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Abstract

This work focuses on dialogue management in human-computer interaction. 
Dialogue systems are considered an attractive topic nowadays and we may 
encounter them in many daily situations – they are in our cars, in our phones, 
and sometimes even control our homes. Conversational agents that incorporate 
principles of inter-human rationality and cooperation are highly preferred. 
Viewing a dialogue as an interaction between two intelligent entities, the Beliefs-
Desires-Intentions (BDI) architecture has been the far most popular approach to 
create such agents over the past decade. 

This work consists of three main parts that were all developed during the 
study and build upon each other. The 3 rst of them is an information management 
framework. Inspired by the Semantic Interface Language (SIL), this framework 
aims to represent detailed structure of knowledge. However, objects in this 
framework miss any implied meaning and taxonomy. We argue that objects 
receive their meaning and taxonomy within plans that deals with them, and 
that such design signi3 cantly facilitates complex operations with objects during 
cooperative dialogues, which the information management framework primarily 
targets.

The second part is a general cooperative dialogue framework called Daisy. 
It has been designed to host BDI conversational agents and provide "out of the 
box" solutions. It uses existing work in speech act theory and discourse analysis, 
namely the concepts of conversational acts and discourse segment intentions. 
The dialogue control 6 ow is then derived automatically as the result of the 
BDI interpretation cycle. The Daisy framework has been developed from scratch 
during the study and among other things features the following functionalities: 
intention detection and management, dialogue length optimization, and complex 
utterances production – hence covers all major topics in dialogue systems.

The third part of the work is an experimental "Rogerian strategy", inspired 
by the idea of the so called Rogerian therapy. The essence of this strategy is 
to not push users to say what we want to hear from them but instead give 
them reasonable amount of freedom to say what they want. An experimental 
banking domain system has been developed to 3 nd out if this strategy performs 
better than the common mixed-initiative way. It's application resulted in shorter 
dialogues compared to classical mixed-initiative management. Naturally, strong 
constraints are discussed and put on this strategy.
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Abstrakt

Práce se zaměřuje na dialogové řízení během interakce člověka s počítačem. 
Dialogové systémy jsou dnes atraktivním tématem a můžeme se s nimi setkat 
v  mnoha každodenních situacích – jsou v našich automobilech, v našich 
telefonech a někdy jimi dokonce ovládáme naše domy. Konverzační agenti, kteří 
vykazují principy mezilidské racionality a spolupráce, jsou vysoce preferovány. 
Během poslední dekády byla pro implementaci takových agentů velice populární 
architektura Beliefs-Desires-Intentions (BDI), která pohlíží na dialog jako 
na interakci dvou inteligentních entit.

Práce sestává ze tří hlavních částí, které staví jedna na druhé. První z nich je 
framework správy informací, který našel inspiraci v Semantic Interface Language 
(SIL) a je orientován na detailní reprezentaci struktury znalostí. Objekty v 
tomto frameworku však postrádají jakoukoliv implicitní sémantiku a taxonomii, 
což odůvodňujeme skutečností, že objekty získají svou sémantiku a taxonomii 
v plánech, které s nimi nakládají, a že tento přístup výrazně usnadňuje složité 
operace s objekty během kooperativního dialogu, na  nějž je náš framework 
správy informací primárně cílen.

Druhou částí naší práce je obecný framework kooperativního dialogu, 
nazvaný Daisy. Tento framework byl navržen jako běhové prostředí poskytující 
hotová řešení pro konverzační BDI agenty. Při jeho tvorbě byly použita teorie 
řečových aktů a analýza konverzace, konkrétně koncept konverzačních aktů a 
koncept záměrů v segmentech dialogu. Dialog je poté výsledkem interpretačního 
cyklu konverzačního BDI agenta. Framework byl celý vyvinut v průběhu studia 
a mimo jiné disponuje následujícími schopnostmi: rozpoznávání a správa záměrů, 
optimalizace délky dialogu a komplexní produkce promluv.

