

Fakulta elektrotechnická Katedra aplikované elektroniky a telekomunikací

DIPLOMOVÁ PRÁCE

Rozšířené možnosti analýz v prostředí PSpice

Autor práce: Bc. Lukáš Mraček Vedoucí práce: Ing. Jiří Stifter, Ph.D. ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2011/2012

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Lukáš MRAČEK
Osobní číslo:	E10N0147P
Studijní program:	N2612 Elektrotechnika a informatika
Studijní obor:	Telekomunikační a multimediální systémy
Název tématu:	Rozšířené možnosti analý z ${\bf v}$ prostředí PS pice
Zadávající katedra:	Katedra aplikované elektroniky a telekomunikací

Zásady pro vypracování:

- Seznamte se s možnostmi analýz elektronických obvodů v prostředí PSpice především se zaměřením na rozšířené typy analýzy (teplotní analýza, mezní provozní podmínky/namáhání součástek, optimalizace obvodových funkcí, toleranční a citlivostní analýza, atd.). Dále popište možnosti importů matematických modelů součástek a možnosti kosimulace v prostředí Matlab/Simulink.
- 2. Ověřte možnosti jednotlivých typů analýz na příkladech vhodných elektronických obvodů z aplikační oblasti např. nf a nf měřicí techniky. V rámci možností porovnejte výsledky analýz z PSpice s výsledky získanými praktickým měřením zrealizovaných elektronických obvodů.
- 3. Vytvořte demonstrační úlohy zaměřené do oblasti pokročilé syntézy a analýzy nf zařízení využívajících možností rozšířených analýz implementovaných v prostředí PSpice.

Rozsah grafických prací: podle doporučení vedoucího

Rozsah pracovní zprávy: 30 -

30 - 40 stran

Forma zpracování diplomové práce: tištěná/elektronická

Seznam odborné literatury:

Student si vhodnou literaturu vyhledá v dostupných pramenech podle doporučení vedoucího práce.

Vedoucí diplomové práce: Konzultant diplomové práce: Datum zadání diplomové práce: **Ing. Jiří Stifter, Ph.D.** Katedra aplikované elektroniky a telekomunikací **Ing. Jiří Stifter, Ph.D.** Katedra aplikované elektroniky a telekomunikací **Ing. Jiří Stifter, Ph.D.**

Datum zadání diplomové práce:17. října 2011Termín odevzdání diplomové práce:11. května 2012

Doc. Ing Jiří Hammerbauer, Ph.D. děkan

V Plzni dne 17. října 2011

Doc. Dr. Ing. Vjačeslav Georgiev vedoucí katedry

Abstrakt

Diplomová práce se zabývá modulem rozšířených analýz v programu OrCAD PSpice. Mezi rozšířené analýzy patří citlivostní analýza, optimalizace obvodových funkcí, analýza namáhání součástek, analýza výtěžnosti výroby (Monte Carlo) a analýza s rozmítáním obvodových prvků a vlastností. Tyto rozšířené analýzy jsou v první části popsány a je ukázána práce s nimi na jednoduchých příkladech. V další části jsou jednotlivé typy rozšířených analýz použity při analýze nízkofrekvenčních obvodů. Jako další modul, který je při práci využit, je modul SLPS, který umožňuje kosimulaci mezi programem OrCAD PSpice a programem Matlab, konkrétně rozhraním Simulink. V práci je také popsána práce s modely součástek, jejich vytváření, modifikace a import.

Klíčová slova

orcad pspice, rozšířené analýzy, citlivostní analýza, optimalizace obvodových funkcí, analýza namáhání prvků obvodu, monte carlo – analýza výtěžnosti výroby, analýza s rozmítáním obvodových prvků a vlastností, spice model součástky, kosimulace, simulink

Abstract

Mraček, Lukáš. Advanced analysis in PSpice simulator [Rozšířené možnosti analýz v prostředí PSpice]. Pilsen, 2012. Master thesis (in Czech). University of West Bohemia. Faculty of Electrical Engineering. Department of Applied Electronics and Telecommunications. Supervisor: Jiří Stifter

This master thesis deals with the advanced analysis module in the program OrCAD PSpice. The advanced analysis include sensitivity analysis, optimizer, smoke analysis, Monte Carlo and parametric plotter. These advanced analysis are described and it is shown how to work with them on the simple examples in the first chapter. Individual analyzes are used to analyze low-frequency circuits in the fourth chapter. The next module which is used in this thesis is SLPS. This module enables cosimulation between OrCAD PSpice and Matlab/Simulink. There will be described work with models of components, their creating, modification and import.

Keywords

orcad pspice, advance analysis, sensitivity, optimizer, smoke analysis, monte carlo, parametric plotter, spice model of component, cosimulation, simulink

Prohlášení

Předkládám tímto k posouzení a obhajobě diplomovou práci, zpracovanou na závěr studia na Fakultě elektrotechnické Západočeské univerzity v Plzni.

Prohlašuji, že jsem svou závěrečnou práci vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce. Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této závěrečné práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 270 trestního zákona č. 40/2009 Sb.

Také prohlašuji, že veškerý software, použitý při řešení této diplomové práce, je legální.

V Plzni dne 11. května 2012

Bc. Lukáš Mraček

.....

Podpis

Poděkování

Tato práce vznikla s podporou projektu SGS-2012-019 "Moderní řešení elektronických řídících a informačních systémů".

Obsah

Se	eznar	n obrázků	xii
Se	eznar	n symbolů a zkratek	xiii
1	Úvo	od	1
	1.1	Informační zdroje k programu PSpice	2
2	Roz	šířené analýzy v programu PSpice	4
	2.1	Parametry analyzovaného obvodu vstupujícího do rozšířených analýz $\ .$.	6
	2.2	Citlivostní analýza	7
	2.3	Optimalizace obvodových vlastností	16
		2.3.1 Optimalizace obvodu pomocí cílů a omezení – Standard	22
		2.3.2 Optimalizace obvodu pomocí zachycení na křivku – Curve fit \ldots .	28
	2.4	Analýza namáhání součástek (Smoke analysis)	34
	2.5	Analýza výtěžnosti výroby (Monte Carlo)	38
	2.6	Rozmítání obvodových parametrů	44
3	Prá	ce s modely součástek	53
	3.1	Vytvoření nového modelu součástky	53
	3.2	Editace stávajícího modelu součástky	60
	3.3	Import nového modelu součástky	64
4	Kos	simulace – spolupráce OrCAD PSpice a Matlab Simulink	68
	4.1	Vytvoření a simulace obvodu v OrCAD PSpice	68
	4.2	Použití modulu SLPS v programu Matlab	70
5	Vyı	ıžití rozšířených analýz programu OrCAD PSpice	75
	5.1	Analýza gramofonového předzesilovače s kmitočtovou korekcí záznamové	
		charakteristiky	75
		5.1.1 Gramofonový předzesilovač se zpětnovazební kmitočtovou korekcí	
		záznamové charakteristiky pro historické gramofonové desky $\ .\ .\ .$	76
		5.1.2 Gramofonový předzesilovač se zpětnovazební kmitočtovou korekcí	
		záznamové charakteristiky pro stereo desky	96

	5.1.3	Gramofonový předzesilovač s pasivní kmitočtovou korekcí zázna-	
		mové charakteristiky pro historické desky	.02
	5.1.4	Gramofonový předzesilovač s pasivní kmitočtovou korekcí zázna-	
		mové charakteristiky pro stere o gramofonové desky $\ .\ .\ .\ .\ .\ .\ 1$	18
	5.1.5	Výkonový zesilovač pro sluchátka	.24
	5.1.6	Určení stability operačního zesilovače	.31
	5.1.7	Vliv délky vedení na frekvenční charakteristiku 1	.35
	5.1.8	Činitel potlačení souhlasného rušení – CMRR $\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$.38
6	Závěr	1	44
6 Re	Závěr eference, p	oužitá literatura 14	44 46
6 Re Př	Závěr eference, p řílohy	14 použitá literatura 14 14	44 46 48
6 Ra Př A	Závěr eference, p řílohy Rozšířene	ooužitá literatura 14 14 26 analýzy 14	44 46 48 48
6 Re Př A	Závěr eference, p řílohy Rozšířene A.1 Paraz	1 použitá literatura 1 1 1 2 analýzy 1 netry součástek potřebné k rozšířeným analýzám 1	 44 46 48 48 48 48

Seznam obrázků

2.1	Postup práce s moduly rozšířených analýz Převzato z [19]	5
2.2	Postup práce s citlivostní analýzou Převzatoz [19]	8
2.3	Zapojení analyzovaného obvodu tranzistorového RF zesilovače	10
2.4	Nastavení AC analýzy tranzistorového RF zesilovače	11
2.5	Výsledky AC analýzy tranzistorového RF zesilovače (závislost spektrální	
	hustoty efektivní hodnoty šumového napětí na výstupu na kmitočtu; zá-	
	vislost šumového čísla na kmitočtu	12
2.6	Okno citlivostní analýzy (přehled analyzovaných prvků; seznam měření)	13
2.7	Výstup citlivostní analýzy tranzistorového RF zesilovače	14
2.8	Odeslání kritických prvků analyzovaného obvodu k optimalizaci	15
2.9	Postup práce při optimalizaci Převzatoz[19]	16
2.10	Okno pro nastavení MLSQ engine	17
2.11	Ukázka výskytu možné chyby v průběhu, se kterou by mohl mít optimali-	
	zační algoritmus problém Převzato z [18]	18
2.12	Okno pro nastavení Random engine	19
2.13	Ukázka souboru s hodnotami rezistorů pro Discrete engine	21
2.14	Okno pro nastavení Discrete engine	21
2.15	Výsledky měření AC analýza tranzistorového RF zesilovače	23
2.16	Základní okno optimalizace a vkládání prvků a měření k optimalizaci $\ .\ .$	24
2.17	Nastavení optimalizace tranzistorového RF zesilovače	25
2.18	Okno s výsledky optimalizace tranzistorového RF zesilovače pomocí $M\!LSQ$	
	engine	26
2.19	Okno s výsledky optimalizace tranzistorového RF zesilovače pomocí Dis	
	crete engine	27
2.20	Výsledky definovaných měřicích funkcí pro tranzistorový RF zesilovač $\ .$.	27
2.21	Schéma optimalizovaného filtru typu pásmová propust	30
2.22	Simulační profil AC analýzy pro optimalizovaný filtr typu pásmová proput	30
2.23	Nastavení optimalizace filtru typu pásmová propust pro zachycení na křivku	31
2.24	Výsledky optimalizace filtru typu pásmová propust v okně optimalizace	32
2.25	Výsledky optimalizace pásmové propusti s operačními zesilovači $\ .$	33
2.26	Postup práce s analýzou namáhání součástek Převzatoz[19]	34

2.27	Nastavení simulačního profilu pro časovou analýzu	35
2.28	Okno analýzy namáhání součástek pro tranzistorový RF zesilovač $\ .$	36
2.29	Cesta v menu k nastavení a volbě zatěžovacího faktoru	37
2.30	Postup práce s analýzou Monte Carlo Převzatoz[19]	38
2.31	Základní okno analýzy Monte Carlo	39
2.32	Okno pro vytvoření nového měření	40
2.33	Nastavení analýzy Monte Carlo	41
2.34	Výsledky analýzy Monte Carlo tranzistorového RF zesilovače	43
2.35	Schéma zapojení obvodu pro induktivní spínání	45
2.36	Nastavení simulačního profilu pro transientní analýzu	46
2.37	Výsledky transientní analýzy obvodu pro induktivní spínání (vstupní na-	
	pětí na R2; výstupní napětí na L1) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	46
2.38	Základní okno Parametric Plotter	47
2.39	Nastavení rozmítání parametrů pro obvod k induktivnímu spínání \ldots	48
2.40	Okno pro vytvoření uživatelsky definovaného průběhu	49
2.41	Vyplněné okno Parametric Plotter	49
2.42	Výsledky Parametric Plotter pro všechny kombinace rozmítaných obvodo-	
	vých parametrů	50
2.43	Průvodce vytvoření nového vyhodnocovacího grafu	51
2.44	Velikost překmitu napětí v závislosti na velikosti rozmítání C1 (osa Y) a	
	R2 (osa X)	52
2.45	Výsledek transientní analýzy obvodu pro induktivní spínání s upravenými	
	hodnotami součástek	52
3.1	Schéma a model reálného kondenzátoru	54
3.2	Průvodce vytvoření nového modelu součástky	55
3.3	Schéma s použitým reálným i ideálním modelem kondenzátoru	56
3.4	Okno pro doplnění parametru k reálnému kondenzátoru	56
3.5	Schéma a model reálného kondenzátoru	58
3.6	Výsledek AC analýzy modelu reálného kondenzátoru v porovnání s ideál-	
	ním kondenzátorem (úroveň výstupního napětí reálného modelu kondenzá-	
	toru (dB(V(out1))); úroveň výstupního napětí ideálního modelu konden-	
	zátoru (dB(V(out2)))	59
3.7	Schéma pro určení závislosti odporu rezistoru Rbreak na teplotě	60
3.8	Úprava součástky <i>Rbreak</i> v Model Editoru	61
3.9	Nastavení simulační profilu	62
3.10	Okno pro vložení knihovních souborů	62
3.11	Výsledná závislost odporu rezistoru <i>Rbreak</i> na teplotě	63
3.12	Základní okno programu Model Editor	64
3.13	Schéma zapojení s importovaným tranzistorem 2N2222AHR	65

3.14	Měřeni výstupních charakteristik tranzistor u $2N2222AHR-{\rm DC}$ simulační	
	profil	66
3.15	Výstupní charakteristiky tranzistor u $2N2222AHR$	67
4.1	Schéma obvodu použitého při kosimulaci	69
4.2	Simulační profil pro připravený obvod ke kosimulaci	69
4.3	Výsledek transientní analýzy připraveného obvodu	69
4.4	Otevřená okna po provedení příkazu slpslib v Command Window	70
4.5	Otevřená okna po provedení příkazu slpslib v Command Window	71
4.6	Hotový model ukázkového příkladu	72
4.7	Nastavení zdroje signálu	72
4.8	Nastavení prvku SLPS	73
4.9	Nastavení simulace v rozhraní Simulink	74
4.10	Výsledek simulace provedené v rozhraní Simulink	74
5.1	Schéma zapojení gramofonového předzesilovače se zpětnovazební kmitočto-	
	vou korekcí záznamové charakteristiky pro historické gramofonové desky $% \left({{{\bf{x}}_{i}}} \right)$.	77
5.2	AC simulační profil pro gramofonový předzesilovač se zpětnovazební kmi-	
	točtovou korekcí (historické gramofonové desky)	79
5.3	Modul přenosové funkce gramofonového předzesilovače se zpětnovazební	
	kmitočtovou korekcí s odchylkou před a po optimalizaci (historické gramo-	
	fonové desky)	80
5.4	Okno pro definování požadované měřicí funkce	81
5.5	Výsledek citlivostní analýzy gramofonového předzesilovače	82
5.6	Optimalizace modulu přenosové funkce gramofonového předzesilovače se	
	zpětnovazební kmitočtovou korekcí záznamové charakteristiky (historické	
	gramofonové desky)	84
5.7	Analýza výtěžnosti výroby v závislosti na velikosti odchylky modulu pře-	
	nosové funkce gramofonového předzesilovače se zpětnovazební kmitočtovou	
	korekcí záznamové charakteristiky (historické gramofonové desky) od refe-	
	renčního průběhu	86
5.8	Výsledek šumové analýzy gramofonového předzesilovače se zpětnovazební	
	kmitočtovou korekcí záznamové charakteristiky (historické gramofonové	
	desky)	88
5.9	Nastavení rozmítání velikosti kondenzátoru C3	89
5.10	Velikost vstupní impedance gramofonového předzesilovače se zpětnovazební	
	kmitočtovou korekcí záznamové charakteristiky (historické gramofonové	
	desky v závislosti na kmitočtu (zelený průběh C3 = 170 pF) $\ldots \ldots \ldots$	90
5.11	Schémata pro měření výstupní impedance gramofonového předzesilovače se	
	zpětnovazební kmitočtovou korekcí záznamové charakteristiky (historické $% \mathcal{A}^{(n)}$	
	gramofonové desky	91

5.12	Závislost velikosti výstupní impedance a fáze gramofonového předzesilovače	
	se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (histo-	
	rické gramofonové desky	2
5.13	Schéma zapojení gramofonového předzesilovače se zpětnovazební kmitočto-	
	vou korekcí záznamové charakteristiky (historické gramofonové desky) a	
	připojeným DC servem	3
5.14	Ukázka zapojení DC serva do obvodu invertujícího zapojení operačního	
	zesilovače	1
5.15	Deformace kmitočtové korekční charakteristiky vlivem DC serva 95	5
5.16	Závislost potlačení stejnosměrného offsetu DC servem na velikosti stejno-	
	směrného napětí na vstupu operačního zesilovače	5
5.17	Modul přenosové funkce gramofonového předzesilovače se zpětnovazební	
	kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky)s od-	
	chylkou před a po optimalizaci	7
5.18	Výsledek citlivostní analýzy gramofonového předzesilovače se zpětnova-	
	zební kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové	
	desky)	3
5.19	Optimalizace modulu přenosové funkce gramofonového předzesilovače se	
	zpětnovazební kmitočtovou korekcí záznamové charakteristiky (stereo gra-	
	mofonové desky))
5.20	Analýza výtěžnosti výroby v závislosti na velikosti odchylky modulu pře-	
	nosové funkce gramofonového předzesilovače se zpětnovazební kmitočtovou	
	korekcí záznamové charakteristiky (stereo gramofonové desky) od referenč-	
	ního průběhu	1
5.21	Výsledek šumové analýzy gramofonového předzesilovače se zpětnovazební	
	kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky) 102	2
5.22	Schéma zapojení gramofonového předzesilovače s pasivní kmitočtovou ko-	
	rekcí záznamové charakteristiky (historické gramofonové desky) 103	3
5.23	AC simulační profil pro gramofonový předzesilovač s pasivní kmitočtovou	
	korekcí záznamové charakteristiky (historické gramofonové desky) 105	5
5.24	Modul přenosové funkce gramofonového předzesilovače s pasivní kmitočto-	
	vou korekcí záznamové charakteristiky (historické gramofonové desky) s od-	
	chylkou před a po optimalizaci	3
5.25	Okno pro definování požadované měřicí funkce	7
5.26	Výsledek citlivostní analýzy gramofonového předzesilovače s pasivní kmi-	
	točtovou korekcí záznamové charakteristiky (historické gramofonové desky) 108	3
5.27	Optimalizace modulu přenosové funkce gramofonového předzesilovače s pa-	
	sivní kmitočtovou korekcí záznamové charakteristiky (historické gramofo-	
	nové desky))

5.28	Analýza výtěžnosti výroby v závislosti na velikosti odchylky modulu pře-
	nosové funkce gramofonového předzesilovače s pasivní kmitočtovou korekcí
	záznamové charakteristiky (historické gramofonové desky) od referenčního
	průběhu
5.29	Výsledek šumové analýzy gramofonového předzesilovače s pasivní kmi-
	točtovou korekcí záznamové charakteristiky (historické gramofonové desky) 113
5.30	Nastavení rozmítání velikosti kondenzátoru C3
5.31	Velikost vstupní impedance gramofonového předzesilovače s pasivní kmi-
	točtovou korekcí záznamové charakteristiky (historické gramofonové desky)
	v závislosti na kmitočtu (zelený průběh C3 = 170 pF)
5.32	Schémata pro měření výstupní impedance gramofonového předzesilovače
	s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gra-
	mofonové desky)
5.33	Závislost velikosti výstupní impedance a fáze gramofonového předzesilo-
	vače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické
	gramofonové desky)
5.34	Modul přenosové funkce gramofonového předzesilovače s pasivní kmitočto-
	vou korekcí záznamové charakteristiky (stereo gramofonové desky) s od-
	chylkou před a po optimalizaci
5.35	Výsledek citlivostní analýzy gramofonového předzesilovače s pasivní kmi-
	točtovou korekcí záznamové charakteristiky (stere o gramofonové desky) $$. 120
5.36	Optimalizace modulu přenosové funkce gramofonového předzesilovače s pa-
	sivní kmitočtovou korekcí záznamové charakteristiky (stere o gramofonové $% \mathcal{A}$
	desky)
5.37	Analýza výtěžnosti výroby v závislosti na velikosti odchylky modulu pře-
	nosové funkce gramofonového předzesilovače s pasivní kmitočtovou korekcí
	záznamové charakteristiky (stere o gramofonové desky) od referenčního prů-
	běhu
5.38	Výsledek šumové analýzy gramofonového předzesilovače s pasivní kmi-
	točtovou korekcí záznamové charakteristiky (stere o gramofonové desky) $$. 124
5.39	Schéma zapojení výkonového zesilovače pro sluchátka $_{ P \check{r} evzato z [22] }$ 125
5.40	Nastavení simulačního profilu pro výkonový zesilovač pro sluchátka $\ .\ .\ .\ 126$
5.41	Výsledky analýzy harmonického zkreslení výkonového zesilovače pro slu-
	chátka
5.42	Výsledek analýzy namáhání součástek pro výkonový zesilovače pro slu-
	chátka při standardním provozu
5.43	Výsledky analýzy harmonického zkreslení výkonového zesilovače pro slu-
	chátka
5.44	Výsledek analýzy namáhání součástek výkonového zesilovače pro sluchátka
	při nestandardním provozu

5.45	Schéma zapojení pro určení stability operačního zesilovače OPA452 \ldots . 131
5.46	AC simulační profil pro určení stability operačního zesilovače OPA452 $. \ . \ 132$
5.47	Výsledek analýzy stability operačního zesilovače OPA452 pro odporovou
	zátěž
5.48	Výsledek analýzy stability operačního zesilovače OPA452 pro kapacitní zátěž 134 $$
5.49	Náhradní schéma elementu kabelu
5.50	Schéma zapojení pro demonstraci vlivu délky vedení na deformaci frek-
	venční charakteristiky $\ldots \ldots 136$
5.51	Výsledek AC analýzy simulovaného obvodu pro různé délky vedení $\ $ 136
5.52	Výsledek AC analýzy simulovaného obvodu s úpravou pro rozšíření pásma
	přenášených kmitočtů
5.53	Impedanční model signálového spoje zahrnující impedanční můstek $\ .$ 138
5.54	Schéma zapojení přístrojového zesilovače s uměle zvýšenou vstupní impe-
	dancí pomocí tzv. bootstrappingu \ldots
5.55	Schéma zapojení pro měření CMRR dle normy (ČSN) EN 60268-3 $_{\rm Převzatoz[23] }139$
5.56	Schéma zapojení pro měření CMRR v programu OrCAD PSpice 140
5.57	Simulační profil s nastavení analýzy výtěžnosti výroby
5.58	Výsledek analýzy výtěžnosti výroby v závislosti na tolerancích hodnot re-
	zistor ů R17, R18, R19 a R20
5.59	Výsledek analýzy výtěžnosti výroby v závislosti na tolerancích hodnot re-
	zistorů R17, R18, R19 a R20 s rozvažovací impedancí R16 $\ \ldots\ \ldots\ \ldots\ 142$
5.60	Výsledek analýzy výtěžnosti výroby v závislosti na tolerancích hodnot re-
	zistorů R 17, R18, R19, R20, C8 a C9 s rozvažovací impedancí R16 . 143
A.1	Tabulka proměnných parametrů VARIABLES
A.2	Přehled parametrů nejčastěji používaných prvků
A.3	Význam parametrů pasivních součástek $_{\rm Převzatoz[18] }$
A.4	Význam parametrů polovodičových součástek (1. část) $_{\rm Převzatoz[18] }$ 154
A.5	Význam parametrů polovodičových součástek (2. část) $_{\rm Převzatoz[18] }$ 155
A.6	Význam parametrů polovodičových součástek (3. část) $_{\rm Převzatoz[18] }$ 156
A.7	Význam parametrů operačních zesilovačů Převzato z [18]

Seznam symbolů a zkratek

Advanced Analysis	Rozšířené analýzy.
Sensitivity Analysis .	Citlivostní analýza.
Optimizer	Optimalizace.
Smoke Analysis	Analýza namáhání součástek.
Monte Carlo Analysis	Toleranční analýza/analýza výtěžnosti výroby.
Parametric Plotter	Nástroj k rozmítání obvodových veličin.
SLPS	Nástroj pro spolupráci OrCAD PSpice a Matlab/Simulink.
Engine	Algoritmus využívaný při optimalizaci.
Gear	Nástroj používaný při optimalizaci k výpočtu chyby.
FFT	Fast Fourier Transformation. Rychlá Fourierova transformace.
CMRR	Common-mode rejection ratio. Činitel potlačení souhlasného ru
	šení.
<i>k</i>	Činitel vazby; Boltzmannova konstanta $\left(1, 38.10^{-23} \left[\frac{J}{\circ K}\right]\right)$.

1

Úvod

Práce se zabývá popisem a použitím modulu rozšířených analýz při simulaci elektrických obvodů. Modul rozšířených analýz je rozšíření programu OrCAD PSpice o několik typů analýz. Mezi rozšířené analýzy obsažené v tomto modulu patří citlivostní analýza, optimalizace chování obvodu v závislosti na hodnotách prvků obvodu, analýza namáhání součástek, statistická analýza Monte Carlo a nástroj k rozmítání obvodových veličin. Dalším rozšířením, kterým se tato práce zabývá je SLPS, je to další rozšiřující modul, který umožňuje spolupráci mezi programy OrCAD PSpice a Matlab/Simulink, tzv. kosimulace.

Cílem této práce je vytvořit návod na používání modulu rozšířených analýz v programu OrCAD PSpice a modulu SLPS při tzv. kosimulaci a jejich použití v nízkofrekvenční technice. Všechny typy rozšířených analýz budou použity při vytvoření demonstračních úloh zaměřených do oblasti pokročilé syntézy a analýzy.

Druhá kapitola slouží k seznámení se se všemi typy analýz patřícími mezi rozšířené analýzy. Je podrobně popsána práce s každým typem analýzy a je názorně demonstrována na vzorovém příkladě. Všechny vzorové příklady jsou čerpány z manuálu k rozšířeným analýzám [18].

Další kapitola se ve stručnosti zabývá prací s modely součástek. Modely součástek je možné vytvářet, modifikovat a importovat. Pro práci s modely součástek, výjimkou je import, je nutná znalost jazyka SPICE, ve kterém jsou modely součástek napsány. Pro práci s modely součástek byly použity dva knižní zdroje [4] a [6].

Ve čtvrté kapitole je popsána spolupráce programů OrCAD PSpice s programem Matlab Simulink. Popis spolupráce obou programu je převzat z manuálu, neboť se nepodařilo oba programy mezi sebou propojit.

Pátá kapitola je věnována použití rozšířených analýz k analýzám nízkofrekvenčních obvodů. Tato kapitola by měla být použitelná jako výukový materiál. V kapitole budou kromě rozšířených analýz použity i jiné analýzy, ze základního obsahu programu OrCAD PSpice. S jejich pomocí bude určována například stabilita obvodu, nebo se bude měřit činitel souhlasného rušení CMRR.

1.1 Informační zdroje k programu PSpice

Knižních zdrojů je dostupných mnoho, většina jich je napsána v anglickém jazyce, ale většinou se zabývají všeobecným popisem programu, nikoliv hlubším popisem pokročilých typů analýz, kterými se tato práce zabývá.

Z anglicky psané literatury bych především uvedl: Analog Design and Simulation using OrCAD Capture and PSpice [1]. V této knize je popsáno použití OrCAD PSpice od základních typů analýz po rozšířené typy analýz. Každý typ analýzy je demonstrován na vhodném zapojení s popisem nastavení a jednotlivých kroků analýzy.

Z česky psané literatury je uvedena: Řešíme elektronické obvody, aneb kniha o jejich analýze [3]. Tato kniha se nezabývá konkrétně programem PSpice, ale řeší se v ní simulace obvodů především pomocí programů SNAP a Microcap, další česky psaná kniha Modelování a simulace pomocí PSpice [4]. Jsou v ní řešeny základní typy analýz, základní práce s modely součástek a některé typy rozšířených analýz, jako například analýza Monte Carlo, analýza Worst Case a jiné.

Simulace v OrCAD PSpice na úrovni grafického editoru [7] a Modelování a simulace v mikroelektronice [8]. V prvně jmenovaném studijním textu je ve stručnosti popsána práce v Capture editoru ve verzi 10. Je zde vysvětleno základní nastavení a použití běžných typů analýz jako jsou AC, DC a transientní analýza. Druhý studijní text je již rozsáhlejší, a kromě hlubšího vysvětlení základní práce v Capture editoru, je zde popsána i práce se součástkami a několik řešených příkladů.

Analýza elektronických obvodů programem OrCAD PSpice [9]. V textu je krátké seznámení s některými rozšiřujícími typy analýz jako jsou: Monte Carlo, Worst Case, teplotní analýzu a krokování parametrů.

Všechny tři výše zmíněné texty jsou vhodné spíše pro základní seznámení s programem a pro získání základní orientace v ovládání programu, k seznámení se s pokročilými možnostmi programu nejsou tyto texty zcela vhodné a budou použity jiné informační zdroje.

Uživatelská příručka [16] k verzi programu PSpice 16.5 obsahuje kompletní popis celého programu včetně všech typů analýz zahrnující i pokročilé typy analýz a v dalších částech na ní bude často odkazováno.

Nápověda k pokročilým analýzám v programu OrCAD PSpice [18] se zabývá jen pokročilými typy analýz a je tedy hlavním zdrojem informací.

Uživatelská příručka k editoru magnetických prvků [20], je příručka pro vytváření a editaci magnetických prvků v programu PSpice.

V uživatelské příručce k prostředí SPLS [21] je návod, jak propojit obvody, navržené v programu OrCAD PSpice s programem Matlab/Simulinku.

Jako zdroj zápisů a článků byly použity servery AES E-Library [10] a IEEE Xplore®Digital Library [11]. Na těchto stránkách je k dispozici velké množství článků, ve kterých jsou použity některé nástroje z programu OrCAD PSpice při řešení konkrétních problémů.

Na internetu je mnoho diskusních portálů, ať se jedná o portály zřizované výrobci

simulačních programů, jako je například diskusní fórum společnosti Cadence [12], nebo jiné nezávislé portály jako je například EETimes [13], Eduboard [14] nebo Designer's Guide Comminuty [15].

2

Rozšířené analýzy v programu PSpice

Rozšířené typy analýz jsou rozšiřující moduly v programu OrCAD PSpice A/D a AMS simulátoru. Rozšířené analyzační nástroje se používají jako nadstavba základních typů analýz. Pomocí rozšířených analýz je možné upravovat parametry obvodu tak, aby bylo dosaženo jeho požadovaných vlastností a chování. Pokud bude navrhován například filtr typu dolní propust, je možné s využitím rozšířených analýz dosáhnout požadované šířky propustného pásma, zlomový kmitočet filtru, útlumu v zádržném pásmu a mnoho jiných parametrů. Možnosti jednotlivých typů analýz jsou popsány vždy na vhodném vzorovém příkladu v další části této kapitoly u konkrétních typů analýz. Příklady použité v této kapitole pro popis analýz jsou součástí dokumentace OrCAD PSpice.

Do rozšířených analýz patří několik typů analýz. Sensitivity analysis (citlivostní analýza) slouží k určení součástky, která má největší vliv na definovanou měřicí funkci či sledovaný obvodový parametr, například na šířku propustného pásma filtru typu pásmová propust. Optimizer (optimalizace) slouží k nastavení hodnot obvodových prvků, aby celý obvod vykazoval požadované vlastnosti. Je možné optimalizaci provádět podle zadaných kritérií nebo pomocí referenčního průběhu obvodové funkce, ke kterému se průběhem optimalizovaného obvodu snažíme s povolenou tolerancí přiblížit. Například jako referenční průběh je možné uvažovat vypočtenou frekvenční charakteristiku filtru a na tuto charakteristiku je optimalizovat navrhovaný filtr. Smoke analysis (analýza namáhání sou- $\check{c}\acute{a}stek$) je nástroj, pro nalezení prvků v simulovaném obvodu, které pracují v maximálních pracovních podmínkách a z výsledků této analýzy je možné zvolit vhodně dimenzované součástky vzhledem k jejich pracovním podmínkám. Monte carlo analysis (toleranční analýza/analýza výtěžnosti výroby) je statistická analýza, která při svém výpočtu uvažuje výrobní tolerance součástek a vyhodnocuje chování simulovaného obvodu při velkosériové výrobě. Parametric plotter (rozmítání parametrů obvodu) je nástroj, pro rozmítání libovolného počtu parametrů simulovaného obvodu. Účelem rozmítání je stanovit chování obvodu pro různé hodnoty rozmítaných součástek. Z výsledků je možné určit nejvhodnější kombinaci hodnot obvodových prvků, která nejvíce odpovídá požadovanému chování

obvodu.

Pro nejefektivnější využití všech typů rozšířených analýz je výhodné postupovat dle obr. 2.1. V postupu použití všech typů rozšířených analýz chybí nasazení *Parametric Plotteru*, ten je nejvýhodnější použít před analýzou *Monte Carlo* a dále pokračovat dle popisu.

Obr. 2.1: Postup práce s moduly rozšířených analýz |Převzatoz [19]|

Při popisu analýz a řešených příkladů byla použita dokumentace k rozšířeným analýzám [18].

2.1 Parametry analyzovaného obvodu vstupujícího do rozšířených analýz

Obvod, který má být simulován pomocí některého z nástrojů rozšířených analýz, musí obsahovat prvky s parametry, jako jsou tolerance parametrů, distribuční funkce, optimalizovatelné parametry a parametry výkonového namáhání prvků. Jednotlivé typy rozšířených analýz využívají různé parametry prvků. U každého typu rozšířené analýzy bude řečeno, který parametr je pro provedení konkrétní analýzy potřebný. Prvky, které je možné použít, jsou ve zvláštní knihovně. Knihovna je v instalačním adresáři ve složce $\langle Tools \rangle Capture \rangle PSpice \rangle$

 $\AdvAnls\.$ Knihovna v programu OrCAD PSpice představuje databázi matematických modelů součástek použitelných při simulaci obvodů.

Parametry prvků, které jsou nutné, pro rozšířené analýzy:

- Tolerance hodnot součástek např. pro rezistory kladná tolerance odporu *POSTOL = 10 %*. U součástek typu RLC je možné nastavit jak kladnou hodnotu tolerance *POSTOL*, tak zápornou hodnotu tolerance *NEGTOL*. Pokud není záporná tolerance definována, uvažuje se stejná, jako kladná tolerance.
- Distribuční funkce hodnot součástek např. typ rozložení distribuční funkce hodnoty odporu u rezistoru používané při analýze Monte Carlo může být DIST = FLAT.
- Optimalizovatelné parametry parametr, který může být pro součástku optimalizován, např. šířka pásma u operačního zesilovače GBW = 10 MHz.
- Parametry namáhání součástek např. pro rezistor je tímto parametrem maximální ztrátový výkon POWER = 0.25 W.

Každý typ rozšířené analýzy pracuje s jiným parametrem, pokud bude prováděn pouze některý typ rozšířené analýzy, není potřeba, aby součástka měla definované parametry pro všechny typy rozšířených analýz.

Přehled parametrů, které jsou použity při jednotlivých typech rozšířených analýz:

- Sensitivity analysis: tolerance parametrů.
- Optimizer: optimalizovatelné parametry.
- Smoke analysis: parametry namáhání součástek.
- *Monte Carlo analysis*: tolerance hodnot součástek, distribuční funkce (standardní rozložení je FLAT ploché / UNIFORM konstantní).

Při rozšířených analýzách je možné samozřejmě používat i součástky ze standardní PSpice knihovny, ale z důvodu chybějících parametrů, potřebných pro rozšířené analýzy, nejsou do těchto analýz zahrnuty. To znamená, že rozšířené analýzy nemohou upravovat hodnoty chybějících parametrů součástek, či pro součástky určit namáhání.

Obvod složený z prvků, které jsou v knihovně rozšířených analýz, je třeba ještě doplnit o vhodné hodnoty parametrů. Tyto hodnoty je možné každému prvku přiřadit samostatně. Po dvojkliku na součástku vyskočí okno, ve kterém je možné upravit veškeré hodnoty parametrů prvku viz příloha A.2, nebo pomocí tabulky globálních parametrů dle přílohy A.1. Tabulka globálních parametrů se do schématu vkládá jako součástka VARIA-BLES z knihovny \tools\capture\library\pspice\special.olb. Tabulka VARIABLES slouží k usnadnění práce s úpravou hodnot parametrů prvků obvodu, neboť se hodnoty parametrů pomocí této tabulky přiřadí všem prvkům obvodu současně.

Před spuštěním rozšířených typů analýz je vždy nutné, aby proběhla některá ze základních typů analýz, pomocí kterých odsimulujeme jejich chování v oblasti použití:

- Analýza v časové oblasti (transient).
- Stejnosměrná analýza s rozmítáním (DC Sweep).
- Střídavá analýza s rozmítáním/šumová analýza (AC Sweep/Noise analyses).

