University of West Bohemia in Pilsen

Department of Computer Science and Engineering
Univerzitni 8

30614 Pilsen

Czech Republic

Simulation-Based Schedulability
Analysis of RMA Programs

Jaroslav Kader, Stanislav Racek

Technical Report No. DCSE/TR-2005-01
February, 2005
Version: 1

Distribution: Public

Technical Report No. DCSE/TR-2005-01
February 2005

Simulation-Based Schedulability
Analysis of RMA Programs

Jaroslav Kader, Stanislav Racek

Abstract

This paper describes the very first version of the UWB/Apogee RMA Toolkit.
The goal of the toolkit is to provide a simulation-based way to verify schedu-
lability properties of real-time Java programs. The initial version described
in this paper — version 0.1.0 — is a purely theory-based solution with no direct
relation to Real-Time Java. Properties of a real-time program are described
by means of its tasks’ characteristics, such as period length, deadline, cost,
and (optionally) priority, and by means of the system’s properties, such as
the number of available priority levels and the preemption latency. The out-
put of a simulation execution is a sequence of decisions assigning processor
time to tasks and reports whether tasks complete before their deadlines or
not.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen

Department of Computer Science and Engineering
Univerzitni 8

30614 Pilsen

Czech Republic

Copyright (©2005 University of West Bohemia in Pilsen, Czech Republic

Contents
1 Introduction

2 UWB/Apogee RMA Toolkit
2.1 Fundamental Classes
21,1 Task
2.1.2 Scheduler o 0oL
2.2 Naming Conventions
2.3 Priority Assignment oL
2.3.1 Manual Priority Assignment
2.3.2 Automatic Priority Assignment

24 Execution

3 Future Extensions
3.1 Respecting Variations of Task Execution Time
3.2 Handling Task Synchronization
3.3 Execution Time Detection

34 GUL . ..o o

4 Conclusion

10
10
10
11
11

12

List of Figures

1 Introduction

Aaa

2 UWB/Apogee RMA Toolkit

The UWB/Apogee RMA Toolkit is a Java library able to perform schedu-
lability tests by means of simulation. The user describes system and task
parameters and then lets the system run. As the system is running, the
scheduler — a key component of the toolkit — assigns processor time to tasks
present in the system. Tasks are assignes processor time according to their
priority. The bigger the priority, the bigger the chance the task will be
assigned priority. Exact rules of processor time assignment are states in
section 2.4. If there is currently no task to be executed, the system goes to
idle state.

The current version of the RMA toolkit — 0.1.0 — is very limited in the way
how tasks are described. They are described by a few theoretical values,
see section 2.1.1. Of course, this is not sufficient for analyzing real RT-Java
software. In the future, tasks will have to be described using real Java code
or at least using a kind of activity description. This should allow users to
analyze real software with its real execution time, not just theoretical task
properties.

The output of a simulation execution is a sequence of pairs time interval
& task. Every such pair says that the processor was assigned to task for
time interval. The length of the interval is set by the user and it is referred
to as the preemption latency [Dibble, 63]. It is the greatest latency that
preemption can be delayed. i.e. the least time that the processor can be
given to a task without interruption. When a task finishes all work in its
current period, a report is made. When a task misses its deadline, a report
is made too. Currently, the reports have a form of a simple message to
System.out.

2.1 Fundamental Classes
The whole RMA toolkit consists of 15 Java classes; however, just two of

them are interesting for the purpose of RMA explanation: the Scheduler
class and the Task class.

2.1.1 Task

A task is a basic schedulable periodic entity. It performs some activity
repeatedly, usually in a neverending loop.

It has a period, a deadline, and a cost. The period determines the time
difference between two successive activity starts. The deadline is a time
interval in which all work in the current period must be done. A task’s
deadline cannot be greater than its period. Implicitly, the deadline is equal
to the period. The cost is an amount of work, expressed as time, that the
task must accomplish in every period. The cost must not be greater than
the deadline. If it is greater, the task is not schedulable.

Every task also has a priority which is a key element in Rate Monotonic
Scheduling. The priority is either given directly by the user or it is computed
during system preparation (see section 2.3) by the scheduler which must take
into account:

e Number of available priorities.

e The least and the greatest periods of all tasks.

Therefore, if a task’s priority has to be computed, it is not determined by the
task itself but also by all other tasks and the environment characteristics.

After a task is created, it must be added to a scheduler using the scheduler’s
addTask() method. A task that is not added to any scheduler cannot be
scheduled.

