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Preface

These lecture notes are based on a series of lectures given at the XXIX Seminar in
Differential Equations which took place in Monínec, April 14 - 18, 2014. Main goal
is to provide an introduction to differential variational inequalities, which seem to
be a sufficiently general framework for modeling various problems beyond equations.
For example, this can be useful in contact mechanics, when one considers friction
and impacts; in electronics when the diodes appear in the circuit. However, one uses
many facts from other branches of mathematics such as convex analysis, variational
analysis, non-smooth analysis, differential equations, differential inclusions, measure
theory, numerical methods, etc. Since this work is not a book, rather than devoting
a separate section to one of the previously mentioned topics, we prefer to introduce
the definitions and notions precisely when they are needed for the first time. We
try to explain the key ideas and illustrate them on examples instead of going into
full generality. Although, we work in finite dimensions, almost all results are valid
in (or can be extended in an obvious way to) Hilbert spaces or even in (reflexive)
Banach spaces. Sections 1, 3, and 4 correspond to a single lecture while Section 2
was presented in two lectures. It should be noted that, usually, the order of the oral
presentation was different. Section 5 contains convergence results for generalized
equations obtained during last two years and has not been discussed during the
seminar.
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1. What, Where, Why?

This section will hopefully answer the following questions:
What is a differential variational inequality?
Where such a model arises from?
Why should one consider this model instead of other ones?

1.1. Basic Notions. First, let us mention the notation used in the rest of this note.
By R and R+ we denote the set of real numbers and non-negative real numbers,
respectively. The space of (column) vectors x = (x1, x2, ..., xn)T having n real
coordinates will be denoted by Rn. The scalar product in Rn is for each x =
(x1, x2, ..., xn)T ∈ Rn and y = (y1, y2, ..., yn)T ∈ Rn defined by

〈x,y〉 = xTy = x1y1 + x2y2 + · · ·+ xnyn =

n∑
i=1

xiyi.

The symbol x ⊥ y indicates that 〈x,y〉 = 0 and x � y means that xi ≤ yi for each
i ∈ {1, 2, . . . , n}. The scalar product induces the Euclidean norm on Rn which is
defined by

‖x‖ =
√
〈x,x〉 =

( n∑
i=1

x2
i

) 1
2

for each x ∈ Rn.

The closed and open ball around x ∈ Rn with radius r ≥ 0 are the sets

B[x, r] := {y ∈ Rn : ‖y − x‖ ≤ r} and B(x, r) := {y ∈ Rn : ‖y − x‖ < r},

respectively. Given any two subsets A and B of Rn, the Minkowski sum A+B and
the Minkowski difference A−B of A and B are defined by

A+B = {a + b : a ∈ A, b ∈ B} and A−B = {a− b : a ∈ A, b ∈ B}.

If A = {a}, we will write a + B instead of {a}+ B. Geometrically, this is nothing
else but a shift of the set B in the direction of a. Clearly,

A+B =
⋃
a∈A

(a +B) =
⋃
b∈B

(A+ b).

For any scalar α ∈ R, the α-multiple αA of the set A is defined by

αA = {αa : a ∈ A}.

Finally, the set A is convex if

αA+ (1− α)A = A for each α ∈ [0, 1],

and A is a cone if αA ⊂ A whenever α ≥ 0.
A set-valued mapping (correspondence) F : Rm ⇒ Rn associates with any x ∈ Rm

a subset of Rn, denoted by F(x) and called the value of F at x. For such a map,
the set

(i) domF := {x ∈ Rm : F(x) 6= ∅} is the domain of F;
(ii) rgeF := {y ∈ Rn : y ∈ F(x) for some x ∈ Rm} is the range of F;

(iii) gphF := {(x,y) ∈ Rm × Rn : y ∈ F(x)} is the graph of F.

5
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If F(x) is a singleton, we say that F is single-valued at x. If F is single-valued at
each x ∈ domF, then such a mapping will be denoted by f : dom f → Rn and we
write y = f(x) instead of y ∈ F(x). For a subset M of Rm, the image of M under
F is the set

F(M) =
⋃

x∈M
F(x).

Although we work in finite dimensions, from time to time, infinite dimensional
spaces will appear as well. The space of all linear bounded mappings acting from
a Banach space X to another Banach space Y is equipped with the standard ope-
rator norm and denoted by L(X,Y ). We set Rn×m = L(Rm,Rn), i.e. we identify
a linear bounded mapping from Rm to Rn with its matrix representation in the
standard canonical bases. Given an interval I in R and K ⊂ Rm, by C∞(I,K) we
mean functions from I with values in K possessing derivatives of arbitrary order. If
m = 1 and K := R, we write C∞[a, b] and C∞(a, b) for I := [a, b] and I := (a, b), re-
spectively. Finally, C∞0 (R) denotes real valued functions of one real variable having
derivatives of arbitrary order and a compact support.

1.2. Variational Inequalities. Given a function h : Rm → Rm and a non-empty
closed convex subset K of Rm, the variational inequality (VI) is a problem to

(1.1) find u ∈ K such that 0 ≤ 〈h(u),v − u〉 whenever v ∈ K.
The set of all solutions to (1.1) will be denoted by

(1.2) SOL(K,h).

There are various (equivalent) ways of writing (1.1). Let us start with its geo-
metric form.

Definition 1.1. Let K be a closed convex subset of Rm and u ∈ Rm. The normal
cone to K at u is the set

NK(u) :=

{
{p ∈ Rm : 〈p,v − u〉 ≤ 0 for each v ∈ K} if u ∈ K,
∅ otherwise.

In view of the above definition, solving variational inequality (1.1) means to find
u ∈ Rm such that

(1.3) −h(u) ∈ NK(u) or equivalently 0 ∈ h(u) +NK(u).

Note that any u ∈ Rm satisfying (1.3) has to be an element of K (see also Figure 1).
The domain of the normal cone mapping u ⇒ NK(u) is K.

Recall that for a subset C of Rm and a point u ∈ Rm the distance from u to C
and the projection of u on C are defined by

d(u, C) = inf
{
‖v − u‖ : v ∈ C

}
and PC(u) =

{
v ∈ C : ‖v − u‖ = d(u, C)

}
,

respectively. Let us gather well-known properties of the above three notions (see
also Figure 2 and Figure 3).

Lemma 1.2. Let K be a non-empty closed convex subset of Rm and u ∈ Rm. Then
(i) PK(u) contains the only point, p

K
(u) say. Moreover,

〈z− p
K

(u),u− p
K

(u)〉 ≤ 0 whenever z ∈ K;

6
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K

u1

u1 +NK(u1)

u2

u2 +NK(u2)

u3
NK(u3) = {0}

Figure 1. Normal cones associated with a rectangle K in R2.

K

pK(u)

u

z

.

Figure 2. Geometric meaning of Lemma 1.2 (i).

(ii) NK(u) is a non-empty closed convex cone. If, in addition, u is an interior
point of K, then NK(u) = {0};

(iii) p ∈ NK(u) if and only if p
K

(u + p) = u.

Proof. Clearly, (iii) is trivial once (i) is proved.

7
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K
pK(p + u) = u .

u + p

u +NK(u)

Figure 3. Geometric meaning of Lemma 1.2 (iii).

(i) If u ∈ K, then PK(u) = {u} and we are done. From now on, assume that
u /∈ K. Let (vn)n∈N be a sequence in K such that

d(u,K) ≤ ‖vn − u‖ < d(u,K) +
1

n
for each n ∈ N.

As (vn)n∈N is bounded, it has a cluster point, v ∈ Rm say. The above inequalities
give that d(u,K) = ‖v− u‖ =: r. Clearly, the closed set K must contain v. Hence
v ∈ PK(u), thus PK(u) is non-empty.
We claim that 〈z − v,u − v〉 ≤ 0 whenever v ∈ PK(u) and z ∈ K. Indeed, given
t ∈ [0, 1], the point zt := (1 − t)v + tz is in K thanks to the convexity. Then, for
any t ∈ (0, 1), we have

r2 = d2(u,K) ≤ ‖u− zt‖2 = ‖u− (1− t)v − tz‖2 = ‖(u− v)− t(z− v)‖2

= r2 − 2t〈z− v,u− v〉+ t2‖z− v‖2,
whence 〈z−v,u−v〉 ≤ (t/2)‖z−v‖2. Taking the limit as t ↓ 0, we get the desired
claim. Fix any v̄, ṽ ∈ PK(u). Using the claim twice with (z,v) := (v̄, ṽ) and
(z,v) := (ṽ, v̄), respectively, we infer that

‖v̄ − ṽ‖2 = 〈v̄ − ṽ,u− ṽ + v̄ − u〉 = 〈v̄ − ṽ,u− ṽ〉+ 〈ṽ − v̄,u− v̄〉 ≤ 0.

So v̄ = ṽ, which means that PK(u) is singleton.
(ii) Given u ∈ K, one has that

NK(u) =
⋂
v∈K
{p ∈ Rm : 〈p,v − u〉 ≤ 0},

therefore NK(u) is a closed convex cone containing zero (at least). Suppose that u
is an interior point of K. Let p ∈ NK(u). Find α > 0 such that v := u± αp ∈ K.
The very definition of NK(u) implies that α 〈p,p〉 ≤ 0 as well as −α 〈p,p〉 ≤ 0.
Hence ‖p‖ = 0. �

Let us mention some examples of the normal cones.

Example 1.3. (1) If K is a linear subspace of Rm then NK(u) is nothing else
but the orthogonal complement of K;

8
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(2) Given ū ∈ Rm and r > 0, let K := B[ū, r]. Then

NK(u) :=

 {0} if ‖u− ū‖ < r,
{λ(u− ū) : λ ≥ 0} if ‖u− ū‖ = r,
∅ otherwise;

(3) Given a differentiable convex function h : Rm → R, let

K := {u ∈ Rm : h(u) ≤ 0}.
Then

NK(u) :=

 {0} if h(u) < 0,
{λ∇h(u) : λ ≥ 0} if h(u) = 0,
∅ if h(u) > 0.

In particular, forK := Rm, we see that the model (1.3) (respectively (1.1)) covers
equations h(u) = 0.

Definition 1.4. Let K be a non-empty closed convex cone in Rm. The set

K∗ := {p ∈ Rm : 〈p,v〉 ≥ 0 for all v ∈ K}
is called the dual cone to K.

Next, let us establish the relationship between the dual and the normal cone.

Proposition 1.5. If K is a non-empty closed convex cone in Rm, then so is K∗.
Moreover, (K∗)∗ = K and

(1.4) K 3 u ⊥ p ∈ K∗ ⇔ −p ∈ NK(u) ⇔ −u ∈ NK∗(p).

In particular, when K = Rm+ , then

0 � u ⊥ p � 0 ⇔ −p ∈ NRm
+

(u) ⇔ −u ∈ NRm
+

(p).

Proof. By the very definition,

K∗ = ∩v∈K{p ∈ Rm : 〈p,v〉 ≥ 0},
so it is a non-empty closed convex cone as the intersection of closed half-spaces.

To prove (1.4), it suffices to prove the first equivalence. Indeed, using symme-
try together with (K∗)∗ = K, one immediately obtains the latter one. Suppose
that the first assertion in (1.4) holds true. Let v ∈ K be arbitrary. Then the
complementarity relation along with p ∈ K∗ yields that

〈p,u〉 = 0 ≤ 〈p,v〉.
Therefore the second assertion in (1.4) is proved. On the other hand, assume that
the second assertion in (1.4) is valid. Since u lies in the cone K, so do v := 0 and
v := 2u. Therefore

0 ≤ 〈p,−u〉 and 0 ≤ 〈p,u〉,
which means that u ⊥ p. Now, for a fixed v ∈ K, we have that 〈p,v〉 ≥ 〈p,u〉 = 0.
Thus p ∈ K∗.

Now, we prove that (K∗)∗ = K. By the very definition,

(K∗)∗ := {v ∈ Rm : 〈v,p〉 ≥ 0 for all p ∈ K∗}.

9
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Fix any v ∈ K. For any p ∈ K∗ we have 〈p,v〉 ≥ 0. Hence v ∈ (K∗)∗. Thus
K ⊂ (K∗)∗. On the other hand, fix any v /∈ K. Set u = p

K
(v) and p = u − v.

Then p is non-zero and p
K

(u−p) = u. By Lemma 1.2 (iii), we have −p ∈ NK(u).
The first equivalence in (1.4), gives that p ∈ K∗ and 〈p,u〉 = 0. Therefore, 〈v,p〉 =
〈u− p,p〉 = −‖p‖2 < 0. This reveals that v /∈ (K∗)∗.

To conclude the proof, observe that
(
Rm+
)∗

= Rm+ . �

Example 1.6. Given v ∈ Rm, suppose that one wants to find u ∈ Rm such that

0 � u ⊥ v + u � 0.

Fix any i ∈ {1, 2, . . . ,m}. Then vi + ui ≥ 0 and ui ≥ 0. The complementarity
relation implies that ui(vi + ui) = 0. If vi = 0, then ui = 0. If vi < 0, then
ui ≥ −vi > 0, which means that ui = −vi. Finally, when vi > 0, then vi + ui > 0,
and thus ui = 0. To sum up, ui = max{−vi, 0} =: (vi)

−. Therefore

u = v− := (max{−v1, 0},max{−v2, 0}, . . . ,max{−vm, 0})T .
Also

v + u = v+ := (max{v1, 0},max{v2, 0}, . . . ,max{vm, 0})T .

One can derive various calculus rules concerning the normal cones. Let us men-
tion the obvious one here.

Proposition 1.7. Consider two non-empty closed convex sets K1 ⊂ Rl and K2 ⊂
Rd. Then

NK1×K2
(u) = NK1

(u1)×NK2
(u2) for each u = (u1,u2) ∈ K1 ×K2.

Proof. A vector p = (p1,p2) belongs to NK1×K2
(u) if and only if, for every v =

(v1,v2) ∈ K1 ×K2 we have

0 ≥ 〈p,v − u〉 = 〈p1,v1 − u1〉+ 〈p2,v2 − u2〉.
In particular, letting v1 := u1, we get p2 ∈ NK2

(u2). Similarly, the choice v2 := u2

yields that p1 ∈ NK1(u1). The reverse implication is trivial. �

Example 1.8. Let u = (u1, . . . , un)T ∈ Rm+ . Then

p = (p1, . . . , pn)T ∈ NRm
+

(u)⇐⇒
{
pj ≤ 0 for j with uj = 0,
pj = 0 for j with uj > 0.

1.3. Problem Formulation. Suppose that functions f : R × Rn × Rm → Rn
and g : R × Rn × Rm → Rm are continuous, that K is a closed convex subset
of Rm and that b > a. Differential variational inequality (DVI) is a problem to
find an absolutely continuous function x : [a, b] → Rn and an integrable function
u : [a, b]→ Rm such that for almost all t ∈ [a, b] one has:

ẋ(t) = f(t,x(t),u(t)),(1.5)
0 ≤ 〈g(t,x(t),u(t)),v − u(t)〉 whenever v ∈ K,(1.6)

u(t) ∈ K,(1.7)

where ẋ(t) is the derivative of x(·) at t. Of course, one has to prescribe additional
initial (or boundary) conditions, but we will come to this issue later. The above
model was formally introduced and studied by Jong-Shi Pang and David E. Stewart

10
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in [24]. The name (DVI) is based on the fact that an ordinary differential equation
(1.5) is linked together with an algebraic constraint represented by the inequality
(1.6). Note that the derivative of u(·) does not appear in (1.5), therefore u is called
an algebraic variable. On the other hand, x is called a differential variable. The
requested “quality” of x(·) and u(·), we are searching for, depends on a particular
application. Very often, our setting is too strong especially when impacts come into
play (see Example 2.7). First, we will focus on the algebraic constraints.

If (1.6) and (1.7) hold for a fixed t ∈ [a, b], then u(t) solves variational inequality
(1.1) with h := g(t,x(t), ·), that is,

u(t) ∈ SOL(K,g(t,x(t), ·)).

Therefore the properties of the solution mapping (t,x) ⇒ SOL(K,g(t,x, ·)) will
play a key role in our consideration.

For K := Rm, Lemma 1.2 (ii) implies that the problem (1.5) - (1.7) boils down
to the so-called differential algebraic equation (DAE), which is a problem to find
functions x : [a, b]→ Rn and u : [a, b]→ Rm such that

(1.8) ẋ(t) = f(t,x(t),u(t)) and 0 = g(t,x(t),u(t)) for almost all t ∈ [a, b].

Therefore differential algebraic equations are special cases of differential variational
inequalities. In view of Lemma 1.2 (iii), one can always convert a DVI to a particular
DAE. Indeed, (1.6) – (1.7) are equivalent to

PK
(
u(t)− g(t,x(t),u(t))

)
− u(t) = 0 for almost all t ∈ [a, b].

However, since the projection mapping is non-smooth, one looses nice properties
(such as smoothness) of the function g.

By Proposition 1.5, if K is a non-empty closed convex cone, then (1.5) - (1.7)
reduce to the differential generalized complementarity problem (DGCP), i.e. one
wants to find functions x : [a, b]→ Rn and u : [a, b]→ Rm such that

ẋ(t) = f(t,x(t),u(t)),

K 3 u(t) ⊥ g(t,x(t),u(t)) ∈ K∗ for almost all t ∈ [a, b].(1.9)

In particular, whenK = Rm+ and both f and g are affine, we arrive at the differential
linear complementarity problem (DLCP), which is also called the linear complemen-
tarity system (LCS) in the literature. More precisely, this model reads as

(1.10)

ẋ(t) = Ax(t) + Bu(t) + p,

y(t) = Cx(t) + Du(t) + q,

0 � u(t) ⊥ y(t) � 0 for almost all t ∈ [a, b],

for given matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m, and vectors
p ∈ Rn, q ∈ Rm.

On the other hand, DVI means that

ẋ(t) ∈ f
(
t,x(t), SOL(K,g(t,x(t), ·))

)
for almost all t ∈ [a, b].

Let us define F : R× Rn ⇒ Rn for each (t,x) ∈ R× Rn by

F(t,x) = f
(
t,x, SOL(K,g(t,x, ·))

)
.

11
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We arrive at

ẋ(t) ∈ F(t,x(t)) for almost all t ∈ [a, b].

The above problem is known as differential inclusion (DI) in the literature. When
F has closed graph, non-empty compact convex values and satisfies certain growth
properties then the theory of differential inclusions can be applied (see Section 3.1).
However, this can be a non-trivial task. The importance of understanding the
behavior of the solution mapping emerges again.

In summary, the differential variational inequalities occupy a niche between diffe-
rential algebraic equations and differential inclusions and one can profit from the
special structure of the problem (1.5)–(1.7). However, one can find a different
model called “differential variational inequality" in [1]. Namely, given h : Rn → Rn
and a closed convex subset C of Rn, the problem to find an absolutely continuous
function x : [a, b]→ Rn such that:

ẋ(t) ∈ −h(x(t))−NC(x(t)) for almost all t ∈ [a, b],(1.11)
x(t) ∈ C for all t ∈ [a, b].(1.12)

Such a model is called variational inequality of evolution (VIE) in [24]. When C is
a cone, then Proposition 1.5 implies that

C 3 z ⊥ u ∈ C∗ ⇔ −u ∈ NC(z).

Therefore, (1.11)–(1.12) can be equivalently rewritten as

ẋ(t) = −h(x(t)) + u(t) and C 3 x(t) ⊥ u(t) ∈ C∗,

which is (1.9) with K := C∗, f(t,x,u) := −h(x) + u, and g(t,x,u) = x.
For a general closed convex set C, introducing an additional variable, (1.11)–

(1.12) can be reformulated as

ẋ(t) = −h(x(t)) + w(t),

0 = x(t)− y(t),

0 ≤ 〈w(t),v − y(t)〉 for each v ∈ C,
y(t) ∈ C.

This is DVI withK := Rn×C, u := (w,y), f(t,x,u) := −h(x)+w, and g(t,x,u) :=
(x−y,w). Hence, in general, DVIs cover a broader class of problems. Nevertheless,
one can study both DVIs and VIEs in the following unified framework

ẋ(t) = f(t,x(t),y(t),w(t)),

0 = g(t,x(t),y(t),w(t)),

0 ≤ 〈w(t),v − y(t)〉 for each v ∈ K̃,
y(t) ∈ K̃,

with given K̃ ⊂ Rm, f : R×Rn×Rm×Rm → Rn and g : R×Rn×Rm×Rm → Rm.

12
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1.4. Application in Electronics. In this section, we discuss some examples ap-
pearing in the theory of electrical circuits. The electrical circuit consists of wires
connecting the other elements such as voltage sources, resistors, capacitors and in-
ductors. There is a current (usually denoted by i) flowing through each branch that
is measured by a real number. A node is a junction (connection) within a circuit
were two or more circuit elements are connected or joined together giving a connec-
tion point between two or more branches. A node is indicated by a dot. A loop is
a simple closed path in a circuit in which no circuit element or node is encountered
more than once. The state of the circuit is characterized by the currents in each
branch together with the voltage or, more precisely, the voltage drop across each
branch (usually denoted by v). It is a convention that the voltage in the branch (ele-
ment) is oriented in the opposite direction than the corresponding current flowing
through it, i.e. voltage decreases in the direction of positive current flow.

There are two basic laws from physics. The first is Kirchhoff’s current law which
says that the total current flowing into a node is equal to the total current flowing
out of that node. This means that current is conserved. The other is Kirchhoff’s
voltage law which says that the sum of the voltages in any closed loop is zero. This
idea is known as the conservation of energy. The direction of a current and the
polarity of a voltage source can be assumed arbitrarily. To determine the actual
direction and polarity, the sign of the values also should be considered. For example,
a current labeled in left-to-right direction with a negative value is actually flowing
right-to-left.

Let us mention several common circuit elements (see Figure 4). A basic element

+

v(t)

∼

R R

L
C

iD

vD

Figure 4. Schematic symbols of circuit elements (voltage sources,
resistors, an inductor, a capacitor, and a diode).

is a (linear) resistor. It has two terminals across which electricity must pass, and
it is designed to drop the voltage of the current as it flows from one terminal to
the other. Resistors are primarily used to create and maintain known safe currents
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within electrical components. In this case, Ohm’s law says that

vR(t) = RiR(t),

where R > 0 is a given resistance. In general, we may have vR = ϕ(iR) with a given
(non-linear) function ϕ : R → R. The graph of ϕ is called the (Ampere-Volt)
characteristic of the resistor. Another important element is an inductor with the
relationship

vL(t) = L
diL
dt

(t),

where L > 0 is a given inductance. An inductor is typically made of a wire wound
into a coil. When the current flowing through an inductor changes, a time-varying
magnetic field is created inside the coil, and a voltage is induced. The third basic
element is a capacitor described by

vC(t) =
1

C

∫ t

0

iC(τ)dτ,

where C > 0 is a given capacitance. The capacitors contain at least two electrical
conductors separated by an insulator. A voltage source is a circuit element where
the voltage across it is independent of the current flowing through it. Finally,
one can come across various types of diodes which have Ampere-Volt characteristic
described by a non-smooth function or even set-valued function, e.g. ideal diode
can be described by

vD ∈ NR+(iD) ⇔ 0 ≤ −vD ⊥ iD ≥ 0 ⇔ −iD ∈ NR+(−vD).