Jako příklad použití analýzy v časové oblasti, by mohl být simulován libovolný stabilizátor napětí, kde pro správnou funkci je velice důležitý průběh výstupního napětí v časové oblasti. Z výsledků simulace je možné určit zvlnění na výstupu stabilizátoru amplitudu výstupního napětí a další potřebné parametry. Stejnosměrnou analýzou je možné určit například pracovní body tranzistorů a jiných obvodových prvků. Příkladem použití AC analýzy by mohl být filtr libovolného typu. U filtrů jsou nejdůležitější vlastnosti ve frekvenční oblasti, tedy amplitudové a fázové frekvenční charakteristiky pro ověření požadovaných vlastností simulovaného filtru, jako jsou zlomové kmitočty, útlum v nepropustném pásmu a další.

2.2 Citlivostní analýza

Při citlivostní analýze se určuje, který prvek nebo prvky ze simulovaného návrhu obvodu mají největší vliv na sledované vlastnosti analyzovaného obvodu. Jako vzorový obvod pro citlivostní analýzu je použit tranzistorový RF zesilovač. Mezi jeho vlastnosti, které budou sledovány, patří například šířka pásma. Pomocí citlivostní analýzy je možné určit, které prvky mají největší vliv právě na šířku pásma a následně tyto prvky předat k optimalizaci pro dosažení požadované šířky pásma. Z výsledků analýzy je možné upravit tolerance prvků zapojení v závislosti na požadované funkci obvodu a jeho výsledné ceně. Při analýze se počítá i nejhorší možný případ (*Worst Case*), tedy nejhorší možná kombinace hodnot obvodových prvků, která může nastat v reálném zapojení v rámci výrobních tolerancí.

Obr. 2.2: Postup práce s citlivostní analýzou |Převzato z [19]|

Při citlivostní analýze je výhodné postupovat dle obr. 2.2

Při simulaci se rozlišují dvě citlivosti:

• Absolutní citlivost - je poměr změny měřené veličiny k pozitivní změně parametru o 1. Je určená podle rovnice 2.1.

$$S_A = \frac{M_s - M_n}{P_n \cdot S_v \cdot Tol} \tag{2.1}$$

Kde:

 $M_s \dots$ výsledek definované měřicí funkce z běhu citlivostní analýzy pro daný parametr.

 $M_n \ldots$ výsledek definované měřicí funkce z běhu základní analýzy pro daný parametr.

 $P_n \dots$ jmenovitá hodnota parametru.

 $S_v \dots$ odchylka citlivosti (standardně 40%). Udává procentuální využití tolerance daného parametru. Pokud má mít rezistor s hodnotou odporu 100 k Ω definovanou toleranci 10% a odchylka citlivosti bude standardních 40%, pak při citlivostní analýze je interval použitých hodnot tohoto rezistoru od 96 do 104 k Ω .

Tol ... relativní tolerance parametru.

Například změna hodnoty rezistoru o 1 Ω má za následek změnu napětí o 0,1 V.

 Relativní citlivost - je procentuální změna v definované měřicí funkci, založená na pozitivní procentuální změně hodnoty parametru prvku v obvodu. Je určená podle rovnice 2.2.

$$S_R = \frac{M_s - M_n}{S_v \cdot Tol} \tag{2.2}$$

Kde:

 $M_s \dots$ výsledek definované měřicí funkce z běhu citlivostní analýzy pro daný parametr.

 $M_n \dots$ výsledek definované měřicí funkce z běhu základní analýzy pro daný parametr.

 $S_v \dots$ odchylka citlivost (standardně 40%).

 $Tol \dots relativní tolerance parametru.$

Například změna hodnoty rezistoru o 1 %má za následek změnu napětí o 2 %.

Při analýze kapacitorů a induktorů je tato citlivost mnohem vhodnější, neboť jmenovité hodnoty kondenzátorů a cívek v obvodu jsou velice malé a změna parametru o 1 by neměla příliš velký vliv, vzhledem k řádům, v jakých jsou hodnoty kapacitorů a induktorů. Použití obou citlivostí bude popsána dále v textu.

Před samotnou citlivostní analýzou je nutné připravit schéma ze součástek obsahujících parametry, potřebné pro provedení citlivostní analýzy viz příloha A.2. Pro citlivostní analýzu musí prvky obsahovat toleranci parametru *(POSTOL)*. Poté je třeba obvod analyzovat pomocí některého ze základních typů analýz. Citlivostní analýza podporuje všechny typy základních analýz, tedy analýzu v časové oblasti, stejnosměrnou analýzu s rozmítáním a střídavou analýzu s rozmítáním/šumovou analýzu.

Pro popis citlivostní analýzy je použit vzorový obvod z instalace programu, který je v instalačním adresáři $\tools\pspice\tutorial\capture\pspiceaa\rfamp\rf_amp.opj$. Jedná se o tranzistorový RF zesilovač viz obr. 2.3.

Obr. 2.3: Zapojení analyzovaného obvodu tranzistorového RF zesilovače

Aby mohla být spuštěna jedna ze základních analýz, je třeba vytvořit simulační profil, ve kterém se nastaví parametry simulace. V případě simulace vzorového obvodu tranzistorového RF zesilovače jsou již vytvořené dva simulační profily. AC simulační profil pro citlivostní analýzu a profil pro analýzu v časové oblasti. Je nutné po otevření projektu *rfam.opj* z instalačního adresáře zvolit před spuštěním simulace vhodný profil. Volba profilu se provede aktivováním profilu kliknutím pravého tlačítka myši na požadovaný profil a zvolením položky *Make Active* viz obr. 2.4. Dvojklikem na simulační profil se provede jeho nastavení dle obr. 2.4.

(a) Volba simulačního profilu

Simulation Settings - AC			
General Analysis Configuration I	Files Options Data Colle	ection Probe Window	
Analysis type: AC Sweep/Noise Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	AC Sweep Type Linear Logarithmic Decade Noise Analysis Enabled Uutp I/V S Inter	Start Frequency: 1k End Frequency: 1G Points/Decade: 10 but Voltage: V(Load) Source: V2 val:	
	Output File Options	as point information for nonlinear and semiconductors (.OP)	
	ок s	torno Použít Nápo	věda

(b) Nastavení simulačního profilu

Obr. 2.4: Nastavení AC analýzy tranzistorového RF zesilovače

Obr. 2.5: Výsledky AC analýzy tranzistorového RF zesilovače(závislost spektrální hustoty efektivní hodnoty šumového napětí na výstupu na kmitočtu; závislost šumového čísla na kmitočtu

Po nastavení simulace je možné simulaci spustit. Výsledek AC analýzy tranzistorového RF zesilovače je na obr. 2.5.

Po provedení AC analýzy se přejde na citlivostní analýzu. Ve schématickém editoru se zvolí v menu $PSpice \rightarrow Advanced Analysis \rightarrow Sensitivity$. Otevře se nové okno viz obr. 2.6. V tomto okně jsou v části *Paremeters* součástky, které budou zahrnuty do citlivostní analýzy a v části *Specifications* se nacházejí měření, pro která bude provedena citlivostní analýza. Měření, pro která má být provedena analýza je možné importovat z menu Analysis \rightarrow Sensitivity \rightarrow Import Measurements... či kliknutím na řádek Click here... v části Specifications, nebo je možné je vytvořit z menu Analysis \rightarrow Sensitivity \rightarrow Create New Measurements.

V tomto příkladu je zvolen import měření z AC analýzy. Importují se čtyři měření:

- max(db(v(load))) maximální úroveň napětí na zátěži tranzistorového RF zesilovače v dB.
- bandwidth(v(load),3) šířka frekvenčního pásma tranzistorového RF zesilovače při poklesu o 3 dB.
- min(10log10(v(inoise) * v(inoise)/8.28e-19)) minimální hodnota šumového čísla tranzistorového RF zesilovače.
- max(v(onoise)) maximální hodnota spektrální hustoty efektivní hodnoty šumového napětí na výstupu tranzistorového RF zesilovače.

				Parar	neters				
Component	Parameter	Original	@Min	@Max	Abs Sensitivity	r	Lin	ear	
R5	VALUE	50	$\Box\Box$			N			
C6	VALUE	0.47000000				\sim			
C1	VALUE	0.01000000				\sim			
R9	VALUE	50				\otimes			
R6	VALUE	470				\otimes			
R8	VALUE	3.30000000				\sim			
R2	VALUE	3k				\otimes			
R4	VALUE	470				\sim			
R7	VALUE	270				\geq			
R1	VALUE	24k				\otimes			
C3	VALUE	0.47000000				N			
R3	VALUE	6.80000000				\otimes			
C4	VALUE	10u				\sim			
C7	VALUE	0.47000000							
		4//////////////////////////////////////		Snecif	icatione				
♦ On/Off	Profile		Meas	sureme	nt	Original	Min	Max	
🕅 🔽 a	c.sim	max(db(v(loa	ad)))						
🍸 🔽 a	c.sim	bandwidth(vi	(load),3))					
🍸 🔽 a	c.sim	min(10*log10	(v(inois	e)*v(inois	se)/8.28e-19))				<u></u>
· · · ·	o sim	mey(u(opoies	-))		· · · ·				

Obr. 2.6: Okno citlivostní analýzy (přehled analyzovaných prvků; seznam měření)

Šumové číslo udává, kolik šumu dvojbran přidá signálu, který tímto dvojbranem prochází. Při výpočtu šumového čísla u tranzistorového RF zesilovače byla použita rovnice 2.3:

$$F = 10 \log \frac{v(inoise)^2}{8,28 \cdot 10^{-19}}$$
(2.3)

kde v(inoise) výpočet spektrální hustoty napětí ekvivalentního zdroje šumu, který by po připojení na vstup vygeneroval stejné poměry na výstupu bezšumového obvodu, jehož vnitřní šum je nulový. Konstanta 8,28e-19 je získána z normovaného tepelného šumu rezistoru (zdroje signálu) za teploty 27 °C, tedy 300 K. Normovaný tepelný šum při pokojové teplotě se vypočte dle rovnice 2.4

$$\frac{\bar{u}_{Rn}^2}{R} = 4kT\Delta f = 1,657 \cdot 10^{-20} \qquad [W]$$
(2.4)

Kde:

 $u_{Rn}^2 \dots {\rm je}$ spektrální hustota šumu rezistoru $\left| \frac{V^2}{Hz} \right|$

R...odpor zdroje signálu, v tom
to případě $\bar{50}\,\bar{\Omega}$

 $k \dots$ Boltzmannova konstanta 1,38 · 10⁻²³ $\frac{J}{K}$

T ... teplota rezistoru v [K]

 Δf ...šířka pásma, pro kterou byl výpočet proveden, zde 1 Hz

Po úpravě rovnice se získá konstanta konstanta 8,28 \cdot 10⁻¹⁹.

Výsledek citlivostní analýzy tranzistorového RF zesilovače je na obr. 2.7.

					Parame	ters				
Co	mponent	t Parameter	Original	@Min	@Max	Rel Sensitivity	y	Linea	r	
R9	77777	VALUE	50	45	55	44.512	4m	99		
R4		VALUE	470	423	517	37.340	4m	83		
R5		VALUE	50	55	45	-36.114	4m	81		
R8		VALUE	3.3000	3.6300	2.9700	-25.256	3m	56		
R6		VALUE	470	517	423	-21.066	67m 47			-
R3		VALUE	6.8000k	7.48	6.12	-13.967	8m	n 31		
R2		VALUE	3k	2.70	3.30	13.234	1m	29		-
R7		VALUE	270	243	297	7.385	5m	16		
C6		VALUE	0.4700u	423n	517n	1.058	35u	< MIN >		
C1		VALUE	0.0100u	9n	(11n)	500.5676p		< MIN >		
R1		VALUE	24k	21.6	26.4	95.0558u		< MIN >		
C3		VALUE	0.4700u	423n	517n	141.839	99n	< MIN >		
C4		VALUE	10u	9u	11u	3.6010n		< MIN >		
C7 VALUE		0.4700u	423n	517n	375.242	3n < MIN >		>		
										0
				5	Specifica	rtions				
•	On/Off	Profile		Meas	suremei	nt	Original	Min	Max	
7	~	ac.sim	max(db(v(lo	ad)))			9.4181	7.3142	11.3819	2
7	Image: A start of the start	ac.sim	bandwidth(v	(load),3)		150.5788meg	130.3443meg	174.8395meg	2
1	 Image: A set of the set of the	ac.sim	min(10*log10)(v(inois	e)*v(inois	e)/8.28e-19))	4.1481	3.6360	4.7507	2
٣	 Image: A set of the set of the	ac.sim	max(v(onois	e))			4.3383n	3.5366n	5.2793n	2
			Click here to	o import	a measur	ement created w	ithin PSpice	•••••••••••••••••••••••••••••••••••••••	A	
			0//////	1111	1111					0

Obr. 2.7: Výstup citlivostní analýzy tranzistorového RF zesilovače

Z výsledků citlivostní analýzy je možné získat mnoho důležitých informací. Sloupce @MIN a @MAX udávají minimální a maximální hodnotu parametru použitou při analýze Worst Case. Rozptyl hodnot je závislý na toleranci parametru. Pokud je v dalším sloupci napsáno Rel Sensititivity, používá se relativní citlivost. Je možné přepnout i na absolutní citlivost, v menu Analysis \rightarrow Sensitivity \rightarrow Display, a zde si vybereme mezi Absolute Sensitivity nebo Relative Sensitivity. Je také možno kliknout pravým tlačítkem myši libovolně do sloupce s relativní, popřípadě absolutní citlivostí a pod položkou Display vybrat požadovanou citlivost. Ve sloupci Linear je zobrazeno, na který prvek obvodu je konkrétní měření, vybrané v části okna citlivostní analýzy Specifications, nejvíce citlivá. Z obr. 2.7 je dobře patrné, že maximální úroveň výstupního napětí v dB je nejvíce citlivá na rezistor R9. Sloupec Rel Sensitivity v okně Parameters udává procentní změnu měřené veličiny, konkrétně maximální úroveň výstupního napětí, při změně hodnoty parametru obvodového prvku o 1%. V části Specifications je vidět ve sloupcích MIN a MAX v jakých mezích se úroveň napětí na zátěži může pohybovat při nejhorší kombinaci hodnot obvodových prvků.

Pokud bude některý z prvků mít opravdu velký vliv na vybrané měření, přepne se do schématického editoru a upraví se hodnota parametru, například tolerance rezistoru, která omezí interval použitelných hodnot při analýze. Poté se opět spustí citlivostní analýza a zkontroluje se výsledek, zda bylo dosaženo snížení citlivosti na daný obvodový prvek.

V případě, že bychom chtěli analyzovaný obvod upravit, aby se choval dle požadavků, je možné kritické prvky vybrat a odeslat k optimalizaci. V našem případě se k optimalizaci nabízejí prvky R2, R3, R4, R5, R6, R8 a R9. Ovšem prvky R5 a R8 se optimalizovat nebudou, neboť ovlivňují vstupní a výstupní impedance. Prvky R2 a R3 se také optimalizovat nebudou, mají vliv na chování tranzistoru. Zbývají tedy rezistory R4, R6 a R8. Rezistory se vyberou kliknutím na první rezistor plus držením klávesy *Ctrl* a postupným klikáním na další rezistory, dále kliknutím pravého tlačítka myši se zobrazí nabídka viz obr. 2.8, kde klikneme na políčko *Send To Optimizer*, neboli odeslat k optimalizaci. Další postup bude popsán v kapitole popisující optimalizaci.

	Component	Parameter	Original
	R9	VALUE	50
	R4	VALUE	470
	R5	VALUE	50
R8		VALUE	3.3000
•	R6	VALUE	470
	R3	Eind in Design	8000k
_	R2	Disp <u>l</u> ay	► 3k
	C6	<u>B</u> ar Graph Style	► 4700u
	C7	Send To Optimize	r 4700u
	C3 C1	Cu <u>t</u>	4700u 0100u
	R1 D	⊆ору	24k
	C4	<u>P</u> aste	10u
-		<u>D</u> elete	

Obr. 2.8: Odeslání kritických prvků analyzovaného obvodu k optimalizaci

2.3 Optimalizace obvodových vlastností

Optimalizační nástroj, který je součástí rozšířených analýz, slouží k optimalizaci analogových obvodů a jejich chování.

Při optimalizaci je výhodné postupovat dle obr. 2.9

Obr. 2.9: Postup práce při optimalizaci |Převzatoz [19]|

Obvod, který bude optimalizován, musí projít napřed některou ze základních analýz v OrCAD PSpice. Optimalizace, stejně jako citlivostní analýza, funguje nad všemi základními typy analýz. Obvod musí být sestaven ze součástek z knihovny $\tools\capture\library \pspice\advanls\obsahujících optimalizovatelný parametr.$

Optimalizaci není možné použít k vytvoření funkčního návrhu, optimalizaci digitálního návrhu či k optimalizaci obvodu, kde malá změna hodnoty proměnného parametru způsobí změnu stavu, např. klopný obvod.

K provedení optimalizace je možné použít některý ze tří typů algoritmů engine:

MLSQ engine (Modified Least Squares Quadratic engine) - modifikovaná metoda nejmenších čtverců. MLSQ engine využívá omezené i neomezené minimalizační algoritmy, které umožňují optimalizovat cíle, které jsou předmětem nelineárních omezení. Omezené minimalizační algoritmy hledají vektor x který je lokálním minimem skalární funkce f(x), přičemž neomezený znamená, že není žádné omezení v rozsahu vektorů x narozdíl od omezených minimalzačních algoritmů, které jsou omezené povolenými vektory x. MLSQ engine dosahuje cíle rychleji než LSQ engine díky snížení počtu mezikroků vedoucích k nalezení cíle. Je možné nastavit tento engine dle požadavků na výsledek. Nastavení se provádí v okně optimalizace v menu Edit → Profile Settings a otevře se okno dle obr. 2.10

Profile Settings					
Optimizer Monte Carlo	Sensitivity Smoke	Parametric Plot	Simulation		
Engine: Modified LSQ Fingine sometimes runs faster than the LSQ Engine because it runs a reduced number of incremental adjustments towards a goal. Curve-Fit Error: Reference Only Uses only reference file data points for error calculation.	Ma <u>x</u> # of Optimiz Cu One Goal 	Delta: 1% ations: 20 tback: 0.25 eshold: 0			
	<u> </u>	<u>C</u> ancel	<u>R</u> eset	<u>H</u> elp	

Obr. 2.10: Okno pro nastavení MLSQ engine

V tomto okně je možné nastavit typ algoritmu, dále nástroj pro výpočet chyby při optimalizaci zachycením na křivku (Curve Fit Error), bude vysvětleno později. Nastavení Delta, což je relativní změna, o kterou se mění optimalizovaný parametr při výpočtu. Max# of Optimizations je maximální počet pokusů, než je výpočet zastaven (i při přibližování se k cíli). Cutback je minimální hodnota, o kterou může být snížen vnitřní krok výpočtu při hledání cíle. Threshold je minimální velikost kroku pro nastavení optimalizace parametrů. Standardně je Threshold nastaven na nulu, tím se předpokládá, že se hodnoty měření mění plynule se změnou parametrů, ale pokud by se v průběhu vyskytl nějaký lokální extrém viz. obr 2.11, způsobený například rychlým přechodovým dějem, mohla by se optimalizace zaseknout. Pokud by nastala taková situace, je třeba Threshold nastavit například na 0,01, což znamená 1 % změnu parametru. Jiná velikost kroku bude schopná zamezit uvíznutí algoritmu v lokálním extrému. Poslední možností nastavení je položka One Goal. Volba Least Squares je vhodná při optimalizaci s mnoha cíly. Při této volbě se sčítají druhé mocniny všech odchylek od požadovaného cíle a MLSQ engine se snaží tuto sumu zmenšit na nulu. Volba *Minimize* je vhodná při optimalizaci jediného cíle.

Obr. 2.11: Ukázka výskytu možné chyby v průběhu, se kterou by mohl mít optimalizační algoritmus problém |Převzato z [18]|

Random engine se používá pro určení počátečního bodu optimalizace, který je v některých případech obtížné pomocí MLSQ engine určit. Random engine vytvoří pomyslnou mřížku v prostoru návrhu, kde body mřížky představují prvky v obvodu a náhodně spustí analýzu na bodech mřížky. Pomocí mřížky se zamezí opakování nastavení hodnot parametrů. Na konci analýzy se Random engine vrátí k nejlepšímu bodu mřížky a vytvoří z něj počáteční bod, který může být použit pro MLSQ engine. Nastavení se provádí v okně optimalizace v menu Edit → Profile Settings a otevře se okno dle obr. 2.12

Profile Settings	E
Optimizer Monte Carlo	Sensitivity Smoke Parametric Plot Simulation
Engine: Random The Random Engine randomly picks values within the specified range.	<u>S</u> teps per Range: 10 Ma <u>x</u> Number of Runs: 10 Replay <u>B</u> est N Runs at End: 0
Cur <u>v</u> e-Fit Error: Reference Only Uses only reference file data points for error calculation.	Random Number <u>G</u> enerator Seed: 0
	<u>D</u> K <u>C</u> ancel <u>R</u> eset <u>H</u> elp

Obr. 2.12: Okno pro nastavení Random engine

V tomto okně je možné nastavit kromě typu *engine* a *Curve Fit Error* další parametry. *Steps per Range* určuje na kolik kroků bude rozdělen rozsah hodnot parametru. *Max Number of Runs* určuje maximální počet běhů. Maximální počet běhů je velice ovlivněn počtem parametrů (*NumSteps^{params}*). *NumSteps* udává počet kroků, ve kterých se bude parametr měnit a *params* udává počet parametrů, které se budou měnit. *Replay Best N Runs at End* zopakuje N posledních běhů po skončení optimalizace a zobrazí výsledek pouze posledních N opakovaných běhů. *Random Number Generator Seed* specifikuje soubor čísel pro generátor náhodných čísel. Soubor čísel se, narozdíl od nástroje Monte Carlo, mezi běhy nemění, a tak každé spuštění dává stejné výsledky.

• Discrete engine hledá nejbližší komerčně dostupnou hodnotu pro součástku. Oproti předchozím engine, které počítají hodnoty, které nemusejí být komerčně dostupné. Algoritmus provádí výpočet s hodnotami součástek, které jsou komerčně dostupné. Dostupné hodnoty součástek jsou součástí instalace programu OrCAD PSpice. Nejedná se o výrobní řady jako takové, ale o dostupné hodnoty s odpovídající tolerancí. Tabulky s dostupnými hodnotami součástek pro rezistory, kondenzátory a cívky jsou uloženy v souboru s příponou . TABLE v instalačním adresáři \tools\pspice\library \discretetables\. U discrete engine není příliš možností k nastavení viz obr. 2.14. U discrete engine je však možné použít vlastní hodnoty komerčně dostupných součástek pokud nebudeme spokojeni s databází hodnot rezistorů, kondenzátorů a cívek, která je v programu. Soubor je možné vytvořit v libovolném textovém editoru. Soubor by měl mít strukturu dle obr. 2.13. První řádek souboru je vždy komentář, výpis dostupných hodnot začíná příkazem START a končí příkazem END. Při ukládání souboru je vhodné volit zkratku součástky, pro kterou je soubor vytvořen (rezistor – res, kondenzátor – cap, cívka – ind) a před zkratku součástky ještě doplnit hodnotu tolerance. Jak bylo řečeno, soubory neobsahují výrobní řady, ale je možné vytvořit soubory obsahující hodnoty odpovídající dostupným výrobním řadám.
<u>Soubor Úpravy Formát Zobrazení Nápov</u> ěda Dostupné hodnoty rezistorů s 5% tolera START 10.0e0	
Dostupné hodnoty rezistorů s 5% tolera START 10.0e0	
	ancí

Obr. 2.13: Ukázka souboru s hodnotami rezistorů pro Discrete engine

Profile Se	ttings		×
Optimizer	Monte Carlo	Sensitivity Smoke Parametric Plot Simulation	_
Engine: Discrete The Disc Engine is the end o optimizat to round compone values to	rete sused at of the off off ent	Discrete Files: 🖄 🗙 🗲 🗲	
commerc available Cur <u>v</u> e-Fit	sially values. Error:	Discrete Table Alias	
Uses only reference points for calculation	y e file data r error on.	Part Type	
		<u> </u>	

Obr. 2.14: Okno pro nastavení Discrete engine

Při použití optimalizačního nástroje je výhodné použít více výpočetních algoritmů v průběhu optimalizace obvodu. Je vhodné začít optimalizaci *Random engine*, díky kterému je možné najít nejlepší výchozí bod pro *MLSQ engine* a jako poslední použít *Discrete engine*, který hodnoty prvků v optimalizovaném obvodu nahradí hodnotami komerčně dostupnými. Toto je nejvhodnější postup použití různých výpočetních algoritmů při optimalizaci.

Před začátkem optimalizace je velice důležité vybrat vhodné součástky, které budou při optimalizaci uvažovány. Je tedy velice žádoucí před optimalizací vždy spustit citlivostní analýzu, která ukáže, na které prvky obvodu uvažované při citlivostní analýze je měřený parametr nejvíce citlivý, a poté se tyto prvky mohou předat k optimalizaci. Není vhodné také do optimalizace uvažovat součástky, které ovlivňují vlastnost, kterou je třeba u obvodu zachovat, například prvky ovlivňující vstupní a výstupní impedance obvodu. Pokud dva prvky ovlivňují stejnou vlastnost, není třeba optimalizovat oba. Optimalizaci je výhodné začít s malým počtem prvků a případně je v průběhu optimalizace přidávat. Pro optimalizační nástroj může být obtížnější, pokud do optimalizace zařadíme prvky, které se hodnotou svého parametru blíží výsledné hodnotě, neboť při změně této hodnoty dostane optimalizační nástroj horší výsledek než před optimalizací.

Jsou k dispozici dva způsoby optimalizace obvodu. První z nich je optimalizovat obvod podle zadaných cílů a omezení některých zadaných měření. Jako příklad je uvedena šířka pásma operačního zesilovače. Druhá možnost je optimalizace obvodu podle zadané křivky. Optimalizační nástroj se snaží přiblížit vybranou charakteristiku obvodu vzorovému průběhu. Obě tyto metody jsou popsány dále na vzorových příkladech.

2.3.1 Optimalizace obvodu pomocí cílů a omezení – Standard

K tomuto typu optimalizace použijeme opět vzorový obvod jako pro citlivostní analýzu, tedy tranzistorový RF zesilovač dle obr. 2.3. Soubor s optimalizovaným obvodem je v instalačním adresáři $\tools\pspice\tutorial\capture\pspiceaa\rfamp\rf_amp.opj$. Před spuštěním optimalizačního nástroje z rozšířených analýz je třeba obvod simulovat pomocí některé ze základních analýz. Je zvolen připravený AC simulační profil s nastavením dle obr. 2.4. Výsledek AC analýzy je na obr. 2.5.

Cílem optimalizace je navýšení šířky pásma tranzistorového RF zesilovače na 200 MHz při dodržení omezení v podobě hodnoty zisku alespoň 5 dB, maximálního šumového číslo 5 a maximálního výstupního šumového napětí 3 $\frac{nV}{\sqrt{Hz}}$. Původní hodnoty jsou na obr. 2.15.

Jsou k dispozici celkem tři možnosti, jak spustit optimalizaci. Jako první je možné po proběhnutí základní analýzy označit prvky, které mají být optimalizovány v menu *PSpice* \rightarrow *Advanced analysis* \rightarrow *Export Parameters to Optimizer*. Druhá možnost je přímé spuštění optimalizace ze záložky *PSpice* \rightarrow *Advanced Analysis* \rightarrow *Optimizer*. Tato možnost bude popsána dále. Je také možné spustit citlivostní analýzu a poté výsledky citlivostní analýzy exportovat do optimalizačního nástroje. Tato možnost byla zmíněna u citlivostní analýzy.

Dle druhé z možných variant otevření optimalizace se zobrazí okno optimalizace viz obr. 2.16(a), v tomto okně se přidávají prvky, které budou optimalizovány a je zde možné také volit typ výpočetního algoritmu. Do okna *Parameters* se přidávají parametry, které budou optimalizovány kliknutím na řádek *Import Parameter* se zobrazí okno viz obr. 2.16(b) a označením prvního prvku a držením klávesy *Ctrl* a současným označováním dalších prvků se prvky přidávají. V případě, že již proběhla citlivostní analýza a byl použit export hodnot k optimalizaci, prvky budou již v okně vyplněny. Jako další je třeba zvolit měření, která chceme pomocí optimalizace zvolených prvků upravit. Volba měření se provádí v okně *Specifications* a kliknutím na řádek *Import Measurement* vyskočí okno viz obr. 2.16(c) a stejně jako prvky k optimalizaci se vloží definovaná měření. Pokud bychom chtěli definovat nový typ měření, je třeba kliknout pravým tlačítkem myši někam do volného prostoru v okně *Specifications* a vybrat položku *Create New Measurement*.

	Measurement Results		
Evaluate	Measurement	Value	
2	max(db(v(load)))	9.41807	\square
2	bandwidth(v(load),3)	150.57877meg	
2	min(10*log10(v(inoise)*v(inoise)/8.28e-19))	4.14805	
2	max(v(onoise))	4.33832n	
	Click here to evaluate a new measureme	ent	
	Evaluate V V V V	Measurement Results Evaluate Measurement Imax(db(v(load)))) imax(db(v(load),3)) Imax(db(v(load),3)) imin(10*log10(v(inoise)*v(inoise)/8.28e-19))) Imax(v(onoise)) imax(v(onoise)) Click here to evaluate a new measurement	Evaluate Measurement Results Evaluate Measurement Value Imax(db(v(load)))) 9.41807 Imax(db(v(load),3)) 150.57877meg Imax(db(v(load),3)) 150.57877meg Imax(db(v(load),3)) 4.14805 Imax(v(onoise)) 4.33832n Click here to evaluate a new measurement

Obr. 2.15: Výsledky měření AC analýza tranzistorového RF zesilovače

	Error Gran	h					Par	ameters [Ne:	xt Run]			
1	Entor Grap	11		•	0n/0ff	Componen	t Parar	meter (Original	Min	Max	Current
1%						Click her	e to import a	a parameter fro	om the design	property	map	
170												
0.8%												
												<u></u>
0.6%											++	
							//////////////////////////////////////	·····				<u></u>
0.4%										<u></u>		
0.20										<u></u>		
0.2%												
n%												
0,0												
	Run Number	r										
len de la la comuneta	1											
r			s	pecifi	ications [N	ext Run]						
♦ On/Off	Profile	Measurement	Min		Max	Туре	Weight	Original	Curre	nt	Error	
		CI	ick here to in	nport e	measureme	ent created with	hin PSpice					

meters Sele	ction					
Component	Parameter	Original	Min	Max		
C1	VALUE	10n 470m	1n 47:	100n 4 7000		
C3	VALUE	470ri 10u	4/11	1000		
C4 C6	VALUE	470n	47n	4 7000		
C0 C7	VALUE	470n	47n	4.7000u		
B1	VALUE	24k	2 4000k	240k		
R2	VALUE	3k	300	30k		
R3	VALUE	6.8000k	680	68k		
R4	VALUE	470	47	4.7000k	Import Measurement(s)	
R5	VALUE	50	5	500	import mediatrement(a)	_
R6	VALUE	470	47	4.7000k	Defite I Measurement	-
R7	VALUE	270	27	2.7000k		
H8	VALUE	3.3000	330m	33	ac.sim max(db(v(load)))	
H9 V4	VALUE	50	1 5000	150	ac.sim Dandwidth(V(load),3) se sim min(10%loaf0(u(insise)%u(insise)/9,29s,19))	
V1 V2		10	1.0000	10	ac.sim mini(10 log10(v(inuise) v(inuise)/0.20e-13))	
v2 V2	DC DC	ó	0	0	tran sim < No measurements found for this profile >	
*2	DC	0	0	°	daritain (no medsarements round for this prome ?	
•						
		1111			To select multiple items, hold down the CTRL key, then click each entry	
o select multiple	e items, hold dow	n the CTRL k	ey, then clic	k each entr	Held down the CHIET has to establish as develop the discout have	
lold down the S	HIFT key to sele	ct or deselect	adjacent ite	ms.	Hold down the SHIFT key to select or deselect adjacent items.	
	(_			
	<u> </u>	Cance	el		OK Cancel H	leli

(a) Okno optimalizace

(b) Okno s importem prvků k optimalizaci

(c) Okno s importem měření pro optimalizaci

Před spuštěním optimalizace je třeba nastavit hodnoty tolerancí, sloupce *Min* a *Max* v okně *Parameters* a další vlastnosti optimalizace v okně *Specifications* dle manuálu k rozšířeným analýzám [18]. Optimalizace je nastavena viz obr. 2.17. Sloupec *Type* určuje, zda se jedná o cíl optimalizace či o její omezení. Cílem je myšleno konkrétní hodnota měřicí funkce, které má optimalizační nástroj dosáhnout. Omezením je myšlena hranice (mez), kterou nesmí optimalizovaná měřicí funkce překročit nebo pod ní nesmí klesnout. Sloupec *Weight* určuje, jakému parametru je při optimalizaci přikládána největší váha a můžeme tím tedy určit priority při optimalizaci. Největší váha je označena 1, každému vyššímu číslu je přikládána nižší důležitost. Sloupce *Min* a *Max* určují v jaký mezích se může pohybovat optimalizovaná hodnota.

Pokud jsou vyplněna všechna nezbytná data viz obr. 2.17, může být spuštěna optimalizace. Výsledkem optimalizace jsou cíleně upravené hodnoty optimalizovaných prvků, konkrétně rezistorů R4, R6 a R8, pro dosažení optimalizačních cílů, které byly před spuštěním optimalizace nastaveny viz obr. 2.17.

Výsledek optimalizace je na obr. 2.18. V okně *Error Graph* lze vidět, s jakou chybou (výpočet chyby je uveden dále v textu) od požadovaného výsledku se jednotlivé typy měřicích funkcí přibližovaly k cíli. V pátém běhu optimalizace se podařilo nastavit hodnoty prvků tak, že byly dosaženy požadavky na obvod s téměř nulovou chybou. Z okna optimalizace je možné vidět, jakou hodnotu by měl pro dosažení požadavků každý z rezistorů mít, konkrétně je to v okně *Parameters* sloupec *Current*. Dále v okně *Specifications* si můžeme prohlédnout dosažené výsledky ve sloupci *Current* a hodnoty, ze kterých se vycházelo ve sloupci *Original*. Sloupec *Error* nám udává, s jak velkou chybou se nám podařilo požadavek dosáhnout.

				Paramete	ers (Next R	un]		
	On	Off	Component	Parameter	Original	Min	Max	Current
	 Image: A second s	6	R4	VALUE	470	235	705	470
	 Image: A start of the start of	66	R8	VALUE	3.3000	3	3.6000	3.3000
•	 Image: A set of the set of the	6	R6	VALUE	470	235	705	470

					Specifica	tions [Next R	un]	
•	0n	/Off	Profile	Measurement	Min	Max	Туре	Weight
٣	<		ac.sim	max(db(v(load)))	5	5.5000	Constraint	20
٣	<		ac.sim	bandwidth(v(load),3)	200000000		Goal	1
٣	<	2	ac.sim	min(10*log10(v(inoise)*		5	Constraint	1
٣	>	<u>.</u>	ac.sim	max(v(onoise))		3n	Constraint	20

(a) Nastavení rozsahu použitelných hodnot rezistorů R4, R6 a R8

(b) Nastavení cílů a omezení pro jednotlivá měření

Obr. 2.17: Nastavení optimalizace tranzistorového RF zesilovače

ile <u>E</u> d	it <u>V</u> iew	<u>R</u> un <u>A</u> nalysis <u>W</u> indow	Help										cāde	nce –
	8	» 🖻 🖻 📘	ptimizer 🖌 Modified	LSQ			~ (હ	999				
					_				Par	ameters [Next R	tun]			
		Error Gra	aph		•	On	/Off	Component	Paran	neter Orig	jinal	Min	Max	Current
	L.			רו ר	٣		6	R8	VALUE		3.3000	3	3.6000	3.5700
	70%		-4		٣	 Image: A set of the set of the	6	R6	VALUE		470	235	705	702.5752
	50%		X		٣	 Image: A start of the start of	6	R4	VALUE		470	235	705	238.8924
	- JU /0	-						Click here t	to import a	a parameter from t	he design p	property n	nap	
	30%		- <u>R</u> L		\square									
	10%													
	-10%													
	10,01													
	-30%¥			┦┝═╡										
	0	1 2	3 4 5											
												·····		
		Run Numi	ber											
	and and]													
0	anuaru													
				S	pecif	icatio	ns (Ne	ext Run]						
٠	0n/0	ff Profile	Measurement	Min		Ma	х	Type V	/eight	Original	Curren	t	Error	
7		ac.sim	max(db(v(load)))		5	5.	5000	Constraint	20	9.4181	5.3	2440	09	6
7	· •	<u>o</u> ac.sim	bandwidth(v(load),3)	20000000	00			Goal	1	150.5788meg	212.6940	Imeg	09	6
7		⊻ ac.sim	min(10*log10(v(inoise)*		\rightarrow		5	Constraint	1	4.1481	4.7	7973	09	6
- V		o ac.sim	(max(v(onoise))	1			3n	Constraint	20	4.3383n	2.89	912n i	09	61/////////////////////////////////////

Obr. 2.18: Okno s výsledky optimalizace tranzistorového RF zesilovače pomocí MLSQ engine

Nyní je možno typ *MLSQ engine* na typ *Discrete engine* v okně optimalizace, aby se optimalizace provedla pro reálné součástky a spustí se optimalizace. Výsledkem je zaokrouhlení hodnot rezistorů na hodnoty odpovídající skutečným hodnotám viz obr. 2.19. Dostupné hodnoty součástek s odpovídající tolerancí se volí ve sloupci *Discrete Table*. Je možné porovnat vypočtené hodnoty rezistoru při použití dvou typů výpočetních algoritmů na obr. 2.18 a 2.19 ve sloupci *Current*. Při obou typech algoritmů bylo dosaženo požadovaných cílů stanovených na začátku optimalizace. Šířka pásma tranzistorového RF zesilovače je po optimalizaci 212 MHz pro *MSQL engine* a 211 MHz pro *Discrete engine*.

