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Abstract: The paper deals with computation of electric field distribution along the
surfaces of a system of parallel conductors with various potentials. The method starts from
integral equations and the elaborated algorithm is applied to 4v and uhv overhead lines with
bundle conductors. The results allow evaluating of danger of giving rise to corona (even with
respecting the influence of rough surface of the cable) with all its interference effects. The
algorithm was compared with other already published methods with remarkable agreement.
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1 INTRODUCTION

Hv and uhv overhead lines are mostly realised by bundle conductors.
Electric field strength on their surfaces depends on potential of particular
conductors, their radii, mutual distances and quality of their surface. Exceeding
the critical value £, ~21kV/cm gives rise to corona. One of the advantages of

using bundle conductors is reduction of this discharge that, as is well known,
increases losses along the line, unfavourably affects near telecommunication
devices and produces acoustic noise.

Various methods have been used for determining the electric field near the
bundle. Older papers, see, for instance, [2], [15] started from an analytical
solution of electric field produced by one conductor and the resultant electric
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field of a bundle was calculated using superposition. The results obtained in this
way are, however, only approximate. Other authors [3], [4] and [8] replace the
particular conductors in the bundle by a system of suitably located current
filaments and solve their electric field. Conformal mapping was used in [13].
Simulated charge method was successfully applied in [11] and [12]. Numerical
calculation based on standard finite element techniques (and realised by means
of professional codes) would be comfortable, nevertheless, problems with
geometrical incommensurability (small cross-sections of the conductors versus
their large mutual distances and domain containing air) would lead to using
strongly nonuniform mesh and enormous number of equations. The task
represents, moreover, an open boundary problem, which is often a source of
further errors.

The principal advantage of this access consists in the fact that the
numerical computation of the charge density is much simpler than computation
of the distribution of potential near the conductors (which would, of course, also
provide values of £, ). While distribution of potential in the solved arrangement

represents a 2D problem, solution of the charge density is only a 1D problem.

2 MATHEMATICAL MODEL OF THE PROBLEM

Considered is homogeneous, linear and isotropic dielectrics (air) of
permittivity g, with a set of » direct parallel conductors with constant potentials

¢, k=1,...,n. Electric charge on their surfaces is supposed to be distributed
continuously, with charge density o, that does not change along their length.

The electric field near the conductors is obviously two-dimensional. Potential at
a general point B of this field is given by expression [7]
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where ) is a simply connected curve in which the cross-section %
intersects the plane of the field perpendicular to the conductors, r* is the
radiusvector of the elementd/*), r, is the radiusvector of point B and |r(” - rB‘ the
distance of a variable point A of the planar curve /*) from point B outside the
conductors (see Fig. 1). We put, moreover, that
lim ¢(r,)=0.
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Fig. 1. The k-th conductor in the set of n parallel conductors

Let point B e 1 Now (1) transforms into the first-kind Fredholm integral
equation with unknown distribution of charge density oy, .

27 &0, = C_fcri(r(”)].n RO di®, k=1...,n
k= l!(i) ' |

Solution of the system (2) provides o, at an arbitrary point Be/*) . This
knowledge enables consequent computing the field quantities at any point
outside the conductors. The potential ¢ would be determined from (1) while the
electric field strength from relation

E(ry) = —grade(r,).

This is, however, beyond our interest.

Let us return to our case, when Be /%) (Fig. 2). The electric field strength
at such a point has only normal component and may be determined from
formula
o, (r'")

E(k)(r(ff)) —
n y gn

In this way we solved our problem because the value of electric field
strength decides about giving rise to corona on the surface of any conductor.
Now it remains to carry out numerical solution of (2). First we divide the
contour lines /*) of cross-sections of the particular conductors into N*) parts of
length A/, i=1,..,N,. When this division is sufficiently fine, each part may be
supposed to carry a constant value of the charge density

o) = const (i=1...N,, k=1,..n).

The distance between the midpoints of parts A/*) and A/l" is given as
| (k) _ m‘ - \/(xm XY 4 () = y0y?
J
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Equation (2) for the discretised model now reads (in order to avoid
dividing by zero we leave the term for i = j and k£ = / in the form of a definite
integral)

. N0 a2
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As far as A" is a line segment, calculation of the integral in (6) is easy
and its result is

M“}IZ (k) (k)
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In this manner we obtain a system of algebraic equations whose number is

n
m = ZN“" .
k=1

The system can be rewritten into a matrix form

Ao =2re, @
where
A(m,m) =[apq:|, p,q=1,...m,
1
for p#q: a, =Al -In \
rg ! |rp_rq‘

Al
for p=q: a, =Al,|1-1In - )

Here o(m,l1) is the column vector of charge densities in the particular
segments and @(m,1) their potentials.

3 ILLUSTRATIVE EXAMPLES

For the conductors placed in vertices of a regular square (see. Fig. 2) we
calculated distribution of the normal component of £, on along the surface of

one conductor. All conductors in the bundle have the same potential ¢ =100 kV.

Perimeters of all conductors were discretised into N =..=N® =50line
segments. The results are depicted in the polar co-ordinates in Fig. 3. The
maximum and minimum values of the electric field strength are E, n.x = 14.30
kV/em, E, nin = 10.58 kV/cm. The total electric charge per unit length of one
conductor of the bundle is

N
Q= [odS =) o,Al=68783.10"7 C/m .
s i=1
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Fig. 2. A bundle conductor for Fig. 3. Distribution of the normal component
n=4 of electric field strength along the surface
of one conductor of the bundle (n = 4)

If we replace the bundle conductor by a single conductor of radius r = 2x,
(its cross-section being the same as the total cross-section of the bundle
conductor), the electric field strength E, would be distributed uniformly and its
value would be
p _nQ1_468783107 1
" 2meyr 27g, 0.02
If we use a bundle conductor where the distance between individual
conductors is very high (their mutual electrostatic interaction is negligible), the
electric field strength £, will again be uniform and its value would be
Q0 1 68783107 1
2meyr, 278, 0.01

=24.73 kV/m.

E =

n

=12.36 kV/m.

4 CONCLUSION

The presented algorithm for computation of dielectric stress on the surface
of a conductor in a bundle was compared with results obtained by other
methods. Tab. 1 contains some results obtained by different algorithms for a
bundle containing n = 4, 8 and 12 conductors characterised by d/r = 26.099 (d
being the distance of axes of two neighbouring conductors in the bundle and »
their radius). The perimeter of each conductor was then divided into N = 32 line
segments. The agreement between particular methods is outstanding.
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Tab. 1. Comparison of results

E in/ Emax n=4 n=_, n=12
the described method 0.7217 0.6624 0.6454
by Cahen [3] 0.7203 0.6593 0.6418
by Timascheff [13] 0.7222 0.6632 0.6463
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