Q′ lies on the surface called the

telluroid (Hirvonen 1960; Grafarend 1978; Heck 1986). The gravity anomaly is then

defined

∆g(P ′, Q′) = g(P ′)− γ(Q′) , (1.35)
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Figure 1.2: Definition of heights – geodetic height h, orthometric height H0 and geoidal

height N

where, using the Taylor series again,

γ(Q′) = γ(Q) +
∞∑
j=1

1

j!

∂jγ

∂nj
|QHj . (1.36)

Let us denote P the point on the geoid. Since the largest component of the gradient

in Eq. (1.7) is the component in the direction of the tangent of a plumbline, we can write

(Heiskanen and Moritz 1967, p. 50)

g(P ) ≈ −∂W
∂t
|P . (1.37)

Using the deflection of the vertical, the direction t can be replaced by the direction of the

ellipsoidal normal n. Since the elevation h is reckoned along the ellipsoidal normal n, we

get:

g(P ) ≈ −∂W
∂h
|P . (1.38)

Accordingly we have for the normal gravity vector

γ(P ) ≈ −∂U
∂n
|P = −∂U

∂h
|P . (1.39)
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Therefore, the gravity disturbance δg becomes

δg(P ) = g(P )− γ(P ) ≈ −∂W
∂h
|P −

(
−∂U
∂h
|P
)

= −∂(W − U)

∂h
|P . (1.40)

Finally, we get the following approximate formula for the gravity disturbance δg (Heiska-

nen and Moritz 1967, p. 85)

δg(P ) ≈ −∂T
∂h
|P , (1.41)

or in an equivalent form

δg(P ) +
∂T

∂h
|P ≈ 0 . (1.42)

In the approximate formulas above the ellipsoidal corrections must by applied for high

precise applications (Molodensky, Eremeev and Yurkina 1960; Moritz 1980; Martinec

and Grafarend 1997; Fei and Sideris 2000).

For the gravity anomaly ∆g the situation is more complicated than for the gravity

disturbance. Consider the gravity anomaly corresponding to the points P on the geoid

and Q on the reference ellipsoid. Then

∆g(P,Q) = g(P )− γ(Q) . (1.43)

Since

γ(P ) ≈ γ(Q) +
∂γ

∂h
|QN , (1.44)

where N is the geoidal height, see Fig. 1.2, the gravity anomaly becomes

∆g(P,Q) ≈ g(P )− γ(P ) +
∂γ

∂h
|QN = −∂T

∂h
|P +

∂γ

∂h
|QN . (1.45)

Using the well known Bruns formula (Bruns 1878; Heiskanen and Moritz 1967, p. 85)

N(P,Q) ≈ T (P )

γ(Q)
, (1.46)

we get

∆g(P,Q) ≈ −∂T
∂h
|P +

1

γ(Q)

∂γ

∂h
|QT (P ) . (1.47)

The equivalent form (Heiskanen and Moritz 1967, p. 86)

∂T

∂h
|P −

1

γ(Q)

∂γ

∂h
|QT (P ) + ∆g(P,Q) ≈ 0 , (1.48)

is called the fundamental equation of physical geodesy. Equations (1.41) and (1.47) are

valid everywhere outside the reference ellipsoid and the geoid.
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1.3.2 Other definitions of telluroid

A generalization of the concept of the telluroid was given by Krarup (1973). The telluroid

Σ is in this more general formulation an arbitrary given surface close to the Earth surface

S. The points Q′ of the telluroid are in one-to-one correspondence with the points P ′

of S, see Fig. 1.3 (Moritz 1977, p. 11). Assume Σ and the normal gravity potential U

Figure 1.3: The telluroid Σ as an approximation to the Earth’s surface S

are given, thus, we can compute U and γ at Q′, see Eq. (1.24). Also the actual gravity

potential W and gravity vector g are supposed to be given on S, i.e., at every point P ′.

The differences (Moritz 1977, pp. 11-12)

∆W = W (P ′)− U(Q′) ,

∆g = g(P ′)− γ(Q′) , (1.49)

are called potential anomaly and gravity anomaly vector, respectively.

If the telluroid is defined by an appropriate way, it is possible to make one of the two

anomalies equal zero. The usual definition described in Sec. 1.3.1 is

∆W = 0 , (1.50)

i.e., U(Q′) = W (P ′). The points P ′ and Q′ are supposed to lie on the same ellipsoidal

normal. Since the normal through P ′ is not known, the point Q′ is defined by three

conditions (Moritz 1977, p. 12)

U(Q′) = W (P ′), ϕ(Q′) = Φ(P ′), λ(Q′) = Λ(P ′) . (1.51)
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The geodetic latitude ϕ and longitude λ, see Appendix B.3, determine the direction of the

normal gravity vector γ

γ =


γ cosϕ cosλ

γ cosϕ sinλ

γ sinϕ

 , (1.52)

in the same way as the astronomical latitude Φ and longitude Λ, see Appendix B.4, define

the direction of the gravity vector g

g =


g cos Φ cos Λ

g cos Φ sin Λ

g sin Φ

 . (1.53)

Since the telluroid is determined by three “Marussi coordinates” (Marussi 1985) potential,

latitude, longitude, see Eq. (1.51), Krarup (1973) called it the “Marussi telluroid”.

Another definition of the telluroid is to put

∆g = 0 . (1.54)

Then γ(Q′) = g(P ′), expressed in terms of magnitude and direction of the vectors (Moritz

1977, p. 13)

γ(Q′) = g(P ′) ,

ϕ(Q′) = Φ(P ′) , (1.55)

λ(Q′) = Λ(P ′) .

The conditions in Eq. (1.55) completely determine the point Q′. Since g,Φ,Λ may be

called “gravimetric coordinates”, the corresponding surface of the points Q′ is called by

Krarup (1973) the “gravimetric telluroid”.

In the most general case, both differences in Eq. (1.49) are nonzero, i.e., ∆W 6= 0,

∆g 6= 0, and conditions for the definition of the telluroid is not so simple as in the two

cases described above. In Moritz (1977), the equation which holds on the telluroid Σ is

presented

T + mT gradT = ∆W + mT∆g , (1.56)
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with

m = −M−1γ , (1.57)

where M is a matrix of the second derivatives of the normal gravity potential U (see

Moritz 1977, pp. 13-17). Equation (1.56) is a generalization of the fundamental equation

of physical geodesy, i.e., Eq. (1.48).

1.4 Geoid

The geoid as the vertical datum for orthometric heights is the most important equipotential

surface of the Earth’s gravity field. The original idea comes from C.F. Gauss3 and its

name from J.B. Listing4. The geoid is a continuous, smooth and convex closed surface,

one of the equipotential surfaces of the Earth’s gravity potential, of which (mean) surface

of the ideal oceans forms a part. The geoid is orthogonal in every point to the direction of

a plumbline.

If we were able to determine the disturbing gravity potential T as a continuous func-

tion at the geoid, we could determine the geoidal heights N through the Bruns formula

in Eq. (1.46). Therefore, our aim is to determine the disturbing gravity potential T at the

geoid from available observations of gravity field parameters.

Since we cannot measure values of the disturbing gravity potential T , it is necessary

to use other ways to determine T . There are several possibilities how to determine the

disturbing gravity potential T from gravimetric (or gradiometric) measurements. In gen-

eral, we can divide this problem into two parts according to input data: determination
3Carl Friedrich Gauss (1777-1855) – German mathematician and scientist; the Gauss “definition” of the

geoid (Gauss C.F. 1828, p. 49): What we call in the geometric sense the surface of the Earth is nothing else

but that surface which intersects the direction of gravity at right angles and from which the surface of the

world ocean is a part (Vaníček and Christou 1994).
4Johann Benedict Listing (1808-1882) – German mathematician; Listing’s “definition” of the geoid

(Listing J.B. 1873, pp. 33, 45): According to our opinion we have to determine numerically in the future

the derivations of the plumbline as long as they have visible origin, namely by a topographic surface of the

continental relief, by a geological determination of the mass density of its constituents and by a systematic

survey of the oceans according to well-established methods . . . We shall call the previously defined mathe-

matical surface of the Earth, of which the ocean surface is a part, geoidal surface of the Earth or the geoid

(Vaníček and Christou 1994).
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of the global (low-frequency) part of T and determination of the local (high-frequency)

part of T . By current standards, the global part means the part of the series in Eq. (1.58)

approximately to degree n = 200, the rest of this series represents the local part.

1.4.1 Low-frequency component of the geoid

The basic idea of global modelling comes from the potential theory which was first pub-

lished at the end of the 18th century by P.S. Laplace5. Since the disturbing gravity poten-

tial T is a harmonic function outside all masses, i.e., T satisfies Laplace’s equation (1.28),

it can be expressed in the form of an infinite harmonic series. In the spherical coordinates,

we can write (Heiskanen and Moritz 1967, p. 88)

T (r, θ, λ) =
GM

R

∞∑
n=0

(
R

r

)n+1

Tn(θ, λ) , (1.58)

where G stands for Newton’s gravitational constant, M for the mass of the Earth, R is

a radius of the geocentric sphere which approximates geoid in some sense (e.g., the Bril-

louin sphere6) and Tn are (Laplace’s) surface spherical harmonics (Heiskanen and Moritz

1967, p. 21)

Tn(θ, λ) =
n∑

m=0

(An,m cosmλ+Bn,m sinmλ)Pn,m(cos θ) . (1.59)

Functions Pn,m are called associated Legendre’s functions of degree n and orderm (Abra-

mowitz and Stegun 1972, Sec. 8), An,m and Bn,m are numerical coefficients. Because

of a numerical stability of a computation of the harmonic series in Eq. (1.59), the fully-

normalized coefficientsAn,m, Bn,m and fully-normalized associated Legendre’s functions

P n,m are used. Using the normalization factor (Heiskanen and Moritz 1967, pp. 31-32)

αn,m =

√
2(2n+ 1)(n−m)

(n+m)!
, for m 6= 0 ,

αn =
√

2n+ 1 , for m = 0 , (1.60)
5Pierre-Simon Laplace (1749-1827) – French mathematician and astronomer; memoirs: Théorie du

Mouvement et de la figure elliptique des planètes, Part II (1784); Méchanique céleste (1802).
6Brillouin sphere – concentric sphere that includes all masses of the Earth; named after the French

scientist who proposed gravity reduction to a level surface completely outside the Earth (Moritz 1977,

p. 50).
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yields

P n,m = αn,mPn,m ,

An,m = α−1
n,mAn,m , (1.61)

Bn,m = α−1
n,mBn,m .

With respect to the definition of the reference ellipsoid (the mass of the ellipsoid is the

same as the mass of the Earth, the centre of gravity of the Earth and of the ellipsoid coin-

cide with the origin of the coordinate system), we can assume surface spherical harmonics

of degree n = 0, n = 1 as equal to zero. The harmonic series in Eq. (1.58) then starts

from degree n = 2 (Heiskanen and Moritz 1967, pp. 98-99),

T (r, θ, λ) =
GM

R

∞∑
n=2

(
R

r

)n+1

Tn(θ, λ) . (1.62)

Applying the operator 7 − ∂
∂r

on Eq. (1.62) yields (Heiskanen and Moritz 1967, p. 88)

δg(r, θ, λ) =
GM

R2

∞∑
n=2

(n+ 1)

(
R

r

)n+2

Tn(θ, λ) , (1.63)

which is the harmonic expansion for the gravity disturbance δg in the spherical approxi-

mation. Applying the operator − ∂
∂r
− 2

r
on Eq. (1.62), we get the formula for the gravity

anomaly (Heiskanen and Moritz 1967, p. 89)

∆g(r, θ, λ) =
GM

R2

∞∑
n=2

(n− 1)

(
R

r

)n+2

Tn(θ, λ) . (1.64)

Using different operators one can get harmonic expansions of the other parameters of

the disturbing gravity field (deflection of the vertical, . . . ). Since the quantities on the

left-hand side of the expansions are available almost over whole Earth due to the satel-

lite gravity and gravimetric measurements, the coefficients An,m, Bn,m in Eq. (1.59) and

An,m, Bn,m in Eq. (1.61), respectively, can be evaluated up to a certain degree and order

numerically. Nevertheless, satellite gravity data can be used just for determination of the

low-frequency part of the disturbing gravity potential T (degree n and order m up to ap-

proximately 200). The high-frequency part is not measurable because of the altitude of
7General definition of an operator can be found in (Lebedev and Vorovich 2003), p. 51.
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the gravity-dedicated satellites which ranges from 250 km to 500 km. In such a distance

from the Earth an observation noise overlaps the attenuated high-frequency part of the

measured signal.

1.4.2 Global gravitational model

The Global Gravitational Model (GGM) is represented by a set of the coefficients An,m,

Bn,m, see Eq. (1.59), of the harmonic expansion of the Earth’s (including solid, liquid

and gas component) gravitational potential. GGM is defined also by the corresponding

parameters, e.g., the Earth’s gravitational constant or the radius of the reference sphere

on which values of the coefficients An,m, Bn,m were derived using a spherical harmonic

analysis.

The first GGM was released in 1966 (Lundquist and Veis 1966) with the maximum

degree and order n = m = 15. It was computed only from satellite tracking data. Many

other models have been released over the next decades. A detailed overview of the devel-

opment of GGMs can be found on the web pages of the International Centre for Global

Earth Models (ICGEM, http://icgem.gfz-potsdam.de/ICGEM/). In late 70’s, the com-

bined GGMs to the degree and order n = m = 180 were developed. In the late eighties

and early nineties, combined GGMs that contained the coefficients to the degree and order

n = m = 360 were published at the Ohio State University, Columbus, USA. The most

widely used was the last one, GGM Ohio State University 1991 (OSU91a; Rapp, Wang

and Pavlis 1991). A precision of the coefficients of higher degrees and orders was low

because of a lack of available terrestrial gravity data. The combined GGM with the same

maximum degree and order and higher precision was the Earth Gravitational Model 1996

(EGM96; Lemoine et al. 1998) released in 1996. In 2008, the combined GGM with the

highest resolution Earth Gravitational Model 2008 (EGM08; Pavlis et al. 2008) was pub-

lished. It containes the coefficients An,m, Bn,m up to the degree and order n = m = 2160.

Since 2008, mostly satellite-only GGMs based on data of gravity-dedicated satellite mis-

sions were developed in order to improve the long-wavelength part of the gravitational

field.
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In the thesis, EGM08 and GOCO03s8 (Mayer-Gürr et al. 2012) are used for the de-

termination of global components of the gravity disturbances δgGGM and the disturbing

gravity potential TGGM . EGM08 was chosen as GGM with the highest maximum degree

and order (up to n = m = 2160), GOCO03s was chosen as a representant of the latest

satellite-only GGMs. The aim is to find out if using the satellite-only GGM that includes

gravity signal from the GOCE satellite mission (ESA 1999) is able to influence (improve)

significantly the accuracy of the computed local geoid model of Taiwan.

1.4.3 High-frequency component of the geoid

The high-frequency part of the disturbing gravity potential T can be determined by the

harmonic synthesis, i.e., by the evaluation of the harmonic series in Eq. (1.58) to the

high degree and order, using the combined GGM with the high resolution (e.g., EGM08).

When a satellite-only GGM with a low resolution is used, the high-frequency part of T

cannot be determined from satellite gravity data and other gravity data (terrestrial, marine,

aerial, . . . ) have to be used. Unfortunately, these gravity data are usually available just

within limited geographical areas. Thus, the solution of Laplace’s equation (1.28) in

the form of a harmonic series cannot be applied. In order to obtain the high-frequency

(local) part of the disturbing gravity potential T , boundary-value problems (BVPs) of

the potential theory have to be solved. There are three basic BVPs used in geodesy –

Dirichlet’s BVP, Neumann’s BVP and Newton’s (Robin’s) BVP. Considering the value of

T or some functional of T as known over some simple boundary, we can solve T outside

this boundary. In the spherical approximation we formulate the BVPs as follows (as the

known boundary we consider the geocentric sphere of radius R):

• Dirichlet’s BVP (Kellogg 1929, Sec. 9.4; Martinec 1998, p. 103):

∆T (r) = 0, for |r| > R ,

T (r) = T (R), for |r| = R , (1.65)

lim
|r|→∞

T (r) = 0 .

8GOCO stands for “Combination of GOCE data with complementary gravity field information” (Pail et

al. 2010).
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• Neumann’s BVP (Hofmann-Wellenhof and Moritz 2005, pp. 29, 95):

∆T (r) = 0, for |r| > R ,

−∂T
∂r
|r = δg(r), for |r| = R , (1.66)

lim
|r|→∞

T (r) = 0 .

• Newton’s BVP (Heiskanen and Moritz 1967, p. 92; Hofmann-Wellenhof and Moritz

2005, pp. 30, 95):

∆T (r) = 0, for |r| > R ,

−∂T
∂r
|r −

2T (r)

|r|
= ∆g(r), for |r| = R , (1.67)

lim
|r|→∞

T (r) = 0 .

Considering the values on the boundary as known, we solve the disturbing gravity poten-

tial T outside the boundary. If the boundary surface is a sphere, the BVPs listed above are

well-posed9. Thus, there exists a unique solution in a form of the Green integral (Green

1828). In spherical coordinates (r, θ, λ) we get the following solutions:

• Solution of Dirichlet’s BVP – Abel-Poisson’s integral (Kellogg 1929, Sec. 9.4,

p. 241; Bjerhammar 1963; Martinec 1998, p. 104):

T (r, θ, λ) =
1

4π

2π∫
0

π∫
0

T (R, θ′, λ′)K(r, R, ψ) sin θ′ dλ′ dθ′ . (1.68)

The Green integral kernel K can be expressed in the form of an infinite series

(Kellogg 1929, Sec. 9.4)

K(r, R, ψ) =
∞∑
n=0

(2n+ 1)

(
R

r

)n+1

Pn(cosψ) , (1.69)

or as the closed formula (Kellogg 1929, Sec. 9.4)

K(r, R, ψ) =
r(r2 −R2)

(r2 +R2 − 2rR cosψ)
3
2

. (1.70)

9Solution is “well posed in the sense of Hadamard”, if: 1) the solution exists, 2) the solution is unique

for given data, 3) the solution depends continuously on the data (Hadamard 1902).
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The term Pn stands for Legendre’s polynomials and ψ is the spherical distance

between the computing point represented by (r, θ, λ) and the integrating point rep-

resented by (R, θ′, λ′), so that

cosψ = cos θ cos θ′ + sin θ sin θ′ cos(λ− λ′) . (1.71)

• Solution of Neumann’s BVP – Hotine’s integral (Hotine 1969; Hofmann-Wellenhof

and Moritz 2005, p. 115):

T (R, θ, λ) =
R

4π

2π∫
0

π∫
0

δg(R, θ′, λ′)H(ψ) sin θ′ dλ′ dθ′ , (1.72)

where the integral kernel (Pick, Vyskočil and Pícha 1973, p. 474)

H(ψ) =
∞∑
n=2

2n+ 1

n+ 1
Pn(cosψ) , (1.73)

is called Hotine’s function. The closed expression of Hotine’s function is given by

(Hotine 1969; Pick, Vyskočil and Pícha 1973, p. 472)

H(ψ) =

(
sin

ψ

2

)−1

− ln

[
1 +

(
sin

ψ

2

)−1
]
. (1.74)

• Solution of Newton’s BVP – Stokes’s integral (Stokes 1849; Heiskanen and Moritz

1967, p. 93):

T (R, θ, λ) =
R

4π

2π∫
0

π∫
0

∆g(R, θ′, λ′)S(ψ) sin θ′ dλ′ dθ′ , (1.75)

where the integral kernel called Stokes’s function is expressed as an infinite series

(Heiskanen and Moritz 1967, p. 97)

S(ψ) =
∞∑
n=2

2n+ 1

n− 1
Pn(cosψ) , (1.76)

or in the closed form (Stokes 1849; Heiskanen and Moritz 1967, p. 94)

S(ψ) =

(
sin

ψ

2

)−1

−6 sin
ψ

2
+1−5 cosψ−3 cosψ ln

(
sin

ψ

2
+ sin2 ψ

2

)
. (1.77)
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1.4.4 Local geoid models of Taiwan

Geoid models for Taiwan have been developed by numerous researchers (e.g., Chang,

Chang and Lee 1990; Tsuei et al. 1995; Hwang 1996). An improved geoid model for

Taiwan based on surface gravity data was computed by Hwang (1997a). Although this

model yielded 2 cm standard deviation when comparing the modelled geoidal heights and

the observed geoidal heights along a testing levelling profile at the west coast of Taiwan,

it contained errors at long wavelengths (100− 300 km), partly due to the OSU91a model

(Rapp, Wang and Pavlis 1991) and partly due to the used gravity data (Hwang 1997b). In

2000, a geoid model for Taiwan was developed using terrestrial and sea gravity anomalies

and altimetry-derived geoid gradients by least-squares collocation (Hwang and Hwang

2002) with the estimated model accuracy ranging from 2 cm in flat areas to 10 cm in

mountainous areas. The geoid model based on aerial gravity data (a survey performed

from 2004 to 2005), surface gravity data and the KMS02 altimetry-derived gravity data

(Andersen et al. 1999) was developed by Hwang et al. (2007). The accuracy of the geoid

model was determined by comparing with GNSS/levelling points (differences between

the GNSS-derived ellipsoidal heights at the centimetre-level accuracy and the precision

levelling-derived orthometric heights at the millimetre-level accuracy). The standard de-

viations ranged from centimetre in coastal plains to decimetre in high mountains (Hwang

et al. 2007).
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Aerial gravimetry

Aerial gravimetry is a fast and efficient method of gravitational data collection. It is an

observation technique capable of providing accurate gravitational data at the spatial reso-

lution of 2 km or larger. Whereas ground gravity1 data are measured mostly along roads

or in a flat terrain, aerial gravimetry can cover areas with more complicated relief and

inaccessible regions (mountainous areas, rainforests, sea, polar regions, off-coast regions,

. . . ). The main disadvantage of this method is the lower spectral resolution of the mea-

sured data because of the high-frequency observation noise caused by flight dynamics.