Třetí částí naší práce je experimentální "Rogeriánská strategie", inspirovaná 
tzv. Rogeriánskou terapií. Podstatou této strategie je netlačit uživatele, aby řekli, 
co chce systém slyšet, ale naopak dát jim rozumně velkou svobodu, aby řekli, co 
oni sami chtějí. Abychom ověřili, zda tato strategie účinkuje lépe než klasická 
smíšená iniciativa, vytvořili jsme experimentální bankovní systém. Použití této 
strategie vyústilo v kratší dialogy ve srovnání se smíšenou iniciativou. Samozřejmě 
klademe silná omezení na tuto strategii, která níže diskutujeme.
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Chapter 1

Introduction

Over the past ten years, we witnessed an expansion of spoken language interfaces 
in various realms in our lives. They however are not a recent invention, as they 
have already quite a long history behind. Beginning with the 1960's when the 
3 rst spoken interfaces started to emerge, they represented merely a scienti3 c 
experimentation with natural language applied to simple, constraint, and sealed 
systems. One of such systems was Elisa [Wei66] which attempted to imitate a 
human thinking by leading a "plausible" conversation governed by a complex 
system of rules. Thus, by practically not regularly modeling a dialogue, Elisa 
embodied merely a reactive entity. Later on, the 1970's were represented by an 
intensive research of new approaches to understand the 6 uent natural language. 
The basic idea was to use knowledge-based systems to analyse and understand a 
speech. Along the way, also 3 rst complex analyses of dialogues emerged, focusing 
on the structure and underlying intentions. A well known system from that era 
is SHRDLU [Win72] to move objects on a screen from one place to another, 
allowing its users to operate it using fully natural sentences.

The early 1980's in general experienced a decline of interest in speech 
interfaces, mainly due to immaturity of hardware computational capacity. The 
renascence came during break of decades with advancements of ASR technologies 
performance that in turn led to rapid improvements in speech interfaces. The 
1990's era is therefore characteristic with lots of commercial telephone-based 
dialogue services. For instance, the MIT Voyager [Zue89, Zue91] is considered as 
the 3 rst real spoken dialogue system to provide its users with detailed navigation 
of Cambridge. At the end of the decade, an improved version of it was released 
under the name JUPITER [Zue00]. Apart of that, the ATIS (Airline Travel 
Information System) [Hem90] was another important project of the 1990's on 
which many research institutes participated. Apart of providing users with 
airline information, the project also aimed to collect spontaneus utterances from 
users, annotate them, and analyse with respect to understanding the model 
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of a dialogue context. The outcome was the statistical approach to dialogue 
management (discussed in the next chapter).

Nowadays, spoken dialogue interfaces have their established position in 
situations in which safety is the main concern. For instance, we barely now can 
think of a higher class car not equipped with a spoken interface to control the 
radio, navigation, or in-car phone. Telephone-based spoken dialogue systems 
have become quite a standard. A new term "conversational agent" emerges and 
is becoming more popular. Its essence indicates that speech interfaces cease 
to serve merely as an alternative way to put commands into an application. 
Instead, conversational agents are to take over a certain level of autonomy in 
solving tasks with users, for instance by proposing alternatives if no solution can 
be found [Jok10].

Conversational agents are on the rise in one speci\  c family of applications: 
enterprise software [Les04]. Over the recent years, the demand for cost-eJ ective 
solutions to the customer service problem has increased dramatically. Deploying 
automated solutions can signi\  cantly reduce the costs of company customer 
service. By exploiting the web technologies in conjunction with computational 
linguistics, conversational agents oJ er to companies the ability to provide 
customer service much more economically than with traditional human-human 
models. In customer-facing deployments, conversational agents interact directly 
with customers to help them obtain answers to their questions. In internal-facing 
deployments, they converse with customer service representatives to train them 
and help them assist customers.

In addition to that, with the wide expansion of mobile devices, speech 
interfaces have found themselves a brand new territory of usage, and this trend 
does not seem to fade out in the foreseeable future. As even the largest graphical 
displays suJ er from relatively small dimensions, speech interfaces represent a 
reasonable and powerfull workaround to this limitation.

The spoken human-computer interaction has always been perceived as one of 
the arti3 cial intelligence disciplines. Nonetheless, it should rather be understood 
as an inter-disciplinary interest as it spans various realms, including acustics, 
fonetics, information theory, signal processing, image recognition, and heuristic 
searching, among others [Oce98].

1.1 Thesis Goals

Due to our previous success with dialogue management and dialogue systems 
[Nes07] we would like to continue in this realm. The individual goals are as 
follows:

1. analysis of state-of-the-art approaches to dialogue management,

2. proposal of an extension to the dialogue management,

3. implementation of a subset of functionality and its validation using 
simple examples, and

4. evaluation and outline of possible future work.
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Chapter 2 

Dialogue System Architecture

2.1  Language as a Communication Medium: 
Pros and Cons

Before we begin our exploration of dialogue systems, let us concern with some 
major points in using the natural language as the communication means. Among 
many pros, there are also some cons to take into account [Eck95]. Let us 3 rst 
focus on them.

