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Abstract
The surface reconstruction from cloud of points is a problem, which can be

encountered in many applications, from reverse engineering through CAD to e-
commerce. It has become more important in the past years, when the scanning
devices have become cheap enough to be available to the wide public. 

This  thesis addresses  a  problem  of  triangular  mesh  reconstruction  from
cloud of points embedded in E3 without any additional information, for instance
normals. It is aimed on the summation of existing reconstruction methods and
the problems related to the surface reconstruction, such as normals estimation
and sampling. Also our experience with the implementation of one algorithm is
described.

Because  the  surface  reconstruction  is  not  straightforward,  a  plenty  of
methods  to  solve  this  problem  exists.  The  methods  are  based  on  different
approaches and each approach has different problems and requirements. We
decided to  implement  an incremental  construction  of  surface  approach,  and
discuss it's  advantages and encountered problems.

Henceforth  we  would  like  to  improve  our  algorithm  to  better  estimate
normals, regard the estimated curvature and process in parallel.
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1 Introduction
The problem of surface reconstruction can be stated as follows: Let  S be a surface of
object O, and assume that S is a smooth twice-differentiable two-dimensional manifold,
embedded in Euclidean three-dimensional  space  ℝ3 .  Given a discrete set  of points
P , pi∈P⊂ℝ3 , i=1, ... , N , that samples surface S, find a surface S' that approximates S,

using the data set P. The reconstructed mesh S' must be topologically equivalent to the
surface S of the original object. For overview of the problem see figure 1.1.

Such problem can be encountered in many branches, for example in computer vision,
pattern recognition and reverse engineering, thus large effort has been invested in this
area.  As a result  of  this  effort,  and the fact  that  the solution of this  problem is  not
straightforward, many methods were developed to solve this problem. 

The methods of surface reconstruction can be divided into groups, according to some
criteria. The most important classification of methods is done by the initial approach:
some  methods  select  the  output  triangle  mesh  from  an  initial  triangulation,  other
methods create a volumetric representation from the  points that is further processed,
other  methods  construct  incrementally  a  triangular  mesh  from an  initial  element  (a
point, edge or triangle) and the last sort of methods deform an initial surface along the
measured points. 

Some methods  require  additional  data  and  the  normal  vectors  in  data  points  are
demanded the most. Such data can be acquired during the acquisition process called the
acquisition pipeline or may be estimated from data P. 

The  triangular  mesh  is  the  most  demanded  output  of  the  surface  reconstruction,
because the key problem of the surface reconstruction is to capture the topology. The
triangular mesh is simple and efficient representation of topology, but if other properties
are  required,  a  better  representation  is  needed.  For  example,  if  C1 continuity  is
demanded the output surface should be in higher order.

This  thesis  addresses  the  problem  of  meshing  a  surface  only  known  by  an
unorganized set of points with a set of triangles.  

The document is structured as follows. In the following part of the introduction  the
acquisition pipeline is described in short along with some sampling criteria. The detailed
overview of some current methods of surface reconstruction is in Chapter 2. The recent
implementation of one reconstruction algorithm and the results are described in Chapter
3.

1.1 The acquisition pipeline
The acquisition pipeline [25], [12] depends on the method used to scan the surface. It

is  possible  to  use  mechanical  probes  to  scan  the  surface  through  physical  contact,
however  non-intrusive  techniques  are  more  popular,  because  these  techniques  can
reliably scan soft materials such as human skin. One of these techniques is called range
scanning – the distance from the scanning device to the sample points on the object
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Figure 1.1: Overview of the problem of the surface reconstruction.



surface is  estimated using optical  triangulation,  interferometric technique using laser
light or “time of flight” (radar) principle. 

The usual acquisition is completed in these successive steps: 
• Calibration: The acquisition system parameters are estimated according to hardware

and environmental characteristics. Calibration is prerequisite for obtaining accurate
measurements. It needs to be done every time the acquisition parameters  change.

• Scanning:  The  object  surface  is  sampled  from  one  view,  resulting  in  a  densely
sampled  part  of  the  surface.  It  is  often  needed  to  scan  the  surface  from  many
viewpoints to get a set of samples covering the complete surface. 

• Registration: The sampled parts of the surface must be merged together. For example
in range scanning techniques, the acquired range scans reside within their own local
coordinate system, thus they have to be aligned with each other to express them in a
global frame.

The acquisition must be done precisely, i. e. the surface must be well sampled. 

1.2 Sampling
The  reliability  of  the  reconstructed  surface  depends  on  the  amount  of  information
available about the surface, whatever method is used to perform the reconstruction [7].
This amount of information is related to the term of sampling. If the surface  S  is not
properly sampled by set of points  P, then the areas where the sampling is insufficient
can not be reconstructed successfully. 

There are some theorems specifying the term “sufficient sampling”. Their description
follows:
• Local feature size: “A good sample is one in which the sampling density is (at least)

inversely proportional to the distance to the medial axis.” Specifically, a sample p is
an r-sample from a surface S when the Euclidean distance from any point m∈S  to
the nearest sample point p is at most r times the distance from m to the nearest point
of the medial axis of S. The constant of proportionality r is generally less than one. In
[2] is observed that in practice r = 0.5 generally suffices.

• Sampling path: “The sampling path [6]  P⊂S  is said to sample S with the sampling
path  if any sphere with radius  and center in S contains at least one sample point in
P.” The sampling path theorem is formally similar to the one stated by Hoppe [23].
Hoppe stated that the set P is -dense and -noisy that means the sampling path is 
and the maximum displacement of the samples regarding to the original sampled
point  on  surface,  i.e.  noise,  is  .  The  sampling  path  is  uniform sampling  where
maximal distance between samples is . The well known Shannon sampling theorem
can be easily extended to E3: the value of   must be lower than half the size of the
smallest detail.

The second theorem is more common, because the most of the acquisition techniques
yield uniform data and thus is more widely used. However note that the sampling path is
a global criterion for sampling and thus the method that needs the data set of the object
sampled using sampling path theorem needs more samples than the method that needs
the data set sampled using local feature size theorem, and therefore the complexity of
the reconstructed mesh is bigger. Examples of sampling an object using either of the
theorems are in figure 1.2.
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The surface is properly reconstructed: 

• If the sampling density is sufficient for the reconstruction algorithm and 
• the  surface  sampled  have  the  necessary  properties,  which  are  required  by  the

reconstruction algorithm. 

The  output  of  the  reconstruction  algorithm  may  have  some  disadvantages  and
therefore various post-processing steps are usually applied afterwards.

1.3 Post-processing of the reconstructed triangular mesh
The  output  of  the  reconstruction  algorithms  is  correct  but  may  have  some  bad

properties such as too large number of triangles in regions of low curvature, the sampled
points contained noise etc.

In  the  case  the  surface  was  oversampled  to strengthen  the  robustness  of  the
reconstruction the final triangular mesh has areas filled with a large number of triangles
that may be represented with fewer triangles. Methods that handle the conversion of the
mesh  with  large  number  of  triangles  to  the  mesh  with  fewer  triangles  are  called
decimation or mesh reduction techniques. These techniques observe the angles between
neighboring triangles or curvature of the mesh and uses these information to reduce the
complexity of the mesh while preserving the shape of the mesh. A detailed overview of
the decimation techniques can be seen in [21].

When  the  sampled  points  are  influenced  by  the  noise  and  a  interpolation
reconstruction technique (see Chapter 2) is used, the surface of the reconstructed shape
will be noisy too. Therefore such surface is often filtered to remove noise, but retain the
details which are contained in the shape. This process refers to the  smoothing  of the
surface. During the smoothing the surface is not reduced in anyway, but simply the data
points  are  moved  towards  new  locations  to  reduce  the  noise  they  cause.  A  work
covering  the  problem  of  smoothing  and  denoising  a  triangular  surface  was  made
recently [33].

The  output  of  the  reconstruction  algorithm  can  be  further  passed  to  warping
algorithms  (see Chapter 2.4).  These  algorithms  need  a  initial  approximation  of  the
surface and this approximation is then deformed along the provided input data points.
Therefore they can be chosen as the post-processing of another algorithm.

It was mentioned in the previous text, that a conversion to higher order surfaces is
needed when the information about the surface topology in not sufficient for further
processing. In this case the triangular surface is converted to higher order meshes such
as: subdivision surfaces, spline surfaces etc. For information about the techniques of
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Figure 1.2: Sampling of a 2D object using the two different sampling theorems.
On  the  left  figure  is  the  object  sampled  to  comply  the  Local  Feature  Size
theorem.  On  the  right  is  the  object  sampled  to  comply  the  Sampling  path
theorem. The gray area is the sampled object itself, black dots are the samples
and the black line is the medial axis of the object.



remeshing the triangular mesh with higher order meshes see for example [19], [26], [9].
The output of the volumetric algorithms (see Chapter 2.2) can be also  considered as  a
higher  order  approximation,  because  the  intermediate  output  of  these  methods  is  a
distance function often substituted by implicit  function. One of such approach is the
interpolation of implicit surfaces using radial basis functions [28].
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2 Algorithms of surface reconstruction
The requirements for the reconstruction can be summarized like this:
• Robustness:  The  robustness  if  the  most  important  property of  the  reconstruction

method.  The  algorithm  should  be  aware  of  missing  samples  i.e.  undersampling,
erroneous samples, borders etc. 

• Maximally  automatic:  Preferably  additional  parameters  are  not  needed  for  the
method, just the input set of points. 