Nevertheless, aerial gravimetry is an ideal technique to complement satellite-only gravi-

tational models. It is also an efficient tool to provide a transition between terrestrial and

marine gravity data.

2.1 Historical overview

The concept of aerial gravity was proposed in a beginning of the fifties of the 20th century

(Hammer 1950). The first reported test of aerial gravity measurements is described in

Lundberg (1957), but a used system was based on the principle of gradiometry. The first

test of aerial gravity meter system based on gravimetry was performed in 1958 by the U.S.

1In the case of measuring data at points connected with the Earth, both gravitational and centrifugal

accelerations (i.e., the gravity acceleration) are present. Only the gravitational acceleration is present if

measurement relates to points outside the Earth.
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Air Force (Thompson and LaCoste 1960). Other tests followed in 1960. Results of the

tests suffered mainly by the inaccurate determination of the aircraft position and velocity

(Nettleton, LaCoste and Harrison 1960). The first successful measurement of gravity from

a helicopter was performed in 1965 by the U.S. Naval Oceanographic Office (Gumert

and Cobb 1970; Gumert 1998). The major breakthrough in the aerial gravimetry was

a development of the Global Positioning System - NAVigation System with Timing And

Ranging (GPS NAVSTAR) during the mid 1980’s.2 It was an impulse for new activities in

designing and operating aerial gravity systems (Schwarz 1980; Hammer 1983; Brozena

and Peters 1988; Forsberg 1993). Especially the use of carrier phase measurements and

Differential GNSS (DGNSS) opened new ways to resolve navigational problems (see,

e.g., Brozena, Mader and Peters 1989; Schwarz, Cannon and Wong 1989; Kleusberg,

Peyton and Wells 1990).

Since the beginning of the nineties, the aerial gravimetry has been used for large-scale

surveys. Campaigns were performed over Greenland (Brozena 1992; Brozena and Peters

1994; Brozena, Peters and Salman 1997; Forsberg and Kenyon 1994; Forsberg and Rubek

1998; Forsberg, Olesen and Keller 1999; Olesen et al. 2000), Switzerland (Klingelé et

al. 1995; Verdun et al. 2003), Antarctica (Bell et al. 1992; Bell et al. 1999), Skagerrak

and Azores (Forsberg et al. 1997; Hehl et al. 1997), Nordic Baltic region (Forsberg and

Solheim 2000), Arctic ocean (Childers et al. 2001; Forsberg et al. 2003). Recent major

projects were the national geoid and regional surveys of Malaysia, Mongolia and Ethiopia

(Olesen and Forsberg 2007), Taiwan (Hwang et al. 2007, 2012, 2014), Alabama (Huang

et al. 2013; Wang et al. 2013) and the United States (GRAV-D3). The reported accuracies

of these campaigns were at the mGal level (about 1.5− 3 mGal for the spatial resolution

of 5− 6 km).
2Since GPS NAVSTAR another Global Navigation Satellite Systems (GNSS) or Regional Navigation

Satellite System (RNSS) have been developed, e.g., GLONASS (Russian GNSS), GALILEO (European

GNSS), BeiDou/COMPASS (Chinese GNSS) or IRNSS (Indian RNSS).
3The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) is a project of the Na-

tional Geodetic Survey to re-define the vertical datum of the United States by 2022. The expected ac-

curacy of the gravity-based vertical datum resulting from this project is at the level of 2 cm. Source:

http://www.ngs.noaa.gov.
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2.2 The principle of aerial gravimetry

In the aerial gravimetry, the gravitational data are measured along the flight trajectory.

The following classification is generally used for aerial gravitational measurements (e.g.,

Schwarz and Li 1997; Wei 1999; Alberts 2009):

• scalar gravimetry,

• vector gravimetry.

The principle of aerial gravimetry is based on Newton’s second law od motion (Newton

1686). Since a gravimeter (i.e., a highly sensitive accelerometer) is in motion, it cannot

distinguish between dynamic and gravitational accelerations. An aerial gravity system

measures a non-gravitational acceleration f (so-called specific force) that is subsequently

separated into two parts – the dynamic acceleration of an aircraft and gravitational ac-

celeration (Li 2000). The Newton second law of motion in the inertial reference frame i

(Feynman 1963, Sec. 9.1) is expressed by (Li 2000; Alberts 2009)

r̈i = f i + ag
i , (2.1)

where r̈ = d2r/dt2 is the second derivative in time of the position vector r, i.e., the

aircraft acceleration, f is the vector of measured non-gravitational acceleration and ag

is the gravitational acceleration vector. In the local astronomic system (also called local

level system; Torge 1980, Sec. 2.6.2) the gravitational acceleration vector ag is expressed

by (Torge 1980, p. 186; Alberts 2009)

ag
l = r̈l −Rl

bf
b + (2Ωl

ie + Ωl
el)ṙ

l , (2.2)

where Ωl
ie and Ωl

el are skew-symmetric matrices due to the Earth rotation and aircraft rate

and ṙ = dr/dt is the aircraft velocity. Moreover, it is assumed that the accelerometers

are fixed to the aircraft, which requires a transformation from the aircraft’s body frame b

to the local level system l. The corresponding rotation matrix R contains the orientation

angles between the two frames.

In scalar gravimetry the magnitude of the gravitational acceleration vector is deter-

mined. The non-gravitational acceleration is measured either by a strapdown inertial
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navigation system, that determines the orientation of the sensors (three accelerometers)

mathematically (Schwarz and Wei 1993; Wei and Schwarz 1998), or by a platform inertial

navigation system, that stabilizes a gravimeter in a vertical direction physically (Knick-

meyer 1990; Salychev et al. 1994). Aircraft dynamic acceleration is obtained by differ-

entiating in time the accurate position and velocity provided by DGNSS measurements

(Wei, Ferguson and Schwarz 1992; Czompo 1994).

In vector gravimetry, all three components of the gravitational vector are determined

(Jekeli and Kwon 1999). The accuracy of the components differs, the vertical component

is much more accurate than the horizontal components due to attitude errors caused by

gyro drifts (Bruton 2000).
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Aerial data of Taiwan

Taiwan is a very interesting area for testing methods for local gravity field modelling.

There are lowlands as well as high mountains with the highest peak of about 4000 metres

above the sea level on this island. There is also a deep ocean trench on the east created

by the subduction of the Philippine Sea Plate into the Eurasian Plate. On this quite small

island (around 36 thousands squared kilometres) there is a very miscellaneous relief which

creates large anomalies in the gravity field.

In Taiwan, three aerial gravity surveys were performed from 2004 to 2009 (Hwang

et al. 2007, 2012). By courtesy of prof. Cheinway Hwang of the National Chiao Tung

University aerial gravity data in the form of low-pass filtered gravity disturbances at con-

stant altitudes (Taiwan Island Survey, Kuroshio Current Survey and Taiwan Strait Survey)

were kindly provided to the geodetic group of the University of West Bohemia in order to

determine a local geoid model of Taiwan. The aerial gravity surveys were carried out over

the altitude of 5156 m (Taiwan Island Survey) and over the altitude of 1620 m (Kuroshio

Current Survey and Taiwan Strait Survey). A coherence analysis showed that the resolv-

ing wavelengths of the three aerial gravity datasets range from 4 to 6 km (Hwang et al.

2007, 2014). For the kinematic positioning of the aircraft, GNSS data at seven perma-

nent GNSS ground tracking stations around Taiwan and one tracking station on the west

coast of Taiwan near Taichung airport were collected. Using overlapping trajectory anal-

ysis, the overall GNSS positioning accuracy at the dm level was determined (Hwang et

al. 2014) with the velocity error at the mm/s level. The aerial gravity data were collected
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by the LaCoste and Romberg (LCR) System II air-sea gravimeter (serial number: S-133)

with the nominal resolution of 0.01 mGal and accuracy of better than ±1 mGal (Hwang

et al. 2007; L&R Air-sea Gravity System II 2003). From the analysis of crossover dif-

ferences and repeated aerial measurements the assessment of the overall accuracy of the

aerial gravity disturbances is about ±2-3 mGal at the spatial resolution (half wavelength)

of 4-6 km (Hwang et al. 2007, 2012).

3.1 Taiwan Island Survey 2004-2005

Over the period of May 2004 to May 2005 an aerial gravity survey had been performed

which covered the entire Taiwan Island (Hwang et al. 2007), see Fig. 3.1. In the thesis,

the Taiwan Island area is called the “central area”. The flight speed was 306 km/hour

relative to the ground surface. Most of the flight lines are in the north-south direction

because of the shape of Taiwan. The cross-line spacing is 4.5 km for all survey lines,

except the east-west lines, which are spaced at 20 km. Gravity readings were sampled at

1 Hz, corresponding to an 85 m sampling interval on the ground.

The aerial gravity data have been pre-processed by a low-pass filter because of the

high-frequency observation noise in the measured gravity signal. The filter width of 150 s

for the Gaussian filter corresponding to the 6 km spatial resolution (half wavelength) was

used. The aerial gravity data are at the constant flight altitude of 5156 m above the mean

sea level.

3.2 Kuroshio Current Survey 2006-2008

Over the period of March 2006 to August 2008, an aerial gravity survey had been made

over the Kuroshio Current east of Taiwan (Hwang et al. 2012), see Fig. 3.2. In the thesis,

the Kuroshio Current east of Taiwan area is called the “eastern area”. The aircraft used

were Beechcraft King Air 200 and 350, with the Trimble 5700 GNSS receiver onboard

the aircraft.

The Kuroshio Current Survey contains 36 lines in the north-south direction and 7 lines

in the east-west direction. The cross-line spacing is 5 km for all north-south lines and

32



CHAPTER 3. AERIAL DATA OF TAIWAN

119˚

119˚

120˚

120˚

121˚

121˚

122˚

122˚

123˚

123˚

22˚ 22˚

23˚ 23˚

24˚ 24˚

25˚ 25˚

26˚ 26˚

−150 −100 −50 0 50 100 150 200 250
mGal

Figure 3.1: Aerial gravity data (mGal) – Taiwan Island Survey, H1 = 5156 m

(192,336 points)

60 km for east-west lines. The flight altitude over the Kuroshio Current was set to 1620 m

above the mean sea level to increase the spatial resolution of aerial gravity data. The flight

speed was 280 km/hour with 1 Hz sampling rate, corresponding to the 77 m interval on

the ground.

3.3 Taiwan Strait Survey 2008-2009

The gravity values at altitude 1620 m above the mean sea level over the Taiwan Strait

were collected over 2008–2009 (Hwang et al. 2012), see Fig. 3.2. In the thesis, the

Taiwan Strait area is called the “western area”. The ground spacings along the 54 north-

south and 15 east-west lines are 5 and 25 km, respectively. The flight speed and the
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Figure 3.2: Aerial gravity data (mGal) – Taiwan Strait Survey, H2 = 1620 m (left;

8,624 points); Kuroshio Current Survey, H2 = 1620 m (right; 16,826 points)

corresponding gravity sampling interval are the same as for the Kuroshio Current Survey,

i.e., 280 km/hour and 77 m.
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Processing of aerial gravity data

Measured aerial gravity data are processed in order to determine the geoid. There are

two parts of the processing procedure: pre-processing and a transformation of the aerial

gravity disturbances to the disturbing gravity potential. An important part of the pre-

processing is the determination and elimination of data noise and errors. It mostly in-

cludes low-pass filtering of data to suppress their high-frequency noise and a cross-over

adjustment to eliminate bias and drift terms. A summary of the pre-processing techniques

can be found, e.g., in Alberts (2009, Sec. 3.1). In the following sections, the transforma-

tion of the aerial gravity disturbances to the disturbing gravity potential is discussed.

4.1 Formulation of BVPs for aerial gravity

In an aerial gravimetry, gravity observations correspond due to GNSS positioning to

points represented by the geodetic coordinates (h, ϕ, λ), see Appendix B.3. The trans-

formation of the geodetic coordinates (Gauss’s ellipsoidal coordinates) into the geocen-

tric spherical coordinates (r, θ, λ) can easily be done for the selected geocentric sphere

(Heiskanen and Moritz 1967, pp. 18, 182). The triplet of the spherical coordinates then

defines the geocentric position of a point of interest, i.e., (r, θ, λ) = (r,Ω). In the fol-

lowing, the spherical approximation of the geoid by the geocentric sphere of radius R is

used for the definition of BVPs. It is assumed that flight trajectories can be approximated

by the geocentric sphere of radius R + D, i.e., the flight height D above the sphere of
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radius R is constant.

Since we deal with aerial gravity data, their frequency limitation has to be taken into

account. Processing the aerial data by a low-pass filter yields the filtered gravity distur-

bances δgL, where L is the maximum degree in terms of the spherical harmonic expansion

which can be resolved. The Gaussian filter used in case of the aerial gravity data of Tai-

wan, see Sec. 3, corresponds to the 4 − 6 km spatial resolution (half wavelength) and

degree L ≈ 3340 (Novák, Kostelecký and Klokočník 2009). Moreover, since the aerial

gravity data are available only within a restricted geographic area, we are not able to deter-

mine from them low frequencies of the potential T . Thus, the “remove-compute-restore”

concept (e.g., Rapp and Rummel 1975; Schwarz, Sideris and Forsberg 1990) is used. The

low-frequency part of T is evaluated using GGM up to the degree and order l − 1 as well

as the low-frequency part of the gravity disturbances δgGGM which is removed before

the transformation. Removing the low-frequency part δgGGM from the filtered gravity

disturbances δgL yields

δgb = δgL − δgGGM , (4.1)

where δgb are the band-limited gravity disturbances, i.e., δgb =
∑L

n=l(δgb)n. The most

important part of the gravitational effects of the masses outside the geoid and the refer-

ence ellipsoid (topography, atmosphere, ice and sea water) on gravity is subtracted with

the low-frequency part δgGGM from GGM, see Sec. 6.1. Since we assume the residual

effect of atmosphere, ice and sea water on gravity is small, we do not consider this effect

in the thesis and only the residual gravitational effects of topography (Direct Topograph-

ical Effect (DTE) and Indirect Topographical Effect (ITE), see Sec. 4.5), are taken into

account. Thus, the “remove-compute-restore” process consists of the following steps, see

the scheme 6.1:

• remove the low-frequency part δgGGM from the filtered gravity disturbances: δgL →
δgb,

• remove the band-limited DTE Ab: δgb → δgHb (see Sec. 4.5.1),

• transform (compute) the Helmert residual gravity disturbances δgHb to the Helmert

residual disturbing gravity potential THb ,
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• restore the band-limited ITE δVb: THb → Tb (see Sec. 4.5.2),

• restore the low-frequency part of the disturbing gravity potential TGGM : Tb → TL.

The computation of the low-frequency part of the gravity disturbances δgGGM and the

disturbing gravity potential TGGM is done using available GGMs, in particularly, EGM08

and GOCO03s. EGM08 was chosen as GGM with the highest maximum degree and order

(up to n = m = 2160), GOCO03s was chosen as a representant of the latest satellite-only

GGMs based on data of gravity-dedicated satellite missions. The gravitational effect of

topography on the gravity disturbances (DTE) and on the disturbing gravity potential

(ITE) is discussed in Secs. 4.5.1 and 4.5.2, respectively. The only step remaining is

the transformation of δgHb to THb . Assuming gravity disturbances δgHb available at the

constant flight level D above the geocentric sphere of radius R all over the Earth, we can

formulate the problem as Neumann’s BVP, see Eq. (1.66) (Novák et al. 2003b),

∆THb (r,Ω) = 0, for r > R ,

−∂T
H
b

∂r
|(r,Ω) = δgHb (r,Ω), for r = R +D , (4.2)

lim
r→∞

THb (r,Ω) = 0 .

Our aim is to recover THb on the boundary R. Formally, this is no longer BVP but rather

an initial-value problem, since the gravity disturbances δgHb (r,Ω) = −∂TH
b

∂r
|(r,Ω) are given

in the solution domain and not on the boundary. There are two main assumptions for the

problem of Eqs. (4.2):

• disturbing gravity potential THb is harmonic outside the geoid represented by the

geocentric sphere of radius R (i.e., there are no gravitating masses outside the

geoid) ,

• input gravity data are band-limited, i.e., δgHb =
∑L

n=l(δg
H
b )n .

Due to the “remove-compute-restore” concept described above, both of these assumptions

are satisfied. The solution to the problem of Eqs. (4.2) is well-posed for the band-limited

gravity data (e.g., Martinec 1998; Novák and Heck 2002). Assuming the band-limited

gravity disturbances δgHb at the sphere of radiusR+D, the band-limited disturbing gravity
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potential THb restricted at the sphere of radius R is given as follows (“one-step approach”

in Novák and Heck (2002))

THb (R,Ω) =
R +D

4π

∫∫
ΩS

δgHb (R +D,Ω′) Ib(R +D,R, ψ) dΩ′ , for D ≥ 0 , (4.3)

where ΩS stands for the solid angle of the whole sphere, ψ is the spherical distance be-

tween the geocentric direction Ω = (θ, λ) of the point of interest and the geocentric

direction Ω′ = (θ′, λ′) of the integrating point and the band-limited integration kernel Ib
is (Novák and Heck 2002)

Ib(R +D,R, ψ) =
L∑
n=l

2n+ 1

n+ 1

(
R +D

R

)n+1

Pn(cosψ) . (4.4)

In the text above, the knowledge of the gravity disturbances δgHb at the flight level

D all over the Earth was assumed. Since the surveys described in Sec. 3 provide the

gravity disturbances δgHb only within the limited geographical area corresponding to the

solid angle Ω0, we split the integral in Eq. (4.3) into two parts

THb (R, θ, λ) =
R +D

4π

∫∫
Ω0

δgHb (R +D,Ω′) Ib(R +D,R, ψ) dΩ′ +

+
R +D

4π

∫∫
ΩS−Ω0

δgHb (R +D,Ω′) Ib(R +D,R, ψ) dΩ′ ,

(4.5)

where the integration over Ω0 gives the contribution of the near zone (i.e., the zone where

aerial gravity data are available, so-called spherical cap) and the integration over ΩS−Ω0

is the contribution of the distant zone. Since the kernel function Ib in Eq. (4.4) depends on

the spherical distance ψ of the computing point and the point of interest, it can be consid-

ered as a spatial weight function of a contribution of the gravity data. The kernel function

Ib for l = 201 and L = 3000 is plotted in Figs. 4.1 (flight altitudes are H1 = 5156 m

– blue line and H2 = 1620 m – red line) and 4.2. Although the band-limited integration

kernel Ib oscillates with the increasing amplitude for increasing degree n of the series

expansion, see Fig. 4.1, it can be evaluated numerically without any modification even

for L = 3000, i.e., the maximum L used in the thesis. Figure 4.2 shows that Ib oscillates
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with the amplitude decreasing to the zero for increasing spherical distance ψ except for

the part where the spherical distance approaches the value ψ = 180◦. In the case of aerial

Figure 4.1: Band-limited integration kernel Ib for 181 ≤ n ≤ 3000, ψ0 = 1◦ and the flight

altitudes H1 = 5156 m (blue line) and H2 = 1620 m (red line)

gravity data of Taiwan the maximum spherical distance used in computations is ψ0 = 0.9◦

around each point. It can be seen from the Fig. 4.2 that the contribution of the gravity

data within the distant zone (also called truncation error or distant-zone effect), i.e., for

ψ > ψ0, should not be neglected. This contribution cannot be computed by integration

over geographically limited aerial gravity data, because they are not available within the

distant zone. Thus, it is estimated using EGM08 up to the maximum degree and order

nmax = mmax = 2160. The truncation error εt resulting from spherical cap integration in

terms of the harmonic expansion is (Novák and Heck 2002)

εt =
GM

2(R +D)

nmax∑
n=l

(n+ 1)

(
R

R +D

)n+1

Vn(D,ψ0)Tn(Ω) , (4.6)

where the truncation coefficients Vn of the kernel function Ib are

Vn(D,ψ0) =
L∑
k=l

2k + 1

k + 1

(
R +D

R

)k+1

Rn,k(ψ0) , l ≤ n ≤ nmax . (4.7)
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Figure 4.2: Band-limited integration kernel Ib for 181 ≤ n ≤ 3000 and the flight altitude

D = 1620 m

Let cosψ0 ≡ t, the Paul coefficients Rn,k are (Paul 1973, p. 416)

for n 6= k :

Rn,k(t) =

n(n+1)
2n+1

Pk(t)[Pn+1(t)− Pn−1(t)]− k(k+1)
2k+1

Pn(t)[Pk+1(t)− Pk−1(t)]

(n− k)(n+ k + 1)
,

(4.8)

for n = k :

Rn,n(t) =
(n+ 1)(2n− 1)

n(2n+ 1)
Rn+1,n−1(t)− n− 1

n
Rn,n−2(t) +

+
2n− 1

2n+ 1
Rn−1,n−1(t) , (4.9)

with the initial values

P0(t) = 1 ,

P1(t) = t ,

R0,0(t) = t+ 1 , (4.10)

R1,1(t) =
t3 + 1

3
,

and the recurrence relation for the Legendre polynomials

Pn(t) =
2n− 1

n
tPn−1(t)− n− 1

n
Pn−2(t) . (4.11)
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Function Tn in Eq. (4.6) is the Laplace surface harmonic of degree n (Heiskanen and

Moritz 1967, p. 21) that is evaluated using EGM08.

