- B 65 —

September 10 - 12, 2003
Pilsen, Czech Republic

ON THE USE OF THE FOURIER TRANS-
FORM IN ILL-CONDITIONED PROBLEMS

DOC. ING. LUBOMIR SUMICHRAST!, ING. RASTISLAV Bozek'

Abstract: Recently the new method using the Fourier transform for the solution of ill-
conditioned matrix problems had been proposed [1]. Thorough analysis has shown that in
opposite to the claim of authors the new method is not superior to the commonly used
methods.
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1 Introduction

Inverse problems are among the most challenging computations in science
and engineering because they involve determining the parameters of a system that
is only observed indirectly. Typical are the tasks of the remote sensing,
electromagnetic defectoscopy, ultrasonic detection and other methods of indirect
diagnostics. Often the blurring of results due to imperfect measurements belong to
this class of problems. If the quantity-to be-determined from measurement results
is extremely sensitive to the measurement error, the problem is called ill-posed.
Many of ill-posed problems of indirect sensing are described in terms of the
Fredholm integral equation of the first kind

b
jk(x,y).f‘(x)dr ~ g(») (1)
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where the unknown quantity 7(x) is to be inferred from the results of meas-
urement g(x). The kernel k(x,y) of integral equation (1) is the characteristics

the measuring instrument of the method involved. A special case of (1) is the
convolution equation

jk(y —x)f(x)dx = g(») @)

where k(x) is the impulse response of the measuring instrument. Discretisation
of (1) leads to standard matrix equation
K-f=g 3)
For the ill-posed problems the matrix of the discrretised model is usually
ill-conditioned too. If the number of measurements M is equal to number of un-
knowns N (i.e. K is a square matrix) then g can be obtained by the inversion of K
f=K'-g (4)
If the number of measurements is larger than the number of unknowns,
M > N, then the least squares solution is usually taken. i.e. the vector f mini-
mising the norm

: 2
min {Hg—K-f” } (5
which leads to the solution of the system of N x N equations with the square
matrix K” -K
KT K- f=K".g (6)
If M <N the solution is not unique and usually the solution with the
minimum norm Hf H is accepted.
Since the right hand side g is never given exactly usually instead of g the
vector g, = g+ ¢ 1s on the left hand side of (3) or (6) where € is the error vector.

The error vector may represent not only the errors of measurement but also the
round-off errors of the numerical inversion procedure itself and/or other
processing of data as well. In consequence the result fis loaded by certain error
too and one gets instead of exact f the vector f;; =f + 1. The error amplification

factor is defined as
Sl BT o

This factor is usually larger than one, usually if Q>>l the significant error am-

plification occurs and the matrix K is called ill-conditioned. It can be shown that
For the convolution equation using the Fourier transform (2) one obtains the
simple product

k(@) f(®)= g(o) (8)
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where k(®), ‘f((o) and &(®) are Fourier spectra of £(x), f(x), and g(x).
Solution of (8) is straightforward

f(©)=8(0)/ ko) 9)
however, in case of the right sige loaded by error equals
fr(@)=gp(0)/ k(o) (10)
le.
Fr(@)= f(0)+7(®)= g(o)/ ko) +&0)/ k(o) (11)

The nature of the error amplification can be easily revealed from (11).
While the spectral components of physical signals decrease with frequency, the
error terms having the character of white noise remain roughly constant. The

transfer function ﬁ(co) decreases with frequency too, therefore the ratio of high
frequency of noise components becomes relatively more pronounced. For zero
points of transfer function the term fi(®)=&(®)/k(m) even grows to infinity.

