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CONTRIBUTION TO THE MINIMIZATION
OF LOOSES IN THREE-PHASE LINE

DANIEL MAYER, PETR KROPIK'

Abstract: In the article 1s developed the approach for minimizing losses in line by passive
compensator. Given calculation method is illustrated by three numerical problems. It is
possible to modify this method even for design of filters enabling increased quality of
transmitted electric energy by suppressing unwanted higher harmonics in network.
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1 Defining the solved problem
Three-phase non-linear load of inductive character is connected to balanced
three-phase network, whose voltages are sinusoidal functions with period 7, Fig. 1.
The load draws currents 7;(?), i>(¢), i3(¢) that are periodical, generally unbalanced and
nonsinusoidal. To the load

terminals shunt compensators are
attached that contain two-poles
RLC. The mductance of reactance YV
. . +| +| + 1 I 1,
coils is chosen so that resonance | (? (,‘9 oL
frequency f; of the two-poles is W[ U] Uy |
distanced from the frequency of / 2 —
higher harmonics generated by the [ty ,%‘;;—‘—E:;‘*:E
. ~ compensator
nonlinear load, usually f; = 189 Hz iy iyoi,
or f; = 134 Hz. The network 1s {nonlinear
connected with the load through line load

with currents iy (), in(?), in(f). Let us Fig. 1. Three-phase circuit structure.

consider that the terminal voltage-rigidity of load can be considered sufficient. Time
course of voltage on load terminal is known and we define parameters R, L, C of
compensation two-poles, for which the losses in line are minimal. We minimize the
functional, which is objective function

1 T 2 2 Iy
F=— j("ﬁ +i, + Ifzj)d{ (1)
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2 Calculation of compensation of two-poles parameters
Instantaneous values of phase voltages and line voltages of a balanced
network are

u, = Usin ot U, = \/gUsin(a)! + 1 /6)
u, = Usin(wt - 27/3) (2) Uy, =3Usin(ar — /2) (3)
u, = Usin(wt + 27 /3) u, = \/EUSiH(CUI + 57/6)

Currents in wye-connected compensation two-poles R;L;C; (i =1,2,3) are
i, = I,sin(wt + /6 —y,)
by, = Lysin(wt — /2 - y,) (4)
iy, = I,sin(wt +57/6 —y,)

1
where I, = BU[R, + (oL, ~1/aC |2 i,j=1273;i#] (5)

The reactance coil has inductance Z; , which is defined so that the two-pole

has the chosen resonance frequency f;, thus
1

L = m, where o, = 2xf, (6)
Let its resistance be k-multiple of inductive reactance, thus
R = kol =<2 (7)
w, C,
Then phase angle v, = v, = v, =y €(0,7/2), when
1 1 I ;
tany = E{a)}; - fo_Q] = ;(1 - m‘;} (8)
It is possible to express equation (5) using equations (6) and (7) in the form
) = % 9) where 4’ = k?—iﬂ + [;L: —~ é} (10)
instantaneous line-currents in eq. (1) are calculated from equations
Iy =0, + 1y — Ly, I, =5 + 0y — 4, I3 =10 + I — Iy (11)

So the optimization problem is formulated. The solutions are the parameters
of compensation two-poles.
If the load is linear, unbalanced and of inductance character, it draws currents
i = Iisin(wt — @), i, = Lsin(wt — ¢, — 27/3), i, = I,sin(wt — @, + 27/3) (12)
PPy, 20

3 Numerical minimization of the objective function (1)
All above-mentioned formulas were implemented using programming
language of computational system MATLAB and MATLAB Optimization Toolbox.
At the beginning current amplitudes /,, />3 and /;; had been computed - see
equations (5). Constants definitions and auxiliary computations are not given here, as
it is mentioned above. In the second step variables 4,, 4> a A3 were computed using
equations (10), 1.e. for example
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Al=(0.1.72).*((omg."~2)./(omg0."4))+(((omg./(omg0"2))-(1./omg))."2);
Computation followed with calculating of relevant amplitudes according to equation

(5), 1.e. for example

I12=Cl.* (U12./sgrt (Al));
and currents in compensation two-poles using equation (4)

112 = I12.*sin(omg.*t+(pi./6)-psil);

i23 = I23.*sin(omg.*t-(pi./2)-psi2);

i31 = I31.*sin(omg.*t+(5.*pi./6)-psi3);

