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Abstract: Solution of 3D electric fields in a system of thin charged conductors of general
shapes by classical differential methods (FDM, FEM etc.) is extremely difficult due to igno-
rance of boundary conditions and existence of geometrically incommensurable subdomains
within the investigated area. Application of integral methods is also complicated because the
kernel functions occurring in the first-kind Fredholm equations are integrable only in 2D and
not in 1D. Conductors with 2D cross-section correspond, in fact, with the physical reality, but
their introduction leads to very large fully populated matrices whose processing on common
PCs is still practically impossible. The paper offers an alternative algorithm consisting in sub-
stitution of each thin conductor by a set of point charges placed on a helicoidal curve sur-
rounding it. The theoretical analysis is supplemented with an illustrative example and discus-
sion of the results (convergence, accuracy).
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1 Introduction

A lot of tasks in the domain of electrical power engineering (and not only
there) is based on the knowledge of electric field in relatively large areas con-
taining charged conductors or elements of general shapes (substations, various
high-voltage apparatus, towers etc.). Computation of its distribution is, however,
an uneasy business. Due to complexity of the arrangement, analytical methods
are practically inapplicable, and also numerical methods do not often lead to ac-
ceptable results. Classical FDM or FEM based techniques may fail because of
lack of the boundary conditions and problems with meshing (thin conductors
versus large volume of ambient air). Situation can partially improve when using
codes with implemented open boundary techniques; these are, on the other hand,
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extremely expensive. Even integral methods do not represent the best choice. As
known, the first step is here calculation of the distribution of charge along the
conductors by means of the first-kind Fredholm equations. Their kernel func-
tions that are weakly singular are, however, integrable only in 2D. This is in ac-
cordance with the physical reality; no conductor is, in fact, infinitely thin. But
surface discretisation of conductors of finite dimensions leads to very large sys-
tem of equations characterised by a fully populated matrix whose processing on
common PCs is often impossible.

The paper offers an alternative method. Real conductors in the system are
first replaced by thin filaments and these are again replaced by sets of point
charges located along a helicoidal curve closely surrounding the filament. Val-
ues of the point charges are calculated in such a manner that potential at the
place of the filament is equal to potential of the original conductor. The field
quantities at any point in the area may then easily be calculated from the Cou-
lomb law.

2 Mathematical model of the problem

Let us consider a system of n charged 1D filaments C; of general shape
(Fig. 1) carrying potentials ¢;, i = 1,...,n. The filaments are placed in an isotropic
medium with relative permittivity &. The task is to find distribution of the elec-
tric field in such a system.
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Fig. 1. Basic arrangement of the filamentary conductors

Thin conductors C), ... C, are replaced by sets of point charges (conduc-
tor C) by charges Q, |, ..., O etc.) located along helicoidal curves surrounding
the filaments. While position of these point charges can be to some extent arbi-
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trary, their values are determined from the condition that they produce the pre-
scribed potential along the original filaments. Let us further choose (Fig. 1)

points Py, ... Py located on conductor C; etc. For any point P,; where
m e(l,n) and le('l,km> of this set we can write an equation
1 n k Qy
Pu(Put) = 227 (1)
4re f=lj=l‘rQ —r&|

where ¢, denotes potential of the m-th conductor and expression in the absolute
value in the denominator the distance between the charge Q,; and point P,,;. The
system (1) provides the values of charges Q;; that are immediately used for con-
sequent computations of the field quantities within the investigated area. These
are determined by means of relatively simple algebraic expressions.

3 Illustrative example

The methodology is illustrated on an example depicted in Fig. 2. The task
is to calculate the distribution of electric field quantities (potential, electric field
strength) near two equal circular loops with feeders made from thin conductors.
Potential of loop L, is 100 V while potential of loop L, is 0 V. Both loops are
placed in the air (& = 1). The field has strongly expressed 3D character.
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Fig. 2. The investigated arrangement
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The radius of the helicoidal curve with the substitutive point charges was
0.1 mm with ten points per one turn. The task was solved in the Cartesian co-
ordinates.

First, geometrical convergence of the method was tested, consisting in
computation of the potential and electric field strength at selected points for in-
creasing number of the point charges. The results are shown in Figs. 3 and 4.
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Fig. 3. Convergence of potential ¢ at three selected points
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Fig. 4. Convergence of the module |E| of electric field strength at three selected points

Next figures show distribution of the individual components and module
of electric field strength along several lines. Fig. 5 shows distribution of these
components along axis x, Fig. 6 along axis y and Fig. 7 along axis z.

The field quantities may be considered sufficiently precise at the distance
about 3 mm and more from the conductors. Near the loops, however, they are
strongly distorted due to used substitution. It can be seen, for example, in Fig. 6
(oscillations in the neighbourhood of point y = 0).
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Fig. 5: Distribution of the module of electric field strength and its components along axis x
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Fig. 6: Distribution of the module of electric ficld strength and its components along axis y

4 Conclusion

The method is well applicable in the cases where it is not necessary to
know the field distribution in the neighbourhood of its sources. Next work in the
domain will be aimed at testing the method in more complex arrangements and
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estimation of the errors by comparing the results for simple, analytically solv-
able dispositions.
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Fig. 7: Distribution of the module of electric field strength and its components along axis z
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