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Abstract

This thesis deals with material parameters calibration of a cork-rubber composite Amorim
ACM87, whose mechanical behaviour is similar to rubbers. In order to calibrate (iden-
tify) material parameters, mechanical experiments were performed and corresponding
numerical simulations were performed using finite element based software Abaqus. The
behaviour of given material was investigated for different strain rates and loading modes.
Material parameters were calibrated using numerical optimisation methods driven by
optimisation software optiSLang. The difference between the results of experiments and
numerical simulations was compared and minimized. The Parallel network model with
three viscoelastic networks and Mullins effect was chosen as a material model.

Abstrakt

Tato práce se zabývá identifikací materiálových parametrů korkového kompozitu Amorim
ACM87, jehož mechanické vlastnosti jsou velice podobné pryžím. Aby bylo možné
identifikovat materiálové parametry, byla provedena série experimentů pro různé módy
a rychlosti zatěžování. Dále byly provedeny numerické simulace pomocí programu Abaqus,
založeného na metodě konečných prvků. Materiálové parametry byly identifikovány po-
mocí metod numerické optimalizace, která byla provedená pomocí optimalizačního soft-
ware optiSLang. Rozdíl mezi výsledky měření a numerických simulací byl porovnáván
a minimalizován. Jako materiálový model byl použit Parallel network model se třemi
viskoelastickými větvemi a Mullinsovým efektem.
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1 Introduction

Cork is a natural material with exceptional properties and large number of applica-
tions. Low weight, elasticity, flexibility and insulation properties make the cork a very
valued raw material. Bottle stoppers were for a long time the main product of cork,
however 25% of raw material at most can be utilised during cork stoppers production.
Around 75% of raw material was a worthless waste [15]. At the beginning of 19th the
methods of cork agglomerates production were invented. Since this moment, the waste of
cork stoppers production have became very valuable.These days, cork or its agglomerates
are used as floor coverings, thermal or acoustic insulation and energy absorbing material.
Cork agglomerates can be divided into two basic groups: insulation corkboard and com-
position cork. Insulation corkboard consists only of cork without any additives, thus it
can’t be labeled as a composite material. Composition cork is made from cork particles
bonded together using different binders [15]. This thesis deals with cork composite
Amorim ACM87 from a group of composition cork. The composite consists of cork
particles bonded together using rubber. Mechanical properties of cork rubber composites
are similar to rubbers, but cork particles come from renewable sources, which makes these
products more environmentally friendly.

Following thesis deals with the cork composite material parameters calibration, which
is very complicated task consisting of several steps. First of all, the mechanical behaviour
of given material has to be investigated. A series of experiments with different loading
modes and strain rates will be performed. According to results of the experiments, a
suitable material model will be chosen. Material models suitable for the cork composite
will be researched. Parameters of chosen model will be calibrated using a numerical
optimisation, where the difference between results of the experiments and results of
numerical simulations (predictions) will be minimized. The last step is to identify the
region of validity of calibrated parameters and demonstrate the results.
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Introduction Software background

Material models suitable for rubber-like materials are much more complicated in
comparison to material models usually used for steel. Elastic behaviour of steel can be
described for small strains using Hook’s law and two material parameters. Behaviour of
rubber-like materials is not purely elastic, but more complex, consisting of viscoelastic,
viscoplastic and other behaviours. Each of this behaviour can be modelled using appro-
priate material model with given parameters. The more parameter is calibrated the more
complicated the task is.

1.1 Software background

Numerical simulations will be performed using Abaqus 6.14, which is a finite element
based computation software. Abaqus provides many material models including a Parallel
network model, which is one of the most advanced material models used for rubber-like
materials modelling. Material models listed in chapter 4 are chosen with respect to used
software. As a tool for numerical optimisation, the optiSLang 4.2 software will be used.
This software is suitable for sensitivity analysis, multiobjective and multidisciplinary
optimisation. Both software products are available at the Department of Mechanics at the
University of West Bohemia in Pilsen. Numerical models definition and the processing of
results will be performed using Python scripts.

2



2 State of art

Cork composite Amorim ACM87 can be classified as a rubber-like material with
mechanical behaviour similar to rubbers. Cork-composite research at The University of
West Bohemia has been started by [24], where the cork-composite ACM87 was used as
a damping layer for carbon fibre reinforced plastics. In bachelor thesis [22], the material
behaviour up to 25 % nominal strains was investigated, without considering the strain
rate effect and cyclic loading. Material parameters were successfully calibrated for the
combination of uniaxial tension and uniaxial compression using optiSLang. In case of
simple shear was the prediction of material behaviour very inaccurate for the calibrated
parameters. The chosen material model consisted of Prony series and hyperelastic gener-
alised polynomial model of third order.

The modelling of cork-rubber composites is not so common as modelling of rubber-
like materials, but the same isotropic material models can be used. The most common
way to predict the behaviour of rubber-like materials is by using the linear viscoelasticity
theory. For linear viscoelasticity is the time dependent shear modulus of the material
independent of stress magnitude [25]. Linear viscoelasticity approach is suitable for small
strains and for materials with low strain rate effect. As a model for linear elasticity, the
Prony series is usually used. For example in [14], the process of material parameter
identification of rubber compound used for tires production was described. Series of
uniaxial tension experiments for one strain rate were performed and material parameters
of viscoelastic model were successfully calibrated. Material model was chosen as a
combination of the Prony series and a hyperelastic model. Three hyperelastic models
were investigated: Ogden, Yeoh and polynomial. The material parameter calibration was
performed using Abaqus.

A new group of material models suitable for modelling of rubber-like materials are
viscoplastic material models. These models are designed to predict non-linear viscoelastic
or viscoplastic behaviour with high accuracy. The most known viscoplastic models are
Bergstrom-Boyce model, Parallel network model and Three network model. In [25], the
behaviour of tires was investigated and simulated. Series of tension stress relaxation ex-
periments were performed for 30%, 50%, 70% and 90% strain. During these experiments,
the samples were loaded by constant strain and the force response was measured. Based
on the experiments, the material parameters of linear viscoelastic model and non-linear

3



State of art

viscoelastic model were calibrated. Linear viscoelastic model consisted of Prony series
with Yeoh hyperelastic model. The Parallel network model formed by 3 viscoelastic
networks was used as a Non-linear viscoelastic model. Material parameter calibration
was done using Isight 5.8. The Parallel network model was implemented in Abaqus in
year 2012. One of the first published works that dealt with non-linear viscoelasticity /
viscoplasticity in Abaqus was published in [18]. In this work the Parallel network model
was introduced and material parameters of ABS plastics were identified using Isight.
Performed stress relaxation experiments were designed for up to 2,5% strains without
considering the strain rate effect. In this case, axial and torsional loading of the sample
were investigated.

A large number of viscoplastic models are listed in [9], where results and errors of
material parameter calibration for different material models are shown. However, most
of the listed material models are not implemented in finite elements programs. Com-
pany Veryst engineering offers material models library PolyUMod [4], which provides
advanced material models. PolyUmod is available for almost all FE programs. Veryst
engineering offers material parameter extraction software MCalibration, which is able to
calibrate any PolyUmod, Abaqus and other material models, based on available experi-
mental data. This software is the most advanced way of identifying material parameters
of rubber-like materials or biomaterials.

Material models suitable for rubber-like materials will be discussed in chapter 4.

4



3 Experiments

For the purpose of proper identification of the cork-composite behaviour, 4 types
of experiments were performed. When performing polymer viscoelastic materials test-
ing and modeling, it is very important to perform experiments with different strain-
rates and for different loading modes. Loading history and strain-rates were taken from
J.Bergstrom’s website PolymerFem [8], which is focused on polymer materials testing
and modeling. In Figure 3.1 are shown chosen loading modes: uniaxial tension (a),
uniaxial compression (b), simple shear (c) and volumetric test (d).