The above non-smooth law describes the fact, that the current can flow in one
direction only, i.e. the diode is blocking in the opposite direction. In practice, the
above model is not appropriate because the diode blocks unless the voltage exceeds
some value called breakdown voltage Vb > 0. This value depends on the diode (e.g.,
it may be 100 V). More appropriate model could be

vD ∈ F (iD), where F (y) :=


−Vb, y < 0,

[−Vb, 0], y = 0,

0, y > 0.

Example 1.9. Let us consider the circuit involving a series connection of a load
resistance R > 0, an input-signal source generating the voltage v(t) at time t > 0,
an inductor with inductance L > 0, a capacitor with capacitance C > 0, and an
ideal diode (see Figure 5).

Then the current, denoted by i, is the same for all the elements. Using the
Kirchhoff’s voltage law, we have

v(t) = vR(t) + vL(t) + vC(t) + vD(t) = Ri(t) + L
di

dt
(t) +

1

C

∫ t

0

i(τ)dτ + vD(t),

with vD(t) ∈ NR+(i(t)). Setting

u(t) = −vD(t), x1(t) :=

∫ t

0

i(τ)dτ and x2(t) := ẋ1(t) = i(t),

14
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L
C

R

i

v(t)

+

∼

vL
vC

vR
vD

Figure 5. The circuit from Example 1.9.

we have
Lẋ2(t) = − 1

C
x1(t)−Rx2(t) + v(t) + u(t).

Hence, dividing by L, we arrive at the dynamic system(
ẋ1(t)
ẋ2(t)

)
=

(
0 1

− 1
LC −RL

)(
x1(t)
x2(t)

)
+

(
0
1
L

)
v(t) +

(
0
1
L

)
u(t)

with

−u(t) ∈ NR+

(
(0 1)

(
x1(t)
x2(t)

))
.

Set x = (x1, x2)T ,

A :=

(
0 1

−1/(LC) −R/L

)
, b :=

(
0

1/L

)
, and c :=

(
0
1

)
.

As −u ∈ NR+
(〈c,x〉) if and only if −〈c,x〉 ∈ NR+

(u), one arrives at the differential
variational inequality with

f(t,x, u) := bv(t) + Ax + bu, g(t,x, u) = 〈c,x〉, and K := R+.

Consider a practical diode instead of the ideal one, with Vb = 100 V say. Put u = vD
and K = [−100, 0]. Then

u ∈ F (〈c,x〉) with F (y) :=


−100, y < 0,

[−100, 0], y = 0,

0, y > 0.

So 〈c,x〉 ∈ F−1(u) = NK(u). One obtains a differential variational inequality with

f(t,x, u) := bv(t) + Ax− bu and g(t,x, u) = −〈c,x〉.

Example 1.10. Let us consider the four diodes bridge full-wave rectifier involving
four diodes (supposed to be ideal), a resistor with the resistance R > 0, a capacitor
with the capacitance C > 0 and an inductor with the inductance L > 0 (see
Figure 6).

15
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C

iC

L

iL

iDR1

iDR2

iDF2R

iR

iDF1

vC vL vR

vDR2vDF1

vDR1 vDF2

Figure 6. The circuit from Example 1.10.

This circuit allows unidirectional current through the load during the entire input
cycle; the positive signal goes through unchanged whereas the negative signal is
converted into a positive one.

The Kirchhoff’s laws can be written as:

vL = vC ,
vL = vDF1 − vDR1,
vDF2 + vR + vDR1 = 0,
iC + iL + iDF1 − iDR2 = 0,
iDF1 + iDR1 = iR,
iDF2 + iDR2 = iR.

Setting x =

(
vC
iL

)
, this can be rewritten as a differential linear complementarity

problem (1.10) with

A =

(
0 −1/C

1/L 0

)
, B =

(
0 0 −1/C 1/C
0 0 0 0

)
, u =


−vDR1

−vDF2

iDF1

iDR2

 ,

C =


0 0
0 0
−1 0
1 0

 , D =


1/R 1/R −1 0
1/R 1/R 0 −1

1 0 0 0
0 1 0 0

 , p = 0, q = 0.

16
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2. Reduction to an ODE

In this section, we start to investigate the existence of a solution to a differential
variational inequality. First, we focus on the possibility to apply standard results
on ordinary differential equations.

2.1. Index for DAEs. To motivate our consideration, suppose that we want to
reduce a differential algebraic equation

(2.1) ẋ(t) = f(t,x(t),u(t)) and 0 = g(t,x(t),u(t)) for all t ∈ [a, b],

to an (equivalent) ordinary differential equation. The index of (2.1) measures its
singularity when compared to the ODE. This key concept has evolved over several
decades, and today a number of definitions with different emphasis exist. The
minimum number of differentiation steps required to transform a DAE into an ODE
is known as the differential/differentiation index of (2.1) [31]. Index 0 corresponds
either to the case of an ODE without any algebraic constraint or to the case when
one can neglect this constraint without differentiation.

Example 2.1. Suppose that g : R×Rn×Rm → Rm is continuously differentiable,
and also that both ẋ(t) and u̇(t) exist for all t ∈ [a, b]. Differentiating the second
equation in (2.1) one gets, for each t ∈ [a, b], that

∇xg(t,x(t),u(t)) ẋ(t) +∇ug(t,x(t),u(t)) u̇(t) +∇tg(t,x(t),u(t)) = 0,

where ∇xg(t̄, x̄, ū) ∈ Rm×n is the partial Jacobian of g at (t̄, x̄, ū) ∈ R× Rn × Rm
with respect to x (similarly for ∇ug(t̄, x̄, ū) ∈ Rm×m and ∇tg(t̄, x̄, ū) ∈ Rm). If
∇ug(t̄, x̄, ū) is non-singular (regular) for each (t̄, x̄, ū) ∈ R×Rn×Rm then, setting
y = (x,u)T , we arrive at the ordinary differential equation

ẏ(t) = f̃(t,y(t)),

where, for each (t,y)T := (t,x,u)T ∈ R× Rn × Rm,

f̃(t,y) :=

(
f(t,x,u)

− [∇ug(t,x,u)]
−1 (∇xg(t,x,u) f(t,x,u) +∇tg(t,x,u)

)) .
We completely eliminated the algebraic constraint and therefore such a DAE has
the index 1.

Having an implicit function theorem in mind, the key idea emerges immediately.
Given (t̄, x̄, ū) ∈ R × Rn × Rm, suppose that ∇ug(t̄, x̄, ū) is non-singular. Then
there is r > 0 and a differentiable function s from W := B(t̄, r) × B(x̄, r) to Rm
such that

0 = g(t,x, s(t,x)) whenever (t,x) ∈W.
Hence (2.1) can be (locally) converted to an ODE of the form

ẋ(t) = f̃
(
t,x(t)) := f

(
t,x(t), s(t,x(t))

)
for all t close to t̄.

Clearly, if f is Lipschitz continuous, then so is f̃ in a vicinity of the reference point.
An easy but not simple question arises: Is there an analogue of the implicit function
theorem for inequalities (inclusions) which ensures the existence of a function s
which is at least locally Lipschitz continuous a neighborhood of the reference point?
Fortunately, there is a positive answer as the Section 2.4 shows. Under quite strong
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monotonicity assumptions, it is possible to reduce a DVI to an ODE even globally.
Let us address this issue first.

2.2. Global Reduction. Recall several well-known but useful properties of the set
of solutions to a non-parametric variational inequality (for a comprehensive reading
on this topic see [15]).

Proposition 2.2. Consider the solution set

S := {u ∈ Rm : 0 ∈ h(u) +NK(u)},

where h : Rm → Rm is defined on a non-empty closed convex subset K of Rm.
(i) If h is continuous on K then S is closed (possibly empty);
(ii) If h is continuous and monotone on K, i.e.

〈h(x)− h(y),x− y〉 ≥ 0 whenever x,y ∈ K,

then S is convex (possibly empty);
(iii) If h is strictly monotone on K, i.e.

〈h(x)− h(y),x− y〉 > 0 for any distinct x,y ∈ K,

then S is at most singleton;
(iv) If h is both continuous and semi-coercive on K, i.e. there is ū ∈ K along

with r > 0 such that

〈h(w),w − ū〉 > 0 for each w ∈ K with ‖w‖ > r,

then S is a non-empty subset of B[0, r].

Proof. Note that (i)–(iii) are trivial if S is empty. Until the proof of (iv) assume
that this is not the case. The set S contains those u ∈ K such that

(2.2) 〈h(u),w − u〉 ≥ 0 for each w ∈ K.

(i) Let (un)n∈N be a sequence in S convergent to some u ∈ Rm. The continuity
of h implies that

0 ≤
(2.2)

lim
n→+∞

〈h(un),w − un〉 = 〈h(u),w − u〉 for each w ∈ K.

As K is closed, u ∈ K and thus u ∈ S.
(ii) To see the convexity, pick any u, v ∈ S and any λ ∈ (0, 1). Then

(2.3) 〈h(u),w − u〉 ≥ 0 and 〈h(v),w − v〉 ≥ 0 for each w ∈ K.

Let x̄ := (1−λ)u+λv. Then x̄ ∈ K by convexity. Fix any w̄ ∈ K. We have to show
that 〈h(x̄), w̄− x̄〉 ≥ 0. Taking t ∈ (0, 1) as a parameter, let w(t) := x̄ + t(w̄− x̄).
As K is convex, it contains any w(t). The monotonicity of h on K and the first
inequality in (2.3) imply that

0 ≤ 〈h(w(t))− h(u),w(t)− u〉+ 〈h(u),w(t)− u〉
= 〈h(w(t)),w(t)− u〉.
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Similarly, 0 ≤ 〈h(w(t)),w(t)− v〉. Therefore

0 ≤ (1− λ)〈h(w(t)),w(t)− u〉+ λ〈h(w(t)),w(t)− v〉
= 〈h(w(t)),w(t)− (1− λ)u− λv〉 = 〈h(w(t)),w(t)− x̄〉
= t〈h(w(t)), w̄ − x̄〉.

As w(t) → x̄ as t ↓ 0, dividing by t and using the continuity of h, we arrive at
〈h(x̄), w̄ − x̄〉 ≥ 0, as required.

(iii) Pick any two distinct u1, u2 ∈ S. Since both u1 and u2 are in K, writing
down (2.2) for them (with w := u2 and w := u1 respectively), one infers that

0 < 〈h(u1)− h(u2),u1 − u2〉
= −〈h(u1),u2 − u1〉 − 〈h(u2),u1 − u2〉 ≤ 0 + 0 = 0,

which is impossible.
(iv) Suppose that there would be some u ∈ S with ‖u‖ > r. As ū ∈ K, the

very definition of a solution and the semi-coerciveness with w := u yield that
0 ≤ 〈h(u), ū− u〉 < 0, a contradiction. Therefore S ⊂ B[0, r].

To prove the non-emptiness, suppose that K is bounded first. Lemma 1.2 (i)
says that the projection mapping pK : Rm → K is well-defined and that

〈z− pK(u),u− pK(u)〉 ≤ 0 whenever z ∈ K and u ∈ Rm.

Fix any two distinct u1,u2 ∈ Rm. As both z1 := pK(u1) and z2 := pK(u2) are in
K, the above fact and the Cauchy-Schwarz inequality imply that

‖z1 − z2‖2 = 〈z1 − z2, z1 − z2〉
= 〈z1 − z2,u2 − z2〉+ 〈z1 − z2,u1 − u2〉+ 〈z2 − z1,u1 − z1〉
≤ 0 + ‖z1 − z2‖ ‖u1 − u2‖+ 0 = ‖z1 − z2‖ ‖u1 − u2‖.

This means that pK is Lipschitz continuous on the whole of Rm. The mapping x 7→
pK(x−h(x)) maps K continuously into itself as it is a composition of a continuous
function from K into Rm with a Lipschitz function from Rm into K. By Brouwer’s
fixed-point theorem it has a fixed point, u say. Lemma 1.2 (iii) reveals that

pK(u− h(u)) = u ⇐⇒ −h(u) ∈ NK(u) ⇐⇒ u ∈ S.

Second, assume that K is unbounded. Clearly, an intersection of K with any
closed ball centered at the origin is a compact convex set which is also non-empty
if the radius is sufficiently large. The first part of the proof implies that one can
find an infinite subset N of N in such a way that, for each n ∈ N , there is un ∈ K
verifying

(2.4) 〈h(un),v − un〉 ≥ 0 for each v ∈ K with ‖v‖ ≤ n.

Then (un)n∈N has to be bounded. Indeed, suppose, on the contrary, that there is
an index n ∈ N such that both ‖un‖ > r and n > ‖ū‖. Then semi-coerciveness
with w := un and (2.4) with v := ū would yield that 0 ≤ 〈h(un), ū − un〉 < 0,
a contradiction. Let c > 0 be such that ‖un‖ < c for each n ∈ N . Pick n > c. We
will show, that un ∈ S. In view of (2.4), it suffices to show that for any w ∈ K with
‖w‖ > n we have 〈h(un),w − un〉 ≥ 0. Fix any such a point w. Find λ ∈ (0, 1)
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such that v := un + λ(w−un) has the norm less than n. As both w and un are in
K so is v thanks to the convexity. Therefore (2.4) reveals that

0 ≤ 〈h(un),un + λ(w − un)− un〉 = λ〈h(un),w − un〉.

The proof is finished. �

Given a non-empty closed convex subset K of Rm and h : Rd × Rm → Rm,
consider a parametric variational inequality:

(2.5) For a p ∈ Rd find u ∈ Rm such that 0 ∈ h(p,u) +NK(u).

Let us define the solution mapping S : Rd ⇒ Rm by

(2.6) Rd 3 p 7→ S(p) := {u ∈ Rm : u solves (2.5)}.

From the previous theorem one gets sufficient conditions for the Lipschitz conti-
nuity of the solution mapping.

Theorem 2.3. Let h : Rd × Rm → Rm be defined on a non-empty closed convex
subset K of Rm and let V be a non-empty closed subset of Rd. Suppose that

(i) h is continuous on V ×K;
(ii) there is L > 0 such that, for each u ∈ K, the mapping h(·,u) is Lipschitz

continuous on V with the constant L;
(iii) there is µ > 0 such that

〈h(p,u)− h(p,w),u−w〉 ≥ µ‖u−w‖2 whenever u,w ∈ K and p ∈ V.

Then the solution mapping S in (2.6) is single-valued on all of V and Lipschitz
continuous on V with the constant L/µ.

Proof. Fix any p ∈ V . We will apply Proposition 2.2 with h := h(p, ·). Clearly,
the monotonicity assumption (iii) implies the one in Proposition 2.2 (iii). Hence,
S(p) is at most singleton. Pick any ū ∈ K such that r := ‖ū‖ + ‖h(p, ū)‖/µ > 0.
Note that this causes no loss of generality, because otherwise the origin is the only
point of K and h(p,0) = 0 and we are done. Fix any w ∈ K with ‖w‖ > r. Then

〈h(p,w),w − ū〉 = 〈h(p,w)− h(p, ū),w − ū〉+ 〈h(p, ū),w − ū〉
≥ µ‖w − ū‖2 − ‖h(p, ū)‖ ‖w − ū‖
≥ ‖w − ū‖

(
µ(‖w‖ − ‖ū‖)− ‖h(p, ū)‖

)
> ‖w − ū‖

(
µr − µ‖ū‖ − ‖h(p, ū)‖

)
= 0.

By Proposition 2.2 (iv), S(p) contains exactly one point, s(p) say.
We showed that S is single-valued on V . Finally, to show that V 3 p 7→ s(p) ∈ K

is Lipschitz continuous, fix arbitrary p1, p2 ∈ V . Let u1 := s(p1) and u2 := s(p2).
Then

〈h(p1,u1),w − u1〉 ≥ 0 and 〈h(p2,u2),w − u2〉 ≥ 0 for each w ∈ K.
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Taking w := u2 and w := u1 respectively, one sees that (iii) together with Cauchy-
Schwarz inequality imply the following chain of estimates

µ‖u1 − u2‖2 ≤ 〈h(p1,u1)− h(p1,u2),u1 − u2〉 = −〈h(p1,u1),u2 − u1〉
+〈h(p2,u2)− h(p1,u2),u1 − u2〉 − 〈h(p2,u2),u1 − u2〉

≤ 0 + ‖h(p2,u2)− h(p1,u2)‖ ‖u1 − u2‖+ 0

≤ L‖p2 − p1‖ ‖u2 − u1‖.
If u2 6= u1 then, dividing by µ‖u1 − u2‖ > 0, we obtain that

‖u1 − u2‖ ≤
L

µ
‖p1 − p2‖.

As the above inequality holds trivially when u2 = u1, the proof is finished. �

Example 2.4. Given a ∈ R, consider the problem:

For a p ∈ R find u ∈ R such that p ∈ au+NR+(u) =: Φ(u).

Then this is a parametric variational inequality with h(p, u) := au−p and K := R+.
Then L = 1 and µ = a provided that a > 0 (see Figure 7).

We are going to apply the previous statement to an autonomous DVI:

ẋ(t) = f(x(t),u(t)),

0 ≤ 〈g(x(t),u(t)),v − u(t)〉 whenever v ∈ K,
u(t) ∈ K.

Assume that
(A) g is Lipschitz continuous with respect to the first variable on a closed subset

Ω of Rn uniformly in the latter one, i.e. there is Lg > 0 such that

‖g(x1,u)− g(x2,u)‖ ≤ Lg‖x1 − x2‖
whenever (x1,u), (x2,u) ∈ Ω×K;

(B) there is µ > 0 such that, for each u1, u2 ∈ K and each x ∈ Ω, one has

〈g(x,u1)− g(x,u2),u1 − u2〉 ≥ µ‖u1 − u2‖2;

(C) f is Lipschitz continuous on Ω×K, i.e. there are positive Lx and Lu such
that

‖f(x1,u1)− f(x2,u2)‖ ≤ Lx‖x1 − x2‖+ Lu‖u1 − u2‖
for each (x1,u1), (x2,u2) ∈ Ω×K.

Theorem 2.3, implies that there is a function s : Ω 3 x 7→ s(x) ∈ SOL
(
K,g(x, ·)

)
which is Lipschitz continuous on Ω with the constant Lg/µ. Let

f̃(x) := f
(
x, s(x)

)
, x ∈ Ω.

Then, for any x1, x2 ∈ Ω, we have that

‖f̃(x1)− f̃(x2)‖ = ‖f
(
x1, s(x1)

)
− f
(
x2, s(x2)

)
‖

≤ Lx ‖x1 − x2‖+ Lu ‖s(x1)− s(x2)‖
≤

(
Lx + LuLg/µ

)
‖x1 − x2‖.
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Figure 7. Mappings from Example 2.4.

We arrived at ẋ = f̃(x), which is an ODE with the Lipschitz continuous right-hand
side. Hence, the classical theory may be applied.

The same can be done for a general non-autonomous DVI in (1.5) – (1.7). Fix
δ > 0 and let V := [a, b]× B[0, δ]. Instead of (A) – (C) suppose that

(A’) there is an integrable function lg : [a, b]→ (0,∞) such that

‖g(t,x1,u)− g(t,x2,u)‖ ≤ lg(t) ‖x1 − x2‖

whenever (t,x1,u), (t,x2,u) ∈ V ×K;
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(B’) there is µ > 0 such that, for each u1, u2 ∈ K and each (t,x) ∈ V , one has

〈g(t,x,u1)− g(t,x,u2),u1 − u2〉 ≥ µ‖u1 − u2‖2;

(C’) there is an integrable function lx : [a, b] → (0,∞) along with Lu > 0 such
that

‖f(t,x1,u1)− f(t,x2,u2)‖ ≤ lx(t)‖x1 − x2‖+ Lu‖u1 − u2‖

for each (t,x1,u1), (t,x2,u2) ∈ V ×K;
(D) there are integrable functions ϕ1, ϕ2 : [a, b] → (0,∞) along with ū ∈ K

such that

‖g(t,0, ū)‖ ≤ ϕ1(t) and ‖f(t,0,0)‖ ≤ ϕ2(t).

As in the proof of Theorem 2.3, there is a function s : V 3 (t,x) 7→ s(t,x) ∈
SOL

(
K,g(t,x, ·)

)
such that

‖s(t,x1)− s(t,x2)‖ ≤ lg(t)

µ
‖x1 − x2‖ whenever (t,x1), (t,x2) ∈ V.

Let
f̃(t,x) := f

(
t,x, s(t,x)

)
, (t,x) ∈ V.

Then the function lf̃ (t) := lx(t) + lg(t)Lu/µ, t ∈ [a, b], is integrable on [a, b].
Moreover, for any (t,x1), (t,x2) ∈ V , we have that

‖f̃(t,x1)− f̃(t,x2)‖ = ‖f
(
t,x1, s(t,x1)

)
− f
(
t,x2, s(t,x2)

)
‖

≤ lx(t) ‖x1 − x2‖+ Lu ‖s(t,x1)− s(t,x2)‖
≤

(
lx(t) + lg(t)Lu/µ

)
‖x1 − x2‖ = lf̃ (t) ‖x1 − x2‖.

Finally, fix arbitrary (t,x) ∈ V . Then

r := ‖ū‖+
1

µ
‖g(t,x, ū)‖ ≤ ‖ū‖+

1

µ
(‖g(t,x, ū)− g(t,0, ū)‖+ ‖g(t,0, ū)‖)

≤ ‖ū‖+
1

µ

(
lg(t) ‖x‖+ ϕ1(t)

)
≤ ‖ū‖+

1

µ

(
δlg(t) + ϕ1(t)

)
.

As in the proof of Theorem 2.3 we get that the assumptions in Proposition 2.2 (iv)
hold. Using the estimate for the norm of the solutions therein, one infers that

‖f̃(t,x)‖ ≤ ‖f
(
t,x, s(t,x)

)
− f(t,0,0)‖+ ‖f(t,0,0)‖

≤ lx(t)‖x‖+ Lu ‖s(t,x)‖+ ϕ2(t)

≤ δlx(t) + Lu‖ū‖+
Lu

µ

(
δlg(t) + ϕ1(t)

)
+ ϕ2(t) := ϕ(t).

We arrived at ẋ(t) = f̃(t,x(t)). Since ϕ is integrable on [a, b], theory of the
Carathéodory differential equations may be applied.

Now, let us discuss a higher-dimensional version of Example 2.4. We will need
an easy lemma from linear algebra.