Before current in the load were calculated, we had computed following

auxiliary variables, which represents final angles. We need to calculate these angles

to make program code more transparent and we need to know it in the next part of

computation.
ang il = omg.*t-(pi./3);
ang i2 = omg.*t+((-52.*%(2.*pi./360))=-((2./3).*pi));
ang_i3 = omg.*t+((-68.%(2.*pi./360))+((2./3).*pi));

Calculation of current in the load according to equation (12), i.e. for example
il=Il.*sin(ang il);
The part of program code shown above generated a course of currents in case of

linear load. In case of non-linear load this course must been adjusted, i.e. for example
il = ~((mod(ang il,pi) < angle_4_t) & (mod(ang_il,pi) > 0)).*il;

Some parts of the currents /;, i; and i; courses had been levelled with the zero
by this part of program code, according to value of variable angle 4 t. This method
produced required course of currents. At the end of computation the courses of
currents i, ip and 1,3 were calculated with help of conditions (11)

i11=i1+112-131; i12=i2+i23-i12; 113=i3+i31-123;
Final sum of squares of these currents was computed
y=(111.72)+(112.72) +(i13.72);

The numerical integration was based on equation (1). A standard MATLAB
functions quad and quadl can be used. These functions used recursive adaptive
Simpson quadrature algorithm. Function quad(fun, a, b) approximates the integral of
function fin from a to b within an error of 10, Function fin accepts vector x and
returns vector y. Using form quad(fun, a, b, tol) uses an absolute error tolerance fo/
instead of the default (10°). In our calculations it was needed to set this tolerance
usually between 107 and 10” to reach an adequate accuracy of integration. For this
reason we used function quad! instead of quad. The function quad! should be more
efficient with high accuracies and smooth integrands.

Finally we used this function in the following form
quadl (' fun',0,T,1le-8,[],C1,C2,C3) / T;

Additional arguments CI, C2 and C3 were passed directly to function
Jfun(t,C1,C2,C3).

Result of this integration represents our objective function. To solve
optimization problem, we applied standard MATLAB functions fminsearch, fminunc
and fmincon included in MATLAB Optimization Toolbox.

Function fminsearch is generally referred to as unconstrained non-linear

optimization. We used it in form
options = optimset ('fminsearch');
options.TolFun=le-15; options.TolX=le-15; options.MaxFunEvals=1000;



- B 46 -

[min, fval, exitflag, output]=fminsearch (€cbjective f,input,options);
The variable options represent set of initial parameters of this function. Useful
parameters are
Display — Level of display. 'off"' displays no output; 'iter' displays-
output at each iteration; 'final' displays just the final output; 'notify’
(default) displays output only if the function does not converge.

MaxFunEvals — Maximum number of function evaluations allowed.
Maxlter Maximum number of iterations allowed.

TolFun Termination tolerance on the function value.

TolX — Termination tolerance on x.

Function fminsearch uses algorithm based on the Nelder-Mead simplex direct
search method. This is a method that does not use numerical or analytic gradients as
in fminunc or fmincon (see below). When the solving problem is highly
discontinuous, fminsearch may be more robust than fiminunc.

Function fminunc is generally referred to as unconstrained non-linear
optimization of multivariable function. We used it in form

options=optimset ('fminunc'); options.TolFun=le-15;
opticns.TolX=1e-15; options.MaxFunEvals=1200; options.GradObij='on';
[min, fval,exitflg,output,grad, hessian]=fminunc (@cbjective f,input,options);

The variable options represents set of initial parameters of this function as above.
Many parameters are same as parameters of the function fminsearch. We used
special parameter GradOby sets 'on'

GradObj — gradient for the objective function. User in objective function defines
it. The gradient must be provided to use the large-scale method. We used it as an
optional parameter for the medium-scale method.

Function fminunc uses algorithm based on the BFGS (Broyden, Fletcher,
Goldfarb, Shanno) Quasi-Newton method with a mixed quadratic and cubic line
search procedure (in case of medium-scale optimization). The DFP (Davidon,
Fletcher, Powell) formula is used to approximate the inverse Hessian matrix. In case
of Large-Scale Optimization an algorithm subspace trust region method based on the
interior-reflective Newton method is used. Each iteration involves the approximate
solution of a large linear

system using the method of
C,=4.118 x 10°

preconditioned conjugate
gradients (PCQ). 5.
When it i1s needed to 50
climinate improper values of
variables  (e.g.  negative 40.
values of capacitance) we 3.
implement function fmincon. 0l
This  function finds a P e
minimum of a constrained x10* N c10*
non-linear multivariable C,IF] 2z ¢, IFl

function. We used it in form

Fig. 2. Objective function for problem 4.1.
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mat A=[-1,0,0;0,-1,0;0,0,-1]; vec b=[0;0;0];

options=optimset ('fmincon') ;options.TolFun=le-15;o0ptions.TolX=1e-20;
options.TolCon=1le-15; options.MaxkFunkvals=800; options.GradOpij='on';
[min, fval,exitflag,output, lambda_v,grad_v,hessian_v]=fmincon(@criteria f,
input,mat_A,vec b, [], [],[],[],[],options);