Figure 3.1: Experiments with the directions of loads highlighted: (a) uniaxial tension, (b)
uniaxial compression, (c) simple shear, (d) volumetric test.

5



Experiments

Table 3.1: Parameters of performed experiments
Loading mode Strain rate [s−1] Relax. time tr [s] reference length l0 [mm]

Tension 0.01 60 10
Tension 0.1 60 10
Tension 1 60 10
Compression 0.01 60 9
Compression 0.1 60 9
Compression 1 60 9
Shear 0.01 60 6
Shear 0.1 60 6
Shear 1 60 6
Volumetric test 0.02 0 9

30 6

4
0

Æ 20 9

Æ 14 9

(a)

(b)

(c)

(d)

6

1
1
5

25

3
3

R25

R14

t = 9

l 
=

1
0

0

Figure 3.2: Cork-rubber composite samples
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Experiments Performed experiments

3.1 Performed experiments

The cork-rubber composite Amorim ACM87 is available in plates of various thickness.
Samples used in these experiments were cut using water jet from plates 6 and 9 mm thick.
Dimensions and shapes of samples are partly taken from [10] with respect to available
material. Figures 3.1 and 3.2 show performed experiments and samples with directions
of loading. Following part describes the performed experiments.

Experiments were performed on Zwick/Roell Z050 testing machine using 200 N and
50 kN load cells. A contact-type extensometer with two sensor arms was used to measure
displacements. Loading was controlled by a displacement, to provide stress relaxation ex-
periments. Time, displacement and reaction force was measured with sampling frequency
50 Hz.

Uniaxial tension

The dog bone sample was used for uniaxial tensions experiment. This shape provides
uniform stress and strain distribution in central section and minimizes the influence of
clamping of the sample. Central section of initial length l0 is shown in Figure 3.2 (a).
Displacement of the central section was measured by mechanical extensometer to provide
more accurate results.

Uniaxial compression

The uniaxial compression experiment was performed using two steel plates mounted on
the experimental machine as shown in 3.1 (b). The sample of cork-rubber composite
was placed between these plates and load was applied. During loading, a bulging of the
sample can be observed. This bulging is caused by friction between the steel plates and
the sample. The displacement of upper metal plate was measured and the lower metal
plate was fixed.

Simple shear

The simple shear was performed using 2 steel plates as shown in Figure 3.1 (c). Cork-
composite sample was glued to steel plates using Loctite 480. Metal plates were mounted

7



Experiments Loading history

into the testing machine and loaded. The displacement of the steel plates was measured.

Volumetric test

In order to identify compressibility of cork-rubber composite, volumetric test according
ASTM standards [5] was performed. The sample was placed into a steel vessel of inner
diameter equal to diameter of the sample and was loaded using steel rod of the same
diameter, as shown in Figure 3.1 (d). Displacement of the steel rod was measured.

3.2 Loading history

In accordance with [8], tests with stress relaxation parts were chosen, which allows us to
observe viscoelastic behaviour of cork-composite. Stress relaxation means that sample is
loaded by constant strain and stress (force) response is observed.

t
r

T

Figure 3.3: Loading history of experiments

Loading history of uniaxial tension, uniaxial compression and simple shear are shown
in Figure 3.3, where tr is the relaxation time, which was set to 60 s. Strain rates ε̇
were chosen as 0.01 s−1, 0.1 s−1 and 1 s−1 to identify behaviour of material in different
strain rates. Levels of engineering strain were 10%, 20% and 30%. The strain rate of
the volumetric test was 0.02 s−1 and 3 loading cycles up to 30% of engineering strain
without relaxation were performed. Engineering strain and strain rate was related to
reference length l0, which is listed in Table 3.1.
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Experiments Results of experiments

3.3 Results of experiments

Following force-displacement and time-displacement diagrams (Figures 3.5-3.16) show
results of performed experiments, letters in the legend represent the mode of loading
(Tension, Compression, Shear or Volumetric test) and the number represents the strain
rate ε̇ [s−1]. Each experiment was performed on three samples from which the represen-
tative sample was chosen and its results are shown.

It is evident from Figures 3.5, 3.9 and 3.13 that the material response is viscoelastic
and strongly rate dependent. Loading and unloading curves are not coincident and form
a hysteresis curve. Loading and unloading curves of different strain rates have a similar
shape, but a significant difference in reaction force can be observed. The greater the strain
rate, the greater the reaction force.

Relaxation parts of experiments can be better seen in Figures 3.6 - 3.8, 3.10 - 3.12 and
3.14 - 3.16. A decrease of the reaction force during the relaxation depends on the strain
rate. The greater the strain rate, the greater the decrease. The material softening can be
observed in the same Figures.

Figure 3.4 shows the results of volumetric compression test. Arrows indicate loading
and unloading curves of the appropriate cycle. The initial bulk modulus K0 = 9.3 × 106

Nm−2 was determined by assuming hydrostatic stress field.

1

2,3
1,2,3

Figure 3.4: Volumetric compression, strain rate 0.02 s −1.
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Experiments Results of experiments
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Figure 3.5: Force-Displacement diagram: simple tension samples
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Figure 3.6: Force-time diagram: simple tension sample, strain rate 1 s −1.
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Figure 3.7: Force-time diagram: simple tension sample, strain rate 0.1 s −1.
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Figure 3.8: Force-time diagram: simple tension sample, strain rate 0.01 s −1.
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Figure 3.9: Force-Displacement diagram: simple compression samples
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Figure 3.10: Force-time diagram: simple compression sample, strain rate 1 s −1.
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Figure 3.11: Force-time diagram: simple compression sample, strain rate 0.1 s −1.
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Figure 3.12: Force-time diagram: simple compression sample, strain rate 0.01 s −1.
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Figure 3.13: Force-Displacement diagram: shear samples
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Figure 3.14: Force-time diagram: shear sample, strain rate 1 s −1.
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Figure 3.15: Force-time diagram: shear sample, strain rate 0.1 s −1.
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Figure 3.16: Force-time diagram: shear sample, strain rate 0.01 s −1.
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4 Material models

This chapter deals with isotropic material models, used for modelling of rubber-like
materials. Hyperelastic, viscoelastic models and strain softening effect will be mentioned.
In the second part of the chapter, one of the most advanced material models for rubber-
like materials modelling, the Parallel network, will be introduced. Following models are
listed in a form without temperature dependence. Due to the behaviour of rubber-like
materials: large displacements, large strains and non-linear stress-strain relation, the large
strain theory must be used to achieve proper results.

4.1 Elasticity

One of the basic material models is the elastic solid. Deformations of elastic solid are
fully reversible, loading and unloading paths are identical as shown in Figure 4.1 (a)
and (b). Stress-strain response is independent on the rate of loading or loading history.
The linear elasticity theory allows us to express stress-strain relations of deformable
solids for nominal strains smaller than 1%. This theory is applicable to materials with
linear stress-strain relation, for example metals. For rubber-like materials, this approach
is inappropriate. As an extension to rubber-like materials, hyperelastic models were
invented. Using the linear elasticity, the stress strain relation can be expressed as [9]:

σij = 2µεij + λεkkδij, i, j = 1, 2, 3, (4.1)

where σ is the engineering stress, ε is the engineering strain, µ is the shear modulus, λ
is Lame’s constant and δ is the Kronecker delta function. The material is assumed to be
isotropic, defined by λ and µ.
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Material models Hyperelasticity

Figure 4.1: Stress-strain relationships for: (a) linear elastic material, (b) non-linear elastic
material, (c) viscoelastic material [20].

4.2 Hyperelasticity

Hyperelasticity is the generalization of the linear elasticity which allows us to predict the
behaviour of rubber-like and other elastic materials in the case of large strains. The stress-
strain relations are expressed using the strain energy densityW (F), which is a function of
the deformation gradient F. It is also possible to express the strain energy density in terms
of the right Cauchy-Green deformation tensor C or its invariants or principal stretches.