Every task can be in one of the following three states:

e New — A newly created task that has not been started yet is in the
new state.

e Wants Processor — A task is in this state if it has not completed all
work in its current period yet. The only way how to complete the
work is to get processor time from the scheduler.

e Waiting for Period Start — A task is in this state if it has already
completes all work in its current period and it waiting for the next
period start. Such process is idle and cannot be assigned processor.

At the beginning of the simulation execution, every task is started by the
scheduler via its start() method. Inside start(), a task switches to the
Wants Processor state. Subsequently, when the scheduler decides that a
task will be given processor time, the task’s consumeTime() method is
called. The task decreases the amount of work to be completed in this

period. If the amount of work reaches zero before the task’s deadline,
all work has been successfully done and the scheduler is informed via its
reportCompletedBeforeDeadline() method. Then, the task switches to
the Waiting for Period Start state. It can be switched back to the Wants
Processor state by the scheduler when its period starts.

If a deadline is missed but there is still some time to the period end!, the
task switches to the Waiting for Period Start state as well. If a deadline
is missed after next period start, the task keeps itself in the Want Pro-
cessor state because a new amount of work must already be “consumed”
by the task. In any case, a missed deadline is always reported via the
scheduler’s reportMissedDeadline() method. The task does not report
any missed deadline, the scheduler itself analyses all deadlines every time
its executeDelta() method is called. The reason is the following: If the
scheduler had not done it, but the tasks would have done it instead, some
missed deadlines would not have been reported because their respective tasks
would not have got any processor time and therefore a chance to check the
deadline.

Since deadlines are checked during every Scheduler.executeDelta() invo-
cation, a missed deadline can be reported many times until the respective
task consumes all work to do.

2.1.2 Scheduler

A scheduler controls assignment of processor resources to tasks. Every sched-
uler knows the number of available priority levels M and the least time delta
Ar that a task can execute for without being preempted. This Ar is de-
noted as the preemption latency in [Dibble, 63]. Every task to be scheduled
by the scheduler must be registered first. When all N tasks are registered
by the scheduler, the scheduler can compute their priorities P; from their
periods T;, using Rate Monotonic principles. This is true in the case of auto-
matic priority assignment only, task priorities can also be asigned manually
by the user during task creation. After the priorities are known, tasks can
be scheduled.

All the above activities are performed at once during system preparation. No
other task can be registered after the system is prepared. Once preparation
is completed, the scheduler can start running the system in a step-by-step

!This can never happen in version 0.1.0 of the RMA toolkit because deadlines are
always at period ends.

manner. Every step lasts for Ap abstract time units. System preparation
is discussed in detail later in section 2.3.

A step is executed using the executeDelta() method. The scheduler first
selects a runnable task with the highest priority using the selectNextTask ()
method and gives it control for A7 time units. The task does its compu-
tation and therefore reduces the the remaining work to be done before the
next deadline. If there is no remaining work, the task suspends itself and
assumes it will be activated by the scheduler at the beginning of its next
period. If a deadline is missed or all work has been done, the task reports
it to the scheduler using one of the report* () methods.

2.2 Naming Conventions

The RMA toolkit uses the following quantities during system preparation
and later during scheduling;:

Number of Tasks N. Given by the user. N can grow as new tasks are
added to the scheduler using the addTask () method.

Index over Tasks s. 7€ 0.N —1

Task Periods 7;. Given by the user. Every task’s period is specified
during that task’s creation as a parameter to its constructor.

Task Deadlines D;. Given by the user. In this version of the RMA
toolkit, task deadlines are equal to task periods.

Task Costs C;. Given by the user. Every task’s cost is specified during
that task’s creation as a parameter to its constructor.

Task Priorities ;. In case of manual priority assignment, task priorities
are given by the user — there is a constructor parameter for the priority. In
case of automatic priority assignment, task priorities are computed using
the Lehoczky & Sha Constant Ratio Algorithm [Dibble, 69,70]. The actual
priority assignment then happens during system preparation.

Number of Available Priorities M. Given by the user as a parameter
to the scheduler’s constructor.

Index over Available Priorities j. j € 0..M — 1. May also be an index
over computed period delimiters. Then 5 € 0..M.

Computed Period Delimiters L;. Lo and Lj; are known. The rest of
L; is computed from Lo and r using this expression: L; = r * L;_;. The
delimiters are used for automatic priority assignment. Every task’s period
must fit between some two adjacent delimiters L, and L. The task’s priority
is then a. As you may have noted, there is M + 1 period delimiters for M
priority levels. That’s because M + 1 period delimiters, including Ly and
Lz, constitute M intervals between them.