Therefore usually the results of inversion of ill -conditioned matrix oscillate wildly
with high frequency. Numerically is (8) processed using the discrete Fourier

transform, i.e. k(®), f(®), #(®) &(©) and A(®) are represented by discrete
vectors

k= [ko. k... k] (12)
in points ®, =nQ, n=0,1,... N =1 which are multiples of discretisation step €2,
and the same holds for the discrete vectors f = [ fo, f]',..., f}\,_]],

9=[8.2,...8xn 1] and similarly for € and 7. The discrete version of (10), and
(11) reads
£ =8,(@)/k,, n=0]1.N~-1 (13)
Jin =T+ 00y = 8,/ by +8, [k, n=01..N -1 (14)
The high frequency oscillations in fF_ can be in the spectral domain at-
tenuated by the suitably chosen weighting function w( ), or in the discrete form
by a weighting vector W = [Wy, W,..., Wy _]
Tn = Wnin] by (15)
i.e. the "regularised" solution (15) is taken instead of the "error" solution (14). In
the extreme case when 1; is very small the corresponding frequency component
in (15) are simply cut-off taking respective w, = 0.
The most often used method of damping the high frequency oscillations in
solution vector of the ill-posed matrix problems is the Tichonov's method of
"regularization" based on minimisation of the sum of squares of norms

lg - K-f| and |fg], i.e.
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. 2 2
min {|g - K -fr| + alfs| ! (16)

weighted by the "regularization parameter a, based on least squares solution of

the matrix equation
K 9 ,
go="" 17

The method of cutting-off the higher spectral components can be used also

for non-convolutional problems of type (1) written in the discrete matrix form (3).
Independently of number of equations M and number of unknowns N there exist
the unique singular value decomposition method factoring the matrix K with A/
rows and N columns into the form

K=U-z.vT (18)
where U is the M x N column orthonormal matrix, X is the diagonal matrix with
N nonnegative diagonal elements o,, n=1,...N, X= diag[(?n], and Vis the

N x N orthonormal matrix. The solution of (18) can then be written in the form

N T
_ o u .g
f=v.xlul.g=) v, 19
s g Z S (19)
where 7! =diag[l/ 0,,], u’ are the rows of U’ and v, columns of V.
This solution works independently of the fact if M >N, M=N,or M <N .In

all cases the solution (19) minimises the norm
min {Hg—K-fHZ} (20)
Even for singular matrices when some &, =0 certain type of the solution

can be found simply setting zero instead of 1/c,, in =" in (19). This is equiva-
lent to cutting-off unwanted spectral components in (15). If we do the same for
the ill-conditioned matrix for those &, which are smaller than certain limit, then

we are using in fact windowing with rectangular window in the sense analogous
to (15)

2 Fourier transform inversion method

In the recently published work [1] the authors claim to reach better results
in inversion of the ill-conditioned matrices with making use of the discrete Fourier
transform of the matrix itself, of the unknown and of the right hand side as well.
The elements of the discrete Fourier transform matrix F read

_ [ 1 2mGe-ne-n/N 2
{F}k-feﬂ-f\") {\Ne }k,é'E(l.N) 1)
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The Fourier transform matrix is a symmetric matrix with the property
F*.F=1,ie F'=F%*. One can easily write for (3)
F.-K-F*Ff=F-g (22)

or
Kf=¢

where K=F -K-F* is row- and column-Fourier-transformed matrix K

(23)

and f and g are the discrete Fourier spectra of f and g. Instead of solving (3)
one can solve (23) with subsequent inversion
F*f=F*F.f=f (24)

Note that in case of convolutional problem (2) the matrix K must be diagonal
with elements equal to k = [lzo,knl,...,kAN] in (12).

3 Results and conclusions

The authors in [1] claim that the calculation using (23) and (24) leads to
better results than the commonly used methods as e.g. Gauss-Jordan elimination
method, QR method, or SVD method. As a testing device they use the matrix
employed also in [2]

3 3 3 3 7% ] [12] [x, ] [16/56+04]

5 5 5 5+8||x| |13 x| | 11108 (25)
6 6 648 6 ||x; 1| X ~7/58

4 4+8 4 4 ||x4] [05] [xy | | -7/108

where the small disturbance § is taken betweend (10 ~107'*) and the exact

solution (shown above) using the Cramer rule is easily obtained. Our results are
shown in Tables 1 through 4.