4.2.1 Constitutive equations

The basic constitutive equation can be derived from the rate of change of strain energy
density W (F), which is given by the stress power. The stress power can be expressed
using energetically conjugate stress and strain rate tensors in form [20]:

Ẇ = Jσ : d = P : Ḟ = S : Ė = S :Ċ2 . (4.2)

Another possibility to express the rate of change of Ẇ is:

Ẇ = ∂W

∂F
: Ḟ. (4.3)

Comparing equations 4.2 and 4.3 leads to:

P : Ḟ = ∂W

∂F
Ḟ, (4.4)
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where Ḟ can take any value. The constitutive equation for the first Piola Kirchhoff stress
tensor then has a form:

P = ∂W (F)
∂F

. (4.5)

Using the same principles as above is it possible to derive alternative forms of 4.5:

S = F−1∂W (F)
∂F

, (4.6)

σ = J−1F
(
∂W (F)
∂F

)T
. (4.7)

When W is a function of the deformation tensors, the constitutive equations take a form:

P = 2F
∂W (C)
∂C

, (4.8)

S = ∂W (E)
∂E

= 2, ∂W (C)
∂C

, (4.9)

σ = J−1∂W (E)
∂E

FT . (4.10)

Hyperelastic material models use the strain energy density as a function of principal
invariants or principal stretches of C. According to Itskov [19], the strain density function
can be expressed in terms of principal invariants or principal stretches of right Cauchy-
Green deformation tensor as:

W (C) = W (I1, I2, I3) = W (λ1, λ2, λ3). (4.11)

Principal invariants of C are the following:

I1 = tr(C) = λ1 + λ2 + λ3, (4.12)

I2 = 1
2
[
(trC2)− tr(C2)

]
= λ1λ2 + λ2λ3 + λ3λ1, (4.13)

I3 = det(C) = λ1λ2λ3. (4.14)

Principal stretches λi =
√

Λi, where Λi (i = 1, 2, 3) are eigenvalues of C. Substituting
(4.11) into (4.9) and using the chain rule for derivatives we get constitutive equations in
terms of principal invariant [23], [16]:

S = 2∂W (I1(C), I2(C), I3(C))
∂C

= 2
3∑
i=1

∂W

∂Ii

∂Ii
∂C

, (4.15)

or principal stretches:

S = 2∂W (λ1, λ2, λ3)
∂C

= 2
3∑
i=1
,
∂W

∂λi

∂λi
∂C

. (4.16)

Partial derivatives of principal invariants with respect to C are:

∂I1

∂C
= I,

∂I2

∂C
= I1I−C,

∂I3

∂C
= I3C−1 (4.17)
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and partial derivatives of principal stretches with respect to C are:

∂λi
∂C

= 1
2λi

N̂i ⊗ N̂i, (4.18)

where Ni is a unit vector along principle directions.

4.2.2 Decoupled Formulation

In the case of compressible hyperelastic materials, it is suitable to decompose the defor-
mation gradient to isochoric and volumetric part [23], [20]:

F = FisoFvol, (4.19)

where

Fvol = J
1
3 I, (4.20)

Fiso = J−
1
3 F. (4.21)

The isochoric parts of tensors, invariants and stretches (A = Aiso) can be determined as:

C = FTF = J−
2
3 C, (4.22)

I1 = J−
2
3 I1, I2 = J−

4
3 I2, I3 = 1, (4.23)

λi = J−
1
3λi. (4.24)

The strain energy density can be decoupled to volumetric and isochoric part in a similar
way as the deformation gradient:

W = Wvol(J) +Wiso(C). (4.25)

Hyperelastic material models use this decomposition to define total strain energy density,
as will be shown in the next part. Using (4.9) and the decoupled formulation of W (4.25),
constitutive equation can be expressed as:

S = 2∂W
∂C︸ ︷︷ ︸
S

= 2∂Wvol

∂C︸ ︷︷ ︸
Svol

+ 2∂Wiso

∂C︸ ︷︷ ︸
Siso

. (4.26)

4.2.3 Hyperelastic material models

Hyperelastic material models define the strain energy density. It is possible to divide
these models into phenomenological and mechanistic. Phenomenological models try
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to describe observed behaviour without any physical meaning. Mechanistic models are
based on material structure. Models which combine both approaches are called hybrid.
Following material models are given for compressible isotropic materials, where volumet-
ric parts of strain energy density are defined using the volume ratio J . Overlined tensors
and invariants are called modified and denote isochoric parts of quantities as shown in
equations (4.22), (4.23) and (4.24). Given terms are taken over from [1] and as a source
of information, [6], [2] and [23] were used.

Neo-Hookean model

Neo-Hooken is one of the simplest hyperelastic models. Strain density function is defined
using first invariant as:

W = C1(I1 − 3) + 1
D1

(J − 1)2, (4.27)

where J is the volume ratio, C1 [Nm−2] and D1 [N−1m2] are material parameters, which
can be obtained from relations:

C1 = µ

2 , D1 = 2
K
.

Parameter µ is the shear modulus andK is the bulk modulus. Neo-Hooken model belongs
to mechanistic models and assumes that µ can be obtained using statistical mechanic in
form:

µ = NkT, (4.28)

where N is a number of polymer chains per unit volume, k is the Boltzmann constant and
T is temperature.

Generalized polynomial model

Generalized polynomial model is phenomenological model which defines the strain en-
ergy density using first and second invariants:

W =
N∑

i+j=1
Cij(I1 − 3)i(I2 − 3)j +

M∑
m=1

1
Di

(J − 1)2i, i, j ∈ N. (4.29)

Material parameters are Cij [Nm−2] and Di [N−1m2]. For small strains, the parameters
C10, C01 and D1 must correspond with the initial shear modulus µ0 and the initial bulk
modulus K0:

µ0 = 2(C10 + C01) and K0 = 2
D1

.

For parameters N = 1 and M = 1 we obtain Mooney-Rivlin model, which is quite often
used to model behaviour of rubber-like materials.
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Reduced polynomial model

This model is similar to the previous case, but it uses just the first invariant to define the
strain energy density in the following form:

W =
N∑
i=1

Ci0(I1 − 3)i +
N∑
n=1

1
Di

(J − 1)2i (4.30)

Initial shear modulus and initial bulk modulus correspond with:

µ0 = 2C10 and K0 = 2
D1

.

Ogden model

One of the most precise phenomenological material models for rubber-like material mod-
elling is Ogden model, which defines the strain energy density as a function of principal
stretches:

W =
N∑
i=1

2µi
α2
i

(
λ1

αi + λ2
αi + λ3

αi − 3
)

+
3∑
j=1

1
Dj

(J − 1)2j. (4.31)

Material parameters are αi [-], µi [Nm−2] and Dj [N−1m2]. For small strains the initial
shear modulus must correspond with:

µ0 =
N∑
i=1

µi. (4.32)

Arruda-Boyce model

This mechanistic hyperelastic model is based on eight-chain representation of underlying
structure of rubber and non-Gaussian behaviour of chains [6]. Strain density can be
defined as:

W = µ
5∑
i=1

Ci
λ2i−2
n

(
I1
i − 3i

)
+ 1
D

(
J2 − 1

2 − ln(J)
)
. (4.33)

where Ci is the first five members of Taylor’s expansion of inverse Langevin function.
Langevin function is defined as:

L(x) = coth(x)− 1
x
. (4.34)

Material parameters are µ [Nm−2], λm [-] and D [N−1m2]. λ is a parameter of locking-
stretch which defines the value of chain stretch when the chain length reaches fully

21



Material models Strain softening

extended state [6]. Parameters µ and D = 1
K

correspond to the initial shear modulus
and the initial bulk modulus for small strains. The representation of 8 chain model is
showed in figure 4.2.

Figure 4.2: Representation of 8 chain model in (a) undeformed, (b) uniaxial extension
and (c) biaxial extension configurations [6].