Lemma 2.5. Let A ∈ Rm×m. If 〈Ah,h〉 > 0 for any non-zero h ∈ Rm, then there
is µ > 0 such that 〈Ah,h〉 ≥ µ‖h‖2 whenever h ∈ Rm.
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Proof. Fix any non-zero h ∈ Rm. The matrix A is the sum of its symmetric part
As :=

(
A + AT

)
/2 and its anti-symmetric part Aa :=

(
A−AT

)
/2. Then

2〈Aah,h〉 = 〈Ah,h〉−〈ATh,h〉 = 〈h,Ah〉−〈ATh,h〉 = 〈ATh,h〉−〈ATh,h〉 = 0,

which means that 〈Ah,h〉 = 〈Ash,h〉+ 〈Aah,h〉 = 〈Ash,h〉. By the assumption,
As is not only symmetric but also positive definite, let µ be its least eigenvalue.
Then properties of the Rayleigh’s quotient yield that

〈Ah,h〉
‖h‖2

=
〈Ash,h〉
‖h‖2

≥ µ > 0.

�

Example 2.6. Let A ∈ Rm×m be fixed. Consider the problem:

Given p ∈ Rm find u ∈ Rm such that p ∈ Au +NRm
+

(u).

Let h(p,u) := Au−p for p, u ∈ Rm. The first two conditions of Theorem 2.3 hold
(with L := 1 and V := Rm), and the last one requests the existence of µ > 0 such
that

〈A(u−w),u−w〉 ≥ µ‖u−w‖2 whenever u,w ∈ Rm+ .
In view of Lemma 2.5, this condition holds provided that 〈Ah,h〉 > 0 for each
non-zero h ∈ Rm. In particular, for any positive definite matrix A which restricts
ourselves on the class of symmetric matrices.

The above derived condition is unnecessarily strong especially when the local
reduction is considered as we will see later.

2.3. Problems without Friction in Mechanics. One of main goals of the classi-
cal mechanics is to describe how things move. The motion of a system is determined
by the coordinates of all its constituent particles as functions of time. For a single
point particle moving in three-dimensional space, we want to know its position (co-
ordinates) as a function of time, i.e. we want to find a function x : R → R3 which
is called the trajectory of the system. In case of n particles, the motion is described
by a set of functions xi : R → R3, where i ∈ {1, 2, . . . , n} labels which particle we
are talking about. Roughly spoken, we are able to predict where a particle will be
at any given instant of time. Knowing the trajectory, we can compute its derivative
and obtain a velocity

v(t) :=
d

dt
x(t) = ẋ(t)

at any time t as well. Taking the second derivative of the trajectory, we obtain an
acceleration

a(t) :=
d

dt
v(t) = ẍ(t).

The complete motion is encoded in a system of differential equations, called the
equations of motion. Newton’s three Laws of Motion may be stated as follows:

1. A body remains in uniform motion unless acted on by a force;
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2. Force equals the rate of change of momentum p, defined by p(t) = mv(t),
t ∈ R, where m > 0 is particle’s mass. If we suppose that the mass does
not depend on time (which is true in case of low velocities compared to the
speed of light), this law can be written as an equality

f(t) =
d

dt
(mv(t)) = mv̇(t) = ma(t);

3. Any two bodies exert equal and opposite forces on each other.
To convert the second Newton’s law into a meaningful equation, one has to know
a force law describing how the force f depends on the coordinates or velocities
themselves. This is an empirical law given by physicists which approximates well the
reality in a particular situation. For example, I. Newton deduced the gravitational
force law, which says that the force fij exerted by a particle i by another particle j
is

(2.7) fij = −Gmimj
xi − xj
‖xi − xj‖3

,

where G := (6.6726 ± 0.0008) × 10−11 Nm2/kg2 is the Cavendish constant. In
particular, for a particle of mass m near the surface of the Earth with the mass me

and the radius re, taking mi = m and mj = me, with xi − xj := −rer, we obtain

f = −mgr ≡ −mg,

where r is a radial unit vector pointing from the Earth’s center and g := Gme/r
2
e ≈

9.81 m/s2 is the acceleration due to gravity at (near) the Earth’s surface. Newton’s
second law says that a = −g, i.e. objects accelerate as they fall to the Earth.
Hence, if we want to describe the motion of a particle of mass m near the surface of
the Earth, we may reduce the original tree-dimensional problem to one-dimensional
one and assume a uniform gravitational field, with f = −mg.

As in electronics there are several basic elements (with appropriate force laws)
used in mechanics (see Figure 8 for graphical representation). Denote f and x
the force and the displacement, respectively. Then for the spring we have fS(t) =
−kx(t), where k > 0 is a given stiffness. Similarly, the damper can be described by
fD(t) = −cẋ(t), where c > 0 is a given viscous damping coefficient (often denoted
also by b).

k c

Figure 8. Representation of spring and damper.

Example 2.7. Consider a rigid ball of mass m and radius r falling downward onto
a rigid table due to the gravitational acceleration g. Assume that there is no air
resistance and denote the height of the center of the ball above the table at time
t ≥ 0 by y(t) (see Figure 9). Let v(t) := ẏ(t) be the velocity of the ball at a given
time. Sooner or later we must face the hard constraint that y(t) − r ≥ 0. When
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r

r

y(t)

mg

n

Figure 9. A bouncing ball.

y(t) = r, there has to be a reaction force n(t) to prevent penetration of the table.
This and the Newton’s second law of motion imply that

mv̇(t) = −mg + n(t) and 0 ≤ y(t)− r ⊥ n(t) ≥ 0 for all t ≥ 0.

Unfortunately, these conditions together with initial conditions do not determine
the trajectory uniquely. Even in this simple case one needs an extra condition,
usually given in terms of a coefficient of restitution 0 ≤ e ≤ 1. Its value determines
“bouncing” after a collision, e.g. if y(t) = r then the relationship between pre-impact
and post-impact velocities is given by

v(t+) = −e v(t−).

Again this is only a model of impact and the value of e is not easy to determine.
Moreover, as v has a discontinuity at the time when the impact occurs, the reaction
force n(·) must contain a Dirac-δ function, or impulse, at this time. Instead, a com-
mon approach is to use normal compliance, which assumes that there is a slight
interpenetration of the ball and the surface. The contact is represented by a stiff
spring applying no force when there is no interpenetration. But when there is inter-
penetration, the force in the spring is proportional to the depth of interpenetration
(see Figure 10). Let k > 0. Consider the following model

Figure 10. Normal compliance approach
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mv̇(t) = −mg + λ(t) and 0 ≤ y(t)− r + λ(t)/k ⊥ λ(t) ≥ 0 for all t ≥ 0.

As in Example 1.6, then λ(t) = k
[
y(t)− r

]−
= kmax{r − y(t), 0}. Proposition 1.5

implies that

−y(t) + r − λ(t)/k ∈ NR+

(
λ(t)

)
whenever t ≥ 0.

Clearly, the function g(y, v, λ) := y − r + λ/k is strongly monotone in the third
variable uniformly with respect to the first two ones with the constant µ := 1/k.

In general, the state of a rigid body, at time t ∈ [a, b], can be represented by
a vector q(t) ∈ Rm of the so-called generalized coordinates (angles, positions of
centers of mass, angular and ordinary velocities, ... ). Then m is the number
of degrees of freedom. Let v(t) = q̇(t). Friction-less impact problems contain
inequality constraints on the generalized coordinates:

(2.8) hi(q(t)) ≥ 0, i ∈ {1, 2, . . . ,m}, t ∈ [a, b],

where hi : Rm → R are given. Then the motion of the system can be described by
a system of ODEs:

q̇(t) = v(t),

Mv̇(t) = −Cv(t)−Π′(q(t)) +
[
h′
(
q(t)

)]T
u(t),

0 � u(t) ⊥ h(q(t)) � 0, t ∈ [a, b],

where

- M is the mass matrix (which may depend on q in general);
- C is the viscous damping matrix;
- Π represents the potential energy of the system. Often, we assume that

Π(x) = 1
2 〈Kx,x〉, x ∈ Rm, where K is the symmetric stiffness matrix (so

Π′(x) = Kx);
- h(q) :=

(
h1(q), h2(q), . . . , hm(q)

)T , q ∈ Rm; and
- u(t) ∈ Rm is a vector of Lagrange multipliers.

Using the normal compliance, one may approximate the above system by:

q̇(t) = v(t),

Mv̇(t) = −Cv(t)−Π′(q(t)) +
[
h′
(
q(t)

)]T
u(t),

0 � u(t) ⊥ h(q(t)) + k−1u(t) � 0, t ∈ [a, b],

In this case, g(q,v,u) := h(q) + k−1u and the reaction forces are given by

k
[
h′
(
q
)]T

[h(q)]−.

Main advantage of the normal compliance approach is that the equations of
motion are just ordinary differential equations. However, most bodies are stiff,
which means that k is large. The question what happens when k → +∞ we leave
open here. This together with a more general model can be found in [32].
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In Example 2.7 we have seen that when modeling an impact, one arrives at the
following DVI:

ẋ(t) = f(t,x(t)) + u(t),

0 ≤ 〈g(t,x(t),u(t)),v − u(t)〉 whenever v ∈ K,
u(t) ∈ K.

Without using a normal compliance approach, we need to allow u(·) containing
Dirac-δ functions or more general distributions. Assuming that u(·) is a distribu-
tional derivative of some measurable function p(·) which is bounded on each finite
interval, we have that p(·) is an integral (Perron, Denjoy, Denjoy-Khintchine) of
u(·). Then via a substitution x = y + p, one can transform the above differential
equation to the Carathéodory equation

ẏ(t) = f(t,y(t) + p(t)).

The inequality constraint, can be replaced by

0 ≤
∫ b

a

〈g(t,x(t),u(t)),v(t)− u(t)〉dt whenever v(·) ∈ C∞([a, b],K),

which is under certain integrability condition equivalent to the original one, see
[32, Lemma 3.1]. The last remaining question is what means that u(t) ∈ K for
(almost) all t ∈ [a, b] as the point-wise values are meaningless in general. This can
be interpreted as∫ +∞

−∞ φ(t)u(t) dt∫ +∞
−∞ φ(t) dt

∈ K for all non-negative φ(·) ∈ C∞0 (R) \ {0}.

2.4. Local Reduction. Suppose that h : Rd × Rm → Rm and H : Rm ⇒ Rm are
given. The parametric generalized equation is a problem:

(2.9) For p ∈ Rd find u ∈ Rm such that 0 ∈ h(p,u) + H(u).

Since we are interested in “local continuity properties" of the solution with respect
the parameter around a fixed reference point, we need the following definition (see
Figure 11).

Definition 2.8. Given a set-valued mapping S : Rd ⇒ Rm and (p̄, ū) ∈ gphS, a
(local) selection for S around p̄ for ū is any single-valued mapping s : Rd → Rm
defined on a neighborhood V of p̄ such that

s(p̄) = ū and s(p) ∈ S(p) for each p ∈ V.

A (graphical) localization of S around p̄ for ū is a set-valued mapping S̃ : Rd ⇒ Rm
such that for some neighborhoods U of ū and V of p̄ we have

S̃(p) =

{
S(p) ∩ U if p ∈ V,
∅ otherwise.

The existence of a localization, which is single-valued and Lipschitz continuous
in a vicinity of the reference point, is also known as the strong metric regularity
of S−1. This notion was introduced by S. M. Robinson in [29]. Clearly, for any
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ū

V

Figure 11. Difference between a selection and a localization.

S : Rd ⇒ Rm a graphical localization of S around p̄ for ū, which is both single-
valued and Lipschitz continuous, is a Lipschitz continuous local selection for S
around p̄ for ū. The converse is not true in general.

Example 2.9. Let S : R ⇒ R be defined by S(p) = {−p, 0, p}, p ∈ R. Then
s(p) := 0, p ∈ R, is one possible (global) selection for S around 0 for 0 which is
Lipschitz continuous (on whole of R). However, there is no localization of S around
0 for 0 being single-valued.

The equivalence holds true if S : Rm ⇒ Rm is locally monotone at (p̄, ū) ∈ gphS,
that is, there is a neighborhood W of (p̄, ū) such that

(2.10) 〈û− ũ, p̂− p̃〉 ≥ 0 whenever (p̂, û), (p̃, ũ) ∈ gphS ∩W.

If W = Rm × Rm, then S is called (globally) monotone. Clearly, S is (locally)
monotone at (p̄, ū) if and only if so is S−1 at (ū, p̄).

Example 2.10. The local monotonicity of a continuous function s : R → R at
(p̄, s(p̄)) means that there is τ > 0 such that

(s(p̂)− s(p̃)).(p̂− p̃) ≥ 0 for each p̂, p̃ ∈ (p̄− τ, p̄+ τ),

so s is increasing on a neighborhood of the reference point.

Example 2.11. Let A ∈ Rm×m be positive semi-definite and K be a closed convex
subset of Rm. Then

S(p) := Ap +NK(p), p ∈ Rm,
is (globally) monotone. Indeed, let û ∈ S(p̂) and ũ ∈ S(p̃) be arbitrary. Find
ŵ ∈ NK(p̂) and w̃ ∈ NK(p̃) such that û = Ap̂ + ŵ and ũ = Ap̃ + w̃. As both p̂
and p̃ lie in K, the definition of the normal cone reveals that 〈ŵ, p̃ − p̂〉 ≤ 0 and
〈w̃, p̂− p̃〉 ≤ 0. Since A is positive semi-definite, we have

〈û− ũ, p̂− p̃〉 = 〈A(p̂− p̃), p̂− p̃〉 + 〈ŵ − w̃, p̂− p̃〉
= 〈A(p̂− p̃), p̂− p̃〉 + 〈ŵ, p̂− p̃〉 + 〈w̃, p̃− p̂〉 ≥ 0.
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Theorem 2.12. A set-valued mapping S : Rm ⇒ Rm, which is locally monotone
at (p̄, ū) ∈ gphS, has a localization around p̄ for ū which is both single-valued and
Lipschitz continuous if and only if it has a local selection around p̄ for ū which is
Lipschitz continuous.

Proof. We shall imitate the proof of [13, Theorem 3G.5]. Find W such that (2.10)
holds. Let s be a local selection for S which is both defined and Lipschitz continuous
on B(p̄, r) for some r > 0 such that B(p̄, r) × B(ū, κr) ⊂ W , where κ > 0 is the
Lipschitz constant. Fix any p ∈ B(p̄, r). As s(p̄) = ū, we have s(p) ∈ B(ū, κr).
Therefore, the point s(p) lies in S(p) ∩ B(ū, κr). It suffices to show that the latter
set is singleton. Suppose that this is not the case. Find u ∈ Rm such that

u ∈ S(p) ∩ B(ū, κr) with u 6= s(p).

Let b := ‖u− s(p)‖ and c := (u− s(p))/b, which means that

(2.11) b > 0, ‖c‖ = 1, and 〈u, c〉 = b+ 〈s(p), c〉.
Find τ > 0 such that κτ < b and that p + τc ∈ B(p̄, r). Since ‖c‖ = 1, the
Cauchy-Schwarz inequality and the Lipschitz continuity of s imply that

(2.12) 〈s(p + τc)− s(p), c〉 ≤ ‖s(p + τc)− s(p)‖ ‖c‖ ≤ κτ.

Since (p + τc, s(p + τc)) and (p,u) are in gphS ∩W , (2.10) reveals that

(2.13) 0 ≤ 〈s(p + τc)− u,p + τc− p〉 = τ〈s(p + τc)− u, c〉.
Now, we may estimate

b+ 〈s(p), c〉 =
(2.11)

〈u, c〉 ≤
(2.13)

〈s(p + τc), c〉 ≤
(2.12)

〈s(p), c〉+ κτ < 〈s(p), c〉+ b.

We arrived at a contradiction, therefore S(p) ∩ B(ū, κr) = {s(p)} for each p ∈
B(p̄, r). The opposite direction is trivial. �

We will investigate the existence of a Lipschitz continuous selection for the so-
lution mapping S : Rd ⇒ Rm corresponding to (2.9) defined by

(2.14) S(p) :=
{
u ∈ Rm : 0 ∈ h(p,u) + H(u)

}
, p ∈ Rd.

First, we reduce this problem to a “linear" one.

Theorem 2.13. Given H : Rm ⇒ Rm and h : Rd ×Rm → Rm, let S be a solution
mapping defined in (2.14) with ū ∈ S(p̄). For a given mapping l : Rm → Rm, define
e : Rd × Rm → Rm by e(p,u) = h(p,u)− l(u). Suppose that

(i) e(p̄, ū) = 0;
(ii) (l + H)−1 has a selection around 0 for ū which is Lipschitz continuous

with a constant κ > 0;
(iii) there are µ ∈ (0, 1/κ), α > 0 and τ > 0 such that

‖e(p,u)− e(p,v)‖ ≤ µ ‖u− v‖ whenever u,v ∈ B(ū, α), p ∈ B(p̄, τ);

(iv) there is ν > 0 such that

‖e(p̂,u)− e(p̃,u)‖ ≤ ν ‖p̂− p̃‖ whenever p̂, p̃ ∈ B(p̄, τ), u ∈ B(ū, α).

Then S has a selection around p̄ for ū which is Lipschitz continuous.
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Proof. We shall imitate the proof of [13, Theorem 5F.4]. Use (ii) to find α1 > 0
and a function s̃ which is Lipschitz continuous on B(0, α1) with the constant κ and
such that

(2.15) s̃(0) = ū and s̃(y) ∈ (l + H)−1(y) for each y ∈ B(0, α1).

Fix a > 0 such that

(2.16) a < min{α, κα1}.

By (iv), the mapping h(·, ū) is continuous at p̄. As µκ < 1, we can make τ smaller,
if necessary, to have

(2.17) ‖h(p, ū)− h(p̄, ū)‖ < a(1− µκ)/κ for each p ∈ B(p̄, τ).

We claim that ‖e(p,u)‖ < a/κ for any u ∈ B[ū, a] and any p ∈ B(p̄, τ). Indeed,
fix any such u and p. Note that B[ū, a] ⊂ B(ū, α) by (2.16). Thus

‖e(p,u)‖ =
(i)

‖e(p,u)− e(p, ū) +
(
e(p, ū)− e(p̄, ū)

)
‖

≤
(iii)

µ‖u− ū‖+ ‖h(p, ū)− l(ū)−
(
h(p̄, ū)− l(ū)

)
‖

<
(2.17)

µa+
a(1− µκ)

κ
=

a

κ
.

The claim is proved. Now, fix p ∈ B(p̄, τ) and consider a mapping

Φp : B[ū, a] 3 u 7−→ s̃(−e(p,u)).

Pick any u ∈ B[ū, a]. Then Φp(u) is well-defined, because the claim together with
(2.16) implies that −e(p,u) ∈ B(0, α1). Using the claim again, one gets

‖ū− Φp(u)‖ =
(2.15)

‖s̃(0)− s̃(−e(p,u))‖ ≤ κ‖e(p,u)‖ < a.

Therefore Φp maps B[ū, a] into itself.
Finally, pick any u,v ∈ B[ū, a]. Then u and v are in B(ū, α) thanks to (2.16).
Moreover, the claim implies that both −e(p,u) and −e(p,v) lie in B(0, α1), hence
we get that

‖Φp(u)− Φp(v)‖ = ‖s̃(−e(p,u))− s̃(−e(p,v))‖ ≤ κ ‖e(p,u)− e(p,v)‖
≤

(iii)
µκ ‖u− v‖.

This reveals that Φp is a contraction from B[ū, a] into itself, so it has a unique fixed
point.
For any p ∈ B(p̄, τ) denote by s(p) the (unique) point in B[ū, a] such that s(p) =
Φp(s(p)). Since

Φp̄(ū) = s̃(−e(p̄, ū))
(i)
= s̃(0)

(2.15)
= ū,

the uniqueness of the fixed point implies that s(p̄) = ū. Also, note that

s(p) = Φp(s(p)) =⇒
(2.15)

l(s(p)) + H(s(p)) 3 −e(p, s(p)) = l(s(p))− h(p, s(p))

⇐⇒ 0 ∈ h(p, s(p)) + H(s(p))⇐⇒ s(p) ∈ S(p).
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Therefore s is a local selection for S around p̄ for ū. To prove the Lipschitz con-
tinuity, fix any p̂, p̃ ∈ B(p̄, τ). Note that s(p̂) and s(p̃) lie in B(ū, α) because of
(2.16). The claim combined with (2.16), implies that e(p̂, s(p̂)), e(p̃, s(p̃)), and
e(p̃, s(p̂)) are in B(0, α1). Thus

‖s(p̂)− s(p̃)‖ = ‖s̃(−e(p̂, s(p̂)))− s̃(−e(p̃, s(p̂)))

+ s̃(−e(p̃, s(p̂)))− s̃(−e(p̃, s(p̃)))‖
≤ κ ‖e(p̂, s(p̂))− e(p̃, s(p̂))‖+ κ ‖e(p̃, s(p̂))− e(p̃, s(p̃))‖
≤

(iii)
κ ‖e(p̂, s(p̂))− e(p̃, s(p̂))‖+ µκ ‖s(p̂)− s(p̃)‖

≤
(iv)

κν ‖p̂− p̃‖+ µκ ‖s(p̂)− s(p̃)‖.

So s is Lipschitz continuous on B(p̄, τ) with the constant κν/(1− κµ). �

Example 2.14. Suppose that h : Rd × Rm → Rm is continuously differentiable at
(p̄, ū) ∈ gphS. Let

l(u) := h(p̄, ū) +∇uh(p̄, ū)(u− ū), u ∈ Rm.

Then the conditions (i), (iii) and (iv) in Theorem 2.13 are satisfied. The first one
is trivial. To show the rest, let us prove a (stronger) claim that for any µ > 0 there
is δ > 0 such that for each u,v ∈ B(ū, δ) and each p ∈ B(p̄, δ) we have

(2.18) ‖h(p,u)− h(p,v)−∇uh(p̄, ū)(u− v)‖ ≤ µ ‖u− v‖.

Fix any µ > 0 and then find δ > 0 such that

‖∇uh(p,w)−∇uh(p̄, ū)‖ ≤ µ for each (p,w) ∈ B(p̄, δ)× B(ū, δ).

Pick any u,v ∈ B(ū, δ) and any p ∈ B(p̄, δ). Put

c = h(p,u)− h(p,v)−∇uh(p̄, ū)(u− v).

If c = 0 then there is nothing to prove. Assume that ‖c‖ > 0. Consider the
function ϕ(t) := 〈c,h(p, tu + (1 − t)v)〉, t ∈ [0, 1]. Then ϕ(0) = 〈c,h(p,v)〉,
ϕ(1) = 〈c,h(p,u)〉, and

ϕ′(t) = 〈c,∇uh(p, tu + (1− t)v)(u− v)〉 for each t ∈ (0, 1).

By the Mean Value Theorem, there is τ ∈ (0, 1) such that ϕ(1) − ϕ(0) = ϕ′(τ), in
other words

〈c,h(p,u)− h(p,v)−∇uh(p, τu + (1− τ)v)(u− v)〉 = 0.

Set w = τu + (1− τ)v. Then w ∈ B(ū, δ). Taking into account the definition of c,
we get

0 < ‖c‖2 = 〈c, c〉 = 〈c,h(p,u)− h(p,v)−∇uh(p,w)(u− v)〉
+〈c, (∇uh(p,w)−∇uh(p̄, ū))(u− v)〉

= 〈c, (∇uh(p,w)−∇uh(p̄, ū))(u− v)〉 ≤ µ ‖c‖ ‖u− v‖.