Variable mat A represents the matrix A of the coefficients of the linear
inequality constraints and vec b represents corresponding right side vector b (i.c.
Ax <b).

Function fmincon uses algorithm based on the Sequential Quadratic
Programming (SQP) method (in case of medium-scale optimization). Quadratic
Programming (QP) subproblem is solved at each iteration. An estimate of the
Hessian of the Lagrangian is updated at each iteration using the BFGS formula (see
fminunc above). A line search is performed using a merit function. The QP
subproblem is solved using an active set strategy.

4 Numerical problems

4.1 Linear balanced load

For comparison of the results obtained in numerical calculation with analytical
solution we use the following simple problem. Line voltages of balanced network are
J3U =380V, w = 27 f =1007. The load is linear (i. e. it draws harmonic
currents) and symmetrical. Drawn currents are expressed in equation (12), where

L =0L=1=1=10A, ¢ =¢,=¢, = ¢ = 60"

Compensation is done using static condenser in wye connection. Currents
I\, Iy, Iy acc. Eq. (4), where acc. Eq. (9)

I, =38.10'7C, (13)
Substituting for i,,, i,,, ,; ineq. (1) and solving optimization task we get
C =C,=C, =4,188.10°F , for Fpyn=37,5 (14)

For judging the environment of the found minimum of functional F according
eq. (1) there is shown in Fig. 2 function ¥ = F(C,,C,) for C,=4,188.10° F in 3D
representation. Optimization was done using three above-mentioned methods and the
same results were achieved with the difference that function fmincon and fminunc
showed higher accuracy of the result, but only in higher orders, which does not have
any practical meaning.

It is possible to solve this symmetrical problem also analytically (see e.g. [1]).

ISing _ 4188.10° F (15)

Obviously C, = C,=Cy= C, where C = 3U

4.2 Linear unbalanced load

Network is the same as in the previous example: J3U =380V, w =1007.
The load is linear, unbalanced; drawn currents are expressed by equations (12),
where
[ =10A, I,=8A, I =12A, ¢ =60", ¢ =52, ¢ =68 (16)



- B 48 -

Compensation is done using two-poles R, L, C, (i =1,2,3) for the following

values:

f =189Hz, w, = 27189s", k = 0,1. (17)
Through minimization of the functional
(1) we obtain: e

C, =2,826.10°F, C, =4,015.107F N S
C, = 4,846,107 F N EoN
According eq. (6) is

i[A]

L = 01577 H, L,=0,1110 H 0
L, = 0,0919 H .\
And according eq. (7) is ;
R = 4,954 Q, R, = 3,486 Q o
Ry = 2,8889 Q 1 oas oo od g o aom oo

This case was solved again usin . . v
& & Fig. 3. Time-dependency of the current of

all three methods. The best effect was the load.
achieved using function fminsearch. In
case of function fminunc and fmincon the calculation got much longer and taking into
consideration the character of the objective function course some numerical
instabilities occurred as well.
4.3 Nonlinear unbalanced load

The network is the same as in the previous problems. Instantaneous values of

currents drawn by the load are (Fig. 3)
0 for 0<t< a

T~ Iisin(axt — ) for a <t <27,i=1,2,3
where v, = —¢,, v, =-¢, -27/3, y,=-¢, +27/3

Calculation is done for « = 45° and for values 1,, I,, I, ¢, ¢, ¢,
according eq. (16).

Compensation is done using two-poles R, L, C, (i =1,2,3), for which eq. (17)
is valid. Minimazing functional (1) we get

C, =2841.10°F, C, =4,184.10°F, , =4,645.10°F

L = 01568 H, L,= 01065 H, L, =0,0959 H

R =49260Q, R =3345Q, R =30130Q

Application of the three above-mentioned methods had the same effect as the
previous cases.
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