4.3 Strain softening

Strain softening effect can be observed during the cyclic loading of rubber like materials.
This effect was intensively investigated by Mullins and his co-workers and therefore
the stress softening effect is also known as Mullins effect. The strain softening can be
considered as a damage accumulation in the material [9], [12].

The typical behaviour of rubber-like materials that exhibit Mullins effect [9]: The
stress at given strain is the highest in the first loading cycle. The amount of damage is also
highest in the first loading cycle and decreases with further cycles. After few cycles the
material response for given strain becomes identical and the material is preconditioned.
The amount of damage is dependent on maximal applied strain. Damage caused by
Mullins effect is not permanent, there is a recovery going on over time.

The mechanism of damage caused by strain softening is still not fully discovered.
In [12] is summarised information about Mullins effect and its mechanism. In most
of the finite element based software, Ogden-Roxbourgh model is available for Mullins
effect. This model is described in section 4.5.3. Another model for Mullins effect is Qi-
Boyce model [7], but this model is not yet implemented in finite element based software
products.
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4.4 Viscoelasticity

Viscoelastic solid is a combination of elastic solid and viscous fluid. Deformations of
viscoelastic solid are not fully reversible, loading and unloading paths are not identical
and they form a hysteresis loop. In comparison to elastic solids, viscoelastic solids
are strain rate dependent. Both mentioned behaviours are shown in Figure 4.3. Strain
rate dependence implies that the viscoelastic material response depends on time. Actual
behaviour of material during a load depends on previous history of loading.

Viscoelastic models are represented by elastic springs and viscous dashpots. In Figure
4.4, the basic viscoelastic models are shown. Details of the basic viscoelastic model can
be found in [17]. In this thesis only the Prony series will be mentioned, which is the most
common way to model large strain viscoelasticity using finite element based computation
software.

Figure 4.3: Response of viscoelastic material: (a) loading a unloading, (b) different strain
rate stretching [21]

4.4.1 Small strain linear viscoelasticity

Small strain linear viscoelastic material model is based on linear elasticity and linear
viscoelasticity. Constitutive equation in 1D is given by Boltzmann integral [9]:

σ(t) =
∫ t

−∞
ER(t− τ)dε(t) =

∫ t

−∞
ER(t− τ)dε

dτ
dτ, (4.35)

where ER is the relaxation modulus and τ is the integration variable. Small strain vis-
coelasticity is not accurate enough to predict behaviour of rubber-like materials.
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a) b) c)

Figure 4.4: Schemes of viscoelastic models (a) Maxwell model, (b) Voight model and (c)
standard linear solid model

4.4.2 Large strain linear viscoelasticity

This theory is used to predict behaviour of rubber-like materials. It is a combination of
hyperelasticity and linear viscoelasticity. Constitutive equation in 1D can be derived from
equation 4.35 [9]:

σ(t) =
∫ t

−∞
ER(t− τ)dε(t) =

∫ t

−∞
ER(t− τ)dε

dτ
dτ. (4.36)

By integrating this equations in part we obtain:

σ(t) = E0ε(t)−
∫ t

0
˙qR(t− τ)E0ε(τ)dτ, (4.37)

where gR(t) = ER(t)
E0

is the normalized relaxation modulus, E0 is the instantaneous
Young’s modulus. Hyperelastic stress function can be defined as:

σhyp(ε) = σhyp(ε(t)) = E0ε(t). (4.38)

Substituting (4.38) into (4.37) we obtain constitutive equation:

σ(t) = σhyp(ε(t))−
∫ t

0
˙qR(t− τ)σhyp(ε(τ)) (4.39)

which shows the combination of stress relaxation function and hyperelastic strees func-
tion. The most common way to represent normalised relaxation modulus gR or relaxation
modulus ER is the Prony series. Hyperelastic stress function was generally defined in the
previous part.
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4.4.3 Prony series

The Prony series defines the normalised relaxation modulus gR in form of series expan-
sion:

gR(t) = ER(t)
E0

= 1−
N∑
i=1

gi

(
1− e

−t
τi

)
, (4.40)

where τi is the relaxation time and gi is normalised relaxation modulus of ith network.
Prony series can be formulated in term of relaxation modulus ER(t), this formulation is
equivalent to multi-network Maxwell model [9] and relaxation modulus has a form [27]:

ER(t) = E∞ +
n∑
i=1

Eie
−t
τi , (4.41)

where Ei is the relaxation modulus and τi is the relaxation time of ith network. E∞ is the
long term modulus, which represents totally relaxed state of material. Scheme of Prony
series is showed in Figure: 4.5.

E
∞

E
1

E
2

E
N

τ
1

τ
2

τ
N

Figure 4.5: Schemes of the Prony series

4.5 Parallel network model

This section deals with the Parallel network (PN) model which is suitable for describing
non-linear viscoelastic behaviour of rubber-like materials. PN model allows to combine
several material models in one framework. Non-linear viscoelasticity, plasticity, Mullins
effect, permanent set and many other models are available in this framework. PN model
used in this thesis was reduced to non-linear viscoelasticity with combination of Mullins
effect. Plasticity was not used in this case. Information about this model comes mainly
from [18] and [11], [1].
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Parallel network model can be represented by scheme in Figure 4.6, where network
0 is called the equilibrium network and consists of an elastic and a plastic element.
Networks 1, 2, 3..N are viscoelastic networks. For each network, multiplicative split of
the deformation gradient F is assumed:

F = Fe
0F

pl
0 , i = 0 (4.42)

F = Fe
iFcr

i , i = 1, 2, ...N, (4.43)

where Fe is elastic part of the deformation gradient, Fpl is the creep part of the deforma-
tion gradient in the viscoelastic networks. Fcr is the plastic component in the equilibrium
network. Response of material is assumed to be isotropic, plasticity and creep flow are
assumed to be incompressible.

10 2 N

Figure 4.6: Scheme of PNM

4.5.1 Elastic response

Elastic response for ith network can be determined using hyperelastic strain energy den-
sity function in the form

Wi = Wi(Ce
i ), i = 0, 1, 2, ...N, (4.44)

where Ce
i is the elastic right Cauchy-Green tensor for each network. All of the networks

have the same definition of strain energy density function. Total strain energyWT is equal
to the weighted sum of strain energies of all the networks:

WT =
n∑
i=0

si W (Ce
i ), (4.45)
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where si represents the stiffness ratio of the particular network. si expresses the volume
fraction of ith network and sum of stiffness ratios must satisfy the following relation:

n∑
i=0

si = 1. (4.46)

Total stress response can be expressed as:

τ =
N∑
i=0

si

{
Fe
i 2∂W (Ce

i )
∂Ce

i

(Fe
i )
T

}
=

N∑
i=0

siτi, (4.47)

where τi is Kirchhoff stress in ith network and τ = Jσ is total Kirchhoff stress, σ is
Cauchy stress and J = det(F) is the volume ratio.

4.5.2 Viscous response

Using the multiplicative split of the deformation gradient into elastic and creep, the rate
form the of creep deformation gradient for each viscoelastic network (i = 1, 2..N ) can be
expressed as [18]:

Ḟcr = (Fe)−1 ·Dcr · Fe · Fcr, (4.48)

where Dcr is the creep part ot the deformation rate tensor in the current configuration. We
assume that Dcr can be derived using a creep potential Gcr = Gcr(τ ) and the flow rule in
form:

Dcr = λ̇
∂Gcr(τ )
∂τ

, (4.49)

where λ̇ is the proportionality factor in form λ̇ = ε̇
cr and Gcr(τ ) = q is effective

Kirchhoff stress. Substituting previous relations into equation 4.49, the creep part of
the deformation tensor Dcr can be expressed as [18]:

Dcr = 3
2q ε̇ · τ , (4.50)

where τ is deviatoric Kirchhoff stress and ε̇cr is the equivalent creep stain rate, which
can be obtained from evolution laws. In general, ε̇cr is a function of temperature θ, the
first invariant of the creep strain tensor Icr1 = tr(Ccr), effective Kirchhoff stress q and the
equivalent creep strain εcr:

ε̇
cr = f(θ, εcr, q, Icr1 ). (4.51)

In Abaqus 6.14 we can find four evolution laws and there is a possibility to define own
evolution law, which satisfies the equation (4.51). Evolution laws usable in PN model are
listed below.
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Strain hardening power law

ε̇
cr = (Aqn [(m+ 1) εcr]m)

1
m+1 (4.52)

Parameters: A > 0 [N−nm2ns(−1−m)], m ∈ [−1, 0] [-] and n > 0 [-]. With suitable choice
of parameters (n = 1 and m = 0) it is possible to create a model of a linear dashpot with
viscosity µ = 1

A
.

