
Stochastic Semantic Analysis

PhD Study Report

Ivan Habernal

Technical Report No. DCSE/TR-2009-04
May, 2009

Distribution: Public

Abstract

In human-computer dialogue systems, the task of Spoken Language Un-
derstanding (SLU) system is to process the input acoustic utterance and
transform it into a semantic representation. The goal of semantic analysis
is to represent what the subject intended to say.

This thesis presented overview of the current state-of-the-art methods for
statistical semantic analysis. In comparison to the expert based systems, the
main advantage of stochastic approaches is the ability to train the model
from data. Furthermore, systems based on statistical models can be easily
ported to other domains. However, the amount of the annotation effort
must be also taken into account when developing the stochastic semantic
analysis system. In this thesis, fundamental stochastic models along with
the training and evaluation of these models are described.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitńı 8
30614 Pilsen
Czech Republic

Copyright c© 2009 University of West Bohemia in Pilsen, Czech Republic

i

Contents

1 Introduction 1
1.1 Problem definition . 2
1.2 Structure of the thesis . 3

2 Sequential models 4
2.1 Hidden understanding model 4
2.2 Flat-concept parsing . 6
2.3 Conditional random fields . 7

3 Stochastic semantic parsing 10
3.1 Prerequisites . 10
3.2 Probabilistic semantic grammars 10
3.3 Vector-state Markov model 12
3.4 Hidden vector-state Markov model 15

3.4.1 MLE training of the HVS model 15
3.4.2 Discriminative training of the HVS model 16
3.4.3 Extended HVS parser 18

3.5 Context-based Stochastic Parser 20
3.6 Other approaches to semantic parsing 21

3.6.1 Clustering approach 21
3.6.2 Kernel-based statistical methods 23

4 System evaluation 24
4.1 Evaluation techniques . 24

4.1.1 Exact match . 24
4.1.2 PARSEVAL . 25
4.1.3 Tree edit distance . 25

5 Data annotation 26

6 Existing systems and corpora 29
6.1 Corpora . 29

6.1.1 ATIS . 29
6.1.2 DARPA . 29

ii

6.1.3 Other corpora . 29
6.2 Existing systems . 30

6.2.1 HVS Parser . 30
6.2.2 Scissor . 30
6.2.3 Wasp . 31
6.2.4 Krisp . 31
6.2.5 Other systems . 31

7 Conclusion and future work 33
7.1 Aims of the PhD thesis . 33

iii

Chapter 1

Introduction

The goal of Spoken Language Understanding system (SLU) is to extract the
meaning from the natural speech. The SLU covers many subfields such as
utterance classification, speech sumarization, natural language understand-
ing (NLU) and information extraction.

In human-computer dialogue systems, the task of SLU system is to pro-
cess the input acoustic utterance and transform it into a semantic represen-
tation. However, this task can be split into two parts – automatic speech
recognition (ASR) and semantic analysis.

In this thesis, we will focus on semantic analysis. The purpose of a
semantic analysis system is to obtain a context-independent semantic rep-
resentation from a given input sentence.

Although there is a difference between SLU and NLU in the sense of the
input (audio signal for SLU systems, text for NLU systems), we will not
distinguish bewteen these terms so strictly. The main reason is that many
of the presented approaches and systems are originally focused on the whole
SLU system, even though they deal with semantic analysis and assume a
textual representation on the input. A schematic example of SLU system is
in Fig. 1.1.

automatic
speech

recognition

semantic
analysis

acoustic signal

text
Lorem ipsum dolor sit amet

lorem ipsum dolor sit amet
consectetur adipisicing elit
sed do eiusmod tempor
incididunt ut labor sequi

lattice

semantic frame

frame
 slot: lorem
 slot: ipsum
 slot: dolor

semantic tree

or

or

Figure 1.1: A schema of a SLU system.

1

2

Early SLU systems were mostly based on an expert approach, which
means that the system is written entirely by the system designer (an expert).
The syntax-driven semantic analysis [All95] uses a hand-written context-free
grammar (CFG) for syntax. The first-order predicate calculus (FOPC) is
used for meaning representation. Later, semantic grammars [JM00] were
based on CFGs and described the semantic hierarchy rather then the lan-
guage syntax.

Hovewer, the expert-based systems have a lot of limitations. The first
disadvatage is very high cost of creating such system because the gram-
mars must be written by an expert. Such system can also cover limited
domain and it lacks portability.1 Althought expert-based systems are still
beeing used, recently the majority of semantic analysis systems is based on
statistics. The main advantage of such systems is the ability to learn from
data.

Thus, the state-of-the-art statistical methods for SLU are presented in
this thesis.

1.1 Problem definition

As shown in Fig. 1.1, the input of the semantic analysis is an output from
the ASR module. It can be either a plain text (a single sentence), a word
lattice or n-best list, whter the sentences are ordered by its probabilites
assigned by the ASR.

The output of the SLU system is a context-independent2 semantic
representation. There are two most commonly used representations of the
semantics – frame based and tree-based representation.

In the frame-based SLU system, the semantic representation of an ap-
plication domain can be defined in terms of semantic frames. Each frame
contains several components called slots. The SLU system fills the slots with
appropriate content. The meaning of an input sentence is an instantiation
of the semantic frame. Some SLU systems do not allow a hierarchy of slots.
In such case, the semantic representation is a flat concept representation (or
attribute-value pairs).

Since the flat concept representation is simpler and it may result in
simpler statistical model, the hierarchical representation (tree-based repre-
sentation) is more expressive and it can deal with long-dependencies. Both
models will be described and compared in the next chapter.

1Porting means adapting the system to different domain
2Does not depend neither on the history nor on the context.

3

1.2 Structure of the thesis

• Chapter 2 describes the sequential models for semantic analysis. These
models use a non-hierarchical representation of the semantics.

• More complex models are presented in chapter 3, as well as other
approaches for semantic parsing.

• Chapter 4 describes the evaluation of semantic analysis systems.

• Chapter 5 deals with data annotation and annotation methodology.

• An overview of existing systems and corpora is provided in chapter 6.

• The aims of the doctoral thesis are presented in chapter 7.

Chapter 2

Sequential models

2.1 Hidden understanding model

The Hidden understanding model (HUM) [SMSM97] was motivated by Hid-
den Markov Models (HMM), that have been succesful in speech recognition.
Because of differences between speech recognition and language understand-
ing, significant changes are required in the HMM methodology. [MBIS94]
proposes the following requirements for hidden understaning systems:

• A system for expressing meaning

• A statistical system which is capable to capture associations between
words and meaning

• A training algorithm for estimating the parameters of the model from
annotated data

• An algorithm for performing the search for the most-likely meaning
given a word sequence

The key requirement for a hidden understanding model are the properties
of the meaning expression. It should be both precise and appropriate for
automatic learning techniques. [MBIS94] requires a meaning representation
that is:

Expressive. For all sentences that appear in the application, the formalism
must be able to express the meaning.

Annotable. It must be possible to create annotations of large corpus with
low human effort.

Trainable. The system must be able to train the parameters from training
annotated examples.

4

5

SHOW:
 TRAINS:
 TIME:
 PART-OF-DAY: morning
 ORIGIN:
 CITY: Pilsen
 DEST:
 CITY: Prague
 DATE:
 DAY-OF-WEEK: Tuesday

Figure 2.1: A frame-based representation for input sentence ”Show me
morning trains from Pilsen to Prague on Tuesday”.

Tractable. There must be an efficint algorithm for performing the search
over the meaning space.

Fig. 2.1 shows the Frame based meaning representation. This repre-
sentation is very simple but it has also a disadvatage. The problem is that
generally there is no explicit alignment of frames to the the words from the
sentence. Fig. 2.2 shows another representation – the tree based meaning
representation as proposed in [SMSM97]. In such representation, the words
are directly aligned in the structure. The cost is that tree based represen-
tation is more detailed and therefore it requires more human annotation
effort.

