
 

 
 
University of West Bohemia in Pilsen 
Department of Computer Science and Engineering 
Univerzitni 8 
30614 Pilsen 
Czech Republic 

 
 
 
 
 
 
 
 
 
 
 
 
 

Hologram Synthesis by use of Patterns 
Technical Report 

Martin Janda, Ivo Hanák, Levent Onural (Bilkent University) 
 
 
 
 
 
 
Technical Report No. DCSE/TR-2006-09 
June, 2006 
 
Distribution: confidental 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Technical Report No. DCSE/TR-2006-09 
June 2006 

Hologram Synthesis by use of Patterns 

Martin Janda, Ivo Hanák, Levent Onural (Bilkent University) 
 
 

Abstract 
The report describes a simple method for synthesising a hologram of line 
segments. The method is based on the diffraction pattern splatting. Optical 
verification of the results is included. 
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Chapter 1

Method’s Description

The method proposed by Levent Onural is based on the observation of dif-
fraction patterns generated by in infante vertical line parallel to a hologram
plane. If the line is rotated α degrees around Z-axis, which is the one point-
ing from a hologram plane towards a scene, the diffraction pattern remains
the same and it is also rotated by α degrees.

If the line is moved along Z-axis the diffraction pattern changes in a way
similar to the stretching in X-axis direction if the line is oriented along Y-
axis. Based on this observation, a scene consisting of infinitely long vertical
lines can be computed by splatting a rotated and stretched pattern of a
single vertical line.

If the line is not infinite but finite with endpoints covered by the holo-
grams frame, the situation becomes a little bit more complicated. However,
even this case can be done via the previously mentioned splatting of prepared
patterns. The only problematic areas are the endpoints.

Endpoints of a line segment generate a patten that resembles the one
of a single point radiator; the remaining part of the segment generates a
pattern similar to the one of an infante line described above. The important
observation is that the endpoints pattern have very low contrast in compar-
ison to the rest of the pattern. This observation makes possible to employ
an approximation of a line segments pattern with the one of an infinite line.

Unfortunately, the approximation is a cause of blur near the line’s end-
points. It also places a restriction on a minimal line segment’s length because
an intensity of the segment’s end points and intensity of the inner segment
are comparable for a short enough line segment. A reconstruction of such
short line segment’s fringe pattern then produces too blurred image.

Based on assumptions and approximations mentioned above, it is pos-
sible to synthesise a hologram of a smooth curve by approximating it as a

1



CHAPTER 1. METHOD’S DESCRIPTION 2

Figure 1.1: Line fringe pattern and its reconstruction

Figure 1.2: Slanted line fringe pattern and its reconstruction

set of line segments and accumulating fringe pattern, rotated and stretched
accordingly, of each line segment. The method should work well for loose
and smooth curves. Sharp corners are assumed to be blurred too much and
therefore are marked as unwanted. It is also assumed that this method is
faster then a brute force approach thanks to a lack of complicated operation
such as evaluating sinus function, cosine function, and square root func-
tion. It may also benefit from a computational power of current graphics
hardware.



Chapter 2

Method’s Implementation

The method was implemented to verify the assumptions noted in the Sec-
tion 1. Because only technologically old graphic hardware was available for
testing, the method was implemented in an inefficient way. With some more
advanced hardware shorter times could be achieved.

The basis fringe pattern is computed as an optical field of an infinite
vertical line positioned at a given distance from a hologram. Height of the
field is one sample. The computed optical field is stored in a texture that
contains both real and imaginary components obtained from the expression
exp (−ikr) , where r is Euclidean distance of a sample to a vertical line.
The amplitude modificator is omitted due to a limited number precision
that we had available. In a case of a proper implementation the modificator
can be stored separately and applied later in form of an approximation 1/z.
The texture is computed only once and can be stored and used for later
renderings.

The basis fringe is then applied to a polygonal patch that is tapered,
rotated, scaled, and translated to a proper form according to a line seg-
ment. The polygonal patch is a quad, a square, centred around the origin.
While majority of transformations are straightforward, the tapering trans-
formation is more complicated. The only approach that can create required
transformation is a perspective projection because it enables well known per-
spective correct texture mapping. Simple scaling of quad’s vertices forms a
rather disturbing effect over the diagonal edge that prevents generation of
proper results.

In order to keep the solution simple, the implementation utilises vertex
shader to apply tapering transformation. Input coefficients for this opera-
tion, i.e. edge scaling along local X-axis, are computed as a ratio of desired
instance r and distance rb utilised during computation of the basis fringe.
In an ideal case this ratio shall be computed for each basis fringe sample,
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CHAPTER 2. METHOD’S IMPLEMENTATION 4

but in our approximation we have computed it just for sample on a side
of the basis fringe pattern. The computation of the coefficient is based on
an assumption that all distances are floored to nearest wavelength multiple.
Thus, a phase can be expressed as exp (−ikr) = exp [−i2πn− ik∆z] where
n ∈ Z and hence −i2πn can be omitted from the expression because it has
no effect on phase itself.