Hyperbolic-sin law model

ε̇
cr = A (sinh(Bq̃))n (4.53)

For HS-law, the parameters are: A ≥ 0 [s−1], B ≥ 0 [N−1m2], n ≥ 0 [-].

Bergstrom-Boyce model

ε̇
cr = A (λcr − 1 + E)C qm, (4.54)

λcr =
√

1
3I : Ccr, (4.55)

where parameters are A ≥ 0 [s−1N−1m2] ,C ∈ [−1, 0] [-] , E ≥ 0 [-] and m > 0 [-].

Power law

Power law is available since Abaqus 6.14, which is more general form of Strain hardening
power law:

ε̇
cr = ε̇0

((
q

q0+ < p >

)n
[(m+ 1) εcr]m

) 1
m+1

, (4.56)

where q is the Kirchhoff stress and p is the Kirchhoff pressure and parameters are:
q0 > 0 [Nm−2], m ∈ [−1, 0] [-], n > 0 [-] , a > 0 [-] and ε̇0 > 0 [s−1].

4.5.3 Mullins effect

Stress softening effect known as Mullins effect is included in the PN model where modi-
fied Ogden-Roxbourg model is used. Stress softening is applied to equilibrium network,
where the strain energy density is modified by a damage term and has the following form:

W0 = ηW (Ce
0) + φ(η), (4.57)
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where η is the scalar damage variable and φ(η) is the smooth damage function. The spring
inside the dashed box in Figure 4.3 represents the damaged elastic element. The evolution
equation of the damage variable for Ogden-Roxbourg [28] model is following:

η = 1− 1
r

erf

Wmax
0 −W primary

0

m+ βW
max
0

,

 (4.58)

W primary
0 is the deviatoric part of the strain energy in the primary loading path, Wmax

0 is
the maximum of W primary

0 at material point. Material parameters are r ≥ 1[-], m ≥ 0 [J],
β ≥ 0 [-].

4.5.4 PN model in Abaqus

The Parallel network model consists of several networks with several material models.
Each of the material models must be specified separately. PN model uses just one defi-
nition of hyperelastic elements common for all of the networks. Mullins effect is applied
only onto the elastic element in the equilibrium network. Plastic element occurs only
once, in the equilibrium network. Previously mentioned material models can be set using
Abaqus CAE or python script. However, the definition of viscoelastic networks can’t be
done using Abaqus CAE or python script, so the input file of a model must be modified.
For the material model used in this thesis, the material definition section in the input file
has the following form:

** MATERIALS

**
* M a t e r i a l , name= C o r k r u b b e r

* H y p e r e l a s t i c , a r r u d a−boyce
5 0 0 0 0 0 . , 1 . 0 1 , 1e−05

* M u l l i n s E f f e c t
3 . , 0 . 5 0 0 0 1 , 0 .10001

*VISCOELASTIC , NONLINEAR,NETWORKID=1 ,SRATIO= 0 . 1 0 0 ,LAW=STRAIN
1e−15 ,1 .00001 ,1 .00001

*VISCOELASTIC , NONLINEAR,NETWORKID=2 ,SRATIO= 0 . 1 0 0 ,LAW=STRAIN
1e−15 ,1 .00001 ,1 .00001

*VISCOELASTIC , NONLINEAR,NETWORKID=3 ,SRATIO= 0 . 1 0 0 ,LAW=STRAIN
1e−15 ,1 .00001 ,1 .00001

* * .

29



Material models Parallel network model

Each of the viscoelastic networks must be defined by network id number, definition of
the stiffness ratio, the evolution law and material parameters as shown above. Sum of the
stiffness ratios must satisfy the equation 4.46. Stiffness ratio of equilibrium network is
defined as:

s0 = 1−
N∑
i=1

si, (4.59)

where i is id number of viscoelastic network and N is the total number of networks.
Particular viscous law can be specified in the input file using commands given in Table
4.1 and appropriate material parameters. A detailed description of material parameters
can be found in [1].

Table 4.1: Viscous evolution law definition
Law Command Parameters
Strain hardening power law LAW=STRAIN A, n,m

Hyperbolic-sin law model LAW=HYPERB A,B, n

Bergstrom-Boyce model LAW=BERGSTROM-BOYCE A,m,C,E

Power law LAW=POWER LAW q0, n,m, a, ε̇
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5 Material parameters calibration

Previous chapters were a preparation for a material parameters calibration, which is
based on comparison of results of experiments and results of numerical simulations. This
approach is called curve fitting. For proper material parameters, the difference between
the experiments and simulations is minimal. The process of searching for proper material
parameters is called material parameter calibration. In this scenario, material parameters
will be searched using optimisation methods.

In the following section numerical simulations, chosen material model, principles of
numerical optimisations, definition of the objective function and the optimisation task will
be introduced. Last section of this chapter will be aimed at processing of the cork-rubber
composite material parameters calibration.

5.1 Numerical simulations

For the purpose of material parameters calibration, numerical simulations based on fi-
nite element method were created. Numerical simulations of uniaxial tension, uniaxial
compression and simple shear were created in Abaqus 6.14. All finite element models
were created using Python scripts, which allows us to change their properties parametri-
cally. For every single numerical simulation, a finite element model is built, with given
properties.

Finite element models were created to correspond with the performed experiments.
Due to material parameters, calibration must be as simple as possible to save compu-
tational time. Each sample is symmetric in some way, and so this property is used for
creating the finite models.
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5.1.1 Uniaxial tension

Samples used in the uniaxial experiments have the shape of a dog bone. The displacement
was measured by mechanical extensometer in the central part of the samples, which is
shown in Figure 3.2 (a). To make the finite element model more simple, only the central
parts of the samples were created. In addition, the symmetry of this part was used and just
1/8 of the central part of the dog bone forms the finite element model shown in Figure
5.1. These simplifications allow us to define boundary conditions more easily and make
the numerical simulations less time consuming.

Two types of boundary conditions were defined. Due to the symmetry of the central
part, symmetry boundary conditions defined on surfaces showed in Figure 5.1 were used.
Symmetry boundary conditions disable displacements in the directions perpendicular to a
chosen plane. Results of numerical simulations, where the symmetry BC was used, must
be recalculated in order to get valid values. In this case the total reaction force in bottom
surface must be multiplied by 4 and displacement of the top surface must be multiplied
by 2. The displacement boundary condition in y direction given by loading history was
set on the top surface of the part as shown in Figure 5.1.

Load by displacement

BC symmetry YZ

BC symmetry XY

BC symmetry XZ

Figure 5.1: Boundary conditions of tension model
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Finite element mesh of uniaxial tension model consists of only one linear brick ele-
ment with hybrid formulation. Due to uniform stress and strain distribution, one single
element is accurate enough. There is no significant change in results for a finer mesh.