Tree based representation

The main characteristic of tree structured representation is that semantic
concepts appear as nodes of a tree. Some concepts can be attached to
parent concept node. The leaves of the tree are directly mapped to the
words from the sentence and they are called terminal nodes in [SMSM97]
(or preterminal semantic concept in [You02]). Each word is mapped to its
corresponding terminal node.

Such representation can be viewed as a product of parsing by a semantic
grammar as well. But in HUM the relations between concepts are defined
in an annotation schema and the relations are trained from annotated data.

Frame based representation

The frame based representation differs from the tree representation in word
alignment. While tree based representation assigns all tree nodes to the
words, in the frame based representation there can be words that are om-
mited. These missing terminals are said to be hidden, in the sense that

6

SHOW

TRAINS

TIME

PART-OF-DAY

ORIGIN

CITY

DEST

CITY

DATE

DAY-OF-WEEK

Show me morning trains from Pilsen to Prague on Tuesday.

show
indicator

origin
indicator

city
name

dest
indicator

train
indicator

time
indicator

date
indicator

day
of week

city
name

Figure 2.2: A possible tree-based semantic representation for input sentence
”Show me morning trains from Pilsen to Prague on Tuesday”.

every word has to be aligned to some terminal node but the alignment is
not given by the meaning frame.

Statistical model

Let M be the meaning space and V the vocabulary. Then the problem of
understanding can be viewed as recovering the most likely meaning structure
M ∈M given a sequence of words W ∈ V :

M̂ = argmax
M

P (M |W) (2.1)

Using Bayes rule, P (M |W) can be rewritten into

P (M |W) =
P (W |M)P (M)

P (W)
(2.2)

where P (M |W) is lexical realization model and P (M) is semantic language
model. Since P (W) does not depend on M , it can be ignored for computing
maximal probability P (M |W). There is an analogy with HMM because only
words can be observed and the internal states of each of the two models are
unseen and must be inferred from the words.

2.2 Flat-concept parsing

An semantic decoding approach inspired by HUM (section 2.1) is the Finite
State Tagger [HY05] (or flat-concept model in [You02]). It assumes that each

7

word w from the sentence is labeled with a semantic concept c. For example
the sentence ”What will be the weather in Pilsen tomorrow morning?” might
be decoded in bracket notation (see Chapter 5) as:

WEATHERREQ(weather) PLACE(Pilsen) DATE(tomorrow) TIME(morning)

Irrelevant words are labeled with a dummy concept and later discarded
from the semantic annotation. The formal definition of the model follows.

Let V be the vocabulary and W = (w1, . . . , wT) the word sequence
where wt ∈ V . Given the semantic concept space T , we can assume that
each word wt is tagged with one semantic label concept ct and the whole
sequence is C = (c1, . . . , ct), where ct ∈ T . The FST model can then be
described as follows:

P (W |C)P (C) =

T∏
t=1

P (wt|wt−1 . . . w1, ct)

T∏
t=1

P (ct|ct−1 . . . ct) (2.3)

where P (W |C) is the probability of generating word wt given the word
history wt−1 . . . w1 and corresponding current concept ct. It is called lexical
model (or lexical realization model in HUM). The semantic model P (C) is
the probability of generating current concept ct given the concept history
ct−1 . . . c1.

This model uses an unlimited history of words and concepts. In practical
applications, the history is truncated to a limited size n and m. The model
is now approximated by the following formula:

P (W |C)P (C) ≈
T∏
t=1

P (wt|wt−1 . . . wt−n+1, ct)
T∏
t=1

P (ct|ct−1 . . . ct−m+1)

(2.4)
For special case n = 1 and m = 2, we can rewrite the formula as:

P (W |C)P (C) =
T∏
t=1

P (wt|ct)
T∏
t=1

P (ct|ct−1)

which becomes a conventional first order Markov model, where state
transitions are modelled as concept bigram probabilities and words are mod-
elled as unigram conditioned by the concept ct.

An example of the model is shown in Fig. 2.3.

2.3 Conditional random fields

The SLU problem can be stated as a sequential supervised learning problem
[NSP06]. The result of the classifier is the semantic label sequence which

8

At what time does the last train go from Pilsen to Prague?

DESTTYPE ORIGINTIMEREQ __ __

Figure 2.3: Discrete Markov model representation of semantics

can be transformed into the slot/value pairs. In such sequential process-
ing, the hierarchy of the semantic representation can be defined by the slot
description.

Let D = {Xi, Y i}i=1,...,N be a set of N training examples where each
example is a pair of sequences (Xi, Y i). The Xi = 〈xi1, . . . , xiTi〉 features

vector sequence and Y i = 〈yi1, . . . , yiTi〉 is a label sequence. For example, X
can be a sequence of words and Y can be the sequence of corresponding
semantic labels. We also assume that X and Y are the same size. The goal
of classifier h is to find the best probable semantic class sequence given the
input vector:

Ŷ = argmax
Y

h(Y,X,Λ), (2.5)

where Λ = λk denotes the parameter vector of size K.
Linear-chain Conditional Random Fiels (CRFs) are conditional proba-

bility distributions over label sequences which are conditioned by the input
sequence [WDA05], [RR07], [NSP06]. Formally, linear-chain CRFs are de-
fined as follows:

pΛ(Y |X) =
1

Z(X)

T∏
t=1

Ψt(yt, yt−1, X), (2.6)

where X is the random vector that is observed, Y is the vector we want
to predict and Ψ is the local potential ([JL08], also called a feature function
in [SP03]). Z(X) is a normalization function which ensures that the proba-
bilities of all state sequences sum up to one. Typically, Ψ consist of a set of
feature functions fk.

In general, the feature function fk(yt, yt−1, X) is an arbitrary linguistic
function. Typically, a feature depends on the inputs around the given po-
sition i, although they may also depend on global properties of the input
[JL08]. Formally, the feature can encode any aspect of a state transition
fk(yt−1, yt) and the observation fk(yt, xt), centered at the position t.

For example, the feature function fk(yt, xt) can be a binary function
which yields 1 iff yt = ’TOLOC.CITY NAME-B’ and current word is ’chicago’.
For higher values of λk the event occurs more likely.

9

Parameter estimation of linear-chaining CRFs is usually performed by
conditional maximum log-likelihood [SP03]. To avoid overfitting, the penal-
ization is used on a vector with a too large norm:

L(Λ) =
N∑
i=1

logPΛ(Y i|Xi)−
K∑
k=1

λ2
k

2σ2
(2.7)

However, [SP03] tested other algorithms for CRF training, such as pre-
conditioned conjugate-gradient, limited-memory quasi-Newton and voted
perceptron.

Chapter 3

Stochastic semantic parsing

3.1 Prerequisites

Most of the stochastic semantic parsers, which are introduced in this chapter,
need a preprocessing step [HY06b], [PMS+01], [WM06]. Since the terminol-
ogy for this task is not stable, the problem can be called shallow semantic
parsing [PWH+04], lexical class analysis [Kon09], named entity recognition
[TKSDM03] or NP-chunking [NSP06]. In fact, these methods attempt to
identify semanticaly meaninguful units (words or word groups) in the input
sentence and assign a semantic label to them. This definition of semantic
classes of words is necessary in order to obtain high coverage models from
the given data [PMS+01]. There is a strong paralelism with the stochastic
approach applied to the problem of tagging text; not only Part-of-speech
tagging, but also detection of syntactic structures as noun phrases etc (NP-
chunking). Depending on the approach, the results of this step may vary
from a set of lexical classes to a lattice, where the semantic labels are as-
signed to the words with some probability.

