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Abstract: The paper deals with computation of 3D electrostatic fields (distribution of
charges, electric potential and other derived quantities) by means of integral equations and
their numerical solution. Selected are neither configurations that can be simplified to 2D prob-
lems and solved analytically, nor arrangements that might be processed by the FD or FE tech-
niques. Analysed are fundamental mathematical aspects of the method, which is illustrated on
a 3D field between two cubes in a general position.
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1 Introduction

A lot of tasks associated with mapping of electrostatic fields cannot be
successfully solved by means of classic FD or FE techniques. We can mention,
for example, problems characterised by the lack of boundary conditions, geo-
metrical incommensurability of particular subdomains in the investigated area
cete. In such cases alternative algorithms have to be applied, one of them being
the method of moments using the first-kind Fredholm integral equation.

Although the method itself is well known [1], [2], its application brings
specific problems. One of them is manipulation with fully populated matrices
containing improper integrals in their main diagonals. Finite values of these in-
tegrals with weakly singular kernel functions exist only for 2D surface elements,
which corresponds with the physical reality, but on the other hand, discretisation
of large complicated surfaces often leads to a very high number of equations in
the discretised model. Local problems with accuracy may also appear, associ-
ated with a high charge density near edges, corners ectc.
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The paper illustrates the method on computation of electric field near two
charged cubes in general position.

2 Mathematical model of the problem

Consider a system of # mutually electrically isolated well conductive
metal conductors Cy, (s,..., C, carrying constant electric potentials ¢, ¢,..., ¢,,

see Fig. 1. The system is placed in a homogeneous medium of permittivity &.
Dimensions of the conductors are finite and their surfaces smooth by parts. It is
necessary to map the electric field in the area of the conductors.
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Fig. 1: Arrangement of the charged bodies
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The first step is to find functions oy(S)), i = 1, 2, ..., n, describing the dis-
tribution of electric charges along surfaces S; of conductors C;. This is realised
by solution of a systcm of the first-kind Fredholm integral equations in the form

#i(P) 47&905 }Z:‘-L rP’rQ (Sf)ds’ PeS;, Q€S f,l_}'=1,...,n (1)
with weakly-singular kernel functions
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where P is the reference point and Q is variable pomt that passes through all sur-
faces S;,j =1, 2, .

The basic advantage of the function G(rp,rg) is its integrability in 2D.

Solvability of the system (1) and unambiguousness of the continuous model was
proved in [3]. Discretisation is performed in the standard manner. The surfaces
are approximated by triangular or quadrilateral meshes. Real distribution of
electric charge in the cells may be substituted by a polynomial function (con-
stant function may be disadvantageous within corner and edge cells, where
variations of the charge are significant). Proper and improper integrals in the
system matrix were calculated analytically for both triangular and rectangular
cells in both Cartesian (inverse goniometric and logarithmic expressions) and
cylindrical (expression containing elliptic and some other higher functions) co-
ordinate systems.

The second step 1s to find the field quantities (potential, electric field
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strength, partial or total capacitances etc.) by means of relatively simple integral
expressions. The method was programmed by the authors in Matlab code that is
available at practically every Czech technical university.

3 Illustrative example

The method was tested on determining the electric charge distribution
near two charged cubes in general position (see Fig. 2) placed in the air. The
length of the edge of both cubes is 0.02 m and the distance of their centers 0.035
m. All walls were discretised uniformly. Geometrical convergence follows from
Tab. 1. Selected results for subdivision of each edge by 12 cells are depicted in
Figs. 3,4 and 5.
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Fig. 2: Basic arrangement of the cubes and distribution of the electric field (potential of the
left cube ¢ = -50 V, right cube ¢, = 50 V)

Tab. 1: Geometrical convergence for growing division of an edge (Athlon XP 2000+)

elements in | charge O, (C) | charge O, (C) | capacitance C | time of com- | number of
each edge (F) putation (s) | unknowns
6 -1.2086e-010 | 1.2119e-010 1.2103e-012 8.139 432
7 -1.2122e-010 | 1.2156e-010 1.2139¢-012 16.078 588
8 -1.2148e-010 | 1.2183e-010 1.2166e-012 29.359 768
9 -1.2168¢-010 | 1.2203e-010 1.2186e-012 51.156 972
10 -1.2184e-010 | 1.2219e-010 1.2202e-012 82.719 1200
11 -1.2196e-010 | 1.2231e-010 | 1.2214e-012 131.547 1452
12 -1.2206e-010 | 1.2241e-010 1.2224e-012 200.281 1728
20 -1.2247e-010 | 1.2283¢-010 | 1.2265¢-012 | 2735.514 4800
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Fig. 3 shows two planes A and B in which we calculated the distribution
of potential. It was determined by means of analytically solved integral expres-
sions based on the knowledge of the computed surface charges.
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Fig. 3: Two planes with calculated potential distribution
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Fig. 4: Distribution of clectric potential in plane A (Fig. 3)

The distribution in Fig. 4 was obtained from values of the potential at a
relatively large set of selected points. Nevertheless, the equipotential lines con-
sist of short straight lines obtained by means of a linear interpolation. An analo-
gous distribution in plane B can be seen in Fig. 5.
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Fig. 5: Distribution of electric potential in plane B (Fig. 3)

Particular components of the electric field strength at any selected point
were calculated directly from the distribution of charges, which provides much
more accurate results in comparison with their calculation from the potential.
However, computation of this quantity requires a lot of additional operations
associated with necessary co-ordinate transformations and takes a considerable
amount of time.

Fig. 6 shows distribution of the potential and module of the electric ficld
strength along abscissa MN connecting the rightmost vertex of the left-hand
cube with the centre of the nearest wall of the right-hand cube. The number of
the cells 1s 20. Obvious is inaccuracy in potential at point M (there is about -38
V instead of -50 V). This error caused by considering constant surface charge in
each cell and round-off errors could be reduced by using finer mesh.

4 Conclusion

The paper (that represents an organic continuation of [4]) shows that solu-
tion of even fairly complicated problems in 3D geometries can be reliable and
relatively cheap when using own single-purpose user procedures. In the Czech
Republic the Matlab is widely used both in research organisations and at univer-
sities and procedures like that may also be utilised via Internet.

As for problems characterised by curved boundaries, the accuracy of their
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solution depends only on its covering by sufficiently fine mesh consisting of tri-
angular or rectangular cells, best in the Cartesian or cylindrical coordinates. For
such elements it is possible to determine most of the definite integrals occurring
in the system matrix analytically.

4 1 ‘ — | 450

f"
-

o . . .. -
;: Electric potential .~~~ 40

L - i ‘,-e"

— H ”J :
N weivarened .‘..‘,a. demebien - w430
o
| . 4
- -
- "

w
o

r (3]
oo ]
S '
y \\\\ :
\ \
N\ .
/\ \\_X_;
\ 7
\ - - /

]
(@]

-
o

Lo
o
Electric potential [V]

Module of the electric field strength [V/m]
o
o

Module of the electric field strength -{-30

1-40

1 1 i -50
0 20 40 60 80 100

Length of abscissa MN [%]

Fig. 6: Distribution of potential and electric field strength along abscissa MN

Next work in the field will be aimed at more sophisticated approximations
of the charge density in particular cells by means of higher-order polynomials in
order to increase accuracy of the results.
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