Je možné hodnoty po optimalizaci přepsat do schématického editoru a spustit simulaci. Výsledek simulace je ukázán na výsledcích definovaných měřicích funkcích. Na obr. 2.20 je dobře patrné, jak se rozšířila šířka pásma v řádce bandwidth(v(load),3) ze 150 MHz před optimalizací na 211 MHz po optimalizaci.

Obr. 2.19: Okno s výsledky optimalizace tranzistorového RF zesilovače pomocí Discrete engine

	Measurement Results		
Evaluate	Measurement	Value	
<u> </u>	max(db(v(load)))	9.41807	\square
N N	bandwidth(v(load),3)	150.57877meg	
<u> </u>	min(10*log10(v(inoise)*v(inoise)/8.28e-19))	4.14805	
<u> </u>	max(v(onoise))	4.33832n	
	Click here to evaluate a new measureme	ent	

(a) Před optimalizací

	Measurement Results	
Evaluate	Measurement	Value
Image: A start of the start	max(db(v(load)))	5.33160
Image: A start of the start	bandwidth(v(load),3)	211.11468meg
Image: A start of the start	min(10*log10(v(inoise)*v(inoise)/8.28	4.79454
Image: A start of the start	max(v(onoise))	2.91959n
	Click here to evaluate a new measu	rement

(b) Po optimalizaci pomocí (Discrete engine)

Obr. 2.20: Výsledky definovaných měřicích funkcí pro tranzistorový RF zesilovač

2.3.2 Optimalizace obvodu pomocí zachycení na křivku – Curve fit

Optimalizace metodou Curve fit je možné použít v následujících případech.

- Při optimalizaci analyzovaného obvodu s jedním nebo více soubory datových bodů. Je možné optimalizovat několik parametrů současně pro dosažení požadovaných cílů, jako mohou být výstupní průběhy napětí, fáze či frekvenční charakteristiky.
- Pokud je měření vyjádřeno jako hodnoty v příslušných bodech (Y na X).
- Pokud je požadován přesný průběh obvodového parametru, například impulsní odezva. Jako příklad je uveden tvarovací obvod, kde musí tvar průběhu odpovídat referenčnímu průběhu.

Pro optimalizaci zachycením na křivku je potřeba importovat referenční data, na které se bude optimalizace snažit zachytit, nebo je možné referenční data vytvořit. Dále je nutné, aby obvod obsahoval prvky s optimalizovatelnými parametry.

Referenční data mají textovou podobu. Je možné je vytvořit ručně, optimalizační nástroj podporuje textové soubory ve formátu .mdp, .csv a .txt. Textový soubor obsahuje minimálně dva sloupce, které jsou odděleny větší mezerou a jako oddělovač desetinných míst se používá desetinná tečka. V prvním sloupci by měl být čas nebo frekvence pro AC analýzu, a ve druhém sloupci je definován referenční průběh. Referenčních průběhů může textový soubor obsahovat několik. Další možností jak vytvořit referenční data je exportovat data z programu PSpice jako soubor .txt.

Pro zachycení křivky k referenčnímu průběhu je možné v optimalizačním nástroji použít jeden ze 4 typů nástrojů (*gear*) pro výpočet chyby při zachycení na křivku. Jednotlivý typ nástroje pro výpočet chyby je možné volit v nastavení optimalizace, například viz obr. 2.14 v položce *Curve Fit Error*.

- Legacy gear každý datový bod referenčního průběhu je samostatným cílem optimalizace a každý datový bod je optimalizován. Chyba v každém bodě referenčního průběhu by měla být nulová. Optimalizační nástroj počítá chybu každého referenčního bodu zvlášť a poté spočítá efektivní hodnotu chyby všech datových bodů referenčního průběhu. Tento typ nástroje je možné použít pouze na omezený počet datových bodů referenčního průběhu, konkrétně na 250 bodů.
- Weighted reference gear optimalizační nástroj předpokládá, že datové body referenčního průběhu a simulovaného průběhu mají stejný časový či frekvenční interval hodnot. Váhovacím faktorem je násobená chyba v každém bodě X_i určeném pro výpočet chyby. X_i obsahuje v tomto případě body referenčního i simulovaného průběhu. Chyba je počítána násobením chyby váhovacím faktorem v každém bodě průběhu. Chyba je počítána dle 2.5.

$$E_{rms} = 100 \frac{\sqrt{\sum_{i=1}^{n} W_i \cdot (R_i - S_i)^2}}{\sqrt{\sum_{i=1}^{n} W_i \cdot (R_i)^2}}$$
(2.5)

Kde:

 $R_i = Y_{at}X(R, X_i) \dots R_i$ představuje hodnotu datového bodu referenčního průběhu na pozici i.

 $S_i = Y_{at}X(S, X_i) \dots S_i$ představuje hodnotu datového bodu simulovaného průběhu na pozici i.

 $W_i \dots$ představuje váhu, která se vypočte podle rov. 2.6 a 2.7.

 $n \dots$ jsou body referenční křivky.

 $X_i \dots$ je množina hodnot, ze které se počítá chyba.

– Pro simulovaná data:

$$W_i = 1 \tag{2.6}$$

Pro referenční data:

$$W_i = \left(\frac{b}{a}\right)^2 \tag{2.7}$$

Kde:

 $b = sizeof\{X_{ref+sim}\}$...velikost součtu vektorů referenčního a simulovaného průběhu.

 $a = sizeof\{X_{ref}\}$... velikost vektoru referenčního průběhu.

Sizeof vrací velikost vektoru datových bodů.

- Reference only gear optimalizační nástroj se snaží přiblížit optimalizovaný průběh k referenčnímu průběhu s cílem minimalizovat poměr efektivní hodnoty vypočtené chyby a efektivní hodnoty referenčního průběhu (RMS_{error}/RMS_{ref}) pod úroveň tolerance definované uživatelem. Chyba je počítána pouze v referenčních datových bodech a X_i obsahuje pouze body referenčního průběhu. Rovnice pro výpočet chyby je stejná jako pro weighted reference gear s tím rozdílem, že $W_i = 0$ pro všechny datové body, které nejsou na referenčním průběhu.
- Simulation only gear optimalizační nástroj předpokládá, že datové body referenčního průběhu a simulovaného průběhu mají stejný časový či frekvenční interval hodnot. Chyba se počítá dle rovnice 2.8.

$$E_{rms} = 100 \frac{\sqrt{\sum_{i=1}^{n} (R_i - S_i)^2}}{\sqrt{\sum_{i=1}^{n} (R_i)^2}}$$
(2.8)

Jako ukázkový příklad pro optimalizaci pomocí zachycení na křivku je použit obvod dle obr. 2.21. Obvod se načte z instalačního adresáře \tools\pspice\tutorial\capture \pspiceaa\bandpass\bandpass.opj. Jde o filtr typu pásmová propust využívající dvou operačních zesilovačů OP-07. Pro provedení základního typy analýzy je již vytvořený simulační profil, jeho nastavení je na obr. 2.22, je třeba tedy jen spustit analýzu. Výsledek analýzy filtru je na obr. 2.25.

Obr. 2.21: Schéma optimalizovaného filtru typu pásmová propust

Simulation Settings - bias			
General Analysis Configuration	Files Options Data C	ollection Probe Window	
Analysis type:	AC Sweep Type	Start Frequency:	100
Options: General Settings Monte Carlo/Worst Case	⊙ L <u>o</u> garithmic Decade ✔	<u>E</u> nd Frequency: Points/ <u>D</u> ecade:	1000
Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Noise Analysis	utput Voltage:	
	<u>[</u> n	v Source:	
	Output File Options Include detailed controlled source	bias point information for n es and semiconductors (.0	onlinear P)
	ОК	Storno Použít	Nápověda

Obr. 2.22: Simulační profil AC analýzy pro optimalizovaný filtr typu pásmová proput

Po provedení základní analýzy se spustí optimalizace z menu $PSpice \rightarrow Advanced Anlysis \rightarrow Optimizer$. Nastaví se optimalizace podobně jako v předchozím případě, jen se zvolí záložka *Curve Fit*. Nastavení optimalizace viz obr. 2.23. Cílem této optimalizace je příblížení se průběhem úrovně výstupního napětí a fáze filtru typu pásmová propust k referenčnímu průběhu. Referenční průběh je v instalačním adresáři \tools\pspice\tutorial\capture \pspiceaa\bandpass\bandpass-PSpiceFiles\SCHEMATIC1\reference.txt. V souboru s referenční průběhem je referenční křivka jak pro průběh úroveně výstupního napětí, tak fázi filtru typu dolní propust.

	File	Edit	⊻iew	<u>R</u> un	Analy	sis <u>W</u> in	idow <u>H</u> elp												cāde	ence –	8 ×
۴) (8	8	D	Ċ	Optimizer	Modified LSQ			1	~ (ୟ	9	A A				
Г	_	_				Frre	or Graph							ŀ	Param	eters [Next Run]				
							or or up it			•		0n	Off	Component	Para	meter	Original	Min	Max	Current	
			1%						- E	٣	· [<	8	R6	VALL	IE	49k	4.9000k	490k		
										٣	· [<	8	R5	VALU	IE	60k	6k	600k		
			0.8%	4					- [٣	· [٢	6	R4	VALU	ΙE	1.2000k	120	12k		
										۲ (6	R3	VALU	ΙE	400	40	4k		
	Ъ		0.6%	+					- E	٣	· [×	6	R2	VALU	ΙE	49k	4.9000k	490k		
	Ē									٣	· [<	6	R1	VALU	ΙE	50k	5k	500k		
			0.4%	+					1 E	٣	· [<	6	C4	VALU	ΙE	0.2500u	25n	2.50		
										٣	· [<	9	C3	VALU	ΙE	0.1000u	10n	1u		
			0.2%	+					1 🗆	٣		>	ම	C2	VALU	IE	0.1000u	10n	1u		
												>	ම	C1	VALU	IE	0.1000u	10n	1u		
			0%						- L				0	lick here to imp	ort a p	aramete	r from the d	esign prop	erty map	0	~
						Rur	n Number		<		11			•			•	•			>
Γ	-] Stan	idard	🖂 Ci	irve f	Fit]															
		-		in and					Curve	Fit IN	evt	Run									
			1	On/Off			Profile	Trace Expression	carve) of or o	nee	Eila		Pof Wayofo	m	Toler	nce %	Weight	Er		1311
-	_					bioo oir	Tome		kofori	verere	+	21116		DUACE		Tolera	nice %	4	EI		- 11
-		H.				bies sim		PR(V(out))	Actor	ance.D	+			Colump 2	_		5	1			4
-	•	15			•	pias.sin	1	Click be	re to er	nce.D	a. Marko	o fit	enecif	ication			<u>з</u>	I			
		-		<u> </u>					e to el	ner at	Jury	e-III	speci	Icalion							
1-	-																				

Obr. 2.23: Nastavení optimalizace filtru typu pásmová propust pro zachycení na křivku

Po spuštění optimalizace se program snaží původní průběhy úrovně výstupního napětí a fáze filtru typu dolní propust viz obr. 2.25(a) zachytit na referenční průběhy, které byly do optimalizačního nástroje importovány ve formě textového souboru reference.txt. Program se má zachytit na průběh úrovně výstupního napětí filtru v dB s 3% tolerancí a na fázi výstupního napětí s 5% tolerancí při změně optimalizovatelných prvků v obvodu. Z optimalizace byl vyřazen rezistor R3 a uzamčeny rezistory R5 a R6, jejichž hodnotu optimalizační nástroj nebude měnit. Optimalizačnímu nástroji se to povedlo v desátém běhu algoritmu viz obr. 2.24 zachytit na referenční průběhy s definovanými tolerancemi. Tolerance, jinak řečeno maximální chyba, s jakou se optimalizační nástroj musí zachytit na křivku, je při použití Reference only gear počítána dle rovnice 2.8. A je to tedy efektivní hodnota chyby ve všech bodech křivky, nejedná se tedy o toleranční pásma, ale o jedinou hodnotu. Pro zlepšení požadovaného průběhu by se mohl použít Legacy gear, který počítá chybu v každém bodu průběhu zvlášť. Tento typ výpočtu je však časově nejnáročnější a je omezen pouze na optimalizaci křivky o maximálním počtu 250 bodů. Ostatní typy nástrojů pro výpočet chyby pracují velice podobně a počítají chybu přes celý průběh, nikoliv v jednotlivých bodech a tím je omezena přesnost zachycení na křivku.

Na obr. 2.25 je dobře vidět srovnání výsledků před optimalizací obr. 2.25(a) a po optimalizaci2.25(b) a (c). Ve výsledcích po optimalizaci jsou červené průběhy referenční a zelené průběhy jsou dosažené optimalizací.

Obr. 2.24: Výsledky optimalizace filtru typu pásmová propust v okně optimalizace

Obr. 2.25: Výsledky optimalizace pásmové propusti s operačními zesilovači

2.4 Analýza namáhání součástek (Smoke analysis)

Analýza slouží k nalezení součástek, které jsou nejvíce namáhány ztrátovým výkonem, navýšením teploty přechodu, sekundárními průrazy nebo porušením napěťových či proudových limitů. Analýza pro nalezení bezpečných pracovních podmínek prvků v obvodu používá maximální pracovní podmínky, poskytované výrobci součástek a zatěžovací faktor definovaný při návrhu obvodu. Analýza porovnává výsledky simulace s bezpečnými pracovními podmínkami prvků v obvodu a při jejich překročení jsou kritické prvky v obvodu označeny. Výsledky analýzy namáhání součástek je možné zobrazit v průměrných, efektivních a špičkových hodnotách.

Při analýze namáhání součástek je výhodné postupovat dle obr. 2.26

Obr. 2.26: Postup práce s analýzou namáhání součástek |Převzato z [19]|

Při analýze namáhání součástek je možné určit následující pracovní limity:

- průrazné napětí na svorkách prvku v obvodu
- maximální proudové limity
- ztrátový výkon pro každý prvek
- sekundární průrazné limity
- teploty přechodů.

Pro spuštění analýze namáhání součástek je třeba, aby obvod byl složen z prvků, které obsahují parametry potřebné pro analýzu namáhání součástek. Dále je nezbytné, aby proběhla jedna ze základních analýz. Analýza namáhání součástek funguje pouze při analýze v časové oblasti.

K použití kouřové analýzy byl opět zvolen obvod tranzistorový RF zesilovače se zapojením dle obr. 2.3, který se nachází v instalačním adresáři \tools\pspice\tutorial\capture \pspiceaa\rfamp\rf_amp.opj. K základní analýze je použit připravený simulační profil pro časovou analýzu viz obr. 2.27. Výběr simulačního profilu byl popsán u citlivostní analýzy. Nyní se spustí samotná analýza.

Simulation Settings - Tran		
General Analysis Configuration Analysis type: Imme Domain (Transient) Imme Options: Imme Domain (Transient) Imme Imme Domain (Transient) Imme Imme Options: Imme Domain (Transient) Imme Imme Domain (Transient) Imme Imme Options: Imme Domain (Transient) Imme Imme Domain (Transient) Imme Imme Imme Domain (Transie	on Files Options Data Collection Probe Window Bun to time: 10us seconds (TSTOP) Start saving data after: 0 seconds Iransient options Maximum step size: 1n seconds Skip the initial transient bias point calculation (SKIPBP) Bun in resume mode Output File Options)
	OK Storno P <u>o</u> užít Nápově	da

Obr. 2.27: Nastavení simulačního profilu pro časovou analýzu

Po provedení základní analýzy vybereme z menu $PSpice \rightarrow Advanced Analysis \rightarrow Smoke$. Zobrazí se nám okno analýzy namáhání součástek a automaticky se analýza provede viz obr. 2.28.

🞽 Ei	e <u>E</u> dit <u>V</u> iew (<u>R</u> un <u>A</u> nalysis	<u>W</u> indow <u>H</u> e	lp				cādence	_ 8 ×
		V n f	Smoke	e 🗸 trar	n sim				
-									
				Emoko	tran aim []]	Derating 1 Comp	mont Filtor - [/]		
	Component	Decompeter	Turne	Dated Value	*- u an.sim [in	Max Departing	Measured Value	9/ May	
÷	Component	Parameter	Туре	Rated Value	% Deraung	Max Deraung	Measured Value	% Max	
<u>ال</u>	no Po	RV	Average	12	100	12	10.0146	84	
<u>ال</u>	0.0	RV	Peak	12	100	12	10.0146	84	
<u>ب</u>		INV VCE	INIS A	12	100	12	10.0146	84	
<u>ال</u>		VCE	Average	12	100	12	0.1202	68	
<u>ب</u>		VCE	Peak	12	100	12	0.1422	68	
<u>ال</u>		TI	Deel	12	100	12	0.1202		
<u>ال</u>		1J T I	Peak	200	100	200	95.0543	48	
L.		1J T I	Average	200	100	200	92.3000	47	
<u>ال</u>		1J DDM	Deel:	407 74 42-5	100	407 7442-	92.4152	47	
L.		PDIVI	Peak	197.71450	99	197.71430	77.7704/11	40	
L.		PDM	Average	197.7143m	99	197.7143m	74.7301m	38	
L.		PDM	RMS	197.7143m	99	197.7143m	74.7603m	38	
L.	RB	RV BU	Average	12	100	12	4.3623	37	
L.	RB	RV BU	Peak	12	100	12	4.3623	37	
L.	RB	RV RV	RMS	12	100	12	4.3623	37	
L.	R2	RV BU	Average	12	100	12	4,4153	37	
L.Y.	R2	RV	Реак	12	100	12	4,4153	37	
N N	R2	RV	RMS	12	100	12	4.4153	37	
<u>ل</u> بل	wi od	VCB	Average	20	100	20	7.3391	37	
1 P	Q1	VCB	Peak	20	100	20	7.3568	37	
12	Q1	VCB	RMS	20	100	20	7.3392	37	
7	Q1	VEB	RMS	2.5000	100	2.5000	787.0483m	32	
1	R6	TB	Average	200	100	200	59.3908	30	
1	R6	TB	Peak	200	100	200	59.3908	30	_

Obr. 2.28: Okno analýzy namáhání součástek pro tranzistorový RF zesilovač

Sloupec *Parameter* na obr. 2.28 udává, jaký parametr byl u součástky sledován. Význam těchto parametrů je popsán v příloze A.2. Sloupec *%Derating* udává, na kolik procent je možné využít zatěžovací faktor parametrů, aby součástka ještě pracovala v bezpečných pracovních podmínkách. Sloupec *Max Derating* udává číselnou hodnotu sledovaného parametru, která odpovídá procentuální hodnotě ve sloupci *%Derating*.

Zelené řádky značí, že nebyly překročeny bezpečné pracovní limity. Žluté řádky značí dosažení 90 % bezpečných pracovních limitů a červené řádky značí překročení bezpečných pracovních podmínek pro konkrétní součástku. Pokud by řádek byl šedý, není pro tento typ parametr výrobcem součástky určen.

V okně analýzy namáhání součástek jsou zobrazeny výsledky pro všechny prvky obvodu, které mají parametr pro analýzu namáhání součástek, navíc je pro každý parametr zobrazena průměrná, efektivní i špičková hodnota namáhání součástky. K nastavení se při analýze namáhání součástek nabízí velké množství parametrů, ale jako nejzásadnější parametr je derating factor, tzv. zatěžovací faktor, který nám určuje bezpečné pracovní limity pro jednotlivé součástky. Například pro 5 W rezistor, který má zatěžovací faktor 0,9 to znamená, že limit pro bezpečné používání je 4,5 W. Jako standardní zatěžovací faktor je ve smoke analýze nastaven zatěžovací faktor 1, to znamená, že bezpečné limity odpovídají 100 % hodnoty parametru pro analýzu namáhání součástek. Dále je možné zvolit standardní zatěžovací faktor, který je v programu předefinován viz obr. 2.29. Další možností volby zatěžovacího faktoru je import souboru s příponou .drt, který obsahuje definovaný zatěžovací faktor a poslední možností je vlastní definice zatěžovacího faktoru pro vybrané součástky přímo v programu. Existuje i možnost úpravy již definovaného zatěžovacího faktoru. Veškerá práce se zatěžovacím faktorem se provádí v menu smoke analýzy Analy $sis \rightarrow Smoke \rightarrow Derating$. Více o možnostech nastavení a tvorby zatěžovacích faktorů je v manuálu k rozšířeným analýzám [18].

<u>A</u> nalysis <u>W</u> indow <u>H</u> elp	_					
Sensitivity	г	V tran sim				
O <u>p</u> timizer •		udir.sin				
Monte Carlo						
Smoke	~	Average Values			Smoke	
Paramertic Plotter		DMS Values	ax	Derating	Measured Valu	
			t fo	und Selec	t a transient profile :	
	Ľ	Peak Values				
		Parameter Filters				
		Parameter Descriptions				
		I tida Tarrakid Dama		,,,,,,,,		
		Hide Invalid Rows				
		<u>C</u> omponent Filter				
		Eind in Design				
		Derating		<u>N</u> o Derating	,	
				<u>S</u> tandard D	erating	
				Add Derate	File	
				Create Nev	v Derate File	
				Derate File	Settings	
					Jocangsin	

Obr. 2.29: Cesta v menu k nastavení a volbě zatěžovacího faktoru

2.5 Analýza výtěžnosti výroby (Monte Carlo)

Analýza *Monte Carlo* patří také mezi rozšířené typy analýz. Jedná se statistickou analýzu, která je schopná určit výtěžnost výroby. Při analýze se mění hodnoty součástek pomocí integrovaného generátoru náhodných čísel v rozmezí stanovených tolerancí a tím se program snaží simulovat výrobní odchylky součástek při výrobě obvodu. Analýza *Monte Carlo* se používá pro:

- výpočet výtěžnosti na základě uživatelem stanovených požadavků
- integrace měřicích funkcí s grafickým výstupem
- $\bullet\,$ zobrazení výsledků pravdě
podobnosti distribuční funkcePDF
- $\bullet\,$ zobrazení výsledků kumulativní distribuční funkceCDF
- výpočet statistických dat pro definovanou měřicí funkci
- zobrazení měřených hodnot pro každý běh simulace.

Při analýze Monte Carlo je výhodné postupovat dle obr. 2.30

Obr. 2.30: Postup práce s analýzou Monte Carlo |Převzato z [19]|

Obvod, který má být analyzován analýzou Monte Carlo musí být složen z prvků, které jsou z knihovny pokročilých analýz ve složce $\Tools\Capture\Library\PSpice\$

AdvAnls\. Konkrétně musí jako parametr obsahovat toleranci. Pokud je obvod složen z vhodných prvků, je nutné obvod analyzovat jednou ze základních typů analýz. Analýza *Monte Carlo* funguje na všech typech základních analýz, tedy na DC, AC a časové analýze. A jako poslední předpoklad pro spuštění analýzy *Monte Carlo* musí být definována měřicí funkce, podobně jako pro ostatní typy rozšířených analýz.

K analýze Monte Carlo bude použit opět tranzistorvý RF zesilovač viz obr. 2.3, který je v instalačním adresáři ve složce $\tools\pspice\tutorial\capture\pspiceaa\rfamp\rf_amp.opj$ a předdefinovaný AC simulační profil viz obr. 2.4. Volba simulačního profilu byla již popsána v části citlivostní analýzy. Po proběhnutí AC analýzy se otevře ze schématického editoru okno s analýzou Monte Carlo z menu PSpice \rightarrow Advanced Analysis \rightarrow Monte Carlo. Zobrazí se okno analýzy viz obr. 2.31

Obr. 2.31: Základní okno analýzy Monte Carlo

V horní polovině okna je vyhrazena část pro graf PDF nebo pro graf CDF. Volba typu grafu se provádí kliknutím pravého tlačítka myši libovolně v oblasti grafu a výběrem položky CDF či PDF Graph. V dolní polovině okna je část Specifications, která má navíc dvě záložky, podobně jako okno optimalizace. Záložka Statistics zobrazuje statistická data a záložka Raw Meas zobrazuje neupravené číselné výsledky měřicích funkcí. Pokud je aktivní záložka Statistics je možné kliknutím na řádek Import Measurement importovat některé z definovaných měření viz obr. 2.16(c). Je zde také možnost měření vytvořit. Měření je možné vytvořit z menu Analysis \rightarrow Monte Carlo \rightarrow Create New Measurement viz obr. 2.32, ve kterém je možné definovat měřicí funkci.

Profile: ac.sim Simulation Output Variables * I(C1) I(C3) I(C4) I(C6) I(C7) I(D1) I(Q1:B) I(Q1:C)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	Eunctions or Macros Measurements Bandwidth(1,db_level) Bandwidth_Bandpass_3dB(1) Bandwidth_Bandpass_3dB_XRai CenterFrequency(1, db_level) CenterFrequency_XRange(1, db_ ConversionGain (1,2) ConversionGain XRange(1,2,bec
	<u><u> </u></u>	<u>Cancel</u> <u>H</u> elp

Obr. 2.32: Okno pro vytvoření nového měření

Analýza Monte Carlo obsahuje celkem 4 nastavitelné parametry. Nastavení analýzy se provádí v okně analýzy v menu $Edit \rightarrow Profile \ Settings \ (záložka \ Monte \ Carlo)$ viz obr. 2.33.

Profile	Settings	5			
Optimi	zer Mont	e Carlo	Sensitivity	Smoke	Parametric Plot Simulation
		<u>N</u> um	ber of Runs:	10	
		<u>S</u> tart	ing Run Num ⁱ	ber: 1	
		Rano	dom Seed <u>V</u> a	lue: 1	
		Num	ber of <u>B</u> ins:	10	0
					<u>Cancel R</u> eset <u>H</u> elp

Obr. 2.33: Nastavení analýzy Monte Carlo

- Number of Runs udává počet běhů analýzy. V prvním běhu jsou použity nominální hodnoty parametrů a v každém následujícím běhu se hodnoty parametrů mění v rámci definovaných tolerancích pomocí generátoru náhodných čísel. Maximální počet běhů je omezen pouze dostupnou pamětí počítače.
- Starting Run Number udává pořadí startovního běhu. Běh číslo 1 používá nominální hodnoty a je standardně nastaven. Vyšší startovní číslo běhu je možné použít, pokud jsou počáteční běhy nevýznamné pro analýzu a je možné ušetřit tak výpočetní čas.
- Random Seed Value používá generátor náhodných čísel ke generování sekvence náhodných čísel. Pokud je cílem opakování výsledků, není třeba tuto hodnotu měnit. Ale pokud se údaj bude měnit, je možné získat různé výsledky pro každou simulaci.
- Number of Bins určuje počet intervalů, na které má být výsledný histogram rozdělen. Typická hodnota je 0,1 počtu běhů analýzy. Minimální počet je jedna a maximální je omezen dostupnou pamětí počítače.

Výsledky analýzy Monte Carlo tranzistorového RF zesilovače jsou na obr. 2.34

Na obr. 2.34(a) je histogram rozložení hustoty pravděpodobnosti. Tento histogram je pro měřicí funkci bandwidth(v(load),3), měření udává šířku pásma tranzistorového RF zesilovače při poklesu o 3 dB. Na svislé ose je vynesen počet běhů. Na vodorovné ose jsou výsledky zvoleného měření, tedy dosažené šířky pásma pro jednotlivé běhy. Na obr. 2.34(b) je kumulativní distribuční graf pro měřicí funkci bandwidth(v(load), 3). Na svislé ose je opět počet běhů a na vodorovné ose jsou výsledky zvoleného měření. Hranice Min a Max v obou grafech určují oblast, ze které jsou počítána statistická data. Hranice je možné libovolně přesouvat. Aktivní hranice, pohybuje se s ní, je červená, neaktivní je černá. Kliknutím levým tlačítkem myši na jednu z hranic se aktivuje a kliknutím na požadovanou pozici v PDF či CDF grafu se umístí a automaticky se provede přepočet statistických dat. Pozici hranic je možné samozřejmě volit i číselně v okně optimalizace v záložce Statistics ve sloupcích Cursor Min a Cursor Max v obr. 2.34(c), kde jsou zobrazeny výsledky statistické analýzy Monte Carlo. Další sloupec Yield udává, kolik procent běhů programu se vešlo do mezí určených kurzory. Jinak řečeno, kolik procent vyrobených obvodů by splnilo předem definované požadavky na vyrobený obvod, například požadovanou šířku pásma zesilovače. Sloupec Mean udává průměrnou hodnotu získanou ze všech běhů. Hodnoty pro jednotlivé běhy je možné získat v záložce Raw Meas. Sloupec Std Dev je směrodatná odchylka a značí se σ . Udává, jak se od sebe navzájem liší typické hodnoty v konkrétním souboru měření. Sloupec 3 Sigma udává počet běhů měření v procentech, které se vejdou do intervalu $\pm 3 \sigma$. Sloupec 8 Sigma udává počet běhů měření v procentech, která se vejdou do intervalu $\pm 6 \sigma$. Sloupec Median určuje pomyslný střed mezi výsledky měření. Nejméně 50% hodnot je menších nebo rovných a nejméně 50 % hodnot je větších nebo rovných mediánu. Na obr. 2.34(d) je možné vidět záložku Raw Meas, kde jsou výsledky všech importovaných měření pro jednotlivé běhy analýzy. Tyto výsledky jsou poté statisticky zpracovávány a výsledky jsou na záložce *Statistics* jak bylo již uvedeno.

(b) CDF graf měřicí funkce bandwidth(v(load),3)

	Stat	tistics 🛛	Raw Meas										
					Sta	tistical Inform	ation						^
	•	0n/0ff	Profile	Measurement	Cursor Min	Cursor Max	Yield	Mean	Std Dev	3 Sigma	6 Sigma	Median	
	٣	 Image: A set of the set of the	ac.sim	max(db(v(load)))	8.2497	10.6280	100%	9.4444	430.8518m	100%	100%	9.4206	
	٣	>	ac.sim	bandwidth(v(load),3)	142.0694meg	161.3462meg	100%	150.6918meg	4.3942meg	100%	100%	150.9350meg	
	٣	~	ac.sim	min(10*log10(v(inoise)*	3.7150	4.5370	100%	4.1426	182.6051m	100%	100%	4.1530	
	٣	<	ac.sim	max(v(onoise))	3.9443n	4.8353n	100%	4.3527n	185.9420p	100%	100%	4.3401n	
					Click here t	o import a meas	urement creat	ed within PSpic	e				v
<	N.S.				Ш							>	

(c) Statisticky zpracované výsledky měřicích funkcí

	📑 Statistics 🕺 🔲 Ra	w Meas						
				Raw Measurement	s			<u>~</u>
	Profile	Measurement	1	2	3	4	5	6
	ac.sim	max(db(v(load)))	9.41807159697	10.21858669916	9.808007121063	9.638131148427	8.666813414516	9.07281570;
►	ac.sim	bandwidth(v(load),3)	150578750.5263	154556810.2332	143837459.4598	149963435.598	147871095.4769	147257447.
	ac.sim	min(10*log10(v(inoise)*v(i	4.148054828386	3.733634075314	4.099206977762	4.171495704349	4.457933018342	4.087599387
	ac.sim	max(v(onoise))	4.338323478237e-009	4.535518183246e-009	4.512078266572e-009	4.461663927202e-009	4.123374086618e-009	4.14034495
<			••••••				••••••	×

(d) Neupravené číselné výsledky měřicích funkcí

Obr. 2.34: Výsledky analýzy Monte Carlo tranzistorového RF zesilovače

2.6 Rozmítání obvodových parametrů

Parametric plotter je posledním nástrojem, patřícím mezi rozšířené analýzy programu OrCAD PSpice. *Parametric plotter* umožňuje rozmítání mnoha obvodových parametrů a také umožňuje účinně analyzovat výsledky rozmítání. Je možné současně rozmítat nejen parametry prvků, ale také parametry celého obvodu, jako příklad je možné uvést provozní teplotu celého zapojení. *Parametric plotter* je možné použít pro:

- rozmítání mnoha parametrů obvodu současně, například pracovní teplota, napájecí napětí a jiné, což jinak není možné
- rozmítání parametrů prvků obvodu/modelů obvodových prvků
- zobrazení výsledků rozmítání v podobě tabulky, kde se zobrazí výsledky měřicích funkcí pro jednotlivé kombinace hodnot obvodových prvků
- vykreslení výsledků měření v PROBE UI (User Interface)
- vyhodnocení výsledků měření z provedených analýz.

Parametric plotter může využít jeden ze čtyř typů rozmítání hodnot parametrů během analýzy:

- *Discrete Sweep* při simulaci se používají jen hodnoty parametrů, které se předem specifikují. Hodnoty jsou voleny libovolně, dle potřeby.
- *Linear Sweep* hodnoty parametrů, používané při simulaci jsou z intervalu, který začíná *Start Value*, poslední hodnota musí být větší nebo rovna *End value* a interval je rozdělen pomocí *Step Value*.
- Logarithmic Octave Sweep hodnoty parametrů se mění s funkcí ln(2). Je třeba definovat Start Value, End Value a Number of points per Octave. Number of points per Octave udává počet bodů na oktávu, přičemž poslední bod oktávy je dvojnásobek Start Value. Například Start Value je 10, Number of points per Octave je 5, tak Parametric Plotter vloží do intervalu 10 až 20 pět hodnot, s tím, že pátá hodnota z intervalu je 20. Hodnoty z intervalu se zvyšují s faktorem dle rov. 2.9

$$factor = exp[(ln(2))/N]$$
(2.9)

Kde:

 $N \ldots Number of points per Octave.$

Logarithmic Decade Sweep – hodnoty parametrů se mění s funkcí ln(10). Je třeba definovat Start Value, End Value a Number of points per Decade. Number of points per Decade udává počet bodů na dekádu, přičemž poslední bod dekády je desetinásobek Start Value. Například Start Value je 10, Number of points per Decade je 5, tak Parametric Plotter vloží do intervalu 10 až 100 pět hodnot, s tím, že pátá hodnota z intervalu je 100. Hodnoty z intervalu se zvyšují s faktorem dle rov. 2.10

$$factor = exp[(ln(10))/N]$$
(2.10)

Kde:

$N \ldots Number of points per Decade.$

Jako ukázkový příklad je použit jednoduchý obvod pro induktivní spínání, schéma obvodu je na obr. 2.35. Obvod se nachází v instalačním adresáři \tools\pspice\tutorial\capture \pspiceaa\Snubber\SNUBBER.opj. K obvodu jsou již připraveny dva simulační profily. Je zvolen transientní simulační profil, nastavení profilu je na obr. 2.36. Volba aktivního simulačního profilu byla již popsána výše. Následuje spuštění simulace, jejíž výsledky jsou na obr. 2.37.

Obr. 2.35: Schéma zapojení obvodu pro induktivní spínání

Simulation Settings - transi	ent	×
General Analysis Configuration Analysis type: Imme Domain (Transient) Imme Domain (Transient) Options: Imme Domain (Transient) Imme Domain Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient) Imme Domain (Transient)	m Files Options Data Collection Probe Window Bun to time: 20u seconds (TSTOP) Start saving data after: 0 seconds Iransient options Maximum step size: 100n seconds Skip the initial transient bias point calculation (SKIPBP) Bun in resume mode Output File Options)
	OK Storno P <u>o</u> užít Nápově	da

Obr. 2.36: Nastavení simulačního profilu pro transientní analýzu

Obr. 2.37: Výsledky transientní analýzy obvodu pro induktivní spínání (vstupní napětí na R2; výstupní napětí na L1)

Cílem tohoto řešeného příkladu je minimalizovat napěťové překmity, které jsou velmi dobře patrné z obr. 2.37 na průběhu napětí na cívce L1. Překmity je možné omezit zvětšením hodnoty odporu rezistoru R2 a zvýšením kapacity kondenzátoru C1. Tím se ale zvýší ztrátový výkon na odporu R2. K nalezení řešení bude použito rozmítání hodnot parametrů R2 a C1 a doby náběžné hrany pulsů ze zdroje V2.

Po proběhnutí základní analýzy se spustí Parametric plotter z menu $PSpice \rightarrow Advanced Analysis \rightarrow Parametric Plotter$ a zobrazí se okno viz obr. 2.38. V horní části okna, označené Sweep Parameters, se zadávají rozmítané parametry. V tomto příkladu to jsou jmenovité hodnoty rezistoru R2, kondenzátoru C1, hodnota CGSO (Gate-Source Overlap Capacitance – kapacita mezi G a S) tranzistoru Q1 a doba náběžné hrany průběhu napětí ze zdroje V2. Kliknutím levého tlačítka myši v okně Sweep Parameters na řádek Click here to import a parameter... se zobrazí okno pro výběr rozmítaných parametrů viz obr. 2.39(a). A nyní je třeba doplnit hodnoty a typy rozmítání jednotlivých rozmítaných parametrů kliknutí na odpovídající řádek ve sloupci Sweep Values dle obr. 2.39(b), (c), (d) a (e).