Some algorithms dealing with this problem were described in the pre-
vious chapter. Namely, the finite state tagger (FST) in section 2.2 or the
conditional random fields (CRF) in section 2.3. Some other approaches as
NP-chunking, stochastic finite state transducers (SFST) or classifier based
sequence labeling are presented in the sources (eg. [CRR08], [IP07]) in more
detail, as well as the training methods.

3.2 Probabilistic semantic grammars

The flat-concept parser described in section 2.2 has some limitations on its
expression ability. The most important drawback is that the model does
not allow to capture any hierarchical structure which groups corresponing
concepts into a covering semantical concept. The long-distance dependecy
problems (see Fig. 3.1) also cannot be well described by the FST model.

10

11

... fly from Madrid to Prague on monday ...

return.day

depart.day

... return from Madrid to Prague on monday ...

Figure 3.1: An illustration of the long-distance dependency problem of flat
models using limited history.

At what time does the last train go from Pilsen to Prague?

TRAVELREQ

DESTTYPE ORIGIN

TIMEREQ

CTY CTYFROM TOVRBTIMEAT WHAT THE LAST TR VRB

CITYTRAIN CITY

Figure 3.2: Probabilistic context-free grammar for semantics

One possible solution is to use a more complex model, which can be e.g. the
probabilistic context-free grammar (PCFG) model. An example is shown in
Fig. 3.2.

The lexical model P (C|W) can be obtained by using the above men-
tioned FST model (or by the other models from chapter 2). However, the
probabilities of the semantic model P (C|Ss) are computed recursively and
they are complex.

Let C be the decoded semantic tree, P (c, i, j) be a probability that the
concept c covers sub-concepts (preterminal nodes) from indices i to j. For N
preterminal concepts c1 . . . cN , the probability is P (C) = P (s, 1, N), where
s is the root concept of the semantic tree. Let the P (c → c1 . . . cQ) be the
probability that the concept c directly generates the sequence of concepts
c1 . . . cQ. Then the inside-outside probability is recursively formulated as:

12

P (c, i, j) =
∑

Q≤j−i+1

∑
CQ1 ∈{c∗}

∑
IQ0 ∈{(i...j)∗

P (c→ c1 . . . cQ)

Q∏
q=1

P (c, I(q−1), I(q))

(3.1)
where IQ0 represents a set of Q integers which splits the sequence ci . . . cj

into Q subsequences such that I(0) = i and I(Q) = j. The previous formula
can be applied for any unrestricted branching, however, in the case of binary
branching it is considerably simplified to:

P (c, i, j) =
∑
cl,cr

i−1∑
t=1

P (c→ clcr)P (cl, i, t)P (cr, t+ 1, j) (3.2)

Now, the formula 3.2 is the inside probability of the Inside-Outside algo-
rithm which is a modification of the EM algorithm for parameter estimation.

If the fully annotated corpus is available, the parameter estimation is
simplified. In this case, the probabilities of the parse path (a sequence of
concepts CQ1) are computed as:

P (CQ1) =

Q∏
q=1

{
P (cq|cq−1, c∗) if c ∗ is in semantic model
P (wq|wq−1, c∗) if c ∗ is in lexical model

(3.3)

However, the PCFG models suffer from a variety of theoretical and prac-
tical problems, such as normalization problems. Also, the recursive nature
makes them computationally intractable [You02].

3.3 Vector-state Markov model

The 1-st order Markov model in FST was described in section 2.2. Although
this model is mathematically simple and easy to train, its major disadvan-
tage is the lack of ability to capture the hierarchy of semantics. This may
lead to long dependency problems etc. On the other hand, the PCFG intro-
duced in the previous section seems to be a too complex model, especially
for training and estimation of the probabilities.

To improve the simple 1-st order model, the vector-state Markov model
is proposed in [HY05]. It is still a discrete HMM, but each state is actually
a stack of pushdown automata with a limited size. This stack consists of
semantic concepts. Thus, there is an equivalecy between a PCFG and vector-
state Markov model with unlimited stack depth. It is shown in Fig. 3.3.
This model is right branching. It means that the branches of the semantic
tree grow in left-to-right direction.

The probability of a sematnic parse tree C (which is actually a set of
stack of concepts) given the input sentence W can be formalised as follows:

13

At what time does the last train go from Pilsen to Prague?

TRAVELREQ

DESTTYPE ORIGIN

TIMEREQ

CTY CTYFROM TOVRBTIMEAT WHAT THE LAST TR VRB

CITYTRAIN CITY

TRAVELREQ TRAVELREQ
TIMEREQ

TRAVELREQ TRAVELREQ
TYPE

TRAVELREQ
TYPE
TRAIN

TRAVELREQ TRAVELREQ
ORIGIN

TRAVELREQ
ORIGIN

CITY

TRAVELREQ
DEST

TRAVELREQ
DEST
CITY

Figure 3.3: A vector-state model and its equivalent tree representation

P (N,C,W) =

T∏
t=1

P (nt|W1...t−1,C1...t−1) · P (ct[1]|W1...t−1,C1...t−1, nt)·

· P (wt|W1...t−1,C1...t),

(3.4)

where

• W1...t−1 is the word history up to t− 1,

• C1...t denotes the history of concepts (c1 . . . ct). Each vector state ct at
position t is a vector (or stack) of Dt semantic concept labels where Dt

is the stack depth. In more detail, ct = (ct[1], ct[2], . . . ct[Dt]) where
ct[Dt] is the root concept and ct[1] is the preterminal concept (the
concept immediately above the word wt),

• nt is the number of stack pop operations and takes values in the range
of 〈0, . . . , Dt−1〉

• W1...t−1,C1...t−1 denotes the previous parse up to position t− 1,

• ct[1] is the new preterminal semantic concept at position t assigned to
word wt.

Each transition of the model is restricted to the following operations,
which corresponds with the probabilities from Eq. 3.4: (i) pop nt concept

14

At what time does the last train go from Pilsen to Prague?

TRAVELREQ TRAVELREQ
TIMEREQ

TRAVELREQ TRAVELREQ
TYPE

TRAVELREQ
TYPE
TRAIN

TRAVELREQ TRAVELREQ
ORIGIN

TRAVELREQ
ORIGIN

CITY

TRAVELREQ
DEST

TRAVELREQ
DEST
CITY

Figure 3.4: A vector-state Markov model

labels from the stack, (i) generating new preterminal concept and (iii) gen-
erating a word. Having the nt which defines the number of semantic concept
popped off the stack, the transition from position t−1 to t given preterminal
concept cwt for word wt can be described as:

• pushing the concept to the stack

ct[1] = cwt , (3.5)

• copying the previous stack to the current stack, skipping nt concepts
which have been popped off at the position t

ct[2 . . . Dt] = ct−1[(nt + 1) . . . Dt−1], (3.6)

• adujsting the stack depth at position t

Dt = Dt−1 + 1− nt (3.7)

Depending on value of nt, the stack can grow as follows. For nt = 0
the stack grows by one semantic concept (no concept has been popped off).
The case nt = 1 corresponds to replacing a preterminal concept with new
concept. And for nt > 1 the stack is reducing its size by popping off more
concepts.

The general model, described in Eq. 3.4, depends on unlimited history
of concepts and words. In [HY05] the history is truncated – only the pre-
vious semantic concept stack is used and the word history is ignored. The
equations are then approximated by

P (nt|W1...t−1,C1...t−1) ≈ P (nt|ct−1) (3.8)

P (ct[1]|W1...t−1,C1...t−1, nt) ≈ P (ct[1]|ct[2 . . . Dt]) (3.9)

P (wt|W1...t−1,C1...t) ≈ P (wt|ct). (3.10)

The vector-state markov model is shown in Fig. 3.4.