Minimum Period Delimiter Ly. Computed as Ly = min(T;).
Maximum Period Delimiter Ly;. Computed as Ly, = max(T;).

Ratio of Two Adjacent Computed Periods r. Computed as r =
N/Lar/Lg. The ratio r is constant for any two adjacent period delimiters L,
and Lj;ii. Moreover, the same ratio r can be used to express the relation
between two adjacent intervals; one interval between L; and L;,; and the
other between L;y; and Lj,o. The equality is shown later in section 2.3.2.

2 1
ln;-l—l—;

Schedulability Loss I. Computed from r. If r < 2, thenl = 1—-—5 5

. _ 1
Otherwise [=1 — T

Usage of Computed Periods U;. Computed. U; is incremented every
time a task is assigned priority 7. After all tasks have their priorities assignes,
U; tells how many tasks use priority j. Also, U; can be used to detect unused
priority levels.

2.3 Priority Assignment

Aaa

2.3.1 Manual Priority Assignment

Aaa

2.3.2 Automatic Priority Assignment

Aaa

2.4 Execution

Aaa

3 Future Extensions

The toolkit presented in the previous section is our first attempt to provide a
solution for schedulability analysis of RMA programs. We chose a theoretical
approach for the beginning and we plan to extend the toolkit in the future
towards practical usage, i.e. towards analysis of real Java code.

3.1 Respecting Variations of Task Execution Time

The simulation approach to the RMA analysis presented within this report
can be straightforwardly extended for randomly generated task execution
times instead of deterministic constants (maximum duration of execution)
that are used here.

let the model execution run in order to reach a chosen reliability level of the
final assertion schedulable or not schedulable. The Critical Zone Theorem
[Dibble, 90] is not valid anymore.

3.2 Handling Task Synchronization

RMA schedulability analysis, in the simple form presented above, does not
assume any dependence of tasks execution. Clearly, it is far from reality,
because tasks need to interact in order to reach the goal of multithreaded
computation. General model of Java multithreaded computation uses in-
direct interaction of threads, i.e. threads act as clients that call services —
synchronized methods — of dedicated passive objects — monitors. A thread
can be blocked when calling a monitor service, because the service — imple-
mented as a monitor synchronized method — need not be available depend-
ing on the monitor state, i.e. the data encapsulated within the monitor. A
thread can be blocked when waiting for an external event.

The presented reasons generally prevent us from taking a thread execution
as a continuous activity and, as a consequence, to estimate precisely the
overall time of task execution (one parameter of the RMA method).

One possible way how to overcome this limitation is to use model-based
method of Java reactive program evaluation, as presented in [SimCheck].
The core of the method is to run real Java program code together with a
model of the program environment. Using J-Sim simulation library and the

10

model-time concept, the execution can be deterministically serialized with
preservation of its time relations. Then the threads schedulability analysis
can be done a similar way as presented here in chapter 2, but with data
dependencies and task interactions taken into account as well. Moreover
other properties of the program behavior can be investigated using model-
based test cases.

3.3 Execution Time Detection

The present version of model-based Java reactive program evaluation uses
an estimated value of duration of locally executed thread code. Thread
execution dynamics is then taken as a sequence of locally executed parts of
code with known time of execution interleaved with time intervals when the
thread can wait for an event, e.g. for renewing monitor ability to provide
a requested service. The duration of these intervals is apriori unknown and
can be computed on-line when the checked program is executed within the
J-Sim based model environment.

The model-based method of reactive Java program checking can be improved
when using measured time durations instead of estimated time durations of
locally executed parts of a thread’s code. The duration can be measured
on-line, i.e. during the model-based (i.e. serialized) program execution.
The measured (real-time) values need to be recomputed, respecting rela-
tive speeds of the processor executing the model and the target processor
intended to be used, and used as model-time durations of threads’ locally
executed parts.

3.4 GUI

Model based execution of multithreaded Java program either in the simple
form presented within this report or in the more sophisticated (intended)
version can be visualized and interactively managed in order to provide the
user with a more convenient interface.

11

4 Conclusion

The paper presents a method of model based development and (partial)
verification of concurrent

12

References

[Dibble] Peter C. Dibble: Real-Time Java Platform Programming.
Sun Microsystems Press, Palo Alto, CA, U.S.A., 2002. ISBN 0-
13-028261.

[SimCheck| Jaroslav Kacer: Simulation-Based Checking of Java Con-
current Programs. Ph.D. Thesis, University of West Bohemia,
in Pilsen, FAV-KIV, Pilsen, Czech Republic, 2005.

13