• Language provides a less quicker medium for information transfer than 
any visual interface. Especially in case of larger amounts of information, 
there is no such possibility like having a "quick look at the document". If 
one searches for a particular information in a message, one needs to listen 
to the message completely because language is a serial representation of 
information.

• Information contained in a spoken message is quickly forgotten and 
usually needs to be several times "refreshed", especially if the message 
is longer or di\  cult to grasp. This is caused by the language being a 
volatile medium [Boy99, Yan96] and humans having only a short-term 
memory [Gus02, Les04]. In contrast, visual refreshing is a much quicker 
process, requiring only a quick look at those parts of a scene which are 
likely to contain the searched information.

• One of the considerable downsides of language is also that it cannot be 
ignored, unlike with a computer screen [Hur05]. A talking computer may 
create an unacceptable work environment in which other coworkers are 
annoyed. One solution might be to localize such computer along with its 
operator to a sound-proof box.
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• Being a human-exclusive communication channel, synthesized language 
will always be in direct competition with natural language. always being 
thoroughly judged against even the tiniest mistakes and factiousness 
[Oce98].

Apart of these limitations and challenges, there are also many applications 
for which speech interfaces are a much more eJ ective (or the only) means. The 
following points show some of them.

• User's both eyes and hands are fully employed with other tasks. A typical 
example is when driving a car [Tsi12, Yam07]. Making use of a spoken 
interface enables the driver to fully concentrate on the surrounding 
tra\  c, leading to improved safety of all participants on the street.

• A spoken interface has the potential to understand complex intentional 
structures, so common for inter-human communication. Not randomly 
has therefore been language used in tutoring systems, in which an 
automated agent substitutes the role of a teacher, including explanation 
of a subject and testing the pupil [Lit06, Rot07, Gri13].

• The user is a handicapped person with impaired motion or sight. In 
these cases, dialogue systems can mediate an access to information that 
would otherwise be left unreachable to such people. Also their households 
can already be controlled using voice, including lighting, television, or 
temperature [Ger10, Pér06].

• Other reasons to opt for a spoken interface include: automation of a call 
service; remote control of a service with no visual alternative; requirement 
for a user to be mobile when interacting with a service; extension of a 
mobile phone service to incorporate additional functionality.

Hence, a speech interface provides also many notable advantages. However, 
there has still one crucial question left unanswered: How is one to know if a 
speech interface is a suitable way to extend an application with? Eckert proposes 
a short but valuable guideline that helps to answer it [Eck95]:

• Usage of a speech interface should bring in some bene3 ts for the user. It 
should not be there just because it is currently "trendy" and eventually 
increases sales in a short-term horizon.

• The speech recognizer (brie6 y discussed later) should be as reliable as at 
least 95% for the user to be motivated to use the system again.

• It is very positively rewarded if users are provided with quick and non-
ambiguous responses in order for them to gain the feeling that they are a 
real part of the communication process. The system should also provide 
enough feedback for them to gain the feeling of controlling the system.

• A cooperative system should be conceived as a user-friendly and robust 
entity. The system must be well prepared to deal with unexpected or 
unusual user input.
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2.2 Dialogue System Architecture

A computer-based dialogue system can be de3 ned as an arti! cial participant 
in a dialogue [Qu02]. Without engaging in much details, the creation of such 
participant means a long journey from the initial idea to the 3 rst real dialogue. It 
also usually takes a team of highly specialized people to successfully accomplish 
and deploy the system. Tasks to solve for are, for instance, system understanding 
of user's speech, recognition of user's intentions, or production of system reaction, 
among many other things. Hence people's quali3 cation must span various realms, 
from Fourier transformation to search algorithms, and from raw data processing 
to abstract data types [Eck95].

These requirements imply that practically the only correct architecture of a 
dialogue system is a modular one. With such design, the complex task of human-
computer interaction is decomposed into smaller pieces. Modules are to an extent 
independent on each other, which enables them to be evolved individually as 
needed. Last but not least, modularity also makes the components portable to 
other applications, possibly other dialogue systems.