15

3.4 Hidden vector-state Markov model

In the previous section, the basic vector-state Markov model was introduced.
For training such model, a fully annotated corpora with aligned preterminal
concepts is required. Then the training is simply a matter of counting of
events and a model smoothing. The hidden vector-state Markov model is
based only on unaligned abstract annotation. It means, that each training
sentence is annotated with a semantic concept hierarchy but the association
between the preterminal concept layer and the words is not captured (this
is, actually, an equivalent of HMM in ASR, where the observations are seen
but the states of the model are hidden).

In the next section, two approaches to train such model are introduced.
The first one is based on MLE and estimating the model parameters using
the Expectation-Minimization algorithm (EM). The second one uses dis-
criminative training. However, there are some prerequisites for both meth-
ods. First, there must be a sort of a priori knowledge of the domain – the
lexical classes (see section 3.1). Second, an abstract semantic annotation
must be provided for each sentence. These annotations are made by human
annotators (see chapter 5).

3.4.1 MLE training of the HVS model

The purpose of training the HVS-based parser is to find the model parame-
ter set λ = {C, N} which will result in the maximal likelihood of the training
data. This is done by maximizing some objective function R(λ). Most com-
monly used parameter estimation is maximum likelihood estimation (MLE).
Given the set of observations W = {W1, . . .WI}, the objective function can
be formulated as

R(λ) = fML(λ) = log
I∏
r=1

P (Wr, λ) =
I∑
r=1

logP (Wr, λ) (3.11)

MLE maximizes the likelihood of the training data. The λ must be
recomputed to obtain the model parameters that best explains the data:

λ∗ = argmax
λ

I∑
r=1

logP (Wr, λ) (3.12)

The training of HVS-based model by MLE is an iterative process. There
exists a reestimation formula f(·) such that if λ̂ = f(λ), then the objective
function in next step is R(λ̂) > R(λ). The λ reaches the local maximum
when R(λ̂) = R(λ). A well-known alogorithm for the training is the Baum-
Welch algorithm.

The reestimation formulas are:

16

P ∗(n|c′) =

∑
t P (nt = n, ct−1 = c′|W,λk)∑

t P (ct−1 = c′,W |λk)
, (3.13)

P ∗(c[1]|c[2 . . . D]) =

∑
t P (ct,W |λk)∑

t P (ct[2 . . . D] = c[2 . . . D]|W,λk)
, (3.14)

P ∗(w|c) =

∑
t P (ct = c, wt = w|λk)∑

t P (ct = c,W |λk)
. (3.15)

MLE makes numbers of assumption which cannot be reached in practice:
the global likelihood maximum can be found, the observations are from a
known family of distributions and the training data are unlimited. Thus, it
is not guaranteed that the MLE trained model will yield optimal results.

3.4.2 Discriminative training of the HVS model

As described in section 3.4.1, the MLE is used for generative statistical train-
ing where only the correct models are taken into account during parametr
estimation. [ZH09] proposes a method for training of the generative model
based on discriminative optimization criterion. That means that not only
the likelihood for correct models should be increased, but also the likelihood
for incorrect models should be decreased as well.

Accorging to equation 3.4, semantic parsing models are trained to have
a maximal likelihood P (C). However, the correlation between higher P (C)
and better performance is not perfect.

Let’s assume a senteceW with the appropriate set of all possible semantic
parse trees of size M and most likely semantic parse tree Ĉ = Cj . The
discriminant function is logP (W,C) and depends on sentence W and the
model parameters. A parse error measure can be defined as:

d(W) = − logP (W,Cj) + log

 1

M − 1

M∑
i=1,i 6=j

P (W,Ci)
η

 1
η

(3.16)

where η is a positive number and is used to select competing semantic
parses. For η = 1, the competing semantic parse term (the second term
from Eq. 3.16) becomes an average of all competing parse tree probabilities.
When η → ∞, the term is maxi,i 6=j P (W,Ci), which is the score of the top
competing semantic parse tree result. The resulting d(W) ≤ 0 implies a
correct decision, d(W) > 0 implies a classification error.

The loss function is defined as:

`(W) = sigmoid(d(W)) (3.17)

17

where sigmoid function is used to normalize d(W) in range (0, 1) and is
defined as:

sigmoid(x) =
1

1 + e−γx
(3.18)

where γ is a constant that controlls the slope of the sigmoid function.
The empirical loss is expressed as:

L0(λ) =
1

I

I∑
j=1

M∑
i=1

`i(Wj , λ) =

∫
`(W,λ)dPI (3.19)

where I is the number of samples from the training set {W1, . . . ,WI}
and PI is the empirical discrete probability measure defined on the training
data set. The expected loss is defined as:

L(λ) = EW {`(W,λ)} (3.20)

In discriminative HVS model training, the goal is to minimize the ex-
pected loss over the training samples. The model is trained to separate the
correct parse from the incorrect parses. The trained model is then used
to parse the training sentences again and the training procedure repeats.
This approach is based on the generalized probabilistic descend algorighm
[ZH09].

The model parameters are updated sequentially by the formula:

λk+1 = λk − εk∇`(Wi, λ
k) (3.21)

where εk is the step size and ∇ is the gradient.
The update formulas (see section 3.4.1 for comparison) can be then de-

fined as:

(logP (n|c′))∗ = logP (n|c′)− εγ`(di)(1− `(di))×

×

−I(Cj , n, c
′) +

∑
i,i 6=j

I(Ci, n, c
′)

P (Wi, Ci, λ)η∑
i,i 6=j P (Wi, Ci, λ)η

 (3.22)

(logP (c[1]|c[2 . . . D]))∗ = logP (c[1]|c[2 . . . D])− εγ`(di)(1− `(di))×−I(Cj , c[1], c[2 . . . D]) +
∑
i,i 6=j

I(Ci, c[1], c[2 . . . D])
P (Wi, Ci, λ)η∑
i,i 6=j P (Wi, Ci, λ)η

(3.23)

18

(logP (w|c))∗ = logP (w|c))− εγ`(di)(1− `(di))×

×

−I(Cj , w, c) +
∑
i,i 6=j

I(Ci, w, c)
P (Wi, Ci, λ)η∑
i,i 6=j P (Wi, Ci, λ)η

 (3.24)

where

• I(Ci, n, c
′) is the number of operations of popping up n semantic tags

from the stack at the current vector state c′ in the Ci parse tree,

• I(Ci, c[1], c[2 . . . D]) denotes the number of operations of pushing the
semantic concept c[1] at the current vector state c[2 . . . D] in the Ci
parse tree,

• and I(Ci, w, c) is the number of times of emittin the word w at the
state c in the parse tree Ci.

The full derivations of the updating formulas can be found in [ZH09].

3.4.3 Extended HVS parser

[Jur07] introduced some extensions to the base HVS semantic parser, namely
the left-right-branching parsing and input parametrization.

Left-right-branching parsing

The original semantic model of HVS parser (see Eq. 3.4) allows to push
only one concept ct[1] to the stack. To enable either pushing one concept
or no concept, a new hidden variable push is inserted into the model. The
resulting semantic model is then formulated as:

P (C) =
T∏
t=1

P (nt|ct−1)·P (pusht|ct−1)·
{
P (ct = ct−1|ct−1) = 1 if pusht = 0
P (ct[1]|ct[2, . . . D]) if pusht = 1

(3.25)
where pusht takes values 1 for pushing a new concept to the stack or 0

for pushing no concept to the stack (keeping the concept vector unchanged
from the previous vector state t − 1). The implementation of such model
adds the interim stack cit.

Another modification of the base HVS model described in [Jur07] is the
posibility of pushing two concepts at the same time. It has been experi-
mentaly verified that pushing more than two concepts does not significantly
affect the results. Moreover, this limitation keeps the model simple.