Dividing this inequality by ‖c‖, we arrive at (2.18).
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To end the proof, fix ν > ‖∇ph(p̄, ū)‖ =: β. As in the above claim, there is r > 0
such that for each p̂, p̃ ∈ B(p̄, r) and each u ∈ B(ū, r) we have

‖h(p̂,u)− h(p̃,u)−∇ph(p̄, ū)(p̂− p̃)‖ ≤
(
ν − β

)
‖p̂− p̃‖.

Hence for such points, the triangle inequality yields that

‖h(p̂,u)− h(p̃,u)‖ ≤
(
ν − β

)
‖p̂− p̃‖+ β‖p̂− p̃‖ = ν ‖p̂− p̃‖.

Then the conditions (iii) and (iv) in Theorem 2.13 are satisfied with α := min{δ, r}
and τ := α.

A mapping satisfying (2.18) is called strictly differentiable with respect to the
second variable uniformly in the first one at the reference point. Inspecting the
proof, one sees that Theorem 2.13 is valid when the word selection is replaced by
localization. This is [13, Theorem 5F.4] extending a pioneering work by S. M.
Robinson [29], where H is the normal cone mapping to a closed convex set K. The
whole problem boils down to a problem how to check that the solution mapping of
a linear problem has a locally Lipschitz selection [localization] around the reference
point. Let us investigate in detail the case whenK := Rm+ . We have already touched
this issue in Section 2.2, but here we want to profit from the local properties only.

As before, consider an autonomous DVI:

ẋ(t) = f(x(t),u(t)),

0 ≤ 〈g(x(t),u(t)),v − u(t)〉 whenever v ∈ Rm+ ,
u(t) ∈ Rm+ , t ∈ [a, b],

where g : Rn × Rm → Rm is continuously differentiable. Let us prescribe initial
conditions x(a) = x̄ and u(a) = ū with −g(x̄, ū) ∈ NRm

+
(ū). We want to show that

there is a neighborhood Ω×U of (x̄, ū) along with a Lipschitz continuous function
s : Ω 3 x 7→ s(x) ∈ SOL

(
Rm+ ,g(x, ·)

)
∩ U . In view of Theorem 2.13, it suffices to

show that the inverse of the mapping

G : u 7→ g(x̄, ū) +∇ug(x̄, ū)(u− ū) +NRm
+

(u)

has a Lipschitz continuous selection [localization] around 0 for ū. Note that (ū,0) ∈
gphG, since

G(ū) = g(x̄, ū) +NRm
+

(ū) 3 g(x̄, ū) + (−g(x̄, ū)) = 0.

Let A := ∇ug(x̄, ū) and a := g(x̄, ū)−∇ug(x̄, ū)ū. We have to consider a “linear”
generalized equation:

Given y close to 0 find u close to ū such that y ∈ Au + a +NRm
+

(u).

Reorder the indices, if necessary, to find j, s ∈ N with j + s ≤ m such that

(Aū + a)i = 0 and ūi > 0 for i = 1, . . . , j,

(Aū + a)i = 0 and ūi = 0 for i = j + 1, . . . , j + s,

(Aū + a)i > 0 and ūi = 0 for i = j + s+ 1, . . . ,m.
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Partition u ∈ Rm as (u1,u2,u3) with u1 ∈ Rj ,u2 ∈ Rs,u3 ∈ Rm−j−s and partition
A, in the same way, as

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

By Proposition 1.7, we have

NRm
+

(u) =

m∏
i=1

NR+
(ui) = NRj

+
(u1)×NRs

+
(u2)×NRm−j−s

+
(u3).

Therefore the above generalized equation falls into three pieces

y1 ∈ A11u1 + A12u2 + A13u3 + a1 +NRj
+

(u1),

y2 ∈ A21u1 + A22u2 + A23u3 + a2 +NRs
+

(u2),

y3 ∈ A31u1 + A32u2 + A33u3 + a3 +NRm−j−s
+

(u3).

Fix any i ∈ {j+s+1, . . . ,m}. As (Aū+a)i is positive, so is (Au+a−y)i provided
that (u,y) is sufficiently close to (ū,0). Therefore ui = 0. So u3 = 0m−j−s and
the last inclusion holds trivially. Similarly, fixing arbitrary i ∈ {1, . . . , j} and using
that ūi > 0, we get ui > 0. This means that NRj

+
(u1) = {0j}. Therefore the above

system reduces to

y1 = A11u1 + A12u2 + a1

y2 ∈ A21u1 + A22u2 + a2 +NRs
+

(u2).

Since both ū2 and ū3 are zero vectors and (Aū+a)i = 0 for each i ∈ {1, . . . , j+s},
one has

Aū + a =

 0j
0s

A31ū1 + a3

 =

 A11

A21

A31

 ū1 +

 a1

a2

a3

 .

Using the first two rows and ū2 = 0s, we infer that a1 = −A11ū1−A12ū2 and a2 =
−A21ū1 −A22ū2. Plugging this into the reduced system of generalized equations
and setting w = (u1 − ū1,u2 − ū2)

T , we arrive at

y1 = A11w1 + A12w2

y2 ∈ A21w1 + A22w2 +NRs
+

(w2).

From now on, assume that A11 is non-singular and denote its Schur’s complement
in A by

B := A22 −A21A
−1
11 A12 ∈ Rs×s.

Then solving the first equation, one gets

y2 ∈ A21A
−1
11 (y1 −A12w2) + A22w2 +NRs

+
(w2).

For z := y2 −A21A
−1
11 y1 ∈ Rs, we obtain a reduced problem in its final form

z ∈ Bw2 +NRs
+

(w2).

Note that if the inverse of the mapping

G2 : w2 7→ Bw2 +NRs
+

(w2)
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has a Lipschitz continuous selection [localization] s2 around 0s for 0s (with a con-
stant L2 > 0 and a neighborhood V2, say) then so does the original mapping G
around 0 for ū. Indeed, choose a neighborhood V of 0 such that y2−A21A

−1
11 y1 ∈ V2

for any y ∈ V . Fix any ŷ, ỹ ∈ V . Then both ẑ = ŷ2 − A21A
−1
11 ŷ1 and

z̃ = ỹ2 − A21A
−1
11 ỹ1 are in V2, hence let ŵ2 := s2(ẑ) and w̃2 := s2(z̃), and then

ŵ1 := A−1
11 (ŷ1 −A12ŵ2) and w̃1 := A−1

11 (ỹ1 −A12w̃2). Thus

û := (ŵ1 + ū1, ŵ2 + ū2,0m−j−s) ∈ G−1(ŷ)

and
ũ := (w̃1 + ū1, w̃2 + ū2,0m−j−s) ∈ G−1(ỹ).

Moreover, for K := L2

(
1 + ‖A−1

11 ‖‖A12‖
)
‖ one gets that

‖û− ũ‖ ≤ ‖ŵ1 − w̃1‖+ ‖ŵ2 − w̃2‖ ≤ ‖ŵ1 − w̃1‖+ L2‖ẑ− z̃‖
≤ ‖A−1

11 ‖
(
‖ŷ1 − ỹ1‖+ ‖A12‖‖ŵ2 − w̃2‖

)
+ L2‖ẑ− z̃‖

= ‖A−1
11 ‖‖ŷ1 − ỹ1‖+ L2

(
1 + ‖A−1

11 ‖‖A12‖
)
‖ẑ− z̃‖

≤
(
‖A−1

11 ‖+K‖A21A
−1
11 ‖)‖ŷ1 − ỹ1‖+K‖ŷ2 − ỹ2‖.

We have already seen in Example 2.6 that a sufficient condition for the existence
of s2 is that

〈Bh,h〉 > 0 for each non-zero h ∈ Rs.
In fact, this means that G−1

2 is a globally Lipschitz continuous function.
Let us discuss a weaker notion. Recall that a matrix B ∈ Rs×s is called the

P -matrix provided that, for all k ∈ {1, . . . , s}, any k-by-k principal minor (the
determinant of the matrix obtained by deleting s − k rows and the s − k columns
with the same numbers) is positive. It is well-known, that B is a P -matrix if and
only if for any non-zero h ∈ Rs there is j ∈ {1, . . . , s} such that hj(Bh)j > 0.
It is obvious that any positive definite matrix is a P -matrix. On the other hand,
a symmetric P -matrix is positive definite.

The following statement is well-known in the theory of linear complementarity
problems.

Proposition 2.15. A matrix B ∈ Rs×s is a P -matrix if and only if for each q ∈ Rs
there is a unique u(q) ∈ Rs such that

0 � u(q) ⊥ Bu(q) + q � 0.

Moreover, the mapping s : Rs 3 q 7→ u(q) ∈ Rs is piece-wise linear, i.e. it is
continuous on whole of Rs and there is a finite set of linear mappings {l1, . . . , lk}
acting from Rs into itself such that

s(x) ∈ {l1(x), . . . , lk(x)} for each x ∈ Rs.

Clearly, a mapping s in the above proposition is Lipschitz continuous globally.
To sum up, we are able to reduce (uniquely) the autonomous DVI to an ODE
around the reference point (determined by the initial conditions) provided that
A11 is non-singular and A22 − A21A

−1
11 A12 is a P-matrix. It can be shown that

these conditions are also necessary for G−1
2 to be a Lipschitz single-valued mapping

defined on all of Rs [29, Theorem 3.1]. Moreover, [13, Theorem 2E.6] shows that
the same consideration goes through when K is any polyhedron in Rm.
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Defining a suitable “derivative" of a set-valued mapping, one obtains conditions
for checking that (l+H)−1 in Theorem 2.13 has a localization around 0 for ū which
is Lipschitz continuous [13, Theorem 4D.1].

Robinson’s theorem [29] mentioned above can be stated as follows:

Given H : Rm ⇒ Rm and a continuously differentiable h : Rd × Rm → Rm, let
S : Rd ⇒ Rm be defined by

S(p) :=
{
u ∈ Rm : 0 ∈ h(p,u) + H(u)

}
, p ∈ Rd,

and let ū ∈ S(p̄) . Suppose that the inverse of the mapping

h(p̄, ū) +∇uh(p̄, ū)(· − ū) + H

has a localization around 0 for ū which is Lipschitz continuous. Then S has a lo-
calization around p̄ for ū which is Lipschitz continuous.

The same was obtained for a non-smooth mapping h by A. F. Izmailov [18] in
finite dimension and in [9] in general Banach spaces. For simplicity, let us state
a non-parametric version.

Theorem 2.16. Let X and Y be Banach spaces, let h : X → Y be continuous at
x̄ ∈ X, let ȳ ∈ Y , and let H : X ⇒ Y . Suppose that there is a compact convex
A ⊂ L(X,Y ) and c > 0 such that

(i) there is r > 0 such that for each u, v ∈ B(x̄, r) one can find A ∈ A such
that

‖h(v)− h(u)−A(v − u)‖ ≤ c‖v − u‖;
(ii) for every A ∈ A, the inverse of the mapping

h(x̄) +A(· − x̄) +H

has a localization around ȳ for x̄ which is Lipschitz continuous with the
constant strictly less than 1/c.

Then h+H has a localization around ȳ for x̄ which is Lipschitz continuous.

Consider a locally Lipschitz continuous h : Rm → Rd, that is, for any ū ∈ Rm
there is a neighborhood U of ū along with a constant Lū > 0 such that

‖h(û)− h(ũ)‖ ≤ Lū ‖û− ũ‖ whenever û, ũ ∈ U.

Rademacher’s theorem says that there is a dense set D of points u ∈ U where h
is differentiable. Hence there exists a sequence (un)n∈N in D converging to ū such
that the corresponding sequence (‖∇h(un)‖)n∈N is bounded. Thus (∇h(un))n∈N
has at least one cluster point. This leads to the definition of the Bouligand’s limiting
Jacobian of h at ū, which is the set ∂Bh(ū) consisting of all matrices A ∈ Rd×m for
which there is a sequence (un)n∈N converging to ū such that h is differentiable at
each un and∇h(un)→ A as n→ +∞. The Clarke’s generalized Jacobian of h at ū,
denoted by ∂Ch(ū), is the convex hull of ∂Bh(ū). It is well-known that A := ∂Ch(ū)
satisfies the condition (i) of the preceding statement while A := ∂Bh(ū) not. We
will investigate the properties of these objects later in the last chapter. Very often,
the authors call ∂Bh(ū) the Bouligand (sub)differential or B-(sub)differential in
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Figure 12. Clarke’s and Bouligand’s subdifferential of h := | · |.

short. We argue that this terminology is misleading since we work with vector-
valued mappings in general and the notion “(sub)differential" should be used only
when d = 1, that is, when one works with real-valued functions h : Rm → R.

Example 2.17. Let h(u) := |u|, u ∈ R. Then (see also Figure 12) we have

∂Bh(0) = {−1, 1} and ∂Ch(0) = [−1, 1].

A non-smooth non-parametric Izmailov-Robinson theorem can be stated as fol-
lows.

Theorem 2.18. Let h : Rm → Rm be locally Lipschitz continuous at ū ∈ Rm and
let H : Rm ⇒ Rm. If for every A ∈ ∂Ch(ū), the inverse of the mapping

h(ū) + A(· − ū) + H

has a localization around 0 for ū which is Lipschitz continuous, then so does the
inverse of h + H.

For H ≡ 0, the above result was proved by F. H. Clarke [12] and the above
assumption means nothing else but that all the matrices in ∂Ch(ū) are non-singular.

To conclude this section, let us comment on the existence of a Lipschitz conti-
nuous selection briefly.

Remark 2.19. Given S : Rd ⇒ Rm, assume that there is κ > 0 along with closed
convex neighborhoods U of ū and V of p̄ such that

(i) S(p) ∩ U is closed and convex;
(ii) S(p̃) ∩ U ⊂ S(p̂) + κ‖p̃− p̂‖B[0, 1] for each p̃, p̂ ∈ V .

By [13, Theorem 3E.3], there there is κ1 > 0 together with closed convex neighbor-
hoods U1 of ū and V1 of p̄ such that

(i’) S(p) ∩ U1 is closed and convex;
(ii’) S(p̃) ∩ U1 ⊂ S(p̂) ∩ U1 + κ1‖p̃− p̂‖B[0, 1] for each p̃, p̂ ∈ V1.

Using Steiner selection, the remark following [2, Theorem 9.4.3] implies that S has
a Lipschitz continuous selection around p̄ for ū.

The property in (ii) is known as Aubin/pseudo Lipschitz/Lipschitz-like continuity
(property) of S, or equivalently, as themetric regularity of S−1 at the reference point.
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3. DVIs and DIs

3.1. Existence and Uniqueness Results on DIs. Given an open subset D of
Rn+1 containing a point (a,xa) and a set-valued mapping F : Rn+1 ⇒ Rn the
differential inclusion (DI) is given by

(3.1)
{

ẋ(t) ∈ F(t,x(t)) for t > a,
x(a) = xa.

A function x̄(·) is called a solution of (3.1) if there is σ > 0 such that
(i) x̄(·) is absolutely continuous on [a, a+ σ];
(ii) ˙̄x(t) ∈ F(t, x̄(t)) for almost all t ∈ (a, a+ σ);
(iii) x̄(a) = xa.

The following theorem, due to A. F. Filippov [17], provides sufficient conditions for
local existence and uniqueness of a solution. It will be presented with a sketch of
the proof because it gives an insight to the numerical methods discussed in the last
chapter.

Theorem 3.1. Let D be an open convex subset of Rn+1 which contains a point
(a,xa) ∈ Rn+1. Suppose that F : Rn+1 ⇒ Rn satisfies for each (t,x) ∈ D the
following conditions:

(i) the set F(t,x) is non-empty, bounded, closed, and convex;
(ii) F is Pompeiu-Hausdorff outer semi-continuous at (t,x) meaning that for

each ε > 0 there exists δ > 0 such that

‖(s,y)− (t,x)‖ < δ implies that F(s,y) ⊂ F(t,x) + B(0, ε).

Then differential inclusion (3.1) has a solution.
If, in addition, F satisfies one-sided Lipschitz condition in D, that is, there is

a non-negative Lebesgue integrable function l : R→ R such that

〈u− v,x− y〉 ≤ l(t)‖x− y‖2

whenever (t,x), (t,y) ∈ D, u ∈ F(t,x), v ∈ F(t,y), then the solution is unique.

Proof. As (a,xa) is an interior point of D, one may find the constants c > 0 and
d > 0 such that

Z := [a, a+ c]× B[xa, d] ⊂ D.
We divide the proof into several steps.
Step 1: There is m > 0 such that for each (t,x) ∈ Z and each y ∈ F(t,x) we have
‖y‖ ≤ m.

Suppose on the contrary that there is a sequence (zk)k∈N in Z and a sequence
(yk)k∈N such that

yk ∈ F(zk) for each k ∈ N and ‖yk‖ → +∞ as k → +∞.
Since Z is compact, we may choose a convergent sub-sequence (zki)i∈N of (zk)k∈N,
with the limit z ∈ Z say. As F(z) is bounded, there is α > 0 such that for each
u ∈ F(z) we have ‖u‖ ≤ α. By the outer semi-continuity of F at z, we may find
i0 ∈ N such that

F(zki) ⊂ F(z) + B(0, α) whenever i > i0.
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So, for any fixed i > i0, find ui ∈ F(z) and bi ∈ B(0, α) such that yki = ui + bi.
Hence

‖yki‖ ≤ ‖ui‖+ ‖bi‖ ≤ α+ α = 2α whenever i > i0.

We arrived at a contradiction with the assumption that ‖yki‖ → +∞ as i→ +∞.
Step 2: Put σ := min {c, d/m}. For any fixed k ∈ N we will construct a broken
line xk(·) defined on [a, a+ σ] by an inductive process (see Figure 13). Let

hk :=
σ

k
, tk,i := a+ ihk for i = 0, 1, . . . , k and xk(tk,0) := xa.

Assume that for some i ≥ 0 the value xk,i := xk(tk,i) has already been defined and

t

x3

xa − d

xa

xa + d

a a+ σa+ h3 a+ 2h3

xa

xa + h3v3,1

x3,1 + h3v3,2

x3,2 + h3v3,3

Z

t

x4

xa − d

xa

xa + d

a a+ h4 a+ 2h4 a+ 3h4 a+ σ

xa

xa + h4v4,1

x1 + h4v4,2
x2 + h4v4,3

x3 + h4v4,4

Z

Figure 13. Two broken lines from Step 2 for k = 3, 4.

satisfies

(3.2) ‖xk,i − xa‖ ≤ m|tk,i − a|.
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As (tk,i,xk,i) ∈ Z, take any vk,i ∈ F(tk,i,xk,i), and define

xk(t) = xk,i + (t− tk,i)vk,i for t ∈ [tk,i, tk,i+1].

Since ‖vk,i‖ ≤ m, (3.2) implies that for each t ∈ [tk,i, tk,i+1] we have

(3.3) ‖xk(t)− xa‖ ≤ m|tk,i − a|+m|t− tk,i| = m|t− a|.

Therefore xk,i+1 := xk(tk,i+1) satisfies (3.2) with i replaced by i+1. We constructed
xk(·) successively on the whole interval [a, a+ σ].
Step 3: A suitable sub-sequence of (xk(·))k∈N converges to an absolutely continuous
function x̄(·) on [a, a+ σ] the graph of which lies in Z.
Indeed, fix any k ∈ N. By the very definition, ‖ẋk(t)‖ ≤ m for almost all t ∈
(a, a+ σ). Hence, for each t1, t2 ∈ [a, a+ σ], one has

‖xk(t1)− xk(t2)‖ =

∥∥∥∥∫ t2

t1

ẋk(t) dt

∥∥∥∥ ≤ m|t1 − t2|.
Taking into account this and (3.3), one sees that (xk(·))k∈N is a sequence of uni-
formly bounded and equi-continuous functions. Therefore, using Arzelà-Ascoli
Theorem, one can select a uniformly convergent sub-sequence of it. Denote its
limit by x̄(·). As all the functions xk(·) are Lipschitz continuous on [a, a + σ] and
their graphs lie in Z, the limit x̄(·) has the same properties. In particular, it is
absolutely continuous.
Step 4: Clearly, x̄(a) = xa. So, it remains to prove that

˙̄x(t̄) ∈ F(t̄, x̄(t̄)) whenever t̄ ∈ (a, a+ σ) is such that ˙̄x(t̄) exists.

To do so, pick any such a point t̄ and put x̄ = x̄(t̄). Let ε > 0 be arbitrary. As F
is outer semi-continuous, there is η > 0 such that

F(t,x) ⊂ F(t̄, x̄) + B[0, ε] =: Ω whenever (t,x) ∈ [t̄− η, t̄+ η]× B[x̄, η].

Being the sum of two closed, convex and bounded sets, the set Ω is closed, convex
and bounded. By the very definition, there is k0 ∈ N such that the derivative ẋk(t)
(whenever it exists) is in Ω for each k > k0. Therefore

xk(t̄+ h)− xk(t̄)

h
=

1

h

∫ t̄+h

t̄

ẋk(τ) dτ ∈ Ω for h ∈ (−η, η),

because this mean value can be viewed as a limit of a convex combination of function
values ẋk(τi) at appropriately chosen points τi ∈ (t̄− h, t̄+ h) corresponding to the
partition of the interval [t̄− h, t̄+ h]. Hence

˙̄x(t̄) = lim
k→+∞

lim
h→0

xk(t̄+ h)− xk(t̄)

h
∈ Ω = F(t̄, x̄) + B[0, ε].

Since ε > 0 was arbitrary, we get ˙̄x(t̄) ∈ F(t̄, x̄(t̄)).
This establishes the existence part. To prove the rest, suppose that the one-sided

Lipschitz condition holds true.
Step 5: The solution is unique.

40



i
i

“paper-online” — 2016/5/4 — 10:15 — page 41 — #42 i
i

i
i

i
i

Suppose that there is σ > 0 such that there are two solutions x(·) and y(·) of (3.1)
on the interval [a, a+ σ]. Put z(·) := x(·)− y(·). Define a non-negative function

V (t) := ‖z(t)‖2e−2
∫ t
a
l(τ)dτ , t ∈ [a, a+ σ].

As z(·) is absolutely continuous, so is V . Hence for almost all t ∈ (a, a + σ), we
have

V̇ (t) = 2〈z(t), ż(t)〉 e−2
∫ t
a
l(τ)dτ − 2l(t)‖z(t)‖2e−2

∫ t
a
l(τ)dτ

= 2e−2
∫ t
a
l(τ)dτ

(
〈x(t)− y(t), ẋ(t)− ẏ(t)〉 − l(t)‖x(t)− y(t)‖2

)
.

Moreover, for almost all t ∈ (a, a+σ), we have ẋ(t) ∈ F(t,x(t)) and ẏ(t) ∈ F(t,y(t)),
the one-sided Lipschitz condition yields that

V̇ (t) ≤ 0 for almost all t ∈ (a, a+ σ).