5.1.2 Uniaxial compression

Finite element model of uniaxial compression consists of the compression sample and
2 rigid parts, which represent clamps of the testing machine. The compression sample
is rotationally symmetrical, which allows us to reduce this 3D model to more simple
2D model. The finite element model is formed by one half of the cross-section of the
sample as shown in Figure: 5.2. Numerical simulation of uniaxial compression is more
complicated than the previous one, because of an interaction between the rigid parts
and the cork-rubber sample. This interaction was set using a general contact, where the
friction coefficient between rigid parts and cork-rubber composite was set to 0.6. Friction
parameter of cork-rubber composite is not known, the only available information is about
cork-steel friction parameter, which is equal to 0.63 [29].

Boundary conditions were set to rigid parts as shown in Figure 5.2, where the bottom
part was fixed in all directions and the displacement of the top rigid part in y direction
was given by the loading history. The finite element mesh of uniaxial compression model
was created using axisymmetric linear elements with hybrid formulation. Numerical
simulations of uniaxial compression did not converge well. Due to large strains and
high friction coefficient, the elements distortion appeared and simulations failed. In order
to find the ideal size of the mesh, two types of meshes were invstigated, however no
universal size or type of mesh which ensures higher stability of simulations was found.
The investigated finite element meshes are shown in Figure 5.2, where the size of (a)
elements is 1 mm. The size of (b) elements is from 1 mm to 0.2 mm.

The finite element mesh (a) is not so accurate, but it showed that large elements are
better it case of contact simulation of uniaxial compression. Using mesh (b) with smaller
elements we obtain more accurate solution, but it costs more computational time and
small elements caused higher convergence errors than larger elements. In section 5.5 are
described problems with convergence of uniaxial compression simulations. Stability and
convergence problems of contact type simulations are topics for author’s next research.
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X

Y

Z

Rigid part load by displacement

Fixed rigid part

Axes of symmetry

Contact

Mesh (a) Mesh (b)

Figure 5.2: Boundary conditions and mesh of uniaxial compression finite element model

5.1.3 Simple shear

The last of the created models is the model of simple shear. Geometry of the sample
allows us to use symmetry similarly to the tension model, as shown in Figure 5.3. Finite
element model of simple shear only consists of the shear sample, the steel parts are not
modelled. Boundary conditions are set directly on the sample.

The bottom surface of the part was fixed in all directions and the displacement of top
surface in x direction is given by the loading history. Th last boundary condition is the
symmetry, which was set to surface shown in Figure 5.3.

Finite element mesh of simple shear model was created using linear brick elements
with hybrid formulation. The finite element mesh is shown in Figure 5.3. Elements size
is 2 mm.
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X Y

Z

BC symmetry XZ

Top surface loaded
by displacement
in x direction

Bottom surface fixed in all directions

Mesh

Figure 5.3: Boundary conditions and mesh of simple shear finite element model
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5.1.4 Material model

Parallel network model was chosen as the material model. This model consists of hypere-
lastic elements defined using Arruda-Boyce model, three viscoelastic networks defined
using the Strain hardening power law and Mullins effect represented by the Ogden-
Roxbourg model. Used models are summarized in Table 5.1. This model contains 18
parameters which must be calibrated.

Arruda-Boyce model was chosen due to its unconditional stabilit, accuracy and a low
number of parameters. Strain hardening power law was chosen because of the possibility
to reduce non-linear viscoelastic model to linear viscoelasic model. It is less complicated
to start with calibration of linear model parameters and then introduce non-linear model.

Table 5.1: Used material model
Element Model/law Parameters
Hyperelastic Arruda-Boyce µ, λ,D

Viscoelastic Strain hardening power law A1, n1,m1, s1

Viscoelastic Strain hardening power law A2, n2,m2, s2

Viscoelastic Strain hardening power law A3, n3,m3, s3

Strain softening Ogden-Roxbourg r,m, β

5.2 Numerical Optimization

Numerical optimisation is the process of minimization of a function subject to constraints
on its variable, mathematically it can be written in form [26]:

min
x∈Rn

f(x) subject to

 ci(x) = 0, i ∈ ε;
ci(x) ≥ 0, i ∈ I;

 , (5.1)

where x is the vector of parameters, f is the objective function that will be minimized, c
is the vector of constraints and ε and I are sets of indices.

Numerical optimisation can be divided into unconstrained and constrained. Con-
strained optimisation has explicitly defined constraints on the variables. These constraints
may define bounds of parameters such as 0 ≤ x1 ≤ 1 or be more complex and represent
the relationship between parameters, such as:

∑3
i=1 xi = 1. Constrained optimisation was

used in material parameter calibration and both of the listed constraints were used.

Numerical optimisation was performed using Optislang 4.2 which is a software for
sensitivity analysis, multiobjective and multidisplinary optimisation. Many optimisation
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algorithms are available in Optislang. For this scenario, an evolution algorithm and a
gradient based algorithm were chosen.

5.2.1 Evolution algorithms

The Evolution algorithms are natural evolution based search methods, which mimic bio-
logical evolution processes (the natural selection). The basic idea is that the environmental
pressure causes the natural selection in given population of individuals. The fittest individ-
uals will survive [13]. In case of material parameter calibration are individuals represented
by a set of material model parameters and fitness is represented by the objective function.
Evolution algorithms can be described using simple diagram, which is shown in Figure
5.4.

Initialisation is the first step of an evolution algorithm, when the initial population is
chosen. Each iteration (generation) of evolution algorithm consists of parents selection,
recombination, mutation, evaluation of the offspring fitness and selection from the fittest
survivors. Recombination and mutation drives the diversity of the population and survivor
selection provides the quality of population. The difference between recombination and
mutation is the number of parents. During recombination, a one new offspring is created
from two or more parents. Mutation creates a new offspring from one parent [13]. The
termination condition is often the number of performed iterations (generations).

Evolution algorithm was used as the starting algorithm for the material parameters
calibration, which should find the initial parameters of given material models. OptiSLang
uses advanced evolution algorithms, which can combine more searching strategies at
once. There is a large number of parameters of the evolution algorithm in optiSLang.
New version of optiSLang has predefined settings for global and local optimisations.
These settings were used during material parameter calibration. As the initial parame-
ters of evolution algorithms, the following has to be set: the initial material parameters
and their boundaries, starting population size, archive size and minimum and maximum
number of generations. The rest of the evolution algorithm parameters are set by choosing
predefined settings. As an initial population, the Latin hypercube Sampling is used. More
information about the used evolution algorithm can be found in optiSLang documentation
[3].
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Figure 5.4: Scheme of evolution algorithms [13]

5.2.2 Gradient based algorithm

Nonlinear Programming by Quadratic Lagrangian (NLPQL) is a gradient-based local sin-
gle objective optimisation algorithm. The objective function is internally approximated by
a quadratic Taylor series, taking into consideration the estimated second-order derivatives
from previous iteration steps. The NLPQL method is suitable for local optimisation with
up to 20 variables. Local minimum is searched around the initial set of parameters.
The initial parameters of NLPQL method are: the initial material parameters and their
boundaries, desired accuracy, differentiation scheme, differentiation step size and others.
Further details of the method can be found in [3]. This algorithm was used to refine
material parameters calibrated using the evolution algorithm.