In such extension, the pusht variable takes values from {0, 1, 2} and the
semantic model formula is defined as:

19

P (C) =

T∏
t=1

P (nt|ct−1) · P (pusht|ct−1)·

·

P (ct = ct−1|ct−1) = 1 if pusht = 0
P (ct[1]|ct[2, . . . D]) if pusht = 1
P (ct[1]|ct[2, . . . D]) · P (ct[2]|ct[3, . . . D]) if pusht = 2

(3.26)

Eq. 3.27 contains an approximation of the probability of pushing two
concepts at the same time to improve the model robustness:

P (ct[1, 2]|ct[3 . . . D]) ≈ P (ct[1]|ct[2, . . . D]) · P (ct[2]|ct[3, . . . D]) (3.27)

Input Parametrization

In the basic HVS model, the inputW is in a form of word sequence. However,
[SJM07] proposed to extend the input with some additional information such
as lemma or morphological tags.

Using the lemmatized input means that the input word wi is replaced
by its lemma. The reduction of the vocabulary consequently reduces the
number of parameters to be estimated and it improves the model robustness.
Nevertheless, the discrimination ability of such model is decreased.

Additionaly, the full morhological analysis results can be used to avoid
the lower model discriminability by lemmatization. Thus, the input feature
vector ft is introduced:

ft = ft[1], . . . ft[NF] (3.28)

where NF is the number of the features. The feature vector contains i.e.
ft[1] = lemma, ft[2] =morph. tag, etc. Using this vector, the lexical model
of the HVS parser can be generalized as:

P (W |S) =

T∏
t=1

P (ft|ct) (3.29)

To achieve higer model robustnes, the following approximation is used
in [Jur07]:

P (ft|ct) ≈
NF∏
j=1

P (ft[j]|ct) (3.30)

Thus, the lexical model including feature vectors is formulated as:

P (W |S) =
T∏
t=1

NF∏
j=1

P (ft[j]|ct) (3.31)

20

3.5 Context-based Stochastic Parser

The semantic parser presented in [Kon09] is a hybrid stochastic semantic
parser. The training data consists of annotated sentences, where the preter-
minal concepts (or lexical classes) are aligned to the input words (this an-
notation methodology is similar to vector-state parser introduced in section
3.3). The model parameters are then estimated using MLE:

P (N → α|N) =
Count(N → α)∑
γ Count(N → γ)

(3.32)

where N → α means that in the data, the non-terminal N is rewritten
to α. Moreover, the word context of each tree node is taken into account.
The context is defined as the words before and the words after the span of a
subtree. Then the probability of a context given a nonterminal is estimated
by MLE as:

P (w|N) =
Count(w,N) + λ∑
i Count(wi, N) + λV

(3.33)

where w is the current context word of nonterminal N , wi are all context
words, λ is the smoothing constant and V is the estimate of the vocabulary
size. For the estimation of the theme probability (in this model the theme
is the root concept of the sematnic tree), there is an additional formula:

P (w|S) =
Count(w, S) + κ∑
i Count(wi, S) + κV

(3.34)

where S is the root concept (the theme), wi are the words of the sentence
and κ is the smoothing constant.

Once the model is trained, the parser performs two steps. First, the shal-
low parsing algorithms (see section 3.1) are used to identify lexical classes.
In this system, the shallow parser is based on CFG for generic lexical classes
such dates, time, numbers, etc. and on the vocabulary methods for proper
names etc. Second, a stochastic bottom-up chart parser is used to create
parse trees and to compute probabilites as follows:

P (T) =
∑
i

P (wi|N)P (N → A1 . . . Ak|N)
∏
j

P (Tj), (3.35)

where N is the top nonterminal of the subtree T , A1 . . . Ak are terminals
or nonterminals which are expanded from N and Tj is a subtree having the
nonterminal Ai on the top.

Then the best parse is selected using the best probability:

P (T̂) = argmax
i

P (Si)
∏
j

P (wj |S)P (Tj) (3.36)

21

where Si is the starting symbol of the parse tree Ti and wj are the words
of the analysed sentence.

3.6 Other approaches to semantic parsing

3.6.1 Clustering approach

[HY06a] proposed a novel algorithm for semantic decoding in SLU systems.
This approach differs from previously mentioned either rule-based or purely
statistical systems. Both systems treat semantic decoding as a classical pars-
ing problem. An alternative would be to treat the decoding as a straight-
forward pattern recognition problem.

This approach requires relatively few training data (less then the HVS
model, sec. 3.3) and the data are annotated only at sentence level. The key
idea is to cluster sentences into classes and then assign a single semantic
annotation to each class. In the decoding process, the input sentence is
assigned to the class which it most closely matches.

Given a set of N training sentences {S1, . . . , SN}, the Y-clustering algo-
rithm groups the sentences into Y classes. From each class, one sentence is
selected as so called template. The basic algorithm is similar to K-means
clustering.

1. Initialization. Randomly select Y different sentences as the initial
templates {T1, . . . , TY }.

2. Clustering. Assing each sentence Si to the closest template m∗

m∗ = argmax
m
{d(Si, Tm)} for m = 1, . . . , Y (3.37)

where d(S, T) is a distance between sentence S and template T .

3. Template regeneration. For each class, select new template T = ST

which yelds the highest within-class similarity D:

ST = argmax
Si

{D(Si)} for i = 1, . . . ,H (3.38)

where H is the number of sentences in the class and D(Si) is the total
similarity between sentence and all members of the class, i.e.

D(S) =

H∑
h=1

d(S, Sh) (3.39)

4. If the termination criteria is not satisfied, return to Step 2. For in-
stance, the process can be terminated if the newly created classes are
same as the classes from the previous iteration.

22

When implementing the algorithm described above, two main issues
must be solved: the distance measurement and the method of controlling
the generated classes.

The similarity between sentences depends on the words within. Every
word is assigned a saliency (Eq. 3.40) to ensure that the words with key
information are weighted more heavily than the less relevant words. The
saliency of the word represents how important the word is for distinguishing
classes.

Assume that the class contains H sentences and α sentences contain the
word w. Additionaly, assume that there are M classes and among them β
classes containing the word w. Then the saliency of the w in that class is
defined as

I(w) =

√
α

H

(
1− β

M

)
(3.40)

The value of I(w) ranges from 0 to 1. It is actually a form of mutual
information between the within class frequency and inter-class frequency.
Higher saliery means that the word will ocure more frequently in that class
and less frequently in other ones.

For computing similarity between a sentence S and the template T ,
the DTW algorithm is used for aligning on indetical words. Given this
alignment, assume L words in the sentence S, K words in the template T
with saliency Ii for i = 1, . . . ,K, then the similarity is given by:

d(S, T) =

√√√√J

L

(∑J
j=1 I(wj)∑K
i=1 Ii

)
(3.41)

Controlling the process of generating classes by setting a similarity thresh-
old and the parameters of clustering are described more precisely in [HY06a].

Semanic decoding using the Y-clustering approach is performed in the
following steps: First, each sentence in the corpus is preprocessed in such a
way that any lexical class is replaced by its class name. Then the clustering is
performed to generate the templates. Each template then has the associated
slot/values given by the position in the template. For example, the sentence

Show me flights from London to Paris

has following template:

Show me flights from city_name to city_name

Slots/Values: FROMLOC.CITY = T(5)

TOLOC.CITY = T(7)

Decoding the sentence uses the same algorithm as training (DTW, com-
puting similiarity) and the most similar template is then chosen as the cor-
responding semantic class. Finally, the slots are filled with the realizations
from the sentence.

23

3.6.2 Kernel-based statistical methods

In traditional machine learning methods, the input is represented by a set
of features (feature vector). But some more complicated input structures,
such as trees, cannot be easily expressed by such feature vectors, because the
structural relations are lost when the data are reduced to a set of features.
To aviod this, all possible sequences of features must be taken into account,
which makes the the algorithm computationally expensive.

An alternative to feature-based methods are the kernel-based methods
[KM06]. A kernel is a similarity function K over the domain X which maps
a pair of objects x, y ∈ X to their similarity score K(x, y), ranging from 0
to ∞.