≚ Eile	<u>E</u> di	t <u>V</u> iew E	<u>t</u> un <u>A</u> nalysis <u>W</u> indo	w <u>H</u> elp					cādence	_ 8 ×
Þ		8	× c 🖻	Parametric Plot	~		III 🕤 🔍	998		
					S	weep Parameters				~
	٠	0n/0ff	Component	Parameter	Sweep Variable	Sweep Type	Sweep Values	Number of Steps		
	ĺ				Click here to import a	a parameter from the c	lesign property map			=
-										
	Me	asuremen	ts Results	Plot Information						
						Measurements				<u> </u>
	•	0n/0ff	Profile	Measureme	ent Type	Min Value	Max Value			
					Click here to impor	t a measurement crea	ted within PSpice			
1—										
-										

Obr. 2.38: Základní okno Parametric Plotter

V2 DC Image: Start 10, End: 33, Step: 11 V1 DC Start: 10, End: 33, Step: 11 R2 VALUE Linear Start: 10, End: 33, Step: 11 R1 VALUE Linear Start: 10, End: 33, Step: 11 Q1 MTYPE Values: 1.41e-10, 1.41e-009 Q1 BYPASS_L Values: 1.41e-10, 1.41e-009 Q1 BYPASS_L Values: 1e-9, 5e-9, 1e-8 PARAM trise Discrete Values: 1e-9, 5e-9, 1e-8 PARAM tfall Value Values: 1e-9, 5e-9, 1e-8	Component	Parameter	Sweep Туре	Sweep Values
V1 DC R3 VALUE R2 VALUE Linear Start:10,End:33,Step:11 R1 VALUE Q1 MTYPE Q1 CGSO Discrete Values:1.41e-10,1.41e-009 Q1 BYPASS_L PARAM trise PARAM tfall L1 VALUE	V2	DC		
R3 VALUE Linear Start:10,End:33,Step:11 R1 VALUE Linear Start:10,End:33,Step:11 R1 VALUE Linear Start:10,End:33,Step:11 Q1 MTYPE Linear Values:1.0,End:33,Step:11 Q1 MTYPE Values:1.41e-10,1.41e-009 Q1 BYPASS_L Values:1.41e-10,1.41e-009 PARAM trise Discrete Values:1e-9,5e-9,1e-8 PARAM tfall Linear Linear	V1	DC		
R2 VALUE Linear Start:10,End:33,Step:11 R1 VALUE	R3	VALUE		
VALUE Value Q1 MTYPE Q1 CGSO Discrete Values:1.41e-10,1.41e-009 Q1 BYPASS_L PARAM trise Discrete Values:1e-9,5e-9,1e-8 PARAM tfall Value Values:1e-9,5e-9,1e-8 Values:1e-9,5e-9,1e-8	R2	VALUE	Linear	Start:10,End:33,Step:11
MTYPE MTYPE Q1 CGSO Discrete Values:1.41e-10,1.41e-009 Q1 BYPASS_L PARAM trise Discrete Values:1e-9,5e-9,1e-8 PARAM tfall PARAM tfall Environmentation Environmentation	R1	VALUE		
Q1 CGSO Discrete Values:1.41e-10,1.41e-009 Q1 BYPASS_L	Q1	MTYPE		
BYPASS_L PARAM trise Discrete Values:1e-9,5e-9,1e-8 PARAM tfall -1 VALUE	Q1	CGSO	Discrete	Values:1.41e-10,1.41e-009
PARAM trise Discrete Values:1e-9,5e-9,1e-8 PARAM tfall 1 VALUE	Q1	BYPASS_L		
PARAM tfall 1 VALUE	PARAM	trise	Discrete	Values:1e-9,5e-9,1e-8
1 VALUE	PARAM	tfall		
	_1	VALUE		
C1 VALUE Linear Start:1e-010,End:1e-009,Step:4e-011	C1	VALUE	Linear	Start:1e-010,End:1e-009,Step:4e-011

(a) Okno se seznamem dostupných parametrů k rozmítání

Sweep Settings	×
Sweep Туре	
Discrete 🔽	
Discrete Points: 🍸 🗙 🛧 🗲	
1.41e-010 1.41e-009	
Total number of steps:2	
OK Cancel	

(c) Nastavení rozmítání pro tranzistor Q1

Sweep Settings 🛛 🛛 🕍
Sweep Туре
Discrete 🛛 👻
Discrete Points: 🎽 🗶 🛧 🗲
1e-009 5e-009 1e-008
Total number of steps:3
OK Cancel

(d) Nastavení rozmítání náběžné hrany *trise* zdroje V2

(b) Nastavení rozmítání pro rezistor R2

Sweep Settings 🛛 🛛 🛛							
Sweep Туре							
Linear 🗸							
Start Value:	1e-010						
End Value:							
Step Value:							
Total number of steps:23							
OK Cancel							

(e) Nastavení rozmítání pro kondenzátor C1

Dále je nutné importovat měření. To se provádí v záložce Measurements, stejně jako u ostatních typů analýz. Kliknutím na řádek Click here to import a measurement... se zobrazí okno pro import již vytvořených měření viz obr. 2.40 a zde se vyberou měření overshot(v(11:2)), neboli překmit napětí na cívce L1 a yatlastx(avg(w(r2))), což je výkonová ztráta na rezistoru R2. A jako poslední se přidá průběh napětí na DRAINtranzistoru Q1. Toto měření se přidá kliknutím pravým tlačítkem myši libovolně do volného prostoru v záložce Measurements a výběrem volby Create New Trace se zobrazí okno pro vytvoření nového průběhu. Zde je nutné vybrat transient.sim u volby Profile a poté do pole Measurement napsat nebo vložit požadovaný průběh. V tomto případě se do tohoto pole napíše v(q1:d). Na obr. 2.41 je znázorněné kompletní nastavení. Nyní je možné spustit Parametric Plotter.

Ir	nport Measure	ment(s)	×				
	Profile	Measurement					
dc_sweep.sim < No measurements found for this profile > transient.sim Overshoot(V(L1:2)) transient.sim yatlastX(AVG(W(R2))) transient.sim Overshoot(V(R2:1)) transient.sim Overshoot(V(Q1:D))							
	<	· · · · · · · · · · · · · · · · · · ·					
	To select multiple items, hold down the CTRL key, then click each entry. Hold down the SHIFT key to select or deselect adjacent items.						
		<u> </u>					

Obr. 2.40: Okno pro vytvoření uživatelsky definovaného průběhu

	8	% C 🖻	Parametric Plot	~			998	
				Sweep	Parameters			_
•	0n/0ff	Component	Parameter	Sweep Variable	Sweep Type	Sweep Values	Number of Steps	
ا ۲	\checkmark	c1	value	outer	Linear	Start:1e-010,End:1e-009	9, 23	
٢ (<	param	trise	inner1	Discrete	Values:1e-009,5e-009,1	le3	
2	~	r2	value	inner2	Linear	Start:10,End:33,Step:11	3	
2	~	q1	cgso	inner3	Discrete	Values:1.41e-010,1.41e	-0 2	
			Clic	k here to import a para	meter from the design p	property map	······································	
\mathcal{A}								7
)	1					
Me	asuremei	nts 🔲 Results	Plot Information					
				Meas	urements			
٠	On/Off	Profile	Measurem	ent Type	e Min Value	Max Value		
٣		transient.sim	overshoot(v(l1:2))	Measuremer	nt 0.5244	72.3869		\mathbb{Z}
٣		transient.sim	yatlastx(avg(w(r2))) Measuremer	nt 0.0165	0.7931		<i></i>
Ý		transient.sim	v(q1:d)	Trace	99.9421	100.0407		<i></i>
			C	lick here to import a me	asurement created with	hin PSpice		
								_

Obr. 2.41: Vyplněné okno Parametric Plotter

Výsledky z Parametric Plotter jsou zobrazeny v záložce Measurements na obr. 2.41. Ve sloupcích Min Value a Max Value jsou zobrazeny minimální a maximální dosažené hodnoty pro jednotlivá měření této analýze obvodu pro induktivní spínání. Na další záložce Results jsou výsledky pro všechny kombinace rozmítaných obvodových parametrů pro jednotlivá měření a vykreslovaný průběh napětí viz obr. 2.42. V této záložce je možné výsledná data řadit dle potřeby, případně celý sloupec uzamknout, aby se při řazení dalších sloupců data také neřadila. Pro řazení stačí dvakrát kliknout na název sloupce, pro uzamčení sloupce slouží ikona zámku v řádku pod názvem sloupce. V další záložce Plot Information je možné pomocí průvodce ověřit výsledky měření v grafické podobě pomocí grafu.

Measurements	Results Plot In	nformation						
Results								
c1::value	param::trise	r2::value	q1::egso	transient.sim::o	transient.sim::y	transient.sim::v		
6	6	6	6	6	6			
1e-010	1e-009	10	1.41e-010	65.84290490845	0.01692692324569			
1e-010	1e-009	10	1.41e-009	72.38685822766	0.02082834036408			
1e-010	1e-009	21	1.41e-010	66.53307743077	0.03418672584154			
1e-010	1e-009	21	1.41e-009	68.27626777503	0.04537461331421			
1e-010	1e-009	32	1.41e-010	64.39112521744	0.04951054316043			
1e-010	1e-009	32	1.41e-009	66.3145565348	0.06245949710723			
1e-010	5e-009	10	1.41e-010	65.87561898633	0.01748903851015			
1= 010		10	1 /1 = 000	70 34066643655	0 00000160178000			

Obr. 2.42: Výsledky *Parametric Plotter* pro všechny kombinace rozmítaných obvodových parametrů

Průvodce vytvoření nového grafu se spustí kliknutím na řádek *Click here to add plot.* Zobrazí se okno viz obr. 2.43(a), kde se volí simulační profil, pokud jich bylo při Parametric Plotter použito několik. V tomto případě se zvolí jediný nabízený profil transient.sim a klikneme na tlačítko Další (Next). Zobrazí se okno viz obr. 2.43(b). Zde se volí parametr, který bude rozmítaný na ose X, zvolí se hodnota rezistoru R2, tedy r2::value a klikne se opět na tlačítko *Další (Next)*. Zobrazí se okno viz obr. 2.43(c), kde se volí, pro jaký typ definovaného měření se budou parametry rozmítat. Zvolí se transient.sim::overshot(v(11:2)), tedy velikost překmitu napětí na cívce L1 a klikne se na tlačítko *Další (Next)*. Následuje volba druhého rozmítané parametru, zde se zvolí hodnota kondenzátoru C1, tedy c1::value viz obr. 2.43(d) a klikne se na tlačítko Další (Next). Nyní následuje volba konstantních hodnot pro zbylé dva parametry, tedy pro trise a pro CGSO tranzistoru Q1. Bude zvolena doba trise 10n a hodnota CGSO 141p. Kliknutím pravým tlačítkem myši na hodnotu 141p se zobrazí nabídka Lock a potvrzením této nabídky se uzamknou a zčervenají obě hodnoty viz obr. 2.43(e). Touto volbou se nastaví tyto hodnoty jako konstantní pro vykreslení požadovaného grafu. Nyní se klikne na tlačítko Dokončit (Finish) a v záložce Plot Information přibude nová řádka s definovaným vyhodnocovacím grafem viz obr. 2.43(f). Pro zobrazení výsledků je třeba pravým tlačítkem myši kliknout kamkoliv do nově vytvořeného řádku a vybrat položku Display Plot a zobrazí se výsledné okno grafu viz obr. 2.44. Z tohoto grafu je možné určit, pro jaké kombinace hodnot parametrů je překmit napětí na cívce L1 nejmenší při konstantní náběžné době průběhu napětí zdroje V2 a při konstantní hodnotě parametru CGSO tranzistoru

Q1. Je možné vidět, že přibližně od hodnoty $20\,\Omega$ rezistoru R2 nemá zvyšování odporu příliš velký význam. Nejmenší překmit pro všechny hodnoty odporu rezistoru R2 vyšel pro hodnotu kapacity kondenzátoru C1 980 pF. Nyní je možné ověřit výsledky změnou hodnot prvků ve schématu a výsledek je zobrazen na obr. 2.45.

Plot Information-Select Profile	Plot Information-Select X-Axis Variable
This wizard helps you specify the settings to plot a trace in the PSpice Probe window. You can plot a trace between the X-axis and Y-axis variables for all values of a sweep parameter. Select the profile for which you want to draw a plot, and click Next. Profiles Names Itransient.sim (Zpět) Další> Storno	Select the parameter value to be plotted on the X-axis, and click Next. Note: If you select a Parameter or Measurement variable to be plotted on the X-axis, you will only be allowed to select a "Measurement" variable to be plotted on the Y-axis. If you select Time/Frequency variable, the wizard will only display a list of available traces that can be plotted on the Y-axis. X-Axis Variables c1::value param::tise r2:value param::tise r2:value itransient.sim::overshoot[v([11:2])) transient.sim::overshoot[v([11:2])) time

(a) Volba simulačního profilu

(c) Volba definovaného měření

(b) Volba proměnného parametru na ose X

Plot Information-Select Parameter 🛛 🛛 🔛				
.: /	Select a parameter to be varied, such that for each possible value of that parameter, you have a unique x-y trace, and click Next. Parameter Variables			
:	C1::value ♥ None C1::value param:trise g1::cgso < Zpět Další > Storno			

(d) Volba druhého proměnného parametru

Plot Informatio	n-Set Constant Values 🛛 🛛 🔀
	The remaining parameters and their values are listed. For each parameter, select a constant value to be used for drawing the trace(s). To assign a constant value, right-click on the value and lock it. Click Finish. Parameter
	i=-m q1:cgso ↓ 41e-010 ▲ 1.41e-009
	<zpět dokončit="" storno<="" td=""></zpět>

(e) Volba konstantních parametrů

Measurements 🔲 Results 🔲 Plot Information						
Plot Information						
•	Plot Name	X Axis	Y Axis	Parameter	Constant	
V Plot 1 r2::value transient.sim::overshoot(v c1::value param:trise=1e-008,q1::cgso=1.41e-010						
Click here to add plot						

(f) Výsledná podoba nastavení v záložce Plot Information

Obr. 2.43: Průvodce vytvoření nového vyhodnocovacího grafu

Obr. 2.44: Velikost překmitu napětí v závislosti na velikosti rozmítání C1 (osa Y) a R2 (osa X)

Obr. 2.45: Výsledek transientní analýzy obvodu pro induktivní spínání s upravenými hodnotami součástek

3

Práce s modely součástek

Tato kapitola je věnována práci s modely součástek. Některé součástky svůj vlastní model nemají, ale je možné si takové součástky vytvořit a poté je používat dle potřeby. Značné množství součástek svůj model v programu má, ale jejich vlastnosti neodpovídají potřebám uživatele. Takové součástky je možné upravit dle potřeby. Poslední možností je, kdy potřebná součástka svůj model v programu nemá, a jeho vytvoření by bylo velice náročné, že výrobce potřebné součástky dává k dispozici model součástky, který je možné do programu importovat. Všechny zde zmíněné možnosti budou v následujícím textu ukázány na konkrétních příkladech.

Předpokladem pro práci s modely součástek je znalost jazyka Spice, ve kterém jsou všechny modely součástek vytvořeny.

3.1 Vytvoření nového modelu součástky

Program OrCad PSpice umožňuje vytvářet vlastní modely součástek. Možnosti vytvořit model prakticky libovolné součástky jsou velice rozsáhlé, a tak bude v rámci této práce popsán popis vytvoření jednoduchého modelu reálného kondenzátoru. Více informací tý-kajících se vytváření nových modelů součástek je v manuálu k programu OrCAD PSPice viz [16].

Program OrCAD PSpice obsahuje ve svých knihovnách pouze ideální modely součástek. Například u kondenzátorů není uvažována indukčnost a odpor přívodů, které mají na vlastnosti reálného kondenzátoru vliv. Proto bude ukázáno vytvoření reálného kondenzátoru ze změřených velikostí indukčnosti a odporu přívodů.

Náhradní schéma reálného kondenzátoru je na obr. 3.5(a), kde kromě vlastní kapacity C je ještě sériová indukčnost přívodů Ls a sériový odpor přívodů Rs. Při vytváření vlastní ního modelu součástky se nejprve vytvoří v libovolném textovém editoru vlastní model součástky viz obr. 3.5(b), který se uloží s příponou *.lib*. Velikost kapacity bude možné volit jako parametr, velikost indukčnosti odpovídá přibližně 5 mm dlouhým kontaktům, stejně jako velikost odporu přívodů. Všechny parametry je možné editovat při potřebě jiných hodnot. Následuje spuštění programu Model Editor, který je součástí instalace

programu OrCAD PSpice, a zde otevřeme $File \rightarrow Model Import Wizard [Capture]...$ Tím se spustí průvodce, kde se vytvořené součástce přiřadí schématická značka a po dokončení průvodce se vytvoří soubor s příponou .olb, který se používá při kreslení schématu. Po spuštění průvodce se otevře okno viz. 3.2(a). V tomto okně se vybere adresář, ve kterém se nachází vytvořený model součástky s příponou .lib a zvolí se cílový adresář, kam bude uložen výstupní soubor s příponou .olb. Je velice vhodné, aby se oba soubory nacházely v jedné složce. Po vybrání obou adresářů se klikne na tlačítko Další (Next). Otevřením dalšího okna viz obr. 3.2(b) je možné vytvořený model součástky asociovat s již existující schématickou značkou, kliknutím na tlačítko Associate Symbol se otevře okno viz obr. 3.2(c), kde se vytvořenému modelu součástky přiřadí existující schématická značka. Jelikož se jedná o kondenzátor, zvolí se schématická značka z knihovny \tools\capture\library\pspice\analog.olb a klikne se na tlačítko Další (Next). Dále se přiřadí porty vytvořeného modelu součástky existující schématické značce viz obr. 3.2(d). Označení portů se definuje již při vytváření nového modelu součástky. Po přiřazení portů se klikne na tlačítko *Další (Next)*. Následuje poslední okno průvodce viz obr. 3.2(e), kde se již jen potvrdí dokončení průvodce vytvoření nového modelu součástky kliknutím na tlačítko Dokončit (Finish).

.SUBCKT Creal 1 4 params: Cn=2.1u Cn 1 2 {Cn} L1 2 3 5n R1 3 4 0.05 .ENDS

(a) Náhradní schéma reálného kondenzátoru

(b) Model reálného kondenzátoru

Model Import Wizard : Specify Library	Model Import Wizard : Associate/Replace Symbol
Model Import Wizard : Specify Library Image: Comparison of the processing of the procesing of the processing of the processing of the processing of the	Model Import Wizard : Associate/Replace Symbol Destination Symbol Lbray: C:\Cadence\SFB_16.5\Vods\capture\Uray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray\pspice\uray_biray Image: The second on ordels without symbol Image: The second on ordels without symbol Symbol Image: The second on ordels without symbol Image: The second on ordels without symbol Symbol Image: The second on ordels without symbol Image: The second on ordels without symbol Symbol Image: The second on ordels without symbol Image: The second on ordels without symbol Symbol Image: The second on ordels without symbol Image: The second on ordels without symbol Symbol Image: The second on ordels without symbol Image: The second on ordels without symbol Symbol Image: The second on ordels without symbol Image: The second on ordels without symbol Symbol
Enter Destination Symbol Libray : C:\Cadence\SPB_16.5\lools\capture\libray\pspice\my_libray\Creat ab Browse < <zpt< th=""><th>Associate Symbol View Model Text <zpět dokončit="" nápověda<="" stomo="" th=""></zpět></th></zpt<>	Associate Symbol View Model Text <zpět dokončit="" nápověda<="" stomo="" th=""></zpět>

delu reálného kondenzátoru

(a) Úvodní okno průvodce vytvoření nového mo- (b) Okno průvodce pro přiřazení schématické značky

(c) Okno průvodce s volbou vhodné schématické (d) Okno průvodce pro přiřazení portů modelu k portům schématické značky značky

Model Import Wizard : Associate/Replace Symbol							
	Destination Symbol Library : C:\Cadence\SP8_16.5\tools\capture\library\pspice\my_library\Creal olb You can do either of the following : [1] associate symbol for models without symbol, or (2) replace existing symbol for models. v Models with symbol v Models without symbol Symbol : CREAL						
A CONTRACTOR OF THE OWNER	Model Hame Symbol Hame	7					
	CREAL OREAL	-					
View Model Text	∠Zpět Dokončit Storno Nápověda	•					

(e) Okno průvodce s dokončením vytvoření modelu reálného kondenzátoru

Obr. 3.2: Průvodce vytvoření nového modelu součástky

Po dokončení průvodce je třeba vyzkoušet funkčnost nově vytvořeného modelu. Pro ověření funkčnosti jsou vytvořena dvě shodná zapojení, kde jednou je použit nově vytvořený reálný kondenzátor a jednou kondenzátor z knihovny v programu OrCAD PSpice viz obr. 3.3. Aby bylo možné použít reálný kondenzátor, je třeba přidat knihovnu, která jej obsahuje, do seznamu používaných knihoven. Když je zapojení připravené, je nutné ještě přidat parametr pro rozmítání do modelu součástky. To se provede tak, že se na značku reálného kondenzátoru klikne pravým tlačítkem myši a zvolí se *Edit Part*, zobrazí se značka reálného kondenzátoru a dvojklikem na značku se otevře okno viz obr. 3.4, kde se vybere řádek CN a jmenovitá hodnota kapacity se nahradí {Cn} a zvolí se tlačítko *Display* a volba *Name and Value*. Tím se tato hodnota zviditelní i u schématické značky ve schématickém editoru pro její pozdější úpravy.

Obr. 3.3: Schéma s použitým reálným i ideálním modelem kondenzátoru

User Properties			
Properties Name CN CURRENT DIST IC Implementation Path Implementation Type Implementation KNEE	Value (Cn) CIMAX FLAT PSpice Model CREAL CBMAX	Attributes	OK Cancel <u>N</u> ew <u>R</u> emove <u>D</u> isplay <u>H</u> elp
CN	{Cn}		

Obr. 3.4: Okno pro doplnění parametru k reálnému kondenzátoru
K simulaci a ověření vlastností modelu reálného kondenzátoru se vytvoří AC simulační profil viz obr. 3.5(a) a nastaví se globální parametr pro rozmítání hodnoty kapacity reálného kondenzátoru viz obr. 3.5(b). Aby vytvořený model reálného kondenzátoru ve schématu fungoval, je třeba přidat v nastavení simulačního profilu v záložce *Configuration Files* knihovnu s modelem. To se provede tak, že v okně *Category* se zvolí položka *Library* a pomocí tlačítka Browse se najde vytvořený soubor s příponou *.lib* a poté se klikne na tlačítko *Add to Design* viz obr. 3.5(c).

Simulation Settings - ACreak			×
General Analysis Configuration	Files Options Data	Collection Probe Window	1
Analysis type: AC Sweep/Noise	AC Sweep Type	<u>S</u> tart Frequency: <u>E</u> nd Frequency:	0.01meg
Iseneral Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Noise Analysis		
	Output File Options	ed bias point information for n cces and semiconductors (.Ol Storno P <u>o</u> užít	onlinear P) Nápověda

(a) Nastavení AC simulačního profilu

Artaysis type. AC Sweep/Noise Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point	Sweep variable Voltage source Name: Current source Model type: Global parameter Model type: Model parameter Model name: Imperature Parameter name: Sweep type Sweep type
Save Bias Point Load Bias Point	Linear Start value: Logarithmic End value: Increment: Increment:

(b) Nastavení rozmítání velikosti kapacity relného kondenzátoru

Simulation Settin	gs - ACrealc	×
General Analysis Category: Stimulus Library Include	Configuration Files Options Data Collection Probe Window Details	
	Mather C.\Cadence\SPB_16.5\tools\capture\library\pspic Add as Gjobal Add to Design Add to Profile Edit Change	
	Library <u>P</u> ath "C:\Cadence\SPB_16.5\tools\PSpice\Library"/"C:\Ca Browse	
	OK Storno P <u>o</u> užít Nápověc	la

(c) Přidání souboru s příponou .
lib do simulace $% \left({{\mathbf{x}}_{i}} \right)$

Obr. 3.5: Schéma a model reálného kondenzátoru

Nyní stačí již jen spustit simulaci a vykreslit úroveň výstupního napětí v dB obou obvodů. Výsledek simulace je na obr. 3.6

V grafu je velmi dobře patrné, že sériová indukčnost přívodů má vliv na chování reálného kondenzátoru. Při vysokofrekvenčních aplikacích není možné tuto indukčnost ignorovat a je třeba jí brát v úvahu.

Obr. 3.6: Výsledek AC analýzy modelu reálného kondenzátoru v porovnání s ideálním kondenzátorem (úroveň výstupního napětí reálného modelu kondenzátoru (dB(V(out1))); úroveň výstupního napětí ideálního modelu kondenzátoru (dB(V(out2))))

3.2 Editace stávajícího modelu součástky

Možnost editace stávajících modelů součástek nabízí široké možnosti použití. Lze upravovat prakticky jakýkoliv parametr součástky, která bude použita při simulacích. Součástkám je možné přidávat například parametry, které jsou potřebné při rozšířených analýzách, upravovat jejich teplotní závislosti a jiné.

Editace stávající součástky bude demonstrována na jednoduchém příkladu, kdy bude rezistoru přidán parametr s teplotní závislostí, výsledkem bude rezistor s proměnnou závislostí odporu na teplotě. V prázdném projektu je nutné vytvořit schéma viz obr. 3.7. Jedná se o velmi jednoduché zapojení s jedním zdrojem proudu 1 A a rezistorem *rbreak* z knihovny *tools**capture**library**pspice**breakout.olb*. Součástky z knihovny *breakout.olb* jsou určeny pro uživatelem prováděné úpravy, ale pokud se neprovedou žádné změny, mají stejnou funkci jako součástky z knihovny *analog.olb*. Pokud je obvod připraven, je nutné editovat součástku *Rbreak*. Editace se provede tak, že se součástka označí levým tlačítkem myši a poté kliknutím pravým tlačítkem myši na označenou součátku se otevře nabídka s možnostmi různých úprav součástky, zvolí se položka *Edit PSpice Model*. Tím se otevře program Model Editor viz obr. 3.8(a), dopíše se parametr s teplotní závislostí TCE = 3 viz obr. 3.8(b). V okně je kromě dopsaného parametru TCE ještě .model, což značí, že se jedná o model součástky. Text **Rbreak** je název součástky v knihovně, text **RES** udává, že modifikovaná součástka je rezistor, **R=1** je číslování součástky ve schématu, číslování začíná od 1.

Obr. 3.7: Schéma pro určení závislosti odporu rezistoru Rbreak na teplotě

Je nutné podotknout, že pro editaci součástek je nezbytné znát parametry, které mohou být součástkám přiřazeny a je také velice vhodné ovládat základy jazyka SPICE, kterým jsou veškeré modely součástek zapisovány.

Teplotní závislost modelu rezistoru se řídí podle rov. 3.1.

$$odpor = \langle value \rangle \cdot R \cdot 1, 01^{TCE \cdot (T-Tnom)}$$

$$(3.1)$$

Kde:

TCE ... je hodnota teplotního koeficientu.

T ... je hodnota aktuální teploty.

Tnom ... je nominální hodnota teploty, tedy 27 °C.

(a) Okno Model Editoru s neupravenou součástkou
 ${\it Rberak}$

📴 Eile Edit <u>V</u> iew <u>M</u> odel P <u>l</u> ot	<u>I</u> ools <u>W</u> indow <u>H</u> elp	cādence - ♂×
	🛃 🕺 🖸 🖻 ର ର ୟ ୟ 🛋 🗶	YI 🛃 🖬 🖾 🖄
Models List 🛛 🔀	.model Rbreak RES R=1 TCE=3	
Model Name Type Mod		
Rbreak RES		
(F.)		

(b) Okno Model Editoru s upravenou součástkou Rberak

Obr. 3.8: Úprava součástky Rbreak v Model Editoru

Pokud je součástka upravena, je možné ji uložit a ihned používat. Součástky se již při prvním použití ve schématickém editoru kopírují z knihoven programu do projektu, aby byl projekt přenositelný a upravené součástky se rovněž ukládají do projektu, v důsledku toho nedochází k přepisování hodnot v knihovnách programu. Upravený model je platný pouze pro aktuální projekt, to znamená, že pokud by se otevřel nový projekt a vložila se součástka *Rbreak*, nebude mít žádné nestandardní vlastnosti, jako závislost odporu na teplotě. V případě, že budou přidány ještě další stejné součástky *Rbreak*, přebírají všechny další součástky upravený model. Pokud by byla vyžadována různá teplotní závislost, či jiné vlastnosti, je nezbytné součástku uložit pod jiným názvem, tím se zabrání kopírování vlastností mezi stejnými součástkami. Součástka se pod jiným názvem uloží tak, že v programu Model Editor se název součástky *Rbreak* buď doplní o nějaký popis (bez mezery) nebo se úplně přepíše, aby nepřejímal vlastnosti součástky se stejným názvem.

Nyní se vytvoří simulační profil pro ověření vlastností upravené součástky. Nastavení profilu je na obr. 3.9. Zde se zvolí rozmítání teploty, jako obvodového parametru. Je třeba ještě zkontrolovat, jestli se přidal soubor *.lib* v záložce *Configuration Files* v okně pro vytvoření simulačního profilu viz obr. 3.10, který obsahuje právě upravený model součástky. Soubor se přidává při úpravě součástky automaticky. Pokud by se automaticky nepřidal, je třeba jej vyhledat ve složce s aktuálně používaným projektem, kam se soubor s příponou *.lib* ukládá.

Simulation Settings - DCsw	reepRbreak 🛛 🛛 🛛
General Analysis Configurat	ion Files Options Data Collection Probe Window
Analysis type: DC Sweep ✓ Options: Primary Sweep Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Sweep variable Quirent source Model type: Giobal parameter Model name: Model parameter Model name: Iemperature Parameter name: Sweep type End value: 0 Linear End value: 50 Logarithmic Decade Increment: 1
	OK Storno P <u>o</u> užít Nápověda

Obr. 3.9: Nastavení simulační profilu

Simulation Settin	gs - DCsweepRbreak	
General Analysis Category: Stimulus Library Include	Configuration Files Options Data Collection Probe Window Details	
	Image: Sourcestkymod-pspicefiles/sourcestkymod.lib Add as Gjobal Image: Sourcestkymod.lib Add to Design Image: Add to Profile Image	
	Library Path "C:\Cadence\SPB_16.5\tools\PSpice\Library";"C:\Ca Browse	
	OK Storno P <u>o</u> užít Nápověd	a

Obr. 3.10: Okno pro vložení knihovních souborů

Jako poslední krok je ověření správné funkce upraveného modelu rezistoru, a proto se spustí simulace, jejíž výsledek je na obr. 3.11. Napětí na svislé ose představuje velikost odporu, v ohmech, rezistoru Rbreak v závislosti na teplotě.

Obr. 3.11: Výsledná závislost odporu rezistoru Rbreak na teplotě

Příklad byl převzat z [4].

3.3 Import nového modelu součástky

Modely součástek, které jsou dostupné na stránkách výrobců je možné do programu Or-CAD PSpice importovat pomocí průvodce, který se spouští z programu *Model Editor*. Postup importu modelu součástky bude vysvětlen na tranzistoru 2N2222AHR od společnosti STMicroelectronics. Jedná se NPN tranzistor, napětí kolektor-emitor 40 V a maximální proud kolektoru 0.8 A. Výrobce dává na svých stránkách k dispozici soubor s příponou .*lib*, což je knihovní soubor. Pro použití v programu OrCAD PSpice je nutné soubor upravit aby měl koncovku .*olb* a je nutné mu přidělit schématickou značku. Právě k tomuto účelu je použit program Model Editor, který je součástí instalace OrCAD PSpice. Spouští se v instalačním adresáři programu OrCAD PSpice. Po spuštění programu Model Editor se zobrazí okno viz obr. 3.12. Je nutné knihovní soubor s příponou .*lib* před spuštění průvodce ještě upravit. Otevře se dodávaný soubor v libovolném textovém editoru. V prvním řádku se upravý název tranzistoru z 2N2222AHR na Q2N2222AHR a soubor se uloží. Tato úprava je nutná, aby mohl být tranzistor použit při analýzách a program nevypisoval žádné chyby.

Obr. 3.12: Základní okno programu Model Editor

Následuje přiřazení vhodné schématické značky importovanému tranzistoru a vytvoření souboru s příponou .*olb*, která se používá při kreslení schématu. Postup přiřazení značky a vytvoření souboru .*olb* je totožný jako při vytváření nového modelu součástky.

Když je vytvořený model součástky, je možné ověřit jeho funkčnost. Importovaný tranzistor 2N2222AHR bude tedy použit v zapojení dle obr. 3.13, kde je cílem změřit výstupní charakteristiky tohoto tranzistoru. K měření se vytvoří DC simulační profil viz obr. 3.14(a), kde bude nastaveno rozmítání zdroje napětí kolektor-emitor. Na obr. 3.14(b) bude jako parametr rozmítán proud báze pro vynesení několika výstupních charakteristik tranzistoru 2N2222AHR.

Obr. 3.13: Schéma zapojení s importovaným tranzistorem 2N2222AHR

Simulation Settings - 2n22	222dc	
General Analysis Configurat	ation Files Options Data Collection Probe Window	
Analysis type: DC Sweep Qptions: Primary Sweep Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Sweep variable • Yoltage source Name: V1 • Gurrent source Model type: V1 • Gilobal parameter Model name: V1 • Gilobal parameter Model name: V1 • Gilobal parameter Parameter name: V2 • Gilobal p	
	OK Storno Použít Nápov	/ěda

(a) Nastavení DC simulačního profilu

Simulation Settings - 2n2222dc 🛛 🛛		
General Analysis Config	ration Files Options Data Collection Probe Window	
Analysis type: DC Sweep □ptions: ✓ Primary Sweep Secondary Sweep Monte Carlo/Worst Cass ✓ Parametric Sweep Temperature (Sweep) Save Bias Point	Sweep variable Voltage source Name: Image: Display the source Model type: Global parameter Model type: Model parameter Model name: Image: Display the source Model name: Sweep type Start value: Image: Display the source Start value:	
Load Bias Point	Logarithmic Decade End value: 20uA Increment: 4uA Value ligt	
OK Storno P <u>o</u> užít Nápověda		

(b) Nastavení parametru pro rozmítání proudu báze

Obr. 3.14: Měřeni výstupních charakteristik tranzistoru 2N2222AHR – DC simulační profil

Výsledkem simulace jsou výstupní charakteristiky tranzistoru 2N2222AHR, které znázorňují závislost proudu kolektoru na napětí kolektor-emitor při změně proudu báze viz obr. 3.15.

Obr. 3.15: Výstupní charakteristiky tranzistoru 2N2222AHR

Kosimulace – spolupráce OrCAD

PSpice a Matlab Simulink

Tato kapitola je věnována dalšímu rozšiřujícímu modulu do programu OrCAD PSpice. Tento modul se jmenuje SLPS a umožňuje propojení OrCAD PSpice s programem Matlab, konkrétně s rozhraním Simulink. Pomocí spolupráce těchto dvou programů je možné simulovat nejen elektrické obvody, ale i mechanické systémy.

Je nezbytné na začátku této kapitoly uvést, že se při zpracování této diplomové práce nepodařilo zprovoznit spolupráci mezi programy a tak tato kapitola bude popisovat spolupráci obou programů na základě manuálu a výsledky analýz provedené v prostředí Simulink jsou převzaty rovněž z manuálu [17].

4.1 Vytvoření a simulace obvodu v OrCAD PSpice

Obvod, který je používán při kosimulaci je třeba nakreslit a odsimulovat v programu Or-CAD PSpice. Pro účely popisu spolupráce programů OrCAD PSpice a rozhraní Simulink je použit jednoduchý obvod složený z MOSFET tranzistoru, dvou rezistorů a dvou zdrojů viz obr. 4.1. Po připravení obvodu je nezbytné obvod odsimulovat v programu OrCAD PSpice. K tomuto účelu se vytvoří transientní simulační profil viz obr. 4.2. Pro simulaci si není možné vybrat libovolný typ analýzy, ale pouze transientní analýzu, neboť Matlab pracuje s časovými údaji.

Nyní je možné spustit analýzu připraveného obvodu. Výsledek transientní analýzy je na obr. 4.3. Z výsledku je vidět, že v obvodu je přechodový děj, který je způsobený parazitními kapacitami mezi přechody uvnitř MOSFET tranzistoru a cílem spolupráce mezi OrCAD PSpice a prostředím Simulink je zobrazení právě tohoto přechodového děje. V grafu je znázorněn i průběh napětí zdroje V1 (červený průběh), který je definován ve schématu textem pwl(0 0 0.5u 0 0.50001u 5 1u 5 1.0001u 0). Pokud se obvod chová dle předpokladů, je možné spustit program Matlab a konkrétně Simulink.

Obr. 4.1: Schéma obvodu použitého při kosimulaci

Simulation Settings - Translps		
General Analysis Configuration ▲nalysis type:	n Files Options Data Collection Probe Window Bun to time: 3u seconds (TSTOP) Start saving data after: 0 seconds Iransient options Maximum step size: seconds Skip the initial transient bias point calculation (SKIPBP) Bun in resume mode Output File Options	
	OK Storno Použít Nápověda	

Obr. 4.2: Simulační profil pro připravený obvod ke kosimulaci

Obr. 4.3: Výsledek transientní analýzy připraveného obvodu

4.2 Použití modulu SLPS v programu Matlab

Spustí se program Matlab, pro zaručení spolupráce mezi programy se doporučuje verze programu Matlab R2007b nebo starší. Před vytvořením nového modelu je nezbytné, pokud tak již nebylo učiněno dříve, přidat do programu Matlab cestu do složky, kde je nainstalovaný modul SLPS. V menu *File* \rightarrow *Set Path...* \rightarrow *Add Folder...* se vyhledá složka $\langle tools \rangle pspice \langle slps \rangle$ a stiskne se tlačítko *Save*. Tím má program Matlab a tedy i Simulink přístup k modulu SLPS.