5.3 Objective function

To express the difference between experimental and model predicted data, the objective
(error) function f must be defined. The error prediction can be expressed as [9]:

error = f
(
ypred − yexp

)
, (5.2)
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where yexp is the vector of experimental data and ypred is the vector of predicted data,
error is the scalar value and f is an objective function, which can be expressed in many
different ways. In this thesis, the objective function was chosen in the following form:

f
(
yexp,ypred

)
= 1
N

N∑
i=1

√(
yexp
i − y

pred
i

)2

(√
yexp
i

)2 , (5.3)

where N is the total number of compared points and i is the position in the vector of
experimental or predicted data. yexp

i is the experimental value at ith position of yexp and
ypred
i is the predicted value at ith position of ymodel.

x

y Predicted data

Experimental data

i=0 i=1 i=m

ym

pre

ym

exp

i=N

Figure 5.5: Comparison of predicted and experimental data

The objective function used in this thesis is defined in terms of force-time dependence,
where predicted force and experimental force are compared as shown in Figure 5.6.
Experimental and predicted values are interpolated using linear interpolation to obtain
two vectors of the same length. For these vectors, the particular objective function can be
evaluated in form:

f
(
Fexp,Fpred

)
= 1
N

N∑
i=1

√(
F exp
i − F

pred
i

)2

(√
F exp
i

)2 , (5.4)

where Fexp is the vector of interpolated experimental force and Fpred is the vector of
interpolated predicted force. Fi are elements of vectors and N is the total number of
compared points.
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In order to achieve better results, the modified objective function 5.4 was used. Ad-
ditional weight was added to the relaxation parts. Modified objective function has the
form:

f = f
(
Fexp,Fpred

)
+ wf

(
Fexp

relax,F
pred
relax

)
, (5.5)

where Frelax are vectors of interpolated forces belonging to the relaxation parts of mod-
els/experiments and w is the weight coefficient. Relaxation parts of experiments are
highlighted in Figure 5.6.
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Figure 5.6: Time-force diagram with relaxation parts highlighted

Experiments were performed for different strain rates and loading modes. In order to
identify parameters which satisfy all of the investigated strain rates and loading modes,
the total objective function ftotal must be defined. This function is defined as a sum of
particular objective functions for given strain rate and loading mode as:

ftotal =
∑
srates

∑
modes

f
(
Fexp

srate, mode,F
pred
srate, mode

)
, (5.6)

where Fsrate, mode are vectors of interpolated forces for given strain rate and loading mode.
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5.4 Optimization task

The optimisation task was developed as an universal tool for material parameters calibra-
tion. This task uses Abaqus as a solver, optiSLang as an optimisation software and Python
scripts to connect it all together. Figure 5.7 shows the diagram of the optimisation task.

This task allows us to calibrate material parameters of random rubber-like material
if the experimental data in uniaxial tension, uniaxial compression and simple shear are
available. Finite element models are fully parametrical, loading history can be set using
tabular data and number of investigated strain rates is not limited. Inputs of this task
are parameters of optimisation algorithm, initial material parameters with boundaries and
parameters of performed experiments (dimensions, strain rates, loading history, loading
modes).

Abaqus
FE model

1

Optislang
min (f total)

Control
script

Material
parameters

Abaqus
FEM solver

Objective
function

f1

Abaqus
FE model

2

Abaqus
FEM solver

Objective
function

f2

Abaqus
FE model

n

Abaqus
FEM solver

Objective
function

fn

Total
objective
function

ftotal

Parameters of optimization algorithm
and initial material parameters

with boundaries

Parameters
of performed
experiments

start end

Figure 5.7: Diagram of the optimisation task

5.5 Cork-rubber parameters calibration

The material parameter calibration of the cork-rubber composite was performed using
experimental data, numerical simulations and optimisation task mentioned in the previous
section. The parameters were calibrated in order to describe the behaviour of the material
in given loading modes and different strain rates. The material parameters calibration
for given combination of loading modes and strain rates means that the optimisation task
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consists of all combinations of given loading modes and given strain rates. The total
objective function is the sum of particular objective functions.

It was originally planned to calibrate all 18 material parameters for a combination
of three loading modes (uniaxial tension, uniaxial compression, simple shear) and three
strain rates 0.01s−1, 0.1s−1 and 1s−1 in order to predict complex behaviour of the cork
composite. This calibration was unsuccessful and suitable parameters were not found.
The biggest problem was caused by the numerical simulation of uniaxial compression,
which is unstable for most material parameter combinations. Figure 5.8 (a), (b) shows re-
sults of numerical simulation for coarse and fine mesh with 20% nominal strain. It can be
observed that the outer elements which are in the contact with rigid parts are excessively
distorted. A large number of simulations did not converge during the optimisation.

Detail

Detail

a)

b)

c)

Figure 5.8: Uniaxial compression simulation errors

Other problems were caused by compressibility of the hyperelastic material model,
where parameter D larger then 1 × 10−7 [Nm−2] caused bulging of compression sample
model in the opposite direction as shown in Figure 5.8 (c). Parameter D of Arruda-Boyce
hyperelastic model should correspond with 1/K0 = 9.3 × 10−6 [Nm−2], however for
these values the opposite bulging appears. This behaviour can not be seen in force-time
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or force-displacement diagram, nor objective function can not register this behaviour.
Only in the results visualization can this behaviour be observed. For a proper material
calibration should be parameters for which the opposite bulging appears penalised in
terms of objective function.

5.5.1 Calibration for combination of tension and shear

Due to the problems with numerical simulations of uniaxial compression, the material
parameter calibration was only done for the combination of uniaxial tension, simple shear
and all of the strain rates listed above. The calibration consisted of 3 steps where the
evolution algorithm with global and local predefined settings was used to calibrate the
material parameters, and these parameters were refined using the gradient algorithm as
shown in Figure 5.9. The following procedure of material parameters calibration showed
to be the most feasible way of finding proper parameters. Series of material parameter
calibration with various parameters preceded this procedure in order to find initial values,
boundaries and parameters of numerical optimization algorithms.

Calibration

The inputs of the global evolution algorithm were the initial parameters and boundaries
listed in Table 5.2. As a simplification of the material model were the parameters ni and
mi set constant to provide linear viscoelastic response of the particular network. It was
less complicated to calibrate material parameters for linear version of the model first and
then calibrate parameters which cause non-linear viscoelastic response. Based on the ini-
tial results of the calibration, it was preferable to assume the material to be incompressible
(D = 0), although the value of the initial bulk modulus K0 corresponds to compressible
material. This assumption might be incorrect in case of uniaxial compression simulation,
but it led to better results for the combination of tension and shear.

The best results of the global evolution algorithm were used as the initial values of the
local evolution algorithm, but parameters ni and mi were no longer constant in order to
provide non-linear viscoelastic response of a particular network. The initial parameters
and boundaries of the local evolution algorithm are listed in 5.3. At the end, the gradient
algorithm was used to refine parameters calibrated using the evolution algorithms. The
initial parameter belonged to the best calibrated set of parameters from local evolution
algorithm and boundaries were identical to the local evolution algorithm (Table 5.3).
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Table 5.2: Parameters with initial values and boundaries for the global evolution algorithm
Parameter Units Initial value Lower bound Upper bound
µ Nm−2 0.75× 106 0.5× 106 2.5× 106

λ - 1 1 10
D N−1m2 0 constant constant
A1 N−nm2ns(−1−m) 1× 10−6 1× 10−2 1× 10−14

n1 - 1 constant constant
m1 - 0 constant constant
s1 - 0.2 0 0.5
A2 N−nm2ns(−1−m) 1× 10−6 1× 10−2 1× 10−14

n2 - 1 constant constant
m2 - 0 constant constant
s2 - 0.2 0 0.5
A3 N−nm2ns(−1−m) 1× 10−6 1× 10−2 1× 10−14

n3 - 1 constant constant
m3 - 0 constant constant
s3 - 0.2 0 0.5
r - 1 1 10
m J 0.5 0.001 0.5
β - 0.5 0 1

Table 5.3: Parameters with initial values and boundaries for the local evolution and
gradient algorithm

Parameter Units Initial value Lower bound Upper bound
µ Nm−2 from previous algorithm 0.5× 106 2.5× 106

λ - from previous algorithm 1 10
D N−1m2 0 constant constant
A1 N−nm2ns(−1−m) from previous algorithm 1× 10−2 1× 10−14

n1 - 1 1 5
m1 - 0 0 −1
s1 - from previous algorithm 0 0.5
A2 N−nm2ns(−1−m) from previous algorithm 1× 10−2 1× 10−14

n2 - 1 1 5
m2 - 0 0 −1
s2 - from previous algorithm 0 0.5
A3 N−nm2ns(−1−m) from previous algorithm 1 ×10−2 1× 10−14

n3 - 1 1 5
m3 - 0 0 −1
s3 - from previous algorithm 0 0.5
r - from previous algorithm 1 10
m J from previous algorithm 0.001 0.5
β - from previous algorithm 0 1
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Figure 5.9: Scheme of the optimisation procedure

Algorithms parameters

As mentioned previously, evolution algorithms used predefined global or local search
settings, which set the parameters of mutation, combination and other aspects. The basic
parameters of the algorithm used during the calibration are listed in Table 5.4.