[Kat09] defines a kernel between two strings as the amount of common
subsequences between them. Formally, let s be a string from the alphabet
Σ and |s| the length of the string and a substring is a continuous subset
s[i . . . k]. We call a subsequence u of s, if there exists an index sequence
i = (i1i2 . . . i|u|) with 1 ≤ i1 ≤ · · · ≤ i|u| ≤ |s| and it is written as s[i] for
short.

The span is the distance between the first and the last index of i, such
span(i) = i|u| − i1 + 1. The function Φu(s) is a number of multiple unique
index sequences i of string s and it is formulated as:

Φu(s) =
1

λ|u|

∑
i:s[i]=u

λspan(i) (3.42)

where λ ∈ (0, 1〉 is a decay factor. Finally, the kernel between two strings
is defined as:

K(s, t) =
∑
u∈Σ∗

Φu(s)Φu(t) (3.43)

and normalized kernel to remove any bias due to different string lengths
is then formulated as:

Knormalized (s, t) =
K(s, t)√

K(s, s)K(t, t)
(3.44)

The semantic parsing is then performed by using the notion of a semantic
derivation of an NL sentence. In [Kat09], the task is presented as finding the
most probable semantic derivation of an NL sentence which is determined
using an extended version of Earley’s algorithm for context-free grammar
parsing. The kernel-based SVM (support vector machines) are used as the
classifiers for computing the probability of the parse tree derivation.

Chapter 4

System evaluation

4.1 Evaluation techniques

Although the SLU/NLU systems mostly do not appear as standalone ap-
plications and they are incorporated into e.g. dialog systems, there is a
reasonable need of independent evaluation of the system itself. Having a
semanticaly annotated corpus made by human annotators, we can compare
it to the restults obtained from the semantic analysis system using some
criteria. Therefore, various types of measures are introduced in this section.

4.1.1 Exact match

The simplest criterion is the exact match criterion. Let CR be the reference
parse tree (made by human annotator) and let CP be the tree produced by
the parser. Then the exact match criterion is a binary function resulting
1 iff the CP matches exactly the CR and 0 otherwise. The exact match
means that both trees has the same structure and labels of concepts and
the preterminal concepts cover the same positions of words in the input
sentence.

Since the output of the parser can differ only e.g. in one concept or even
in preterminal concept positions, such tree is automatically discarted with
0. Therefore we need a more finer measure which would penalize the output
depending on its distance from the reference parse tree.

The semantic accuracy presented in [Jur07] is actually the exact match
measure, but it does not take into account the word alignment of the preter-
minal concepts and uses only the concept structure. Then the accuracy is
computed as

SAcc =
E

N
(4.1)

where E is the number of hypothesis semantics that exactly match and
N is the number of all recognized semantics.

24

25

4.1.2 PARSEVAL

The standard measures used in PARSEVAL are precission (P), recall (R)
and F-measure (F). Let correct concept be a concept which spans the same
words both in reference and hypothesis tree. The the values are computed
as follows:

P =
of correct concepts in CP

of concepts in CP
(4.2)

R =
of correct concepts in CP

of concepts in CR
(4.3)

F =

(
α

P
+

1− α
R

)−1

(4.4)

The parameter α ∈ 〈0, 1〉 is used to distribute the preference between
the recall and the precision.

4.1.3 Tree edit distance

The tree edit distance algorithm computes the minimum numbers of substi-
tions, insertions and deletions required to transform one tree into another.
For semantic analysis system outputs its able to measure only distance be-
tween abstract semantic trees without the relation to the words of input
sentence (therefore it is called concept accuracy in [Jur07]). The accuracy
is then defined as:

CAcc =
N − S −D − I

N
(4.5)

where N is number of concepts in the reference semantics tree, S is the
number of substitutions, D is the number of deletions and I is the number
of insertions.

Chapter 5

Data annotation

All semantic analysis systems presented in this thesis heavily depend on
annotated data. Annotated data are data enriched with some additional
semantic information, such as abstract annotation [HY05], semantic classes
of words [You02] or abstract annotation aligned to the words of the input
sentence [MGJ+09], as shown in Fig. 5.1.

What will be the weather in Pilsen tomorrow morning?
place date time

datetime

weather

Figure 5.1: An example of abstract semantic annotation with aligned lexical
classes.

The annotations are created by human annotators. Given a certain
annotation methodology, the annotator uses his or her semantic and domain
knowledge and associates an annotation to each sentence from the training
data. Nevertheless, it is very common that two annotators create a different
annotation for the same sentence (one of the reason can be e.g. semantic
ambiguity of such sentence). To achieve more independency on the approach
of one annotator, the inter-annotator agreement measuring is often used
[Kon09].

Since the annotation process is very time demanding, some additional
steps can be performed while creating the annotated corpora. A methodol-
ogy described in [Kon09] is called bootstrapping. This is an iterative process
of training unsupervised or parital-supervised models. At the begining, only
a small part of the data is annotated by the human. Using this data, the
initial model is trained. Then the trained model runs over the remaining

26

27

Unannotated data

Manual annot.

Automatic annot.
Model training

Corrected annot.Annotated data

Hand correction

Automatic annot.
Model training

Corrected annot.

Hand correction

Corrected annot.Annotated data

Automatic annot.

Corrected annot.

Hand correction

Corrected annot.Annotated data Corrected annot.

Annotated data

Model training

1st iteration

2nd iteration

3rd iteration

4th iteration

Figure 5.2: An example of bootstrapping annotation methodology.

data, from which a part is corrected by human annotators. The model is
then re-trained again and the process continues. An example is shown in
Fig. 5.2. Another automatic semanic annotation approch is presented in the
LUNA project [MMG08]. In this project, the rule-based methods are used
for identification of proper names and simple semantic concepts. However,
this preprocessing depends on language and domain.

There are some recommendations for creating the annotated data [Kon09].
The most important requirement is very detailed annotation manual and a
very simple annotation methodology (but still, the methodology must be
able to capture all required semantic relations in the data). Moreover, an
efficient annotation tool is required to decrease the time of annotating.

There are some common methodologies used for semantic annotation.
Obviously, the final format heavily depends on the target system, but there
are still some common features. The bracketing notation is used e.g. in
[SMSM97] or [MBIS94]. For example, the input sentence ”I need to go to
Pilsen tomorrow morning” would have the following semantic annotation:

TRAVELREQ(TOPLACE(

CITY,

DATETIME(DATE, TIME))

)

This corresponds to the abstract semantic annotation in [You02] because
there is no specific connection between the concepts from the annotation

28

and the words within the sentence. However, such annotaion can be easily
extended to the aligned semantic annotation by asigning the concepts to the
words, ie:

TRAVELREQ(TOPLACE(

CITY(Pilsen),

DATETIME(DATE(tomorrow), TIME(morning)))

)

Apparently, the bracket notation is just a formalism of describing a tree
structure. Although creating such annotation for the sentence is a straight-
forward solution, it still requires more annotator effort (ie. checking the
bracket pairing etc.). Therefore, some systems use more efficient tools for
creating semantic annotation to avoid the syntax invalidity etc. [IM07].

Chapter 6

Existing systems and corpora

In this chapter, an overview of existing NLU systems and corpora is pre-
sented. Instead of a comphrehensive survey, some well documented and
commonly referenced systems has been chosen.

6.1 Corpora

6.1.1 ATIS

The ATIS (Air Travel Information Service) corpus contains a travel informa-
tion data. There are more versions of the ATIS corpus: ATIS-2 and ATIS-3.
Originally, these corpora contained only transcriptions from spoken lan-
guage. The abstract semantic annotations were derived semi-automatically
using the SQL queries provided in ATIS-3. A set of 30 domain-specific lexical
classes were extracted from the ATIS database. For creating the test set,
postprocessing was required to extract relevant slot/values and transform
them into a compatible format [HY06b].

