
97

OBOX – The Orchestration BOX for Raspberry Pi

Ondřej Severa1

1 Introduction
With the recent grow of the computational power on small embedded devices it is easier

for developers to use advanced techniques and software packages which requires more power
and memory than the specific optimized code for target platforms. Thus there are new possibil-
ities of multi-platform solutions for embedded devices.

One of them is Java Virtual Machine (JVM). It runs precompiled code written in Java
language. Nowadays such a virtual machine can run on top of the ARM processors which are
very popular in small scale computers or embedded devices.

Cooperation between devices is built on top of the information exchange ie. between
multiple devices in the factory network. Nowadays one of the favorite technique is Service Ori-
ented Architecture (SOA) which uses Web Services as a multi-platform information exchange
solution.

2 OBOX - Overview
The main goal of the orchestration box is to have a small embedded device which can be

connected to the local network in the factory floor and will be able to orchestrate (control) all
the processes using Web Services. The Raspberry PI is very suitable hardware for this task. It is
full scale computer based on Linux OS. It have enough computational power and memory to run
Java applications. It has one Ethernet port which allows connection of the board to the factory
network. The main program is written in Java and executed using JVM for ARM processors.
Described BPEL engine uses DPWS for discovery of all devices on the network and advanced
XML Parser to process the BPEL file and execute given BPEL Activities.

2.1 DPWS Stack
The key part of the OBOX application is DPWS Stack (DPWS). It is framework which

is capable to discovery new devices on the network and also communicate with them. There is
only one known DPWS stack for Java with active development. It is called JMEDS - Java Multi
Edition DPWS Stack (JMEDS). It allows developer to easily add or remove new Web Services,
discover new devices, etc. It is compliant with several WS-* specifications.

2.2 BPEL Engine
The BPEL (Business process execution language) runtime engine is implemented ac-

cording to the part of the WS-BPEL specification (BPEL). The engine is capable of execution
of defined activities. It can be i.e. control of the conveyor, interaction with human operator,

1 student of the postgraduate study program Applied science and Informatics, field Cybernetics, e-mail: osev-
era@kky.zcu.cz



98

confirmation of the new order, etc. It is composed from following modules:

• XML Parser - Parses the input BPEL file and creates hierarchy of instances according to
the source file

• BPEL Engine Core - After initialization where all the variables are assigned and all the
necessary Web Services are added it executes all the activities supplied by source BPEL
file. One can find basic description in following paper (BPEL for Java).

• DPWS Stack - It is used for handling the Web Service communication. BPEL Core
can introduce new Web Services, also all the call for the external WS. DPWS Stack is
responsible for translation of the program data to SOAP(Simple Object Access Protocol)
messages which are used in Web service communication.

Acknowledgement

This work was supported by E-SCOP project, the sub-program of Artemis call - project
No. 332946 and by University of West Bohemia - SGS-2014-054

References
[BPEL] OASIS. Web Services Business Process Execution Language Version 2.0.(2007) URL:

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[BPEL for Java] ActiveVOS. BPEL for Java developers.(2013) URL:
http://www.activevos.com/content/ start here/technology/bpel for java developers.pdf

[JMEDS] WS4D. JMEDS - Java Multi Edition DPWS Stack(2011) URL: http://ws4d.e-
technik.uni-rostock.de/wp-content/uploads/2011/05/StackOverview.pdf

[DPWS] OASIS. Devices Profile for Web Services (DPWS)(2009) URL: http://docs.oasis-
open.org/ws-dd/ns/dpws/2009/01