• Memory requirements: Because the input data sets can be very large, assume over a
million points,  the platform or the reconstruction algorithm must  be prepared for
such large data sets. Because the amount of memory on todays machines is limited,
the algorithm must be capable to handle very large data sets by parallel processing or
some other way.

• Speed: The surface reconstruction is usually an off-line process, therefore the speed is
one of the less important requirements of the surface reconstruction method.

The algorithms of surface reconstruction can be split into some, not necessarily disjunct,
classes:

• Approximation or Interpolation:  Interpolation means that the reconstructed surface
will preserve the original data set, so the measured points will also  belong to the
reconstructed  surface  [7],  i.e.  P⊂S ' , P∩S '=P .  On  the  other  hand  the
approximation means that the final reconstructed surface passes close by, rather than
exactly through, the original sample points. The difference is illustrated on the figure
2.3.

• Global or local: The methods can be further classified as global or local according to
the degree to which each point is considered to influence the reconstruction of the
surface  at  distant  locations:  in  global  methods,  all  points  are  used  to  define  the
interpolant, and in local methods only close points are used to compute a “piece” of
the surface [7].

• By the approach:

1. Sculpturing  methods  –  The  sculpturing  approaches  first  construct  an  initial
triangulation. From this triangulation the reconstruction process then select a
subset of triangles that represents the reconstructed surface.

2. Volumetric  methods  – The volumetric  methods create  a volumetric  form of
object  (as  a  distance  function  or  volumetric  data)  at  first.  The  mesh  is
reconstructed, by using the isosurface extraction techniques on the volumetric
form.

3. Warping methods -  The warping methods deforms an initial approximation of
the surface along the data points.

4. Incremental  construction  methods  –  The  incremental  construction  methods
create the triangular mesh by growing the mesh along its border starting from
an initial element (a point, edge or triangle).
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Each  of  the  methods  has  some  assumptions  in  order  to  work  properly.  The  usual
assumption is that the input data set is representing 2-manifold surface. Typically, the
2-manifold  is  bounded  (or  closed).  A  manifold-with-boundary  is  a  surface  locally
approximated by either a disc or a half-disk. All other surfaces are non-manifold. Other
very important assumption is the required sampling. Some methods require additional
data along with the input data set.

In the following chapters, some of the algorithms will be described. The methods are
sorted by approach. The following description omits methods that reconstruct other type
of surface than the triangular mesh.

2.1 Sculpturing algorithms
The main idea of the sculpturing methods can be seen in figure 2.2. The sculpturing

methods are based on selecting a set of triangles from some initial triangulation of the
input points. Therefore they are global techniques. Because of reliability, robustness and
theoretical guarantees  the  Delaunay triangulation is often taken as the initial set. The
medial axis is also often considered. 

The sculpturing algorithm can be seen as sculpturing of a spatial decomposition of
space, mostly a Delaunay tetrahedronization.

The  sculpturing  algorithms  are  interpolation  techniques,  and  their  output  is  a
triangular  mesh.  Their  advantages are  strong theoretical  guarantees and the required
sampling is related to local feature size. However there is also a disadvantage because
the Delaunay triangulation is a lengthy process.

Delaunay triangulation, Voronoi diagram and Medial axis
Given a discrete set P of sample points in Rd, the Voronoi cell of a sample point is that
part of Rd closer  to it than any other sample. The Voronoi diagram is the decomposition
of  Rd  induced by the Voronoi cells.  Each Voronoi cell is a convex  polytope and its
vertices are the  Voronoi vertices;  when  P is  non-degenerate, each Voronoi vertex is
equidistant  from exactly  d+1 points  of P.  These  d+1 points  are  the  vertices  of the
Delaunay simplex, dual to the Voronoi vertex. A simplex is triangle in 2D, tetrahedra in
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Figure 2.2: The idea of sculpturing methods (a 2D example). In the first step (I)
the initial triangulation is made. Then in the second step (II) some elements from
the initial triangulation are selected as the reconstructed surface.

Figure  2.1:  The  difference  between  interpolation  and  approximation
technique in 2D. On the upper part of the figure is a result of interpolation
reconstruction technique and a result of some approximation technique is
below it.



3D etc. A Delaunay simplex, and hence each of its faces, has a circum sphere empty of
other points of P. The set of Delaunay simplices form the Delaunay triangulation1 of P.
Thus computing the Delaunay triangulation essentially computes the Voronoi diagram
as well. An example of Voronoi diagram and Delaunay triangulation of the set of points
sampled  from a  2D shape  can  be  seen  in  figure  2.3.  One  of  the  properties  of  the
Delaunay triangulation is, that each Delaunay simplex have a circum-circle empty of
other points.

The worst-case time complexity of the Delaunay triangulation is  O(n2). However as
has  been  frequently  observed,  the  worst  case  complexity  for  the  three  dimensional
Delaunay triangulation almost never arises [3]. 

The main advantage of Delaunay triangulation is that it produces global information
about the shape of the object. Although the Delaunay triangulation is a global method,
the data set may be split into non-overlapping parts and processed in parallel [16].

The  medial axis of a  (d-1)-dimensional surface in  Rd  is (the closure of) the set of
points with more than one closest point on the surface. The medial axis is the extension
to continuous surfaces of the Voronoi diagram, in the sense that the Voronoi diagram of
P can be defined as the set of points with more than one closest point in P (compare the
illustrations in figure 2.3).

Voronoi filtering
(Two-pass)  Voronoi filtering [2], [3] is based on the idea of poles. The poles of a sample
point  pi  are the two farthest vertices of its Voronoi cell, thus  one on each side of the
surface (see figure 2.4). Note that the pole vector approximates the normal to the surface
at the given sample. Since the algorithm does not know the surface, only the sample
points, it chooses the poles by first choosing the farthest Voronoi vertex regardless of
direction (or a fictional pole at “infinity” in the case of unbounded Voronoi cell ), an
then choosing the farthest in the opposite half-space. 

Denoting  the  poles  by  Q,  the  crust of  P are  those  triangles  of  the  Delaunay
triangulation of  P∪Q , all of whose points are members of  P. For a 2D example see
figure 2.5.

1 Delaunay triangulation in 3D is often called Delaunay tetrahedronization, because as the output is a set
of tetrahedra (tetrahedron is a convex hull of 4 points, ie. 4 triangular faces)
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Figure  2.3:  The  Voronoi  diagram,  the  Delaunay triangulation  (on the  left)  and  the
Medial axis (on the right) of a 2D shape (White points - sampled vertices, Thick lines -
Voronoi diagram, Dashed lines - Delaunay triangulation)



In 3D the crust may contain additional triangles that are not part of the surface (thin
tetrahedra  on  surface  and  triangles  in  thin  spaces  between  objects,  see  figure  2.6).
Therefore two post-processing steps are used to deal with this problem.

The first post processing step removes triangles according to the direction of their
surface normals. Let  T be a triangle of the crust and let  pi be its vertex of maximum
angle. This step removes T if the angle between the normal to T and the vector from any
one of  T's vertices to its first-chosen pole is  too large.  This step is called the normal
filtering.

The second step removes thin tetrahedra that could be left on surface after first post-
processing. In this last step, the algorithm orients all the triangles at first. It starts with a
point  pi   on the convex hull of  P. The direction to the pole at “infinity” is called  the
outside and the direction to the second pole the inside. Than any triangle T incident to pi,
has the outside side of T that one visible from the points on the outside direction. The
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Figure 2.5: An example of crust in 2D. On the left picture is a Voronoi
diagram  of  P.  On  the  right  picture  is  a  Delaunay  triangulation  of
P∪Q . 

(image courtesy of Nina Amenta)

Figure 2.4: Obtaining the poles. On the left is a Voronoi cell of point P in 3D on surface S2. The
vertices of cell (V1 to V6) lie near medial axis. The surface S1 is situated against surface S2 and
medial axis is in between them. On the right are the poles q- and q+ obtained for the point P

Figure  2.6:  The  additional  triangles  that  were  left  on  the  surface  after  the  CRUST
sculpturing algorithm. On the left is a thin tetrahedra that was on the surface along with the
tetrahedra  circum-sphere  and  on  the  right  are  triangles  connecting  thin  space  between
objects. The problem on the left is solved in the second post processing step and the problem
depicted on the right is solved in the first post-processing step.



other poles of the other vertices of  T are oriented to agree with this assignment. Each
triangle sharing a vertex with  T is oriented so that it  agree on the orientations of its
shared poles, and the same procedure is done by breadth-first search until all poles and
triangles have been oriented. 

In triangulated piecewise-linear two-dimensional manifold, two triangles meet at each
edge, with outside together and inside sides together. The  sharp edge is defined as an
edge which  has  a  dihedral  angle  greater  than  3/2  between  a  successive  pair  of
incident triangles in the cyclic order around edge, i.e.  a sharp edge has all its triangles
within a small wedge. The second step then greedily removes triangles with sharp edges
thus it trims off pockets.

The remaining triangles form a “quilted” surface, in which each edge bounds at least
two triangles, with consistent orientations. Finally it extracts the outside of this quilted
surface by breadth-first search on triangles.

It  is  shown  [2],  [3] that  this  method  is  correct  for  well-sampled  surface.  The
complexity of this algorithm is  O(N2) where N = |P|, since that is the worst-case time
required to compute a three dimensional Delaunay triangulation. Notice that the number
of sample points plus poles is at most 3N.