Pro vyvolání nabídky prvků, které je možné z knihovny SLPS vložit do Simulinku, je potřeba do okna *Command Window* v programu Matlab napsat text slpslib a dojde k otevření dvou oken, viz obr. 4.4. Nyní se otevře nový model z menu $File \rightarrow New... \rightarrow Model$. Do nově otevřeného modelu se vloží prvek SLPS viz obr. 4.4(a) tak, že se na něj klikne levým tlačítkem myši a držením se prvek přetáhne do nově otevřeného modelu. Příkazem slpslib v *Command Window* se otevře ještě okno se vzorovými příklady viz obr. 4.4(b). Dále je nutné přidat zdroj signálu a zobrazovač výsledků. Proto se z nabídky *Start* v programu Matlab viz obr. 4.5(a) otevře prohlížeč knihoven rozhraní Simulink. Z knihovny *Sources* se do otevřeného modelu vloží prvek *Repeating Sequence* viz obr. 4.5(b) a z knihovny *Sinks* se vloží prvek *Scope* viz obr. 4.5(c). Když jsou všechny tři prvky vloženy do otevřeného modelu, stačí je jednoduše pospojovat a to tak, že se najede myší na šipku vycházející z jednoho prvku aby se objevil křížek a kliknutím a podržením levého tlačítka myši se přetáhne až k šipce směřující do následujícího prvku, kde se tlačítko myši uvolní a dojde k propojení prvků v modelu. Vložením a propojením prvků v otevřeném modelu vznikne zapojení viz obr. 4.6.

(b) Otevřené okno se vzorovými příklady použití modulu SLPS

Obr. 4.4: Otevřená okna po provedení příkazu slpslib v Command Window

(a) Otevření knihovny prvků v Simulinku

(b) Knihovna se zdroji signálu

(c) Knihovna se zobrazovači výsledků a ukončením obvodů

Obr. 4.5: Otevřená okna po provedení příkazu slpslib v Command Window

Obr. 4.6: Hotový model ukázkového příkladu

Následuje nastavení všech potřebných údajů pro provedení simulace. Poklepáním na prvek Repeating Sequence se otevře okno, kde se nastaví hodnoty zdroje signálu podobně jako v OrCAD PSpice. Nastaví se hodnoty viz obr. 4.7. Dále poklepáním levým tlačítkem myši na prvek SLPS dojde k otevření nastavení tohoto prvku, který se nastaví viz obr. 4.8. Zde se vloží Project File s příponou .opj z adresáře, kde je projekt uložen. Je výhodné používat stejný adresář, ve kterém je uložený projekt i jako pracovní složku v programu Matlab. Dále se otevře soubor se simulačními daty PSpice Circuit File s příponou .cir. Musí se jednat o transientní analýzu, jinak program vypíše chybu. Jako poslední se vkládá zdroj signálu (musí souhlasit s programem OrCAD PSpice) a výstup, kde se bude zkoumat průběh (musí souhlasit s programem OrCAD PSpice). Vše se potvrdí tlačítkem Apply a poté se klikne na tlačítko Ok. Je nutné nastavit ještě parametry simulace v menu Simu $lation \rightarrow Configuration Parameters...$ Nastavení simulace se provede viz obr. 4.9. Když je vše nastaveno, spustí se simulace z menu Simulation \rightarrow Start. Výsledek simulace pomocí rozhraní Simulink byl převzat z manuálu k programu OrCAD PSpice a je na obr. 4.10. Při porovnání výsledku z progamu Matlab s výsledky z programu OrCAD PSpice viz obr. 4.3 je patrné, že průběhy jsou totožné.

📓 Source Block Parameters: Repeating Sequence	×
C Repeating table (mask) (link)	
Output a repeating sequence of numbers specified in a table of time-value pairs. Values of time should be monotonically increasing.	
Parameters	
Time values:	
[0 0.5e-6 0.5001e-6 1e-6 1.001e-6 10e-6]	
Output values:	
[005500]	
<u> </u>	

Obr. 4.7: Nastavení zdroje signálu

A SLPS Settings	
Project file:	C:\SPB_Data\slps_mosfet\slps_mosfet. Browse
PSpice Circuit file:	Open Project Translps.cir/SCHEMATIC1 Slps_tran.cir/SCHEMATIC1 Reload
Message :	Clear All
-	
Input Sources:	V1 <-Add V1
	Up Select
	Down
	Remove Clear All
Outputs:	V(OUT) <-Add V(OUT)
	Up Select
	Down
	Remove Clear All
Glob	oal Parameters Option Parameters
	OK Apply Cancel

Obr. 4.8: Nastavení prvku SLPS

 Simulation time 		
Start time: 0.0	Stop time: 3e-6	
Solver options		
Type: Fixed-step	Solver: discrete (no continuous states)	
Periodic sample time constraint:	Unconstrained 🛛 😪	
Fixed-step size (fundamental sample time):	1e-9	
Tasking mode for periodic sample times:	Auto 💌	
Automatically handle data transfers between tasks		
Higher priority value indicates higher ta	sk priority	

Obr. 4.9: Nastavení simulace v rozhraní Simulink

Obr. 4.10: Výsledek simulace provedené v rozhraní Simulink

Využití rozšířených analýz programu OrCAD PSpice

V této části práce jsou použity rozšířené typy analýz v programu OrCAD PSpice, popsané v kapitole Rozšířené analýzy v programu OrCAD PSpice, na konkrétních zapojeních a budou na nich demonstrovány jejich možnosti. Jako simulované obvody budou použity gramofonové předzesilovače s kmitočtovou korekcí záznamové charakteristiky, výkonový zesilovač pro sluchátka a jiné. Tato kapitola se nezabývá však jen rozšířenými typy analýz, ale například i ukázkou výpočtu harmonického zkreslení nebo určením stability zesilovače pomocí programu OrCAD PSpice. Je nutné na úvod této kapitoly zmínit, že všechny obvody, které budou analyzovány pomocí rozšířených analýz musí být sestaveny z prvků, které umožňují jejich použití při rozšířených analýzách, jak bylo již uvedeno v kapitole zabývající se popisem rozšířených analýz.

5.1 Analýza gramofonového předzesilovače s kmitočtovou korekcí záznamové charakteristiky

Při této analýze budou analyzovány celkem čtyři gramofonové předzesilovače. Dva se zpětnovazební kmitočtovou korekcí záznamové charakteristiky a dva s pasivní kmitočtovou korekcí záznamové charakteristiky. Oba dva typy kmitočtové korekce budou navíc simulovány s časovými konstantami pro historické (standard) a stereo gramofonové desky. Na zesilovačích bude ukázáno použití citlivostní analýzy, optimalizace a analýzy výtěžnosti výroby. Kromě rozšířených analýz budou určeny i vstupní a výstupní impedance a bude provedena šumová analýza.

5.1.1 Gramofonový předzesilovač se zpětnovazební kmitočtovou korekcí záznamové charakteristiky pro historické gramofonové desky

Tento typ gramofonového předzesilovače využívá zpětnovazební kmitočtovou korekci záznamové charakteristiky. Předzesilovač je osazen kvalitními operačními zesilovači OP-27, které se velmi často používají v audio technice. Schéma zapojení simulovaného obvodu je na obr. 5.1. Ve schématu je v sérii se zdrojem V3 rezistor R8, který respektuje impedanci přenosky, ale chybí zde ještě sériová indukčnost přenosky 450 mH. Indukčnost se negativně projevovala při výpočtu šumů. Indukčnost je ve skutečnosti součástí zdroje signálu, ale při simulaci je indukčnost v sérii se zdrojem signálu a rezistorem a použitý algoritmus jí uvažuje při výpočtu jako součást předzesilovače, nikoliv zdroje. Korekční člen složený z prvků obvodu R1, R2, C1 a C2 je nastaven tak, aby časové konstanty článku odpovídaly časovým konstantám historických gramofonových desek. Záznamová charakteristika historických gramofonových desek je dána rov. 5.1 a korekční charakteristika je určena korekčním článkem je inverzní k záznamové charakteristice a je popsána rov. 5.2. Ve schématu je ještě tzv. rumble filtr pro potlačení podakustického pásma. Tento filtr je připojen za druhý stupeň předzesilovače a je určen časovou konstantou 7950 μ s. Ve schématu je tento filtr představován prvky C4 a R5, ale tento filtr není při simulacích uvažován z důvodu snažší optimalizace přenosové funkce a použije se až při určování impedancí. Ve schématu jsou i dva bloky modelující přenosovou funkci, které představují referenční korekční křivku určenou jejich přenosem a na tyto bloky navazují obvody s definovaným ziskem.

$$L = 10\log(1 + 4\pi^2\tau_1^2 f^2) - 10\log\left(1 + \frac{1}{4\pi^2\tau_2^2 f^2}\right) + 10\log\left(1 + \frac{1}{4\pi^2\tau_3^2 f^2}\right)$$
(5.1)

Kde:

 $L \dots$ je relativní úroveň hladiny záznamu [dB]

 $f \dots je$ frekvence [Hz]

 τ_1 ... je časová konstanta 50 $\mu \mathrm{s}~(3183\,\mathrm{Hz})$

 $\tau_2 \dots$ je časová konstanta 450 μ s (354 Hz)

 $\tau_3 \dots$ je časová konstanta 3180 µs (50 Hz)

$$L = 10\log\left(1 + \frac{1}{4\pi^2\tau_2^2 f^2}\right) - 10\log(1 + 4\pi^2\tau_1^2 f^2) - 10\log\left(1 + \frac{1}{4\pi^2\tau_3^2 f^2}\right)$$
(5.2)

Kde:

 $L \dots$ je relativní hodnota záznamové rychlosti [dB]

Tento gramofonový předzesilovač je navržen pro gramofonovou přenosku Ortofon OM 78. Gramofonová přenoska má výstupní napětí při 1 kHz (rychlost 5 cm/s) 4 mV. Požadavek na předzesilovač je takový, aby na jeho výstupu při 1 kHz bylo napětí 1,25 V při rychlosti záznamu rychlost 5 cm/s. Z toho vyplývá požadavek na celkový zisk zapojení,

Obr. 5.1: Schéma zapojení gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky pro historické gramofonové desky

který je dán rov. 5.3. Tento zisk je rozdělen do dvou stupňů předzesilovač s ohledem na výpočet hodnot součástek korekčního článku. Pro výpočet zisku prvního článku se zvolí hodnota rezistoru R3 = 100 Ω a hodnota druhého rezistoru R1, který má vliv na zesílení prvního stupně se také zvolí s ohledem na výpočet hodnot korekčního článku, R1 = 75 $k\Omega$. Zesílení prvního stupně je dáno rov. 5.4. Potřebného zisku celého zapojení je dosaženo ve druhém stupni zesilovače, kde je nastaveno potřebné zesílení dle rov. 5.5. Z rov. 5.5 se dopočítá hodnota rezistoru R7 při volbě R6 = 2 $k\Omega$ dle rov. 5.6. Vypočítaná hodnota rezistoru R7 bude později při optimalizaci nahrazena existující hodnotou.

$$G = \frac{U_{OUT}}{U_{IN}} = \frac{1,25}{4} = 321,5 \qquad [-]$$
(5.3)

Kde:

 U_{OUT} ... je napětí na výstupu zesilovače [V] U_{IN} ... je napětí z přenosky [mV]

$$G_1 = 0,1416\left(1 + \frac{R_1}{R_3}\right) = 0,1416\left(1 + \frac{75000}{100}\right) = 106,3416 \qquad [-] \tag{5.4}$$

Kde:

0.1416 ... představuje zesílení korekčního článku na 1 kHz

$$G_2 = \frac{G}{G_1} = \left(1 + \frac{R_7}{R_6}\right) \Rightarrow \frac{R_7}{R_6} = G_2 - 1 = 2,938 - 1 = 1,938 \qquad [-] \qquad (5.5)$$

$$R_2 = G_2 \cdot R_6 = 1,938 \cdot 2000 = 3,876 \, k\Omega \tag{5.6}$$

Po vypočítání hodnot potřebných pro dosažení požadovaného zisku celého zapojení je třeba vypočítat hodnoty korekčního článku. Výpočet se provádí pro historické gramofonové desky a tedy s odpovídajícími časovými konstantami záznamové charakteristiky. Při výpočtu kondenzátoru C2 se vychází z rov. 5.7 a zvolí se hodnota rezistoru R1 = 75 $k\Omega$. Dále se určí velikost rezistoru R2. Vychází se z rov. 5.8, kam se dosadí vypočtená hodnota kondenzátoru C2 z rov. 5.7. Jako poslední se určí velikost kondenzátoru C1. Vychází se z rov. 5.9, kam se dosadí vypočítaná hodnota rezistoru R2 z rov. 5.8

$$C_2 R_1 = \frac{\tau_1 \tau_3}{\tau_2} \Rightarrow C_2 = \frac{\tau_1 \tau_3}{\tau_2 R_1} = 4,711 \cdot 10^{-9} F$$
(5.7)

$$C_2 R_2 = \frac{\tau_1 \tau_2 \tau_3}{(\tau_1 - \tau_2)(\tau_2 - \tau_3)} \Rightarrow R_2 = \frac{\tau_1 \tau_2 \tau_3}{(\tau_1 - \tau_2)(\tau_2 - \tau_3)C_2} = 13908, 295\,\Omega \tag{5.8}$$

$$C_1 R_2 = \tau_2 \Rightarrow C_1 = \frac{\tau_2}{R_2} = 32, 3 \cdot 10^9 F$$
 (5.9)

Kde:

 $\tau_1 \dots$ je časová konstanta 50 μ s (3183 Hz)

 $\tau_2 \dots$ je časová konstanta 450 $\mu \mathrm{s}~(354\,\mathrm{Hz})$

 $\tau_3 \dots$ je časová konstanta 3180 µs (50 Hz)

Pro obvod předzesilovače je nutné ještě navrhnout tzv. rumble filtr, který omezuje podakustické pásmo, kdy se nepříznivě projevuje hlukové pozadí pohonného mechanismu gramofonu s kmitočty do 20 Hz. Toto hlukové pozadí může dosahovat úrovně 15 - 20 dB nad šumovým pozadím. Jedná se o RC filtr typu horní propust s $f_d = 18-25 Hz$. Hodnoty součástek filtru se vypočítají podle rov. 5.10, kdy se opět jeden z prvků filtru volí a druhý se dopočítá. V tomto případě byl zvolen kondenzátor C4 = 470 nF. Při použití tohoto filtru je nezbytné použít na výstupu předzesilovače impedanční konvertor v podobě napěťového sledovače z důvodu velkého ovlivnění výstupní impedance rumble filtrem.

$$\tau_4 = C_4 R_5 \Rightarrow R_5 = \frac{\tau_4}{C_4} = 16914, 89\,\Omega$$
 (5.10)

Kde:

 $\tau_4 \dots$ je časová konstanta rumble filtru 7950 µs (20 Hz)

Když je obvod připravený, je možné začít gramofonový předzesilovač analyzovat. Je třeba vytvořit simulační profil viz obr. 5.2, kde se rovnou nastaví i hodnoty pro šumovou analýzu. Nastavení pro šumovou analýzu se provede zaškrtnutím políčka *Enable* v části okna pro nastavení simulačního profilu *Noise Analysis* a vyplněním dle obr. 5.2. Nyní se spustí analýza a výsledek této analýzy je na obr. 5.3(a). Z výsledku je patrné, že se podařilo dosáhnou téměř požadovaného průběhu. Pro lepší představu, jak přesně je dosaženo požadovaného průběhu modulu přenosové funkce, se vykreslí rozdíl obou charakteristik viz obr. 5.3(b). Z tohoto grafu je vidět velikost odchylky modulu přenosové funkce od referenčního průběhu. Na svislé ose jsou hodnoty odchylky v [mdB]. Na obr. 5.3(c) je výsledek odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu po optimalizaci, která bude popsána dále.

Simulation Settings - ACzp	etnovazebni							
General Analysis Configura	tion Files Options Data Co	llection Probe Window						
Analysis type:	AC Sweep Type	<u>S</u> tart Frequency:	20					
Options:	Logarithmic	End Frequency:	20k					
General Settings Monte Carlo/Worst Case	Decade 💌	Points/ <u>D</u> ecade:	300					
Parametric Sweep	Noise Analysis							
Save Bias Point	Enabled Out	tput Voltage: V(out)						
Load Bias Point	١٨٧	Source: V3						
	Inte	erval:						
	Output File Options							
Include detailed bias point information for nonline- controlled sources and semiconductors (.OP)								
	ОК	Storno P <u>o</u> užít	Nápověda					

Obr. 5.2: AC simulační profil pro gramofonový předzesilovač se zpětnovazební kmitočtovou korekcí (historické gramofonové desky)

(b) Odchylka modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu před optimalizací

(c) Odchylka modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu po optimalizací

Obr. 5.3: Modul přenosové funkce gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí s odchylkou před a po optimalizaci (historické gramofonové desky)

Odsimulovaný obvod gramofonového předzesilovače pomocí základního typu analýzy se nyní začne simulovat pomocí rozšířených analýz. Jako první bude použita citlivostní analýza, kde se určí, které z prvků mají největší vliv na odchylku modulu přenosové funkce a tyto prvky budou dále předány optimalizačnímu nástroji. Spustí se tedy citlivostí analýza z menu $PSpice \rightarrow Advanced Analysis \rightarrow Sensitivity$. Je třeba definovat měřicí funkci, na kterou se bude zjišťovat citlivost prvků v obvodě. Funkce se definuje tak, že libovolně v okně Specification se klikne pravým tlačítkem myši a zvolí se položka Create New Measurement. Zobrazí se okno viz obr. 5.4 a zde se do políčka Measurement vepíše měřicí funkce max(abs(db(v(out))-db(v(ref)))). Tato měřicí funkce hledá maximální hodnotu odchylky modulu přenosové funkce gramofonového předzesilovače od referenční křivky. Absolutní hodnota zajistí, že se maximální hodnota hledá i pro zápornou hodnotu odchylky. Výsledek citlivostní analýzy je na obr. 5.5. Ve sloupcích MIN a MAX jsou hodnoty pro tzv. nejhorší případ kombinací hodnot prvků v rámci jejich tolerancí, které jsou nastaveny ve schématu pomocí tabulky VARIABLES, pro rezistory je RTOL% 5% a pro kondenzátory je CTOL% 10%. Těmito tolerancemi se udává rozsah povolených hodnot pro citlivostní analýzu. Hodnoty v těchto sloupcích jsou vzhledem k výsledku ve sloupci Original, který udává výsledek měřicí funkce pro jmenovité hodnoty bez uvažování tolerancí, velice zavádějící a je nejlepší je v tomto případě brát s velkou rezervou. Z výsledků je ihned patrné, na které prvky je definovaná měřicí funkce nejvíce citlivá. K optimalizaci budou tedy předány prvky R1, R2, R3, R6, R7, C1 a C2. Jedná se tedy pouze o prvky, které jsou buď součástí korekčního článku nebo se podílejí na zesílení signálu. Tyto prvky se vyberou Držením klávesy *ctrl* a postupným klikáním levým tlačítkem myši na vybrané prvky. Poté se klikne libovolně v okně *Parameters* pravým tlačítkem myši a zvolí se položka Send to Optimizer, čímž se zároveň otevře optimalizační nástroj.

New Measurement Profile: aczpetnovazebni.sim Simulation Output Variables * I(C1) I(C2) I(C3) I(C4) I(GAIN3) I(LAPLACE2) I(LAPLACE3) Measurement:	✓ Voltages ✓ Voltages ✓ Currents ✓ Power 105 items ✓ Full List ✓ Linctions or Macros Measurements ✓ Measurements ✓ Measurements ✓ Measurements ✓ Measurements ✓ Measurements ✓ Dank Bandwidth(1,db_level) Bandwidth_Bandpass_3dB(1) Bandwidth_Bandpass_3dB(1) Bandwidth_Bandpass_3dB(1) ConversionGain(1,2) Conv
	<u>OK</u> <u>C</u> ancel <u>H</u> elp

Obr. 5.4: Okno pro definování požadované měřicí funkce

Při optimalizaci gramofonového prředzesilovače bude použita metoda optimalizace pomocí cílů a omezení, neboť se podařilo velice přesně spočítat prvky korekčního článku

Parameters												
Com	ponent	Parameter	Original	@Min	@Max	Rel Sensitivity				Linear		
R3		VALUE	100	95	105	81.6968m				100		
C2		VALUE	4.7110n	4.2399n	5.1821n	79.5402m	97					
R6		VALUE	2k	1.9000k	2.1000k	56.5358m	69					
R1		VALUE	75k	71.2500k	78.7500k	8.6606m	10					
R7		VALUE	3.8760k	4.0698k	3.6822k	-5.9875m	7					
R2		VALUE	13.9080k	14.6034k	13.2126k	-1.5235m		1				
C3		VALUE	2e-010	220p	180p	-97.5055n				< MIN >		
R8		VALUE	750	787.5000	712.5000	-209.9052n		< MIN >				
R4		VALUE	47k	49.3500k	44.6500k	-221.4361n				< MIN >		
C1		VALUE	32.3000n	35.5300n	29.0700n	-230.0781u	< MIN >					
R5		VALUE	16.9100k	17.7555k	16.0645k	-236.2883n		< MIN >				
C4		VALUE	470n	470n	470n	0		0		0		
							////					
						Specifications						
• 0	n/Off	Profile		Measure	ement	Origin	inal	Min	Max			
٣	🖌 a	czpetnovazebni.si	im max(abs(db(v(out))-db(\	(ref))))	ef)))) 202.0215m 1			1.9515			
				Clic	k here to im	port a measurement	created	within PSpice.				

Obr. 5.5: Výsledek citlivostní analýzy gramofonového předzesilovače

a není potřeba používat metodu optimalizace pomocí zachycení na křivku. Ale pokud by tomu taky nebylo, byla by metoda optimalizace zachycením na křivku velice výhodná.

Jako první bude provedena optimalizace pomocí náhodného algoritmu (Random Engine), který určí počáteční nastavení hodnot pro další použitý algoritmus. Náhodný algoritmus se volí v horní části okna optimalizace. Před spuštěním optimalizace se definuje měřicí funkce max(abs(db(v(out))-db(v(ref)))) stejně jako u citlivostní analýzy a do sloupce Max se napíše hodnota maximální povolené odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu. Při citlivostní analýze byla maximální hodnota odchylky 202,0215 mdB v absolutní hodnotě a při optimalizaci bude snahou tuto odchylku ještě snížit alespoň na 150 mdB v absolutní hodnotě. Tato hodnota se napíše do sloupce Max. Nyní je možné spustit optimalizaci. Výsledek optimalizace je na obr. 5.6(a). Nyní se zvolí MLSQ algoritmus a opět se spustí optimalizace, jejíž výsledek je na obr. 5.6(b). Je vidět, že se pomocí totoho algoritmu podařilo najít takové hodnoty součástek, že odchylka modulu přenosové funkce gramofonového předzesilovače vyšla v absolutní hodnotě 115,3357 mdB. Jako poslední bude použit diskrétní algoritmus pro přiřazení reálně dostupných hodnot optimalizovaným prvkům obvodu. Zvolí se tedy diskrétní algoritmus a ve sloupci Discrete Table v okně Parameters se přidělí součástkám tabulky, ze kterých budou voleny dostupné hodnoty součástek. Pro rezistory bude použita tabulka s 1% rezistory a pro kondenzátory jediná dostupná tabulka. Poté je možné spustit optimaliazci pomocí diskrétního algoritmu a její výsledek je na obr. 5.6(c). Z výsledku je patrné, že použitím dostupných hodnot se nepodařilo dosáhnout požadované hodnoty odchylky modulu přenosové funkce, ale i tak je odchylka v absolutní hodnotě lepší, než před optimalizaci. Hodnoty, které optimalizační nástroj zvolil jako reálně dostupné, jsou převzaty z tabulky dostupných hodnot. Dá se předpokládat, že mnoho hodnot nebude možné vůbec sehnat a pro častější využití optimalizačního nástroje a konkrétně diskrétního algoritmu by bylo výhodné vytvořit si vlastní tabulky hodnot, například podle výrobních řad součástek. Nyní se hodnoty určené optimalizačním nástrojem změní ve schématu a provede se opět simulace, jejíž výsledek je na obr. 5.3(c).

Error Graph					Parameters [Next Run]									
		inter enapti		•		n/Off	Com.	Param	Original	Min	Max	Current		
2500)% .				× 🗸	6	R3	VALUE	100	10	1k	100		
	T I	6 7 9			× 🗸	6	C2	VALUE	4.7110n	471.1	47.1100n	4.7110n		
2000)%	7			× 🗸	6	R6	VALUE	2k	200	20k	2k		
1500	19/	$I \setminus I \setminus I \to X$			* 🔽	6	R1	VALUE	75k	7.5000k	750k	75k		
1000	1/0	4,9,7,1,7	74		* 🔽	6	R7	VALUE	3.8760k	387.6	38.7600k	3.8760k		
1000)%/	····\\//·····	{}			6	R2	VALUE	13.9080k	1.3908k	139.0800k	13.9080k		
500	I 🗭	∐ ¥ I I I	- <u>b</u>	¥		6	C1	VALUE	32.3000n	3.2300n	323n	32.3000n		
500	1%			Click here to import a parameter from the design property map									_	
1)% / 		<u> </u>											
	01	2345678	910 N			<u>, in star</u>								
		Run Number												
Standa	rd 🗎 🔛 🤇	Curve Fit							<u> </u>	••••••••••				
					:	Specific	ations	Next Run]	I					
•	0n/0ff	Profile	Measuren	nent		Min	1	Aax	Original	0	urrent	Error		
7		aczpetnovazebni.sim	nax(abs(db(v(out	t))-db				150m	202.021	5m	202.0215m	34.6810%		$\overline{\mathcal{T}}$
				Click h	ere to i	mport a	measure	ment creat	ed within PS	pice	·····			
														\square
								and the second sec						

(a) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí náhodného algoritmu

(b) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí MLSQ algoritmu

(c) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí diskrétního algoritmu

Obr. 5.6: Optimalizace modulu přenosové funkce gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky)

Další rozšířená analýza, která bude použita na gramofonový předzesilovač s korekcí záznamové charakteristiky je analýza výtěžnosti výroby (Monte Carlo). Při této analýze se bude určovat závislost velikosti odchylky modulu přenosové funkce gramofonového předzesilovače v závislosti na výrobních tolerancích součástek. Před zahájením analýzy je třeba upravit tolerance u kritických prvků. Kritické prvky byly určeny již při citlivostní analýze a tak se u rezistorů R1, R2, R3, R6 a R7 změní tolerance z globálně nastavených 5% pomocí tabulky VARIABLES na 1%. Tolerance se změní tak, že se dvojklikem na požadovanou součástku otevře okno s jejími vlastnostmi a změní se hodnota v položce POSTOL z hodnoty RTOL% na hodnotu 1%. Tento postup se provede u všech výše zmíněných rezistorů. Tolerance kondenzátorů zůstanou stejné, tedy 10%. Když jsou nastaveny požadované hodnoty tolerancí, spustí se analýza výtěžnosti výroby z menu PSpice \rightarrow Advanced Analysis \rightarrow Monte Carlo. Je třeba opět vytvořit měřicí funkci, stejně jako u předchozích dvou typů analýz a případně pozměnit základní nastavení analýzy. Toto nastavení je v menu $Edit \rightarrow Profile \; Settings \rightarrow Monte \; Carlo$ a zde je možné nastavit počet běhů analýzy a jiné. V tomto případě se nastaví pouze počet běhů programu na 100 (Number of Runs) a počet úseků, na které se rozdělí celý interval, na kterém bude analýza provedena na 20 úseků (Number of Bins). Nyní je možné spustit analýzu a její výsledky jsou na obr. 5.7(a) a 5.7(b). Z obr. 5.7(a) je dobře vidět, že nejčastější velikost odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu je 550 až 600 mdB a to celkem ve 12 bězích analýzy. V okně Statistical Information je ve sloupci Mean střední hodnota odchylky ze všech běhů programu a ve sloupcích Cursor Min a Cursor Max jsou minimální a maximální velikosti odchylky.

(a) Histogram rozložení hustoty pravděpodobnosti odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu

(b) Kumulativní distribuční graf odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu

Obr. 5.7: Analýza výtěžnosti výroby v závislosti na velikosti odchylky modulu přenosové funkce gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky) od referenčního průběhu

Jako další typ analýzy bude provedena šumová analýza. Tato analýza již nepatří do rozšířených analýz, ale je velice užitečná k získání informací o šumových vlastnostech simulovaného obvodu, konkrétně v tomto případě gramofonového předzesilovače se zpětnovazební korekcí záznamové charakteristiky. Na obr. 5.2 je simulační profil pro AC analýzu i s nastavením pro šumovou analýzu. Pokud je tedy simulační profil nastaven, spustí se analýza a výsledek šumové analýzy je na obr. 5.8. Výsledkem analýzy jsou celkem 4 křívky. Graf sqrt(s(ntot(onoise))) je efektivní hodnota šumového napětí na výstupu zesilovače. Graf v(onoise) je hustota efektivní hodnoty šumového napětí na výstupu zesilovače. Graf v(inoise) je hustota efektivní hodnoty šumového napětí přepočtená na vstup (ekvivalentní vstupní šum). Graf Noise_Figure udává velikost šumového čísla celého zapojení ve zvoleném frekvenčním pásmu a je dán vzorcem 10*log10(S(v(inoise)*v(inoise))/S(1.243181738e-17)). Hodnota 1.24318738e-17 odpovídá velikosti tepelného šumu, kterým šumí rezistor R8 na vstupu zesilovače a je dán rov. 5.11.

$$\frac{\bar{u}_{Rn}^2}{R} = 4kT\Delta f = 1,657 \cdot 10^{-20} \qquad [W] \tag{5.11}$$

Kde:

 u_{Rn}^2 ... je spektrální hustota šumu rezistoru $\left[\frac{V^2}{Hz}\right]$

R ... odpor zdroje signálu, v tomto případě $750 \,\dot{\Omega}$

 $k \dots$ Boltzmannova konstanta 1,38 · 10⁻²³ $\frac{J}{K}$

T ... teplota rezistoru v [K]

 Δf ...šířka pásma, pro kterou byl výpočet proveden, zde 1 Hz

Po úpravě rovnice se získá konstanta 1,243181738 · 10^{-19} .

Obr. 5.8: Výsledek šumové analýzy gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky)

Vstupní a výstupní impedance gramofonového předzesilovače je dalším ze sledovaných parametrů tohoto zapojení. Vstupní impedance se určuje v závislosti na velikosti zatěžovacího rezistoru a kondenzátoru gramofonové přenosky. Ve schématu jsou tyto zatěžovací prvky reprezentovány rezistorem R4 a kondenzátorem C3. Hodnoty obou prvků budou rozmítány jako parametr a jejich velikosti budou odpovídat velikostem povolených hodnot zatěžovací impedance gramofonové přenosky Ortofon OM78. Pro kondenzátor to budou hodnoty 170 pF, 270 pF, 370 pF, 470 pF, 570 pF a pro rezistor to budou hodnoty $47 \text{ k}\Omega$ a 100 k Ω . K nastavení proměnných hodnot prvků by bylo možné použít další modul z rozšířených analýz a to Parametric Plotter, ale tento jednoduchý příklad nevyžaduje jeho použití. K nastavení proměnného parametru se použije součástka PARAMETERS, kam se jako nový řádek přidá název a základní hodnota proměnného parametru, např. $Cw = 170 \, pF$, který bude rozmítán. Poté se název proměnného parametru, který je uveden v součástce PARAMETERS, napíše do složených závorek jako hodnota prvku, např. {Cw}, který bude rozmítán. Je potřeba rozmítání zapnout ještě v nastavení profilu, což se provede dle obr. 5.9 a poté se spustí samotná AC analýza, která je již od začátku nastavená. Výsledek AC analýzy s rozmítáním zatěžovací kapacity C3 je na obr. 5.10. Kromě velikosti vstupní impedance gramofonového předzesilovače (v(in)/-i(v3) je v grafu zobrazena i fáze vstupní impedance p((v(in)/-i(v3))), ze které jasně vyplývá, že se vzrůstající frekvencí se stále více projevuje impedance kondenzátoru C3 a vstupní impedance mění charakter z čistě reálné impedance na komplexní s kapacitní složkou. Tento výsledek je proveden pro velikost zatěžovacího rezistoru $47 \text{ k}\Omega$, pro hodnotu $100 \text{ k}\Omega$ je výsledek totožný, jen se dle očekávání zvýší hodnota vstupní impedance ze $47 \,\mathrm{k\Omega}$ na $100 \,\mathrm{k\Omega}$.

Simulation Settings - ACzp	petnovazebni	×
General Analysis Configurat	tion Files Options Data Collection Probe Window	
Analysis type: AC Sweep/Noise Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep)	Sweep variable Voltage source Name: Qurrent source Model type: Global parameter Model name: Model parameter Model name: Image:	
Save Bias Point	Sweep type Start value: Linear End value: Logarithmic Decade Increment: Increment:	
	⊙ Value list 170p 270p 370p 470p 570p	
	OK Storno P <u>o</u> užít Nápov	ěda

Obr. 5.9: Nastavení rozmítání velikosti kondenzátoru C3

Pro měření výstupní impedance je třeba umístit zdroj signálu V3 a s ním i sériový rezistor R8 na výstup celého zapojení za rumble filtr, který bude při měření výstupní

Obr. 5.10: Velikost vstupní impedance gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky v závislosti na kmitočtu (zelený průběh C3 = 170 pF)

impedance již uvažován. Část schéma zapojení, konkrétně rumble filtr, s připojeným zdrojem V3 a rezistorem R8 je na obr. 5.11(a) a na obr. 5.11(b) je k výstupu připojen ještě napěťový sledovač jako impedanční konvertor. Nyní je možné spustit simulaci pouze s připojeným rumble filtrem. Výsledek analýzy výstupní impedance gramofonového předzesilovače s připojeným rumble filtrem je na obr. 5.12(a). Nyní se provede stejná simulace, jen se mezi rumble filtr napěťový zdroj V3 připojí impedanční konvertor a spustí se simulace. Výsledek této simulace je na obr. 5.12(b). Z výsledků je jasně patrný vliv impedančního konvertoru. Bez připojeného impedančního konvertoru je výstupní impedance velice závislá impedanci rumble filtru a pokud by nebyl zařazen impedanční konvertor, tak připojením impedance by docházelo k přelaďování zlomového kmitočtu rumble filtru, stejně jako při připojení kabelů, které mají svůj odpor a kapacitu. V grafech jsou opět vyneseny i fáze výstupní impedance, kde je vidět, že ani výstupní impedance nemá čistě reálný charakter, ale od vyšších kmitočtů se začíná měnit charakter výstupní impedance na komplexní.

(a) Schéma pro mě(b) Schéma pro měření výstupní
ření výstupní impeimpedance s připojeným impedance za rumble fildančním konvertorem
trem

Obr. 5.11: Schémata pro měření výstupní impedance gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky

(a) Průběh výstupní impedance gramofonového předzesilovače bez připojeného impedančního konvertoru

- (b) Průběh výstupní impedance gramofonového předzesilovače s připojeným impedančním konvertorem
- **Obr. 5.12:** Závislost velikosti výstupní impedance a fáze gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky
Schéma zapojení gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky viz obr. 5.1 je možné upravit přidáním tzv. DC serva. Tato úprava je na obr. 5.13. Obvod se doplní o další operační zesilovač a několik diskrétních součástek. Účel této úpravy je omezení stejnosměrného offsetu (posuv nulové hodnoty výstupního průběhu), který vzniká v důsledku klidových proudů tekoucích ze vstupů operačních zesilovačů v klidovém stavu. Tyto klidové proudy jsou operačním zesilovačem zesilováce, podle typu operačního zesilovače, různě velké napětí vytvářející stejnosměrný offset. Zapojení DC serva do zpětné vazby převádí stejnosměrné napětí z výstupu operačního zesilovače na jeho vstup v opačném směru, a tím dochází k omezení stejnosměrného offsetu u neinvertujícího zapojení DC serva z obr. 5.13 slouží pro potlačení stejnosměrného offsetu u neinvertujícího zapojení operačního zesilovače. Pro invertující zapojení operačního zesilovače se použije schéma zapojení dle obr. 5.14. Diody D1 a D2 slouží k zamezení saturace operačního zesilovače a je možné je vynechat.

Obr. 5.13: Schéma zapojení gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky) a připojeným DC servem

Obr. 5.14: Ukázka zapojení DC serva do obvodu invertujícího zapojení operačního zesilovače

Při stejnosměrné analýze zapojení gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky bez DC serva byl na výstupu prvního stupně předzesilovače stejnosměrný offset -444 mV a na výstupu druhého stupně před rumble filtrem -1,314 V. Po připojení DC serva klesl stejnosměrný offset na výstupu prvního stupně na -448,5 nV a na výstupu druhého stupně na 38,64 μ V. Z výsledků je patrné výrazné zlepšení stejnosměrných offsetů obou stupňů a použitím DC serva je možné dosáhnout výrazného zlepšení vlastností simulovaného obvodu.