This leaves kδz as an expression that defines the phase, where r = z +
∆z. In order to obtain a valid coefficient a modification is required. This
modification creates an equality between ∆z and ∆zb where zb is the distance
used for computing the basis fringes. Let us assume that the approximation
r ≈ z+x2/ (2r) is valid. Then, x2 = z resembles ∆z expression and thus the
expression ∆zb/∆z defines a coefficient that has to modify the x2 component
of the square root approximation. Hence, the final expression for tapering
transformation coefficients:

c =

√
∆zb

∆z
. (2.1)

As an input a list of points is required. Each pair of succussing points
determines the line segment. Each line segment requires the polygonal patch
to be transformed into a proper position. The patch is then drawn and the
resulting image is retrieved from the GPU. Values stored in the retrieved
image are then accumulated into a buffer.

Once all segments are processed the accumulation buffer contains the
final hologram. The hologram can be saved on a disk or reconstructed.
Because the method was implemented as a module of the MVE2 system the
already existing modules for a numerical reconstruction can be immediately
used.



Chapter 3

Results

The first implementation of the method gave us results similar to the ex-
pected ones. For planar curves approximated by a reasonable number of
lines it creates a hologram that reconstructs very well, see the Figure 3.1.

Figure 3.1: Hologram and reconstruction of a coarse planar curve. Notice
the blurred endpoints.

For non-planar curve the reconstructed image is clear if fucus distance is
equal or very close to a distance for which a splatting texture were computed
originally, see Figure 3.2 and Figure 3.3. If a viewer is focused farther from
that distance, the image becomes blurry due to non-linearities of stretch-
ing utilised for distance emulation. Still, the image does not exhibit any
additional noise that may destroy the image completely.

Rendering times were not measured because the implementation was
rather experimental containing several inefficient parts. The implementation
was also not able to benefit from capabilities of current graphic hardware as
there was no access to it.
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Figure 3.2: Hologram and reconstruction of a coarse nonplanar curve. Some
part of the curve are out of focus.

Figure 3.3: Hologram and reconstruction of a refined nonplanar curve. The
approximation is still too coarse at some parts.



Chapter 4

Conclusion

The method seems to work well for curves. It is able to emulate pattern
change by use of linear stretching in a direction of X-axis. However, due
to a linear nature of this operation the resulting image contains non-linear
effects that deform line segments to slightly curved segments, where only
the endpoints are both in correct Z-axis distance. This is crucial for line
segments with significant difference in Z-axis between endpoints.

Noise caused by the non-linearity of the stretch operation can be cor-
rected by refining the stretch operation similar to an approximation of a
smooth function by linear segments. This linear approximation takes places
in both local X-axis and local Y-axis of a line segment. It is assumed that
the refinement in the local Y-axis is more important than the local X-axis
one because the correction can be applied by use of precomputed patterns
for various Z-axis distances in the case of the local X-axis.

Unfortunately, the method cannot handle line segments that are perpen-
dicular to the hologram properly. Even line segments close the perpendicu-
larity may not be rendered correctly because their orthogonal projection to
the hologram is too short and thus it violates restrictions of the pattern ap-
proximation. For the current state of the numerical reconstruction process,
such segments may be omitted because the viewing plane is usually paral-
lel to the hologram. Nevertheless, for the optical reconstruction these line
segments has to be handled properly by use of a complete pattern without
approximation.

Computation complexity of proposed method is O(MN2), where N is
number of samples in a hologram and M is number of primitives in a scene.
As the number of the primitives increases, the performance of the method
decreases significantly. In a worst case it became close to a complexity of
the brute force approach that is O(KN2), where K is a total number of
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points in the scene. This is caused by possible interpretation of the brute
force approach as a splatting of individual point source patterns.

Besides the already mentioned features, the method described here can-
not handle local intensity variation over a single line segment. It can modify
the intensity of the whole line. This allows a local intensity variation to
be approximated by geometry and/or primitive. Yet, this solution limits
the size of a single detail in the local intensity variation as the orthogonal
projection size of a single line segment is limited as well. Also, it increases
number of primitives.

The method is also prone to effects caused by a lack of occlusion solution
because it does not handle it at all. This is not a problem in the case of
thin curves because curve is thin enough so it does not disturb viewer during
focusing. It is a serious problem in the case of planar objects such as triangles
for which a noise generated by parts that should be occluded may prevent
viewer from recognising and/or focusing upon given point of interest.



Appendix A

Optical Reconstruction
Results

Figure A.1: Planar curve and non planar version.

Figure A.2: Non planar curve at different focal planes.
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Figure A.3: More complicated curves.

Figure A.4: More complicated curve at different focal planes.
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