One-pass Voronoi filtering  [4]  is a approach similar to the two pass Voronoi filtering
that has been proposed by the same authors. It computes just the Voronoi diagram of the
sample points  instead of  the sample points  and poles.  The filtering is  based on the
following heuristics. The set of triangles T interpolating surface S must satisfy this three
conditions:
I) T contains all triangles whose dual Voronoi edges intersect S,
II) each triangle in  T is small, that is, the radius of its circum circle  is much smaller

than the distance to the medial axis at its vertices, and
III) all triangles in T are “flat”, that is, the triangle normals make small angles with the

surface normals at their vertices.
Assuming that S is smooth and the sampling is sufficiently dense, condition I ensures

that  T contains a piecewise-linear manifold homeomorphic to  S. Conditions II and III
ensures  that  any piecewise-linear  2-manifold  extracted  from  T which  spans  all  the
sample points and for which every adjacent pair of triangles meets at an obtuse angle
must be homeomorphic to S. In the figure 2.7 is an example of the heuristic evaluation.
In this  algorithm the surface normal  in  a  sample  point  (n1,  n2,  n3  on the figure)  is
estimated as the vector from sample point to the farthest Voronoi vertex in Voronoi cell
(a pole in Two-pass Voronoi filtering). The filtering is done by observing the angle (1,
2, 3  on the figure) between the vector from sample point to intersection with Voronoi
edge and the surface normal estimated in the sample point. If this angle is close to /2
for all  three Voronoi  cells  adjacent  to  the Voronoi  edge  (e on the figure), the dual
Delaunay triangle (t on the figure) is included in the candidate set T.

Similar algorithm called COCONE was developed by the authors of Voronoi filtering
[18]. The “Cocone” is the complement of a double cone (clipped within Voronoi cell Yp)
centered at sample point pi with an opening angle 3/8  around the axis aligned with n
(see  figure  2.8),  thus  C p={ y∈Y p : angle  y− pi  , n≥3 /8 

}

.  The  triangles  are
selected  according  to  this  criterion:  A  Voronoi  edge  e  is  selected  as  marked if  an
intersection j of  COCONE and edge e is a subset of edge e, ie. j=C p∩e , j⊂e . If this
test succeeds for all  Voronoi cells  V  incident to Voronoi edge  e, the dual (Delaunay
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triangle) of that Voronoi edge is included in the surface mesh.

The  computation  of  Delaunay  tetrahedronization  is computationally  expensive.
Therefore Dey, Giesen, Hudson  [17] partitioned the input data using octree structure,
applied the Cocone algorithm in each cluster, and stitched parts together. The stitch is
done automatically, because each cluster in an octree box is padded with sample points
from neighboring boxes that allow triangles for stitching to be computed consistently
over all boxes. 

The Power crust  algorithm  [5] is based on the construction of the approximation of
medial axis transformation (MAT) that is further used to produce the piecewise-linear
surface approximation. The MAT is a representation of the object as the infinite union
of its maximal internal balls. As approximation of MAT the polar balls, a subset of the
Voronoi  balls  (a  circumsphere  centered  at  Voronoi  vertex  and touching the  nearest
samples), are used. Polar balls are only those Voronoi balls, whose center is the pole
(see Two-pass and One-pass Voronoi filtering for poles). This can be omitted in 2D and
all Voronoi vertices can be selected as centers of power balls. In 3D however only poles
must be selected. The polar balls belong to two sets, one more or less filling up the
inside of the object, and the other the outside. The polar balls are used to construct the
power  diagram through  a  computation  of  weighted  Voronoi  diagram.  The  power
diagram is a subdivision of space into polyhedral cells, each cell consisting of the points
in R3  closest to a particular power ball, under a convenient distance function, the power
distance. The power distance between an unweighted point  x  in  R3 and polar ball  Bc,r

(ball with center c and radius r) is

d pow  x , Bc , r=d 2 c , x −r2 (2.1)
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Figure 2.8: COCONE of sample point p in it's Voronoi cell 
(image courtesy of  Tamal K. Dey)

Figure 2.7: One-pass Voronoi filtering heuristic.



where function d represents the usual Euclidean distance. In figure 2.9 is a 2D example
of power crust algorithm.

The  boundary  separating  the  cells  belonging  to  inner  polar  balls  from  the  cells
belonging to outer polar balls is a piecewise-linear surface that is the output, the power
crust.

Compared with the One and Two pass Voronoi filtering (the Crust algorithms) the
Power crust algorithm does not need any clean-up or post processing steps.

Normalized meshes

The normalized mesh [6] of surface S, associated to sampled point set P, is the set of
Delaunay k-simplices T j=[ p1, ... , pk ]  with pi∈P  for which there exist a point m∈S
so  that  d m , p1=...=d m , pk =d m , P  .  By  definition,  the  normalized  mesh  is
included in the Delaunay diagram of P. It is formed by the Delaunay elements (edges,
faces and simplices) whose dual (Voronoi edge) intersects the surface. Normalized mesh
provides a piecewise linear interpolant of the surface that converges to the surface when
the sampling path tends to 0. In order to simplify the search for the normalized mesh, S
as the boundary of an r-regular shape is assumed. Let B0 be the unit ball. A shape X is
said to be  r-regular if it is morphologically open and closed with respect to a disk of
radius r0 :

 X=X⊖rB0⊕rB0 =X⊕rB0⊖rB0 (2.2)
where  ⊕  means morphological dilatation and  ⊖  means morphological erosion. The
r-regular shape (see figure 2.10) has some useful properties: the boundary of r-regular
shape has at each point a tangent and a radius of curvature greater or equal to  r, the
boundary of a r-regular shape divides any ball with radius 2r and center on the boundary
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Figure 2.9: 2D example of power crust construction. a) An object with its medial
axis.  b) The Voronoi  diagram of  S.  c) The inner and outer polar  balls.  d) the
power diagram cells of the poles. e) The power crust and the  powershape of its
interior. 
(image courtesy of Nina Amenta)



in exactly two connected components. From the previous property, it follows that if the
sampling path  2 r ,  the normalized mesh provides a tilling of the surface, ie.  the
normalized mesh  retains all the topological properties of the surface. The surface is
assumed to be the boundary of an r-regular shape.

To detect the boundary face the following property is used. In 2D Delaunay circum-
circles tend to maximal circum-circles of the object and to the complement of the object
when the sampling tends to 0. Consequently, Delaunay circum-circles become tangent
to the boundary. In 3D, the angle formed by the two Delaunay spheres passing both
sides of this triangle is measured, to evaluate the belonging of a Delaunay triangle to the
surface.

According to the figure 2.11: If T is a Delaunay triangle, c1 and c2  the centers of the
two Delaunay spheres passing through T and p a vertex of T, the angle can be evaluated:

T =−c1 p c2 (2.3)

If the sampling path is  sin /8r ,  then the set of triangles S/2 , i.e. the set of
triangles for which T ≤/2 , is the normalized mesh of S associated to the points E.
If the angle  T   is near 0, there is every chance that the triangle  T belongs to the
boundary. If the angle is near  , the triangle has every chance to be inside or outside
the object.

Two propositions are made and proved for 2D case:
• Let X be an r-regular shape and P be a sample of the surface of X with sampling

path  . For each edge (pq) of the Delaunay digram of P: 
• if (pq) belongs to the normalized mesh and r /2 , then  pq /2
• if  (pq) does  not  belong  to  the  normalized  mesh  and  sin /8r ,  then
 pq /2

• Let X be and r-regular shape and P be a sample of surface of X with sampling path
 .  If  sin /8r ,  then the set of triangles  T for which  T ≤/2  is  the
normalized mesh.
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Figure 2.10: The 2D r-regular shape. 
(image courtesy of Dominique Attali)

Figure 2.11: The angle formed by Delaynay circum-circles (2D case).
(image courtesy of Dominique Attali)



Thus  the  algorithm,  first  compute  the  Voronoi  diagram  of  input  set  and  then
according to  the angle of the Delaunay spheres removes triangles.  In 3D case some
Delaunay spheres intersect the surface without being tangent to it (see figure 2.12), thus
leaving some holes after  triangles removal.  Note that after  the triangles removal the
surface doesn't contain erroneous triangles (triangles that don't belong to the surface).

 Two approaches are proposed to fill those holes:
1. Triangulate each polygon of the hole border independently from the others (done by

adding one after the other Delaunay triangles sharing two or three edges with this
polygon),

2. A volume tessellation, ie. merge Delaunay tetrahedra until space is partitioned into
satisfactory number of objects (this approach assumes surfaces to be closed and is
less general than the previous one).

Heuristic sculpturing approaches
Boissonnat  [14] proposed a sculpturing heuristic for selecting a subset of Delaunay

tetrahedra to represent the interior of object. From the Delaunay triangulation, tetrahedra
having particular properties are successively removed. First of all, only tetrahedra with
two faces, five edges and four points  or  one face, three edges and three points  on the
boundary of the current polyhedron are eliminated. Because of this elimination rule only
objects  without  holes  can  be  reconstructed.  Tetrahedra  of  this  type  are  iteratively
removed according to decreasing decision values. The decision value is the maximum
distance of a face of the tetrahedron to its circumsphere (see figure 2.17). This decision
value is usefull, because flat tetrahedra of the Delaunay triangulation tend to be outside
of the object. The algorithm stops if all points lie on the surface, or if the deletion of the
tetrahedron with the highest decision value does not improve the sum taken over the
decision values of all tetrahedra incident to the boundary of the polyhedron.

This heuristic is motivated by the observation that “typical” Delaunay tetrahedra have
circum spheres approximating maximum empty balls centered at points  of the medial
axis. 