Použitím DC serva dojde k mírnému poničení kmitočtové korekce na nízkých kmitočtech viz obr. 5.15, ale tato deformace nastává na podakustickém pásmu a nijak tato deformace kmitočtové korekce neovlivní funkce celého gramofonového předzesilovače.

Přidáním stejnosměrného napětí na vstup gramofonového předzesilovače a spuštění DC analýzy bylo zjištěno, že DC servo v tomto zapojení účinné do $\pm 15 \,\mathrm{mV}$ vstupního stejnosměrného napětí viz obr. 5.16. Velikost vstupního stejnosměrného napětí, které je servo schopné kompenzovat, je velice závislé na typu použitého operačního zesilovače a velikosti klidových proudů.

Obr. 5.15: Deformace kmitočtové korekční charakteristiky vlivem DC serva

Obr. 5.16: Závislost potlačení stejnosměrného offsetu DC servem na velikosti stejnosměrného napětí na vstupu operačního zesilovače

DC servo není vždy možné umístit libovolně do obvodu, ale doporučuje se umisťovat DC servo k operačnímu zesilovači, který má největší zisk.

Místo použití DC serva je možné mezi jednotlivé stupně vložit oddělovací kondenzátor, který nepropustí stejnosměrnou složku signálu, ale tento způsob oddělení stupňů obvodu není možné použít vždy, například u operačních zesilovačů FET tranzistory na vstupu.

5.1.2 Gramofonový předzesilovač se zpětnovazební kmitočtovou korekcí záznamové charakteristiky pro stereo desky

Toto zapojení je totožné se zapojením simulovaným ve výše zmíněném příkladě s rozdílem v nastavení kmitočtového korekčního článku, které odpovídá časovým konstantám pro typ stereo gramofonových desek. Z tohoto důvodu bude popis simulace tohoto zapojení velice zestručněn a budou provedeny jen simulace, u kterých se předpokládá rozdílný výsledek než v předchozím příkladu. Bude provedena optimalizace modulu přenosové funkce, analýza výtěžnosti výroby a šumová analýza.

Schéma analyzovaného obvodu je na obr. 5.1. Schéma se liší pouze v hodnotách prvků korekčního článku, které musely být přepočítány pro jiné časové konstanty záznamové charakteristiky. Opět se zvolila velikost rezistoru $R1 = 75 k\Omega$ a ostatní hodnoty se dopočítaly. Velikost kondenzátoru C2 se určí dle rov. 5.12, velikost rezistoru R2 se určí podle rov. 5.13 a velikost kondenzátoru C1 se určí podle rov. 5.14.

$$C_2 R_1 = \frac{\tau_1 \tau_3}{\tau_2} \Rightarrow C_2 = \frac{\tau_1 \tau_3}{\tau_2 R_1} = 10 \cdot 10^{-9} F$$
(5.12)

$$C_2 R_2 = \frac{\tau_1 \tau_2 \tau_3}{(\tau_1 - \tau_2)(\tau_2 - \tau_3)} \Rightarrow R_2 = \frac{\tau_1 \tau_2 \tau_3}{(\tau_1 - \tau_2)(\tau_2 - \tau_3)C_2} = 10905, 34979\,\Omega \quad (5.13)$$

$$C_1 R_2 = \tau_2 \Rightarrow C_1 = \frac{\tau_2}{R_2} = 29,16 \cdot 10^9 F$$
 (5.14)

Kde:

 $\tau_1 \dots$ je časová konstanta 75 μ s (2122 Hz)

 $\tau_2 \dots$ je časová konstanta 318 µs (500 Hz)

 τ_3 ... je časová konstanta 3180 $\mu \mathrm{s}~(50\,\mathrm{Hz})$

K simulaci se použije totožný simulační profil, a proto když se upraví hodnoty součástek R1, R2, C1 a C2 je možné spustit simulaci. Výsledek simulace je na obr. 5.17(a). Z výsledku je patrné, že se podařilo dosáhnou téměř požadovaného průběhu. Pro lepší představu jak přesně je dosaženo požadovaného průběhu modulu přenosové funkce se vykreslí rozdíl obou charakteristik viz obr. 5.17(b). Z toho grafu je vidět velikost odchylky modulu přenosové funkce od referenčního průběhu, na svislé ose jsou hodnoty odchylky v [mdB]. Na obr. 5.17(c) je výsledek odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu po optimalizaci, která bude popsána dále.

(b) Odchylka modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu před optimalizací

(c) Odchylka modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu po optimalizací

Obr. 5.17: Modul přenosové funkce gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky)s odchylkou před a po optimalizaci Nyní se spustí citlivostní analýza z menu $PSpice \rightarrow Advanced Analysis \rightarrow Sensitivity$. Výsledek citlivostní analýzy je na obr. 5.18. Na základě výsledků citlivostní analýzy se pošlou k optimalizaci prvky R1, R2, R3, R6, R7, C1 a C2, které mají na odchylku modulu přenosové funkce největší vliv.

Component Parameter Original @Max Rel Sensitivity Linear R1 VALUE 75k 71.2500k 78.7500k 69.1776m 100 R7 VALUE 3.200k 3.7200k 4.1160k 57.1373m 82 R6 VALUE 3.200k 3.7200k 4.1160k 57.1373m 68 R2 VALUE 10.9054k 10.900k 47.5573m 68 R2 VALUE 10.9054k 10.3601k 11.4506k 46.3882m 67 C2 VALUE 100 9n 11n 27.5528m 39 R3 VALUE 100 10.5 95 -20.9597m 30 C1 VALUE 29.1600n 26.2440n 32.0760n 399.7733u 1 R4 VALUE 18.9100k 16.0645k 17.7555k 183.8656n < MIN > C3 VALUE 29.010 180 220.9189.3456n < MIN > C4 VALUE 750 712.5							Param	eters					
RI VALUE 75k 71.2500k 78.7500k 69.1776m 100 R7 VALUE 3.9200k 3.7240k 4.1160k 57.1373m 82 R6 VALUE 2k 2.1000k 1.9000k -47.573m 68 R2 VALUE 10.9054k 1.9000k -47.573m 68 R2 VALUE 100 9n 11n 27.5828m 33 R3 VALUE 100 9n 11n 27.5828m 33 R3 VALUE 100 105 95 -20.9597m 30 C1 VALUE 29.1600n 26.2440n 32.0760n 997.0733u 1 R4 VALUE 18.9100k 16.0645k 17.7555k 183.8656n < MIN > C3 VALUE 18.9100k 16.0645k 17.7555k 183.8656n < MIN > C3 VALUE 29.010 180p 220p 169.3456n < MIN > C4 VALUE 750 712.5000 787.5000 371.9187n < MIN > M	Co	mponent	Parameter	Original	@Min	@Max	Rel Sensitivi	ty			Linear		
R7 VÁLUE 3.9200k 3.7240k 4.1160k 57.1373m 62 R6 VÁLUE 2.k 2.1000k 1.9000k -47.5573m 68 R2 VÁLUE 10.9054k 10.3001k 11.4506k 46.3822m 67 C2 VÁLUE 10.9054k 10.3001k 11.4506k 46.3822m 67 C2 VÁLUE 100 9 11n 27.5828m 39 R3 VÁLUE 100 105 95 -20.9597m 30 C1 VÁLUE 29.1600n 26.2440n 32.0760n 997.0733u 1 R4 VÁLUE 44.8500k 49.3500k 339.1018n < MIN > R5 VÁLUE 16.90645k 17.7555k 183.8656n < MIN > C3 VÁLUE 16.9100k 16.0645k 17.7555k 183.9856n < MIN > C4 VÁLUE 470n 470n 0 0 0 R8 VÁLUE 750 712.5000 371.9187n < MIN > Specifications	R1		VALUE	75k	71.2500k	78.7500k	69.1776	im			100		
R6 VALUE 2k 2.1000k 1.9000k .47.5573m 68 R2 VALUE 10.904k 10.3601k 11.4506k 46.3882m 67 C2 VALUE 100 90 11 27.5628m 39 R3 VALUE 100 105 95 .20.9597m 30 C1 VALUE 100 105 95 .20.9597m 30 C1 VALUE 29.1600n 26.2440n 32.0760n 997.0733u 1 R4 VALUE 44.6500k 49.3500k 339.1018n < MIN > R5 VALUE 16.0645k 17.7555k 183.8666n < MIN > C3 VALUE 24.00 470n 470n 0 0 C4 VALUE 470n 470n 470n 0 0 R8 VALUE 750 712.5000 787.5000 371.9187n < MIN >	R7		VALUE	3.9200k	3.7240k	4.1160k	57.1373	Bm			82		
R2 VALUE 10.9054k 10.3601k 11.4508k 46.3862m 67 C2 VALUE 10n 9n 11n 27.59527m 39 R3 VALUE 100 105 95 -20.95927m 30 C1 VALUE 29.1600n 26.2440n 32.0760n 997.0733u 1 R4 VALUE 29.1600n 16.0454k 17.7555k 103.8656n < MIN > C3 VALUE 16.9100k 16.0454k 17.7555k 103.8656n < MIN > C3 VALUE 28-010 180.9 220.9 169.3456n < MIN > C4 VALUE 470n 470n 0 0 0 R8 VALUE 750 712.5000 787.5000 371.9187n < MIN > VALUE 750 712.5000 787.5000 371.9187n < MIN > VALUE 40.04(b((/vout))-db(//(ref))))) 142.3872m 1.1391 1.3904 V aczpetnonew.sim max(abs(db(//vout))-db(//(ref))))) 142.3872m 1.1391 1.3904 <	R6		VALUE	2k	2.1000k	1.9000k	-47.5573	Bm			68		
C2 VALUE 10n 9n 11n 27.5828m 39 R3 VALUE 100 105 95 -20.9597m 30 C1 VALUE 29.1600n 26.2440n 32.0760n 997.0733u 1 R4 VALUE 29.1600n 26.2440n 32.0760n 997.0733u 1 R4 VALUE 44.6500t 49.5500t 339.1018n < <min> C3 VALUE 16.9100t 16.0645t 17.7555t 183.8656n <<min> C3 VALUE 20-010 180p 220p 183.3456n <<min> C4 VALUE 470n 470n 0 0 0 R8 VALUE 750 712.5000 787.5000 371.9187n <<min> V VALUE 750 712.5000 787.5000 371.9187n <<min> V Monofff Profile Measurement Original Min Max V aczpetnonew.sim max(abs(db(V(out))-db(V(ref))))) 142.3872m 1.1391 1.3904 <td colspat<<="" td=""><td>R2</td><td></td><td>VALUE</td><td>10.9054k</td><td>10.3601k</td><td>11.4506k</td><td>46.3882</td><td>2m</td><td></td><td></td><td>67</td><td></td></td></min></min></min></min></min>	<td>R2</td> <td></td> <td>VALUE</td> <td>10.9054k</td> <td>10.3601k</td> <td>11.4506k</td> <td>46.3882</td> <td>2m</td> <td></td> <td></td> <td>67</td> <td></td>	R2		VALUE	10.9054k	10.3601k	11.4506k	46.3882	2m			67	
R3 VÁLUE 100 105 95 -20.9597m 30 C1 VÁLUE 29.1600n 26.2440n 32.0760n 997.0733u 1 R4 VALUE 29.1600n 26.2440n 32.0760n 997.0733u 1 R4 VALUE 16.0454k 17.7555k 183.8656n < MIN > C3 VALUE 22-010 180p 220p 169.3456n < MIN > C4 VALUE 24-010 180p 220p 169.3456n < MIN > C4 VALUE 750 712.5000 787.5000 371.9187n < MIN > R8 VALUE 750 712.5000 787.5000 371.9187n < MIN > VALUE 750 712.5000 787.5000 371.9187n < MIN > VALUE 750 712.5000 787.5000 371.9187n < MIN > V	C2		VALUE	10n	9n	11n	27.5828	8m)			39		
C1 VÁLUE 29.1600n 26.2440n 32.0760n 997.0733u 1 R4 VALUE 471 44.6500k 49.3500k 339.1018n < MIN > R5 VALUE 16.0645k 17.7555k 188.8666n < MIN > C3 VALUE 22-010 1809 2209 199.3456n < MIN > C4 VALUE 470n 470n 470n 0 0 R8 VALUE 750 712.5000 787.5000 371.9187n < MIN > Specifications Value 750 712.5000 787.5000 371.9187n < MIN > Value 760 12.5000 787.5000 371.9187n < MIN > Value 760 12.5000 787.5000 371.9187n < MIN > Value <td c<="" td=""><td>R3</td><td></td><td>VALUE</td><td>100</td><td>105</td><td>95</td><td>-20.9597</td><td>m</td><td></td><td></td><td>30</td><td></td></td>	<td>R3</td> <td></td> <td>VALUE</td> <td>100</td> <td>105</td> <td>95</td> <td>-20.9597</td> <td>m</td> <td></td> <td></td> <td>30</td> <td></td>	R3		VALUE	100	105	95	-20.9597	m			30	
R4 VÁLUE 47k 44.6500k 49.3500k 339.1018n	C1		VALUE	29.1600n	26.2440n	32.0760n	997.073	3ù			1		
R5 VALUE 16.9100k 16.0645k 17.7555k 183.8656n << <min> C3 VALUE 2e-010 180p 220p 189.3455n <<min> C4 VALUE 470n 470n 470n 0 0 R8 VALUE 750 712.5000 787.5000 371.9187n <<min> VALUE 750 712.5000 787.5000 371.9187n <<min> VALUE 750 712.5000 787.5000 371.9187n VALUE 750 712.5000 787.5000 371.9187n VALUE 750 712.5000 787.5000 371.9187n V VALUE 750 712.5000 787.5000 371.9187n V VALUE Measurement Value Min Max V aczpetnonew.sin max(abs(db(V(out))-db(V(ref))))) 142.3872m 1.1391 1.3904 V V</min></min></min></min>	R4		VALUE	47k	44.6500k	49.3500k	339.101	3n			< MIN >		
C3 VALUE 2e-010 180p 220p 189.3456n C4 VALUE 470n 470n 470n 0 0 0 R8 VALUE 750 712.5000 787.5000 371.9187n < <mmmm <="" td=""> <mmm <="" td=""> 0<</mmm></mmmm>	R5		VALUE	16.9100k	16.0645k	17.7555k	183.865	3n			< MIN >		
C4 VALUE 470n 470n 470n 0 0 R8 VALUE 750 712.5000 787.5000 371.9187n < <mi> <mi>> VALUE 750 712.5000 787.5000 371.9187n <mi> <mi>> VALUE 750 712.5000 787.5000 371.9187n <mi> <mi>> V On/Off Profile Measurement Original Min Max V aczpetnonew.sim max(abs(db(V(out))-db(V(ref))))) 142.3872m 1.1391 1.3904 Click here to import a measurement created within PSpice</mi></mi></mi></mi></mi></mi>	C3		VALUE	2e-010	180p	220p	169.345	Sn)			< MIN >		
R8 VALUE 750 712.5000 787.5000 371.9187n < MIN > VALUE 750 712.5000 787.5000 371.9187n < MIN > V V V V V V V V Max(abs(db(V(out))-db(V(ref))))) 142.3872m 1.1391 1.3904 V V Click here to import a measurement created within PSpice Click here to import a measurement created within PSpice	C4		VALUE	470n	470n	470n		0			0		
Image: Specifications	R8		VALUE	750	712.5000	787.5000	371.918	Zn			< MIN >		
Image: Second secon													
Image: Second													
V On/Off Profile Measurement Original Min Max V Image: Constraint of the state of the s													
Image: Profile Measurement Original Min Max Image: Profile max(abs(db(Y(out))-db(V(ref)))) 142.3872m 1.1391 1.3904 Image: Profile Click here to import a measurement created within PSpice Click here to import a measurement created within PSpice							Specific	ations					
	+	0n/0ff	Profile		Measure	ement	0	riginal	Min	Max			
Click here to import a measurement created within PSpice	7	🖌 a	czpetnonew.sim	max(abs(db(V(out))-db('	V(ref))))	<u></u>	42.3872m	1.1391	1.3904		1111111	
					(Click here to	import a measu	urement creat	ted within PSp	ice			
	\square	11111				//////	111111	//////	10000				
				····				····					

Obr. 5.18: Výsledek citlivostní analýzy gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky)

Po citlivostní analýze se spustí optimalizace. Opět se vytvoří stejná měřicí funkce jako v předchozím příkladě a z výsledků získaných při citlivostní analýze, kdy byla určena největší odchylka modulu přenosové funkce od referenčního průběhu 142,3872 mdB se zvolí cíl optimalizace 100 mdB ve sloupci Max v okně Specifications. Pokud je vše připravené, je možné spustit optimalizaci pomocí náhodného algoritmu. Výsledek je na obr. 5.19(a). Dále se spustí optimalizace pomocí MLSQ algoritmu a výsledek této optimalizace je na obr. 5.19(b). Z výsledků této optimalizace ve sloupci Current je dobře vidět, jak dobře se podařilo optimalizovat odchylku modulu přenosové funkce, kdy se odchylka snížila až na 54,9995 mdB v absolutní hodnotě. Následuje spuštění optimalizace pomocí diskrétního algoritmu, kdy se hodnoty vypočtené v předchozím kroku nahradí reálně dostupnými hodnotami součástek. Výsledek optimalizace pomocí diskrétního algoritmu je na obr. 5.19(c) a je vidět, že nahrazením vypočítaným hodnot součástek reálně dostupnými hodnotami součástek došlo k relativně výraznému zhoršení odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu. Odchylka s reálně dostupnými hodnotami součástek má hodnotu 522,0478 mdB v absolutní hodnotě, ale i tento výsledek je možné považovat za uspokojivý.

	Ŀ		⇒ ⊁		timizer	 Rando 	m			<u> </u>						
				Error Granh							Paran	neters [N	ext Run]			2
				Lifer oruph		•	0n	/Off	Com	Param	Original	Min	Max	Current		
				1 1 1 1 1 1		*		6	R1	VALUE	75k	7.5000k	750k	75k		
		3000	JU%	X	Λ Χ	- *	>	6	R7	VALUE	3.9200k	392	39.2000k	3.9200k		
		2500	0%		<u></u> ₩ <i>H</i> +++	- *	V	6	R6	VALUE	2k	200	20k	2k		
		2000	10%	$(\Lambda : \Lambda : I \Lambda I$	- M. I	*		6	R2	VALUE	10.9054k	1.0905k	109.0535k	10.9054k		
þ		1500		$\Lambda I \Lambda I \mathcal{X}$	φ (Image: A set of the set of the	6	C2	VALUE	10n	1n	100n	10n		
1		1500	10 % 7	W V			 Image: A set of the set of the	6	R3	VALUE	100	10	1k	100		
		1000	^{10%}		*****	*		6	C1	VALUE	29.1600n	2.9160n	291.6000n	29.1600n		
		500	10% 🖊 🕂		44 4					Click here	to import a p	arameter	from the des	ign property map.		
			0%		<u> </u>											
			0 1	234567	8910 N						<u> </u>					
				Run Number												
	_							(<u></u>		<u> </u>	-	hadaadaadaadaada	alahahahahahahahahahahaha		unden den de la Caracteria
1 1		Stand	ard 🛛 🔛	Curve Fit												
							Sp	ecific	ations [Next Run]						^
	1	•	0n/0ff	Profile	Measure	ment		Min	I N	/lax	Original	C	urrent	Error		
		7		aczpetnonew.sim	max(abs(db(V(o	ut))-d				100m	142.387	2m	142.3872m	42.3872%	///////////////////////////////////////	
						Click her	e to imp	oort a i	measure	ment creat	ed within PS	pice				
			/////			/////		///			//////	/////				
							111	<u></u>				/////				
								///								
	Ï						1///	///								

(a) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí náhodného algoritmu

(b) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí MLSQ algoritmu

(c) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí diskrétního algoritmu

Obr. 5.19: Optimalizace modulu přenosové funkce gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky) Další typ analýzy, která je použita při analýze gramofonového předzesilovače je analýza výtěžnosti výroby. Nastavení je stejné jako v předchozím příkladu. Bude tedy sledována závislost odchylky modulu přenosové funkce v závislosti na výrobních tolerancí. Opět se upraví tolerance nejvíce citlivých prvků v obvodu a spustí se analýza. Její výsledky jsou na obr. 5.20(a) a 5.20(b). Z obr. 5.20(a) je patrné, že nejčastější velikost odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu je okolo 500 mdB a to celkem v 19 bězích analýzy. V okně *Statistical Information* je ve sloupci *Mean* střední hodnota odchylky ze všech běhů programu a ve sloupcích *Cursor Min* a *Cursor Max* jsou minimální a maximální velikosti odchylky.

(a) Histogram rozložení hustoty pravděpodobnosti odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu

(b) Kumulativní distribuční graf odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu

Obr. 5.20: Analýza výtěžnosti výroby v závislosti na velikosti odchylky modulu přenosové funkce gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí zázna-mové charakteristiky (stereo gramofonové desky) od referenčního průběhu

Jako poslední typ analýzy je provedena šumová analýza. Výsledky této analýzy jsou na obr. 5.21. Výsledky šumové analýzy jsou téměř totožné s výsledky šumové analýzy provedená v předchozím příkladě.

Obr. 5.21: Výsledek šumové analýzy gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky)

Další analýzy, které byly provedeny v předchozím příkladu již provedeny nebyly.

5.1.3 Gramofonový předzesilovač s pasivní kmitočtovou korekcí záznamové charakteristiky pro historické desky

Tento typ gramofonového předzesilovače využívá pasivní kmitočtovou korekci záznamové charakteristiky. Předzesilovač je osazen kvalitními operačními zesilovači OP-27, které se velmi často používají v audio technice. Schéma zapojení simulovaného obvodu je na obr. 5.22. Ve schématu je v sérii se zdrojem V3 rezistor R9, který respektuje impedanci přenosky, ale chybí zde ještě sériový indukčnost přenosky 450 mH. Indukčnost se negativně projevovala při výpočtu šumů. Indukčnost je ve skutečnosti součástí zdroje signálu, ale při simulaci je indukčnost v sérii se zdrojem signálu a rezistorem a použitý algoritmus jí uvažuje při výpočtu jako součást předzesilovače, nikoliv zdroje. Korekční člen složený z prvků obvodu R1, R2, C1 a C2 je nastaven na typ historických gramofonových desek. Záznamová charakteristika historických gramofonových desek je dána rov. 5.1 a korekční charakteristika určena korekčním článkem je inverzní k záznamové charakteristice a je popsána rov. 5.2. Ve schématu je ještě tzv. rumble filtr pro potlačení podakustického pásma. Tento filtr je připojen za druhý stupeň předzesilovače a je určen časovou konstantou 7950 μ s. Ve schématu je tento filtr představován prvky C4 a R5, ale tento filtr není

při simulacích uvažován z důvodu snažší optimalizace přenosové funkce a použije se až při určování impedancí. Ve schématu jsou i dva bloky modelující přenosovou funkci, které představují referenční křivku určenou jejich přenosem a na tyto bloky navazují obvody s definovaným ziskem.

Obr. 5.22: Schéma zapojení gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky)

Tento gramofonový předzesilovač je navržen pro gramofonovou přenosku Ortofon OM 78. Gramofonová přenoska má výstupní napětí při 1 kHz (rychlost 5 cm/s) 4 mV. Požadavkem na předzesilovač je takový, aby na jeho výstupu při 1 kHz bylo napětí 1,25 V. Z tohoto požadavku vyplývá požadavek na celkový zisk zapojení, který je dán rov. 5.15. Tento zisk je rozdělen do dvou stupňů předzesilovače s ohledem na výpočet hodnot součástek korekčního článku. Pro výpočet zisku prvního článku se zvolí hodnota rezistoru R4 = 100 Ω a hodnota druhého rezistoru R3 se také zvolí, R3 = 6,8 k Ω . Zesílení prvního stupně je dáno rov. 5.16. Potřebného zisku celého zapojení je dosaženo ve druhém stupni zesilovače, kde je nastaveno potřebné zesílení dle rov. 5.17. Z rov. 5.17 se dopočítá hodnota rezistoru R6 při volbě R7 = 100 Ω dle rov. 5.18. Vypočítaná hodnota rezistoru R6 bude později při optimalizaci nahrazena existující hodnotou.

$$G = \frac{U_{OUT}}{U_{in}} = \frac{1,25}{0,004} = 312,5 \qquad [-]$$
(5.15)

Kde:

 U_{OUT} ... je napětí na výstupu zesilovače [V]

 U_{IN} ... je napětí z přenosky [V]

$$G_1 = 0,1416\left(1 + \frac{R_3}{R_4}\right) = 0,1416\left(1 + \frac{6800}{100}\right) = 9,7704 \quad [-] \quad (5.16)$$

Kde:

0.1416 ... představuje zesílení korekčního článku na 1 kHz

$$G_2 = \frac{G}{G_1} = \left(1 + \frac{R_6}{R_7}\right) \Rightarrow \frac{R_6}{R_7} = G_2 - 1 = 32,9055 - 1 = 31,9055 \qquad [-] \quad (5.17)$$

$$R_6 = G_2 \cdot R_6 = 31,9055 \cdot 100 = 3190,55 \,k\Omega \tag{5.18}$$

Ve schématu je použita zaokrouhlená hodnota rezistoru $R6 = 3.1 k\Omega$.

Po vypočítání hodnot potřebných, pro dosažení požadovaného zisku celého zapojení je třeba vypočítat hodnoty korekčního článku. Výpočet se provádí pro historické gramofonové desky a tedy s odpovídajícími časovými konstantami záznamové charakteristiky. Při výpočtu rezistoru R2 se vychází z rov. 5.19 a zvolí se hodnota kondenzátoru C2 = 470 nF. Dále se určí velikost kondenzátoru C1, vychází se z rov. 5.20 kam se dosadí vypočtená hodnota rezistoru R2 z rov. 5.19. Jako poslední se určí velikost rezistoru R1. Vychází se z rov. 5.21 kam se dosadí vypočítaná hodnota rezistoru R2 z rov. 5.8.

$$C_2 R_2 = \tau_2 \Rightarrow R_2 = \frac{\tau_2}{C_2} = 957,45\,\Omega$$
 (5.19)

$$C_1 R_2 = \frac{\tau_1 \tau_2 \tau_3}{(\tau_1 - \tau_2)(\tau_2 - \tau_3)} \Rightarrow C_1 = \frac{\tau_1 \tau_2 \tau_3}{(\tau_1 - \tau_2)(\tau_2 - \tau_3)R_2} = 68, 4 \cdot 10^{-9} F \quad (5.20)$$

$$C_1 R_1 = \frac{\tau_1 \tau_3}{\tau_2} \Rightarrow R_1 = \frac{\tau_1 \tau_3}{\tau_2 C_1} = 5163\,\Omega$$
 (5.21)

Kde:

 $\tau_1 \dots$ je časová konstanta 50 μ s (3183 Hz)

 $\tau_2 \dots$ je časová konstanta 450 µs (354 Hz)

 $\tau_3 \dots$ je časová konstanta 3180 μ s (50 Hz)

Pro obvod předzesilovače je nutné ještě navrhnout tzv. rumble filtr, který omezuje podakustické pásmo, kdy se nepříznivě projevuje hlukové pozadí pohonného mechanismu gramofonu kolem kmitočtu 8 Hz. Toto hlukové pozadí může dosahovat úrovně 15 - 20 dB. Jedná se o RC filtr typu horní propust s $f_d = 18 - 25 Hz$. Hodnoty součástek filtru se vypočítají podle rov. 5.22, kdy se opět jeden z prvků filtru volí a druhý se dopočítá. V tomto případě byl zvolen kondenzátor C4 = 680 nF. Při použití tohoto filtru je nezbytné použít na výstupu předzesilovače impedanční konvertor v podobě napěťového sledovače z důvodu velkého ovlivnění výstupní impedance rumble filtrem.

$$\tau_4 = C_4 R_8 \Rightarrow R_8 = \frac{\tau_4}{C_4} = 11692\,\Omega$$
(5.22)

Kde:

 τ_4 ... je časová konstanta rumble filtru 7950 $\mu \mathrm{s}~(20\,\mathrm{Hz})$

Když je obvod připravený, je možné začít gramofonový předzesilovač analyzovat. Je třeba vytvořit simulační profil viz obr. 5.23, kde se rovnou nastaví i hodnoty pro šumovou analýzu. Nastavení pro šumovou analýzu se provede zaškrtnutím políčka *Enable* v části okna pro nastavení simulačního profilu *Noise Analysis* a vyplněním dle obr. 5.23. Nyní se spustí analýza a výsledek této analýzy je na obr. 5.24(a). Z výsledku je patrné, že se podařilo dosáhnou téměř požadovaného průběhu. Pro lepší představu jak přesně je dosaženo požadovaného průběhu modulu přenosové funkce se vykreslí rozdíl obou charakteristik viz obr. 5.24(b). Z toho grafu je vidět velikost odchylky modulu přenosové funkce od referenčního průběhu, na svislé ose jsou hodnoty odchylky v [mdB]. Na obr. 5.24(c) je výsledek odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu po optimalizaci, která bude popsána dále.

Simulation Settings - ACpasi	vni		
Simulation Settings - ACpasi General Analysis Configuration Analysis type: AC Sweep/Noise Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep)	vni n Files Options Data Col AC Sweep Type Linear Logarithmic Decade V Noise Analysis V Enabled Out	ection Probe Window <u>Start Frequency:</u> <u>End Frequency:</u> Points/Decade: put Voltage: u(out)	20 20k 100
Save Bias Point	✓ Enabled Out I/⊻ Inte	out Voltage: v(out) Source: v3 rval:]]]
	Output File Options	as point information for no and semiconductors (.OF	onlinear ?)
	ОК	itorno P <u>o</u> užít	Nápověda

Obr. 5.23: AC simulační profil pro gramofonový předzesilovač s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky)

(a) Modul přenosové funkce gramofonového předzesilovače

(b) Odchylka modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu před optimalizací

(c) Odchylka modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu po optimalizací

Obr. 5.24: Modul přenosové funkce gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky) s odchylkou před a po optimalizaci

Odsimulovaný obvod gramofonového předzesilovače pomocí základního typu analýzy se nyní začne simulovat pomocí rozšířených analýz. Jako první bude použita citlivostní analýza, kde se určí, které z prvků mají největší vliv na odchylku modulu přenosové funkce a tyto prvky budou dále předány optimalizačnímu nástroji. Spustí se tedy citlivostní analýza z menu $PSpice \rightarrow Advanced Analysis \rightarrow Sensitivity$. Je třeba definovat měřicí funkci, na kterou se bude zjišťovat citlivost prvků v obvodě. Funkce se definuje tak, že libovolně v okně Specification se klikne pravým tlačítkem myši a zvolí se položka Create New Measurement. Zobrazí se okno viz obr. 5.25 a zde se do políčka Measurement vepíše měřicí funkce max(abs(db(v(out))-db(v(ref)))). Tato měřicí funkce hledá maximální hodnotu odchylky modulu přenosové funkce gramofonového předzesilovače od referenční křivky. Absolutní hodnota zajistí, že se maximální hodnota hledá i pro zápornou hodnotu odchylky. Výsledek citlivostní analýzy je na obr. 5.26. Ve sloupcích MIN a MAX jsou hodnoty pro tzv. nejhorší případ kombinací hodnot prvků v rámci jejich tolerancí, které jsou nastaveny ve schématu pomocí tabulky VARIABLES, pro rezistory je RTOL% 5% a pro kondenzátory je CTOL% 10%. Těmito tolerancemi se udává rozsah povolených hodnot pro citlivostní analýzu. Hodnoty v těchto sloupcích jsou vzhledem k výsledku ve sloupci Original, který udává výsledek měřicí funkce pro jmenovité hodnoty bez uvažování tolerancí, velice zavádějící a je nejlepší v tomto případě brát s velkou rezervou. Z výsledků je ihned patrné, na které prvky je definovaná měřicí funkce nejvíce citlivá. K optimalizaci budou tedy předány prvky R1, R2, R3, R4, R6, R7, C1 a C2. Jedná se tedy pouze o prvky, které jsou buď součástí korekčního článku nebo se podílejí na zesílení signálu. Tyto prvky se vyberou Držením klávesy *ctrl* a postupným klikáním levým tlačítkem myši na vybrané prvky. Poté se klikne libovolně v okně *Parameters* pravým tlačítkem myši a zvolí se položka Send to Optimizer, čímž se zároveň otevře optimalizační nástroj.

New Measurement Profile: aczpetnovazebni.sin Simulation Output Variables (C1) (C1) (C2) (C3) (C4) (GAIN2) I(GAIN3) I(LAPLACE2) I(LAPLACE3) Measurement:	✓ ✓ Voltages ✓ Cyrrents ✓ Power 105 items ✓ Full List ✓ List ✓ List ✓ List ✓ Linctions or Macros Measurements ✓ Measurements ✓ Measurements ✓ Measurements ✓ Measurements ✓ Measurements ✓ Measurements ✓ Measurements ✓ Measurements ✓ Linctions of Macros ✓ Measurements ✓ Measurements ✓ Linctions of Macros ✓ Measurements ✓ Meas
	<u> </u>

Obr. 5.25: Okno pro definování požadované měřicí funkce

Při optimalizaci gramofonového předzesilovače bude použita metoda optimalizace pomocí cílů a omezení, neboť se podařilo velice přesně spočítat prvky korekčního článku a

					Param	eters				
Componen	t Parameter	Original	@Min	@Max	Rel Sensitivi	ty			Linear	
र्ग 🦳	VALUE	5163	4.9048k	5.4211k	85.7183	Bm			100	
31	VALUE	68.4300n	61.5870n	75.2730n	83.3363	Bm	97			
२७	VALUE	100	95	105	82.7532	2m	96			
२४	VALUE	100	95	105	82.2741	m	95			
52	VALUE	470n	423n	517n	17.5782	2m)		20		
२३	VALUE	6.8000k	6.4600k	7.1400k	8.7004	lm)		10		
76	VALUE	3.1000k	2.9450k	3.2550k	7.2746	in 🛛			8	
72	VALUE	957.4500	1.0053k	909.5775	-1.7937	(m)			2	
२९	VALUE	750	712.5000	787.5000	297.103	7n			< MIN >	
C4	VALUE	680n	680n	680n		0			0	
२५	VALUE	47k	44.6500k	49.3500k	510.910	tn 🗌			< MIN >	
२८	VALUE	11.6920k	12.2766k	11.1074k	-1.585	3ù			< MIN >	
53	VALUE	1.7000e-010	153p	187p	180.856	2n			< MIN >	
								///////		ann
					Specific	ations				
• On/Off	Profile		Measure	ement	nent Origi		Min	Max		
* 🔽	acpasivni.sim	max(abs(db)	v(out))-db(v	/(ref))))	<u></u>	54.8293m	1.2662	1.3950		
			(Click here to	import a measu	urement creat	ted within PSpi	ice		

Obr. 5.26: Výsledek citlivostní analýzy gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky)

není potřeba používat metodu optimalizace pomocí zachycení na křivku. Ale pokud by tomu taky nebylo, byla by metoda optimalizace zachycením na křivku velice výhodná.

Jako první bude provedena optimalizace pomocí náhodného algoritmu (Random Engine), který určí počáteční nastavení hodnot pro další použitý algoritmus. Náhodný algoritmus se volí v horní části okna optimalizace. Před spuštěním optimalizace se definuje stejná měřicí funkce jako u citlivostní analýzy, funkce max(abs(db(v(out))-db(v(ref)))) a do sloupce Max se napíše hodnota maximální povolené odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu. Při citlivostní analýze byla maximální hodnota odchylky 154,8294 mdB v absolutní hodnotě a při optimalizaci bude snahou tuto odchylku ještě snížit a konkrétně alespoň na 100 mdB v absolutní hodnotě, tato hodnota se napíše do sloupce Max. Nyní je možné spustit optimalizaci. Výsledek optimalizace je na obr. 5.27(a). Nyní se zvolí MLSQ algoritmus a opět se spustí optimalizace jejíž výsledek je na obr. 5.27(b). Je vidět, že se pomocí tohoto algoritmu podařilo najít takové hodnoty součástek, kdy odchylka modulu přenosové funkce gramofonového předzesilovače vyšla v absolutní hodnotě 82,4203 mdB. Jako poslední bude použit diskrétní algoritmus pro přiřazení reálně dostupných hodnot optimalizovaným prvkům obvodu. Zvolí se tedy diskrétní algoritmus a ve sloupci Discrete Table v okně Parameters se přidělí součástkám tabulky, ze kterých budou voleny dostupné hodnoty součástek. Pro rezistory bude použita tabulka s 1% rezistory a pro kondenzátory jediná dostupná tabulka. Poté je možné spustit optimalizaci pomocí diskrétního algoritmu a její výsledek je na obr. 5.27(c). Z výsledku je patrné, že použitím dostupných hodnot se podařilo dosáhnout ještě hodnoty odchylky modulu přenosové funkce než byl požadavek, přesně 97,5456 mdB v absolutní hodnotě. Hodnoty, které optimalizační nástroj zvolil jako reálně dostupné jsou převzaty z tabulky dostupných hodnot. Dá se předpokládat, že mnoho hodnot nebude možné vůbec

sehnat a pro častější využití optimalizačního nástroje a konkrétně diskrétního algoritmu by bylo výhodné vytvořit si vlastní tabulky hodnot, například podle výrobních řad součástek. Nyní se hodnoty určené optimalizačním nástrojem změní ve schématu a provede se opět simulace, jejíž výsledek je na obr. 5.24(c).