4.1.1 Methods of transformation of δg(R +D) to T (R)

In geodesy, the determination of the geoid includes processing of different types of data.

There are global gravity data provided by gravity-dedicated satellite missions CHAMP

(Reigber, Lühr and Schwintzer 2002), GRACE (Tapley et al. 2004) and GOCE (ESA

1999; Drinkwater et al. 2003) and local gravity data obtained from aerial, marine and

terrestrial gravity surveys or satellite altimetry. Methods often used in the geoid deter-

mination include a least-squares collocation (Krarup 1969; Moritz 1980; Forsberg and

Kenyon 1994; Marchenko et al. 2001; Forsberg 2002), radial base functions (Schmidt

et al. 2007; Klees et al. 2008; Antoni, Keller and Weigelt 2009), variational methods

(Holota 1995, 1997; Holota and Nesvadba 2008) and integral formulas for the solution of

geodetic BVPs as the Stokes integral (Stokes 1849), the Hotine integral (Hotine 1969) and

the Molodensky integral series (Molodensky, Eremeev and Yurkina 1960). The numerical

approaches include the FFT techniques (Sideris and Schwarz 1986; Schwarz, Sideris and

Forsberg 1990), wavelet transform techniques (Freeden and Windheuser 1997; Freeden

and Schneider 1998; Keller 2004; Kuroishi and Keller 2005; Roland and Denker 2005)

and spherical harmonic expansions (Heiskanen and Moritz 1967).

In the thesis, two numerical methods are used for evaluation of the integral formula in

Eq. (4.3) – numerical integration (Newton-Cotes formulas) and the 4D wavelet transform.

Using the Newton-Cotes formulas represents a standard method for the numerical integra-

tion, 4D wavelet transform (Keller and Hájková 2011) represents a numerical technique

related to the solution of the so-called Galerkin equations. Wavelet transform is a power-

ful tool in evaluating some singular geodetic integrals (e.g., Liu and Sideris 2005). Our

aim is to find out if it remains the efficient tool also for evaluation of non-singular surface

integrals. Both methods are tested on synthetic gravity data sets first, see Sec. 5. Then,

the measured aerial gravity disturbances at the flight level within the area of Taiwan are

transformed to the disturbing gravity potential at the sea level using these two methods.

For a comparison with the “one-step approach” described above, see Eq. (4.3) (Novák

and Heck 2002), we used also the standard two-step approach where an analytic contin-
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uation of the aerial gravity disturbances from a flight altitude to the geocentric reference

sphere R is done by the quadratic part of the Taylor series and the transformation of the

gravity disturbances to the disturbing gravity potential at the geocentric reference sphere

R is done by the Hotine formula (Hotine 1969; Hofmann-Wellenhof and Moritz 2005,

p. 115), see Eq. (1.72). For the evaluation of the Hotine formula, a numerical integration

by the Newton-Cotes formulas is used.

4.2 Numerical integration

For transformation of the gravity disturbances δgHb at the constant height D above the

geocentric sphere of radius R to the disturbing gravity potential δTHb , see Eq. (4.3), we

used Newton-Cotes formulas (Abramowitz and Stegun 1972, p. 886) for the numerical in-

tegration. The minimum degree l in the integration kernel, see Eq. (4.4), and the radius of

integration correspond to the same values as in the evaluation of DTE. A wavelength κ of

a function (e.g., the gravity disturbance or the disturbing gravity potential) on the geocen-

tric sphere of radius R, computed using a spherical harmonic series up to the maximum

degree n, yields (Novák, Kostelecký and Klokočník 2009)

κ =
2πR

n
. (4.12)

Due to a connection between a wavelength and a spatial distance ψ (in radians), ψ = κ
n

(Novák, Kostelecký and Klokočník 2009), the spatial distance ψ can be assigned to the

maximum degree and order of the used GGM. Thus, l = 201 and ψmax = 54′ for

EGM08/GOCO03s used to the degree and order n = m = 200, l = 361 and ψmax = 30′

for EGM08 used to the degree and order n = m = 360, l = 1081 and ψmax = 10′ for

EGM08 used to the degree and order n = m = 1080 and l = 2161 and ψmax = 5′ for

EGM08 used to the degree and order n = m = 2160. The maximum degree L depends

on the width of the filter which was applied on measured data. For aerial gravity data of

Taiwan, the degree L = 3000 was chosen, see Sec. 4.1. In the case of numerical inte-

gration using Newton-Cotes formulas, the truncation error resulting from spherical cap

integration, see Eq. (4.6), were taken into account (Novák and Heck 2002).

The integral in the “one-step method”, see Eq. (4.3), corresponds for D = 0 to

the Hotine integral. Thus, the Newton-Cotes formulas for numerical integration of the
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integral in Eq. (4.3) for D = 0 are used for evaluation of the Hotine integral in the

two-step approach.

4.3 Wavelet transform

Wavelet transform is a numerical technique related to the solution of the so-called Galerkin

equations (e.g., Zienkiewicz, Taylor and Zhu 1967). It can be used for the evaluation of

integral operators, both convolution and non-convolution ones. Assume the integral trans-

formation in the form (Keller and Hájková 2011)

S(x) =

∫
Rn

K(x,y) s(y) dy , (4.13)

where S stands for the given data and s for the unknown solution (e.g., Abel-Poisson’s

integral, Kellogg 1927, p. 241) or vice versa (e.g., the Stokes formula, Heiskanen and

Moritz 1967, p. 93). In the following text we assume the first case, i.e., S stands for the

given data and s for the unknown solution. The basic idea of the wavelet transform is to

approximate both the functions S and s by linear combinations of given orthonormal base

functions ϕj and ψk

s(y) =
n∑
j=1

αj ϕj(y), S(x) =
n∑
k=1

βk ψk(x) , (4.14)

where αj and βk are corresponding coefficients of the linear combinations. Inserting these

expansions into Eq. (4.13) yields

n∑
k=1

βk ψk(x) =
n∑
j=1

αj

∫
Rn

K(x,y)ϕj(y) dy . (4.15)

Multiplication with ψi and integration leads (because of the orthonormality of the func-

tions ψj) to the system of linear equations (Keller and Hájková 2011)

βi =
n∑
j=1

 ∫
Rn

∫
Rn

K(x,y)ϕj(y)ψi(x) dy dx

αj , i = 1, ..., n . (4.16)
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The numerical properties (density/sparsity) of the matrix

A =

 ∫
Rn

∫
Rn

K(x,y)ϕj(y)ψi(x) dy dx


i,j

, (4.17)

strongly influence the numerical efficiency of the Galerkin method.

In Sec. 4.3.1, an overview of different methods depending on the numerical properties

of the matrix A and on the dimension of integral formula (planar, spherical, . . . ) can be

found. Basic ideas of the wavelet decomposition and reconstruction in 1D are described

in Sec. 4.3.2. In Sec. 4.3.3, theN -dimensional wavelet transform developed in Keller and

Hájková (2011) is presented. In the thesis, the 4D wavelet transform described in Keller

and Hájková (2011) was used for the transformation of the aerial gravity disturbances δgHb
at the constant flight level D above the geocentric sphere of radius R to the disturbing

gravity potential δTHb at the sea level, see Eq. (4.3). Parameters of this transformation are

described in Sec. 4.3.4.

4.3.1 Introduction to wavelet transform in geodesy

In the case of a diagonal matrix, the sparsest possible matrix, the spectrum of the solu-

tion is obtained by dividing (S known, s unknown function) or multiplying (S unknown,

s known function) the spectrum of the data by the spectrum of the kernel, which is the

core of the FFT technique (Sideris and Schwarz 1986; Schwarz, Sideris and Forsberg

1990). Since the 2D FFT techniques are restricted to planar approximation, they cannot

be directly used on the sphere, where the corresponding integral kernels are no longer

convolution kernels. Different methods have been developed to solve this problem. Eval-

uation of spherical integral formulas on a sequence of strips, each of them bounded by

two parallels, was presented in Strang van Hees (1990) and Haagmans, de Min and van

Gelderen (1993). In each strip the kernel is approximately a convolution kernel and can

be evaluated by FFT techniques. A similar technique restricted to so-called invariant

spherical pseudo-differential operators1 (ISPDO) was described in Windheuser (1995). It

1Pseudo-differential operators – operators whose kernels can be represented as convergent series of

Legendre polynomials (Windheuser 1995).
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uses for the evaluation of spherical integral formulas spherical wavelets. In general, cuba-

ture formulas are applied for the spherical wavelet transform and for the inverse spherical

wavelet transform. An overview of the theory of spherical wavelets and of some of their

applications can be found in Freeden (1999).

Block-wise constant base functions, that are frequently used in the case of a non-

convolution kernel, lead to a fully occupied matrix A with a small number of large and

a large number of small entries. The idea of operator compression, i.e., neglecting the

small entries with only the small accuracy loss, was already discussed in numerical analy-

sis (e.g., Beylkin, Coifman and Rohlin 1991, 1992; Koornwinder 1993). Since block-wise

functions are simple wavelets – the tensor-Haar wavelets (see, e.g., Keller 2004, p. 207),

in order to maximize the compression rate of the matrix A without losing much of the

accuracy, a higher order orthogonal wavelet should be used as a base function. With the

decomposition depth of more than one level, a much higher compression rate and conse-

quently a much more efficient solution technique can be constructed (Keller and Hájková

2011).

The using of wavelets in physical geodesy is a rather new technique, although in the

geodynamics is well established (e.g., Gibert, Holschneider and Le Mouël 1998; Schuh,

Nagel and Seitz 2001). Significant contributions on using wavelets in physical geodesy

can be found for instance in Salomonovicz (2000), Gilbert and Keller (2000), Liu and

Sideris (2003) and Elhabiby (2007). The technique for evaluation of non-convolution

integrals described in Elhabiby (2007) leads to impressive compression rates that could

be achieved without degrading the evaluation accuracy. Nevertheless, this approach does

not allow a decomposition depth of more than one level. Moreover, the convolution kernel

is treated as a sequence of 2D decompositions, although the kernel is 4D (assume both

the computation and the running points have two variable coordinates).

In order to achieve the maximal possible efficiency and compression rate, formulas

for the 4D wavelet decomposition and reconstruction and for the multiplication of the

4D spectrum of the kernel with the 2D spectrum of the data was developed in Keller and

Hájková (2011). The main ideas are described in the text below. In the thesis, this method

was used for the transformation of the aerial gravity disturbances δgHb at the constant

flight level D above the geocentric sphere of radius R to the disturbing gravity potential
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δTHb at the sea level, see Eq. (4.3).

4.3.2 Wavelet decomposition and reconstruction in 1D

The main idea of the wavelet transform is to decompose a signal into disjunct frequency

bands, a high-frequency and a low-frequency part. Let f ∈ L2(R) be a signal from

a certain subspace V−1 ⊂ L2(R). The low-frequency (smooth) part is obtained by an

orthogonal projection P0f into a smaller subspace V0 ⊂ V−1, which contains only the

smooth functions of V−1. The projection denoted as Q0f of the signal f into the orthogo-

nal complement W0 of V0 in V−1 gives the high-frequency (rough) part. The signal f can

be decomposed in the following way (Keller 2004, p. 43):

f = P0f +Q0f ,

V−1 = V0 ⊕W0 , (4.18)

where “⊕” is a direct sum (see, e.g., Rektorys et al. 1963, p. 828). Repeating this

decomposition for the low-frequency part P0f gives

P0f = P1P0f +Q1P0f , (4.19)

where P1 and Q1 are the projectors into subspace V1 ⊂ V0 and the corresponding or-

thogonal complement W1. The decomposition of the signal f , schematically displayed

in Fig. 4.3 (Keller 2004, p. 45), into different frequency bands is the core of the multi-

resolution analysis.

L2(R) . . . V−1
P0 //

Q0 !!

V0
P1 //

Q1 !!

V1
P2 //

Q2 !!

V2
P3 //

Q3

""

. . .

W0 W1 W2 . . .

Figure 4.3: Multi-resolution analysis (MRA) of L2(R)

The Multi-Resolution Analysis (MRA) of L2(R) is defined as a sequence of closed

linear subspaces Vj ⊂ L2(R), schematically (Keller 2004, p. 44)

{0} ⊂ . . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . . ⊂ L2(R) , (4.20)
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if the following statements holds (Daubechies 1992, p. 14; Koornwinder 1995)

a) Vj+1 ⊂ Vj , (4.21)

b)
⋃
j∈Z

Vj = L2(R) , (4.22)

c)
⋂
j∈Z

Vj = {0} , (4.23)

d) f(x) ∈ Vj ⇔ f(2jx) ∈ V0, or f(x) ∈ Vj ⇔ f(2x) ∈ Vj−1 , (4.24)

e) f(x) ∈ V0 ⇒ f(x− n) ∈ V0, ∀n ∈ Z , (4.25)

f) there exists a function (scaling function) ϕ ∈ V0, that the set

{ϕ0,n;n ∈ Z} = {ϕ(x− n);n ∈ Z}, (4.26)

is the Riesz2 base of V0.

According Eq. (4.24) all spaces of MRA are scaled versions of the base space V0. We

define the scaled versions of ϕ in the following way (Daubechies 1992, p. 130):

ϕj,n(x) := 2−
j
2ϕ(2−jx− n) . (4.27)

Since the space V0 is spanned by the shifted versions of the scaling function ϕ, see

Eq. (4.26), the spaces Vj are spanned by the shifted versions of ϕj,n that constitute the

Riesz base of Vj .

According Eq. (4.21), for the scale function ϕ ∈ V0 it also holds ϕ ∈ V−1. Thus,

there exists a uniquely determined sequence of real numbers {hn}n∈Z called scaling co-

efficients, such that (Daubechies 1992; Keller 2004, p. 47)

ϕ(x) =
∑
n∈Z

hnϕ−1,n(x) =
√

2
∑
n∈Z

hnϕ(2x− n) , (4.28)

2Definition of the Riesz base can be found in Koornwinder (1995), p. 21.
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where

hn =

∞∫
−∞

ϕ(x)
√

2ϕ(2x− n) dx =
√

2

∞∫
−∞

ϕ(x)ϕ(2x− n) dx ,

∑
n∈Z

|hn|2 = 1 . (4.29)

Equation (4.28) is called the scaling equation of MRA. In order to get the orthogonal

wavelets, the orthogonal Riesz base of V0 is required, i.e., for the scaling functions it must

hold

〈ϕ(x− k), ϕ(x− l)〉L2 = δk,l, k, l ∈ Z , (4.30)

where δk,l stands for the Kronecker delta3 and 〈·, ·〉L2 stands for the discrete scalar product

of two complex functions in L2(R) (e.g., Rektorys et al. 1963, p. 827). Equation (4.30)

yields for the scaling parameters (Keller 2004, p. 48)∑
n∈Z

hnhn+2m = δ0,m. (4.31)

If the nested sequence of the spaces Vj satisfies the properties in Eqs. (4.21) to (4.26),

then there exists ψ such that (Daubechies 1992, p. 14)

Pj−1f = Pjf +
∑
k∈Z

〈f, ψj,k〉L2ψj,k , (4.32)

where Pj is the orthogonal projection into space Vj . Base functions ψj,k are the shifted

versions of the mother wavelet ψ,

ψj,k(x) = 2−
j
2ψ(2−jx− k) , (4.33)

which is defined using the scaling function ϕ from Eq. (4.26) and the scaling coefficients

(Keller 2004, p. 51)

ψ(x) =
√

2
∑
n∈Z

gnϕ(2x− n) =
√

2
∑
n∈Z

(−1)nh1−nϕ(2x− n) =
∑
n∈Z

(−1)nh1−nϕ−1,n .

(4.34)
3Kronecker delta is a function of two variables. It is 1 if the variables are equal, otherwise it is 0:

δj,k =

1, j = k ,

0, j 6= k .
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For every Riesz base of the space V0 we can construct the Riesz base of the space W0,

which is the orthogonal complement of V0 in V−1, using the relationship between the

scaling coefficients hk of ϕ and the coefficients gk of ψ (Keller 2004, p. 51)

gk = (−1)kh1−k . (4.35)

Assume the signal f ∈ V0 ⊂ L2(R). Since the scaling functions ϕ constitute the Riesz

base of V0, the signal f can be determined as a linear combination of these functions, such

as (Keller 2004, pp. 55-56)

f(x) =
∑
k∈Z

c0,kϕ(x− k) =
∑
k∈Z

c0,kϕ0,k(x) , c0,k = 〈f, ϕ0,k〉L2 . (4.36)

According Eq. (4.18), the function f ∈ V0 ⊂ L2(R) can be decomposed into a low-

frequency part from the subset V1 and a high-frequency part from the subset W1. The

Riesz base of V1 and W1 is constituted by the scaling functions ϕ and wavelets ψ, respec-

tively. Thus, the decomposition of the signal f can be written as follows:

f(x) =
∑
k∈Z

c1,kϕ1,k(x) +
∑
k∈Z

d1,kψ1,k(x) , (4.37)

where c1,k = 〈f, ϕ1,k〉L2 and d1,k = 〈f, ψ1,k〉L2 . In general, every function f ∈ Vm−1,

Vm−1 ⊂ L2(R) can be decomposed as follows

f(x) =
∑
k∈Z

cm,kϕm,k(x) +
∑
k∈Z

dm,kψm,k(x) ,

cm,k = 〈f, ϕm,k〉L2 ,

dm,k = 〈f, ψm,k〉L2 . (4.38)

It is not effective to compute the coefficients cm,k and dm,k by the numerical evaluation

of the scalar products. Using the scaling equation (4.28) and the defining equation of

the wavelet (4.34), a relation between the coefficients cm−1 and cm, dm called the Mallat

algorithm is derived (Keller 2004, p. 56):

cm,k =
∑
l∈Z

cm−1,lhl−2k , (4.39)

dm,k =
∑
l∈Z

cm−1,lgl−2k . (4.40)
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The Mallat algorithm can be described using decomposition operators H and G, that are

defined as follows (Keller 2004, p. 57):

H : l2(Z) → l2(Z)

c 7→ Hc = {(Hc)k =
∑
l∈Z

hl−2kcl} , (4.41)

G : l2(Z) → l2(Z)

c 7→ Gc = {(Gc)k =
∑
l∈Z

gl−2kcl} . (4.42)

Using the operators H and G, the scheme of the Mallat algorithm is shown in Fig. 4.4.

cm
H //

G ""

cm+1
H //

G $$

cm+2
H //

G $$

cm+3
H //

G
$$

. . .

dm+1 dm+2 dm+3 . . .