A  hybrid  approach  proposed  by  Attene,  Spagnuolo  [7] is  based  on  Boissonnat
sculpturing and on use of some interesting properties of geometric graphs. The EMST is
used as a constraint during the sculpturing of the Delaunay tetrahedronization of the data
set,  and  in  addition  another  constraint  is  used,  the  so-called  Extended  Gabriel
Hypergraph  (EGH).  The  algorithm  starts  with  the  generation  of  the  Delaunay
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Figure 2.12: Delaunay sphere intersecting surface. 
(image courtesy of Dominique Attali)



triangulation  of  the  vertices  P;  then  tetrahedra  are  iteratively  removed  from  this
triangulation, until all vertices lie on the boundary. 

The concept of extended Gabriel hypergraph is used to locate, inside the Delaunay
triangulation, those triangles that have a high probability of being close to the original
surface.  The Gabriel  graph of  P is  the maximal  graph  G G P =P , E   defined by
E⊆P×P  and E={ek= pi , p j  k=1 ,  , n  / the smallest sphere containing points pi

and pi   does not contain any other point of P

}

. A 2D example of Gabriel graph is in
figure 2.13.

Given P, and given the associated GG(P) = (P,EGG), the extended Gabriel hypergraph 
EGH(P) is  defined as  EGH(P) = (P,EEGH,T) such that  EEGH,  the edge set,  is  initially
defined  by  EGG  while  T,  the  triangle  set,  is  initially  empty.  Both  final  sets  are
constructively defined as follows:

• ∀ e1, e2 ∈EG G , e1 = p1, p2   and  e2 = p2, p3 ,  if  p1, p2  and  p3  are not  aligned
and if the smallest sphere for p1,  p2 and p3   does not contain any other points of  P,
then E E G H=E E G H∪{ p1, p3

}

• any cycle of three edges in EEGH defines a new triangle in T.

If the Delaunay triangulation of the data set P is unique, then all the triangles of the
Extended Gabriel hypergraph are triangles of the Delaunay triangulation.

The algorithm works as follows: 

1. Construct Delaunay triangulation
2. Construct a heap containing removable tetrahedra sorted with a criterion
3. While there still exist vertices not lying on the boundary and the heap is not empty,

get topmost tetrahedron from heap and if its removable, remove it and insert each
new removable tetrahedron into the heap.

A tetrahedron H is removable if an only if:

1. If tetrahedron H has three boundary triangles, it should not be removed.
2. If tetrahedron H has exactly two faces on the boundary with a common edge e, it can

be removed only if the edge opposed to e is not already on the boundary.
3. If tetrahedron  H has only one face on the boundary, it can be removed only if the

vertex opposed to that face is not already on the boundary.
4. If tetrahedron  H has only one face on the boundary, that face must not belong the

EGH.
5. If tetrahedron  H  has two faces on the boundary, these must  not  belong of  EGH,
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Figure  2.13:  Example  of  the  boundary  of  a  point  set  in  2D  and
corresponding Delaunay triangulation. In the DT the Gabriel graph edges
are highlighted. 
(image courtesy of  M. Attene)



moreover the common edge of the two faces must not belong to the EMST.

The criterion used for sorting the tetrahedra into the heap can be the same as decision
values used by Boissonnat or other. The authors also claim that the tetrahedra that have
the longest edge on the boundary have to be removed first as another possible criterion.

Until this point the algorithm is able to reconstruct surfaces of genus 0. EMST is
again  employed  to  process  the  surfaces  with  higher  genus.  After  the  previous
sculpturing process the following steps are performed:

1. Consider all the removable tetrahedra whose removal adds one edge of the EMST to
the boundary.

2. Remove such tetrahedra.
3. If there exists an edge e of the EMST that is not on the boundary and it is possible to

create a hole, create a hole according to e, and start again the previous sculpturing.

Authors  call  the  previous  part  constrained  sculpturing  and  this  part  the  not
constrained sculpturing. The first part is used to perform main sculpturing process and
the second part creates holes if possible. The example of reconstruction of the torus is in
figure 2.14.

Alpha shapes
Conceptually, -shapes [20]  are a generalization of the convex hull of a point set. Let  
be  a  real  number  with  0 ≤≤∞ .  The  -shape  of  P is  a  polytope  that  is  neither
necessarily convex nor necessarily connected. For =∞ , the α-shape is identical to the
convex hull of P. However, as  decreases, the -shape shrinks by gradually developing
cavities.  These  cavities  may join  to  form tunnels,  and  even  holes  may appear  (see
figure 2.15).

Intuitively, an -shape can be obtained as follows: Consider a ball-shaped eraser, of
radius , and think of P as a set of points in space that the eraser cannot inter-penetrate.
Imagine moving the eraser everywhere in space, removing all simplices that the eraser
can pass through (remember that the eraser is constrained by the data points). All that is
left after the erasing constitutes the -shape of P. As  varies, one can obtain different
-shapes. For example, for  =0 the  -shape is  P itself.  For  =∞  one obtains the
convex hull of P. 

Page 16

Figure 2.14: A reconstruction of torus. This figure demonstrates the purpose of
the not constrained part of the algorithm. 
(image courtesy of M. Attene)



For 0 ≤≤∞ , let an -ball be an open ball with radius  . An α-ball b is empty if
b∩P=0 .  For 0 ≤k≤2 , a k-simplex T  is said to be -exposed if there is an empty
-ball b with T=b∩P , where b  is the sphere or plane bounding b. A fixed  thus
defines sets Fk, of -exposed k-simplices for 0 ≤k≤2 . The -shape of P, denoted by
A, is the polytope whose boundary consists of the triangles in F2, , the edges in F1, and
the vertices in F0,. For more details see [20].

The  -shapes are closely related to Delaunay triangulation. By definition, for each
simplex  T  of  Delaunay triangulation,  there  exist  values  of  ≥0  so  that  T  is
-exposed.  Conversely,  every  face  of  A is  a  simplex  of  Delaunay  triangulation.
Therefore  the  relation  of  the  -shapes  with  the  Delaunay  triangulation  is  that  the
Delaunay triangulation is a union of all -exposed k-simplices, for 0 ≤≤∞ . Thus the
Delaunay triangulation can be used to represent the family of -shapes of P.
-shape is thus a sub complex of Delaunay triangulation, but problem is the selection

of optimal  that yield the -shape whose boundary represents the reconstructed surface.
There exists a commercial package from Raindrop Geomagic based on Alpha shapes.
An alpha-shape algorithm with cleanup-phase has been proposed recently [10].

-solids  [8] is a combination of  -shapes and Boissonat  sculpturing approach  [14].
This technique has two phases:

In the first phase an approach similar to  -shapes is used to select a subset of the
Delaunay triangulation of P enriched with some additional points that lie far  from the
data set P and that form an envelope of the data set: Let a (real positive) value for the
parameter   be  given.  Then  do  breadth-first  search  of  the  adjacency graph  of  DT
(consider only adjacencies among tetrahedra), starting from tetrahedra that are  outside
the shape, i.e. one or more of its faces are part of the border of the convex hull of the
Delaunay triangulation, and mark those tetrahedra as external, see figure 2.16. However
do no cross the common face between two adjacent tetrahedra if all three edges of the
face have length that  is  less  than  .  All  tetrahedra that  are  still  unmarked after  the
traversal  are  then  marked  as  internal.  Their  union  will  be  called  the  -solid.  The
difference of between this part of algorithm and -shapes is that the eraser cannot go
inside the shape if it cannot “pass through” its boundary.
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Figure 2.15: 2D example of Alpha-shapes.



The smallest value of parameter  needs to be chosen, such that the solid selected by
the first part has the following characteristics:

1. It is connected.
2. All the data points are on its boundary or in its interior.
3. Its boundary is a two-manifold.

The value of the parameter is selected by binary search over the length of all edges,
taking  as the value of selected edge length.

In the second phase approach similar to local Boissonat sculpturing strategy is taken,
but  based  on  different  geometric  criterion.  All  tetrahedra,  what  have  one  or  more
boundary faces, are inserted into a priority queue, where the maximal priority is given to
the tetrahedra with the largest value of the maximal distance between boundary face and
their  circumscribing  sphere,  see  figure  2.17.  These  candidate  tetrahedra  are  then
extracted  from  the  queue  one  by  one  and  considered  for  removal.  The  candidate
tetrahedron is removed if and only if:

1. It has one boundary face and the opposite vertex is internal.
2. It has two boundary faces, the opposite edge does not lie on the boundary, and the

local smoothness criterion is satisfied (see below).
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Figure 2.16: Tetrahedra “outside” the shape (2D case). On the figure is an
example  of  Delaunay  triangulation  of  2D   point  set  enriched  with
additional  points  (in  the  corners  of  the  figure).  In  this  Delaunay
triangulation are boundary triangles (tetrahedra in 3D) treated as outside,
i.e. external (gray triangles).

Figure  2.17: Priority measure. On the figure is a tetrahedron, its
circumsphere and the line between the dots represent the priority
measure, i.e. the maximal distance between the center of a face of
the  tetrahedron  and  the  center  of  the  circumsphere  of  the
tetrahedron.



When only these two types of tetrahedra are removed, the boundary of the remaining
set of tetrahedra is guaranteed to remain a manifold [8].

The  local  smoothness  criterion  used  above  is  stated  as  follows:  Consider  a
tetrahedron having exactly two boundary faces. These faces form a dihedral angle  0.
They also form four dihedral angles  1...4  with adjacent boundary faces, see figure
2.18. Let  be the following sum:

=∑i=0..4
∣−i∣ (2.4)

  gives  a  measure of  the “local  smoothness” of  the mesh:  If the dihedral  angles
formed by all adjacent boundary faces are all close to straight angles, then  is small.
Assuming that the tetrahedron is removed, its two internal faces become boundary faces.
It can be measured what the new local smoothness, say , would be, and    compare
with  .  The  local  smoothness  criterion  is  therefore  the  following:  remove  the
tetrahedron if and only if   > , that it, if the local smoothness improves.