			F	Fror Graph			Parameters [Next Run]										
				inor oruph			•	0n/0f	ff 🛛	Com	Param	Original	Min	Max	Current		
							٣	(<u>ه</u> ۲	श	VALUE	5163	516.3	51.6300k	5.1630k		
	60		Î.				*		6	21	VALUE	68.4300n	6.8430n	684.3000n	68.4300n		
	00	000 %		A			*	\[ି ଜ ାନ	२७	VALUE	100	10	1k	100		
				$+$ $+$ $+$ $I\Lambda$			٣		6 F	R4	VALUE	100	10	1k	100		
5	40	000%	1111	$\pm \pm $	en in in in in in in i		*	~ (6	22	VALUE	470n	47n	4.7000u	470n		
ā				兄 二 7 と			*	~ (ا ا	83	VALUE	6.8000k	680	68k	6.8000k		
	20	000%		(\. 呙 / - 7			*	~ (6 F	86	VALUE	3.1000k	310	31k	3.1000k		
			P	K K	4 - Q		*	~ (6 F	82	VALUE	957.4500	95.7450	9.5745k	957.4500		
											Click here	to import a p	arameter	from the desi	ign property map		
		0.0	Ó 1.	234567	8910 N												
							<u>)</u>										
				Run Number			<u> </u>	<u></u>	776	$\overline{}$							
] Stai	ndard	2	Curve Fit													
								Spec	ificat	tions [Next Run]						
	٠	On	/Off	Profile	Measure	ment		Mir	n	N	/lax	Original	0	urrent	Error		
•	7		10	acpasivni.sim	max(abs(db(v(o	ut))-db					100m	154.829	3m	154.8293m	54.8293%		
						Click	here t	o impor	t a me	easure	ment creat	ed within PS	pice				
						/////	////	////	<u> </u>		2000	(11111)	<u> </u>		////////		
		• • • • • • • • • • • • • • • • •			••••••			······	, and the second second					·····			
	<u></u>						(///				//////		<u></u>				

(a) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí náhodného algoritmu

(b) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí MLSQ algoritmu

(c) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí diskrétního algoritmu

Obr. 5.27: Optimalizace modulu přenosové funkce gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky)

Další rozšířená analýza, která bude použita na gramofonový předzesilovač s kmitočtovou korekcí záznamové charakteristiky je analýza výtěžnosti výroby (Monte Carlo). Při této analýze se bude určovat závislost velikosti odchylky modulu přenosové funkce gramofonového předzesilovače v závislosti na výrobních tolerancích součástek. Před zahájením analýzy je třeba upravit tolerance u kritických prvků. Kritické prvky byly určeny již při citlivostní analýze a tak se u rezistorů R1, R2, R3, R4, R6 a R7 změní tolerance z globálně nastavených 5% pomocí tabulky VARIABLES na 1%. Tolerance se změní tak, že se dvojklikem na požadovanou součástku otevře okno s jejími vlastnostmi a změní se hodnota v položce POSTOL z hodnoty RTOL% na hodnotu 1%. Tento postup se provede u všech výše zmíněných rezistorů. Tolerance kondenzátorů zůstanou stejné, tedy 10%. Když jsou nastaveny požadované hodnoty tolerancí, spustí se analýza výtěžnosti výroby z menu $PSpice \rightarrow Advanced Analysis \rightarrow Monte Carlo. Je třeba opět vytvořit$ měřicí funkci, stejně jako u předchozích dvou typů analýz a případně pozměnit základní nastavení analýzy. Toto nastavení je v menu $Edit \rightarrow Profile \; Settings \rightarrow Monte \; Carlo$ a zde je možné nastavit počet běhů analýzy a jiné. V tomto případě se nastaví pouze počet běhů programu na 100 (Number of Runs) a počet úseků, na které se rozdělí celý interval, na kterém bude analýza provedena na 20 úseků (Number of Bins). Nyní je možné spustit analýzu a její výsledky jsou na obr. 5.28(a) a 5.28(b). Z obr. 5.28(a) je dobře vidět, že nejčastější velikost odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu je 300 až 370 mdB a to celkem ve 12 bězích analýzy. V okně Statistical Information je ve sloupci Mean střední hodnota odchylky ze všech běhů programu a ve sloupcích Cursor Min a Cursor Max jsou minimální a maximální velikosti odchylky.

(a) Histogram rozložení hustoty pravděpodobnosti odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu

(b) Kumulativní distribuční graf odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu

Obr. 5.28: Analýza výtěžnosti výroby v závislosti na velikosti odchylky modulu přenosové funkce gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky) od referenčního průběhu

Jako další typ analýzy bude provedena šumová analýza. Tato analýza již nepatří do rozšířených analýz, ale je velice užitečná pro získání informací o šumových vlastnostech simulovaného obvodu. Konkrétně v tomto případě gramofonového předzesilovače se zpětnovazební kmitočtovou korekcí záznamové charakteristiky. Na obr. 5.23 je simulační profil pro AC analýzu i s nastavením pro šumovou analýzu. Pokud je tedy simulační profil nastaven, spustí se analýza a výsledek šumové analýzy je na obr. 5.29. Výsledkem analýzy jsou celkem 4 křivky. Graf sqrt(s(ntot(onoise))) je efektivní hodnota šumového napětí na výstupu zesilovače ve zvoleném frekvenčním pásmu. Graf v(onoise) je hustota efektivní hodnoty šumového napětí na výstupu zesilovače. Graf v(inoise) je hustota efektivní hodnoty šumového napětí přepočtená na vstup (ekvivalentní vstupní šum). Graf Noise_Figure udává velikost šumového čísla celého zapojení ve zvoleném frekvenčním pásmu a je dána vzorcem 10*log10(S(v(inoise)*v(inoise))/S(1.243181738e-17)). Hodnota 1.24318738e-17 odpovídá velikosti tepelného šumu, kterým šumí rezistor R9 na vstupu zesilovače a je dán rov. 5.23.

$$\frac{\bar{u}_{Rn}^2}{R} = 4kT\Delta f = 1,657 \cdot 10^{-20} \qquad [W]$$
(5.23)

Kde:

 u_{Rn}^2 ... je spektrální hustota šumu rezistoru $\left[\frac{V^2}{Hz}\right]$

- R ... odpor zdroje signálu, v tomto případě $750 \,\overline{\Omega}$
- $k \dots$ Boltzmannova konstanta 1,38 · 10⁻²³ $\frac{J}{K}$

T ... teplota rezistoru v [K]

 Δf ...šířka pásma, pro kterou byl výpočet proveden, zde 1 Hz

Pokud se R převede na druhou stranu rovnice, vyjde ona konstanta 1, 243181738 $\cdot 10^{-19}$.

Obr. 5.29: Výsledek šumové analýzy gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky)

Vstupní a výstupní impedance gramofonového předzesilovače je dalším ze sledovaných parametrů tohoto zapojení. Vstupní impedance se určuje v závislosti na velikosti zatěžovacího rezistoru a kondenzátoru gramofonové přenosky. Ve schématu jsou tyto zatěžovací prvky reprezentovány rezistorem R5 a kondenzátorem C3. Hodnoty obou prvků budou rozmítány jako parametr a jejich velikosti budou odpovídat velikostem povolených hodnot zatěžovací impedance gramofonové přenosky Ortofon OM78. Pro kondenzátor to budou hodnoty 170 pF, 270 pF, 370 pF, 470 pF, 570 pF a pro rezistor to budou hodnoty $47 \text{ k}\Omega$ a 100 kΩ. K nastavení proměnných hodnot prvků by bylo možné použít další modul z rozšířených analýz a to Parametric Plotter, ale tento jednoduchý příklad nevyžaduje jeho použití. K nastavení proměnného parametru se použije součástka PARAMETERS, kam se jako nový řádek přidá název a základní hodnota proměnného parametru, např. $Cw = 170 \, pF$, který bude rozmítán. Poté se název proměnného parametru, který je uveden v součástce PARAMETERS, napíše do složených závorek jako hodnota prvku, např. {Cw}, který bude rozmítán. Je potřeba rozmítání zapnout ještě v nastavení profilu, což se provede dle obr. 5.30 a poté se spustí samotná AC analýza, která je již od začátku nastavená. Výsledek AC analýzy s rozmítáním zatěžovací kapacity C3 je na obr. 5.31. Kromě velikosti vstupní impedance gramofonového předzesilovače (v(in)/-i(v3) je v grafu zobrazena i fáze vstupní impedance p((v(in)/-i(v3))), ze které jasně vyplývá, že se vzrůstající frekvencí se stále více projevuje impedance kondenzátoru C3 a vstupní impedance mění charakter z čistě reálné impedance na komplexní s kapacitní složkou. Tento výsledek je proveden pro velikost zatěžovacího rezistoru $R9 = 47 k\Omega$, pro hodnotu 100 k Ω je výsledek totožný, jen se dle očekávání zvýší hodnota vstupní impedance ze $47 \,\mathrm{k\Omega}$ na $100 \,\mathrm{k\Omega}$.

Simulation Settings - ACpa	asivni	×
General Analysis Configura	tion Files Options Data Collection Probe Window	
Analysis type: AC Sweep/Noise Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Sweep variable Voltage source Name: Qurrent source Model type: Global parameter Model type: Model parameter Model name: Iemperature Parameter name: Sweep type Start value: Linear End value: Logarithmic Decade	
	⊙ Value li <u>s</u> t 170p 270p 370p 470p 570p	
	OK Storno P <u>o</u> užít Nápově	da

Obr. 5.30: Nastavení rozmítání velikosti kondenzátoru C3

Obr. 5.31: Velikost vstupní impedance gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky) v závislosti na kmitočtu (zelený průběh $C3 = 170 \, pF$)

Pro měření výstupní impedance je třeba umístit zdroj signálu V3 a s ním i sériový rezistor R9 na výstup celého zapojení za rumble filtr, který bude při měření výstupní impedance již uvažován. Část schéma zapojení, konkrétně rumble filtr, s připojeným zdrojem V3 a rezistorem R9 je na obr. 5.32(a) a na obr. 5.32(b) je k výstupu připojen ještě napěťový sledovač jako impedanční konvertor. Nyní je možné spustit simulaci pouze s připojeným rumble filtrem. Výsledek analýzy výstupní impedance gramofonového předzesilovače s připojeným rumble filtrem je na obr. 5.33(a). Nyní se provede stejná simulace, jen se mezi rumble filtr a napěťový zdroj připojí impedanční konvertor a spustí se simulace, výsledek simulace je na obr. 5.33(b). Z výsledků je jasně patrný vliv impedančního konvertoru. Bez připojeného impedančního konvertoru je výstupní impedance závislá na impedanci rumble filtru a pokud by nebyl zařazen impedanční konvertor, byl by nadměrně výkonově zatěžován celý gramofonový předzesilovač. V grafech jsou opět vyneseny i fáze výstupní impedance, kde je vidět, že ani výstupní impedance nemá čistě reálný charakter, ale od vyšších kmitočtů se začíná měnit charakter výstupní impedance na komplexní.

(a) Schéma pro měření výstupní impedance za rumble filtrem

(b) Schéma pro měření výstupní impedance s připojeným impedančním konvertorem

Obr. 5.32: Schémata pro měření výstupní impedance gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky)

(a) Průběh výstupní impedance gramofonového předzesilovače bez připojeného impedančního konvertoru

(b) Průběh výstupní impedance gramofonového předzesilovače s připojeným impedančním konvertorem

Obr. 5.33: Závislost velikosti výstupní impedance a fáze gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (historické gramofonové desky)

Zapojení gramofonového předzesilovače s pasivní korekcí záznamové charakteristiky je možné také upravit použitím DC serva a zlepšit tím stejnosměrné offsety, ale v rámci této práce tak učiněno nebylo. V tomto zapojení by se DC servo umístilo až k druhému stupni předzesilovače, neboť druhý stupeň má větší zisk a dá se tedy předpokládat i větší zesílení klidových proudů a tím pádem větší stejnosměrný offset na výstupu druhého stupně.

5.1.4 Gramofonový předzesilovač s pasivní kmitočtovou korekcí záznamové charakteristiky pro stereo gramofonové desky

Toto zapojení je totožné se zapojením simulovaným ve výše zmíněném příkladě s rozdílem v nastavení korekčního článku, který bude nastaven na jiný typ gramofonových desek, tedy pro stereo gramofonové desky. Z tohoto důvodu bude popis simulace tohoto zapojení velice zestručněn a budou provedeny jen simulace, u kterých se předpokládá rozdílný výsledek než v předchozím příkladu. Bude provedena optimalizace modulu přenosové funkce, analýza výtěžnosti výroby a šumová analýza.

Schéma analyzovaného obvodu je na obr. 5.22. Schéma se liší pouze v hodnotách prvků korekčního článku, které musely být přepočítány pro jiné časové konstanty záznamové charakteristiky. Opět se zvolila velikost kondenzátoru C2 = 68 nF a ostatní hodnoty se dopočítaly. Velikost rezistoru R2 se určí dle rov. 5.24, velikost kondenzátoru C1 se určí podle rov. 5.25 a velikost rezistoru R1 se určí podle rov. 5.26.

$$C_2 R_2 = \tau_2 \Rightarrow R_2 = \frac{\tau_2}{C_2} = 1603, 6765 \,\Omega$$
 (5.24)

$$C_1 R_2 = \frac{\tau_1 \tau_2 \tau_3}{(\tau_1 - \tau_2)(\tau_2 - \tau_3)} \Rightarrow C_1 = \frac{\tau_1 \tau_2 \tau_3}{(\tau_1 - \tau_2)(\tau_2 - \tau_3)R_2} = 198, 29 \cdot 10^{-9} F \quad (5.25)$$

$$C_1 R_1 = \frac{\tau_1 \tau_3}{\tau_2} \Rightarrow R_1 = \frac{\tau_1 \tau_3}{\tau_2 C_1} = 11029,412\,\Omega \tag{5.26}$$

Kde:

 $\tau_1 \dots$ je časová konstanta 75 μ s (2122 Hz)

 $\tau_2 \dots$ je časová konstanta 318 µs (500 Hz)

 τ_3 ... je časová konstanta 3180 $\mu \mathrm{s}~(50\,\mathrm{Hz})$

K simulaci se použije totožný simulační profil a proto když se upraví hodnoty součástek R1, R2, C1 a C2 je možné spustit simulaci. Výsledek simulace je na obr. 5.34(a). Z výsledku je patrné, že se podařilo dosáhnou téměř požadovaného průběhu. Pro lepší představu jak přesně je dosaženo požadovaného průběhu modulu přenosové funkce se vykreslí rozdíl obou charakteristik viz obr. 5.34(b). Z tohoto grafu je vidět velikost odchylky modulu přenosové funkce od referenčního průběhu, na svislé ose jsou hodnoty odchylky v [mdB]. Na obr. 5.34(c) je výsledek odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu po optimalizaci, která bude popsána dále.

(a) Modul přenosové funkce gramofonového předzesilovače

(b) Odchylka modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu před optimalizací

(c) Odchylka modulu přenosové funkce gramofonového předze
silovače od referenčního průběhu po optimalizací

Obr. 5.34: Modul přenosové funkce gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky) s odchylkou před a po optimalizaci Nyní se spustí citlivostní analýza z menu $PSpice \rightarrow Advanced Analysis \rightarrow Sensitivity$. Výsledek citlivostní analýzy je na obr. 5.35. Na základě výsledků citlivostní analýzy se pošlou k optimalizaci prvky R1, R2, R3, R4, R6, R7, C1 a C2, které mají na odchylku modulu přenosové funkce největší vliv.

							Paran	neters					
	C	omponent	Parameter	Original	@Min	@Max	Rel Sensitiv	rity		Linear			
	R1		VALUE	11029.4120	10.4779k	11.1397k	86.602	26m	100				
	C1		VALUE	68n	61.2000n	74.8000n	84.450)2m			97		
	R4		VALUE	100	95	105	82.291	Sm			95		
	R7		VALUE	100	95	105	82.753	33mn			95		
	C2		VALUE	198.2900n	178.4610n	218.119	13.982	29m			16		
	R3		VALUE	6.8000k	6.4600k	7.1400k	8.653	81 m			9		
	R6		VALUE	3.1000k	2.9450k	3.2550k	7.227	'2m			8		
	R8		VALUE	11.6920k	12.2766k	11.1074k	-1.97	55ù			< MIN >		
	R2		VALUE	1603.6765	1.6839k	1.5235k	-813.226	60u			< MIN >		
	R9		VALUE	750	787.5000	712.5000	-109.56	18n			< MIN >		
	C3		VALUE	1.7000e-010	187p	153p	-2.07:	30n			< MIN >		
	R5		VALUE	47k	49.3500k	44.6500k	-322.98:	36n			< MIN >		
	C4		VALUE	680n	680n	680n		0			0		
	//												
							Specifi	ications					
	٠	On/Off	Profile		Measure	ement		Original	Min	Max			
	٣	· 🔽 a	cpasivnew.sim	max(abs(DB	(v(out))-db(v(ref))))		154.6903m	1.3012	1.0646			
T					(Click here to	import a meas	surement crea	ted within PSpi	ce			
		MUUN		0///////				((((()))				///////	

Obr. 5.35: Výsledek citlivostní analýzy gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky)

Po citlivostní analýze se spustí optimalizace. Opět se vytvoří stejná měřicí funkce jako v předchozím příkladě a z výsledků získaných při citlivostní analýze, kdy byla určena největší odchylka modulu přenosové funkce od referenčního průběhu 154,6903 mdB se zvolí cíl optimalizace 100 mdB ve sloupci Max v okně Specifications. Pokud je vše připravené, je možné spustit optimalizaci pomocí náhodného algoritmu. Výsledek je na obr. 5.36(a). Dále se spustí optimalizace pomocí MLSQ algoritmu a výsledek této optimalizace je na obr. 5.36(b). Z výsledků této optimalizace ve sloupci Current je dobře vidět, jak dobře se podařilo optimalizovat odchylku modulu přenosové funkce, kdy se odchylka snížila až na 90,0041 mdB v absolutní hodnotě. Následuje spuštění optimalizace pomocí diskrétního algoritmu, kdy se hodnoty vypočtené v předchozím kroku nahradí reálně dostupnými hodnotami součástek. Výsledek optimalizace pomocí diskrétního algoritmu je na obr. 5.19(c) a je vidět, že nahrazením vypočítaných hodnot součástek reálně dostupnými hodnotami součástek došlo k relativně výraznému zhoršení odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu. Odchylka s reálně dostupnými hodnotami součástek má hodnotu 525,5377 mdB v absolutní hodnotě, ale i tento výsledek je možné považovat za uspokojivý.

		F	rror Graph				Parameters [llext Run]								
		-	inor orapii			•	On	/Off	Com	Param	Original	Min	Max	Current	
						٣	>	6	R1	VALUE	11029.4	1.1029k	110.2941k	11.0294k	
	G	1				٣	>	6	C1	VALUE	68n	6.8000n	680n	68n	
	0	0000 /8	A			٣	>	6	R4	VALUE	100	10	1k	100	
			+ $+$ $+$ h			٣	>	6	R7	VALUE	100	10	1k	100	
5	41	0000%	→ 11			٣	>	6	C2	VALUE	198.2900n	19.82	1.9829u	198.2900n	
			Х 1 Ъ			٣	\checkmark	6	R3	VALUE	6.8000k	680	68k	6.8000k	
	2	0000% - 🟒	$(\mathcal{M} \mathcal{M})$	\ <u>+</u> +++++++++++++++++++++++++++++++++++		٣	\checkmark	6	R6	VALUE	3.1000k	310	31k	3.1000k	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				٣	<b>~</b>	6	R2	VALUE	1603.6765	160.3	16.0368k	1.6037k	
		n%/		<u> </u>						Click here	to import a p	parameter	from the desi	ign property map.	
		0 1													
			Run Number												
	St	andard 🛛 🔛 🕬	Curve Fit												
							S	oecifi	cations	Next Run	J				
	٠	0n/0ff	Profile	Measure	ment			Min	1	Max	Original	0	urrent	Error	
•	8	· 🔽 🗄	acpasivnew.sim	max(abs(DB(v(o	ut))-d					100m	154.690	13m	154.6903m	54.6903%	
_					Click	here	to im	port a	measure	ment creat	ed within PS	Spice			
							_								

(a) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí náhodného algoritmu



(b) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí MLSQ algoritmu



(c) Výsledek optimalizace modulu přenosové funkce gramofonového předzesilovače pomocí diskrétního algoritmu

**Obr. 5.36:** Optimalizace modulu přenosové funkce gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky) Další typ analýzy, která je použita při analýze gramofonového předzesilovače je analýza výtěžnosti výroby. Nastavení je stejné jako v předchozím příkladu. Bude tedy sledována závislost odchylky modulu přenosové funkce v závislosti na výrobních tolerancích. Opět se upraví tolerance nejvíce citlivých prvků v obvodu a spustí se analýza a její výsledky jsou na obr. 5.37(a) a 5.37(b). Z obr. 5.37(a) je dobře vidět, že nejčastější velikost odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu je okolo 500 mdB a to celkem ve 28 bězích analýzy. V okně *Statistical Information* je ve sloupci *Mean* střední hodnota odchylky ze všech běhů programu a ve sloupcích *Cursor Min* a *Cursor Max* jsou minimální a maximální velikosti odchylky.



(a) Histogram rozložení hustoty pravděpodobnosti odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu



(b) Kumulativní distribuční graf odchylky modulu přenosové funkce gramofonového předzesilovače od referenčního průběhu

**Obr. 5.37:** Analýza výtěžnosti výroby v závislosti na velikosti odchylky modulu přenosové funkce gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky) od referenčního průběhu

Jako poslední typ analýzy je provedena šumová analýza. Výsledky této analýzy jsou na obr. 5.38. Výsledky šumové analýzy jsou téměř totožné s výsledky šumové analýzy provedené v předchozím příkladě.



**Obr. 5.38:** Výsledek šumové analýzy gramofonového předzesilovače s pasivní kmitočtovou korekcí záznamové charakteristiky (stereo gramofonové desky)

Další analýzy, které byly provedeny v předchozím příkladu již provedeny nebyly.

## 5.1.5 Výkonový zesilovač pro sluchátka

Na zapojení výkonového zesilovače pro sluchátka viz obr. 5.39 bude demonstrováno použití analýzy k určení namáhání součástek a bude použit nástroj k určení harmonického zkreslení.

Konfigurace tohoto zesilovače je navržena pro zátěže do maximálně 150  $\Omega$  a výstupní výkon 300 mW při výstupním napětí ±10 V a maximálním výstupním proudu 100 mA, který je omezený diodami D2 a D3. Zisk tohoto zesilovače je dán rov. 5.27. Při simulaci tohoto zapojení bude použita analýza namáhání součástek patřící mezi rozšířené typy analýz. Bude zkoumáno namáhání prvků obvodu v závislosti na velikosti budícího napětí a velikosti zátěže. Při analýze namáhání součástek bude použit nástroj, pro určení harmonického zkreslení, který je standardně obsažen v programu OrCAD PSpice.

$$G = \frac{U_{OUT}}{U_{IN}} = \frac{10}{0,430} = 23 \qquad [-] \tag{5.27}$$

Kde:

 $U_{OUT}$ ... je napětí na výstupu zesilovače [V]



Obr. 5.39: Schéma zapojení výkonového zesilovače pro sluchátka |Převzato z [22]|

 $U_{IN}$ ... je napětí na vstupu zesilovače [V]

K simulaci je nutné vytvořit transientní simulační profil pro provedení analýzy namáhání součástek viz obr. 5.40(a). Velikost maximálního kroku transientní analýzy (*Maxim step size*) je třeba volit s rozvahou, neboť příliš malý krok vede k velké výpočetní náročnosti a příliš velký krok vede na velkou nepřesnost analýzy. K provedení analýzy harmonického zkreslení je nutné provést nastavení v simulačním profilu nastavení. V okně simulačního profilu se klikne na tlačítko *Output File Options* a zobrazí se okno viz obr. 5.40(b), kde je nutné nastavit centrální kmitočet (*Center Frequency*). Ten musí odpovídat kmitočtu zdroje signálu. Dále se nastaví počet harmonických složek (*Number of Harmonics*), které budou uvažovány při výpočtu celkového harmonického zkreslení. Jako poslední se určí napětí v místě obvodu, kde má být harmonické zkreslení určeno (*Output Variables*).

Simulation Settings - Trans	phone 🛛
General       Analysis       Configuration         Analysis type:       Time Domain (Transient)       ✓         Options:       ✓          Options:       ✓          Monte Carlo/Worst Case       Parametric Sweep          Temperature (Sweep)           Save Bias Point           Load Bias Point           Restart Simulation	on Files       Options       Data Collection       Probe Window         Bun to time:       2m       seconds (TSTOP)         Start saving data after:       0       seconds         Iransient options       Maximum step size:       10n       seconds         Skip the initial transient bias point calculation (SKIPBP)       Bun in resume mode       Output File Options
	OK Storno Použít Nápověda

(a) AC simulační profil

Transient Output File	Options 🛛
Print values in the output fi	le every:secondsCancel
Center Frequency:	1k hz
Number of <u>H</u> armonics:	10
Output <u>V</u> ariables:	V(out)
Include detailed bias po controlled sources and	pint information for nonlinear semiconductors (/OP)

(b) Nastavení simulačního profilu pro určení harmonického zkreslení

Obr. 5.40: Nastavení simulačního profilu pro výkonový zesilovač pro sluchátka

Obvod, který bude simulován v prvním kroku je nastaven dle obr. 5.39. Tedy vstupní napětí 300 mV, kmitočet vstupního napětí 10 kHz, potenciometr ve střední poloze, tedy 0,5 a zátěž o velikosti  $100 \Omega$ . Výsledek AC analýzy je na obr. 5.41(a). Na výstupu zesilovače je napětí  $\pm 3,43$  V a průběh má nezkreslený sinusový tvar. K určení, jak moc je průběh výstupního napětí zkreslený bude použita analýza harmonického zkreslení. Nejprve je možné provést rychlou Fourierovu transformaci, dále jen FFT, v okně s grafickým výstupem analýzy. FFT se spustí z menu  $Trace \rightarrow Fourier$  a zobrazí se výsledek FFT přímo v grafu viz obr. 5.41(b). V grafu FFT je zapnuté zobrazení osy Y v logaritmickém měřítku. Z výsledků FFT je patrné, že nedochází k žádnému harmonickému zkreslení. Výsledek harmonického zkreslení se nezobrazuje v grafické podobě, ale v tzv. Output File, kde jsou veškeré výsledky analýzy zobrazeny v textové podobě. Output File je možné otevřít z menu  $View \rightarrow Output$  File. Výsledek analýzy harmonického zkreslení je na obr. 5.41(c). Z výsledků je možné vyčíst několik informací, například velikost stejnosměrné složky (DC COMPONENT), kmitočty jednotlivých harmonických složek (FREQUENCY) a další. Ale hlavní informací je velikost celkového harmonického zkreslení (TOTAL HARMONIC DISTORTION), které má pro toto měření velikost  $1,159 \cdot 10^{-3}$ %.





(b) FFT výstupního napětí výkonového zesilovače pro sluchátka

DC COMPON	ENT = -2.249	5355 <b>E</b> —02			
HARMONIC NO	FREQUENCY (HZ)	FOURIER COMPONENT	NORMALIZED COMPONENT	PHASE (DEG)	NORMALIZED PHASE (DEG)
1 2 3 4 5 6 7 8 9 10	1.000E+03 2.000E+03 3.000E+03 4.000E+03 5.000E+03 6.000E+03 7.000E+03 8.000E+03 9.000E+03 1.000E+04	3.460E+00 9.150E-06 2.405E-05 1.819E-05 1.356E-05 1.181E-05 9.831E-06 9.125E-06 7.512E-06 7.481E-06	1.000E+00 2.644E-06 6.950E-06 3.918E-06 3.414E-06 2.841E-06 2.637E-06 2.171E-06 2.162E-06	-4 105E-01 -9.467E+00 1.582E+02 1.782E+02 1.783E+02 1.795E+02 1.796E+02 -1.796E+02 1.796E+02 1.776E+02	0.000E+00 -8.646E+00 1.595E+02 -1.762E+02 1.820E+02 1.827E+02 -1.764E+02 -1.764E+02 -1.757E+02 1.817E+02
TOTAL	HARMONIC DIS	STORTION =	1.159071E-03	PERCENT	

(c) Výsledek určení celkového harmonického zkreslení výkonového zesilovače prosluchátka


Následuje provedení analýzy namáhání součástek. Před spuštěním analýzy je třeba nastavit větší povolený výkon rezistorů, neboť standardní výkonová ztráta rezistorů je 250 mW, ale pro tento případ byla povolená výkonová ztráta zvýšena na 1 W. Toto se provede pro rezistory R5, R6, R7 a Rload. Změna výkonové ztráty se provede dvojklikem na požadovanou součástku a do položky *POWER* se napíše požadovaná hodnota bez jednotky. Toto nastavení by bylo možné provést i pomocí zatěžovacího faktoru v nastavení analýzy namáhání součástek, ale pro tento případ bylo jednodušší upravit hodnotu přímo u součástek. Analýzy se spustí z menu *PSpice*  $\rightarrow$  *Advanced Analysis*  $\rightarrow$  *Smoke*. Výsledek analýzy je na obr. 5.42. Z výsledků je patrné, že nejvíce namáhanými prvky v obvodu jsou výstupní tranzistory Q1 a Q2, ale v této konfiguraci a nastavení hodnot v obvodu pracuje zapojení v bezpečných podmínkách pro všechny obvodové prvky. Význam jednotlivých parametrů, které jsou při analýzy pro jednotlivé prvku určovány je v příloze A.2.

				Smoke	- tranphon	e.sim [No Dera	ting ] Component Filt	er = [ *]	
• 0	Component	Parameter	Туре	Rated Value	% Derating	Max Derating	Measured Value	% Max	
🕈 Q	12	TJ	Peak	150	100	150	140.4933	94	
7 Q	12	PDM	Peak	1.4748	100	1.4748	1.3608	93	
Y Q	!1	TJ	Peak	150	100	150	133.2126	89	
🕈 🛛	12	TJ	Average	150	100	150	131.1653	88	
7 Q	12	TJ	RMS	150	100	150	131.4923	88	
7 Q	1	PDM	Peak	1.4748	100	1.4748	1.2735	87	
🕈 🛛	1	TJ	Average	150	100	150	129.4917	87	
7 0	1	TJ	RMS	150	100	150	129.5354	87	
7 0	12	PDM	Average	1.4748	100	1.4748	1.2490	85	
7 Q	12	PDM	RMS	1.4748	100	1.4748	1.2529	85	
🕈 🖗	1	PDM	Average	1.4748	100	1.4748	1.2289	84	
🕈 🛛	1	PDM	RMS	1.4748	100	1.4748	1.2294	84	
7 V	1	VSMAX	Average	44	100	44	30.0000	69	
7 U	1	VSMAX	Peak	44	100	44	30	69	
7 U	1	VSMAX	RMS	44	100	44	30.0000	69	
P 0	1	VD	RMS	5	100	5	3.1546	64	
🕈 🛛	1	VCE	Peak	40	100	40	17.7938	45	
🕈 Q	12	VCE	Peak	40	100	40	17.6659	45	
🕈 P	1/////	IFD	Peak	20m	100	20m	7.6218m	39	
7 0	1	VCE	Average	40	100	40	14.1182	36	
7 Q	1	VCE	RMS	40	100	40	14.3552	36	
Ϋ Q	12	VCE	Average	40	100	40	14.0709	36	
7 0	12	VCE	RMS	40	100	40	14.2985	36	

**Obr. 5.42:** Výsledek analýzy namáhání součástek pro výkonový zesilovače pro sluchátka při standardním provozu

K tomu, aby bylo názorně demonstrováno využití analýzy namáhání součástek a určení harmonického zkreslení bude obvod uveden do nestandardních pracovních podmínek. Vstupní napětí se zvýší na 600 mV, kmitočet vstupního napětí zůstane zachován 10 kHz, potenciometr bude nastaven na 0,1, maximální výstupní napětí a jako zátěž bude připojen rezistor o velikosti 500  $\Omega$ , . Za takto nastavených podmínek se spustí analýza. Výsledek analýzy je na obr. 5.43(a) a je možné vidět, že výstupní napětí je již omezené v kladných půlvlnách a je možné očekávat, že harmonické zkreslení bude již mnohem větší než při předchozím nastavení obvodu. Opět se zapne FFT a výsledek je na obr. 5.43(b), kde je velmi dobře patrné, že se ve výstupním signálu neobjevuje již jen základní harmonické, ale i další nežádoucí kmitočty, které značně ovlivňují velikost celkového harmonického zkreslení. Výsledek celkového harmonického zkreslení je na obr. 5.43(c). Celkové harmonické zkreslení je v tomto případě 4,45 %.



(a) Výsledek transientní analýzy výkonového zesilovače pro sluchátka



(b) FFT výstupního napětí výkonového zesilovače pro sluchátka

DC COMPON	ENT = -2.364	4489E-01			
HARMONIC NO	FREQUENCY (HZ)	FOURIER COMPONENT	NORMALIZED COMPONENT	PHASE (DEG)	NORMALIZED PHASE (DEG)
1 2 3 4 5 6 7 8 9 10	1.000E+03 2.000E+03 3.000E+03 4.000E+03 5.000E+03 6.000E+03 7.000E+03 8.000E+03 9.000E+03 1.000E+04	1.210E+01 3.329E-01 2.882E-01 1.727E-01 1.135E-01 6.113E-02 1.907E-02 2.685E-02	1.000E+00 2.750E-02 2.381E-02 1.923E-02 1.427E-02 9.381E-03 5.051E-03 1.575E-03 8.456E-04 2.218E-03	-3 878E-01 8.914E+01 -8 192E-01 -9.162E+01 1.784E+02 8.743E+01 -2.648E+00 -9.586E+01 -1.445E+00 -9.247E+01	0.000E+00 8.991E+01 3.443E-01 -9.007E+01 1.803E+02 8.976E+01 6.716E-02 -9.276E+01 2.045E+00 -8.860E+01
TOTAL	HARMONIC DIS	STORTION =	4.492177E+00	PERCENT	

(c) Výsledek určení celkového harmonického zkreslení výkonového zesilovače prosluchátka

Obr. 5.43: Výsledky analýzy harmonického zkreslení výkonového zesilovače pro sluchátka

Nyní se spustí analýza namáhání součástek pro nově nastavené pracovní podmínky výkonového zesilovače pro sluchátka. Výsledek analýzy je na obr. 5.44. Z výsledku je patrné, že pro tyto pracovní podmínky by došlo ke zničení obou výstupních tranzistorů Q1 a Q2 důsledkem zvýšení teploty přechodu nad bezpečnou hodnotu.

Smoke - tranphone.sim [ No Derating ] Component Filter = [ *]									
Cor	mponent	Parameter	Туре	Rated Value	% Derating	Max Derating	Measured Value	% Max	
7 Q2		PDM	Peak	1.4748	0	0	2.2224	< MAX >	
7 Q1		PDM	Peak	1.4748	49	731.7883m	1.5761	216	
P Q2		TJ	Peak	150	100	150	212.3497	142	
- Q1		TJ	Peak	150	100	150	158.4426	106	
7 Q2		PDM	RMS	1.4748	100	1.4748	1.4626	100	
7 Q2		TJ	RMS	150	100	150	148.9775	100	
7 Q2		TJ	Average	150	100	150	130.3775	87	
Q2		PDM	Average	1.4748	100	1.4748	1.2395	85	
Q1		TJ	RMS	150	100	150	121.4958	81	
Q1		PDM	RMS	1.4748	100	1.4748	1.1330	77	
Q1		TJ	Average	150	100	150	113.4735	76	
Q1		PDM	Average	1.4748	100	1.4748	1.0369	71	
U1		VSMAX	Average	44	100	44	30.0000	69	
U1		VSMAX	Peak	44	100	44	30	69	
- U1		VSMAX	RMS	44	100	44	30.0000	69	
Q1		VCE	Peak	40	100	40	27.1189	68	
Q2		VCE	Peak	40	100	40	24.8417	63	
D1		VD	RMS	5	100	5	3.0845	62	
D1		IFD	Peak	20m	100	20m	10.9128m	55	
Q1		VCB	Peak	60	100	60	26.4176	45	
R5		PDM	Peak	1	59	597.4666m	267.5334m	45	
7 Q1		VCE	RMS	40	100	40	16.8493	43	
7 D1	///////	PDM	Peak	85m	99	85m	36.5367m	43	

**Obr. 5.44:** Výsledek analýzy namáhání součástek výkonového zesilovače pro sluchátka při nestandardním provozu

### 5.1.6 Určení stability operačního zesilovače

V tomto příkladu bude na jednoduchém zapojení operačního zesilovače OPA452 viz obr. 5.45 ukázáno, jak je možné s využitím programu OrCAD PSpice určit stabilitu obvodu.

Tento operační zesilovač je napájen  $\pm 40$  V. Zapojení je převzato ze stránek výrobce (Texas Instruments) a bylo upraveno pro určení stability.