Assuming now a uni-modal dialogue system (with a speech interface as 
the only input and output channels), the modules that constitute the system 
elemental skills are as follows (see also Fig. 2.1):

• Automatic speech recognition (ASR). This module is to perform all steps 
between processing an utterance raw speech signal and producing an 
equivalent textual representation. Additional functionality requirements 
may be put on this module, for instance, "barge-in" capability [Kle00] or 
a minimum recognition con3 dence for a given vocabulary [Sti01]. While 
the former one is a domain-independent and user-neutral property, the 
latter one is in6 uenced by the number of users to interact with the 
system and the type of environment the system is to be used in [Pav09].

• Spoken language understanding. This module is fed in the textual 
representation from the ASR to analyze its content against the scope of a 
prede3 ned domain. This analysis is carried out until a suitable symbolic 
representation of relevant information within the sequence of words has 
been found. There are two competitive branches of analysis, grammatical 
and stochastical. The grammatical approaches [Kni01, Jok10] rely on 

Automatic
Speech

Recognition

Spoken
Language

Understanding

Dialogue
Management

Natural
Language
Generation

Speech Signal Presentation

Signal Processing
Speech Recognition

Dialogue Act Recognition
User Goal Recognition

Named Entity Recognition

Discourse Analysis
Database Query

System Action Prediction

Information Presentation
Utterance Realization

User Input System Output

Fig. 2.1  Traditional architecture to uni-modal dialogue systems; adopted from [Lee10].
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a set of rules that describe possible sequences of words and produce 
a corresponding symbolic representation. In contrast, the stochastical 
approaches [Kon09] use for this procedure either neural networks or 
Hidden Markov Models (HMMs). Both of the branches naturally have 
their bene3 ts and disadvantages. For instance, grammar-based parsers 
are transparent in representation but in6 exible as for handling non-
grammatical sentences; in contrast, stochastic parsers can deal with non-
grammatical sentences but may be quite fuzzy to properly train.

• Dialogue manager. This module is responsible for coordinating actions 
between the system, user, and eventual back-end services. It takes over 
the symbolic representation from the semantic analysis and compares it 
with the past interaction to produce a suitable reaction. Depending on 
the complexity of the manager, the resulting dialogue exhibits various 
levels of naturalness. The dialogue management module is in closer detail 
presented in the next section, and in Chapter 4.

• Natural language generation. This module receives the dialogue 
manager reaction and transforms it into a corresponding speech signal 
to convey the message to the user. The dialogue manager might have 
produced either a textual representation of its response, in which case we 
talk about a text-to-speech synthesis (TTS, see also Chapter 4), or an 
abstract symbolic representation, in which case we talk about a concept-
to-speech synthesis (CTS, see also Chapter 3).

These four modules constitute a common ground for spoken dialogue system. 
Depending on the complexity of the application domain (and other requirements 
put on the resulting dialogue system), each of the modules can be internally 
further divided into submodules. For instance, a system to perform isolated 
spoken commands is considerably simpler in terms of its internal architecture, 
than a sophisticated multi-modal agent that understands complex utterances. 
This thesis, however, does not concern with multi-modal dialogue systems and 
interaction.1

The 3 nal step in designing a dialogue system is to interconnect the modules 
with a communication channel. In the case of all components running locally, 
the blackboard approach is a su\  cient way [Wal04]. With a chunk of memory 
serving as the shared blackboard, each module can write/read information to 
and from it, modify existing information, or erase it. Presumably, there also 
exists a superior control module to coordinate operation requests with the 
blackboard. However, in the opposite situation of dialogue system components 
running distributed across a heterogeneous environment (e.g., due to diJ erent 
programming languages, computers, operating systems, number endians, etc.), 
a network-based communication is one of the options [Tur05, Sto12, Boh07, 
All01]. With a hub at the centre, each module can request another module or 
1 In essence, to extend a uni-modal dialogue system to a multi-modal one requires the basic work6 ow 

pipeline from Fig. 2.1 to be prepended with an input modality fusion module, melting partial 
input semantics down to a single compound semantic, further passed over to the dialogue manager. 
Eventually, the pipeline must also be appended with an output modality ! ssion module, splitting 
the dialogue manager reaction into messages towards output modalities. An overview of these topics 
may be found, for instance, in [Ovi02, Bui06].
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remote service to perform an operation by posting a message to the hub. The 
hub node then looks up the receiver of the message in its neighbourhood, passes 
the message on, and when the result is ready, noti3 es the sender.