The algorithm might get stuck in a local minimum. For example, at some point it
might become impossible to remove any tetrahedron, because all  have two boundary
faces and none satisfies the smoothness criterion. A “look-ahead” search is therefore
done  in  such  case  to  remove a  tetrahedron that  does  not  satisfy the  criterion:  It  is
removed, if some other tetrahedron adjacent to it  consequently becomes a candidate,
thus the smoothness criterion is satisfied. The depth of such look-ahead search can be
limited, for all practical purposes, to about 10 removed tetrahedra.

The alpha solid technique has been used by the same authors [8] for an estimation of
the so called “distance function”. Distance functions is the key concept of the following
sort of algorithms.

2.2 Volumetric algorithms
Volumetric algorithms are based on the idea of turning point cloud representation of
surface to volumetric representation of objects. General idea can be seen in figure 2.19.
Volumetric representation may be a 3D grid (uniform or nonuniform such as octrees) of
values, that describe some function in space in this case a distance function or some sort
of mathematical description of this distance function. 
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Figure  2.18:  Smoothness  criterion.  The  two  boundary  faces  of  a
tetrahedron are gray. They form a dihedral angle γ0, and  dihedral angles
γ1, γ2, γ3, γ4 with neighboring boundary faces.



A distance function can be defined as follows:  A function f : DR , where D⊂R3

is  a region near the data,  such that  f estimates the signed geometric distance to the
unknown surface  S  [23]. In other words, the distance function is a implicit  function
describing the approximation of the surface M. 

The  surface  of  the  object  is  extracted  from  volumetric  representation  using  the
methods for isosurface extraction, usually with some sort of Marching cubes algorithm
[27].  Therefore these methods are  approximation  techniques and the output  is  often
higher order mesh.

The distance function is  closely related to the normal  vectors of the surface.  The
knowledge of the normal vectors along with the data point helps the obtaining of the
distance function. 

For example the algorithm of Pulli et al. [29] uses range maps instead of point cloud
because the range maps have associated scanner position ie. the location of viewpoint.
Their approach is based on a simple idea: Cut the volume as seen from the viewpoint. In
this  specific  case  the  normals  were  not  provided  along  with  the  mesh,  however
additional information, in this case range map along with the position of the scanner,
greatly helped the reconstruction process.

Algorithm of Hoppe et al.
The algorithm of Hugues Hoppe  [23] uses an  tangent plane  approximation of the

surface to define the distance function. For each data point an oriented tangent plane is
estimated as local linear approximation to the surface. For estimation of the tangent
plane at given point a least squares best fitting plane in k-neighborhood of given point is
used.

Let pi be a vertex in which the tangent plane is to be approximated, and NBHD  pi 
its k-neighborhood. The tangent plane associated with point pi  is represented as a point
oi  (the centroid of NBHD pi ) and normal vector ni  at this  point oi , see figure 2.20. 

To compute the normal vector ni the covariance matrix

 CV= ∑
y∈NBHD  pi 

 y−oi ⊗ y−oi  2 (2.5)

2 Where  ⊗  denotes  the outer product vector operator,  thus if  a and  b have components  ai  and  bj
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Figure 2.19: Overview of a volumetric algorithm.

Figure 2.20: The tangent plane estimation (2D example).



of  NBHD  p i  is formed. The normal  ni   is then the  eigen-vector of this covariance
matrix CV associated with the least eigen-value.

Notice that the  tangent planes do not define the surface, they are used to define the
distance function. Also note that the normal vector of the tangent plane is not oriented.

To determine the distance function, the normals of neighboring tangent planes must
be oriented. The orientation is done using simple idea that geometrically close tangent
planes, should be consistently oriented, therefore the consistent tangent plane orientation
can be modeled as graph optimization. 

The graph contains one node Ni  per tangent plane Tp  p i  with and edge (i,j) between
Ni  , Nj if the tangent plane centers are sufficiently close. The cost on edge (i,j) encodes
the degree to  which  Ni  ,  Nj  are consistently oriented and is  taken to  be  ni  •  nj   (dot
product). The problem is to select orientations for the tangent planes so as to maximize
the  total  cost  of  the  graph.  However  this  is  computationally  very  expensive,  thus
approximation  is  used.  As  graph  the  euclidean  minimum  spanning  tree  (EMST)
enriched by some edges (the edge i, j is added if either oi is in the k-neighborhood of  oj

or  oj  is  in  the  k-neighborhood  of  oi  )  is  used.  This  enriched  graph  is  called  the
Riemannian  Graph and  encodes  geometric  proximity  of  the  tangent  plane  centers.
Normal orientation is then propagated through this Reimannian graph. The propagation
favors  nearly parallel  planes:  each  edge cost  function  is  1 −∥ni

⋅

n j∥  and  therefore
propagation order  is  achieved by traversing this  minimal  spanning tree.  Propagation
done this way tend to propagate along directions of low curvature.

As the initial plane is selected the one, for which the centroid  oi   has the largest  z
coordinate.  Such  plane  must  have  positive  z coordinate  of  normal  vector.  The
propagation is done by depth-first traversing of the MST.

After the normal orientation the distance function can be determined correctly. In
short the distance function can be described as follows: for a given point  x, a distance
function is the distance to the nearest tangent plane (nearest in the sense point  x   to
center oi), see figure 2.21. The sign is determined according to the normal of the nearest
tangent plane. 

The distance function  f  x   is defined as: Given a point  x, at first find a tangent
plane  Tp pi whose  center  oi  is  closest  to  x.  This  tangent  plane  is  a  local  linear
approximation to  S, so the signed distance  f  x   to surface is taken to be the signed
distance between x and its projection z onto Tp pi , thus f  x =dist i  x = x – oi 

⋅

n i

 .
This rule must be extended to handle surfaces with boundaries. Assume, that the data

point are from a set that is -dense and -noisy, thus the sample points don't leave holes
of radius larger than  + . Therefore the algorithm marks all points x, for which the
euclidean distance between its projection z to tangent plane and the point  pi from data

respectively, then the matrix a ⊗ b has aibj as its ij-th entry.
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Figure 2.21: Determining the distance function for point x.



set nearest to z: d  pi , z   , as undefined.
The distance function is  represented by using uniform grid – a volume, thus it  is

discretely sampled over finite domain. The size of the cell should be less than  + .
The volume is processed using a contour tracing algorithm (like Marching cubes),  only
where the distance function is low and defined, thus giving rise to boundaries in the
simplicial surface.

The final triangular mesh is further improved [22].

Medial axis combined with distance function
The algorithm of Bittar, Tsingos and Gascuel [13] is the combination of medial axis

and distance function. This algorithm has two phases: determination of medial axis and
implicit surface reconstruction. 

1.   The determination of medial axis. The input point set is embedded in uniformly
subdivided volume. Each voxel (a cell of volume) containing one or more points
is said to lie on boundary thus its distance from the boundary is 0. Starting from
the  voxels that lie on boundary the distance is  recursively determined to other
voxels inside the volume, by breadth-first  search through volume.  Voxels with
local maximal value form the medial axis of the object.

2.   The distance function.  The distance function is in this case an implicit function
defined as an union of balls centered at medial axis voxels and a radii of values at
these voxels. Each ball is defined as a “field function”. This function describes the
behavior of the union of balls. If the function is “soft” (ie. blends slowly over the
definition  interval)  the  union  looses  sharp  edges  and   details,  however  if  the
function is “sharp” (ie. it changes fast over the definition interval) the details and
sharp edges are preserved, see figure 2.22. The surface can then be extracted using
methods for isosurface extraction.

The key problem of this method is the determination of the grid size. Small resolution
will lead to detail loss, very large resolution may break the surface, see figure 2.23.
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Figure 2.22: The effect of field function on the reconstructed surface. 
(image courtesy of E. Bittar)



Approach of Roth & Wibowoo 
The approach of Roth and Wibowoo [30] is based on estimating the normals at each

point like the approach of Hoppe. 
The normals are estimated using the the voxel grid: For each vertex from input set pi

find two closest neighboring points pi, pi in the voxel grid, and then compute the normal
using  the  two  points  along  with  the  original  point
ni= p j− pi∗ pk− pi /∥ p j− pi∗ pk− pi ∥ . 

However the normal orientation  must be determined too. The normal propagation
approach is used here as well. The voxels visible from the 6 axis direction must have
their normals towards the viewing direction.  The normal direction is fixed for those
voxels, then the normal direction is propagated to neighboring voxels, see figure 2.24.
This heuristic only works for closed object. 

The normals are then smoothed using relaxation algorithm: At first a voxel whose
normal most agrees with its occupied neighbors is found. This voxel is then used as the
seed of a recursive smoothing algorithm. This algorithm sets each voxel normal to the
average of the normals of the voxel neighbors. 

For each voxel  vertex the distance function is  determined. The signed distance is
computed by using the data points along with the estimated normals, by taking weighted
average  of  the  signed  distances  of  every  point  in  the  neighboring  cells.  Then  the
Marching cubes algorithm is used to extract the surface.