Obr. 5.45: Schéma zapojení pro určení stability operačního zesilovače OPA452

Obvod se stává nestabilním, když se záporná zpětná vazba změní na kladnou a fáze signálu má větší fázový posun než 180°. K určení, zda je obvod stabilní, je třeba rozpojit zpětnovazební smyčku. K rozpojení zpětnovazební smyčky analyzovaného obvodu slouží indukčnost L1 a kapacita C1, součástky mají hodnoty 1 TH a 1 TF, aby došlo k rozpojení zpětnovazební smyčky. Pro navržený obvod se vytvoří AC simulační profil viz obr. 5.46 a spustí se simulace.

Simulation Settings - AC			
General Analysis Configuratio	n Files Options Data	Collection Probe Window	
<u>A</u> nalysis type:	AC Sweep Type		
AC Sweep/Noise 🛛 👻	<u>○ L</u> inear	<u>S</u> tart Frequency:	1
Options:	💿 L <u>og</u> arithmic	End Frequency:	10Meg
General Settings	Decade 🗸	Points/ <u>D</u> ecade:	100
Parametric Sweep	Noise Analysis		
Save Bias Point	E <u>n</u> abled	D <u>u</u> tput Voltage:	
Load Bias Point	1	/⊻ Source:	
	Į	nterval:	
	- Output File Options-		
	controlled sour	d bias point information for n ces and semiconductors (.0)	phinear P)
	ОК	Storno Použít	Nápověda

Obr. 5.46: AC simulační profil pro určení stability operačního zesilovače OPA452

Stabilita u tohoto zapojení je určována pro dva typy zátěže, jedním typem je odporová zátěž, která je nastavována jako parametr. Druhým typem zátěže je kapacitní zátěž rovněž jako parametr, která může představovat například připojený kabel různé délky s druhým rozpojeným koncem. Ve schématu na obr. 5.45 je naznačena pouze kapacitní zátěž v podobě kondenzátoru C2, při ověřování stability pro odporovou zátěž se kondenzátor C2 zamění za rezistor.

Výsledek simulace pro určení stability zapojení dle obr. 5.45 pro případ odporové zátěže je na obr. 5.47. Z výsledku je patrné, že pokud operační zesilovač OPA452 pracuje v konfiguraci, dle obr. 5.45, je pro odporové zátěže o velikosti  $10 \Omega$ ,  $100 \Omega$ ,  $1 k\Omega$ ,  $5 k\Omega$ ,  $100 k\Omega$  a  $1 M\Omega$  stabilní v celém sledovaném kmitočtovém pásmu 1 HZ až 10 MHz.

Ve druhém případě se určuje stabilita operačního zesilovače OPA452 v konfiguraci dle obr. 5.45 pro případ, kdy je k výstupu připojena kapacitní zátěž různé velikosti. Výsledek analýzy je na obr. 5.48(a). Na obr. 5.48(b) je detail oblasti, kde křivka zisku protíná nulovou osu a fázový posun začíná být větší než 180°. Velikosti kapacitní zátěže



Obr. 5.47: Výsledek analýzy stability operačního zesilovače OPA452 pro odporovou zátěž

byly 10 pF, 100 pF, 10 nF, 100 nF, 1  $\mu$ F a 10  $\mu$ F. Z výsledků analýzy je možné určit, že pro hodnoty zátěže 10 pF a 100 pF je obvod ve sledovaném kmitočtovém pásmu stabilní. Pro hodnotu zátěže 10 pF je fázový posuv na kmitočtu 2,14 MHz stále kladný, přesně 37°. Pro hodnotu zátěže 100 pF je fázový posuv na kmitočtu 2,14 MHz také stále kladný, přesně 35°. Pro hodnoty zátěže 10 nF, 100 nF, 1  $\mu$ F a 10  $\mu$ F se obvod stal již nestabilním. Pro zátěž 10 nF nastala nestabilita na kmitočtu 1,1 MHz (fázový posun -2,07°), pro zátěž 100 nF nastala nestabilita na kmitočtu 1,1 MHz (fázový posun -1,75°), pro zátěž 1  $\mu$ F nastala nestabilita na kmitočtu 121,3 kHz (fázový posun -0,6°) a pro zátěž 10  $\mu$ F nastala nestabilita na kmitočtu 38,6 kHz (fázový posun -0,2°).

Z výsledků je patrné, že nestabilita obvodu při rozpojení zpětnovazební smyčky nastává až od určité hodnoty kapacitní zátěže. V tomto případě nastala nestabilita až od zátěže o velikosti 10 nF.





(b) Výsledek analýzy stability v detailu



#### 5.1.7 Vliv délky vedení na frekvenční charakteristiku

Při provozu zařízení je v některých případech velice nezbytné brát ohledy i na délku propojovacích kabelů. Žádný propojovací kabel není dokonalým vodičem a má parazitní vlastnosti. Mezi parazitní vlastnosti běžných kabelů patří odpor, indukčnost, kapacita a svod. Tyto parazitní vlastnosti se u kabelů uvádějí na jeden metr délky, v některých případech na kilometr délky. Element běžného kabelu si lze představit jako obvod dle obr. ??.



Obr. 5.49: Náhradní schéma elementu kabelu

Kabel si je možné tedy představit jako RC článek (dolní propust), a proto vlivem jeho délky narůstá jeho kapacita i odpor a tím se ladí níže horní mezní kmitočet. V důsledku toho je možné, například při přenosu hudby pomocí kabelu na větší vzdálenost, přijít o vyšší kmitočty v signálu. Proti tomu je možné samozřejmě do určité míry bojovat, ale většinou za cenu ztráty, například velikosti úrovně přenášeného signálu.

Pro demonstraci vlivu délky propojovacího vedení je použit jednoduchý příklad viz obr. 5.50. Kde je jako vedení použit jen RC člen složený z prvků R8 a C2, které mají velikost závislou na délce. Velikost kapacity vedení je  $125 \,\mathrm{pF/m}$  a velikost odporu vedení je  $7,5 \,\Omega/m$ . Hodnoty pro RC jsou typickými hodnotami, nejedná se o hodnoty konkrétního kabelu. Rezistor R3 představuje impedanci zdroje. Kondenzátor C1 a rezistor R4 představují CR článek (horní propust) naladěný na kmitočet 20 Hz. Rezistor R7 představuje zátěž na konci vedení a rezistor R9 je pomocný rezistor, kterým se v případě potřeby rozšiřuje šířka pásma.

Konfigurace obvodu dle obr. 5.50 představuje v podstatě pásmovou propust, která se ladí v závislosti na délce propojovacího vedení a velikosti připojených impedancí. Na obr. 5.51 je výsledek AC analýzy při rozmítání délky vedení od 5 do 95 metrů, přičemž nejkratší délka vedení je vyjádřena zeleným průběhem. Rezistory R3 a R7 mají nastavenou velikost 600  $\Omega$ , rezistor R9 není připojený. Z výsledků je jasně patrný vliv délky vedení na tvar frekvenční charakteristiky. Dochází ke snižování výstupní úrovně signálu v důsledku zvyšujícího se útlumu a zužuje se kmitočtové pásmo na výstupu řetězce vlivem změny mezního kmitočtu dolní propusti představované vedením různé délky.

Pro stejnou konfiguraci prvků obvodu bude provedena analýza ještě jednou, nyní se však pro zlepšení šířky přenášených kmitočtů již uplatní rezistor R9, jehož velikost bude rozmítána od  $10 \Omega$  do  $600 \Omega$ . Při simulaci bude použita ještě hodnota rezistoru R9  $10 M\Omega$ , aby byl v grafu vykreslen i průběh pro situaci bez rezistoru R9. Simulace je provedena



**Obr. 5.50:** Schéma zapojení pro demonstraci vlivu délky vedení na deformaci frekvenční charakteristiky

pro délku vedení 95 metrů. Z výsledků simulace je patrné, že se podařilo rozšířit pásmo přenášených kmitočtů, ale za cenu snížení úrovně přenášeného signálu. V reálné situaci to bude znamenat, že přenášený signál bude obsahovat všechny slyšitelné složky, ale sníží se například hlasitost.



Obr. 5.51: Výsledek AC analýzy simulovaného obvodu pro různé délky vedení



**Obr. 5.52:** Výsledek AC analýzy simulovaného obvodu s úpravou pro rozšíření pásma přenášených kmitočtů

### 5.1.8 Činitel potlačení souhlasného rušení – CMRR

CMRR je logaritmický poměr diferenciálního zesílení k zesílení pro souhlasné signály a je velice kmitočtově závislý. Souhlasné rušení vzniká, pokud je k jednomu z diferenciálních vstupů zařízení, například operačního zesilovače, připojena větší impedance, než k druhému. To může nastat například při propojení zdroje signálu a diferenciálního zesilovače kabelem určité délky. V takovém případě dojde k rozvážení a potlačení souhlasného rušení klesne. Ukázkový příklad zapojení je na obr. 5.53(a) a (b). Na obr. 5.53(a) je impedanční můstek, který je vyvážený pokud jsou hodnoty všech impedancí stejné, pokud dojde k rozvážení můstku, objeví se v příčné větvi souhlasný rušivý signál. Aktivní řešení s operačními zesilovači mohou mít velikost  $R_{CM} \approx 5 \sim 50 \, k\Omega$ . Pro případ, kdy  $R_{CM} = 5 k\Omega$  a došlo by na straně vysílače (*Driver*) k rozvážení jedné větve o 1  $\Omega$  dojde ke zhoršení CMRR o 50 dB. Pro zařízení, která mají obrovské hodnoty  $R_{CM} \approx 50 M\Omega$ je rozvážení o 1 $\Omega$  prakticky neměřitelné. Taková zapojení obsahují vstupní transformátor. Ovšem i řešení s operačními zesilovači je možné pomocí tzv. bootstrappingu upravit. Bootstrapping znamená zavedení kladné zpětné vazby, která zvýší vstupní impedanci zařízení a tedy dojde ke zvýšení  $R_{CM}$ . Zapojení přístrojového zesilovače se zvýšeným  $R_{CM}$ pomocí bootstrappingu je na obr. 5.54.



Obr. 5.53: Impedanční model signálového spoje zahrnující impedanční můstek

V této části textu bude ukázáno na konkrétním zapojení jak je možné pomocí programu OrCAD PSpice určit CMRR. Měření CMRR bude vycházet z normy (ČSN) EN 60268-3. Schéma zapojení pro měření CMRR z této normy se na obr. 5.55. Měření probíhá tak, že se provede první měření bez rozvažovacího  $10 \Omega$  rezistoru a změří se hodnoty napětí  $U_1$  a  $U_2$ , poté se postupně do obou větví připojí rozvažovací  $10 \Omega$  rezistor a změří se vždy hodnoty  $U_1^i$  a  $U_2^i$ . Změřené hodnoty se dosadí do rov. 5.28. A bere se horší výsledek z obou měření při připojené rozvažovací impedanci.



**Obr. 5.54:** Schéma zapojení přístrojového zesilovače s uměle zvýšenou vstupní impedancí pomocí tzv. bootstrappingu



Obr. 5.55: Schéma zapojení pro měření CMRR dle normy (ČSN) EN 60268-3 |Převzato z [23]|

$$CMRR = 20log\left(\frac{U_1}{U_2}\right) + 20log\left(\frac{U_2}{U_1}\right)$$
(5.28)

Kde:

 $U_1 \dots$ napětí mezi diferenciálními vstupy zesilovače bez rozvažovací impedance

- $U_2 \dots$ napětí na výstupu diferenciálního zesilovače bez rozvažovací impedance
- $U_1^{,}$ ... napětí mezi diferenciálními vstupy zesilovače s rozvažovací impedancí
- $U_2^{,}$ ... napětí na výstupu diferenciálního zesilovače s rozvažovací impedance

Pro určení CMRR v programu OrCAD PSpice je zvoleno jednoduché zapojení viz obr. 5.56. Schéma obsahuje dva téměř totožné obvody, toto řešení bylo zvoleno z toho důvodu, aby nebylo nutné řešit přepínání rozvažovací impedance. Měření CMRR bude provedeno celkem třikrát. První měření bude provedeno bez rozvažovací impedance R16 a parazitních kapacit C8 a C9, které představují parazitní kapacitu vodičů, například cest na desce plošných spojů. Další měření bude provedeno s rozvažovací impedancí R16 ale bez parazitních kapacit C8 a C9 a poslední měření bude provedeno s dle konfigurace na obr. 5.56.



Obr. 5.56: Schéma zapojení pro měření CMRR v programu OrCAD PSpice

Simulace bude provedena pomocí statistické analýzy výtěžnosti výroby, ale tentokrát nikoliv z rozšířených analýz, ale pouze s využitím běžných analýz. Nastavení simulačního profilu pro analýzu výtěžnosti výroby je na obr. 5.57. Je nutné nastavit výstupní uzel (*Output variable*) rozvažovaného obvodu, počet běhů analýzy (*Number of runs*) a typ distribuční funkce (*Use distribution*) může zůstat rovnoměrné (*UNIFORM*). Pro tuto analýzu je nutné všem prvkům obvodu, které budou uvažovány při analýze přiřadit velikost tolerance. Pro rezistory R17, R18, R19 a R20 je tolerance 1% a pro kondenzátory C8 a C9 je tolerance 50%.

Simulation Settings - ACcm	irr 🛛 🔀
General Analysis Configuration	on Files Options Data Collection Probe Window
Analysis type: AC Sweep/Noise Options: General Settings Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	<ul> <li>Monte Carlo Enable PSpice AA support for legacy</li> <li>Worst-case/Sensitivity Dutput variable: V(out_diff)</li> <li>Monte Carlo options</li> <li>Number of runs: 100</li> <li>Use distribution: Uniform ✓ Distributions</li> <li>Bandom number seed: 1 [132767]</li> <li>Save data from All ✓ runs</li> <li>Worst-case/Sensitivity options</li> <li>Yary devices that have both DEV and LOT ✓ tolerances</li> <li>Limit devices to type(s):</li> <li>Save data from each sensitivity run</li> <li>MC Load/Save More Settings</li> </ul>
	OK Storno P <u>o</u> užít Nápověda

Obr. 5.57: Simulační profil s nastavení analýzy výtěžnosti výroby

Výsledky analýzy výtěžnosti výroby jsou na obr. 5.58, 5.59 a 5.60. Pro vytvoření histogramu rozložení minimální hodnoty CMRR je použita funkce min(20*LOG10(V(in_cm) /V(out_cm))+20*LOG10(V(out_diff)/V(V4:+,V4:-))), která hledá minimální hodnotu CMRR v závislosti na kmitočtu a aktuální kombinaci hodnot obvodových prvků určených povolenými tolerancemi



(a) Histogram rozložení minimální hodnoty CMRR v závislosti na toleranci prvků



(b) Průběh CMRR v závislosti na kmitočtu

**Obr. 5.58:** Výsledek analýzy výtěžnosti výroby v závislosti na tolerancích hodnot rezistorů R17, R18, R19 a R20



(a) Histogram rozložení minimální hodnoty CMRR v závislosti na toleranci prvků



(b) Průběh CMRR v závislosti na kmitočtu

**Obr. 5.59:** Výsledek analýzy výtěžnosti výroby v závislosti na tolerancích hodnot rezistorů R17, R18, R19 a R20 s rozvažovací impedancí R16



(b) Průběh CMRR v závislosti na kmitočtu

**Obr. 5.60:** Výsledek analýzy výtěžnosti výroby v závislosti na tolerancích hodnot rezistorů R17, R18, R19, R20, C8 a C9 s rozvažovací impedancí R16

## 6

## Závěr

Cílem této práce bylo seznámení se s možnostmi analýz elektronických obvodů v prostředí PSpice se zaměřením na rozšířené typy analýz. Rozšířenými typy analýz se rozumí analýzy obsažené v modulu rozšířených analýz do programu OrCAD PSpice. Mezi tyto analýzy patří citlivostní analýza, optimalizace chování obvodu, analýza namáhání součástek, statistická analýza výtěžnosti výroby a nástroj umožňující rozmítání obvodových veličin. Kromě modulu rozšířených analýz bylo cílem propojení programu OrCAD PSpice a programem Matlab/Simulink pomocí modulu SLPS, který umožňuje využití matematických modelů součástek z PSpice v programu Matlab/Simulink.

Jedním z cílů bylo ověření možností jednotlivých typů analýz na příkladech vhodných elektronických obvodů z aplikační oblasti, např. nf a nf měřicí techniky.

Jako posledním cílem bylo vytvoření demonstračních úloh zaměřených do oblasti pokročilé analýzy nf zařízení využívajících možností rozšířených analýz.

První část, obsahující seznámení se s modulem rozšířených analýz v programu OrCAD PSpice, je možné využít jako příručku k používání modulu rozšířených analýz. Každý typ popisované rozšířené analýzy je vždy vysvětlen a demonstrován na jednoduchém příkladu.

V práci je nad rámec zadání ve stručnosti popsána práce s modely součástek. Vytvoření jednoduchého modelu součástky, import nové součástky a editace stávající součástky. Především část popisující import modelu součástky by měla být velice užitečná, neboť výrobci součástek často uvolňují na svých webových stránkách modely součástek, která v knihovnách programu OrCAD PSpice chybí. Nicméně pro práci s modely součástek, především jejich editaci a vytváření vlastních modelů, je nutná hlubší znalost jazyka SPICE, ve kterém se modely součástek vytvářejí.

Při popisu spolupráce programů OrCAD PSpice a Matlab/Simulink se vyskytla chyba, která znemožnila využití této spolupráce na vlastním zapojení. V práci je tedy pouze seznámení se s modulem SLPS, ukázka jeho nastavení a práce na zapojení, které je v manuálu, ale není prakticky použit.

Poslední kapitola je věnována praktickému využití modulu rozšířených analýz na vhodných elektronických obvodech. V kapitole nejsou však využity pouze analýzy z modulu rozšířených analýz, ale jsou využity i další analýzy. Byla použita například analýza pro určení harmonického zkreslení. Obvody simulované v této kapitole, stejně jako text k nim je možné využít jako demonstrační úlohy zaměřující se do oblasti pokročilé syntézy a analýzy.

Modul rozšířených analýz je velice užitečný nástroj, který v mnoha ohledech rozšiřuje použití programu OrCAD PSpice. Všechny rozšiřující typy analýz při správném použití mohou velice usnadnit návrh a simulaci navrhovaného obvodu, stejně jako ušetřit pozdější náklady spojené například s výměnou součástek nevyhovujících hodnot či dokonce součástek zničených z důvodu vysokého namáhání.

V práci chybí porovnání výsledků simulací z PSpice s výsledky získanými praktickým měřením zrealizovaných elektronických obvodů. Praktické využití modulu SLPS chybí také, neboť se nepodařilo mezi sebou propojit oba programy OrCAD PSpice a Matlab/Simulink.

Na výsledky získané při zpracovávání této práce by se dalo navázat využitím modulu rozšířených analýz i do jiné aplikační oblasti, např. vf. Dala by se rozšířit kapitola obsahující praktické využití modulu rozšířených analýz o další příklady. A vzhledem k nefunkčnosti modulu SLPS by i tento modul měl být dále zkoumán, neboť nabízí opravdu rozsáhlé možnosti využití.

# Literatura

- [1] Fitzpatric, D. Analog design and simulation using OrCAD® CAPTURE and PSpice®. Elsevier, 2011. ISBN 0080970966.
- [2] Rashid, M. H. Introduction to PSpice using OrCAD for circuits and electronics. Pearson/Prentice Hall, 2004. ISBN 0131019880.
- Biolek, D. Řešíme elektronické obvody, aneb, kniha o jejich analýze. Praha: BEN technická literatura, 2004. ISBN 80-7300-125-X.
- [4] Kolka, Z., Biolek, D., Biolková, V., Biolek, Z. Modelovaní a simulace pomocí PSpice. Tribun EU, 2011. ISBN 8073992930.
- [5] Kejhar, M. Program Spice v příkladech. Praha : Vydavatelství ČVUT, 1995. ISBN 80-01-01348-0.
- [6] Steer, M. B. SPICE: User's Guide and Reference. červenec 2007. [Cit. 29. 5. 2012] Dostupné z: http://www.freeda.org/doc/SPICE/spice.pdf
- Biolek, D. Simulace v OrCAD PSpice na úrovni schematického editoru. Brno: VUT Brno, 2005. [Cit. 25. 3. 2012]. Dostupné
   z: http://user.unob.cz/biolek/vyukaVUT/skripta/PSPICE_CAPTURE.pdf.
- [8] Biolek, D. Modelování a simulace v mikroelektronice. Brno: VUT Brno, 2005. [Cit.
  6. 4. 2012]. Dostupné
  z: http://user.unob.cz/biolek/vyukaVUT/skripta/PSPICE_v_kostce.pdf.
- [9] Kolka, Z. Analýza elektronických obvodů programem OrCAD PSpice. Brno: VUT Brno, [Cit. 6. 4. 2012] Dostupné
   z: http://user.unob.cz/biolek/vyukaVUT/skripta/PSPICE.pdf.
- [10] AES. Audio Engineering Society: E-Library [online]. 2012. Dostupné z: http://www.aes.org/e-lib/.
- [11] IEEE. *IEEE: Xplore* Digital Library [online]. 2012. Dostupné
   z: http://ieeexplore.ieee.org/Xplore/guesthome.jsp.

- [12] CADENCE. CADENCE Community: Forums [online]. 2012. [Cit. 30. 3. 2012]. Dostupné z: http://www.cadence.com/community/forums/.
- [13] EETimes. *EETimes Search* [online]. 2012. [Cit. 2. 4. 2012]. Dostupné z: http://www.eetimes.com/Search/Search?resultsPerPage=25.
- [14] Eduboard. *Eduboard Forum* [online]. 2012. [Cit. 3. 4. 2012]. Dostupné z: http://www.edaboard.com/forum.php.
- [15] The Designer's Guide Community. The Designer's Guide Community: Forum [online]. 2012. [Cit. 5. 4. 2012]. Dostupné z: http://designers-guide.org/Forum/.
- [16] Cadence Design Systems. PSpice User Guide, product version 16.5. USA, květen 2011.
- [17] Cadence Design Systems. PSpice Help, product version 16.5. USA, květen 2011.
- [18] Cadence Design Systems. PSpice Advanced Analysis Help, product version 16.5. USA, květen 2011.
- [19] Cadence Design Systems. PSpice Advanced Analysis Help User's Guide USA, duben 2001.
- [20] Cadence Design Systems. Magnetic Parts Editor User's Guide, product version 16.3. USA, prosinec 2009.
- [21] Cybernet Systems Co., LTD. PSpice SLPS Interface User's Guide, version 2.5. Japonsko, březen 2005.
- [22] Jung, W., G. Audio IC OP-Amp Applications. USA: Howard W. Sams & Co, 1986.
- [23] ČSN EN 60268-3. Elektroaukustická zařízení Část 3: Zesilovače. červen 2001.

# Příloha A

# Rozšířené analýzy

## A.1 Parametry součástek potřebné k rozšířeným analýzám

Tabulka proměnných parametrů obr. A.1 slouží k nastavení globálních parametrů. Znamená to, že není třeba nastavovat parametr u každého prvku obvodu, ale nastaví se globálně pro všechny prvky. Pokud by byl požadavek na unikátní nastavení parametrů u některého z prvků, je možné parametry nastavit přímo u konkrétního prvku viz obr. A.2.

Význam globálních parametrů tabulky *VARIABLES* viz obr. A.1 Toleranční parametry

- *RTOL* tolerance jmenovité hodnoty rezistoru [%] (*POSTOL=NEGTOL*)
- CTOL tolerance jmenovité hodnoty kondenzátoru [%] (POSTOL=NEGTOL)
- LTOL tolerance jmenovité hodnoty cívky [%] (POSTOL=NEGTOL)
- VTOL tolerance jmenovité hodnoty napěťového zdroje [%] (POSTOL=NEGTOL)
- *ITOL* tolerance jmenovité hodnoty proudového zdroje [%] (*POSTOL=NEGTOL*)

#### Smoke parametry

- RMAX maximální výkonová ztráta rezistoru [W]
- RSMAS závislost výkonové ztráty rezistoru na teplotě  $[W/ \circ C]$
- RTMAXmaximální teplota, jakou rezistor vydrží [°C]
- *RVMAX* jmenovité napětí rezistoru [V]
- CMAX jmenovité napětí kondenzátoru [V]
- *CBMAX* hodnota tepelného průrazu [°C]

- CSMAXstrmost poklesu napětí v závislosti na teplotě $\rm [V/\,^{\circ}C]$
- *CTMAX* maximální teplota [°C]
- CIMAX maximální zvlnění proudu kondenzátoru [A]
- *LMAX* jmenovitý proud cívky [A]
- DSMAX dielektrická pevnost [V]
- IMAX maximální proud, jaký napěťový zdroj vydrží [A]
- VMAX maximální napětí, jaké proudový zdroj vydrží [V]
- ESRekvivalentní sériový odpor kondenzátoru $[\Omega]$
- CPMAX maximální výkon na kondenzátoru [W]
- LPMAX maximální výkon na indukčnosti [W]
- RTH tepelný odpor [K]

Tolerances: RTOL = 0 CTOL = 0 LTOL = 0 VTOL = 0 ITOL = 0	
Smoke Limits:           RMAX = 0.25           RSMAX = 0.0125           RTMAX = 200           RVMAX = 100           CMAX = 50           CBMAX = 125           CSMAX = 0.005           CTMAX = 125           CIMAX = 1           LMAX = 5           DSMAX = 300           IMAX = 1           VMAX = 12	ESR = 0.001 CPMAX = 0.1 CVN = 10 LPMAX = 0.25 DC = 0.1 RTH = 1

#### **Advanced Analysis Properties**

Obr. A.1: Tabulka proměnných parametrů VARIABLES

Význam parametrů nejčastěji používaných prvků z obr. A.2 Rezistor

- DISTtyp distribuční funkce
- *MAX_TEMP* maximální teplota [°C]
- NEGTOL hodnota záporné tolerance [%]
- POSTOL hodnota kladné tolerance [%]
- POWER maximální výkon [W]
- SLOPE závislost výkonové ztráty rezistoru na teplot<br/>ě $[\mathrm{W}/\,^{\circ}\mathrm{C}]$
- TC1 spojené s neznámým parametrem
- TC2 spojené s neznámým parametrem
- $TOL_ON_OFF$  použití tolerance
- *VOLTAGE* jmenovité napětí [V]

Kondenzátor

- CURRENT maximální zvlnění proudu [A]
- DIST typ distribuční funkce
- IC počáteční podmínky [V]
- $\mathit{KNEE}$ hodnota tepelného průrazu [°C]
- *MAX_TEMP* maximální teplota [°C]
- *NEGTOL* hodnota záporné tolerance [%]
- POSTOL hodnota kladné tolerance [%]
- SLOPE strmost poklesu napětí v závislosti na teplotě $\rm [V/\,^{\circ}C]$
- $TOL_ON_OFF$  použití tolerance
- VOLTAGE jmenovité napětí [V]

Cívka

- CURRENT jmenovitý proud [A]
- DIELECTRIC dielektrická pevnost [V]
- DISTtyp distribuční funkce

- IC počáteční podmínky [A]
- NEGTOL hodnota záporné tolerance [%]
- POSTOL hodnota kladné tolerance [%]
- $TOL_ON_OFF$  použití tolerance

Bipolární tranzistor

- $IC_VBE$  maximální proud kolektoru při napětí báze-emitor [A]
- $IC_VCE$  maximální proud kolektoru při napětí kolektor-emitor [A]
- RCA tepelný odpor závislý na okolní teplotě [°C/W]
- TEMP maximální teplota [°C]
- $TOL_ON_OFF$  použití tolerance

Operační zesilovač

•  $TOL_ON_OFF$  použití tolerance

Dioda

- IC počáteční podmínky [V]
- RCA tepelný odpor závislý na okolní teplotě [°C/W]
- $TOL_ON_OFF$  použití tolerance

	А
	F SCHEMATIC1 : PAGE1
PSpiceOnly	
Reference	R1
Value	24k
BiasValue Power	203.9uW
DIST	ÉLAT////
Location X-Coordinate	480
ocation Y-Coordinate	340
MAX_TEMP	RTMAX
NEGTOL	RTOL%
POSTOL	RTOL%
POWER	RMAX
SIZE	1.8
SLOPE	RSMAX
Source Part	RESISTOR.Normal
TC1	RTMPL
TC2	RTMPQ
TOL_ON_OFF	ØN
VOLTAGE	RVMAX

(a) Přehled parametrů rezistoru

	A
	E SCHEMATIC1 : PAGE1
PSpiceOnly	
Reference	L1
Value	1n
CURRENT	ĽMAX
DIELECTRIC	DSMAX
DIST	FLAT
IC	LINDEF
Location X-Coordinate	470
Location Y-Coordinate	100
NEGTOL	LTOL%
POSTOL	LTOL%
SIZE	18
Source Part	INDUCTOR.Normal
TOL_ON_OFF	ON /////

(c) Přehled parametrů cívky

	A
-	E SCHEMATIC1 : PAGE1
PSpiceOnly	
Reference	U1
Value	OP27
Location X-Coordinate	700
Location Y-Coordinate	380
Source Part	OP27.Normal
TOL_ON_OFF	QN/

(e) Přehled parametrů operačního zesilovače

A E SCHEMATIC1 : PAGE1 PSpiceOnly Reference C1 Value 0.01u CURRENT CIMAX DIST FLAT IC LINDEF KNEE CBMAX Location X-Coordinate 460 Location Y-Coordinate 400 MAX_TEMP CTMAX NEGTOL CTÓL% POSTOL CTÓL% SIZE 18 SLOPE CSMAX Source Part CAPACITOR.Normal тс Ø, TOL_ON_OFF ÓN

(b) Přehled parametrů kondenzátoru

CMAX

VOLTAGE

	A
	■ SCHEMATIC1 : PAGE1
PSpiceOnly	
Reference	Q1
Value	2N5179
BiasValue Power	74.74mWV
IC_VBE	
IC_VCE	
Location X-Coordinate	550
Location Y-Coordinate	370
RCA	DEF
Source Part	2N5179.Normal
STATE	ON
TEMP	
TOL_ON_OFF	ON

(d) Přehled parametrů tranzistoru

	A
	E SCHEMATIC1 : PAGE1
PSpiceOnly	
Reference	D1
Value	1N4148
BiasValue Power	839.0uW
IC	
Location X-Coordinate	410
Location Y-Coordinate	190
RCA	DEF
Source Part	1N4148.Normal
STATE	ON
TOL_ON_OFF	ON /////

(f) Přehled parametrů diody

Obr. A.2: Přehled parametrů nejčastěji používaných prvků

# A.2 Význam měřených parametrů při analýze namáhání součástek

Význam všech parametrů, které jsou měřeny při analýze namáhání součástek. Význam parametrů byl převzat z [18].

Smoke User Interface Parameter Name	Passive Component	Maximum Operating Condition	Symbol Property Name	Symbol Smoke Parameter Name	Variable Table Default Value
CI	Capacitor	Maximum ripple	CURRENT	CIMAX	1 A
CV	Capacitor	Voltage rating	VOLTAGE	CMAX	50 V
IV	Current Supply	Max. voltage current source can withstand	VOLTAGE	VMAX	12 V
LI	Inductor	Current rating	CURRENT	LMAX	5 A
LIDC	Inductor	DC current value	CURRENT	DC_CURRE NT	
LV	Inductor	Dielectric strength	DIELECTRI C	DSMAX	300 V
PDM	Resistor	Maximum power dissipation of resistor	POWER	RMAX	0.25 W
RBA* (=1/ SLOPE)	Resistor	Slope of power dissipation vs. temperature	SLOPE	RSMAX	0.005W/ degC
RV	Resistor	Voltage Rating	VOLTAGE	RVMAX	
SLP*	Capacitor	Temperature derating slope	SLOPE of volt temperature curve	CSMAX	0.005 V/degC
TBRK*	Capacitor	Breakpoint temperature	KNEE	CBMAX	125 degC
TMAX*	Capacitor	Maximum temperature	MAX_TEMP	CTMAX	125 degC
TMAX, TB	Resistor	Maximum temperature resistor can withstand	MAX_TEMP	RTMAX	200 degC
VI	Voltage Supply	Max. current voltage source can withstand	CURRENT	IMAX	1 A

* Internal parameters not shown in user interface

Obr. A.3: Význam parametrů pasivních součástek |Převzatoz [18]|

Smoke Parameter Name and Symbol Property Name	Semiconductor Component	Maximum Operating Condition
IB	BJT	Maximum base current (A)
IC	BJT	Maximum collector current (A)
PDM	BJT	Maximum power dissipation (W)
RCA	BJT	Thermal resistance, Case-to-Ambient (degC/ W)
RJC	BJT	Thermal resistance, Junction-to-Case (degC/ W)
SBINT	BJT	Secondary breakdown intercept (A)
SBMIN	BJT	Derated percent at TJ (secondary breakdown)
SBSLP	BJT	Secondary breakdown slope
SBTSLP	BJT	Temperature derating slope (secondary breakdown)
TJ	BJT	Maximum junction temperature (degC)
VCB	BJT	Maximum collector-base voltage (V)
RJC	Varistor	Thermal resistance, Junction-to-Case (degC/ W)
тJ	Varistor	Maximum junction temperature (degC)
IFS	Zener Diode	Maximum forward current (A)
IRMX	Zener Diode	Maximum reverse current (A)
PDM	Zener Diode	Maximum power dissipation (W)
RCA	Zener Diode	Thermal resistance, Case-to-Ambient (degC/ W)
RJC	Zener Diode	Thermal resistance, Junction-to-Case (degC/ W)
TJ	Zener Diode	Maximum junction temperature (degC)

**Obr. A.4:** Význam parametrů polovodičových součástek (1. část) |Převzato z [18]|

Smoke Parameter Name and Symbol	Semiconductor	
Property Name	Component	Maximum Operating Condition
VCE	BJT	Maximum collector-emitter voltage (V)
VEB	BJT	Maximum emitter-base voltage (V)
IF	Diode	Maximum forward current (A)
PDM	Diode	Maximum power dissipation (W)
RCA	Diode	Thermal resistance, Case-to-Ambient (degC/ W)
RJC	Diode	Thermal resistance, Junction-to-Case (degC/ W)
TJ	Diode	Maximum junction temperature (degC)
VR	Diode	Maximum reverse voltage (V)
IC	IGBT	Maximum collector current (A)
IG	IGBT	Maximum gate current (A)
PDM	IGBT	Maximum Power dissipation (W)
RCA	IGBT	Thermal resistance, Case-to-Ambient (degC/ W)
RJC	IGBT	Thermal resistance, Junction-to-Case (degC/ W)
TJ	IGBT	Maximum junction temperature (degC)
VCE	IGBT	Maximum collector-emitter (V)
VCG	IGBT	Maximum collector-gate voltage (V)
VGEF	IGBT	Maximum forward gate-emitter voltage (V)
VGER	IGBT	Maximum reverse gate-emitter (V)
ID	JFET or MESFET	Maximum drain current (A)
IG	JFET or MESFET	Maximum forward gate current (A)
PDM	JFET or MESFET	Maximum power dissipation (W)
RCA	JFET or MESFET	Thermal resistance, Case-to-Ambient (degC/ W)

**Obr. A.5:** Význam parametrů polovodičových součástek (2. část) |Převzato z [18]|

Smoke Parameter	Semiconductor	
Property Name	Component	Maximum Operating Condition
RJC	JFET or MESFET	Thermal resistance, Junction-to-Case (degC/ W)
TJ	JFET or MESFET	Maximum junction temperature (degC)
VDG	JFET or MESFET	Maximum drain-gate voltage (V)
VDS	JFET or MESFET	Maximum drain-source voltage (V)
VGS	JFET or MESFET	Maximum gate-source voltage (V)
ID	MOSFET or Power MOSFET	Maximum drain current (A)
IG	MOSFET or Power MOSFET	Maximum forward gate current (A)
PDM	MOSFET or Power MOSFET	Maximum power dissipation (W)
RCA	MOSFET or Power MOSFET	Thermal resistance, Case-to-Ambient (degC/ W)
RJC	MOSFET or Power MOSFET	Thermal resistance, Junction-to-Case (degC/ W)
TJ	MOSFET or Power MOSFET	Maximum junction temperature (degC)
VDG	MOSFET or Power MOSFET	Maximum drain-gate voltage (V)
VDS	MOSFET or Power MOSFET	Maximum drain-source voltage (V)
VGSF	MOSFET or Power MOSFET	Maximum forward gate-source voltage (V)
VGSR	MOSFET or Power MOSFET	Maximum reverse gate-source voltage (V)
ITM	Varistor	Peak current (A)
RCA	Varistor	Thermal resistance, Case-to-Ambient (degC/ W)

**Obr. A.6:** Význam parametrů polovodičových součástek (3. část) |Převzato z [18]|

Smoke Parameter Name	Op Amp Component	Maximum Operating Condition
IPLUS	OpAmp	Non-inverting input current
IMINUS	OpAmp	Inverting input current
IOUT	OpAmp	Output current
VDIFF	OpAmp	Differential input voltage
VSMAX	OpAmp	Supply voltage
VSMIN	OpAmp	Minimum supply voltage
VPMAX	OpAmp	Maximum input voltage (non-inverting)
VPMIN	OpAmp	Minimum input voltage (non-inverting)
VMMAX	OpAmp	Maximum input voltage (inverting)
VMMIN	OpAmp	Minimum input voltage (inverting)

**Obr. A.7:** Význam parametrů operačních zesilovačů |Převzato z [18]|