Now, x(a) = y(a) = xa yields that V (a) = 0. Therefore, for each t ∈ [a, a+ σ] one
has

0 ≤ V (t) = V (a) +

∫ t

a

V̇ (τ)dτ ≤ 0.

Hence, V (t) = 0 for each t ∈ [a, a+ σ], which means that x(·) = y(·). �

The Pompeiu-Hausdorff outer semi-continuity is often called just outer semi-
continuity or upper semi-continuity in the literature. Note that this property does
not imply that the mapping in question has closed graph. Similarly, if a mapping
has closed graph, then it does not need to be outer semi-continuous (see Figure 14).

Lemma 3.2. (i) Any outer semi-continuous set-valued mapping F : Rm ⇒ Rn
with closed domain and closed values has closed graph;

(ii) Any locally bounded set-valued mapping F : Rm ⇒ Rn, meaning that for
each x ∈ domF there is r > 0 such that F(B(x, r)) is bounded, having
a closed graph is outer semi-continuous.

Proof. (i) Take any sequence (xk,yk) in gphF which converges to some (x,y) ∈
Rm × Rn. As xk → x for k → +∞ and domF is closed, one has x ∈ domF, so
F(x) 6= ∅. Moreover, since yk ∈ F(xk) for each k ∈ N, by outer semi-continuity and
passing to a sub-sequence, if necessary, we infer that

yk ∈ F(x) + B(0, 1/k) for each k ∈ N.

So, d(y,F(x)) = lim
k→+∞

d(yk,F(x)) = 0. As F(x) is closed, one gets that y ∈ F(x).

Therefore (x,y) ∈ gphF.
(ii) Let x ∈ domF be arbitrary. Suppose on the contrary that there is ε > 0 along
with sequences (xk)k∈N in Rm converging to x and (vk)k∈N in Rn such that

vk ∈ F(xk) and d(vk,F(x)) ≥ ε for each k ∈ N.

As (xk)k∈N converges to x and F is locally bounded, (vk)k∈N is bounded. Find
a sub-sequence (vki)i∈N of it which converges, to a point v ∈ Rn say. Then

d(v,F(x)) = lim
i→+∞

d(vki ,F(x)) ≥ ε > 0.
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(i)

x

F (x)

x

F (x)

x

F (x)

(ii)

Figure 14. Counterexamples illustrating Lemma 3.2.

Since F(x) is closed, v /∈ F(x). On the other hand, vki ∈ F(xki) for each i ∈ N,
hence the closeness of the graph of F implies that v ∈ F(x), a contradiction. �

Example 3.3. Let D = (a, b) × Ω be a domain in R × Rn, let f : D → Rn be
a mapping for which there is a Lebesgue integrable function l : (a, b)→ R such that

‖f(t,x)− f(t,y)‖ ≤ l(t)‖x− y‖ whenever (t,x), (t,y) ∈ D,

and let G : Rn ⇒ Rn be a monotone mapping with Ω ⊂ domG. Then

F(t,x) := f(t,x)−G(x), (t,x) ∈ D,

satisfies one-sided Lipschitz condition in D. Indeed, take any (t,x), (t,y) ∈ D, u ∈
F(t,x), and v ∈ F(t,y). Find px ∈ G(x) and py ∈ G(y) such that u = f(t,x)−px

and v = f(t,y) − py. The monotonicity of G and the Cauchy-Schwarz inequality
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yield that

〈u− v,x− y〉 = 〈f(t,x)− f(t,y),x− y〉 − 〈px − py,x− y〉
≤ 〈f(t,x)− f(t,y),x− y〉 ≤ ‖f(t,x)− f(t,y)‖ ‖x− y‖
≤ l(t)‖x− y‖2.

Recall that a monotone mapping G : Rn ⇒ Rn is called maximal if there does
not exist other monotone mapping whose graph strictly contains the graph of G.
This means that for each (x,u) ∈ Rn × Rn we have

(3.4) (x,u) ∈ gphG ⇔ 〈u− v,x− y〉 ≥ 0 for each (y,v) ∈ gphG.

We have the following well-known result, the last statement of which was proved
by R. T. Rockafellar.

Lemma 3.4. If G : Rn ⇒ Rn is maximal monotone then
(i) G(x) is closed and convex for each x ∈ Rn;
(ii) the graph of G is closed;
(iii) G is locally bounded at each interior point of its domain.

Proof. (i) An empty set is both closed and convex. So take any x ∈ Rn with
G(x) 6= ∅. Then (3.4) reveals that G(x) is equal to⋂

(y,v)∈gphG

{u ∈ Rn : 〈u− v,x− y〉 ≥ 0} ,

(an intersection of closed convex sets), hence it is closed and convex as well.
(ii) Take any sequence

(
(xk,uk)

)
k∈N in gphG which converges to some (x,u) ∈

Rn × Rn. Pick any (y,v) ∈ gphG. Then

〈u− v,x− y〉 = lim
k→+∞

〈uk − v,xk − y〉 ≥ 0.

As (y,v) ∈ gphG was arbitrary, using (3.4), one infers that (x,u) ∈ gphG.
(iii) See any standard book on convex analysis, e.g. [30]. �

Remark 3.5. Let h : Rn → R be a locally Lipschitz continuous function. In
Proposition 4.5, we will see that Bouligand’s sub-differential mapping x ⇒ ∂Bh(x)
and the Clarke’s sub-differential mapping x ⇒ ∂Ch(x), defined in the previous
chapter, are non-empty-valued and locally bounded on whole of Rn; and have closed
graphs. In particular, they are both Pompeiu-Hausdorff outer semi-continuous. The
latter mapping has even closed convex values. None of these mappings is (maximal)
monotone in general (unless h is a continuous convex function).

Very often, one has to address the existence and uniqueness of a solution for a DI
on the whole prescribed time interval which may even be unbounded. This is the
case, for example, when a question of (asymptotic) stability is on stage. The proof
of the next statement follows the same pattern as the one of Theorem 3.1.

Theorem 3.6. Given (a,xa) ∈ R × Rn and b > a, let D := [a, b] × Rn. Suppose
that F : D ⇒ Rn satisfies the following conditions:

(i) F(t,x) is non-empty, closed, and convex for each (t,x) ∈ D;
(ii) F is Pompeiu-Hausdorff outer semi-continuous at each (t,x) ∈ D;
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(iii) F has a linear growth on D, that is, there are α > 0 and β > 0 such that

‖z‖ ≤ α‖x‖+ β whenever z ∈ F(t,x) and (t,x) ∈ D.

Then there is x : [a, b]→ Rn such that
(i) x(·) is absolutely continuous on [a, b];
(ii) ẋ(t) ∈ F(t,x(t)) for almost all t ∈ (a, b);
(iii) x(a) = xa.

If F satisfies the one-sided Lipschitz condition in D, then the solution is unique.

Remark 3.7. As any set-valued mapping with a linear growth is locally bounded,
one can assume that F has closed graph instead of its outer semi-continuity.

3.2. From a DVI to a DI and Back. Since the conditions in Theorems 3.1
and 3.6 are very restrictive, the same will be the case for differential variational
inequalities which can be studied via a transformation to a differential inclusion.
Consider the following DVI:

ẋ(t) = f(t,x(t)) + B(t,x(t)) u(t),(3.5)
0 ≤ 〈g(t,x(t)) + h(u(t)),v − u(t)〉 whenever v ∈ K,(3.6)

u(t) ∈ K,(3.7)

where K ⊂ Rm is closed and convex, f : [a, b]× Rn → Rn, B : [a, b]× Rn → Rn×m,
g : [a, b]× Rn → Rm, and h : Rm → Rm are given functions. Set D := [a, b]× Rn.
From now on, assume that
(A1) both f and g are continuous and have a linear growth on D meaning that

there are positive constants α and β such that

‖f(t,x)‖ ≤ α‖x‖+ β and ‖g(t,x)‖ ≤ α‖x‖+ β whenever (t,x) ∈ D;

(A2) B is continuous and bounded on D with

σ := sup
(t,x)∈D

‖B(t,x)‖ < +∞;

(A3) h is both continuous and monotone on K, and there is ū ∈ K such that

lim inf
w∈K,‖w‖→+∞

〈h(w),w − ū〉
‖w‖2

> 0.

Define the solution mapping S : Rm ⇒ Rm corresponding to (3.6) by

S(p) := {u ∈ K : 〈p + h(u),v − u〉 ≥ 0 for each v ∈ K}, p ∈ Rm.

Consider F : D ⇒ Rn defined by

(3.8) F(t,x) =
{
f(t,x) + B(t,x) u : u ∈ S(g(t,x))

}
, (t,x) ∈ D.

We have to address two issues. First, how are solutions for DVI (3.5)–(3.7) related
to solutions for a DI in the form

(3.9) ẋ(t) ∈ F(t,x(t)) for almost all t ∈ [a, b].

Second, does this F satisfy the conditions in Filippov’s theorems? Let us start with
the latter question.
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Proposition 3.8. Suppose that h verifies (A3). Then S has non-empty closed
convex values, its domain is whole of Rm, and there is % > 0 such that

(3.10) ‖u‖ ≤ %(1 + ‖p‖) whenever u ∈ S(p) and p ∈ Rm.

Proof. Fix any p ∈ Rm. We are going to use Proposition 2.2 with h(·) := h(·) + p.
Indeed, as h(·) + p is continuous and monotone on K, the set S(p) is closed and
convex (possibly empty). To prove its non-emptiness we have to show that h(·) + p
is semi-coercive on K. Let ū be as in (A3). We find r > 0 such that

〈h(w) + p,w − ū〉 > 0 for each w ∈ K with ‖w‖ > r.

Observing that

(3.11)
∣∣∣∣‖w − ū‖
‖w‖

− 1

∣∣∣∣ =

∣∣‖w − ū‖ − ‖w‖
∣∣

‖w‖
≤ ‖ū‖
‖w‖

→ 0 as ‖w‖ → +∞,

one infers that

lim inf
w∈K,‖w‖→+∞

〈h(w),w − ū〉
‖w − ū‖

= lim inf
w∈K,‖w‖→+∞

〈h(w),w − ū〉
‖w‖2

‖w‖
‖w − ū‖

‖w‖ = +∞.

Let r > ‖ū‖ be such that

〈h(w),w − ū〉
‖w − ū‖

> ‖p‖ for each w ∈ K with ‖w‖ > r.

For any such w, we have

〈h(w) + p,w − ū〉 = 〈h(w),w − ū〉+ 〈p,w − ū〉
> ‖p‖ ‖w − ū‖ − ‖p‖ ‖w − ū‖ = 0.

Hence, S(p) is non-empty.
To prove the rest, suppose that there is no % > 0 such that (3.10) is valid. Find

sequences (pk)k∈N and (uk)k∈N in Rm such that

‖uk‖ > k(1 + ‖pk‖) and uk ∈ S(pk) for each k ∈ N.

Then ‖uk‖ → +∞ as k → +∞. Since all uk together with ū lie in K, we have

〈pk + h(uk), ū− uk〉 ≥ 0 for each k ∈ N.

Since ‖pk‖/‖uk‖ → 0 as k → +∞, the above inequality and (3.11) imply that

lim sup
k→+∞

〈h(uk),uk − ū〉
‖uk‖2

≤ lim sup
k→+∞

〈pk, ū− uk〉
‖uk‖2

≤ lim sup
k→+∞

‖pk‖
‖uk‖

‖uk − ū‖
‖uk‖

= 0,

a contradiction. �

Theorem 3.9. Consider a DVI (3.5) – (3.7) under the assumptions (A1) – (A3)
with D := [a, b] × Rn. Given (a,xa) ∈ D, the mapping F defined in (3.8) satisfies
all assumptions of Theorem 3.6.

Proof. Fix any (t,x) ∈ D. Then Proposition 3.8 implies that S(g(t,x)) is non-
empty, closed, and convex; hence so is the set F(t,x) because B(t,x) is a fixed
matrix in Rn×m. Let v ∈ F(t,x) be arbitrary. Then

v = f(t,x) + B(t,x)u for some u ∈ S(g(t,x)).
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This, (A1), (A2), and (3.10) reveal that, setting β̃ = β+σ%(1+β) and α̃ = α(1+σ%)
, one has

‖v‖ ≤ ‖f(t,x)‖+ ‖B(t,x)‖‖u‖ ≤ α‖x‖+ β + σ‖u‖
≤ α‖x‖+ β + σ%(1 + ‖g(t,x)‖) ≤ α‖x‖+ β + σ%(1 + α‖x‖+ β)

= α̃‖x‖+ β̃.

In particular, F has a linear growth on D. In view of Remark 3.7, to prove outer
semi-continuity of F, it suffices to show that gphF is closed. Let ((tk,xk))k∈N be
a sequence in D converging to (t,x) ∈ R × Rn and (vk)k∈N be a sequence in Rn
converging to v ∈ Rn such that vk ∈ F(tk,xk) for each k ∈ N. We have to show
that v ∈ F(t,x). As D is closed, it contains (t,x). Let (uk)k∈N be a sequence in
Rm such that

(3.12) vk = f(tk,xk) + B(tk,xk)uk and uk ∈ S(g(tk,xk)) for each k ∈ N.
Combining (3.10) and (A2), for each k ∈ N, one has

‖uk‖ ≤ %(1 + ‖g(tk,xk)‖) ≤ %(1 + α‖xk‖+ β).

As (xk)k∈N is bounded, so is (uk)k∈N. Find an infinite subset N of N such that
(uk)k∈N converges, to u ∈ Rm say. Fix any w ∈ K. Note that

〈g(tk,xk) + h(uk),w − uk〉 ≥ 0 for each k ∈ N.
Passing to the limit as N 3 k → +∞ and using the continuity of both g and h, we
arrive at

〈g(t,x) + h(u),w − u〉 ≥ 0.

Since w was an arbitrary element of K, we conclude that u ∈ S(g(t,x)). By the
equality in (3.12), we have v = f(t,x) + B(t,x)u thanks to the continuity of f and
B. This means that v ∈ F(t,x). �

Taking into account the above statement, we proved that, for any xa ∈ Rn, there
is a solution x : [a, b]→ Rn of DI (3.9) with F defined in (3.8), which means that

(i) x(·) is absolutely continuous on [a, b];
(ii) ẋ(t) ∈ F(t,x(t)) for almost all t ∈ (a, b);
(iii) x(a) = xa.

Now, we have to show that there is an integrable u : [a, b]→ Rn such that the pair
(x(·),u(·)) solves DVI (3.5) – (3.7). We need a measurable selection lemma [24,
Lemma 6.3].

Lemma 3.10. Suppose that
(i) U : D ⇒ Rm has closed graph and there is ν > 0 such that

‖u‖ ≤ ν(1 + ‖x‖) whenever (t,x) ∈ D and u ∈ U(t,x);

(ii) a continuous x : [a, b]→ Rn, a measurable v : [a, b]→ Rn, and a continuous
o : D × Rm → Rn are such that

v(t) ∈ o
(
t,x(t),U(t,x(t))

)
for almost all t ∈ [a, b].

Then there is a measurable u : [a, b]→ Rm such that

u(t) ∈ U(t,x(t)) and v(t) = o
(
t,x(t),u(t)

)
for almost all t ∈ [a, b].
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Theorem 3.11. Consider a DVI (3.5) – (3.7) under the assumptions (A1) – (A3)
with D := [a, b] × Rn. Given (a,xa) ∈ D, there is an absolutely continuous x :
[a, b]→ Rn and an integrable u : [a, b]→ Rm solving (3.5) – (3.7) with x(a) = xa.

Proof. Clearly, a single-valued mapping

D × Rm 3 (t,x,u) 7−→ o(t,x,u) := f(t,x) + B(t,x)u ∈ Rn

is continuous. As implicitly showed in the proof of Theorem 3.9, a set-valued map-
ping

D 3 (t,x) ⇒ U(t,x) := S(g(t,x)) ⊂ Rm

has closed graph and a linear growth in D. We already know, that there is an
absolutely continuous function x : [a, b]→ Rn such that

ẋ(t) ∈ F(t,x(t)) = o
(
t,x,U(t,x(t))

)
for almost all t ∈ [a, b].

Let v(·) := ẋ(·). Proposition 3.10 provides a measurable u : [a, b]→ Rm such that

u(t) ∈ S(g(t,x)) and ẋ(t) = f(t,x(t)) + B(t,x(t))u(t) for almost all t ∈ [a, b].

Denote by M the maximum of ‖x(·)‖ on [a, b] and let % > 0 be as in (3.10). The
linear growth of g implies that, for almost all t ∈ [a, b], one has

‖u(t)‖ ≤
(3.10)

%(1 + ‖g(t,x(t))‖) ≤ %(1 + β + α‖x(t)‖) ≤ %(1 + β + αM).

So u is integrable on [a, b], and hence the pair (x(·),u(·)) solves (3.5) – (3.7). �

3.3. Mechanical Problems with Friction. In this section, a consideration on
mechanical applications is continued. Namely, we add friction in the model.

Example 3.12. Consider a body of a mass m > 0 being dragged across a rough
surface by a time-dependent external force f(t) (see Figure 15). Denote by q(t) the
position of the center of mass at time t > 0. Then the Coulomb friction model says
that a friction force is equal to µfN sgn(q̇(t)), where

- µ > 0 is a friction coefficient depending on a material which the surface is
made of;

- fN = mg is the normal force and g = 9.81 m/s2;
-

sgnx :=

 1 for x > 0,
0 for x = 0,
−1 otherwise.

Let x(t) := q̇(t) be the velocity at time t. The Newton’s law of motion says that

mẋ(t) = f(t)−mgµ sgnx(t)︸ ︷︷ ︸
the sum of external forces

.

Clearly, it may happen that q(t) remains constant for t in some interval [t1, t2] ⊂ R+

although f(t) 6= 0 for each t ∈ [t1, t2]. Thus ẋ(t) = x(t) = 0 whenever t ∈ (t1, t2).
But no classical solution can satisfy this. One can handle this issue by considering
a differential inclusion instead of the above differential equation in form

(3.13) ẋ(t) ∈ 1

m
f(t)− G

(
x(t)

)
, t > 0,
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m

q(t)

f(t)

mg

µmgsgn q̇(t)

Figure 15. Illustration of Example 3.12.

where

G(x) :=

 gµ for x > 0,
[−gµ, gµ] for x = 0,
−gµ otherwise.

Setting F (t, x) := f(t)/m−G(x), (t, x) ∈ R+ × R, one gets{
ẋ(t) ∈ F (t, x(t)) for t > 0,
x(0) = x0,

with x0 ∈ R being the initial velocity. Suppose that f is continuous. As G is
monotone, globally bounded, has closed graph and also non-empty closed convex
bounded values, F satisfies the assumptions of Theorem 3.1.

Note that G = ∂Cϕ, where ϕ := gµ| · |. So G is the Clarke’s sub-differential
of a (globally) Lispchitz function. More precisely, as ϕ is convex, its Clarke’s
sub-differential coincides with the Fenchel-Moreau-Rockafellar sub-differential from
convex analysis. The non-smooth and, in general, non-convex function ϕ is called
Moreau-Panagiotopoulos super-potential because it generalizes the notion of poten-
tial energy used in the classical physics which is usually assumed to be smooth.

There are various (equivalent) formulations of a particular problem. For example,
Filippov’s inclusions can be formulated as differential variational inequalities or even
as differential linear complementarity problems.

Example 3.13. Consider the inclusion (3.13). First, let us reformulate this problem
as a DVI. Set K := [−µg,+µg]. Then, for (almost) all t > 0, we obtain

ẋ(t) =
1

m
f(t) + u,

0 ≤ x(t)
(
v − u(t)

)
whenever v ∈ K,

u(t) ∈ K.

Indeed, −u ∈ G(x) if and only if x ∈ G−1(−u) = −NK(u).
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To obtain an equivalent differential linear complementarity problem, write x =
x+ − x−. Then G(x) = gµ− y with y satisfying

0 ≤ y ⊥ x+ ≥ 0 and 0 ≤ 2gµ− y ⊥ x− ≥ 0.

When also the impacts come into play, then without a normal compliance ap-
proach, we arrive at the framework of measure differential inclusions.
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4. Numerical Methods for DVIs

4.1. Time-stepping Schemes. Throughout this chapter, an interval I := [a, b],
a point xa ∈ Rn and N ∈ N are given. For simplicity, we consider the uniform grid
with the step-size

h :=
b− a
N

> 0

defined by
tk = a+ kh with k = 0, 1, 2 . . . , N.

For any function w : I → Rd, we set

wk = w(tk) for each k = 0, 1, 2 . . . , N.

In the previous chapter, we focused on the possibility to reformulate a differential
variational inequality as a differential inclusion. Let us start with a brief discussion
on numerical schemes for solving the latter problem.

Given a set-valued mapping F : I × Rn ⇒ Rn, we want to find an absolutely
continuous function x(·) : I → Rn which solves the initial value problem

(4.1)
{

ẋ(t) ∈ F(t,x(t)) for almost all t ∈ I,
x(a) = xa.

Denote by X the set of solutions to (4.1) which, in general, consists of more than
one element or can even be empty. There are various approaches to approximating
solutions x(·) ∈ X . Using a finite difference scheme together with a suitable selection
procedure, we want to obtain a sequence (yN (·))N∈N of grid functions (piece-wise
linear for example) such that one can choose a sub-sequence of it which converges
to a solution x(·) ∈ X . In the proof of Theorem 3.1, we have seen the explicit
(forward) Euler scheme.

Example 4.1. Put y0 = xa and compute yk+1 from

yk+1 ∈ yk + hF(tk,yk) for k = 0, 1 . . . , N − 1.

The above algorithm can be for k = 0, 1, . . . , N − 1 written in the following way{
yk+1 − yk = hvk,
vk ∈ F(tk,yk).

At each step, one has to choose an element vk in the set F(tk,yk), which is called
a selection procedure.

Another way how to proceed is an implicit (backward) Euler scheme.

Example 4.2. Put y0 = xa and, for each k = 0, 1 . . . , N − 1, compute yk+1 from

yk+1 ∈ yk + hF(tk+1,yk+1)

or equivalently {
yk+1 − yk = hvk+1,
vk+1 ∈ F(tk+1,yk+1).
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In both the cases, the corresponding piece-wise linear approximation (a broken
line joining the points y0, y1, . . . , yN ) is given by

yN (t) = yk +
1

h
(t− tk)(yk+1 − yk), t ∈ [tk, tk+1] for each k = 0, 1, . . . , N − 1.

The latter scheme is more stable in sense that it prevents oscillations around discon-
tinuity surfaces. However, in general, there is no hope to solve the implicit inclusion
effectively. One can also use a mixture of the previous schemes.

We have seen that differential variational inequalities form a special subclass of
differential inclusions and one can profit from their special structure. To illustrate
this, consider matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m along with
the corresponding differential linear complementarity problem which reads as

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

0 � y(t) ⊥ u(t) � 0, for t ∈ I,

where x(·) : R → Rn, y(·) : R → Rm, and u(·) : R → Rm. The backward Euler
scheme reads as

xk+1 − xk
h

= Axk+1 + Buk+1

yk+1 = Cxk+1 + Duk+1

0 � yk+1 ⊥ uk+1 � 0.