Voronoi diagram combined with implicit functions 
The approach of Boissonnat and Cazals  [15] is a combination of Voronoi diagram

and implicit functions. 
This approach uses the so called natural neighbors. The natural neighbors of a point
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Figure 2.23: The impact of the resolution of the grid on the reconstruction. On the left the
grid is too small to capture all the details and on the right the grid is too big and therefore
the surface is broken. 
(image courtesy of E. Bittar)

Figure 2.24: The normal orientation (2D example). The normals in voxels marked
by unfilled circles are set from the orthogonal view directions, while the normals in
voxels marked by filled circles are set by normal propagation. 
(image courtesy of Gerhard Roth)



x are  defined  as  the  neighbors  of  x in  the  Delaunay  triangulation  of  P∪{x

}

.
Equivalently, the natural neighbors are the points of P whose Voronoi cells are chopped
of upon insertion of x. More precisely, let C p i  be the Voronoi cell of pi in the Voronoi
diagram of P and let V x  be the Voronoi cell of x in the Voronoi diagram of P∪{x

}

.
The natural region NR x , p i  is the portion of C p i  stolen away by x, i.e.  C x∩C p i , see
figure 2.25. 

Let  w pi x  denote  the  Lebesgue  measure3 of  NRx , p i .  The  natural  coordinate
associated to pi is defined by 

 p i  x =
w p i  x 

∑i
w p i  x 

(2.6)

  This function is a continuous function of x, and is continuously differentiable except
the data sites. The   p i  satisfy an identity called the  local coordinate property  (LCP),
stating that x is a convex combination of its neighbors: ∑i

 p i pi=x .

When x lies outside the convex hull of P, w pi x  is unbounded if pi is a vertex of the
convex hull. In order to keep the w p i x   bounded, bounding of the domain, where the
natural coordinates have to be computed, is needed. This can be easily done by adding
points on a sufficiently large bounding box. 

This natural neighborhood is interpolated as follows. Assume that each pi is attached
a  continuously differentiable  function  hpi from  ℝdℝ  satisfying  h p i  pi =0 .  The
natural neighbor interpolation of the  hpi   is defined as  hx=∑i

p i
1xh p i x , for

some arbitrarily small 0 .
The set of data points consist of the pi plus some points qi added on boundary box B.

hpi   = 0  for all points  qi on the bounding box. The set  P, will denote the union of the
sample points pi   and of the qi, from now on. Since the  p i  and the hpi   are continuous
over  ℝd ,  h is continuous over  ℝd .  Moreover,  h  pi =h p i  pi   since   p j  pi =0  if
j≠i  and  p i  pi=1 .

The  function  h pi
x  is  adopted  from Hoppe et  al.  [22] as  h p i  x = pi−x 

⋅

n p i ,

3 area in dimension 2, volume in dimension three.
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Figure 2.25: An example of natural region (in 2D). The natural neighbors
of point x  are points p1, p2, p3, p4, p5, p6. The vertices of natural region NRx,

p1 are depicted in gray and black.
(image courtesy of J.D. Boissonnat)



where npi is the unit normal to S at pi. In other words, h p i
−10  is the hyperplane tangent

to S at pi. The final approximating surface S' is the zero set h−10 . 
The surface is extracted using the Delaunay triangulation, because it was already used

to  evaluate  the  natural  neighbor.  Define  a  Voronoi  edge  as  bipolar  if  the  implicit
function  h evaluates to a positive value at an endpoint and to a negative value at it's
party. As initial approximation of the surface is selected those triangles from DT, whose
dual Voronoi edge is bipolar.

2.3 Algorithms that reconstructs the surface incrementally
The algorithms  that  reconstruct  the  surface  incrementally build  the  surface  from an
initial seed: point, edge or triangle. They are working locally on a small part data and
thus  are  well  suited for  parallel  processing of  huge data  sets.  They build  triangular
meshes rather than any higher order surfaces,  because of their nature.

These  techniques  usually  require  uniform  sampling  of  surface  to  work  properly.
Because no initial structure of the data set is provided (such as Delaunay triangulation
like in sculpturing methods) the vertex lookup problem must be solved along with the
normal estimation in the data points.

While having these difficulties they provide linear time complexity.

Ball-pivoting approach
The approach of Bernardini, Mittleman and Rushmeier [11] imitates the ball eraser used
in α-shapes.

Assume that the sampled data set P is dense enough that a -ball, a ball of radius ,
can not pass through the surface without touching sample points.

The algorithm starts by placing -ball in contact with three sample points. Keeping
contact with two of these initial points, the ball is “pivoting” until it touches another
point. The pivoting operation is depicted in figure 2.26.
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Figure  2.26: The ball pivoting operation. The ball of radius  ρ “sitting” on the
triangle  τ formed from the vertices  σi,σj,σ0  is pivoting around the edge  m here
perpendicular to the image. The center of the ball cij0 rotates around the edge m
and describes a circular trajectory γ. The radius of the trajectory is ∥cij0−m∥.
While pivoting the ball hits the point  σk . The circle sk is a intersection of  ρ-ball
centered at  σk  with z = 0.  The circle sij0  is the intersection of the pivoting ball
with z = 0. 
(image courtesy of Fausto Bernardini)



The  -ball  is  pivoted around each edge of the current mesh boundary. Triplets  of
points that the ball contacts form new triangles. The set of triangles formed while the
-ball “walks” on the surface form the interpolating mesh.

The  ball  pivoting  algorithm  (BPA)  is  closely  related  to  α-shapes.  In  fact,  every
triangle   computed by the  -ball walk obviously has an empty smallest open ball  b
whose radius is less than  . Thus, the BPA computes a subset of the 2-faces of the
-shape of P. These faces are also a subset of the 2-skeleton of the three-dimensional
Delaunay triangulation of the point set. The surface reconstructed by the BPA retains
some of the qualities of alpha-shapes: It has provable reconstruction guarantees under
certain sampling assumptions and an intuitively simple geometric meaning.

The input  data points  are augmented with approximate surface normals computed
from the range maps. The surface normals are used to disambiguate cases that occur
when dealing with missing of noisy data.

Areas  of  density higher  than   present  no problem to the algorithm,  but  missing
points  create holes that  cannot  be filled by the pivoting ball.  Any post-process hole
filling algorithm could be employed; in particular, BPA can be applied multiple times
with increasing ball radii. To handle possible ambiguities, the normals are used as stated
above. When pivoting around a boundary edge, the ball can touch an unused point lying
close to the surface. Therefore a triangle is rejected if the dot product of the triangle
normal with the surface normal (in the vertex) is negative, see figure 2.27.

This algorithm is very efficient in time, it has linear time performance and storage
requirements. However its disadvantages are the required normal vectors estimated from
range maps and the selection of the radius  of the -ball.

Approach of Huang and Menq
The algorithm of Huang and Menq [24] selects for each edge on the boundary a point,
which will form a new triangle with that edge. The selection is done in tangent plane,
thus the normals estimation is essential for this algorithm.

Starting from an initial  triangle the mesh grows along its  boundary by employing
some  topological operations to construct the mesh. In each successive step a triangle is
added to the mesh along with some new boundary edges. For each edge on the border a
so called “best point” is found or the edge is marked as final. The “best point” is then
used to form new triangle.

As the initial triangle is selected the one that is formed from a vertex with maximum
z-coordinate  and  its  two  closest  neighbors.  Normal  of  this  triangle  has  positive
z-coordinate, so the triangle can be easily oriented. The successive triangle's normals are
oriented  to  coincide  with  the  precedent  triangle's  normal.  The  edges  of  the  initial

Page 26

Figure 2.27: The normal check (a 2D case). The rightmost point is boundary and
the ball pivots around its edge and touches a hidden point, but the dot product of
the triangle normal with the vertex normal is negative, so the triangle is rejected.
(image courtesy of Fausto Bernardini)



triangle form first border. The border of the mesh is a connected list of oriented edges.
For each edge on the border the “best point” needs to be selected. The “best point”

must meet these criteria:

a) The  “best  point”  of  the  edge  must  lie  within  the  k-neighborhood  of  both  the
endpoints  of the  edge.  The  k is  the  only parameter  of  the reconstruction.  The
authors suggest  k ≥ 10.

b) For each endpoint of the edge, the “best point” must lie withing the angle formed
by neighboring edges in local tangent plane, see figure  2.28. The local tangent
plane  is  estimated  using  principal  component  analysis  of  the  vertex
k-neighborhood.

c) The “best point” must have minimal sum of distances to endpoints of the edge.

When no best point can be found, i.e. none of the points complies with the criteria,
the edge is marked as final and it is not processed further.

Depending on the location of the best point, one of the four topological operations is
used to construct the triangle, see figure 2.29. The four topological operations are:

a) vertex joining – The “best point” is not a part of the mesh (it is not on the border
or inside the mesh). Therefore to create the new triangle, two edges are created on
the border. Notice that this operation adds a point to the mesh. See figure 2.29a.

b) face pasting – The “best point” is already part of the surface, it is on the same
border and it is a common neighbor of the edge. No new point is added to the
mesh and the triangle is formed by adding one edge to the border. Notice that only
this operation may remove points from the border. See figure 2.29b.

c) ear attaching – The “best point” is already part of the surface, is on the same
border and is not a direct neighbor of the edge. Thus by adding a triangle, the
border is  divided into two borders  that  meet  at  the best  point.  The triangle is
formed by adding two edges. See figure 2.29c.

d) bridge linking –  The “best point” is already part of the surface and is not on the
same border. By adding a triangle the borders will join, thus forming one border.
The triangle is again formed by adding two edges. See figure 2.29d.
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Figure  2.28: The "best point"  angle in the local tangent plane. The point
p lies on the boundary of the mesh. The "best points" for its adjacent edges
must  be in the vicinity  of  the angle formed by those adjacent  edges.  The
angle is evaluated in the local tangent plane of p.