6.1.2 DARPA

The DARPA Communication data contain utterance transcriptions and the
semantic parse results from the rule-based Phoenix parser [WI94]. The
abstract semantic annotation produced by the parser were hand-corrected.
The data consists of 38408 utterances total. After removing context depen-
dend utterances such ”Yes”, ”No, thank you”, etc., the final set consists
of 12702 utterances. The corpus is publicly available without the semantic
annotations.

6.1.3 Other corpora

The LUNA project is an attempt to create a multilingual spoken language
understanding module. The corpus contains semantic annotation for three

29

30

languages (French, Italian an Polish). The Polish corpus was collected from
the Warsaw City Transportation information center where people can get
various information related to routes and time schedules of public trans-
port etc. An automatic annotation process of this corpus is described in
[MMG08]. The Italian part of this project consists of spontaneous dialogues
recorded in the call center of the help desk facility of the Consortium for
Information Systems of Piemont (CSI Piemonte), thus its domain is focused
on computer related dialogues. The active annotation of this corpus is pre-
sented in [CRR08].

The MEDIA project aims to evaluate SLU approches in French lan-
guage. The domain is targeted at hotel room booking and related tourist
information. The corpus was recorded using WOZ1 system simulation. The
semantic annotation procudure is described in [BMRA+05].

6.2 Existing systems

6.2.1 HVS Parser

A hidden vector-state model (see section 3.3) was presented in [HY05]. The
system was tested on the ATIS and DARPA corpora, recently the system was
also used for semantic extraction from bioinformatics corpus Genia [ZH09].
The first model traning was based on MLE (see section 3.4.1), however, the
discriminative training has also been proposed (see section 3.4.2).

Extended HVS Parser

An extension of the basic HVS Parser has been developed in the work of
[Jur07]. The improvement is achieved by extending the lexical model and by
allowing left-branching (see section 3.4.3). The system was tested on Czech
human-human train timetable corpus and it is public available.

6.2.2 Scissor

Scissor (Semantic Composition that Integrates Syntax and Semantics to
get Optimal Representations) is another system which uses the syntactic
parser enriched with semantic tags, generating a semantically augmented
parse tree. It uses the state-of-art syntactic parser for English, the Collin’s
parser [Col97]. The parse tree consists of syntactic nodes augmented with
semantic concepts. Some concepts (reffered to as predicate) take an ordered
list of arguments from sub-concepts. Also, null concepts, which do not
correspond to any semantic information, are introduced.

1WOZ = Wizard-Of-Oz. In this way, the user/speaker believes he or she is talking to
the machine, whereas in fact he is talking to a human being who simulates the behaviour
of the dialogue server.

31

The training of the system is performed in the following steps. First, the
corpus is parsed by Collin’s parser. Then the semantic labels for individual
words are added to the POS nodes in the tree. Finally, the rest of seman-
tic concepts is added in the bottom-up manner. This semantic annotation
must be done manually and heavily depends on the domain knowledge and
requires a robust syntactic parser. The system is described in detail e.g. in
[GM05], [RM06] or [Moo07].

6.2.3 Wasp

Wasp (Word Alignment-based Semantic Parsing) is based on statistical ma-
chine translation (SMT). The method is trained on corpora consisting of
a natural language data and appropriate meaning representation language
(MRL). Wasp requires no prior knowledge of the natural language syntax,
although it assumes that an unambiguous, context-free grammar (CFG) of
the target MRL is available [WM06]. First, the words are aligned to corre-
sponding semantic concepts using the GIZA++ system [ON03]. Then the
probabilistic parser and synchronous CFG is used for creating parse tree.

6.2.4 Krisp

Krisp (Kernel-based Robust Interpretation for Semantic Parsing) uses sup-
port vector machines with string kernels to build semantic parsers that are
more robust in the presence of noisy training data. The string kernels are
introduced in section 3.6.2. In particular, Krisp uses the string kernel to
classify substrings in a natural language sentence. Like Wasp, it uses pro-
duction rules in the MRL grammar to represent semantic concepts, and it
learns classifiers for each production. Learning the parameters of the system
is an iterative process, in each step the positive and negative examples are
collected for training SVM. During semantic parsing, Krisp uses these clas-
sifiers to find the most probable semantic derivation of a sentence [KM06].

6.2.5 Other systems

The system for semantic role labeling described in [GJ00] indetifies the se-
mantic roles. The output of the system is a sentence with labeled smenatic
roles such as agent or patient, or more domain-specific semantic roles such
speaker, topic, etc. Although the system applies statistical techniques, the
main disadvantage of this system is the use of full syntactic parse, which is
not suitable for free-word-order languages with very complicated grammars,
such as the Czech langauge.

Another system for stochastic semantic analysis presented in [BMB05]
uses a scheduling data corpus, the English Spontaneous Speech Task (ESST).

32

This is an appointment scheduling task where two people speaking differ-
ent languages try to schedule a meeting. This approach is very similar to
flat-concept parser (see section 2.2) because it uses first-order HMM, but
the training stage depends again on the rule-based parser. However, a more
general method for context definition has been proposed in this approach.
Instead of introducing data-dependent context classes, the contextual obser-
vations are introduced.

The LingvoSemantics system is based on context-based stochastic
parser introduced in section 3.5. The corpus consists of 20292 written user
queries focused on internet search in natural Czech language (weather fore-
cast, bus and train information, etc.). The semantic formalism is described
by an annotation scheme which captures the possible dependences among
semantic concepts in the abstract annotation. The training data were an-
notated according to these schemes. The project is developed in Java under
GPL licence. Also the annotation editor is freely available.

In [WDA05], the generative HMM/CFG composite model is used to re-
duce the SLU slot error rate on ATIS data. Also a simple approach to
encoding the long-distance dependency is proposed. The core of the sys-
tem is based conditional random fields (CRF) and the previous slot context
is used to capture non-local dependency. This is an effective and simple
heuristic but the system requires a set of rules to determine whether the
previous slot word is a filler or a preamble. Thus, it is difficult to port the
system to other domain.

Chapter 7

Conclusion and future work

This thesis presented overview of the current state-of-the-art methods for
statistical semantic analysis. In comparison to the expert based systems, the
main advantage of stochastic approaches is the ability to train the model
from data. Furthermore, systems based on statistical models can be easily
ported to other domains. However, the amount of the annotation effort must
be also taken into account when developing the stochastic semantic analysis
system.

The baseline system for the dissertation thesis is the work of [Kon09].
However, there is a considerable possibility to advance the methods for se-
mantic analysis in order to improve the results of the system. Namely, it
can be e.g. better methods for lexical class analysis, incorporating negative
examples into the statistical model or incorporate discriminative training.
The task is summarised below.

7.1 Aims of the PhD thesis

• Continue in the work of [Kon09], study the system, obtain additional
semantically annotated data using the methodology from chapter 5
and measure the performance of the system.

• Compare the system with another existing systems. Explore the pos-
sibilites to obtain a standard semantic corpus (ie. ATIS) and evaluate
the system using this data.

• Propose and evaluate novel methods in order to improve the semantic
analysis system. Focus on robust processing of faulty data. Consider
specific properties of the Czech language.

• Experiment with the use of the developed system for semantic web
searching using the natural language.

33

Bibliography

[All95] James Allen. Natural language understanding (2nd ed.).
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA,
USA, 1995.

[BMB05] Christiane Beuschel, Wolfgang Minker, and Dirk Bühler. Hid-
den markov modeling for semantic analysis – on the combi-
nation of different decoding strategies. Internation Journal of
Speech Technology, 8(3):295–305, 2005.

[BMRA+05] H. Bonneau-Maynard, S. Rosset, C. Ayache, A. Kuhn,
D. Mostefa, and the Media consortium. Semantic annotation
of the French Media dialog corpus. In Eurospeech 05, Lisbon,
2005.