For h small enough, the matrix In−hA is non-singular. Computing xk+1 from the
first relation and plugging it into the latter ones, one infers that the next step uk+1

has to solve a standard complementarity problem

0 � uk+1 ⊥ C(In − hA)−1xk︸ ︷︷ ︸
qk

+ (hC(I− hA)−1B + D)︸ ︷︷ ︸
M

uk+1 � 0.

Thanks to Proposition 2.15, the necessary and sufficient condition guaranteeing the
existence of a unique uk+1 is that M is a P-matrix.

Let θ ∈ [0, 1] be given. A combination of the forward and the backward Euler
method is called Moreau’s time-stepping scheme which reads as

xk+1 − xk
h

= Axk+θ + Buk+1,

yk+1 = Cxk+1 + Duk+1

0 � yk+1 ⊥ uk+1 � 0,

where xk+θ := θxk+1 + (1− θ)xk. Again, for h small enough, the matrix In − hθA
is non-singular. Setting

W = (In − hθA)−1,

one sees that the next step uk+1 solves

0 � uk+1⊥CW
(
In + h(1− θ)A

)
xk︸ ︷︷ ︸

qk

+ (hCWB + D)︸ ︷︷ ︸
M

uk+1 � 0.
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Having uk+1 in hand, we compute the new state xk+1 by

xk+1 = W
(
In + h(1− θ)A

)
xk + hWBuk+1.

The above discussion reveals that, at each step, one has for given q ∈ Rm find
a solution u ∈ Rm of

(4.2) 0 � u ⊥ q + Mu � 0,

where the matrix M ∈ Rm×m depends on a particular choice of the scheme. We
also know, by Proposition 1.5, that this is equivalent to the generalized equation

0 ∈Mu + q +NRm
+

(u).

4.2. Newton’s Method for Non-smooth Equations. In view of Lemma 1.2
(iii), using a projection mapping, we are able to transform (4.2) into an equation

(4.3) h(u) = 0,

with a non-smooth h(u) := pRm
+

(u−Mu−q)−u, u ∈ Rm. Nevertheless, we show
one of many other possible choices of h which is frequently used in the literature.
Recall, that Fischer-Burmeister function ϕ : R2 → R is defined by

(4.4) ϕ(x) =
√
x1

2 + x2
2 − x1 − x2 = ‖x‖ − 〈(1, 1)T ,x〉, x = (x1, x2)T ∈ R2.

This function is an example of the so-called complementarity function/C-function.

Lemma 4.3. The function ϕ in (4.4) is
(i) continuously differentiable off the origin with

∇ϕ(x) =
x

‖x‖
−
(

1
1

)
, x ∈ R2 \ {0};

(ii) Lipschitz continuous on R2;
(iii) ϕ(x) = 0 if and only if 0 ≤ x1 ⊥ x2 ≥ 0.

Proof. (i) follows from elementary calculus. To prove (ii), fix any two distinct x,
y ∈ R2. The triangle and Cauchy-Schwarz inequality imply that

|ϕ(x)− ϕ(y)| =
∣∣‖x‖ − ‖y‖ − 〈(1, 1)T ,x− y〉

∣∣ ≤ ‖x− y‖+
√

2‖x− y‖.
To see (iii) we have the following chain of equivalences:

ϕ(x) = 0 ⇔
√
x1

2 + x2
2 = x1 + x2

⇔ x1 + x2 ≥ 0 and x1
2 + x2

2 = x1
2 + 2x1x2 + x2

2

⇔ x1 + x2 ≥ 0 and x1x2 = 0.

�

This simple statement enables us write (4.2) as (4.3) with

(4.5) h(u) :=


ϕ
(
u1, (q + Mu)1

)
ϕ
(
u2, (q + Mu)2

)
...

ϕ(um, (q + Mu)m

 , u ∈ Rm.
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At the end of Section 2.4, a definition of the Bouligand’s limiting Jacobian of a map-
ping h : Rm → Rd which is locally Lipschitz continuous at ū ∈ Rm was mentioned.
Recall, that this is the set ∂Bh(ū) consisting of all matrices A ∈ Rd×m for which
there is a sequence (uk)k∈N in Rm converging to ū such that h is differentiable
at each uk and ∇h(uk) → A as k → +∞. Based on this, Clarke’s generalized
Jacobian ∂Ch(ū) of h at ū is the convex hull of ∂Bh(ū).

Example 4.4.

∂B‖ · ‖(u) =

{ {
u
‖u‖

}
, if u ∈ R2 \ {0},

S := B[0, 1] \ B(0, 1), if u = 0,

and

∂C‖ · ‖(u) =

{ {
u
‖u‖

}
, if u ∈ R2 \ {0},

B[0, 1], if u = 0.

Indeed, the first expressions for ∂B‖ · ‖(u) and ∂C‖ · ‖(u) follow from the fact that
∇‖ · ‖(u) = u/‖u‖ at any non-zero u ∈ R2. To see the latter ones, note that
∂B‖ · ‖(0) ⊂ S because ∇‖ · ‖(u) ∈ S whenever u 6= 0 and S is closed. Let a ∈ S be
arbitrary. Then uk := a/k, k ∈ N, is a sequence converging to 0 and

∇‖ · ‖(uk) =
a/k

‖a‖/k
= a, for each k ∈ N.

Thus a ∈ ∂B‖ · ‖(0). Hence ∂B‖ · ‖(0) = S, and consequently ∂C‖ · ‖(0) = B[0, 1].

Let us gather several fundamental properties of the objects above.

Proposition 4.5. Suppose that a function h : Rm → Rd is locally Lipschitz conti-
nuous and let ∗ ∈ {B,C}. Then

(i) if h is continuously differentiable at u ∈ Rm, then ∂∗h(u) = {∇h(u)};
(ii) if h = h1 + h2 for a continuously differentiable h1 : Rm → Rd and a locally

Lipschitz continuous h2 : Rm → Rd, then
∂∗h(u) = ∇h1(u) + ∂∗h2(u) for each u ∈ Rm;

(iii) ∂∗h(u) is non-empty and compact for each u ∈ Rm;
(iv) gph (∂∗h) is closed;
(v) ∂∗h is locally bounded;
(vi) ∂∗h is Pompeiu-Hausdorff outer semi-continuous.

Proof. Fix any u ∈ Rm for a longer while. By the very definition, (i) is valid. To
show (ii), (iii), and (v), find positive constants δu and Lu such that

‖h(v)− h(w)‖ ≤ Lu ‖v −w‖ whenever v,w ∈ B(u, 2δu).

Let D be a set of points v ∈ B(u, 2δu) at which h is differentiable (Rademacher’s
theorem says that this set is dense B(u, 2δu)).

First, we claim that

‖∇h(v)‖ ≤ 1 + Lu whenever v ∈ B(u, δu) ∩D.
Fix any such a point v. Find r ∈ (0, δu) such that

‖h(v + y)− h(v)−∇h(v)y‖ ≤ ‖y‖ for each y ∈ B[0, r].
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Since both v + y and v lie in B(u, 2δu), for any y ∈ B[0, r], one has that

‖∇h(v)y‖ ≤ ‖h(v + y)− h(v)−∇h(v)y‖+ ‖h(v)− h(v + y)‖
≤ ‖y‖+ Lu‖y‖.

Hence, for any non-zero w ∈ Rm, taking y := r
‖w‖w, we get

‖∇h(v)w‖ =
‖w‖
r
‖∇h(v)y‖ ≤ ‖w‖

r
(1 + Lu)‖y‖ = (1 + Lu)‖w‖.

This proves the claim.
To show (iii), note that there exists a sequence (uk)k∈N in D converging to u such

that the corresponding sequence (‖∇h(uk)‖)k∈N is bounded. Thus (∇h(uk))k∈N has
at least one cluster point, which lies in ∂Bh(u) by the very definition of this set.
The claim also reveals that ∂Bh(u) ⊂ B[0, 1 + Lu]. Note that taking the closed
convex hull does not change anything. The justification that ∂Bh(u) and ∂Ch(u)
are closed is postponed since this follows directly from (iv).

Since the sum of a continuously differentiable function and a locally Lipschitz
one is again locally Lipschitz, the standard sum rule for the derivatives yields (ii).

From the claim, we also get that⋃
v∈B(u,δu)

∂Bh(v) ⊂ B[0, 1 + Lu] and
⋃

v∈B(u,δu)

∂Ch(v) ⊂ B[0, 1 + Lu],

which proves (v).
To show (iv) for ∗ = B, pick any sequence (uk)k∈N in Rm converging to u ∈ Rm

along with a sequence (Ak)k∈N in Rd×m converging to A ∈ Rd×m such that

Ak ∈ ∂Bh(uk) for each k ∈ N.
For each k ∈ N, find vk ∈ D (where D is as above) such that

‖vk − uk‖ < 1/k and ‖∇h(vk)−Ak‖ < 1/k.

Then 0 ≤ ‖vk − u‖ ≤ ‖vk − uk‖ + ‖uk − u‖ → 0 as k → +∞, and similarly,
0 ≤ ‖∇h(vk)−A‖ ≤ ‖∇h(vk)−Ak‖+‖Ak−A‖ → 0 as k → +∞. So A ∈ ∂Bh(u).

As any set-valued mapping with closed graph has to have closed values, we get
that ∂Bh has closed values. In view of the above consideration, the values of ∂Bh
are compact. Since the convex hull of a compact set is always closed, we fully
established (iii).

Let ∗ = B. Then (vi) follows from (iv) and (v) by Lemma 3.2 (ii). Summarizing,
we proved the whole statement for ∗ = B and (i), (ii), (iii), (v) for ∗ = C. From
now on assume that ∗ = C.

Suppose that (vi) fails. Find u ∈ Rm and ε > 0 such that for each k ∈ N there
is uk ∈ B(u, 1/k) such that

∂Ch(uk) \
(
∂Ch(u) + B[0, ε]

)
6= ∅.

For each k ∈ N, there is Ak ∈ ∂Bh(uk) such that Ak /∈ ∂Ch(u) + B[0, ε]. Indeed,
the set on the right-side is convex because it is the Minkowski sum of two convex
sets. Hence, if ∂Bh(uk) ⊂ ∂Ch(u) + B[0, ε], then, as ∂Ch(uk) is the convex hull of
∂Bh(uk), one would obtain that

∂Ch(uk) ⊂ ∂Ch(u) + B[0, ε].
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Since (Ak)k∈N is bounded by (v), passing to a sub-sequence, if necessary, we may
assume that it converges to an A ∈ Rd×m. Taking into account that ∂Bh has closed
graph, one infers that A ∈ ∂Bh(u) ⊂ ∂Ch(u). The choice of Ak’s, implies that

0 = d
(
A, ∂Ch(u)

)
= lim
k→+∞

d
(
Ak, ∂Ch(u)

)
≥ ε > 0,

a contradiction. Therefore (vi) holds.
Lemma 3.2 (i) says that (vi) and (iii) imply (iv). �

Note that the sum rule in (ii) fails if both the functions are locally Lipschitz only.
Indeed, is suffices to consider a function h(u) := |u|+ (−|u|) = 0, u ∈ R.

Example 4.6. A combination of Lemma 4.3 (i), Example 4.4, and Proposition 4.5
yields that, for the function ϕ in (4.4), one has

∂Bϕ(u) =


{

u
‖u‖ −

(
1
1

)}
, if u ∈ R2 \ {0},

B[(−1,−1)T , 1] \ B((−1,−1)T , 1), if u = 0;

and

∂Cϕ(u) =


{

u
‖u‖ −

(
1
1

)}
, if u ∈ R2 \ {0},

B[(−1,−1)T , 1], if u = 0.

We are going to use following assumptions:
(S1) h : Rm → Rd is locally Lipschitz at ū ∈ Rm;
(S2) There is H : Rm ⇒ Rd×m such that

(a) H(ū) is compact;
(b) H is Pompeiu-Hausdorff outer semi-continuous at ū, the interior point

of domH;
(c)

lim
0 6=v→0

supA∈H(ū+v) ‖h(ū + v)− h(ū)−Av‖
‖v‖

= 0.

Example 4.7. For any ū ∈ R2, the function ϕ in (4.4) satisfies (S2) for H := ∂∗ϕ
with ∗ ∈ {B,C}. In view of the previous consideration, it suffices to prove (S2)
(c). If ū is non-zero, then ϕ is continuously differentiable at ū. Which means that
∂Bϕ(u) = ∂Cϕ(u) = {∇ϕ(u)} for any u in a vicinity of ū. Then (S2) (c) holds
trivially (see the steps in Example 2.14). Suppose that ū = 0 and fix any non-zero

v ∈ R2. Then ∂Cϕ(v) =

{
v
‖v‖ −

(
1
1

)}
. Thus

sup
a∈∂Cϕ(v)

‖ϕ(v)− 〈a,v〉‖ =
∥∥∥‖v‖ − 〈(1, 1)T ,v〉 −

(
〈v,v〉
‖v‖

− 〈(1, 1)T ,v〉
)∥∥∥ = 0.

Conditions (S1) and (S2) hold if h is semi-smooth at ū, which means that, in
addition, it is directionally differentiable in any direction. This additional assump-
tion is not needed in the proof on the speed of convergence of the iterative scheme
for solving (4.3) . One cannot avoid (S2) (c) in general. Let us point out, that this
condition should not be taken as a definition of “differentiability" without imposing
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additional requests on H. Xu [33] defined this class as functions having a point-
based set-valued approximation, while in his recent book J.-P. Penot [28] used the
name slantly differentiable functions. In [7], A. L. Dontchev named this kind of
differentiability after B. Kummer, with the intention to give credit to the individual
who introduced it. As it turns out, however, every function acting between Banach
spaces is Kummer/point-based/slantly differentiable. This simple fact is explicitly
shown in the proof of [28, Lemma 2.64], but perhaps well-known much earlier since
a finite-dimensional version of it was given in [33] and credited there to a referee of
that paper.

The class of semi-smooth functions includes, for example, smooth functions (see
the proof of Example 2.14), convex functions, piece-wise smooth functions and tame
functions [4]. Moreover, compositions and products of semi-smooth functions are
again semi-smooth. In particular, the function in (4.5) is semi-smooth. Also, [13,
Exercise 2D.9] says that a projection mapping on the set

K := {u ∈ Rm : ψi(u) ≤ 0, i = 1, 2, . . . , d},
with twice continuously differentiable convex functions ψi : Rm → R, is piece-
wise smooth on a neighborhood of ū ∈ K provided that the gradients of active
constraints at this point are linearly independent. Therefore, in this case, the
projection mapping is semi-smooth at ū.

Algorithm 1. (non-smooth Newton’s method)
Step 1. Choose a starting point u0 ∈ Rm and set k = 0;
Step 2. Until a stopping criterion holds continue;
Step 3. Given uk ∈ Rm compute an element Ak ∈ H(uk);
Step 4. Find uk+1 ∈ Rm such that

h(uk) + Ak(uk+1 − uk) = 0;

Step 5. Set k := k + 1 and go to Step 2.

Let us point out, that we are not going to discuss possible choices of stopping
criteria. We are interested in showing the speed of the convergence only, therefore
our stopping criterion will be simply h(uk) = 0 which is a nonsense in any practical
implementation of this algorithm on the computer. Recall that a sequence (uk)k∈N
with uk 6= ū is q-super-linearly convergent to ū when

lim
k→+∞

‖uk+1 − ū‖
‖uk − ū‖

= 0;

and q-quadratically convergent to ū when there exist γ > 0 and k0 ∈ N such that

‖uk+1 − ū‖ ≤ γ‖uk − ū‖2 for all k > k0.

A detailed discussion on the topic can be found in [16]. The following statement
goes back to L. Qi and J. Sun [19].

Theorem 4.8. Given a solution ū ∈ Rm to (4.3) such that (S1) – (S2) hold with
d := m, assume that all matrices A ∈ H(ū) are non-singular. Then there is a neigh-
borhood U of ū such that, for any starting point u0 ∈ U , Algorithm 1 either termi-
nates after a finite number of steps or generates a sequence which converges to ū
q-super-linearly and this sequence is unique in U .
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Proof. First, we claim that there are positive δ and c such that A is non-singular
and ‖A−1‖ ≤ c whenever A ∈ H(u) and u ∈ B(ū, δ). Suppose on the contrary that
there is (uk)k∈N in Rm converging to ū along with (Ak)k∈N in Rm×m, satisfying
Ak ∈ H(uk) for each k ∈ N, such that either all Ak’s are singular or ‖Ak

−1‖ → +∞
as k → +∞. The conditions (a) and (b) in (S2) imply that passing to a sub-
sequence, if necessary, one has that

Ak ∈ H(uk) ⊂ H(ū) + B(0, 1/k) for each k ∈ N.

In particular, (Ak)k∈N is bounded. Extract a sub-sequence of it which converges to
an A ∈ Rm×m. By the assumption, this A has to be singular. The last inclusion
reveals that

d(A,H(ū)) = lim
k→+∞

d(Ak,H(ū)) = 0.

Since H(ū) is closed, it contains A which is singular, a contradiction.
In view of (S2) (c), shrinking δ, one can suppose that

(4.6) sup
A∈H(u)

‖h(u)−A(u− ū)‖ ≤ 1

2c
‖u− ū‖ whenever u ∈ B(ū, δ).

Let U := B(ū, δ) and take any u0 ∈ U . Assume that the Algorithm 1 has already
generated u0, u1, . . . , uk in U for some k ∈ N0 and has not stopped. Choose any
Ak ∈ H(uk). As Ak is non-singular, there is a unique uk+1 ∈ Rm such that

h(uk) + Ak(uk+1 − uk) = 0.

Then

‖uk+1 − ū‖ = ‖uk −Ak
−1h(uk)− ū‖ ≤ ‖Ak

−1‖ ‖Ak(uk − ū)− h(uk)‖

≤
(4.6)

c
1

2c
‖uk − ū‖ =

1

2
‖uk − ū‖.

This means that uk+1 ∈ U . Hence the algorithm either stops after a finite number
of steps or generates an infinite sequence (uk)k∈N with elements in U which are
uniquely determined by the previous iterate and all are different from ū. The last
chain of inequalities also implies that

‖uk − ū‖ ≤ 1

2k
‖u0 − ū‖ for each k ∈ N.

Therefore (uk)k∈N converges to ū (in a q-linear way). Using (S2) (c) together with
the very definition of uk+1, we see that

0 ≤ lim sup
k→+∞

‖uk+1 − ū‖
‖uk − ū‖

≤ lim sup
k→+∞

c‖Ak(uk − ū)− h(uk)‖
‖uk − ū‖

≤ c lim
k→+∞

supA∈H(uk) ‖A(uk − ū)− h(uk)‖
‖uk − ū‖

= 0.

Hence the convergence is, in fact, q-super-linear. �

To perform the third step in the algorithm, one wants H to have large values.
On the other hand, Theorem 4.8 says the smaller H(ū) is the better.
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Remark 4.9. (i) In the proof of the previous result, the gist is that the set
of non-singular matrices is open in Rm×m. Indeed, fix any non-singular
A ∈ Rm×m, equivalently, the matrix A with a non-zero determinant detA.
The function Rm×m 3 B 7→ detB is continuous. This can be easily seen
either by the very definition or via induction on the dimension. As the
statement clearly holds for m = 1, suppose that for k ∈ N we have that
Rk×k 3 B 7→ detB is continuous. Given B ∈ R(k+1)×(k+1), detB is a sum
of k + 1 terms being scalar multiples of determinants of k × k matrices,
hence it is continuous. We conclude that detB is non-zero for any matrix
B sufficiently close to A;

(ii) If the condition (S2) (c) is replaced by a (stronger) request that there is
γ > 0 such that

lim sup
0 6=v→0

supA∈H(ū+v) ‖h(ū + v)− h(ū)−Av‖
‖v‖2

< γ,

then the convergence is q-quadratic as can be seen immediately from the
last chain of inequalities in the proof. This condition is satisfied for strongly
semi-smooth functions, for example, if h is continuously differentiable at ū
and its derivative is locally Lipschitz continuous at this point (modify the
proof of Example 2.14 in an obvious way);

(iii) When h : Rm → Rd with d < m, then the assumption that all matrices
A ∈ H(ū) have full rank guarantees the existence of a q-super-linearly
convergent sequence lying in U . However, this sequence is not unique.

The proof of the above statement works even in general Banach spaces for gene-
ralized equations with a non-smooth single-valued part. The matrices Ak can be
chosen close to H(uk) (not necessarily inside), and uk+1 ∈ Rm does not need to be
an exact solution of

h(uk) + Ak(uk+1 − uk) = 0.

Inexact Newton methods for solving equations

h(x) = 0,

where h is continuously differentiable, were introduced by Dembo, Eisenstat and
Steihaug [6]. Specifically, they defined the following iteration: given uk find uk+1

such that

(4.7) ‖h(uk) +∇h(uk)(uk+1 − uk)‖ ≤ ηk‖h(uk)‖,
that is, uk+1 is obtained by a Newton iteration “only approximately and in some
unspecified manner," as Dembo et al. say in [6]. They proved among other results
that if h is continuously differentiable in a neighborhood of ū, a zero of h, the
Jacobian ∇h(ū) is nonsingular, and the forcing sequence ηk↘0, then any sequence
(uk)k∈N generated by (4.7) which is convergent to ū is convergent q-super-linearly.

Moreover, to cite Martin Vohralík: Statements as Theorem 4.8 are nice from
the theoretical point of view but totally useless in practice. The reason is that the
conditions guaranteeing convergence are imposed at the unknown solution we are
searching for. All the above mentioned issues are discussed in the next chapter.
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5. Iterative Methods for Generalized Equations

In this chapter, which is taken from [11] and [10], we study iterative methods of
Newton type for solving a generalized equation in Banach spaces in the form

(5.1) f(x) + F (x) 3 0,

where f : X → Y is a function and F : X ⇒ Y is generally a set-valued mapping
but may also be another function. To simplify some of the arguments used, we
adopt the standing assumption that f is continuous on X and F has closed graph.
Observe that Dembo-Eisenstat-Steihaug inexact Newton iteration (cf. (4.7)) can
be also written as the inclusion

(5.2) f(xk) +∇f(xk)(xk+1 − xk) ∈ B[0, ηk‖f(xk)‖].
As in the previous chapter, we introduce a mapping H : X ⇒ L(X,Y ) viewed as
a generalized set-valued derivative of a (non-smooth) function f , and consider the
following iteration: given xk ∈ X choose any Ak ∈ H(xk) and then find xk+1 ∈ X
to satisfy

(5.3)
(
f(xk) +Ak(xk+1 − xk) + F (xk+1)

)
∩Rk(xk) 6= ∅.