2.3  Computational Models to 
Dialogue Management

In the remainder of this chapter, let us focus on the function of and approaches 
to the dialogue management module. The dialogue manager controls the overall 
interaction between the system and the user. The essential role of the dialogue 
manager may be summarized into the following intrinsic tasks [Cen04, Tra03]:

• Interpret observation (usually user input/s) in context, and update the 
internal representation of the dialogue.

• Provide context-dependent expectations for interpretation of upcoming 
responses.

• Interface with task/domain processing (e.g., database, planner, execution 
module, or other back-end subsystems) to coordinate dialogue and non-
dialogue behaviour and reasoning.

• Determine the next action of the dialogue system, based on some dialogue 
management policy (with the aim to aJ ect the mental state of the user).

Although all of these tasks are performed by virtually all dialogue managers, 
each of them is non-trivial and leads to a proliferation of diJ erent computational 
approaches. In addition, the dialogue manager accesses a number of knowledge 
sources which are sometimes collectively referred to as the "dialogue model". 
These sources may include the following types of knowledge relevant to the 
dialogue management [McT02]:

• Dialogue history. A trace of a dialogue observed and realized thus far. 
The representation should provide a basis for conceptual coherence and 
for the resolution of anaphora and ellipses.

• Task description. A representation of the solution to a particular task, 
including relevant pieces of information to be exchanged between the two 
participants.

• Domain model. A model with speci3 c information about the domain in 
question (e.g., timetable domain).

• Common knowledge model. This model contains general background 
information that contributes to the commonsense reasoning of the system. 
For instance, the Christmas Eve is to be interpreted as December 24.

• Generic model of conversational competence. This includes knowledge 
about the principles of conversational turn-taking and discourse 
obligations; for instance, an appropriate response to a request for 
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information is to supply that information or provide a reason for not 
being able to supply it.

• User model. A model to contain relatively stable information about a 
user that may be relevant to the dialogue (e.g., user's age, preferences, 
previous experiences, etc.).

Hence, the expected capabilities of the dialogue manager span a relatively 
wide range. Over the past decades, many diJ erent approaches have emerged, 
ranging from simple 3 nite state machines to Markov decision networks. However, 
their categorization has not yet been standardized. Hence, for instance, Xu et al. 
[Xu02] distinguishes among four groups of approaches: DITI (implicit dialogue 
model, implicit task model: like state-based models), DITE (implicit dialogue 
model, explicit task model: like frame-based models), DETI (explicit dialogue 
model, implicit task model), and DETE (explicit dialogue model, explicit task 
model). In contrast, Catizone et al. [Cat02] classi3 es approaches into mere three 
groups based on their underlying principles: dialogue grammars (approaches that 
put stress on the structure of dialogue, regardless of what controls the structure, 
be it a state automaton or a dialogue gaming framework), plan-based approaches 
(approaches that put stress on properly recognizing whatever intention a user may 
have, expressed or implied), and cooperative approaches (dialogue controlled by 
cooperative agents). Finally, Lee et al. [Lee10] groups approaches yet a diJ erent 
way: knowledge-based approaches (in which knowledge of the application 
domain plays the dominant role, including virtually everything between state-
based and agent-based management), data-driven approaches (various learning 
strategies working in conjunction with various Markov decision processes), and 
hybrid approaches (supervised learning of optimal dialogue strategies). Despite 
the inconsistent divisions in the literature, the most commonly recognized 
approaches are the following ones [McT02, Ngu06b, Jok10]: (1) 3 nite state 
machine approaches, (2) frame-based approaches, (3) plan-based approaches, (4) 
agent-based approaches, and (5) stochastic approaches. In the following sections, 
we will present them and discuss their properties in detail.

2.3.1 State-based Dialogue Management

Finite state models are the simplest models to base a dialogue manager on. The 
dialogue structure emerges implicitly by traversing a state transition network 
in which nodes represent system utterances and edges among nodes represent 
user's responses available at a given point in the dialogue [McT02, Chu05, Jok10]. 
The dialogue control is therefore system-driven and all the system utterances 
are predetermined. State-based approaches are adopted by most of the current 
commercial systems as they are suitable for applications in which the interaction 
is well-de3 ned and can be structured as a sequential form-3 lling task or a tree, 
preferably with yes/no or short answers [Son06, Mel05]. Apart of these "classical" 
models, probabilistic 3 nite-state automatons can also be used to learn optimal 
dialogue strategies automatically. As the design of such system is diametrically 
diJ erent from designing a "classical" state automaton, this family of approaches 
will closer be discussed below in Section 2.3.5.
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The advantage of 3 nite state models is that their background formalism is 
easy to understand and easy to implement. In this respect, designing a state-
based system is relatively straightforward and intuitive. To further facilitate 
the development, several visualization toolkits have emerged over the years. 
One of the most popular ones is the Rapid Application Developer of the CSLU 
Toolkit [Sut98] which allows the designer to model the dialogue as a 3 nite state 
automaton using a drag & drop interface.