Table 1. The solution using the Singular value decomposition

x X x X,
o= 1E-8 3.[9999763]4233H+08 -]‘0999‘)9358869]3%8 —1_399999[);()618}%1)8 -6,999992937—‘159E+07
8= 1E-9 3.199971162495E+09 -1.099991261178E+09 -1.399987914113E+09 -6.999919868034E+08
o= 1E-10 3.199724466667E+10 -1.099922764353E+10 -1.399885227223E+10 -6.999164750499E+09
8=1E-11 3.198856498745E+11 -1.099704419566E+11 -1.399459227526E+11 -6.996928516500E+10
o= 1E-12 3.198596686178E+12 -1.099042649116E+12 -1.399042807803E+12 -7.005112292580E+11
8= 1E-13 3.054973458180E+13 -1.056996915902E+13 -1.337075487763E+13 -6.609010545151E+12
&= 1E-14 1.973866770514E+14 -8.386531412627E+13 -8.525580080273E+13 -2.826556212237E+13
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Table 2. Singular values of the matrix

0'] 62 0'3 0'4

5= 1E-8 | .85472E+01 9.91000E-10 1.63220E-10 1.00000E-09

&= 1E-9 1,85472E+01 9.90995E-11 1,63230E-11 1.00000E-10

5= 1E-10 1.85472E+01 9.00995E-12 1.63284E-12 1.00003E-11

6= 1E-11 1,85472E+01 9 90913E-13 1,63200E-13 1,00009E-12

a=1F-12 1,85472E+01 9.97066E-14 1,71425E-14 9,99405E-14

5= 1E-13 2.664540-15 1.85472E+01 | 9,76996E-15 9.76996E-15 | =

& =1E-14 6,280371-16 1,85472E+01 2.90881E-15 1,00249E-15

Table 3. Gauss-Jordan elimination
x} ).'2 x3 x4
5= 1E-8 3.200000021115E+08 1.100000027409E+08 -1.400000006175E+08 -6.999999835301E+07
o= 1FE-Y 3.199999735398L+09 1.099999908980E+09 -1.399999883930E+09 -6.999999420817E+08
&= 1E-10 3.199999735248E+10 1.099999908986E+10 -1.399999884140E+10 -6.999999420817E+09
&= 1E-11 3.199937562753E+11 1.099999908986E+11 -1.399999884161E+11 -6.999377696027E+10
&= 1E-12 3.1990939290601E+12 1.0996950132064E+12 -1.399875550248E+12 -6.995233655474E+11
&= 1E-13 3.188389116722E+13 1.098066163355E+13 -1.394920238566E+13 -6.954027148014E+12
S=ID.14 | 3275345183542E+14 | 1.147611475294E+14 | -1.432963517800E+14 | -6.947701904483F+13
Table 4. Fourier method solution
Xy Xy X3 X4

6= 1E-8 3,199999943512E+08 1,099999926749E+08 -1, 400000088445E+08 -6,999999243182E+07
5= 1E9 3.199999735631E+09 | 1,099999908986E+00 | -1,399999884163L+09 | -6,999999420817E+08
&= 1E-10 3,199999735271E+10 1,09999990898GE+10) -1,399999884 163E+10 -6,99999942081 7E+09
&= |E-11 3,199919806289E+11 1,009919980040E+11 -1,400079813109E+11 -6,999200131363E+10
ST 1E12 | 3.100715543425E+12 | 1.0990022180521+12 | -1,399875550248E+12 | -6,999377751242F+11
6= 1E-13 3,1963956742141+13 1,104015316365L+13 -1,386913681074E+13 -7.054666767T48E+12
5= 1E-14 | 3.198579280803F+14 | 1.049134004103F+14 | -1,509729420539E+14 | -6,397158561606F+13

It is to be pointed out that the matrix (25) is not a typical ill-conditioned
matrix, it belongs to the class of the so called “numerically rank-deficient” ma-
trices as seen from the Table 2. There is no substantial difference between the
three methods. Slightly better results in last rows of Table 3 deserve more thor -
ough investigation.
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