Our convergence results for the method (5.3) utilize three groups of assumptions.
The first group concerns the non-smoothness of the function f . Namely, we associate
to the function f and to the reference point x̄ ∈ X a mapping H : X ⇒ L(X,Y )
defined in a vicinity of x̄, which will be required to satisfy one of the following
conditions:
(A1) For every ε > 0 there exists a neighborhood U of x̄ such that

‖f(x)− f(x̄)−A(x− x̄)‖ ≤ ε‖x− x̄‖ whenever x ∈ U and A ∈ H(x).

(A2) There exist a positive β and a neighborhood U of x̄ such that

‖f(x)− f(x̄)−A(x− x̄)‖ ≤ β‖x− x̄‖2 whenever x ∈ U and A ∈ H(x).

(A3) For every ε > 0 there exists a neighborhood U of x̄ such that for every
x, x′ ∈ U there exists A ∈ H(x̄) satisfying

‖f(x)− f(x′)−A(x− x′)‖ ≤ ε‖x− x′‖.
Clearly, (A2) ⇒ (A1). If f is Fréchet differentiable around x̄, then H(x) can be

identified with the derivative Df(x); in this case both (A1) and (A3) hold when Df
is continuous at x̄ and (A2) holds when Df is Lipschitz continuous around x̄. In
finite dimensions, with H identified with Clarke’s generalized Jacobian, condition
(A1) holds if f is semi-smooth; condition (A2) is valid when f is strongly semi-
smooth; while (A3) holds automatically (a proof of the last claim can be traced
back to [14] if not earlier). Note that for H identified with Bouligand’s limiting
Jacobian, the same is true in case of both (A1) and (A2); while (A3) fails (see
Example 2.17). In Banach spaces condition (A3) enters the definition of the strict
prederivative in the sense of Ioffe [20], which is a set-valued generalization of the
usual strict derivative. Other extensions of the notion of generalized Jacobian to
infinite dimensions are given in [26], [27].

The second set of our assumptions concerns the mappings Rk representing the
inexactness in (5.3). First, we always assume that 0 ∈ Rk(x̄) for every k ∈ N0 and
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when the mapping Rk appears together with H, the point x̄ lies in the interior of
domH

⋂(⋂
k∈N0

domRk
)
. Furthermore, we utilize some growth conditions for Rk

that are implanted in the statements of the theorems presented.
The third set of conditions revolves around metric regularity properties of map-

pings (two of them have already been mentioned in the previous chapters). The
following notions are (local) extensions to nonlinear and even set-valued mappings
of three basic properties of linear mappings in linear algebra and analysis: sur-
jectivity, invertiblity, and injectivity. Let us start with surjectivity. A mapping
F : X ⇒ Y with (x̄, ȳ) ∈ gphF is said to be metrically regular at x̄ for ȳ when
there is a constant κ > 0 together with neighborhoods U of x̄ and V of ȳ such that

(5.4) d
(
x, F−1(y)

)
≤ κd(y, F (x)) for all x ∈ U, y ∈ V.

A mapping A ∈ L(X,Y ) is metrically regular at any point if and only if it is
surjective; this is one of the statements of the Banach open mapping principle. The
infimum over all κ > 0 such that (5.4) holds for some neighborhoods U and V is the
regularity modulus of F at x̄ for ȳ denoted by reg(F ; x̄ | ȳ). We use the convention
that a mapping F is metrically regular at x̄ for ȳ if and only if reg(F ; x̄ | ȳ) < +∞.
If a mapping F : X ⇒ Y is metrically regular at x̄ for ȳ and moreover its inverse
F−1 has a single-valued graphical localization around ȳ for x̄, meaning that there
are neighborhoods U of x̄ and V of ȳ such that the mapping V 3 y 7→ F−1(y)∩U is
single-valued, then F is said to be strongly metrically regular at x̄ for ȳ. Equivalently,
a mapping F is strongly metrically regular at x̄ for ȳ if and only if its inverse F−1 has
a single-valued graphical localization around ȳ for x̄ which is Lipschitz continuous
around ȳ with Lipschitz modulus at ȳ equal reg(F ; x̄ | ȳ). Clearly, this is an extension
of invertibility because a mapping A ∈ L(X,Y ) is strongly metrically regular at any
point if and only if it is invertible. Finally, a mapping F : X ⇒ Y is said to be
strongly metrically sub-regular at x̄ for ȳ when (x̄, ȳ) ∈ gphF and there is a constant
κ > 0 together with a neighborhood U of x̄ such that

(5.5) ‖x− x̄‖ ≤ κd(ȳ, F (x)) for all x ∈ U.

The infimum over all κ > 0 such that (5.5) holds for some neighborhood U is the
sub-regularity modulus of F at x̄ for ȳ denoted by subreg(F ; x̄ | ȳ). For A ∈ L(X,Y )
we have subregA < +∞ if and only if A is injective.

5.1. Local Convergence. In the proofs of Theorems 5.2 and 5.3 we utilize the
following result given in [13, Theorem 5G.3].

Theorem 5.1. Consider a mapping F : X ⇒ Y with closed graph and a point
(x̄, ȳ) ∈ gphF at which F is metrically regular, that is, there exist positive constants
a, b, and κ such that (5.4) holds with U = B[x̄, a] and V = B[ȳ, b]. Let ν > 0 be
such that κν < 1 and let κ′ > κ/(1 − κν). Then for every positive α and β such
that

α ≤ a/2, 2να+ 2β ≤ b and 2κ′β ≤ α
and for every function g : X → Y satisfying

(5.6) ‖g(x̄)‖ ≤ β and ‖g(x)− g(x′)‖ ≤ ν‖x− x′‖ for every x, x′ ∈ B[x̄, 2α],
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the mapping g + F has the following property: for every y, y′ ∈ B[ȳ, β] and every
x ∈ (g + F )−1(y) ∩ B[x̄, α] there exists x′ ∈ (g + F )−1(y′) such that

‖x− x′‖ ≤ κ′‖y − y′‖.

In addition, if the mapping F is strongly metrically regular at x̄ for ȳ; that is, the
mapping y 7→ F−1(y) ∩ B[x̄, a] is single-valued and Lipschitz continuous on B[ȳ, b]
with a Lipschitz constant κ, then for ν, κ′, α and β as above and any function g
satisfying (5.6), the mapping y 7→ (g + F )−1(y) ∩ B[x̄, α] is a Lipschitz continuous
function on B[ȳ, β] with a Lipschitz constant κ′.

Given a set A in L(X,Y ), the measure of non-compactness χ(A) of A is defined
as

χ(A) = inf

{
r > 0

∣∣ A ⊂⋃{
B(A, r)

∣∣ A ∈ B}, B ⊂ A finite

}
.

Our first result shows linear convergence of the method (5.3).

Theorem 5.2. Consider the inexact Newton-type method (5.3) applied to the ge-
neralized equation (5.1) with a mapping H : X ⇒ L(X,Y ) which is outer semi-
continuous at x̄, a solution of the generalized equation (5.1), and satisfies condition
(A1). Define

(5.7) GA : x 7→ f(x̄) +A(x− x̄) + F (x) for A ∈ H(x̄)

and assume that

(5.8) c := χ(H(x̄)) and m := sup
A∈H(x̄)

reg (GA; x̄ |0)

are finite constants that satisfy

(5.9) mc < 1.

Furthermore, suppose that the sequence (Rk)k∈N0
satisfies

(5.10) lim sup
x̄ 6=x→x̄

1

‖x− x̄‖
sup
k∈N0

sup
u∈Rk(x)

‖u‖ < 1/m− c.

Then there exist t ∈ (0, 1) and r > 0 such that for every x ∈ X with 0 < ‖x−x̄‖ ≤ r,
every A ∈ H(x), every k ∈ N0, and every uk ∈ Rk(x) there exists x′, which depends
on the choice of x, A, k and uk, such that

(5.11) f(x) +A(x′ − x) + F (x′) 3 uk,

and

(5.12) ‖x′ − x̄‖ ≤ t‖x− x̄‖.

Consequently, for any starting point x0 ∈ B[x̄, r] there exists a sequence (xk)k∈N
generated by (5.3) which is q-linearly convergent to x̄.

Proof. In the first part of the proof we show for the mapping GA defined in (5.7)
that there exist positive δ, b and Θ such that for every A ∈ H(B[x̄, δ]) and for every
y ∈ B[0, b] there exists x ∈ G−1

A (y) satisfying

(5.13) ‖x− x̄‖ ≤ Θ‖y‖.
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On the basis of (5.10), pick any γ > 0 such that

(5.14) lim sup
x̄ 6=x→x̄

1

‖x− x̄‖
sup
k∈N0

sup
u∈Rk(x)

‖u‖ < γ < 1/m− c.

Utilizing (5.9) and (5.14), one can find µ > c, κ > m, ε > 0 and t ∈ (0, 1) satisfying

(5.15) µκ < 1, c + 2ε < µ and κ(ε+ γ) < t(1− κµ).

From the first inequality in (5.14), there exists δ > 0 such that

(5.16) ‖v‖ < γ‖x− x̄‖ whenever x ∈ B[x̄, δ] \ {x̄}, k ∈ N0, and v ∈ Rk(x).

Make δ > 0 smaller if necessary to obtain

B[x̄, δ] ⊂ domH ∩ (∩k∈N0 domRk),

and also

(5.17) H(x) ⊂ H(x̄) + B[0, ε] for each x ∈ B[x̄, δ].

By the definition of measure of non-compactness, there is a finite set AF ⊂ H(x̄)
such that

H(x̄) ⊂ AF + B[0, χ(H(x̄)) + ε].

Hence, from (5.17), for any x ∈ B[x̄, δ] we get

H(x) ⊂ AF + B[0, χ(H(x̄)) + ε] + B[0, ε] = AF + B[0, c + 2ε],

that is, from the second inequality in (5.15),

(5.18) H(x) ⊂ AF + B[0, µ] for every x ∈ B[x̄, δ].

Choose Θ to satisfy
m/(1− µm) < Θ < κ/(1− µκ)

and then choose τ ∈ (m, κ) with τ/(1−µτ) < Θ. Pick any Ã ∈ AF , any A′ ∈ B[0, µ].
Then there exist αÃ > 0 and βÃ > 0 such that GÃ is metrically regular at x̄
for 0 with the constant τ and neighborhoods B[x̄, αÃ] and B[0, βÃ]. Let g(x) :=
A′(x− x̄), x ∈ X; then GÃ+A′ = GÃ + g. Observe that g is single-valued, Lipschitz
continuous with Lipschitz constant µ such that µτ < 1, and g(x̄) = 0. We can
apply Theorem 5.1 with F = GÃ, κ = τ , ν = µ, y′ = y, y = ȳ = 0, and x = x̄,
obtaining that there is β′

Ã
> 0 (independent of A′) such that for each y ∈ B[0, β′

Ã
]

there is x ∈
(
GÃ+A′

)−1
(y) such that ‖x− x̄‖ ≤ Θ‖y‖. Summarizing, given Ã ∈ AF ,

there exists β′
Ã
> 0 such that for each A′ ∈ B[0, µ] and each y ∈ B[0, β′

Ã
] there is

x ∈
(
GÃ+A′

)−1
(y) satisfying ‖x − x̄‖ ≤ Θ‖y‖. Let b = minÃ∈AF

β′
Ã
. Taking into

account (5.18) one has H(B[x̄, δ]) ⊂ AF + B[0, µ], hence we obtain that for every
A ∈ H(B[x̄, δ]) and for every y ∈ B[0, b] there is x ∈ G−1

A (y) satisfying (5.13).
Coming to the second part of the proof, first we make the constant δ smaller if

necessary so that (A1) is satisfied with the already chosen ε and U = B[x̄, δ], that
is,

(5.19) sup
A∈H(x)

‖f(x)− f(x̄)−A(x− x̄)‖ ≤ ε‖x− x̄‖ for every x ∈ B[x̄, δ].

Fix r such that

(5.20) 0 < r < min{b/(ε+ γ), δ}.
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Fix x ∈ X satisfying 0 < ‖x− x̄‖ ≤ r. Choose any A ∈ H(x), any k ∈ N0, and any
uk ∈ Rk(x); then from (5.16) and (5.20) uk satisfies ‖uk‖ < γ‖x− x̄‖. Denote

(5.21) yk := f(x)− f(x̄)−A(x− x̄)− uk.

If yk = 0 then x′ := x̄ satisfies (5.11) because −f(x̄) ∈ F (x̄) and (5.12) holds
trivially. Assume that yk 6= 0. Using (5.19), and (5.20), we get

‖yk‖ ≤ ‖f(x)− f(x̄)−A(x− x̄)‖+ ‖uk‖ < (ε+ γ)‖x− x̄‖ < b.

Applying (5.13) with y = −yk and taking into account the last inequality in (5.15)
and that Θ < κ/(1− µκ), we obtain that there exists x′ ∈ G−1

A (−yk) such that

‖x′ − x̄‖ ≤ Θ‖yk‖ < (ε+ γ)Θ‖x− x̄‖

<
t(1− µκ)

κ

κ

1− µκ
‖x− x̄‖ = t‖x− x̄‖.

Hence ‖x′ − x̄‖ < r because t ∈ (0, 1). Furthermore,

−f(x) + f(x̄) +A(x− x̄) + uk ∈ GA(x′) = f(x̄) +A(x′ − x̄) + F (x′).

Thus, x′ satisfies (5.11) and (5.12).
To finish the proof, consider the iteration (5.3) and choose any k ∈ N0, any

xk ∈ B[x̄, r] and any Ak ∈ H(xk). If xk 6= x̄, applying (5.11) and (5.12) just proved
with x = xk, we obtain that for any uk ∈ Rk(xk) there exists xk+1 := x′ ∈ B[x̄, r]
such that

(5.22) f(xk) +Ak(xk+1 − xk) + F (xk+1) 3 uk
and

(5.23) ‖xk+1 − x̄‖ ≤ t‖xk − x̄‖.

The inclusion (5.22) yields that xk+1 satisfies (5.3). If xk = x̄, then xk+1 := x̄
verifies (5.3) because 0 ∈ Rk(x̄). It remains to choose any x0 ∈ B[x̄, r] to obtain
in this way an infinite sequence (xk)k∈N with xk ∈ B[x̄, r] generated by (5.3) and
satisfying (5.23) for all k ∈ N0. Since t ∈ (0, 1), (xk)k∈N converges q-linearly to
x̄. �

The next theorem shows that under stronger conditions every convergent se-
quence, in particular those whose existence is claimed in Theorem 5.2, is actually
convergent q-super-linearly, or q-quadratically, depending on the assumptions for
the mappings Rk.

Theorem 5.3. Consider the inexact Newton-type method (5.3) applied to the gene-
ralized equation (5.1) and suppose that the assumptions of Theorem 5.2 are satisfied.
In addition, suppose that for every A ∈ H(x̄) the mapping GA defined in (5.7) is
strongly metrically regular at x̄ for 0. Then every sequence (xk)k∈N generated by
(5.3) which is convergent to x̄ is in fact q-linearly convergent.

Assume that the sequence (Rk)k∈N0 satisfies

(5.24) lim
x̄6=x→x̄

1

‖x− x̄‖
sup
k∈N0

sup
u∈Rk(x)

‖u‖ = 0.
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Then every sequence (xk)k∈N generated by (5.3) which is convergent to x̄ is in fact
q-super-linearly convergent.

Finally, suppose that the mapping H : X ⇒ L(X,Y ) satisfies condition (A2) and
the sequence (Rk)k∈N0

satisfies

(5.25) lim sup
x̄ 6=x→x̄

1

‖x− x̄‖2
sup
k∈N0

sup
u∈Rk(x)

‖u‖ < +∞.

Then every sequence (xk)k∈N generated by (5.3) which is convergent to x̄ is in fact
q-quadratically convergent.

Proof. Consider a sequence (xk)k∈N generated by (5.3) which converges to x̄. Then
there are sequences (Ak)k∈N0

and (uk)k∈N0
, with Ak ∈ H(xk) and uk ∈ Rk(xk) for

each k ∈ N0 such that (5.11) holds. In parallel to the proof of (5.13) and based on the
strong regularity part of Theorem 5.1 we obtain that there are positive a, b, δ, and Θ
such that for each A ∈ H(B[x̄, δ]) the mapping B[0, b] 3 y 7→ σA := G−1

A (y)∩B[x̄, a]
is a Lipschitz continuous function on B[0, b] with a Lipschitz constant Θ.

For each k ∈ N0 define yk by (5.21). We will show that for sufficiently large k
we have

(5.26) ‖xk+1 − x̄‖ ≤ Θ‖yk‖.
Fix r ∈ (0,min{b/(ε+ γ), δ, a}). Since xk → x̄ as k → +∞, we have xk ∈ B[x̄, r]
for all sufficiently large k. Fix any such an index k. As in the proof of Theorem 5.2
we get that ‖yk‖ < b. Noting that xk+1 ∈ B[x̄, r] ⊂ B[x̄, a], the single-valuedness of
σAk

on B[0, b] implies that xk+1 = σAk
(−yk). Taking into account that x̄ = σAk

(0)
we get (5.26).

Using exactly the same steps as in the proof of Theorem 5.2, one shows that
(5.26) and (5.10) imply (5.23) which yields q-linear convergence.

Instead of (5.10), suppose that a stronger condition (5.24) holds. To show q-
super-linear convergence, let ν > 0. From the fact that xk → x̄ and from (A1), for
sufficiently large k, we have that

‖f(xk)− f(x̄)−Ak(xk − x̄)‖ ≤ ν/(2Θ)‖xk − x̄‖
and, from (5.24), also that

‖uk‖ ≤ ν/(2Θ)‖xk − x̄‖.
From the last two inequalities and (5.26), for all sufficiently large k such that xk 6= x̄
we obtain

‖xk+1 − x̄‖
‖xk − x̄‖

≤ Θ‖yk‖
‖xk − x̄‖

≤ Θ‖f(xk)− f(x̄)−Ak(xk − x̄)‖
‖xk − x̄‖

+
Θ‖uk‖
‖xk − x̄‖

≤ ν/2 + ν/2 = ν.

Since ν can be arbitrarily small, this yields q-super-linear convergence of (xk)k∈N.
For the quadratic convergence claim, condition (5.25) yields that there exists

γ > 0 such that ‖uk‖ ≤ γ‖xk − x̄‖2 for any sufficiently large k ∈ N0. By repeating
the argument of the proof of the q-super-linear convergence by using (A2) and (5.25)
instead of (A1) and (5.24), we get

‖xk+1− x̄‖ ≤ Θ‖yk‖ ≤ Θ‖f(xk)−f(x̄)−Ak(xk− x̄)‖+Θ‖uk‖ ≤ Θ(β+γ)‖xk− x̄‖2.
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This yields q-quadratic convergence of (xk)k∈N. �

If H were compact valued, which is the case when H is taken to be Clarke’s
generalized Jacobian in finite dimensions, then c is just zero and (5.9) is always
satisfied when all mappings GA with A ∈ H(x̄) are metrically regular at x̄ for 0. If
we deal with an equation in finite dimensions solved via Algorithm 1 (which means
that F ≡ 0 and Rk ≡ 0 for each k ∈ N0) we get an extension of Theorem 4.8 (see
also Remark 4.9).

5.2. Dennis–Moré Theorems. Dennis-Moré theorem [5] characterizes q-super-
linear convergence of quasi-Newton methods of the form

(5.27) f(xk) +Bk(xk+1 − xk) = 0, k = 0, 1, . . . , x0 given,

for finding a zero of a smooth function f , where Bk is a sequence of quasi-Newton
updates constructed in certain way, which will not be discussed here. Throughout,
for a sequence (xk)k∈N and a point x̄, denote sk = xk+1 − xk and ek = xk − x̄. We
start with a statement of the Dennis-Moré theorem for a smooth function f acting
in Banach spaces.

Theorem 5.4. Suppose that f : X → Y is strictly Fréchet differentiable at x̄ and
the derivative Df(x̄) is invertible, meaning that ‖Df(x̄)−1‖ < +∞. Let (Bk)k∈N0

be a sequence in L(X,Y ), let Ek = Bk −Df(x̄), and let the sequence (xk)k∈N0
be

generated by (5.27) and converge to x̄. Then xk → x̄ q-super-linearly and f(x̄) = 0
if and only if

(5.28) lim
k→+∞

‖Eksk‖
‖sk‖

= 0.

In this section we focus on inexact nonsmooth quasi-Newton methods for (5.1),
of the form

(5.29)
(
f(xk) +Bk(xk+1 − xk) + F (xk+1)

)
∩Rk(xk) 6= ∅,

where Bk ∈ L(X,Y ) now represents a quasi-Newton update.
In the following theorem we use an immediate consequence of condition (A3): If

the mapping H : X ⇒ L(X,Y ) satisfies condition (A3) at x̄ and xk → x̄, xk+1 6= xk
for all k, then there exists a sequence (Ak)k∈N0

of mappings such that Ak ∈ H(x̄)
for each k ∈ N0 and

(5.30) lim
k→+∞

‖f(xk+1)− f(xk)−Aksk‖
‖sk‖

= 0.

The first result in this section follows.

Theorem 5.5. Let x̄ ∈ X be such that the function f and the mapping H satisfy
condition (A3) at x̄, the sequence (Rk)k∈N0 satisfies condition (5.24), and let the
set H(x̄) be bounded. Consider a sequence (xk)k∈N0

generated by the method (5.29),
for a sequence (Bk)k∈N0

in L(X,Y ), which converges to x̄ and such that xk 6= x̄ for
all k ∈ N0. Let (Ak)k∈N0

be a sequence of mappings in H(x̄) satisfying (5.30), and
let Ek = Bk −Ak.
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(i) If xk → x̄ q-super-linearly, then

(5.31) lim
k→+∞

d(0, f(x̄) + Eksk + F (xk+1))

‖sk‖
= 0.

(ii) If

(5.32) lim
k→+∞

‖Eksk‖
‖sk‖

= 0,

then x̄ is a solution of the generalized equation (5.1). If, in addition, the
mapping f + F is strongly metrically sub-regular at x̄ for 0 then xk → x̄
q-super-linearly.

Proof. First, observe that, by (A3), there is δ > 0 such that for any x, y ∈ B[x̄, δ]
there exists A ∈ H(x̄) satisfying

‖f(y)− f(x)−A(y − x)‖ ≤ ‖y − x‖.
Let µ > 0 be such that H(x̄) ⊂ B[0, µ]. Fix any x, y ∈ B[x̄, δ]. Then

‖f(y)− f(x)‖ ≤ ‖f(y)− f(x)−A(y − x)‖+ ‖A(y − x)‖ ≤ (1 + µ)‖y − x‖,
which gives us Lipschitz continuity of f on B[x̄, δ] with Lipschitz constant 1 + µ.

Consider a sequence xk → x̄ with ‖ek‖ 6= 0 for all k ∈ N0 generated by (5.29) for
sequences of mappings (Bk)k∈N0 and (Rk)k∈N0 . For each k ∈ N0, set

γk =
1

‖ek‖
sup

u∈Rk(xk)

‖u‖.