Figure 4.4: Scheme of the Mallat algorithm

A similar relation can be derived for the reconstruction of the function f ∈ Vm,

Vm ⊂ L2 (R), see, e.g., Keller (2004). Assuming the coefficients cm and dm are known,

the coefficients cm−1 are computed as follows

cm−1,k =
∑
l∈Z

(cm,lhk−2l + dm,lgk−2l) . (4.43)

We define the adjoint operators H∗, G∗ of the decomposition operators H , G (Keller

2004, p. 58):

H∗ : l2(Z) → l2(Z)

c 7→ H∗c = {(H∗c)k =
∑
l∈Z

hk−2lcl} , (4.44)

G∗ : l2(Z) → l2(Z)

c 7→ G∗c = {(G∗c)k =
∑
l∈Z

gk−2lcl} . (4.45)

The scheme of the inverse Mallat algorithm using the adjoint operators H∗ and G∗ is

shown in Fig. 4.5.
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. . . cm+3
H∗
// cm+2

H∗
// cm+1

H∗
// cm

. . . dm+3

G∗

::

dm+2

G∗

::

dm+1

G∗

<<

Figure 4.5: Scheme of the inverse Mallat algorithm

4.3.3 N-dimensional wavelet analysis

Similar to the 1D case, MRA of L2(Rn) is a nested sequence of subspaces (Keller and

Hájková 2011)

{0} ⊂ . . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ . . . ⊂ L2(Rn) , (4.46)

with the following statements

a) Vj+1 ⊂ Vj ,

b)
⋃
j∈Z Vj = L2(Rn) ,

c)
⋂
j∈Z Vj = {0} ,

d) f(x) ∈ Vj ⇔ f(2Ix) ∈ Vj−1 ,

e) there exists a function (scaling function) ϕ ∈ V0, that the set

{ϕ0,k; k ∈ Zn} = {ϕ(x− k); k ∈ Zn},

is the Riesz base of V0.

There exist 2n−1 wavelets ψ(1), . . . , ψ(2n−1) which generate the orthogonal complements

W j
0 , j = 1, . . . , 2n − 1 of V0 in V−1 (Louis, Maaß and Rieder 1998)

V−1 = V0 ⊕ (⊕2n−1
j=1 W

(j)
0 ) . (4.47)
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Assuming the scaling function and wavelet of the 1D MRA are known, we define the

multi-index d and his modulus |d|:

d = (d1, d2, . . . , dn) , di ∈ 0, 1 , (4.48)

|d| =
n∑
k=1

dk2
k−1 . (4.49)

The scaling function ϕ and wavelet ψ(j) of the n-dimensional MRA can be constructed in

the following way (Keller and Hájková 2011):

ϕ(x) = ϕ(x1) · ϕ(x2) . . . ϕ(xn) , (4.50)

ψ(|d|)(x) = (ϕ(x1)δ0,d1 + ψ(x1)δ1,d1) · (ϕ(x2)δ0,d2 + ψ(x2)δ1,d2) · . . . ·

(ϕ(xn)δ0,dn + ψ(xn)δ1,dn) , (4.51)

x = (x1, x2, . . . , xn) ∈ Rn .

The corresponding scaled and shifted versions are defined by

ϕl,m(x) = 2−nl/2ϕ(2−lx−m) , (4.52)

ψ
(|d|)
l,m (x) = 2−nl/2ψ(|d|)(2−lx−m) . (4.53)

There are 2n scaling equations in L2(Rn) (Keller and Hájková 2011):

ϕ(x) = 2n/2
∑
k∈Zn

hkϕ(2x− k) , (4.54)

ψ(|d|)(x) = 2n/2
∑
k∈Zn

g
(|d|)
k ψ(2x− k) , |d| > 0 , (4.55)

where the sequences {hk}, {g(|d|)
k } are defined as follows:

hk = hk1 · hk2 . . . hkn , (4.56)

g
(|d|)
k = (hk1δ0,d1 + gk1δ1,d1) · (hk2δ0,d2 + gk2δ1,d2) · . . . · (hknδ0,dn + gknδ1,dn) .

(4.57)

In order to derive the n-dimensional Mallat algorithm, the function f ∈ V−1 is represented

with respect to the base of V−1 and, because of Eq. (4.47), with respect to the bases of V0
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and W (j)
0 , respectively (Keller and Hájková 2011)

f(x) =
∑
k∈Zn

c
(−1)
k ϕ−1,k(x) , (4.58)

f(x) =
∑
k∈Zn

c(0)
k ϕ0,k(x)

2n−1∑
|d|=1

d
(0,(|d|))
k ψ

(|d|)
0,k (x)

 . (4.59)

Similar as in 1D case, the coefficients c−1 and c0, d(|d|)
0 are related as follows

c0,k =
∑
l∈Zn

c−1,l hl−2k , (4.60)

d
(|d|)
0,k =

∑
l∈Zn

c−1,l gl−2k . (4.61)

The n-dimensional Mallat algorithm is based on the relations (4.60) and (4.61). The

decomposition filters H and G(|d|) are (Keller and Hájková 2011)

H : l2(Zn) → l2(Zn)

c 7→ Hc = {(Hc)k =
∑
l∈Zn

hl−2k cl} , (4.62)

G(|d|) : l2(Zn) → l2(Zn)

c 7→ G(|d|)c = {(G(|d|)c)k =
∑
l∈Zn

g
(|d|)
l−2k cl} . (4.63)

The n-dimensional adjoint filters are defined as follows:

H∗ : l2(Zn) → l2(Zn)

c 7→ H∗c = {(H∗c)k =
∑
l∈Zn

hk−2l cl} , (4.64)

(G(|d|))∗ : l2(Zn) → l2(Zn)

c 7→ (G(|d|))∗c = {((G(|d|))∗c)k =
∑
l∈Zn

g
(|d|)
k−2l cl} . (4.65)

In Fig. 4.6 the schemes of the n-dimensional Mallat algorithm (left) and the correspond-

ing inverse Mallat algorithm (right) are shown.
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Figure 4.6: Schemes of the n-dimensional Mallat (left) and inverse Mallat (right) algo-

rithm

4.3.4 Computation of the local geoid model using 4D wavelet trans-
form

The wavelet approach described in Keller and Hájková (2011) for solving Eq. (4.3) con-

sists of the following four steps:

• transformation of the band-limited integration kernel Ib into the wavelet domain,

• transformation of the residual aerial gravity disturbances δgHb (R + D) into the

wavelet domain,

• computation of the wavelet spectrum of the disturbing gravity potential δTHb (R),

• backward transformation of the disturbing gravity potential spectrum in estimated

disturbing gravity potential.

As base functions the compactly supported orthogonal wavelets were used, particularly

the Daubechies wavelet ψ (D4) with the scaling coefficients (Daubechies 1992; Keller
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2004, p. 93)

{h0, h1, h2, h3} =

{
1 +
√

3

4
√

2
,
3 +
√

3

4
√

2
,
3−
√

3

4
√

2
,
1−
√

3

4
√

2

}
, (4.66)

and

{g0, g1, g2, g3} =

{
1 +
√

3

4
√

2
,−3−

√
3

4
√

2
,
3 +
√

3

4
√

2
,−1 +

√
3

4
√

2

}
. (4.67)

The Daubechies wavelet ψ (D4) and the corresponding scale function ϕ are plotted in

Fig. 4.7.

Figure 4.7: Daubechies wavelet ψ (D4) and the corresponding scale function ϕ

As in the case of numerical integration, the minimum degree l in the integration kernel,

see Eq. (4.4), corresponds to degree and order of a low-frequency part of GGMs and the

maximum degree L = 3000 depends on the width of the filter which was applied on

measured aerial gravity data.

4.4 Taylor series

Depending on a distance, on which an analytic continuation is performed, linear or qua-

dratic terms of the Taylor series (Abramowitz and Stegun 1972, p. 880) are used in the

thesis. The continuation over height differences, that reach 150 m in maximum, is done

only using the linear part of the Taylor series

δg(R +D,Ω) ≈ δg(r,Ω) +
∂δg

∂r


(r,Ω)

(R +D − r) . (4.68)

55



CHAPTER 4. PROCESSING OF AERIAL GRAVITY DATA

When the analytic continuation over the longer distances at the level of kilometres is

needed, the height difference is divided into segments of the length of 500 m (+ one

segment about 500 m) and the quadratic part of the Taylor series is used for every segment

separately

δg(R +Dd,Ω) ≈ δg(R +Du,Ω) +
∂δg

∂r


(R+Du,Ω)

(Dd −Du) +

+
1

2

∂2δg

∂r2


(R+Du,Ω)

(Dd −Du)
2 , Du > Dd , (4.69)

where Du stands for the altitude of the first point and Dd for the altitude of the last point

of each segment.

4.5 Topographical effects on observed gravity

One of the main assumptions of the boundary-value problem of Eqs. (4.2) is that the

disturbing gravity potential T is harmonic everywhere outside the geoid (in the spherical

approximation of the geoid outside the geocentric sphere) and the reference ellipsoid.

Actually this assumption is not satisfied because of the masses outside the geoid and

ellipsoid (topography, sea water, ice and atmosphere). The most important part of the

gravitational effect of topography, atmosphere, ice and sea water on gravity is subtracted

with the reference part from the GGM, see Sec. 6.1. Since we assume the residual effect

of atmosphere, ice and sea water on gravity is small, we do not consider this effect in the

thesis. For the residual gravitational effect of topography the second Helmert method of

gravity reduction is used in the thesis because of the small effect on the disturbing gravity

potential on the geoid.

The main aim of the topographical reduction is to remove the topographic masses

outside the geoid. The masses can completely be removed as in the Bouguer reduction

(Heiskanen and Moritz 1967, p. 137) or an isostatic reduction can be used, where the

topography is removed together with its compensation. Examples of this method are

Pratt-Hayford reduction, Airy-Heiskanen reduction and Helmert reduction (Heiskanen

and Moritz 1967, pp. 138, 145).

In the case of the second Helmert method of gravity reduction (Heiskanen and Moritz

1967, p. 145; Martinec 1998, p. 42; Heck 2003; Novák et al. 2003a), the topography
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is condensed to the form of a single layer on the reference sphere of the radius R that

approximates the geoid. In the following text, the effect on gravity and the geoid due to

the Helmert reduction of the Earth’s gravity field is derived for the full-signal gravity data

first and then for the band-limited gravity disturbances and the band-limited geoid.

The Helmert disturbing gravity potential TH at the constant flight level R + D is

related to the disturbing gravity potential T as follows (Martinec 1993)

TH(R +D,Ω) = T (R +D,Ω)− δV (R +D,Ω) , (4.70)

where δV is the Helmert residual potential, which is defined as the difference between

the gravitational potential of topography V t and the gravitational potential of condensed

topography V ct (Vaníček et al. 1995)

δV (R +D,Ω) = V t(R +D,Ω)− V ct(R +D,Ω) . (4.71)

Applying the operator − ∂
∂r

to Eq. (4.70) yields

δgH(R +D,Ω) = −∂T
H

∂r
|R+D = −∂T

∂r
|R+D +

∂δV

∂r
|R+D =

= δg(R +D,Ω) + A(R +D,Ω) . (4.72)

The term A(R + D,Ω) = ∂δV
∂r
|R+D is called the direct topographical effect on gravity

and represents the change in gravity due to the Helmert reduction of the Earth’s gravity

field. The change in the disturbing gravity potential (and the geoid) is called the indirect

topographical effect. Equation (4.70) for the geocentric radius R becomes

TH(R,Ω) = T (R,Ω)− δV (R,Ω) . (4.73)

Using the spherical Bruns theorem (Bruns 1878; Heiskanen and Moritz 1967, p. 85)

yields

N(Ω) =
T (R,Ω)

γ(θ)
=
TH(R,Ω)

γ(θ)
+
δV (R,Ω)

γ(θ)
= NH(Ω) + P (Ω) , (4.74)

where γ is normal gravity at the reference ellipsoid,NH is the co-geoid (Helmert’s geoid),

δV and P is the indirect topographical effect corresponding to the disturbing gravity po-

tential and to the geoid, respectively.
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4.5.1 Direct topographical effect on gravity

The direct topographical effect (DTE) on gravity A(R + D,Ω) represents the change in

gravity due to the Helmert reduction of the Earth’s gravity field. It can be obtained by

applying the partial radial derivative to the Helmert residual potential δV , see Eq. (4.72).

According Eq. (4.71), the potential δV is the difference between the gravitational po-

tential of the topography V t and the condensed topography V ct. In the development by

Vaníček et al. (1995), only the first three terms of the infinite series occurring in evalu-

ation of V t are considered. Thus, the sign “≈” is used in the following formulas for the

DTE instead of the equality sign.

Assuming the topographical mass density as a constant value, i.e., ρ(r′,Ω′) = ρ =

const., the following formula can be derived for DTE (Vaníček et al. 1995; Novák et al.

2003a)

A(R +D,Ω) ≈ GRρ

∫∫
ΩS

[(
H(Ω′)

R

)2

J1(R +D,R, ψ) +

+

(
H(Ω′)

R

)3

J2(R +D,R, ψ)

]
dΩ′ , (4.75)

where G stands for the universal gravitational constant, ρ for the mean topographical

mass density, ΩS for the solid angle of the whole sphere, ψ is the spherical distance

between the geocentric direction Ω = (θ, λ) of the point of interest and the geocentric

direction Ω′ = (θ′, λ′) of the integrating point and H(Ω′) is the orthometric height of the

topography reckoned along the geocentric direction Ω′. The integration kernels J1 and J2

are defined by series that are convergent for D > 0

J1(R +D,R, ψ) = −
∞∑
n=0

n(n+ 1)

2

(
R

R +D

)n+2

Pn(cosψ) , (4.76)

J2(R +D,R, ψ) = −
∞∑
n=0

n(n+ 1)(n+ 3)

6

(
R

R +D

)n+2

Pn(cosψ) . (4.77)

Alternatively, DTE can be written as an infinite series, expanding both the integral kernels
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and topographical heights (Novák et al. 2003a):

A(R +D,Ω) ≈ −2π
Gρ

R

∞∑
n=0

n(n+ 1)

2n+ 1

(
R

R +D

)n+2

H2
n(Ω)−

−2π
Gρ

R2

∞∑
n=0

n(n+ 1)(n+ 3)

2n+ 1

(
R

R +D

)n+2

H3
n(Ω) . (4.78)

Laplace harmonics of the squared topographical height function H2
n and of the cubed

topographical height function H3
n are defined as follows (Novák et al. 2003a)

H2
n(Ω) =

n∑
m=0

(an,m cosmλ+ bn,m sinmλ)Pn,m(cos θ) , (4.79)

H3
n(Ω) =

n∑
m=0

(cn,m cosmλ+ dn,m sinmλ)Pn,m(cos θ) . (4.80)

The coefficients an,m, bn,m, cn,m and dn,m are obtained by the spherical harmonic analy-

sis of the squared and cubed heights of topography computed from DTM2006.0 global

topography model related to EGM08 (Pavlis, Factor and Holmes 2007; Pavlis et al. 2012).

Since we have the band-limited aerial gravity disturbances as input data, DTE should

correspond to the same frequency band. When using Eq. (4.75), band limitation is ap-

proximately achieved by integrating only over the limited spherical cap Ω0:

Ab(R +D,Ω) ≈ GRρ

∫∫
Ω0

[(
H(Ω′)

R

)2

J1(R +D,R, ψ) +

+

(
H(Ω′)

R

)3

J2(R +D,R, ψ)

]
dΩ′ . (4.81)

A connection between the radius of integration and the band limitation of the gravity

disturbances and DTE, respectively, is described in Sec. 4.2. For the band-limited DTE

in a series form we have (Novák et al. 2003a)

Ab(R +D,Ω) ≈ −2π
Gρ

R

L∑
n=l

n(n+ 1)

2n+ 1

(
R

R +D

)n+2

H2
n(Ω)−

−2π
Gρ

R2

L∑
n=l

n(n+ 1)(n+ 3)

2n+ 1

(
R

R +D

)n+2

H3
n(Ω) . (4.82)
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The maximum degree L in the finite series in Eq. (4.82) depends on the width of the filter

which was applied on measured aerial gravity data. For aerial gravity data of Taiwan, the

degree L = 3000 was chosen, see Sec. 4.1. Unfortunately, the Laplace harmonics of the

squared and cubed topographical height function H2
n and H3

n, respectively, are available

only to the degree n = 2160, which corresponds to the maximum degree and order of

EGM08. Thus, the maximum degree is L = 2160. The minimum degree l corresponds

to the maximum degree and order of GGM used for the evaluation of the low-frequency

part of the gravity disturbances δgGGM , see Sec. 4.2.

4.5.2 Indirect topographical effect on potential

The change in the disturbing gravity potential due to the Helmert reduction of the Earth’s

gravity field is the indirect topographical effect (ITE) on the potential called the Helmert

residual potential δV . Using the Bruns formula, see Eq. (4.74), ITE on the geoid P can

be derived. Since a truncated series was used in an evaluation of V t and δV , respectively,

the following formulas for ITE are approximate, similar to the case of DTE.

Analogous to DTE, ITE can be derived in the integral form (Novák et al. 2003a)

δV (R,Ω) ≈ GR2ρ

∫∫
ΩS

[(
H(Ω′)

R

)2

M1(ψ) +

+

(
H(Ω′)

R

)3

M2(ψ)

]
dΩ′ , (4.83)

or alternatively as the infinite series

δV (R,Ω) ≈ −2πGρ
∞∑
n=0

n+ 1

2n+ 1
H2
n(Ω) +

+
2

3
π
Gρ

R

∞∑
n=0

(n+ 1)(n− 2)

2n+ 1
H3
n(Ω) . (4.84)

The integration kernels M1 and M2 in Eq. (4.83) are defined as follows:

M1(ψ) = −
∞∑
n=0

n+ 1

2
Pn(cosψ) , (4.85)

M2(ψ) = −
∞∑
n=0

(n+ 1)(n− 2)

6
Pn(cosψ) . (4.86)
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Laplace harmonics of the squared topographical height function H2
n and of the cubed

topographical height function H3
n are defined by Eqs. (4.79) and (4.80).

Since we have the band-limited aerial gravity disturbances and band-limited DTE,

also ITE should correspond to the same frequency band. As in the case of Ab, the band

limitation is approximately achieved by integrating only over the limited spherical cap Ω0

when using Eq. (4.83), which yields

δVb(R,Ω) ≈ GR2ρ

∫∫
Ω0

[(
H(Ω′)

R

)2

M1(ψ) +

+

(
H(Ω′)

R

)3

M2(ψ)

]
dΩ′ . (4.87)

The band-limited ITE δVb can also be evaluated using the finite series (Novák et al.

2003a):

δVb(R,Ω) ≈ −2πGρ
L∑
n=l

n+ 1

2n+ 1
H2
n(Ω) +

+
2

3
π
Gρ

R

L∑
n=l

(n+ 1)(n− 2)

2n+ 1
H3
n(Ω) , (4.88)

where the maximum degree L = 2160 and the minimum degree l corresponds to the max-

imum degree and order of the used GGM, see Sec. 4.2. In order to get ITE corresponding

to the geoidal height, Eqs. (4.87) and (4.88) have to be divided by normal gravity γ at the

reference ellipsoid, which yields the integral form (Novák et al. 2003a)

Pb(Ω) ≈ GR2ρ

γ

∫∫
Ω0

[(
H(Ω′)

R

)2

M1(ψ) +

+

(
H(Ω′)

R

)3

M2(ψ)

]
dΩ′ , (4.89)

and for the computation by the finite series

Pb(Ω) ≈ −2π
Gρ

γ

L∑
n=l

n+ 1

2n+ 1
H2
n(Ω) +

+
2

3
π
Gρ

R

L∑
n=l

(n+ 1)(n− 2)

2n+ 1
H3
n(Ω) . (4.90)
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Chapter 5

Testing numerical methods using
synthetic gravity data

There are three different numerical methods used in the thesis: Newton-Cotes formulas

for numerical integration (NC), wavelet transform (WT) and the Taylor series (Linear –

LTS and Quadratic – QTS).