Operations vertex joining and face pasting alone are capable to reconstruct only zero
genus surfaces (i.e. surfaces without holes through the object). To be able to reconstruct
surfaces of any genus, the other two operations (ear attaching and bridge linking) need
to be used along with the previous operations.

To improve  the properties  of  the  resulting mesh an optimization  phase  based on
curvature estimation is used.

The advantages of the algorithm are: it can reliably reconstruct surfaces with slowly
changing sampling density, it is very efficient, i.e. it has low memory consumption and
linear  time complexity.  The  disadvantage is  that  the  tangent  planes,  i.e.  the normal
vectors in the points,  needs to be estimated. Also when the sampling density changes
too quickly the algorithm will fail.

The parameter K influences the resulting mesh as follows:

• If the parameter K is too low, more edges will be marked as final and therefore
more holes will appear in the resulting mesh.

• If the parameter K is too high, the normals estimated will be smoothed and some
details may disappear in the resulting surface.

Therefore the choice of the parameter K depends on sampling. If the sampling is
nearly uniform and correct, lower K may be used. As the sampling change more over the
mesh, the parameter K should increase.

2.4 Warping methods
The warping methods deform an initial surface along the sampled points. The initial
surface,  and  therefore  also  the  output  surface,  is  a  higher  order  mesh.  the  warping
methods are approximation techniques, because the intermediate surface is deformed
during the reconstruction process.

To work properly, the initial surface must be as close to the data points as possible.
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a) b)

c) d)
Figure 2.29: The four topological operations. On the top left (a) is the vertex joining
operation. On the top right (b) is the face pasting operation. On the bottom left (c) is
the ear attaching operation. On the bottom right (d) is the bridge linking operation.
(image courtesy of J. Huang)



Definitely, the initial  surface must capture the topology of the original  surface.  It is
possible  to  change  the  topology  during  the  reconstruction,  however  these  changes
require estimation of additional information.

Some warping approaches are very unusual. For example one method deforms the
space embeding the object to be deformed [31]. Other approach uses particle systems to
model the surface [32]. 

Because the initial surface must be supplied the warping methods are often used as a
post-processing of some other algorithm.

Approach of Algorri and Schmitt
The approach of Algorri and Schmitt [1] is based on deformation of an initial triangular
mesh along the input data point using the spring model.

First and initial triangulation T' is made. This rough model of the surface is created
using the partitioning of the space where points P are contained into cubes. Those cubes
that contain at least one point are marked and the exterior faces not shared by any two
cubes form the initial  surface  T'.  This initial  surface is  further processed before the
warping is used. Each vertex of the initial surface is smoothed using low pass filter (a
weighted average of it's old position and the position of its neighbors) at first. Because
the cubes formed a thick wall and the exterior faces lie on both sides of this thick wall
an extraction of one of the sides is used afterward.

The triangular mesh is then deformed using mass-spring adaptive mesh model, i.e. the
triangular mesh is deformed under the influence of attracting forces coming from the 3D
points  in  P.  Each  triangle  vertex  in  T'  is  a  nodal  mass,  and  each  triangle  edge an
adjustable spring. Each nodal mass is attached to its closest point in P by an imaginary
spring, see figure 2.30. The correspondence is recalculated at every iteration. 

Each nodal mass has a dynamic equation of the form:

i
d 2 x i

dt 2 i
d x i

dt
∑ j=1

n
K ij  x i−x j K id  x i−xd =0 (2.7)
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Figure 2.30: Mass-spring model. Each nodal mass is depicted as a cube. Nodal masses X1 ..
X6 are points of the initial mesh as well as the nodal mass Xi in the middle. Nodal mass Xd is
the point from the original data set P. (image courtesy of M.-E. Algorri)



where xi is the 3D position of the nodal mass i  at time t,  μi  and γi  are the mass and
damping  values  associated  to  node  i.  Kij  is  the  stiffness  coefficient  of  the  spring
connecting node i to neighboring node j and Kid  is the stiffness coefficient of the spring
connecting node  i to  its  closest  point  in  P  xd.  The dynamic equations  of  the nodal
massed can be rewritten as:

i
d 2 x i

dt 2 i
d x i

dt
K d∑ j=1

n
K ij  x i−∑ j=1

n
K ij x j=xd K id (2.8)

and in matrix form:

M ẍG ẋK x=F ext (2.9)

where M is the mass matrix (diagonal), G is the damping matrix (diagonal), K is the
stiffness  matrix  (contain  off-diagonal  elements),  Fext  the  external  force  vector.  The
adaptive mesh can be seen as as a coupled oscillator with  n-degrees of freedom (n  =
number of the nodal masses in the system). The behavior of this adaptive mesh depends
on its dynamic parameters M, G, K. In order to ensure a stable, non-oscillatory behavior
of the nodal massed a analysis of the dynamic characteristics is performed.

The  solution  of  the  equation  (2.9)  is  the  sum  of  components,  a  steady-state
component  and a  transient  component.  The steady-state  solution represents the final
position of the nodal masses. The form of this solution is found by putting d 2 x i

dt2 =
d x i

dt
=0  in

equation (2.8).

K x=F ext (2.10)

The transient component of the general solution, is obtained by setting the right-hand
side of the equation (2.9) to zero:

M ẍG ẋK x=0 (2.11)

By solving both components of the general solution the mesh is warped towards the
points. For details see [1]. The process of the reconstruction is illustrated in figure 2.31.
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Figure 2.31: An example of surface reconstruction using the approach of M.-E. Algorri and
F. Shmitt. In the leftmost figure is the input data set of point. The initial mesh is depicted in
the middle figures, where the left one shows the cubes created over the points and the right
one contains the smoothed initial mesh that is passed to the warping process. The result of
the warping process is depicted on the rightmost figure. (images courtesy of M.-E. Algorri
and F. Shmitt)



3 Recent work
The work of Huang, Menq [24] has been used as an initial approach. This algorithm was
selected,  because it  provided linear time complexity, low memory consumption,  and
because it was a region growing approach. Also this approach can reconstruct surfaces
from data sets with slowly changing sampling density and can detect the borders.

In the following text the term candidate vertex relates to the term “best point” in the
original work.

3.1 Algorithm and data structures
The implemented algorithm slightly modified, and different structures were used, while
comparing the implementation with the original paper.

The data structures used in the implementation are as follows, see also figure 3.1:

• The structure of  points is  an array of points,  see  P in  the figure  3.1.  A uniform
subdivision of the point space is used to speedup the point neighborhood lookup, it is
not shown in the figure.

• The structure of triangle mesh is an array of triangles, where each triangle is formed
of three vertices, i.e.  indices to the structure of points, see T in the figure 3.1. Each
triangle also has normal, and the connection between triangles is assured by storing
indices to neighbor triangles (over edges). The triangle mesh also has additional data
related to vertices, such as vertex normals, because these data are closely related to
triangle mesh. The neighbor, normals and additional information are not in the figure.

• The structure of the border is currently implemented as a linked list, see BV in the
figure  3.1. The border is represented by border vertices linked in the order of their
connection on the border (next, prev in the figure) and also linked in the order of their
decreasing  candidate  values (cnext,  cprev  in  the  figure).  For  the  term  candidate
values  see  below.  Each  border  vertex  has  information  about:  estimated  normal,
neighboring vertices,  border  triangle  it  belongs to  (rt  as  reference triangle  in  the
figure) and of course candidate vertex that is selected from the neighboring vertices
to form new triangle with the edge of the reference triangle (cv in the figure) and it's
candidate  value.  There  is  also  some  information  about  the  projection  of  the
neighboring points to the tangent plane, in particular for each point in the neighbor an
information about its angle in the tangent plane is stored.
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The implemented algorithm has three operation instead of four, because linked list
has  been  used  to  represent  the  border:  create  leaf,  fill and  create  bridge.  The  leaf
operation  is  identical  to  the  vertex  joining  operation  from  original  algorithm  (see
figure 3.2a), as well as the fill operation that is identical to the face pasting operation
(see figure 3.2b). The operation create bridge handle the two remaining operation: ear
attaching and bridge linking (see figure 3.2c). The disadvantage of this change is that the
number  of  separate  borders  is  unknown,  however  this  information  is  not  used
throughout the algorithm. 

The linked list representing the border is bidirectional, and twice linked: once by the
border structure and once by the candidate value. However this structure is not efficient
according to speed. While having very large data sets (millions of points) the length of
the border (i.e. the complete number of vertices on border) grows incredibly fast and the
operations to insert a border vertex or to find a specific border vertex last very long
time. This is being solved in the mean time.
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Figure  3.1:  The  data  structures  used  in  the  recent  implementation  of  the
reconstruction.



The criterion for the selection of the best point is also slightly modified: the point that
will form the maximum angle with the edge is selected as the candidate vertex. This

maximum angle is related to the candidate value as follows: Let  γ be the maximum
angle and cvalue be the candidate value. Then 

cvalue=1 −cos  (3.1)

Thus the  cvalue  is  from interval (0 ... 2),  because the angle  γ is  from the interval
(0 ... π). The bigger  the cvalue is, the better the candidate is. This criterion has been also
used for the altered construction of the initial triangle. The initial triangle is constructed
as can be seen in Algorithm 1: 

The currently implemented algorithm can be described in short as in the Algorithm 2.
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1. x1 = get_maximum_point_in_selected_direction(direction);
2. x2 = get_point_nearest_to(x1);
3. x3 = get_point_that_form_biggest_angle_with_edge(x1,x2);
4. create_initial_triangle_from(x1,x2,x3);
5. orient_initial_triangle_to_face(direction);
Algorithm 1: Construction of the first triangle/border.

a) create leaf b) fill

c) create bridge
Figure 3.2: Operations used in recent implementation of surface reconstruction. See
also Algorithm 2.