In contrast, the main disadvantage is that a 3 nite state approach typically 
leads to "unnatural dialogues" in which information is elicited from the user as 
a sequence of questions. Also, because the dialogue is controlled by the system, 
the dialogue 6 ow is very in6 exible: the user must strictly follow the structure 
of the dialogue and answer the system questions [Wil06]. No user initiative is 
permitted, and any additional information is ignored by the system. Each attempt 
to extend the system with a repair mechanism (reactions to misunderstandings, 
clari3 cations, etc.) lead to combinatorial explosion, as new states and edges among 
them are necessary to be added, thus making the system very hard to maintain 
[Mel05]. One possible workaround is to embed another 3 nite-state network into 
one state, making the outer 3 nite state automaton easier to understand and 
maintain [Mel05]. On a related note, there is practically none but explicit way 
of con3 rming user-speci3 ed information: the user has no possibility to initiate 
the correction, provided that after her or his misrecognized turn, the system has 
transited to another state. Explicit con3 rmations are commonly perceived as 
user unfriendly and lengthy [McT02]. One possible workaround to incorporate 
user-initiated corrections may be to enable the state automaton to track one state 
back [Ara03]. That way, the system may employ the more comfortable implicit 
con3 rmation, knowing that the user will eventually return back. Last but not 
least, the state methodology leads to systems tightly bound to a selected domain. 
That is, porting a 3 nite state dialogue model to a new domain or application 
typically requires developing a brand new 3 nite state automaton. The reason is 
that 3 nite state systems lack a systematic delimitation between a task (i.e., what 
the dialogue manager wants to achieve) and the dialogue strategy (i.e., how the 
dialogue manager proceeds towards its goal) [Mel05].

2.3.2 Frame-based Dialogue Management

An extension to the state-based model has been developed to overcome the lack 
of 6 exibility. Hence, rather than building a dialogue according to a predetermined 
sequence of system utterances, the frame-based approach (sometimes also 
referred to as the "extended state automaton") takes on the analogy of a form-
3 lling (or slot-3 lling) task in which a predetermined set of information is to be 
gathered. The cornerstone here is a frame (other authors use the terms entity, 
form, or template), consisting of a set of slots (alternatively termed as items, 
! elds, or attributes). Each slot is related to a speci3 c category of information 
recognized by the system. Given the notion of a frame, the approach already 
supports more 6 exible dialogues by allowing the user to 3 ll in slots in diJ erent 
orders and diJ erent combinations. The frame is then to cumulate related pieces 



10

of information. Provided the current content of a frame, an accompanying 
interpretation mechanism is to select an action to do next. These actions 
usually cover the following situations [Mel05, Cen04]:

• no input – the user has not provided any utterance during the last turn,

• no match – the user answered but information provided does not 3 t in 
the frame (probably an "out-of-task" information),

• value missing – the mandatory slot misses a value,

• request for repetition – the user has asked for a repetition of the last 
system prompt,

• request for help – the user does not know how to answer the question 
and requires closer explanation,

• start over – the user wants to restart the task in focus, or eventually the 
whole interaction.

One of the well established representants of the so called " at frames is the 
VoiceXML platform.2 Conceived within the Voice Browser Working Group of the 
World Wide Web Consortium (W3C), VoiceXML is a markup language based on 
XML that makes use of standard web programming techniques and languages, 
including for instance, Speech Recognition Grammar Speci3 cation (SRGS), 
Speech Synthesis Markup Language (SSML), Call Control Extensible Markup 
Language (CCXML), and ECMA-Script (some VoiceXML interpreters also 
support native code calls). The platform evolved as the result of various industry 
initiatives with the aim of providing a standardized way for development and 
deployment of speech applications. Hence, virtually all of the above actions have 
been incorporated into the current de3 nition of VoiceXML. The mechanism to 
chose a suitable action (or event, in the VoiceXML terminology) is referred to as 
the Form Interpretation Algorithm (FIA). Provided the below short code snippet 
(adopted from [Jok10]) and assuming the whole flight_info form is initially 
empty, the FIA would opt for the value-missing event on the source 3 eld.