By (5.24), we have that γk → 0 as k → +∞. From iteration (5.29), there exists
uk ∈ Rk(xk) such that

(5.33) f(xk) +Bksk + F (xk+1) 3 uk and ‖uk‖ ≤ γk‖ek‖ for all k ∈ N0.

Let xk → x̄ q-super-linearly and let ε > 0. In [5, Lemma 2.1] it is shown that

(5.34)
‖sk‖
‖ek‖

→ 1 as k → +∞.

Indeed,∣∣∣∣‖sk‖‖ek‖ − 1

∣∣∣∣ =
|‖sk‖ − ‖ − ek‖|

‖ek‖
≤ ‖sk + ek‖

‖ek‖
=
‖ek+1‖
‖ek‖

→ 0 as k → +∞.

Therefore
‖ek+1‖
‖sk‖

=
‖ek+1‖
‖ek‖

‖ek‖
‖sk‖

→ 0 as k → +∞.

Then for k sufficiently large we get

(5.35) ‖ek+1‖ ≤ ε‖sk‖, ‖ek‖ ≤ 2‖sk‖ and γk < ε.

Hence, from the inequality in (5.33) and the last two inequalities in (5.35),

(5.36) ‖uk‖ ≤ 2γk‖sk‖≤ 2ε‖sk‖.
Adding and subtracting to the inclusion in (5.33) we have

(5.37) f(x̄)− f(xk+1) + f(xk+1)− f(xk)−Aksk + uk ∈ f(x̄) + Eksk + F (xk+1).
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Then, from the first inequality in (5.35), for all sufficiently large k we get

(5.38) ‖f(x̄)− f(xk+1)‖ ≤ (1 + µ)‖ek+1‖ ≤ (1 + µ)ε‖sk‖.

Further, from (5.30), for large k,

(5.39) ‖f(xk+1)− f(xk)−Aksk‖ ≤ ε‖sk‖.

Using (5.36), (5.38), and (5.39), we obtain

‖f(x̄)− f(xk+1) + f(xk+1)− f(xk)−Aksk + uk‖
≤ ‖uk‖+ ‖f(x̄)− f(xk+1)‖+ ‖f(xk+1)− f(xk)−Aksk‖
≤ 2ε‖sk‖+ (1 + µ)ε‖sk‖+ ε‖sk‖.

Taking into account (5.37), this yields

d(0, f(x̄) + Eksk + F (xk+1)) ≤ (4 + µ)ε‖sk‖.

Since ε can be arbitrarily small, we obtain (5.31) and (i) is proved.
To prove (ii), let (Ak)k∈N0

be a sequence of mappings in H(x̄) satisfying (5.30)
and suppose that (5.32) holds. From (5.33), there exists a sequence (yk)k∈N0 such
that for each k ∈ N0 we have

uk = f(xk) +Bksk + yk, yk ∈ F (xk+1), and uk ∈ Rk(xk).

Then, from the inequality in (5.33),

‖uk‖ ≤ γk‖ek‖ → 0 as k → +∞,

and, taking into account that the sequence (Ak)k∈N0
is bounded, we get

‖Bksk‖ ≤ ‖Eksk‖+ ‖Aksk‖ → 0 as k → +∞.

Therefore yk → −f(x̄). Since the graph of F is closed, we obtain −f(x̄) ∈ F (x̄);
that is, x̄ is a solution of (5.1).

Now, suppose that the mapping f + F is strongly metrically sub-regular at the
solution x̄ for 0. From the strong sub-regularity, there exists a constant κ > 0 such
that, for large k,

(5.40) ‖ek+1‖ ≤ κd(0, f(xk+1) + F (xk+1)).

From (5.33) for all k ∈ N0 we have

(5.41) uk − f(xk)−Aksk − Eksk + f(xk+1) ∈ f(xk+1) + F (xk+1).

Hence, from (5.40),

‖ek+1‖ ≤ κ‖uk − f(xk)−Aksk − Eksk + f(xk+1)‖(5.42)
≤ κ‖uk‖+ κ‖f(xk+1)− f(xk)−Aksk‖+ κ‖Eksk‖.

Let ε ∈ (0, 1/(2κ)). From (5.32) we get

(5.43) ‖Eksk‖ ≤ ε‖sk‖ for all k sufficiently large.

Using (5.39), (5.43), the last inequality in (5.35), and (5.42), we obtain

‖ek+1‖ ≤ κγk‖ek‖+ 2κε‖sk‖ ≤ κε‖ek‖+ 2κε‖ek+1‖+ 2κε‖ek‖.
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Hence,
‖ek+1‖
‖ek‖

≤ 3κε

1− 2κε
.

Since ε can be arbitrarily small we get q-super-linear convergence of (xk)k∈N0
. �

When F ≡ 0 we have f(x̄) = 0 and then, taking Rk ≡ 0 for each k ∈ N0, we
come to Theorem 5.4. Theorem 5.5 is a generalization of [7, Theorem 3] for both
nonsmooth functions and inexact quasi-Newton methods.

Now, we will show that if the function f and the mapping H satisfy condition
(A1), H is outer semi-continuous at x̄ andH(x̄) is a bounded set, then the particular
element Ak of H(x̄) in Theorem 5.5 which satisfies (5.30) can be replaced by any
Ak ∈ H(xk) in the necessity part involving (5.31) and those Ak ∈ H(xk) in the
sufficiency part involving (5.32) that are approximated by Bk in the same way as
the derivative Df(x̄) is approximated in the classical Dennis-Moré Theorem 5.4.

Theorem 5.6. Let x̄ ∈ X be such that the mapping H is outer semi-continuous at x̄
and satisfies condition (A1) for f at x̄, that the sequence (Rk)k∈N0 satisfies condition
(5.24) and also that H(x̄) is a bounded set. Consider a sequence (xk)k∈N0

generated
by the method (5.29), for a sequence (Bk)k∈N0

in L(X,Y ), which converges to x̄
and such that xk 6= x̄ for all k ∈ N0.

(i) Suppose that xk → x̄ q-super-linearly. Then, for every sequence (Ak)k∈N0

of mappings such that Ak ∈ H(xk) for all sufficiently large k ∈ N, condition
(5.31) holds with Ek = Bk −Ak.

(ii) If there exists a sequence (Ak)k∈N0
such that Ak ∈ H(xk) for all sufficiently

large k ∈ N and that (5.32) is satisfied for Ek = Bk−Ak, then x̄ is a solution
of (5.1). If, in addition, for every A ∈ H(x̄) the mapping GA defined in
(5.7) is strongly metrically sub-regular at x̄ for 0 and

(5.44) c := χ(H(x̄)) and m := sup
A∈H(x̄)

subreg (GA; x̄ |0)

are finite constants satisfying

(5.45) mc < 1,

then xk → x̄ q-super-linearly.

Proof. Let xk → x̄ q-super-linearly and let ε > 0. Choose a sequence (Ak)k∈N0

of mappings Ak ∈ H(xk) for all k ∈ N sufficiently large. Repeat the proof of
Theorem 5.5 starting from the second paragraph until formula (5.37) where we
write instead

(5.46) f(x̄)− f(xk)−Aksk + uk ∈ f(x̄) + Eksk + F (xk+1).

From the assumed outer semi-continuity of H and the boundedness of H(x̄), there
exists a constant λ such that

(5.47) ‖Ak‖ ≤ λ for all k large enough.

For k sufficiently large, condition (A1) yields

(5.48) ‖f(xk)− f(x̄)−Akek‖ ≤ ε‖ek‖.
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Then, from (5.36), (5.35), (5.47) and (5.48), for such k we obtain

‖f(x̄)− f(xk)−Aksk + uk‖ ≤ ‖uk‖+ ‖f(xk)− f(x̄)−Akek‖+ ‖Ak‖‖ek+1‖
≤ 2ε‖sk‖+ ε‖ek‖+ λ‖ek+1‖ ≤ (λ+ 4)ε‖sk‖.

The inclusion (5.46) then implies

d(0, f(x̄) + Eksk + F (xk+1))≤ (λ+ 4)ε‖sk‖.
Since ε can be arbitrarily small, we obtain (5.31) and hence (i) is proved.

For the second part of the statement, consider a sequence (xk)k∈N0
which con-

verges to x̄ and is generated by (5.29) for a sequence (Bk)k∈N0 in L(X,Y ) and
a sequence (Rk)k∈N0 satisfying (5.24). For each k ∈ N0, find uk ∈ Rk(xk) verifying
(5.33). Observe that (5.32) implies that x̄ is a solution of (5.1) as in Theorem 5.5.

We show next that there exist positive a and Θ such that

(5.49) ‖x− x̄‖ ≤ Θd(0, GA(x)) whenever x ∈ B[x̄, a] and A ∈ H(B[x̄, a]).

Use (5.45) to find µ > c, κ > m and ε > 0 satisfying

(5.50) µκ < 1 and c + 2ε < µ.

Let Θ := κ/(1− µκ) > 0. There exists δ > 0 such that

(5.51) H(u) ⊂ H(x̄) + B[0, ε] for each u ∈ B[x̄, δ].

By the definition of measure of non-compactness, there is a finite set AF ⊂ H(x̄)
such that

H(x̄) ⊂ AF + B[0, χ(H(x̄)) + ε].

Hence, from (5.51), for any u ∈ B[x̄, δ] we get

H(u) ⊂ AF + B[0, χ(H(x̄)) + ε] + B[0, ε] = AF + B[0, c + 2ε],

that is, from the second inequality in (5.50),

(5.52) H(B[x̄, δ]) ⊂ AF + B[0, µ].

Pick any Ã ∈ AF , any A′ ∈ B[0, µ]. Then there exists αÃ > 0 such that

‖x− x̄‖ ≤ κd(0, GÃ(x)) whenever x ∈ B[x̄, αÃ].

Fix any x ∈ B[x̄, αÃ]. As GÃ+A′ = GÃ +A′(x− x̄), one gets

‖x− x̄‖ ≤ κd(0, GÃ(x)) = κd
(
0, GÃ+A′(x)−A′(x− x̄)

)
= κd

(
A′(x− x̄), GÃ+A′(x)

)
≤ κ‖A′(x− x̄)‖+ κd

(
0, GÃ+A′(x)

)
≤ κµ‖x− x̄‖+ κd

(
0, GÃ+A′(x)

)
.

Summarizing, given Ã ∈ AF , there exists αÃ > 0 such that for each A′ ∈ B[0, µ] we
have ‖x− x̄‖ ≤ Θd

(
0, GÃ+A′(x)

)
whenever x ∈ B[x̄, αÃ].

Let a = min
{
δ,minÃ∈AF

αÃ
}
. Taking into account (5.52) one has H(B[x̄, a]) ⊂

AF + B[0, µ], hence we obtain (5.49).
Observe that in (5.49) we do not assume that A ∈ H(x). Fix any ε ∈ (0, 1/Θ).

Let (γk)k∈N0
be defined as in the proof of Theorem 3.2. Since γk → 0 and xk → x̄

for k → +∞, there is k0 ∈ N such that

(5.53) γk < ε and xk ∈ B[x̄, a] whenever k > k0.

69



i
i

“paper-online” — 2016/5/4 — 10:15 — page 70 — #71 i
i

i
i

i
i

Taking into account (A1) and (5.32), we also have

(5.54) ‖f(xk)− f(x̄)−Akek‖ ≤ ε‖ek‖ and ‖Eksk‖ ≤ ε‖sk‖ whenever k > k0.

Then (5.33) and (5.53) imply, for k > k0, that ‖uk‖ ≤ ε‖ek‖ as well as that

(5.55) uk − f(xk) +Akek + f(x̄)− Eksk ∈ f(x̄) +Akek+1 + F (xk+1).

Therefore, for k > k0, one can estimate

‖ek+1‖ ≤
(5.49)

Θd(0, f(x̄) +Akek+1 + F (xk+1))

≤
(5.55)

Θ‖uk − f(xk) +Akek + f(x̄)− Eksk‖

≤ Θ‖uk‖+ Θ‖f(xk)−Akek − f(x̄)‖+ Θ‖Eksk‖
≤

(5.54)
Θε‖ek‖+ Θε‖ek‖+ Θε‖sk‖

≤ 2Θε‖ek‖+ Θε(‖ek+1‖+ ‖ek‖) = 3Θε‖ek‖+ Θε‖ek+1‖.

That is
‖ek+1‖
‖ek‖

≤ 3Θε

1−Θε
whenever k > k0.

Since ε can be arbitrarily small, (xk)k∈N0
converges q-super-linearly. �

To put Theorem 5.6 in the perspective of basic results for equations, let a function
h : Rm → Rm and a point u0 ∈ Rm be given. Consider the inexact quasi-Newton
method (cf. (4.7)): given uk ∈ Rm find uk+1 ∈ Rm such that

(5.56) ‖h(uk) + Bk(uk+1 − uk)‖ ≤ ηk‖h(uk)‖

for a sequence of matrices Bk ∈ Rm×m and for a forcing sequence ηk↘0.

Corollary 5.7. Consider a function h : Rm → Rm which is semi-smooth at
ū ∈ Rm. Let ∗ ∈ {B,C} and suppose that all matrices A ∈ ∂∗h(ū) are non-
singular. Consider a sequence (uk)k∈N generated by (5.56) which is convergent to
ū. Then uk → ū q-super-linearly and h(ū) = 0 if and only if there exists a sequence
(Ak)k∈N0

, with Ak ∈ ∂∗h(uk) for all sufficiently large k ∈ N, such that

lim
k→+∞

‖(Bk −Ak)(uk+1 − uk)‖
‖uk+1 − uk‖

= 0.

5.3. Kantorovich-type Theorems. L. V. Kantorovich [21] was the first to obtain
convergence of the method on assumptions involving the point where iterations
begin. Specifically, Kantorovich considered the Newton’s method for solving the
equation f(x) = 0 and proved convergence by imposing conditions on the derivative
Df(x0) of the function f and the residual ‖f(x0)‖ at the starting point x0. These
conditions can be actually checked, in contrast to the conventional approach to
assume that the derivative Df(x̄) at a (unknown) root x̄ of the equation is invertible
and then claim that if the iteration starts close enough to x̄ then it generates
a convergent to x̄ sequence. For this reason Kantorovich’s theorem is usually called
a semi-local convergence theorem whereas conventional convergence theorems are
described as local theorems.

70



i
i

“paper-online” — 2016/5/4 — 10:15 — page 71 — #72 i
i

i
i

i
i

Theorem 5.8 (Kantorovich). Let X and Y be Banach spaces. Consider a function
f : X → Y , a point x0 ∈ X and a real a > 0, and suppose that f is continuously
Fréchet differentiable in an open neighborhood of the ball B[x0, a] and its derivative
Df is Lipschitz continuous in B[x0, a] with a constant L > 0. Assume that there
exist positive reals κ and η such that

‖Df(x0)
−1‖ ≤ κ and ‖Df(x0)

−1
f(x0)‖ < η.

If α := κLηa < 1
2 and a ≥ a0 := 1−

√
1−2α
κL , then there exists a unique sequence

(xk)k∈N satisfying the iteration

(5.57) f(xk) +Df(xk)(xk+1 − xk) = 0, k = 0, 1, . . . ,

with a starting point x0; this sequence converges to a unique zero x̄ of f in B[x0, a0]
and the convergence rate is r-quadratic:

‖xk − x̄‖ ≤
η

α
(2α)2k

, k = 0, 1, . . . .

In a related development, Kantorovich showed in [22, Chapter 18] that, under
the same assumptions as in Theorem 5.8, to achieve linear convergence to a solution
there is no need to calculate during iterations the derivative Df(xk) at the current
point xk— it is enough to use at each iteration the value of the derivative Df(x0)
at the starting point, that is,

(5.58) f(xk) +Df(x0)(xk+1 − xk) = 0, k = 0, 1, . . . .

He called this method the modified Newton process. This method is also known as
the chord method in the literature. The work of Kantorovich has been extended in
a number of ways by, in particular, utilizing various extensions of the majorization
technique. We focus on a version of Kantorovich’s theorem due to R. G. Bartle
[3], which has been largely forgotten if not ignored in the literature. A version of
Bartle’s theorem, without referring to [3], was given recently in [8, Theorem 5].

Specifically, Bartle [3] considered a function f acting between Banach spaces X
and Y and the equation f(x) = 0 which is solved by the iteration

(5.59) f(xk) +Df(zk)(xk+1 − xk) = 0, k = 0, 1, . . . ,

where Df is the Fréchet derivative mapping of f and zk are, to quote [3], “arbitrarily
selected points ... sufficiently close to the solution desired." For zk = xk one obtains
the usual Newton’s method, and for zk = x0 the chord method, but zk may be chosen
in other ways. For example as x0 for the first s iterations and then the derivative
could be calculated again every s iterations, obtaining in this way a hybrid version of
the method. If computing the derivatives, in particular in the case they are obtained
numerically, involves time consuming procedures, it is quite plausible to expect that
for large scale problems the chord method or a hybrid version of it would possibly
be faster than the usual method. We present here the following somewhat modified
statement of Bartle’s theorem which fits our purposes:

Theorem 5.9 (Bartle [3]). Assume that the function f : X → Y is continuously
Fréchet differentiable in an open set O. Let x0 ∈ O and let there exist positive reals
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a and κ such that for any three points x1, x2, x3 ∈ B[x0, a] ⊂ O we have

(5.60) ‖Df(x1)−1‖ < κ and ‖f(x1)− f(x2)−Df(x3)(x1 − x2)‖ ≤ 1

2κ
‖x1 − x2‖,

and also

(5.61) ‖f(x0)‖ < a

2κ
.

Then for every sequence (zk)n∈N0
in B[x0, a] there exists a unique sequence (xk)k∈N

satisfying the iteration (5.59) with initial point x0; this sequence converges to a root
x̄ of f which is unique in B[x0, a] and the convergence rate is r-linear:

‖xk − x̄‖ ≤ 2−ka, k = 0, 1, . . . .

For a non-smooth function we get the following result.

Theorem 5.10. Let f : X → Y be a continuous function in a vicinity of x0 ∈ X
and let numbers a > 0, κ ≥ 0, δ ≥ 0 be such that

(5.62) κδ < 1 and ‖f(x0)‖ < (1− κδ)a
κ
.

Consider a sequence (Ak)k∈N0 in L(X,Y ) such that for every k ∈ N0 we have
(5.63)
‖A−1

k ‖ ≤ κ and ‖f(x)− f(x′)−Ak(x− x′)‖ ≤ δ‖x− x′‖ for every x, x′ ∈ B[x0, a].

Then there exists a unique sequence (xk)k∈N satisfying

(5.64) f(xk) +Ak(xk+1 − xk) = 0, k = 0, 1, . . . ,

with initial point x0. This sequence remains in B(x0, a) and converges to a root
x̄ ∈ B(x0, a) of f which is unique in B[x0, a]; moreover, the convergence rate is
r-linear: for each α ∈ (κδ, 1) we have

‖xk − x̄‖ < αka.

Proof. Without any loss of generality assume that α ∈ (κδ, 1) is such that

‖f(x0)‖ < (1− α)
a

κ
.

We will show, by induction, that there is a sequence (xk)k∈N with elements in
B[x0, a] satisfying (5.64) with the starting point x0 such that

(5.65) ‖xj+1 − xj‖ ≤ αjκ‖f(x0)‖ < aαj(1− α), j = 0, 1, . . . .

Let k := 0. Since A0 is invertible, there is a unique x1 ∈ X such that A0(x1−x0) =
−f(x0). Therefore,

‖x1 − x0‖ = ‖A−1
0 A0(x1 − x0)‖ = ‖A−1

0 f(x0)‖ ≤ κ‖f(x0)‖ < a(1− α).

Hence x1 ∈ B(x0, a). Suppose that, for some k ∈ N, we have already found points
x0, x1, . . . , xk ∈ B(x0, a) satisfying (5.65) for each j = 0, 1, . . . , k − 1. Since Ak is
invertible, there is a unique xk+1 ∈ X such that Ak(xk+1 − xk) = −f(xk). Then
(5.65) with j := k − 1 implies

‖xk+1 − xk‖ = ‖A−1
k Ak(xk+1 − xk)‖ = ‖A−1

k f(xk)‖ ≤ κ‖f(xk)‖
= κ‖f(xk)− f(xk−1)−Ak−1(xk − xk−1)‖
≤ κδ‖xk − xk−1‖ ≤ αkκ‖f(x0)‖ < aαk(1− α).
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From (5.65), we have

‖xk+1 − x0‖ ≤
k∑
j=0

‖xj+1 − xj‖ ≤
k∑
j=0

αjκ‖f(x0)‖ < a

∞∑
j=0

αj(1− α) = a,

that is, xk+1 ∈ B(x0, a). The induction step is complete.
For any natural k and p we have

(5.66)

‖xk+p+1 − xk‖ ≤
k+p∑
j=k

‖xj+1 − xj‖ ≤
k+p∑
j=k

αjκ‖f(x0)‖ < αk

1− α
κ‖f(x0)‖ < aαk.

Hence (xk)k∈N is a Cauchy sequence; let it converge to x̄ ∈ X. Passing to the limit
with p→ +∞ in (5.66) we obtain

‖x̄− xk‖ ≤
αk

1− α
κ‖f(x0)‖ < aαk for each k ∈ N0.

In particular, x̄ ∈ B(x0, a). Using (5.64) and (5.63), we get

0 ≤ ‖f(x̄)‖ = lim
k→+∞

‖f(xk)‖ = lim
k→+∞

‖f(xk)− f(xk−1)−Ak−1(xk − xk−1)‖

≤ lim
k→+∞

δ‖xk − xk−1‖ = 0.

Hence, f(x̄) = 0. Suppose that there is ȳ ∈ B[x0, a] with ȳ 6= x̄ and f(ȳ) = 0. Then

‖ȳ − x̄‖ ≤ κ‖A0(ȳ − x̄)‖ = κ‖f(ȳ)− f(x̄)−A0(ȳ − x̄)‖
≤ κδ‖ȳ − x̄‖ < α‖ȳ − x̄‖ < ‖ȳ − x̄‖,

which is a contradiction. Hence x̄ is a unique root of f in B[x0, a]. �

Extensions of Theorem 5.8 and Theorem 5.10 for a generalized equation together
with numerical experiments can be found in [10], where the following model of an
iterative procedure for solving (5.1) is considered. Given k ∈ N0, the current and
prior iterates xn (n ≤ k) generate a “feasible" element Ak ∈ L(X,Y ) and then
choose the next iterate xk+1 ∈ X according to the Newton-type iteration:

f(xk) +Ak(xk+1 − xk) + F (xk+1) 3 0.

As in the previous two subsections, the invertibility of linear mappings appearing
in iteration (5.64) is replaced by the (strong) metric regularity of mappings

f(x0) +Ak(· − x0) + F, k ∈ N0,

at x0 for y0 with a constant κ > 0 and neighborhoods B[x0, a] and B[y0, b]. Here
a point x0 ∈ X is the starting point of the iteration and y0 ∈ f(x0) + F (x0), which
plays the role of the initial residual, is supposed to have a sufficiently small norm.
Moreover, different rates of r-convergence are considered.
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