The analytic continuation by LTS is tested on the set of 49, 327 synthetic gravity dis-

turbances computed from EGM08 to the degree and order n = m = 2160 within the

area limited by the parallels of 23◦ and 24◦ northern latitude, and by the meridians of

120◦ and 122◦ eastern longitude. In every point, two gravity disturbances are computed

from EGM08 in two different heights (corresponding to radius r and R + D of the ref-

erence sphere, see Eq. (4.68)), with the height difference reaching 150 m in maximum.

The gravity disturbances corresponding to radius r are subsequently continued to radius

R + D. We compare differences between the continued values and the synthetic gravity

disturbances from EGM08 corresponding to radiusR+D. The error is below 0.002 mGal

in the standard deviation and below 0.014 mGal in the maximum value. When using the

gravity data corrupted by the random noise ε = 3 mGal, the error increases to the level of

the noise, i.e., the standard deviation of the differences is 3 mGal.

Using QTS, see Eq. (4.69), the analytic continuation from the altitude D = 5156 m

down to the reference sphere (i.e., D = 0 m) is tested on the set of 1, 788 synthetic gravity

disturbances computed from EGM08 to the degree and order n = m = 2160 within the
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area limited by the parallels of 24◦ and 24.25◦ northern latitude, and by the meridians of

121.25◦ and 121.5◦ eastern longitude, which includes the mountainous part of Taiwan.

The error is below 0.1 mGal in the standard deviation. When using the gravity data

corrupted by the random noise ε = 3 mGal, the error increases significantly to 9 mGal in

the standard deviation.

In order to test an accuracy and an efficiency of NC and WT in the “one-step ap-

proach”, the EGM08 was used for computation of the band-limited gravity disturbances

δgHb at the constant flight level D (Heiskanen and Moritz 1967, p. 88)

δgEGM08(R +D,Ω) =
GM

R2

L∑
n=l

(n+ 1)

(
R

R +D

)n+2

Tn(Ω) . (5.1)

The test area is limited by two parallels of 22◦ and 25◦ northern latitude, and by two

meridians of 119◦ and 123◦ eastern longitude. This area corresponds to 6, 912 data points

spaced by 2.5′ in latitude and longitude. The flight altitude D = 5 km is used. Since the

minimum degree in Eq. (4.4) is l = 181, the corresponding integration radius used in the

integration, see Eq. (4.5), is ψ = 1◦. Thus, the computation area is bounded by latitude

of 23◦ and 24◦ and by longitude of 120◦ and 122◦ in order to avoid any edge effects in

the results. This corresponds to 1, 152 computation points spaced by 2.5′ in latitude and

longitude. Since in the case of real aerial gravity data in Taiwan scattered GNSS/levelling

points are used for comparison of the computed geoid rather than an equiangular grid, an

interpolation step is added to the test. In the area bounded by latitude of 23◦ and 24◦ and

by longitude of 120◦ and 122◦, 737 points are chosen.

Two numerical tests are performed: without any noise ε, i.e., ε(R+D) = 0 mGal; with

the random noise ε(R + D) = 3 mGal, see the scheme shown in Fig. 5.1. The random

noise ε(R + D) added to the values of gravity disturbances δgEGM08 at the flight level is

shown in Fig. 5.2. By comparing the results with the reference band-limited disturbing

gravity potential TEGM08 at the mean sea level generated directly from EGM08

TEGM08(R,Ω) =
GM

R

L∑
n=l

Tn(Ω) , (5.2)

we obtain the noise εT (R,Ω) propagated via the integral formula in Eq. (4.3)

εT (R,Ω) = TEGM08(R,Ω)− T ε(R,Ω) . (5.3)
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δgEGM08(R +D,Ω) // δgε(R +D,Ω)
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Figure 5.1: Scheme of testing using synthetic gravity
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Figure 5.2: Random noise ε of 3 mGal added to the synthetic aerial gravity data (mGal)

The differences are converted into the effect on the geoid using the Bruns formula in the

spherical approximation (Bruns 1878; Heiskanen and Moritz 1967, p. 85)

εN(Ω) =
εT (R,Ω)

γ(θ)
, (5.4)

where γ is normal gravity at the reference ellipsoid. Values of the disturbing gravity

potential T obtained using NC are computed at scattered points directly. In the case

of WT, values of T can be computed only in a form of an equiangular grid; they are
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interpolated into scattered points if needed. For the interpolation, the Generic Mapping

Tools1 (GMT) are used. Tables 5.2 and 5.3 show results for NC and WT, respectively.

Corresponding histograms are shown in Figs. D.1 to D.4, see Appendix D. Values of the

synthetic disturbing gravity potential T are described in Tab. 5.1.

Although WT is in general an efficient tool for problems related to the signal pro-

cessing, for the computation of an integral without any singularity it seems to lose the

efficiency. Comparing with the numerical integration by NC, WT gives less accurate re-

sults. Standard deviations of the geoid noise εN are at the same level (for high degrees

l) or worse (for low degrees l) than in the case of NC. Moreover, WT is a more time

consuming method because for evaluation of a value at one point every points in the input

grid are needed. Almost all computing time, more than 98%, is needed for the evaluation

of the integral kernel. Thus, for WT, a computation takes approximately seventeen times

more time than for NC.

Mean StDev Min Max Range

l = 181, L = 2160 -0.440 ± 1.280 -1.947 3.108 5.054

l = 361, L = 2160 -0.081 ± 0.350 -1.018 0.922 1.940

l = 721, L = 2160 -0.002 ± 0.080 -0.253 0.190 0.444

l = 1081, L = 2160 0.009 ± 0.038 -0.112 0.162 0.274

l = 1441, L = 2160 0.003 ± 0.024 -0.082 0.095 0.178

l = 1801, L = 2160 0.002 ± 0.014 -0.042 0.044 0.087

Table 5.1: Synthetic geoidal heights N from EGM08 (m)

1Generic Mapping Tools (GMT) - an open source collection of tools for manipulating geographic and

Cartesian data sets (including filtering, trend fitting, gridding, projecting, etc). It is released under the GNU

Lesser General Public License. Source: http://gmt.soest.hawaii.edu/.
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Mean StDev Min Max Range

Error of integration

(ε = 0 mGal)

l = 181, L = 2160 -0.001 ± 0.003 -0.012 0.011 0.024

l = 361, L = 2160 0.000 ± 0.004 -0.019 0.014 0.033

l = 721, L = 2160 0.000 ± 0.001 -0.003 0.002 0.005

l = 1081, L = 2160 0.000 ± 0.002 -0.007 0.014 0.021

l = 1441, L = 2160 0.000 ± 0.002 -0.010 0.018 0.028

l = 1801, L = 2160 0.000 ± 0.001 -0.003 0.002 0.005

Error of integration and

noise propagation (ε = 3 mGal)

l = 181, L = 2160 -0.001 ± 0.020 -0.067 0.064 0.130

l = 361, L = 2160 0.001 ± 0.020 -0.060 0.057 0.117

l = 721, L = 2160 0.001 ± 0.017 -0.041 0.045 0.085

l = 1081, L = 2160 0.002 ± 0.015 -0.037 0.046 0.083

l = 1441, L = 2160 0.001 ± 0.011 -0.026 0.038 0.064

l = 1801, L = 2160 0.000 ± 0.005 -0.014 0.019 0.033

Table 5.2: Geoid noise εN for NC (m)
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Mean StDev Min Max Range

Error of WT

(ε = 0 mGal)

l = 181, L = 2160 0.039 ± 0.094 -0.162 0.197 0.359

l = 361, L = 2160 -0.009 ± 0.028 -0.069 0.055 0.124

l = 721, L = 2160 -0.001 ± 0.006 -0.020 0.013 0.033

l = 1081, L = 2160 0.000 ± 0.003 -0.009 0.008 0.017

l = 1441, L = 2160 0.000 ± 0.002 -0.005 0.007 0.012

l = 1801, L = 2160 0.000 ± 0.001 -0.004 0.004 0.008

Error of WT and noise

propagation (ε = 3 mGal)

l = 181, L = 2160 0.041 ± 0.098 -0.196 0.237 0.433

l = 361, L = 2160 -0.009 ± 0.032 -0.093 0.076 0.169

l = 721, L = 2160 0.001 ± 0.017 -0.044 0.051 0.095

l = 1081, L = 2160 0.001 ± 0.016 -0.041 0.046 0.088

l = 1441, L = 2160 0.001 ± 0.015 -0.038 0.049 0.087

l = 1801, L = 2160 0.001 ± 0.012 -0.036 0.039 0.075

Table 5.3: Geoid noise εN for WT (m)
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Chapter 6

Application to aerial data of Taiwan –
numerical results

In this chapter, numerical results of each computation step discussed in Sec. 2 are pre-

sented. The processed data originate from the aerial gravity surveys performed over the

period of May 2004 to May 2005 (central area, flight altitude H1 = 5156 m), of March

2006 to August 2008 (eastern area, flight altitude H2 = 1620 m) and from 2008 to 2009

(western area, flight altitude H2 = 1620 m), see Sec. 3. The position of the provided

aerial gravity data was determined by the geodetic latitude ϕ and longitude λ, see Ap-

pendix B.3, and the orthometric height H . Since the geodetic coordinates are required for

gravity disturbances, the orthometric height H was transformed into the geodetic height

h first:

h(ϕ, λ) = H(ϕ, λ) +N(ϕ, λ) . (6.1)

Geoidal height N was provided with the aerial gravity data at each point of the central

area. For the western and eastern area, the values of N were computed by using EGM08.

As a next step, the geodetic coordinates were transformed into the spherical coordinates

(r, θ, λ), see Appendices B.2 and B.3. Since there is an assumption of the constant flight

level for the input aerial gravity data, see Sec. 4.1, that is not satisfied in the spherical

coordinates any more, the continuation of the aerial gravity disturbances δg(r, θ, λ) =

(r,Ω) to the mean observation heightD in the spherical coordinates, i.e., to the geocentric

sphere of radius R + D = const., has to be done. The constant geocentric radius R + D
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is determined as the average geocentric radius of all points, i.e., R + D =
∑M

i=1 ri/M ,

where M is the number of all points in the data set. The differences in altitude reach

150 m in maximum. Thus, the transformation of the gravity disturbances δg(r,Ω) at

different heights above the geocentric sphere R to the gravity disturbances δg(R+D,Ω)

at the constant height D is done using LTS.

The gravity data are then processed by “remove-compute-restore” procedure (e.g.,

Rapp and Rummel 1975; Schwarz, Sideris and Forsberg 1990) shown in Fig. 6.1 and

described in the following sections.

H1 = 5156 m H2 = 1620 m step

δg1L(R +D1,Ω)

−δgGGM

��

δg2L(R +D2,Ω)

−δgGGM

��
δg1b(R +D1,Ω)

−Ab

��

δg2b(R +D2,Ω)

−Ab

��

REMOV E

δgH1b(R +D1,Ω)

QTS

��

δgH2b(R +D2,Ω)

��
δgH1b(R +D2,Ω)

merging

files
// δgHb (R +D2,Ω)∫∫

/WT
��

COMPUTE

THb (R,Ω)

+δVb
��

Tb(R,Ω)

+TGGM

��

RESTORE

TL(R,Ω) Bruns // NL(Ω)

Figure 6.1: Diagram of the evaluation of geoidal heights from aerial gravity disturbances
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6.1 Remove step

Since input aerial gravity data have to be band-limited and harmonic outside the geoid

represented by the geocentric sphere of radius R, see the assumptions of the Neumann

BVP of Eqs. (4.2), the following procedures must be performed:

• subtraction of the low-frequency part of the gravity disturbances δgGGM ,

• subtraction of the band-limited DTE Ab .

Because of the time consuming numerical methods, only a small part of central Tai-

wan was chosen as a test area first, see Fig. 6.2. After that, all available aerial gravity

disturbances were processed, see Figs. 3.1 and 3.2.
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Figure 6.2: Aerial gravity data, H1 = 5156 m (192,336 points) – test area (49,327 points)

For the subtraction of the low-frequency part of the gravity disturbances δgGGM , two

GGMs available to different degrees and orders are used, see Sec. 1.4.2: the global grav-
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itational model 2008 (EGM08, Pavlis et al. 2008) and the combined satellite-only model

GOCO03s (Mayer-Gürr et al. 2012). EGM08 was chosen as GGM with the highest maxi-

mum degree and order (up to n = m = 2160), GOCO03s was chosen as a representant of

the latest satellite-only GGMs based on data of gravity-dedicated satellite missions. Four

different maximum orders and degrees of these GGMs are chosen: n = m = 200 repre-

sents approximately a satellite-only low-frequency part, n = m = 2160 is the maximum

available degree and order of GGM, n = m = 360 and n = m = 1080 represent degrees

and orders between 200 and 2160.

The low-frequency gravity disturbances δgGGM to the degree and order n = m = 200

(GOCO03s, EGM08), n = m = 360 (EGM08), n = m = 1080 (EGM08), n = m =

2160 (EGM08) and corresponding band-limited gravity disturbances δgb are shown in

Appendix E.1 on Figs. E.1 to E.5 (test area) and in Appendix E.2 on Figs. E.6 to E.15 (all

available aerial gravity data). For every degree and order of EGM08/GOCO03s, the band-

limited DTE Ab and corresponding Helmert’s residual gravity disturbances δgHb are also

shown there. The statistics of the remove step for the test area and all available gravity

data are described in Tabs. 6.1 and 6.2. In Tabs. E.1, E.2 and E.3, see Appendix E.2, are

the statistics for the central, western and eastern areas.

The band-limited DTE is evaluated using Eqs. (4.81) and (4.82) for the aerial gravity

data within the test area, see Tab. 6.1. The frequency band of DTE depends on the radius

of integration (I) when using Eq. (4.81), see Sec. 4.2, and on the minimum and maximum

degree l and L, respectively, for the finite series (FS) in Eq. (4.82). The minimum degree

l corresponds to the maximum degree and order of GGM used for the evaluation of the

low-frequency part of the gravity disturbances δgGGM .

The resolution of the digital elevation model (DEM) in case of our aerial gravity data

has almost no influence on numerical values of DTE. Three DEMs with the different

equiangular resolutions (10′′, 30′′ and 60′′) derived from the local DEM of Taiwan of the

resolution 3′′ were used for comparison. The difference in the standard deviation was on

the level of the hundredths of mGal.

For all available aerial gravity data, see Tab. 6.2, the evaluation of DTE by the inte-

gration is used. Comparing with FS, the using of the integration leads to a bit smoother

Helmert’s residual gravity disturbances δgHb . The computation by FS takes the same time
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Mean StDev Min Max Range

aerial gravity disturbances 53.7 ± 86.9 -138.5 266.6 405.1

GOCO03s to n = m = 200:

δgGGM 58.4 ± 36.4 -34.5 107.8 142.2

δgb -4.7 ± 60.2 -129.1 161.9 291.1

Ab (I) -0.6 ± 5.7 -35.6 7.2 42.8

Ab (FS) 0.4 ± 6.3 -33.5 13.0 46.5

δgHb (I) -5.2 ± 56.5 -128.2 144.2 272.4

δgHb (FS) -4.3 ± 56.7 -127.8 138.3 266.1

EGM08 to n = m = 200:

δgGGM 56.3 ± 35.9 -35.3 105.8 141.0

δgb -2.6 ± 60.0 -127.6 164.4 292.0

Ab (I) -0.6 ± 5.7 -35.6 7.2 42.8

Ab (FS) 0.4 ± 6.3 -33.5 13.0 46.5

δgHb (I) -3.2 ± 56.3 -126.7 146.6 273.3

δgHb (FS) -2.3 ± 56.5 -126.3 140.7 267.0

EGM08 to n = m = 360:

δgGGM 51.8 ± 75.1 -130.4 183.6 314.0

δgb 1.9 ± 27.9 -67.3 97.9 165.2

Ab (I) -1.3 ± 5.7 -36.1 6.6 42.7

Ab (FS) 0.0 ± 5.8 -30.3 15.9 46.2

δgHb (I) 0.6 ± 23.9 -64.0 78.7 142.8

δgHb (FS) 1.9 ± 24.3 -60.0 80.8 140.8

EGM08 to n = m = 1080:

δgGGM 50.4 ± 82.2 -137.3 243.6 380.9

δgb 3.2 ± 9.5 -28.6 53.9 82.5

Ab (I) -3.1 ± 6.9 -41.0 2.0 43.0

Ab (FS) 0.0 ± 3.4 -18.4 20.5 38.8

δgHb (I) 0.2 ± 7.2 -31.7 35.6 67.3

δgHb (FS) 3.2 ± 8.0 -13.9 49.9 63.7
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Mean StDev Min Max Range

EGM08 to n = m = 2160:

δgGGM 50.4 ± 82.5 -135.1 252.5 387.7

δgb 3.3 ± 6.9 -13.9 43.0 56.9

Ab (I) -4.7 ± 9.1 -48.5 0.5 49.0

Ab (FS) – – – – –

δgHb (I) -1.4 ± 7.3 -43.9 18.4 62.3

δgHb (FS) – – – – –

Table 6.1: Statistics of aerial gravity data in the “remove” step – test area (mGal)

for all values of l which is comparable with the time needed for the computation by the

integration for ψmax = 30′ (time requirements were tested for DEM of the equiangular

resolution 60′′). For the larger (smaller) radius of integration ψmax > 30′ (ψmax < 30′)

the time needed for the computation increases (decreases) exponentially.

Tables 6.1 and 6.2 show a high accuracy of EGM08 in the area of Taiwan. Remov-

ing the low-frequency part δgGGM from the aerial gravity disturbances δgL yields much

smoother band-limited gravity disturbances δgb. For the maximum degree and order of

EGM08 n = m = 2160, the standard deviations of δgb are 6.9 and 5.4 mGal within

the test area and for all available data, respectively, while the standard deviations of δgL
are 86.9 and 66.4 mGal, respectively. The Helmert residual gravity disturbances δgHb ,

obtained by removing the corresponding band-limited DTE, were expected to be even

smoother than δgb. Although this expectation was proved for all degrees and orders of

GGMs except for n = m = 2160, differences between the standard deviations of δgb and

δgHb are on the level of only few mGal. These conclusions are valid for both I and FS.

6.2 Computation step

After the “remove step” we have two sets of gravity data, gravity disturbances δgHb at

the constant heights D1 (central area) and D2 (western and eastern areas), respectively,

above the reference sphere R. Since all aerial gravity data are required to be at the same

level (choice is the lower height D2 in order not to lose high frequencies by upward
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Mean StDev Min Max Range

aerial gravity disturbances 33.8 ± 66.4 -207.1 266.2 473.3

GOCO03s to n = m = 200:

δgGGM 35.3 ± 35.4 -131.0 107.8 238.8

δgb -1.5 ± 48.2 -185.8 173.5 359.3

Ab -0.2 ± 4.1 -33.4 8.8 42.3

δgHb -2.2 ± 46.5 -185.2 148.8 334.0

EGM08 to n = m = 200:

δgGGM 34.5 ± 34.9 -129.2 105.8 234.9

δgb -0.7 ± 48.0 -184.8 174.2 359.0

Ab -0.2 ± 4.1 -33.4 8.8 42.3

δgHb -1.5 ± 46.3 -184.2 150.8 335.0

EGM08 to n = m = 360:

δgGGM 31.3 ± 56.0 -168.4 183.5 351.9

δgb 2.4 ± 26.3 -110.8 139.5 250.4

Ab -0.7 ± 3.9 -33.9 8.3 42.2

δgHb 1.7 ± 24.4 -111.9 139.0 250.9

EGM08 to n = m = 1080:

δgGGM 31.2 ± 63.7 -209.0 243.0 452.0

δgb 2.5 ± 7.0 -32.0 65.1 97.1

Ab -1.6 ± 4.9 -39.6 3.2 42.8

δgHb 1.0 ± 6.2 -32.0 64.7 96.7

EGM08 to n = m = 2160:

δgGGM 31.3 ± 64.0 -203.8 251.9 455.7

δgb 2.5 ± 5.4 -27.2 55.2 82.4

Ab -2.4 ± 6.5 -46.2 0.7 46.9

δgHb 0.1 ± 6.8 -45.4 54.7 100.1

Table 6.2: Statistics of aerial gravity data in the “remove” step – all available gravity data

(mGal)
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continuation of the gravity data), gravity disturbances within the central area have to be

continued to this flight level. For a downward continuation, the QTS is used.