In order to satisfy the relation (4.46), the constraint for the stiffness of viscoelastic
networks was used in form:

n∑
i=1

si ≤ 1 (5.7)

Table 5.4: Parameters of algorithms
Parameter Algorithm Value
Start population size Global e. 2000
Archive size Global e. 100
Maximum number of generations Global e. 3
Start population size Local e. 50
Archive size Local e. 5
Maximum number of generations Local e. 100
Desired accuracy Gradient 0.5× 10−6

Differentiation scheme Gradient central
Differentiation step size Gradient 0.001
Maximum num. of solver runs Gradient 10000
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6 Results

Based on the initial results of material parameter calibration and problems with con-
vergence of uniaxal compression were material parameters calibrated only for the combi-
nation of uniaxial tension and simple shear. Incompressible material was assumed.

The following Figures 6.1 - 6.12 show the results of experiments and numerical pre-
dictions for calibrated material parameters listed in Table 6.1. For calibrated material
parameters, a compliance between predictions and experiments was achieved, however
the predictions of uniaxial tension are less stiff than the experiments. The situation is
opposite in case of simple shear, the predictions are stiffer than the experiments. From
the force-time diagrams it is obvious that the relaxation parts are not predicted well,
the decrease of reaction force in predictions is smaller than the measured force. The
biggest calibration errors of approximately 30 % can be found in the relaxation parts. The
calibrated material models correspond to slightly non-linear viscoelastic model because
of parameters mi and ni, whose values are equal or almost equal to values corresponding
with the linear model. This is caused by the procedure of material parameters calibration
which started with linear version of the model.

Figures 6.13-6.18 show the results of experiments and predictions of uniaxial com-
pression. It is obvious that the material parameters calibrated for tension and shear are not
suitable for uniaxial compression. The predictions are much stiffer than the experiments.
In addition, the results for strain rate 0.1 s−1 (Figures 6.15 and 6.16) are not complete,
only half of the simulation is completed. For this simulation, the mesh shown in Figure
5.2 (a) was used.

Material parameters calibrated in this thesis are appropriate for predicting the be-
haviour of the cork-rubber composite in case of tension or shear loading for strain rates
0.01 s−1, 0.1 s−1, 1 s−1. It can be assumed that for other strain rates close to previously
mentioned ones will the material model with given parameters be accurate enough. Ma-
terial parameters were calibrated for relaxation time 60 s, for longer relaxation times are
the calibrated parameters not suitable. This material model will predict the behaviour of
the material under cyclic loading for strains up to 30% because of Mullins effect.
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Table 6.1: Results of material parameter calibration for combination of tension and shear
Parameter Units Value
µ Nm−2 1141655
λ - 4.0952
d N−1m2 0
A1 N−nm2ns(−1−m) 1.86× 10−9

n1 - 1
m1 - 0
s1 - 0.0775
A2 N−nm2ns(−1−m) 1.12× 10−9

n2 - 1.3028
m2 - 0
s2 - 0.4682
A3 N−nm2ns(−1−m) 9.90× 10−7

n3 - 1.2567
m3 - 0
s3 - 0.1865
r - 1.5810
m J 0.3787
β - 1.0829
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Figure 6.1: Comparison of experimental and predicted data for calibrated parameters:
force-time diagram, uniaxial tension, strain rate 1 s−1.
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Figure 6.2: Comparison of experimental and predicted data for calibrated parameters:
force-displacement diagram, uniaxial tension, strain rate 1 s−1.
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Figure 6.3: Comparison of experimental and predicted data for calibrated parameters:
force-time diagram, uniaxial tension, strain rate 0.1 s−1.
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Figure 6.4: Comparison of experimental and predicted data for calibrated parameters:
force-displacement diagram, uniaxial tension, strain rate 0.1 s−1.
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Figure 6.5: Comparison of experimental and predicted data for calibrated parameters:
force-time diagram, uniaxial tension, strain rate 0.01 s−1.
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Figure 6.6: Comparison of experimental and predicted data for calibrated parameters:
force-displacement diagram, uniaxial tension, strain rate 0.01 s−1.
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Figure 6.7: Comparison of experimental and predicted data for calibrated parameters:
force-time diagram, simple shear, strain rate 1 s−1.
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Figure 6.8: Comparison of experimental and predicted data for calibrated parameters:
force-displacement diagram, simple shear, strain rate 1 s−1.
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Figure 6.9: Comparison of experimental and predicted data for calibrated parameters:
force-time diagram, simple shear, strain rate 0.1 s−1.
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Figure 6.10: Comparison of experimental and predicted data for calibrated parameters:
force-displacement diagram,simple shear, strain rate 0.1 s−1.
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Figure 6.11: Comparison of experimental and predicted data for calibrated parameters:
force-time diagram, simple shear, strain rate 0.01 s−1.
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Figure 6.12: Comparison of experimental and predicted data for calibrated parameters:
force-displacement diagram, simple shear, strain rate 0.01 s−1.
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Figure 6.13: Comparison of experimental and predicted data for calibrated parameters:
force-time diagram, uniaxial compression, strain rate 1 s−1.
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Figure 6.14: Comparison of experimental and predicted data for calibrated parameters:
force-displacement diagram, uniaxial compression, strain rate 1 s−1.
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Figure 6.15: Comparison of experimental and predicted data for calibrated parameters:
force-time diagram, uniaxial compression, strain rate 0.1 s−1.
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Figure 6.16: Comparison of experimental and predicted data for calibrated parameters:
force-displacement diagram,uniaxial compression, strain rate 0.1 s−1.
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Figure 6.17: Comparison of experimental and predicted data for calibrated parameters:
force-time diagram, uniaxial compression, strain rate 0.01 s−1.
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Figure 6.18: Comparison of experimental and predicted data for calibrated parameters:
force-displacement diagram, uniaxial compression, strain rate 0.01 s−1.
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7 Conclusion

The presented diploma thesis dealt with cork-rubber material parameter calibration.
Uniaxial tension, uniaxial compression and simple shear experiments were performed for
strain rates 0.01s −1, 0.1s −1, 1s −1 in order to identify the behaviour of a cork-composite
Amorim ACM87. As a material model was chosen the Parallel network model consisting
of 3 viscoelastic networks in combination with Mullins effect. Viscoelastic networks were
represented using hyperelastic Arruda-Boyce model and viscous Power law. Material
parameters were calibrated using evolution and gradient algorithms driven by optiSLang
software. Calibration was based on a comparison and minimization of the differences be-
tween experimental data and the results of numerical simulations. Numerical simulations
corresponding with the experiments were performed using Abaqus software.

Due to problems with convergence of numerical simulations of uniaxial compression,
only material parameters for combination of uniaxial tension and simple shear were cali-
brated, assuming incompressible material. Calibrated material parameters are suitable for
describing the behaviour of the cork-rubber composite in case of tension and shear loading
up to 30% nominal strains in range of strain rates from 0.01 s−1 to 1 s−1. Investigated
relaxation time was 60 s, for longer relaxation time will the predictions become more
inaccurate.

The parameters of chosen material model were calibrated, however not for a combi-
nation of all loading modes. In further work, the problems with convergence of numerical
simulations of uniaxial compression should be solved. Another possibility is to omit
uniaxial compression and investigate other loading modes such as biaxial extension to
avoid contact type numerical simulations. Also other hyperelastic models and viscous
laws should be investigated in order to find better compliance between the experiments
and numerical simulation predictions.
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