The procedure  recalculate_candidates on line 29. checks the given border
vertex candidate if it's best and correct, otherwise another candidate for the given border
vertex is selected. This procedure must be called after the each iteration on the common
neighbors  of  the  new border  vertex,  because  the  region  of  possible  best  candidates
formed by the edges was changed.

The function is_removable on line 19. checks if the given border vertex (bvn) doesn't
have a duplicate created by the third operation (bridge), ie. is not on the border anymore.

Because the border vertices are in queue with the border vertex with the best of the
best  candidate  on  the  head  of  this  queue,  the  procedure  on  the  line  3.  called
exist_border_vertex_with_best_candidate  simply  checks  whether  there  is  a
border vertex with valid best candidate (i.e. the border vertex is not marked as final (see
the original approach)) on the head of the queue.

The function which_operation_to_perform on line 7. decides which operation to
use: when the vertex is not on the boundary of the mesh use the leaf operation, when the
vertex is on the boundary of the mesh and is common neighbor of the current border
vertex then use fill operation otherwise use bridge operation.

The procedure make_duplicate_border_vertex on line 24. is needed, because each
border vertex can have only one area of valid candidates but two borders need to go
through this vertex.

The  procedure  estimate_normal on  line  11.  estimates  a  normal  using  principal
component analysis and the normal orientation is determined using the normal of the
reference triangle rt. When the dot product of the estimated normal and the normal of
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1. build_uniform_subdivision_of_the_points();
2. construct_initial_triangle();     /* see above in text */
3. while (exist_border_vertex_with_best_candidate()) {
4. bv = find_border_vertex_with_best_candidate();
5. cv = get_best_candidate(bv);
6. create_new_triangle(bv,cv,bv->next);
7. switch(which_operation_to_perform(bv,cv)) {
8. case leaf : 
9. bcv = create_new_border_vertex(cv);
10. get_neighborhood(bcv);/* use uniform subdivision */
11. estimate_normal(bcv); /* use neighborhood */
12. find_best_candidate_for(bcv);
13. bcv->next = bv->next; bv->next = bcv;
14. break;
15. case fill :
16. bcv = get_border_vertex(cv); 
17. bvn = bv->next;
18. bv->next = cv;
19. if(is_removable(bvn))
20. remove(bvn);
21. break;
22. case bridge :
23. bcv = get_border_vertex(cv);
24. bcv2 = make_duplicate_border_vertex(bcv);
25. bcv2->next = bcv->next; bcv->next = bv->next;
26. bv->next = bcv2;
27. break;
28. }
29. recalculate_candidates(bv,bv->prev,bv->next ... );
30.}
Algorithm 2: The recent reconstruction algorithm.



the triangle is negative, the normal is flipped.

The reconstructed triangular mesh is the first order approximation. Huang & Menq
proposed a post-optimization based on curvature that improves the mesh smoothness
(according  to  the  estimated  curvature).  This  post-optimization  has  not  yet  been
implemented. 

3.2 Experimental results
The implemented reconstruction algorithm has been tested on various data, from small
artificial data to large real world data. During the testing process, various aspects of the
implemented algorithm were observed:
• the influence of the parameter K on the resulting mesh and
• time and memory requirements.

Sample of the objects selected for the testing is described in table 1. The data sets are
depicted in figure 3.3.

Data set name Points
(N)

Triangles4 Description see in
figure

bunny 35947 69451 Data courtesy of Stanford University 3.3a
hypersheet 6752 - Data courtesy of Hugues Hoppe 3.3b
woman 0 - Data courtesy of Cyberware   - cyberware.com 3.3c

Table 1: The data sets used for testing.

At first, the influence of the parameter K on the reconstructed mesh has been studied.
In figure 3.4 is a bunny data set that has been reconstructed by using K∈{10, 15 

}

.
The holes in the mesh (see the details in circles) indicate under-sampling with respect to
the certain value of the parameter K. For K = 20 the bunny data set has been properly
reconstructed.

4 if available in the original data set
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a) bunny b) hypersheet c) woman
Figure 3.3: Sample of the data sets used for testing.



The results of varying K for the second data set are depicted on the figure 3.5. In this
case K has been chosen as K∈{10, 15 , 20 , 25 

}

. Notice that, according to the results
in the figures, this second set is sampled worse than the first data set with respect to the
used reconstruction algorithm.

It means that the sampling density of the hypersheet data set varies more than the
sampling density of the bunny data set and therefore bigger values of K must be used to
reconstruct  the  surface  properly.  The  influence  of  the  changes  in  sampling  on  the
reconstruction process can be reduced by increasing the value of K.

The algorithm was also tested on a large data set  baba (~ 500 000 points,  see in
table 1). The results are in figure 3.6.

Also  the  memory  and  time  efficiency  have  been  observed.  The  timings  of  the
reconstruction of the used data sets are presented in the table 2.
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a) K=10 b) K=15
Figure 3.4: The influence of parameter K on the reconstruction – the bunny data set.

a) K=10 b) K=15 c) K = 20 d) K = 25
Figure 3.5: The influence of the parameter K on the reconstruction - the hypersheet data set.



Data set
Approximate timings of the reconstruction (in seconds)

K=10 K=15 K=20 K=25
bunny 27 30 33 36

hypersheet 1,5 1,8 2,2 2,6

woman 4850 5150 5400 5650

Table 2: Time efficiency of the implementation.

There  can  also  be  seen  the  impact  of  parameter  K  on  the  duration  of  the
reconstruction process,  ie.  the algorithm time complexity if  O(N.K),  where N is  the
number of the triangles reconstructed. However this linear complexity was not achieved
because of bad implementation.  

In particular, the bad timing results for the data set woman are caused by inefficient
implementation of the border vertex structure. Currently the algorithm spend most of the
time  reinserting  the  border  vertex  to  the  structure  (procedure
recalculate_candidates) and while looking for the appropriate border vertex
(procedure  get_border_vertex). This is being solved in the meantime.

The  memory used  for  reconstruction  of  the  data  set  woman (Notice  that  it  has
500 000 points.) didn't overcome the limit of  250MB of memory. This shows that the
algorithm is very cheap, in the sense of memory requirements.

The platform that has been used for testing was: PC Intel Pentium III 700Mhz, 1GB
of RAM, Microsoft Windows 2000 Professional. 
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a) K = 10 b) K = 15 c) K = 25
Figure 3.6: The influence of the parameter K on the reconstruction – the data set woman.



3.3 Conclusion
The  implemented  algorithm  offers  many  advantages,  however  there  are  still  some
problems. As stated in the opening of this chapter, the advantages of the implemented
approach are: linear time complexity (This has not been proved in the implementation,
but it is solved in the meantime.), low memory consumption, can reconstruct objects
from data sets with slowly changing sampling density (with respect to the parameter K).

However  this  approach  has  also  disadvantages.  The  real  world  data  sets  contain
erroneous samples, that should be detected either by some preprocessing step or by the
reconstruction itself. This approach suggests that the input data set is free of erroneous
samples. A large value of K slows down the reconstruction process. This is a problem
related to the sampling. The better the sampling (more uniform) the smaller the K can
be. However the sampling is changing very much in the real world data set.

The  key part  of  the algorithm is  the  “best  point”  selection criterion.  The  studied
criterion has this properties:
– Part a: the “best point” must lie withing the k-neighborhood of both end points of

the edge. This part causes the edge to be marked as final rather than other parts of
the criterion. Marking the edge as final leads to the holes forming in the mesh.
Small holes are a little problem to be solved, but large holes impose a challenge.

– Part b: the “best point” must lie withing the area formed by neighboring edges in
local  tangent  plane.  The  problematic  part  is  here  the  evaluation  of  the  local
tangent plane, where the principal component analysis is employed to estimate the
tangent plane. This may fail in degenerate cases.

– Part c:  the “best  point” must  form the biggest  angle with  the edge of all  the
possible  candidates.  This  part  of  criterion  doesn't  impose  any  information
regarding curvature, normal, ie. the local shape of the mesh. 
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4 Goals and future work
Each of the reconstruction algorithms has its advantages and disadvantages. Sculpturing
methods are very time and memory expensive, but they are the most reliable and robust
approaches. They also have provable guarantees when some sampling conditions are
met.  Volumetric  methods  provide  an  approximation  of  the  surface,  thus  provide
smoothing  of  the  surface,  but  they  suffer  from  the  volumetric  representation.  An
uniform volume grid is expensive because the grid size must be large enough to capture
every single detail contained in the mesh. The implicit function representation requires
some necessary parameters and it is very time and memory consuming. Region growing
methods require dense uniform sampling, while they provide linear time complexity and
low memory requirements. The advantage and disadvantage of the warping methods is
that  they  require  an  initial  surface  that  capture  topology,  and  therefore  they  are  a
possible post-processing of some approximation techniques.

The implemented method is quite useful for large data sets, however it is pretty slow
in meantime and not as robust as expected. Therefore we would like to focus on the
following topics in the doctoral thesis:
– derive  new  criteria  where  more  properties  of  the  local  part  of  the  mesh  (like

curvature) will be observed and thus improve robustness of the method,
– improve the method to be able to process data that are larger than available memory.
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