After the downward continuation of the band-limited Helmert gravity disturbances

δgHb within the central area to the sphere of radius R+D2 all gravity data are interpolated

by GMT into the equiangular spherical coordinate grid. Two different angular resolutions

of the grid are tested within the test area, ∆θ = ∆λ = 1′ and ∆θ = ∆λ = 2.5′. Since

both grids yield comparable results, the coarser one is used because of faster integration.

The error caused by the interpolation is below 0.01 mGal in the standard deviation, tested

for the synthetic gravity disturbances computed from EGM08 to the degree and order

n = m = 2160 within the area limited by the parallels of 22◦ and 25◦ northern latitude,

and by the meridians of 119◦ and 123◦ eastern longitude. The test gravity disturbances

were interpolated from the equiangular grid with the angular resolution ∆θ = ∆λ = 1′

to the resolution of 2.5′.

In the “one-step approach” (see Novák and Heck 2002) integral transformation of

the gravity disturbances δgHb at the constant height D above the geocentric sphere of

radius R to the disturbing gravity potential δTHb is performed by the integral in Eq. (4.5).

This integral is computed using two methods, the Newton-Cotes formulas for numerical

integration (see Sec. 4.2) and the wavelet transform (see Sec. 4.3). Since the integral in

Eq. (4.5) is derived as the solution of the Neumann BVP, results related to the “one-step

approach” are denoted in the following text as N-NC for the Newton-Cotes formulas and

N-WT for the wavelet transform.

In the two-step approach the gravity disturbances at the constant height D2 above the

reference sphere of radius R are extended using QTS down to this sphere, i.e., to the

constant height D = 0 m. For transformation of the gravity disturbances δgHb to the

disturbing gravity potential δTHb , both on the geocentric sphere of radius R, the Hotine

formula (Hotine 1969; Hofmann-Wellenhof and Moritz 2005, p. 115) evaluated by NC

is used. Since the two-step approach consists of the analytic continuation (first step) and

an evaluation of the Hotine formula (second step), results related to this approach are

denoted as AC+H.
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6.3 Restore step

As the last step of the evaluation scheme, the low-frequency disturbing gravity potential

TGGM and the corresponding ITE δVb were added to the band-limited Helmert disturbing

gravity potential THb . Applying spherical Bruns’s formula in Eq. (1.46) yields the final

geoid

N(Ω) =
THb (R,Ω)

γ(θ)
+
TGGM(R,Ω)

γ(θ)
+
δVb(R,Ω)

γ(θ)
=

= NH
b (Ω) +NGGM(Ω) + Pb(Ω) . (6.2)

Figures E.16 to E.29 in Appendix E.3 show Helmert’s residual geoid NH
b , its correspond-

ing low-frequency part NGGM , band-limited ITE Pb and the final geoid N for the test

area, corresponding statistics are described in Tabs. E.4 (N-NC) and E.5 (N-WT, AC+H).

Figures E.30 to E.39 in Appendix E.4 show the same for all available gravity data, corre-

sponding statistics are in Tab. E.6. The GNSS/levelling points are shown as red dots.

6.4 Comparison with GNSS/levelling points

In order to verify the external accuracy of the geoidal heights obtained through the pro-

cess described above, we used a set of GNSS/levelling points as a reference. At these

points, ellipsoidal heights hwith the centimetre-level accuracy were determined by GNSS

with 24-hour observations and orthometric heights HO at the millimetre-level accuracy

(Hwang et al. 2007) were obtained by precise levelling requiring the double-run closure

of 2.5
√
k [mm] (k is the distance in km between two adjacent points). Subtracting these

two heights gives the reference geoidal height at the corresponding point

NGNSS/lev(Ω) = h(Ω)−HO(Ω) . (6.3)

In the area of interest 737 GNSS/levelling points are available, see Fig. 6.3. These

points are located mostly along routes within coastal lowlands. Since GNSS/levelling

points are taken as the reference geoidal heights, it decreases our ability to determine the

precision of the geoid within the area of high mountains. First, the geoidal heights at the
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Figure 6.3: Distribution of GNSS/levelling points in Taiwan

GNSS/levelling points were evaluated just using EGM08/GOCO03s to the degrees and or-

ders n = m = 200, n = m = 360, n = m = 1080 and n = m = 2160. As a next step, the

geoidal heights at the GNSS/levelling points were determined using EGM08/GOCO03s

for the low-frequency part and aerial gravity data for the high-frequency part. Tables 6.3

(test area) and 6.4 (all available gravity data) show differences between the computed

geoidal heights and the reference geoid NGNSS/lev. Corresponding histograms of the dif-

ferences are in Figs. E.40 to E.49 in Appendices E.5, E.6.

In Tab. 6.3, each combination of EGM08/GOCO03s and the aerial gravity data cor-

responds to five rows. The first three rows refer to the models created by N-NC. The

first row refers to the model where ITE is not taken into account because of its small

contribution to the geoid. The second and third rows correspond to the models with the

topographical effects determined by the integration and by the finite series, respectively.

Since the integration turned out to be less time consuming computation with the same or

higher accuracy than the accuracy of the finite series, we use only the integration for the

model computed using N-WT (fourth row) and AC+H (fifth row).
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In Tab. 6.4, the first row refers to the models created by N-NC, the second row by

N-WT and the third row by AC+H. In all cases, the topographical effects are determined

by the integration.

In Tab. 6.5, the differences between the GNSS/levelling and the geoidal heights eval-

uated just using GGMs are shown. Their corresponding histograms are in Fig. E.50 in

Appendix E.7. For the evaluation of the geoidal heights from GGMs the harmonic syn-

thesis, see Eq. (1.62), is used in the first five rows. The last row corresponds the geoidal

heights from EGM08 to n = m = 2160 computed by a software distributed with EGM08

(“hsynth_WGS84.exe”1).

6.5 Accuracy of numerical results

The accuracy of the gravity field represented by EGM08 is high in the area of Taiwan,

see Tab. 6.5. We assume it is because the available gravity data of Taiwan are included in

EGM08. The precision of the local geoid model evaluated just using EGM08 to the degree

and order n = m = 2160 is comparable with the most models obtained by combination

of GGM and the local aerial gravity data, see Tabs. 6.3, 6.4 and 6.5. Only a few combined

local geoid models of Taiwan show the higher accuracy. Moreover, the improvement is

only at the level of millimetres, 13 mm at maximum for all available aerial gravity data.

For the aerial gravity data within the test area processed by N-NC, see Tab. 6.3,

different approaches of computing the topographical effects (DTE and ITE) were used:

ITE was not taken into account, DTE and ITE were determined by the integration and

by the finite series. As we can see from Tab. 6.3, ITE cannot be neglected, although

it is relatively small, at the level of centimetres. A comparison of the models with the

topographical effects evaluated by the integration and by the finite series shows the higher

accuracy for the integration in all cases, except for the minimum degree and order of

GGMs n = m = 200. When using all aerial gravity data of Taiwan, the integration is

used for the computation of DTE and ITE.

1Windows XP executable version of EGM2008 Harmonic Synthesis Program, hsynth_WGS84.exe, is

the FORTRAN program for generation WGS 84 geoid undulations by spherical harmonic synthesis of

EGM2008. Source: http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html.
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Aerial gravity data were processed by the two approaches with the use of different

numerical methods: “one-step approach” with both NC (N-NC) and WT (N-WT) and

two-step approach (AC+H). A comparison of all methods from Tabs. 6.3 and 6.4 yields

quite different conclusions. Whereas the differences from the test area, see Tab. 6.3,

indicate AC+H as the most precise method, Tab. 6.4 describing the differences for all

aerial gravity data shows N-NC as the best method. Since for the evaluation of the local

geoid models in Tab. 6.4 all available aerial gravity data were used, i.e., approximately

four times more aerial gravity disturbances than in the test area, we can assume that

Tab. 6.4 is more consistent with the actual state. In both tables, the least accurate method

is N-WT. This may be due to the fact that the contribution of the distant zone was not

taken into account in the case of N-WT.
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Mean StDev Min Max Range

GGM + aerial data
1) 0.022 ± 0.135 -0.379 0.492 0.871

GOCO03s to n = m = 200 2) 0.042 ± 0.126 -0.295 0.509 0.805
3) -0.020 ± 0.123 -0.401 0.431 0.833
4) 0.120 ± 0.129 -0.190 0.546 0.736
5) 0.049 ± 0.105 -0.186 0.368 0.554
1) 0.137 ± 0.116 -0.266 0.543 0.810

EGM08 to n = m = 200 2) 0.158 ± 0.107 -0.124 0.561 0.685
3) 0.096 ± 0.101 -0.230 0.483 0.713
4) 0.260 ± 0.131 -0.052 0.626 0.678
5) 0.190 ± 0.082 -0.021 0.469 0.490
1) 0.212 ± 0.109 -0.284 0.494 0.778

EGM08 to n = m = 360 2) 0.240 ± 0.095 -0.042 0.559 0.600
3) 0.184 ± 0.114 -0.218 0.477 0.696
4) 0.219 ± 0.088 -0.009 0.566 0.575
5) 0.223 ± 0.096 -0.069 0.504 0.573
1) 0.247 ± 0.126 -0.455 0.593 1.049

EGM08 to n = m = 1080 2) 0.270 ± 0.103 -0.169 0.601 0.770
3) 0.244 ± 0.133 -0.464 0.604 1.068
4) 0.258 ± 0.104 -0.113 0.606 0.719
5) 0.255 ± 0.098 -0.094 0.557 0.652
1) 0.236 ± 0.118 -0.389 0.566 0.955

EGM08 to n = m = 2160 2) 0.255 ± 0.093 -0.099 0.568 0.666
3) – – – – –
4) 0.259 ± 0.094 -0.100 0.566 0.666
5) 0.256 ± 0.093 -0.095 0.571 0.666

1) N-NC without ITE 2) N-NC with the topographical effects – I 3) N-NC with the topographical effects – FS
4) WT with the topographical effects – I 5) AC+H with the topographical effects – I

Table 6.3: Differences between the GNSS/levelling and the computed geoidal heights –

test area (m)
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Mean StDev Min Max Range

GGM + aerial data

GOCO03s to n = m = 200 1) 0.075 ± 0.109 -0.281 0.447 0.728
2) 0.098 ± 0.138 -0.152 0.521 0.673
3) 0.050 ± 0.121 -0.280 0.432 0.712

EGM08 to n = m = 200 1) 0.222 ± 0.083 -0.063 0.530 0.594
2) 0.248 ± 0.132 -0.036 0.615 0.651
3) 0.198 ± 0.092 -0.073 0.524 0.597

EGM08 to n = m = 360 1) 0.239 ± 0.090 -0.059 0.527 0.586
2) 0.217 ± 0.086 -0.019 0.466 0.485
3) 0.225 ± 0.100 -0.081 0.479 0.559

EGM08 to n = m = 1080 1) 0.264 ± 0.095 -0.056 0.585 0.641
2) 0.250 ± 0.105 -0.097 0.558 0.655
3) 0.255 ± 0.101 -0.118 0.558 0.677

EGM08 to n = m = 2160 1) 0.256 ± 0.093 -0.096 0.571 0.667
2) 0.256 ± 0.094 -0.092 0.577 0.669
3) 0.256 ± 0.093 -0.096 0.571 0.667

1) N-NC 2) WT 3) AC+H

Table 6.4: Differences between the GNSS/levelling and the computed geoidal heights –

all available gravity data (m)
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Mean StDev Min Max Range

GGM only

GOCO03s to n = m = 200 -0.509 ±1.183 -2.466 2.613 5.079

EGM08 to n = m = 200 -0.351 ±1.149 -2.221 2.734 4.954

EGM08 to n = m = 360 0.032 ±0.372 -1.115 0.794 1.908

EGM08 to n = m = 1080 0.223 ±0.151 -0.325 0.590 0.915

EGM08 to n = m = 2160 0.237 ±0.119 -0.396 0.570 0.966

EGM08 to n = m = 2160

(“hsynth_WGS84.exe”) 0.705 ±0.096 0.466 1.035 0.569

Table 6.5: Differences between the GNSS/levelling and the computed geoidal heights –

GGMs only (m)
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Chapter 7

Conclusions and recommendations

The determination of the local geoid model from aerial gravity data in the area of Taiwan

was discussed in the thesis. The process of the computation of the geoid model and the

numerical results are summarized in Sec. 7.1. The last section 7.2 obtains the recommen-

dations for the further research.

7.1 Conclusions

Taiwan is a small island (around 36 thousands km2) located approximately within the

area limited by the parallels of 22◦ and 25.25◦ northern latitude, and by the meridians of

120◦ and 122◦ eastern longitude. The determination of the local geoid model from aerial

gravity data in Taiwan was the main goal of the thesis. The aerial gravity data available at

two constant altitudes, H1 = 5156 m and H2 = 1620 m, were processed by the “remove-

compute-restore” procedure. In the thesis, the spherical approximation of the geoid by

the geocentric sphere of radius R was used. It was assumed that flight trajectories can be

approximated by the geocentric sphere of radius R + D, i.e., in the geocentric spherical

coordinates (r, θ, λ), the flight heights D1 and D2 above the sphere of radius R were

constant.

The “remove” part included removing the low-frequency part of the gravity distur-

bances computed using GGMs, in particularly EGM08 and GOCO03s, and removing the

corresponding gravitational effects of topography on the gravity disturbances (DTE). Dif-
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ferent maximum degrees and orders of GGMs were used: n = m = 200, n = m = 360,

n = m = 1080 and n = m = 2160.

The “compute” part consisted of the two steps: continuation of all gravity data down to

the same flight height above the reference sphere and transformation of the band-limited

gravity disturbances at the constant flight level to the band-limited disturbing gravity po-

tential at the geoid (geocentric sphere). After the “remove” part, aerial gravity distur-

bances at the two constant heights D1 (Taiwan Island Survey – “central area”) and D2

(Kuroshio Current Survey – “eastern area” and Taiwan Strait Survey – “western area”)

above the reference sphere R were available. Since all gravity data were required to be

at the same level (choice was the lower height D2 in order not to lose high frequencies

by upward continuation of the gravity data), gravity disturbances within the central area

were downward continued to this flight level using the quadratic part of the Taylor series.

The transformation of the band-limited gravity disturbances to the band-limited dis-

turbing gravity potential was performed by the “one-step approach” (Novák and Heck

2002) and by the two-step approach. In the “one-step approach” the integral of the trans-

formation was determined as a solution of the Neumann BVP. For the evaluation of the

integral two numerical methods were used, Newton-Cotes formulas for numerical inte-

gration and a 4D wavelet transform (Keller and Hájková 2011). In the two-step approach,

the gravity disturbances at the constant height D2 above the reference sphere of radius

R were downward continued using the quadratic part of the Taylor series down to this

sphere, i.e., to the constant height D = 0 m. The transformation to the band-limited dis-

turbing gravity potential on the geocentric sphere of radius R was performed using the

Hotine formula (evaluated by Newton-Cotes formulas for a numerical integration).

In the “restore” step, the low-frequency part of the disturbing gravity potential and the

corresponding ITE on the potential were restored to the band-limited disturbing gravity

potential. The Bruns formula was applied on the resultant potential in order to get the

geoidal heights. The accuracy of the computed local geoid models of Taiwan was verified

using a set of GNSS/levelling points with the centimetre-level accuracy for ellipsoidal

heights and the millimetre-level accuracy for orthometric heights.

The band-limited DTE and ITE were evaluated using the second Helmert method of

gravity reduction. Two approaches were used for the evaluation of the topographical
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effects: the integration and the finite series (Novák et al. 2003a).

7.1.1 Summary of results

The main goals of the thesis were as follows:

• to use different tools (numerical integration by Newton–Cotes formulas and wavelet

transform for evaluation of the “one-step approach” and two-step approach) for

estimation of the local geoid model of Taiwan from available aerial gravity data;

numerical integration by Newton–Cotes formulas represents the standard numerical

method, whereas 4D wavelet transform is the new method developed in Keller and

Hájková (2011);

• to use different GGMs (EGM08 and GOCO03s) for evaluation of the low-frequency

part of geoid;

• to validate or disprove the ability of the aerial gravity data to improve the local

geoid model based on EGM08 in the area of Taiwan;

• to compare our conclusions with those based on results from other areas and with

the previous local geoid model of Taiwan.

The comparison of the estimated local geoid models should focus on the following ques-

tions:

• accuracy estimation of the local geoid model by its comparing with GNSS/levelling

points;

• time requirements of different numerical methods;

• hardware requirements (mostly the computer memory) of different numerical meth-

ods.

Except the main goals, three approaches for the computation of the band-limited to-

pographical effects were tested for the aerial gravity data from the limited test area: the

integration, the finite series and neglecting the ITE. A comparison of the results based on

the evaluations in the thesis yields:
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• the band-limited ITE cannot be neglected if the second Helmert method of gravity

reduction is used;

• the time needed for computation by integration corresponds to the time of the finite

series approximately for the radius of integration ψmax = 30′ and for a greater

(smaller) radius increases (decreases) exponentially; time requirements were tested

for DEM of the equiangular resolution 60′′;

• except the minimum degree and order n = m = 200 of GGMs, the geoid models

with the topographical effects computed by integration show the same or higher

accuracy than in the case of the topographical effects computed by the finite series;

• both methods do not have any special hardware demands.

Considering both the precision of results and time requirements, the evaluation of the

band-limited topographical effects by the integration seems to be better method for har-

monization of aerial gravity data when the low-frequency part of aerial gravity data are

computed from GGM to the degrees and orders higher than approximately n = m = 360.

For lower degrees and orders of used GGM, the evaluation of the band-limited topograph-

ical effects by the finite series is more convenient.

Concerning the main goals, the local geoid models computed by the three methods

(N-NC, N-WT, AC+H) were compared. First, the low-frequency part from GGMs was

combined with the high-frequency part from the aerial gravity data only from the test area,

then all available aerial gravity data were used. The results are as follows:

• accuracy of the local geoid model in comparing with GNSS/levelling points:

– when using the aerial gravity data only from the test area, the most accurate

method is AC+H; for all available gravity data, which should be more consis-

tent with the actual state, N-NC is the most accurate method;

– the less accurate results are obtained using N-WT;

• time demands of the numerical methods:

– NC requires times at the level of seconds to minutes, depending on the radius

of integration (from 1 sec for ψmax = 5′ to almost 5 min for ψmax = 54′);
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– WT is approximately seventeen times more time consuming method, more

than 98% time is needed for the evaluation of the integration kernel; time

consumption depends on a number of points in the input grid;

– QTS is the most time consuming method; since the analytic continuation by

the quadratic part of the Taylor series was performed at every point (217, 786

points), for a computation of the first and second derivatives of the gravity

disturbance nearly four weeks were needed;

• hardware demands of the numerical methods:

– NC and the harmonic synthesis of the first and second derivatives of the grav-

ity disturbance have no special hardware demands;

– in the case of WT, memory demands depend on the number of points 2N in the

input grid; for the computation performed in the thesis (2N = 128 was used

for the degree and order n = m = 200 and 2N = 64 for all the other degrees

and orders), at least 4 GB RAM (Random-Access Memory) were needed for

2N = 64 and 8 GB RAM for 2N = 128.

Based on the results described above, the “one-step approach” computed using NC with

the topographical effects evaluated by the integration (for all available aerial gravity data)

is the optimal method providing the most accurate local geoid model of Taiwan. The

comparison of all computed geoid models at the GNSS/levelling points shows a very

high accuracy of EGM08 in the area of Taiwan. Using the methods for the local geoid

modelling from aerial gravity data in Taiwan, that are described in the thesis, yields the

improvement of EGM08 just at the level of millimetres. For all available aerial gravity

data the best improvement is 13 mm for the combination of EGM08 to the degree and

order n = m = 200 and the residual aerial gravity data. Since the GNSS/levelling

points are located mostly along routes within coastal lowlands, the very high accuracy

of EGM08 relates rather to the lowlands than to the entire island. In the mountainous

areas of Taiwan, the improvement of EGM08 could be more significant because the lack

of available terrestrial gravity data in these areas.