[Col97] Michael Collins. Three generative, lexicalised models for sta-
tistical parsing. In In Proceedings of the 35th Annual Meeting
of the Association for Computational Linguistics, pages 16–23,
1997.

[CRR08] Kepa Joseba Rodriguez Christian Raymond and Giuseppe Ric-
cardi. Active annotation in the luna italian corpus of spon-
taneous dialogues. In Proceedings of the Sixth International
Language Resources and Evaluation (LREC’08), Marrakech,
Morocco, May 2008. European Language Resources Associa-
tion (ELRA).

[GJ00] Daniel Gildea and Daniel Jurafsky. Automatic labeling of se-
mantic roles. In ACL, 2000.

[GM05] Ruifang Ge and Raymond J. Mooney. A statistical semantic
parser that integrates syntax and semantics. In In Proceedings
of the Ninth Conference on Computational Natural Language
Learning, pages 9–16, June 2005.

[HY05] Yulan He and Steve Young. Semantic processing using the
hidden vector state model. Computer Speech & Language,
19(1):85–106, 2005.

34

35

[HY06a] Yulan He and S. Young. A clustering approach to semantic
decoding. In 9th International Conferennce on Spoken Lan-
guage Processig (Interspeech 2006 — ICSLP), pages 17–21,
Pittsburgh, USA, Sept 2006.

[HY06b] Yulan He and Steve Young. Spoken language understanding
using the hidden vector state model. Speech Communication,
48(3-4):262–275, 2006.

[IM07] Habernal I. and Konopik M. Jaae: the java abstract annotation
editor. In In INTERSPEECH-2007, pages 1298–1301, 2007.

[IP07] E. Iosif and A. Potamianos. A soft-clustering algorithm for
automatic induction of semantic classes. In Interspeech-07,
pages 1609–1612, Antwerp, Belgium, August 2007.

[JL08] Minwoo Jeong and Gary Geunbae Lee. Practical use of non-
local features for statistical spoken language understanding.
Computer Speech and Language, 22(2):148–170, April 2008.

[JM00] Daniel Jurafsky and James H. Martin. Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2000.

[Jur07] F. Jurč́ıček. Statistical approach to the semantic analysis of
spoken dialogues. PhD thesis, University of West Bohemia,
Faculty of Applied Sciences, 2007.

[Kat09] Rohit J. Kate. Learning for Semantic Parsing with Kernels
under Various Forms of Supervision. PhD thesis, Department
of Computer Sciences, University of Texas at Austin, August
2009.

[KM06] Rohit J. Kate and Raymond J. Mooney. Using string-kernels
for learning semantic parsers. In ACL-44: Proceedings of the
21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computa-
tional Linguistics, pages 913–920, Morristown, NJ, USA, 2006.
Association for Computational Linguistics.

[Kon09] M. Konoṕık. Hybrid Semantic Analysis. PhD thesis, University
of West Bohemia, Faculty of Applied Sciences, 2009.

[MBIS94] Scott Miller, Robert Bobrow, Robert Ingria, and Richard
Schwartz. Hidden understanding models of natural language.
In Proceedings of the 32nd annual meeting on Association

36

for Computational Linguistics, pages 25–32, Morristown, NJ,
USA, 1994. Association for Computational Linguistics.

[MGJ+09] F. Mairesse, M. Gasic, F. Jurcicek, S. Keizer, B. Thomson,
K. Yu, and S. Young. Spoken language understanding from
unaligned data using discriminative classification models. In In
ICASSP 2009, International Conference on Acoustics, Speech,
and Signal Processing, Taipei, 2009.

[MMG08] Agnieszka Mykowiecka, Malgorzata Marciniak, and Katarzyna
Glowińska. Automatic semantic annotation of polish dialogue
corpus. In TSD ’08: Proceedings of the 11th international con-
ference on Text, Speech and Dialogue, pages 625–632, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Moo07] Raymond J. Mooney. Learning for semantic parsing. In Com-
putational Linguistics and Intelligent Text Processing: Pro-
ceedings of the 8th International Conference, CICLing 2007,
pages 311–324, Berlin, Germany, February 2007. Springer.

[NSP06] Le-Minh Nguyen, Akira Shimazu, and Xuan-Hieu Phan. Se-
mantic parsing with structured svm ensemble classification
models. In Proceedings of the COLING/ACL on Main con-
ference poster sessions, pages 619–626, Morristown, NJ, USA,
2006. Association for Computational Linguistics.

[ON03] Franz Josef Och and Hermann Ney. A systematic comparison
of various statistical alignment models. Computational Lin-
guistics, 29(1):19–51, 2003.

[PMS+01] Ferran Pla, Antonio Molina, Emilio Sanchis, Encarna Segarra,
and F. Garćıa. Language understanding using two-level
stochastic models with pos and semantic units. In TSD
’01: Proceedings of the 4th International Conference on Text,
Speech and Dialogue, pages 403–409, London, UK, 2001.
Springer-Verlag.

[PWH+04] Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Mar-
tin, and Dan Jurafsky. Shallow semantic parsing using sup-
port vector machines. In Proceedings of the Human Language
Technology Conference/North American chapter of the Asso-
ciation of Computational Linguistics (HLT/NAACL), Boston,
MA, 2004.

[RM06] Ruifang Ge Raymond and J. Mooney. Discriminative reranking
for semantic parsing. In Proceedings of the COLING/ACL,

37

pages 263–270, Morristown, NJ, USA, 2006. Association for
Computational Linguistics.

[RR07] Ch. Raymond and G. Riccardi. Generative and discriminative
algorithms for spoken language understanding. In Interspeech-
07, pages 1605–1608, Antwerp, Belgium, August 2007.

[SJM07] J. Svec, F. Jurč́ıček, and L. Müller. Input parameterization
of the hvs semantic parser. Lecture Notes in Artificial Intelli-
gence, pages 415–422, 2007.

[SMSM97] R. Schwartz, S. Miller, D. Stallard, and J. Makhoul. Hid-
den understanding models for statistical sentence understand-
ing. In ICASSP ’97: Proceedings of the 1997 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’97)-Volume 2, page 1479, Washington, DC, USA,
1997. IEEE Computer Society.

[SP03] Fei Sha and Fernando Pereira. Shallow parsing with condi-
tional random fields. In NAACL ’03: Proceedings of the 2003
Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technol-
ogy, pages 134–141, Morristown, NJ, USA, 2003. Association
for Computational Linguistics.

[TKSDM03] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction
to the conll-2003 shared task: Language-independent named
entity recognition. In Walter Daelemans and Miles Osborne,
editors, Proceedings of CoNLL-2003, pages 142–147. Edmon-
ton, Canada, 2003.

[WDA05] Ye-Yi Wang, Li Deng, and Alex Acero. An introduction to
statistical spoken language understanding. IEEE Signal Pro-
cessing Magazine, 22(5):16–31, 2005.

[WI94] Wayne Ward and Sunil Issar. Recent improvements in the cmu
spoken language understanding system. In HLT ’94: Proceed-
ings of the workshop on Human Language Technology, pages
213–216, Morristown, NJ, USA, 1994. Association for Compu-
tational Linguistics.

[WM06] Yuk Wah Wong and Raymond J. Mooney. Learning for seman-
tic parsing with statistical machine translation. In Proceed-
ings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association
of Computational Linguistics, pages 439–446, Morristown, NJ,
USA, 2006. Association for Computational Linguistics.

38

[You02] Steve Young. The statistical approach to the design of spoken
dialogue systems. Technical report, University of Cambridge:
Department of Engineering, Cambridge, UK, 2002.

[ZH09] Deyu Zhou and Yulan He. Discriminative training of the hid-
den vector state model for semantic parsing. IEEE Trans. on
Knowl. and Data Eng., 21(1):66–77, 2009.