The comparison of the local geoid models with the low-frequency part from EGM08

and GOCO03s to the degree and order n = m = 200 shows that for the chosen maxi-
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mum degree and order EGM08 determines the global gravity field in the area of Taiwan

better than GOCO03s. The low-frequency part of EGM08 is based on satellite-only ITG-

GRACE03s (Mayer-Gürr 2007) complete to the degree and order n = m = 180 (Pavlis

et al. 2012). Since we used the maximum degree and order n = m = 200, additional

gravity data are contained in the corresponding part of EGM08, whereas GOCO03s is the

satellite-only model1. It could caused the higher accuracy of EGM08.

In the thesis, the standard deviation of the optimal method ranges from 8.3 to 9.5 cm

for different maximum degrees and orders of GGMs. Since aerial gravimetry is a standard

method used in the local gravity field modelling, there are local geoid models from the

other areas. Nevertheless, these models differ, e.g., in processing methods, an accuracy

and amount of the available aerial gravity data or in the used GGM:

• the local geoid model of Taiwan determined in (Hwang et al. 2007) using aerial

and terrestrial gravity data; a comparison with GNSS/levelling points along four

first-order levelling routes gives the standard deviation ranging from 0.2 to 19.0 cm

for different levelling routes;

• the local gravimetric geoid of South Korea determined in (Bae et al. 2012) using ter-

restrial, aerial, shipborne and altimetry-derived data; a comparison with GNSS/lev-

elling points gives the standard deviation of 5.5 cm over the whole country;

• the hybrid local geoid model of Malaysia MyGEOID (Nordin et al. 2005) consists

of two basic models, WMGEOID04 in Peninsular Malaysia and EMGEOID05 in

Sabah and Sarawak; the geoid model is hybrid of gravimetric geoids computed

using terrestrial and aerial data with GNSS ellipsoidal heights on levelled bench

marks; accuracy of fitted geoid models of WMGeoid04 and EMGeoid05 is 3.3 and

4.2 cm, respectively;

• etc.

The local geoid models computed in the thesis show the lower accuracy than the other

geoid models. Nevertheless, only aerial gravity data were used for the computation and
1In GOCO02s, GRACE contribution is dominant up to the degree and order n = m = 120, GOCE is

dominant from n = m = 140 to 220 (Goiginger et al. 2011). It can be assumed that the contributions of

these two gravity-dedicated satellite missions are similar for GOCO03s.
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no fitting on GNSS/levelling heights was performed. It can be assumed that the use of the

other local gravity data (terrestrial, marine, . . . ) and creating a hybrid geoid model could

improve the accuracy.

7.2 Recommendations

Based on the results described above, a few recommendations can be formulated for fur-

ther research. Recommended possibilities of improving the results were not included in

the thesis mostly because of assumed significant extension of the thesis.

The one of the main goals of the thesis was to verify the suitability of the 4D wavelet

transform for the computation of the non-inverse and non-singular integral. The wavelet

transform was used without compression of the integral kernel and only one decomposi-

tion step was performed. Nevertheless, in our case, the number of decomposition steps

does not influences the efficiency of the method. The greatest problem was related to the

number of points in the input grid. The grid has to be a square with the numberN of points

in latitude/longitude corresponding to the power of 2, i.e., N ∈ {2, 4, 8, 16, 32, 64, . . .}.
Since in the case of aerial gravity data of Taiwan N = 64 and N = 128 were used,

the integral kernel was computed for every pair of points in the grid with 64 × 64 and

128× 128 points. Thus, the evaluation of the integral kernel took the 98% of the comput-

ing time. The evaluations were performed using the FORTRAN and Java codes. It could

be interesting and helpful to adjust these codes in order to reduce the computing time.

As it has been already mentioned above, the improvement of the local geoid model

could be achievement using the other local gravity data (terrestrial, marine, . . . ). A pro-

cessing of the different type of gravity data and their combination is another suggestion

for further research.

In the thesis, the second Helmert method of gravity reduction was used because of

the small effect on the disturbing gravity potential on the geoid. Nevertheless, the direct

topographical effect is small to be able to smooth enough the aerial gravity data before

an interpolation. The using different methods of compensation could be more suitable,

especially when terrestrial gravity data are used.

The last recommendation concerns used GGMs. For the evaluation of the low-fre-
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quency part of the gravity data, two GGMs to the degree and order n = m = 200 were

used, EGM08 and GOCO03s. The maximum order and degree was chosen in order to

compare the low-frequency part computed before GOCE (EGM08 with GRACE satellite

gravity data) with the low-frequency part computed using the GOCE satellite gravity data

(GOCO03s). Despite the expectations, there was no improvement when using GOCO03s

instead of EGM08. On the contrary, using of EGM08 provided more accurate results. It

is possible that the choice of the lower maximum degree and order, e.g., n = m = 180,

would lead to the better results for GOCO03s in comparison to EGM08.
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Appendix A

Geocentric coordinate system

A Terrestrial Reference System (TRS) is a geocentric orthogonal coordinate system (also

called Earth-Centred, Earth-Fixed – ECEF) which rotates with the Earth. It is defined by

the following parameters:

• three parameters to define the origin ,

• three parameters to define the orientations of its axes ,

• one parameter to define the scale (assume the orthogonal axes with the same scale) .

The origin of this system is located to the Earth’s centre of gravity (geocentre). The

z-axis coincides with the mean Earth’s axis of rotation, the x-axis points through the

intersection of Equator and Prime Meridian (Greenwich). The y-axis completes the right-

handed system. The scale is close to an SI metre (McCarthy and Petit, 2003).

A realization of TRS is called a Terrestrial Reference Frame (TRF). TRF is a set

of physical points with precisely determined coordinates in a specific coordinate system

(Cartesian, . . . ) attached to TRS (McCarthy and Petit, 2003).
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Appendix B

Coordinates

In the coordinate system described in Appendix A, one can use Cartesian (rectangular) co-

ordinates (x, y, z) or curvilinear coordinates. Since we usually use the geocentric sphere

and the ellipsoid of revolution as reference surfaces, it is more convenient to use curvi-

linear coordinates: the spherical coordinates (r, θ, λ) and the Gauss-ellipsoidal (geodetic)

coordinates (h, ϕ, λ).

B.1 Cartesian coordinates

Let every point on the reference surface is defined by its position vector r. Denoting the

unit vectors in the directions of axes x, y, z as i, j,k yields

r = xi + yj + zk , (B.1)

where x, y, z are the Cartesian coordinates of the point of interest, see Fig. B.1.

B.2 Spherical coordinates

The position of the point of interest is also uniquely determined by the magnitude of the

position vector from the Eq. (B.1) r = |r| and two angles θ and λ, see Fig. B.2. The

co-latitude θ ∈ 〈0;π〉 is defined as the angle between the position vector r and the z-axis,

the spherical longitude λ ∈ 〈0; 2π) is the angle between the x-axis and the projection of r
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APPENDIX B. COORDINATES

Figure B.1: Cartesian coordinates x, y and z (reference surface – sphere)

to the xy-plane (equator). The Cartesian coordinates and the spherical coordinates relate

as follows (Heiskanen and Moritz 1967, p. 18):

• Cartesian coordinates→ spherical coordinates:

r =
√
x2 + y2 + z2 ,

λ = arctan
y

x
, (B.2)

θ = arctan

√
x2 + y2

z
= arccos

z

r
;

• spherical coordinates→ Cartesian coordinates:

x = r sin θ cosλ ,

y = r sin θ sinλ , (B.3)

z = r cos θ .

B.3 Gauss ellipsoidal coordinates (geodetic coordinates)

The Gauss ellipsoidal coordinates (geodetic coordinates) refer to the ellipsoid of revo-

lution. The position of the point of interest is uniquely determined by the ellipsoidal
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APPENDIX B. COORDINATES

Figure B.2: Spherical coordinates r, θ and λ

height h (height above the ellipsoid) and two angles ϕ and λ. The geodetic latitude

ϕ ∈ 〈−π
2
; π

2
〉 is the angle between the ellipsoidal normal and the xy-plane, the geodetic

longitude λ ∈ 〈0; 2π) is the angle between the x-axis and the projection of the ellipsoidal

normal to the xy-plane.

The Cartesian coordinates and the Gauss ellipsoidal coordinates relate as follows

(Heiskanen and Moritz 1967, pp. 182-183):

• Cartesian coordinates→ Gauss ellipsoidal coordinates (iterative procedure):

λ = arctan
y

x
,

h =

√
x2 + y2

cosϕ
−N , (B.4)

ϕ = arctan

[
z√

x2 + y2

(
1− e2 N

N + h

)−1
]

;

• Gauss ellipsoidal coordinates→ Cartesian coordinates:

x = (N + h) cosϕ cosλ ,

y = (N + h) cosϕ sinλ , (B.5)

z = [N(1− e2) + h] sinϕ .
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The parameter e stands for the first eccentricity, N is the transverse radius of curvature:

N(ϕ) =
a√

1− e2 sin2 ϕ
, (B.6)

where a is the major semi-axis of the ellipsoid of revolution.

B.4 Astronomical (natural) coordinates

The astronomical coordinates (natural coordinates) refer to the geoid. The position of

the point P of interest is uniquely determined by the orthometric height H (height above

the mean sea-level) or the potential W of the point P , the astronomic latitude Φ and the

astronomic longitude Λ. The astronomic latitude Φ of a point P is the angle between the

vertical (direction of the plumb line) at P and the equatorial plane. Consider a straight

line through P parallel to the Earth’s axis. This parallel and the vertical at P define the

meridian plane at P . The angle between this meridian plane and the meridian plane of

Greenwich is the astronomical longitude Λ. The latitude Φ and the longitude Λ are also

called the geographical coordinates (Heiskanen and Moritz 1967, p. 55).
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Appendix C

Mathematical operators

In this section four mathematical operators are defined: gradient, curl, divergence and

Laplacian (e.g., Rektorys et al. 1963, Sec. 7.2). Although all of them are independent of

a coordinate system, they have different forms in different coordinates. In this appendix

we introduce only the forms in the Cartesian coordinates, see Appendix B.1.

C.1 Gradient

Assume a scalar function f at the point r. The gradient of the scalar function f is a vector

operator denoted as∇f or gradf which is given by

∇f(r) =
∂f

∂x
|r i +

∂f

∂y
|r j +

∂f

∂z
|r k , (C.1)

where i, j,k are the unit vectors of the coordinate system and the coefficients x, y, z in

the partial derivations are the Cartesian coordinates of the point of interest, see Eq. (B.1).

The direction of ∇f is the orientation in which the directional derivative has the largest

value and |∇f | is the value of that directional derivative.
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C.2 Curl

Let us denote F a vector field and p, q, s three scalar fields which are the components of

this vector field F:

F(r) = p(r)i + q(r)j + s(r)k . (C.2)

The curl of the vector field F, denoted curl F or∇×F, is a vector field defined as follows:

curl F(r) =

[
∂s

∂y
|r −

∂q

∂z
|r
]

i +

[
∂p

∂z
|r −

∂s

∂x
|r
]

j +

[
∂q

∂x
|r −

∂p

∂y
|r
]

k . (C.3)

If curl F(r) = 0, then the field is said to be an irrotational field.

C.3 Divergence

Assume a vector field F. The divergence of the vector field F, denoted divF or ∇ · F, is

a scalar field defined by

divF(r) =
∂p

∂x
|r +

∂q

∂y
|r +

∂s

∂z
|r , (C.4)

where p, q, s are the components of the vector field F, see Eq. (C.2).

C.4 Laplacian

A scalar differential operator defined by

∆f(r) = div∇f(r) , (C.5)

is called the Laplace operator or Laplacian. Substituting Eqs. (C.1) and (C.4) to Eq. (C.5)

gives in the Cartesian coordinates

∆f(r) = div

[
∂f

∂x
|r i +

∂f

∂y
|r j +

∂f

∂z
|r k

]
=
∂2f

∂x2
|r +

∂2f

∂y2
|r +

∂2f

∂z2
|r . (C.6)

If ∆f(r) = 0, then the scalar field f is said to be harmonic.
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Appendix D

Numerical results – synthetic gravity
data

In this section figures and histograms corresponding to the tests described in Sec. 5 are

presented.
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1) 2)

3) 4)

5) 6)

Figure D.1: Histograms of the geoid noise εN for NC (m), ε = 0 mGal: 1) l = 181,

2) l = 361, 3) l = 721, 4) l = 1081, 5) l = 1441 and 6) l = 1801
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APPENDIX D. NUMERICAL RESULTS – SYNTHETIC GRAVITY DATA

1) 2)

3) 4)

5) 6)

Figure D.2: Histograms of the geoid noise εN for NC (m), ε = 3 mGal: 1) l = 181,

2) l = 361, 3) l = 721, 4) l = 1081, 5) l = 1441 and 6) l = 1801
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1) 2)

3) 4)

5) 6)

Figure D.3: Histograms of the geoid noise εN for WT (m), ε = 0 mGal: 1) l = 181,

2) l = 361, 3) l = 721, 4) l = 1081, 5) l = 1441 and 6) l = 1801
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APPENDIX D. NUMERICAL RESULTS – SYNTHETIC GRAVITY DATA

1) 2)

3) 4)

5) 6)

Figure D.4: Histograms of the geoid noise εN for WT (m), ε = 3 mGal: 1) l = 181,

2) l = 361, 3) l = 721, 4) l = 1081, 5) l = 1441 and 6) l = 1801
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Appendix E

Numerical results – aerial gravity data

In this section figures, tables and histograms corresponding to the steps of the ’remove-

compute-restore’ procedure are presented.
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APPENDIX E. NUMERICAL RESULTS – AERIAL GRAVITY DATA

E.1 Remove step – test area
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Figure E.1: Test area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(GOCO03s to n = m = 200), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab (I), d) Helmert’s residual gravity disturbances δgHb (I), e) band-limited DTE Ab

(FS) and f) Helmert’s residual gravity disturbances δgHb (FS)
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Figure E.2: Test area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(EGM08 to n = m = 200), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab (I), d) Helmert’s residual gravity disturbances δgHb (I), e) band-limited DTE Ab

(FS) and f) Helmert’s residual gravity disturbances δgHb (FS)
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Figure E.3: Test area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(EGM08 to n = m = 360), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab (I), d) Helmert’s residual gravity disturbances δgHb (I), e) band-limited DTE Ab

(FS) and f) Helmert’s residual gravity disturbances δgHb (FS)
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Figure E.4: Test area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(EGM08 to n = m = 1080), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab (I), d) Helmert’s residual gravity disturbances δgHb (I), e) band-limited DTE Ab

(FS) and f) Helmert’s residual gravity disturbances δgHb (FS)
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Figure E.5: Test area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(EGM08 to n = m = 2160), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab (I) and d) Helmert’s residual gravity disturbances δgHb (I)
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E.2 Remove step – all available gravity data
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Figure E.6: Central area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(GOCO03s to n = m = 200), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Figure E.7: Central area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(EGM08 to n = m = 200), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Figure E.8: Central area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(EGM08 to n = m = 360), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Figure E.9: Central area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(EGM08 to n = m = 1080), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Figure E.10: Central area, H1 = 5156 m: a) low-frequency gravity disturbances δgGGM
(EGM08 to n = m = 2160), b) band-limited gravity disturbances δgb, c) band-limited

DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Mean StDev Min Max Range

aerial gravity disturbances 40.4 ± 64.9 -156.6 266.2 422.8

GOCO03s to n = m = 200:

δgGGM 41.2 ± 29.6 -34.5 107.8 142.2

δgb -0.8 ± 48.9 -141.0 173.5 314.5

Ab -0.3 ± 4.3 -33.4 8.8 42.3

δgHb -1.7 ± 47.1 -140.1 148.8 289.0

EGM08 to n = m = 200:

δgGGM 40.4 ± 29.1 -35.2 105.8 141.0

δgb 0.0 ± 48.8 -140.0 174.2 314.2

Ab -0.3 ± 4.3 -33.4 8.8 42.3

δgHb -0.8 ± 46.9 -139.2 150.8 290.0

EGM08 to n = m = 360:

δgGGM 37.6 ± 53.8 -130.4 183.5 314.0

δgb 2.8 ± 25.9 -76.8 94.2 171.1

Ab -0.8 ± 4.2 -33.9 8.3 42.2

δgHb 2.1 ± 23.8 -76.2 81.7 157.9

EGM08 to n = m = 1080:

δgGGM 37.4 ± 62.2 -167.3 243.0 410.3

δgb 3.0 ± 6.9 -21.0 46.9 67.8

Ab -1.8 ± 5.2 -39.6 3.2 42.8

δgHb 1.2 ± 6.1 -26.3 35.5 61.7

EGM08 to n = m = 2160:

δgGGM 37.4 ± 62.6 -165.2 251.9 417.1

δgb 3.0 ± 5.4 -12.7 35.6 48.4

Ab -2.7 ± 6.9 -46.2 0.4 46.6

δgHb 0.3 ± 7.0 -45.4 29.8 75.1

Table E.1: Statistics of aerial gravity data in the “remove” step – central area (mGal)
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Figure E.11: Western and eastern area, H2 = 1620 m: a) low-frequency gravity distur-

bances δgGGM (GOCO03s to n = m = 200), b) band-limited gravity disturbances δgb,

c) band-limited DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Figure E.12: Western and eastern area, H2 = 1620 m: a) low-frequency gravity distur-

bances δgGGM (EGM08 to n = m = 200), b) band-limited gravity disturbances δgb,

c) band-limited DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Figure E.13: Western and eastern area, H2 = 1620 m: a) low-frequency gravity distur-

bances δgGGM (EGM08 to n = m = 360), b) band-limited gravity disturbances δgb,

c) band-limited DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Figure E.14: Western and eastern area, H2 = 1620 m: a) low-frequency gravity distur-

bances δgGGM (EGM08 to n = m = 1080), b) band-limited gravity disturbances δgb,

c) band-limited DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Figure E.15: Western and eastern area, H2 = 1620 m: a) low-frequency gravity distur-

bances δgGGM (EGM08 to n = m = 2160), b) band-limited gravity disturbances δgb,

c) band-limited DTE Ab and d) Helmert’s residual gravity disturbances δgHb
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Mean StDev Min Max Range

aerial gravity disturbances 16.1 ± 15.3 -24.6 52.3 76.9

GOCO03s to n = m = 200:

δgGGM 14.4 ± 12.4 -20.6 53.3 73.9

δgb 1.8 ± 24.6 -69.0 48.9 117.9

Ab 0.64 ± 0.70 -0.73 3.82 4.55

δgHb 1.8 ± 24.4 -68.0 48.9 116.9

EGM08 to n = m = 200:

δgGGM 14.2 ± 11.9 -22.1 49.4 71.5

δgb 1.9 ± 23.6 -68.4 47.2 115.7

Ab 0.64 ± 0.70 -0.73 3.82 4.55

δgHb 1.9 ± 23.4 -67.5 47.3 114.8

EGM08 to n = m = 360:

δgGGM 14.8 ± 20.0 -39.3 51.7 91.0

δgb 1.4 ± 13.2 -36.7 38.7 75.5

Ab -0.14 ± 0.41 -3.76 1.64 5.40

δgHb 1.2 ± 13.2 -37.1 38.7 75.9

EGM08 to n = m = 1080:

δgGGM 16.3 ± 15.5 -34.7 57.2 91.9

δgb -0.2 ± 4.4 -18.5 14.2 32.7

Ab 0.00 ± 0.03 -0.14 0.80 0.94

δgHb -0.2 ± 4.4 -18.0 14.2 32.2

EGM08 to n = m = 2160:

δgGGM 16.3 ± 15.4 -23.9 53.3 77.1

δgb -0.1 ± 3.7 -14.2 15.9 30.1

Ab 0.00 ± 0.02 -0.18 0.66 0.84

δgHb -0.1 ± 3.7 -14.2 15.9 30.1

Table E.2: Statistics of aerial gravity data in the “remove” step – western area (mGal)
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Mean StDev Min Max Range

aerial gravity disturbances -29.4 ± 63.1 -207.1 163.2 370.3

GOCO03s to n = m = 200:

δgGGM -18.9 ± 49.5 -131.0 75.0 206.0

δgb -10.5 ± 48.7 -185.8 140.0 325.8

Ab 0.63 ± 0.80 -0.98 4.72 5.70

δgHb -10.0 ± 48.4 -185.2 139.7 324.9

EGM08 to n = m = 200:

δgGGM -19.0 ± 48.8 -129.2 75.6 204.8

δgb -10.4 ± 48.3 -184.8 142.1 326.9

Ab 0.63 ± 0.80 -0.98 4.72 5.70

δgHb -10.0 ± 48.0 -184.2 141.8 326.0

EGM08 to n = m = 360:

δgGGM -28.0 ± 55.5 -168.4 85.0 253.4

δgb -1.4 ± 33.7 -110.8 139.5 250.4

Ab -0.24 ± 0.63 -5.36 0.38 5.74

δgHb -1.6 ± 33.9 -111.9 139.0 250.9

EGM08 to n = m = 1080:

δgGGM -28.1 ± 62.8 -209.0 108.1 317.1

δgb -1.3 ± 7.6 -32.0 65.1 97.1

Ab 0.00 ± 0.04 -0.57 1.18 1.75

δgHb -1.3 ± 7.5 -32.0 64.7 96.7

EGM08 to n = m = 2160:

δgGGM -28.1 ± 63.0 -203.8 129.9 333.7

δgb -1.3 ± 4.4 -27.2 55.2 82.4

Ab 0.00 ± 0.01 -0.57 0.12 0.70

δgHb -1.3 ± 4.4 -27.2 54.7 81.8

Table E.3: Statistics of aerial gravity data in the “remove” step – eastern area (mGal)
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E.3 Restore step – test area
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Figure E.16: Test area, N-NC: a) low-frequency geoid NGGM (GOCO03s to n = m =

200), b) band-limited ITE Pb (I), c) Helmert’s residual geoid NH
b (I) and d) final geoid N

(I)
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Figure E.17: Test area, N-NC: a) low-frequency geoid NGGM (GOCO03s to n = m =

200), b) band-limited ITE Pb (FS), c) Helmert’s residual geoidNH
b (FS) and d) final geoid

N (FS)
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Figure E.18: Test area, N-NC: a) low-frequency geoid NGGM (EGM08 to n = m = 200),

b) band-limited ITE Pb (I), c) Helmert’s residual geoid NH
b (I) and d) final geoid N (I)
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Figure E.19: Test area, N-NC: a) low-frequency geoid NGGM (EGM08 to n = m = 200),

b) band-limited ITE Pb (FS), c) Helmert’s residual geoid NH
b (FS) and d) final geoid N

(FS)
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Figure E.20: Test area, N-NC: a) low-frequency geoid NGGM (EGM08 to n = m = 360),

b) band-limited ITE Pb (I), c) Helmert’s residual geoid NH
b (I) and d) final geoid N (I)
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Figure E.21: Test area, N-NC: a) low-frequency geoid NGGM (EGM08 to n = m = 360),

b) band-limited ITE Pb (FS), c) Helmert’s residual geoid NH
b (FS) and d) final geoid N

(FS)
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Figure E.22: Test area, N-NC: a) low-frequency geoid NGGM (EGM08 to n = m =

1080), b) band-limited ITE Pb (I), c) Helmert’s residual geoid NH
b (I) and d) final geoid

N (I)
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Figure E.23: Test area, N-NC: a) low-frequency geoid NGGM (EGM08 to n = m =

1080), b) band-limited ITE Pb (FS), c) Helmert’s residual geoid NH
b (FS) and d) final

geoid N (FS)
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Figure E.24: Test area, N-NC: a) low-frequency geoid NGGM (EGM08 to n = m =

2160), b) band-limited ITE Pb (I), c) Helmert’s residual geoid NH
b (I) and d) final geoid

N (I)
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Mean StDev Min Max Range

NGNSS/lev 22.317 ± 2.449 18.763 27.955 9.192

GOCO03s to n = m = 200:

NGGM 22.668 ± 1.510 19.821 25.295 5.473

Pb (I) -0.020 ± 0.055 -0.357 0.009 0.366

Pb (FS) 0.041 ± 0.051 -0.260 0.101 0.361

NH
b (I) -0.531 ± 1.150 -2.405 2.582 4.987

NH
b (FS) -0.604 ± 1.184 -2.598 2.551 5.149

N (I) 22.275 ± 2.385 18.808 27.571 8.763

N (FS) 22.201 ± 2.389 18.791 27.579 8.789

EGM08 to n = m = 200:

NGGM 22.668 ± 1.510 19.821 25.295 5.473

Pb (I) -0.020 ± 0.055 -0.357 0.009 0.366

Pb (FS) 0.041 ± 0.051 -0.260 0.101 0.361

NH
b (I) -0.488 ± 1.134 -2.319 2.604 4.923

NH
b (FS) -0.587 ± 1.165 -2.542 2.537 5.079

N (I) 22.160 ± 2.394 18.667 27.471 8.805

N (FS) 22.061 ± 2.395 18.624 27.454 8.831

EGM08 to n = m = 360:

NGGM 22.285 ± 2.589 18.151 27.559 9.408

Pb (I) -0.028 ± 0.054 -0.362 0.000 0.361

Pb (FS) 0.028 ± 0.048 -0.171 0.119 0.290

NH
b (I) -0.180 ± 0.365 -1.089 0.742 1.831

NH
b (FS) -0.218 ± 0.390 -1.191 0.777 1.968

N (I) 22.077 ± 2.452 18.537 27.480 8.943

N (FS) 22.096 ± 2.482 18.504 27.773 9.268
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Mean StDev Min Max Range

EGM08 to n = m = 1080:

NGGM 22.094 ± 2.500 18.578 28.060 9.482

Pb (I) -0.023 ± 0.055 -0.359 0.005 0.364

Pb (FS) 0.003 ± 0.017 -0.055 0.113 0.167

NH
b (I) -0.024 ± 0.086 -0.364 0.173 0.537

NH
b (FS) -0.042 ± 0.126 -0.832 0.190 1.022

N (I) 22.047 ± 2.427 18.574 27.632 9.058

N (FS) 22.055 ± 2.439 18.580 27.883 9.302

EGM08 to n = m = 2160:

NGGM 22.080 ± 2.472 18.551 28.265 9.714

Pb (I) -0.019 ± 0.049 -0.338 0.008 0.346

Pb (FS) – – – – –

NH
b (I) 0.001 ± 0.010 -0.072 0.055 0.127

NH
b (FS) – – – – –

N (I) 22.062 ± 2.443 18.551 27.919 9.368

N (FS) – – – – –

Table E.4: Statistics of the parameters in the “restore” step (N-NC) – test area (m)
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Figure E.25: Test area: a) low-frequency geoid NGGM (GOCO03s to n = m = 200),

b) band-limited ITE Pb, c) Helmert’s residual geoid NH
b (N-WT), d) final geoid N

(N-WT), e) Helmert’s residual geoid NH
b (AC+H) and f) final geoid N (AC+H)
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Figure E.26: Test area: a) low-frequency geoid NGGM (EGM08 to n = m = 200),

b) band-limited ITE Pb, c) Helmert’s residual geoid NH
b (N-WT), d) final geoid N

(N-WT), e) Helmert’s residual geoid NH
b (AC+H) and f) final geoid N (AC+H)
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Figure E.27: Test area: a) low-frequency geoid NGGM (EGM08 to n = m = 360),

b) band-limited ITE Pb, c) Helmert’s residual geoid NH
b (N-WT), d) final geoid N

(N-WT), e) Helmert’s residual geoid NH
b (AC+H) and f) final geoid N (AC+H)
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Figure E.28: Test area: a) low-frequency geoid NGGM (EGM08 to n = m = 1080),

b) band-limited ITE Pb, c) Helmert’s residual geoid NH
b (N-WT), d) final geoid N

(N-WT), e) Helmert’s residual geoid NH
b (AC+H) and f) final geoid N (AC+H)
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Figure E.29: Test area: a) low-frequency geoid NGGM (EGM08 to n = m = 2160),

b) band-limited ITE Pb, c) Helmert’s residual geoid NH
b (N-WT), d) final geoid N

(N-WT), e) Helmert’s residual geoid NH
b (AC+H) and f) final geoid N (AC+H)
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Mean StDev Min Max Range

NGNSS/lev 22.317 ± 2.449 18.763 27.955 9.192

GOCO03s to n = m = 200:

NGGM 22.668 ± 1.510 19.821 25.295 5.473

Pb -0.020 ± 0.055 -0.357 0.009 0.366

NH
b (WT) -0.608 ± 1.178 -2.601 2.651 5.253

NH
b (AC+H) -0.537 ± 1.154 -2.381 2.650 5.031

N (WT) 22.197 ± 2.380 18.802 27.645 8.842

N (AC+H) 22.268 ± 2.398 18.810 27.669 8.859

EGM08 to n = m = 200:

NGGM 22.668 ± 1.510 19.821 25.295 5.473

Pb -0.020 ± 0.055 -0.357 0.009 0.366

NH
b (WT) -0.591 ± 1.159 -2.544 2.637 5.181

NH
b (AC+H) -0.521 ± 1.141 -2.345 2.641 4.986

N (WT) 22.057 ± 2.387 18.635 27.512 8.877

N (AC+H) 22.127 ± 2.408 18.625 27.539 8.915

EGM08 to n = m = 360:

NGGM 22.285 ± 2.589 18.151 27.559 9.408

Pb -0.028 ± 0.054 -0.362 0.000 0.361

NH
b (WT) -0.172 ± 0.407 -1.273 0.742 2.015

NH
b (AC+H) -0.163 ± 0.345 -1.042 0.755 1.797

N (WT) 22.086 ± 2.435 18.605 27.587 8.982

N (AC+H) 22.094 ± 2.474 18.489 27.620 9.131
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Mean StDev Min Max Range

EGM08 to n = m = 1080:

NGGM 22.094 ± 2.500 18.578 28.060 9.482

Pb -0.023 ± 0.055 -0.359 0.005 0.364

NH
b (WT) -0.012 ± 0.075 -0.334 0.183 0.517

NH
b (AC+H) -0.009 ± 0.046 -0.251 0.111 0.361

N (WT) 22.059 ± 2.439 18.575 27.653 9.078

N (AC+H) 22.062 ± 2.447 18.572 27.774 9.202

EGM08 to n = m = 2160:

NGGM 22.080 ± 2.472 18.551 28.265 9.714

Pb -0.019 ± 0.049 -0.338 0.008 0.346

NH
b (WT) -0.003 ± 0.027 -0.127 0.103 0.230

NH
b (AC+H) 0.000 ± 0.002 -0.009 0.006 0.015

N (WT) 22.062 ± 2.443 18.551 27.919 9.368

N (AC+H) 22.061 ± 2.442 18.551 27.924 9.373

Table E.5: Statistics of the parameters in the “restore” step (N-WT, AC+H) – test area (m)
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E.4 Restore step – all available gravity data
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Figure E.30: All available data (GOCO03s to n = m = 200): a) low-frequency geoid

NGGM , b) band-limited ITE Pb, c) Helmert’s residual geoidNH
b (N-NC) and d) final geoid

N (N-NC)
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Figure E.31: All available data (GOCO03s to n = m = 200): a) Helmert’s residual geoid

NH
b (N-WT), b) final geoid N (N-WT), c) Helmert’s residual geoid NH

b (AC+H) and

d) final geoid N (AC+H)
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Figure E.32: All available data (EGM08 to n = m = 200): a) low-frequency geoid

NGGM , b) band-limited ITE Pb, c) Helmert’s residual geoid NH
b (N-NC) and d) final

geoid N (N-NC)
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Figure E.33: All available data (EGM08 to n = m = 200): a) Helmert’s residual geoid

NH
b (N-WT), b) final geoid N (N-WT), c) Helmert’s residual geoid NH

b (AC+H) and

d) final geoid N (AC+H)

163



APPENDIX E. NUMERICAL RESULTS – AERIAL GRAVITY DATA

120˚

120˚

121˚

121˚

122˚

122˚

23˚ 23˚

24˚ 24˚

120˚

120˚

121˚

121˚

122˚

122˚

23˚ 23˚

24˚ 24˚

17 18 19 20 21 22 23 24 25 26 27

m

a)

120˚

120˚

121˚

121˚

122˚

122˚

23˚ 23˚

24˚ 24˚

120˚

120˚

121˚

121˚

122˚

122˚

23˚ 23˚

24˚ 24˚

−0.3 −0.2 −0.1 0.0

m

b)

120˚

120˚

121˚

121˚

122˚

122˚

23˚ 23˚

24˚ 24˚

120˚

120˚

121˚

121˚

122˚

122˚

23˚ 23˚

24˚ 24˚

−0.8 −0.4 0.0 0.4 0.8

m

c)

120˚

120˚

121˚

121˚

122˚

122˚

23˚ 23˚

24˚ 24˚

120˚

120˚

121˚

121˚

122˚

122˚

23˚ 23˚

24˚ 24˚

18 19 20 21 22 23 24 25 26 27

m

d)

Figure E.34: All available data (EGM08 to n = m = 360): a) low-frequency geoid

NGGM , b) band-limited ITE Pb, c) Helmert’s residual geoid NH
b (N-NC) and d) final

geoid N (N-NC)
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Figure E.35: All available data (EGM08 to n = m = 360): a) Helmert’s residual geoid

NH
b (N-WT), b) final geoid N (N-WT), c) Helmert’s residual geoid NH

b (AC+H) and

d) final geoid N (AC+H)
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Figure E.36: All available data (EGM08 to n = m = 1080): a) low-frequency geoid

NGGM , b) band-limited ITE Pb, c) Helmert’s residual geoid NH
b (N-NC) and d) final

geoid N (N-NC)
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Figure E.37: All available data (EGM08 to n = m = 1080): a) Helmert’s residual geoid

NH
b (N-WT), b) final geoid N (N-WT), c) Helmert’s residual geoid NH

b (AC+H) and

d) final geoid N (AC+H)
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Figure E.38: All available data (EGM08 to n = m = 2160): a) low-frequency geoid

NGGM , b) band-limited ITE Pb, c) Helmert’s residual geoid NH
b (N-NC) and d) final

geoid N (N-NC)
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Figure E.39: All available data (EGM08 to n = m = 2160): a) Helmert’s residual geoid

NH
b (N-WT), b) final geoid N (N-WT), c) Helmert’s residual geoid NH

b (AC+H) and

d) final geoid N (AC+H)
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Mean StDev Min Max Range

NGNSS/lev 22.317 ± 2.449 18.763 27.955 9.192

GOCO03s to n = m = 200:

NGGM 22.668 ± 1.510 19.821 25.295 5.473

Pb -0.020 ± 0.055 -0.357 0.009 0.366

NH
b (NC) -0.541 ± 1.149 -2.339 2.581 4.920

NH
b (WT) -0.585 ± 1.129 -2.442 2.540 4.982

NH
b (AC+H) -0.536 ± 1.138 -2.326 2.571 4.896

N (NC) 22.262 ± 2.398 18.813 27.603 8.790

N (WT) 22.219 ± 2.350 18.855 27.552 8.696

N (AC+H) 22.267 ± 2.385 18.849 27.593 8.744

EGM08 to n = m = 200:

NGGM 22.668 ± 1.510 19.821 25.295 5.473

Pb -0.020 ± 0.055 -0.357 0.009 0.366

NH
b (NC) -0.531 ± 1.138 -2.313 2.569 4.882

NH
b (WT) -0.576 ± 1.116 -2.420 2.519 4.939

NH
b (AC+H) -0.527 ± 1.127 -2.291 2.564 4.855

N (NC) 22.115 ± 2.408 18.627 27.474 8.847

N (WT) 22.069 ± 2.360 18.665 27.415 8.750

N (AC+H) 22.119 ± 2.401 18.632 27.469 8.838

EGM08 to n = m = 360:

NGGM 22.285 ± 2.589 18.151 27.559 9.408

Pb -0.028 ± 0.054 -0.362 0.000 0.361

NH
b (NC) -0.168 ± 0.342 -1.029 0.797 1.827

NH
b (WT) -0.157 ± 0.370 -1.174 0.789 1.963

NH
b (AC+H) -0.165 ± 0.338 -1.014 0.783 1.797

N (NC) 22.090 ± 2.476 18.497 27.583 9.086

N (WT) 22.100 ± 2.463 18.567 27.650 9.083

N (AC+H) 22.092 ± 2.477 18.493 27.602 9.109
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Mean StDev Min Max Range

EGM08 to n = m = 1080:

NGGM 22.094 ± 2.500 18.578 28.060 9.482

Pb -0.023 ± 0.055 -0.359 0.005 0.364

NH
b (NC) -0.011 ± 0.041 -0.189 0.099 0.288

NH
b (WT) -0.005 ± 0.037 -0.160 0.105 0.265

NH
b (AC+H) -0.009 ± 0.039 -0.202 0.090 0.292

N (NC) 22.060 ± 2.449 18.557 27.774 9.218

N (WT) 22.067 ± 2.455 18.563 27.776 9.214

N (AC+H) 22.062 ± 2.450 18.559 27.792 9.233

EGM08 to n = m = 2160:

NGGM 22.080 ± 2.472 18.551 28.265 9.714

Pb -0.019 ± 0.049 -0.338 0.008 0.346

NH
b (NC) 0.000 ± 0.004 -0.024 0.021 0.044

NH
b (WT) 0.000 ± 0.006 -0.015 0.016 0.032

NH
b (AC+H) 0.000 ± 0.002 -0.013 0.011 0.024

N (NC) 22.061 ± 2.442 18.553 27.923 9.370

N (WT) 22.061 ± 2.442 18.550 27.921 9.371

N (AC+H) 22.061 ± 2.442 18.552 27.924 9.372

Table E.6: Statistics of the parameters in the “restore” step (N-NC, N-WT, AC+H) – all

available gravity data (m)
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E.5 Comparison with GNSS/levelling points – test area
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1) 2)

3) 4)

5)

Figure E.40: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – test area (m) (GOCO03s to n = m = 200): 1) without the topographical

effect, 2) the topographical effect – integration, 3) the topographical effect – spherical

series, 4) wavelet transform with the topographical effect – integration and 5) analytic

continuation and Hotine’s formula
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1) 2)

3) 4)

5)

Figure E.41: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – test area (m) (EGM08 to n = m = 200): 1) without the topographical

effect, 2) the topographical effect – integration, 3) the topographical effect – spherical

series, 4) wavelet transform with the topographical effect – integration and 5) analytic

continuation and Hotine’s formula
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1) 2)

3) 4)

5)

Figure E.42: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – test area (m) (EGM08 to n = m = 360): 1) without the topographical

effect, 2) the topographical effect – integration, 3) the topographical effect – spherical

series, 4) wavelet transform with the topographical effect – integration and 5) analytic

continuation and Hotine’s formula
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1) 2)

3) 4)

5)

Figure E.43: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – test area (m) (EGM08 to n = m = 1080): 1) without the topographical

effect, 2) the topographical effect – integration, 3) the topographical effect – spherical

series, 4) wavelet transform with the topographical effect – integration and 5) analytic

continuation and Hotine’s formula
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1) 2)

3) 4)

Figure E.44: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – test area (m) (EGM08 to n = m = 2160): 1) without the topographical

effect, 2) the topographical effect – integration, 3) wavelet transform with the topograph-

ical effect – integration and 4) analytic continuation and Hotine’s formula
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E.6 Comparison with GNSS/levelling points – all avail-

able gravity data

1) 2)

3)

Figure E.45: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – all available gravity data (m) (GOCO03s to n = m = 200): 1) numerical

integration, 2) wavelet transform and 3) analytic continuation and Hotine’s formula
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1) 2)

3)

Figure E.46: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – all available gravity data (m) (EGM08 to n = m = 200): 1) numerical

integration, 2) wavelet transform and 3) analytic continuation and Hotine’s formula
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1) 2)

3)

Figure E.47: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – all available gravity data (m) (EGM08 to n = m = 360): 1) numerical

integration, 2) wavelet transform and 3) analytic continuation and Hotine’s formula
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1) 2)

3)

Figure E.48: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – all available gravity data (m) (EGM08 to n = m = 1080): 1) numerical

integration, 2) wavelet transform and 3) analytic continuation and Hotine’s formula
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1) 2)

3)

Figure E.49: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – all available gravity data (m) (EGM08 to n = m = 2160): 1) numerical

integration, 2) wavelet transform and 3) analytic continuation and Hotine’s formula
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E.7 Comparison with GNSS/levelling points – GGMs only

1) 2)

3) 4)

5)

Figure E.50: Histograms of the differences between the GNSS/levelling and the computed

geoidal heights – GGMs only (m): 1) GOCO03s to n = m = 200, 2) EGM08 to n =

m = 200, 3) EGM08 to n = m = 360, 4) EGM08 to n = m = 1080 and 5) EGM08 to

n = m = 2160
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