<form id="fl ight _ info">

 <fi eld name="source">

  <grammar src="airports.grxml" />

  <prompt> Where are you fl ying from? </prompt>

 </fi eld>

 <fi eld name="destination">

  <grammar src="airports.grxml" />

  <prompt> Where are you fl ying to? </prompt>

 </fi eld>

</form>

There are numerous variations to the basic 6 at frames and to the way of 
describing dialogue strategies. One of the variations is the E-form, standing 
for electronic form [God96]: slots are augmented with priorities and marked 
as mandatory or optional. E-forms have been used in the WHEELS dialogue 
2 http://www.w3.org/TR/voicexml21/
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system [Men96] to capture diJ erent user preferences about car parameters, like 
model, price, colour, etc., which usually do not have the same importance.

Another modi3 cation to the classical frame is a hierarchical frame structure 
(also sometimes referred to as frame type hierarchy or simply nested frames), 
in which one slot may be represented by a subframe. The underlying motivation 
here is that a hierarchy of frames better 3 ts the structure of real world objects 
[vZa99, Hul96]. For instance, a slot person may be closer described by a nested 
frame containing slots given_name, family_name, age, etc. The mechanism to 
chose suitable action must take into account the nested structure, which makes 
it considerably more complex. However, one of the ways to determine the next 
action may be traversing through the structure in the top-down, left-to-right 
manner. Presuming frames are composed to re6 ect the structure of information 
within a task, an acceptably natural dialogue structure emerges.

The hierarchical frame structure has further been extended by Nestorovič 
[Nes10b, Nes09] with a set of journals to keep track of interrelated actions taken 
over the course of a dialogue. The motivation for this extension was to automate 
some commonly repeating routines, mostly related to causality tracking and 
subsequent error recovery. To account for these, the system designer would 
usually have to manually watch for slot updates and trigger corresponding 
reactions within OnFilled-like event handlers. However, this manual approach 
has a signi3 cant drawback: once the application logic gets more complicated, it 
is hard to keep track of where to “jump“ next in a frame structure; there is also 
the threat of drawing in inconsistencies among these reactions. In contrast, by 
extending each frame with a journal, this procedure becomes automated. Full 
speci3 cation of the approach is attached on the CD.

The slot-3 lling approaches are far the most frequently used dialogue 
management techniques in practical systems [Pie09, vZa99, Son06, McT02, 
Cen04]. This is partly due to the frame-based management being still a 
simple enough approach with many available toolkits, for instance, VoiceXML 
(interpreted using OptimTalk 3) or Philips HDDL (interpreted using Philips 
SpeechMania 4). With using a frame-based management, we already can partly 
separate task and dialogue strategy: the task is de3 ned by a (domain-speci3 c) 
frame, whereas the strategy for 3 lling in the frame is rather domain-independent 
(recall the above FIA, for instance) [Mel05].

On the other hand, even though task and dialogue strategies can be at least 
partially separated (which is bene3 cial for portability), it is an open question as 
for how scalable the approach is [McT02]. Extending an existing system with 
another useful dialogue strategy usually requires a considerable amount of hand-
coding or may even be impossible: with handling a large number of rules or 
types of system reactions, it is di\  cult to predict all consequences of modifying 
an existing dialogue strategy [Mel05]. Another pitfall in frame-based systems 
is that they capture a dialogue as mere elicitation of several parameters in 
order to perform a task. However, dialogue is a more complex protocol, usually 
spanning multiple topics in a single conversation. In this respect, frame-based 
environments do not support mechanisms for topic detection, nor for explicit 
3 http://www.optimsys.com/en/products/application-platform-optimtalk
4 http://www.kbs.twi.tudelft.nl/People/Students/J.K.deHaan/Part%202%20Tools/06%20

SpeechMania/index.html
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representation of user goals (the goals are implicitly encoded in the structure of 
a frame).

2.3.3  Plan-based Dialogue Management

Dialogue management using a plan detection is part of complex dialogue systems 
exhibiting traces of free conversation. In the case of classical goal-oriented systems, 
individual plans basically match traversing through a state network or a frame 
structure. Such plans are of a short-term scope, with the aim to immediately 
elicit required information or immediately con3 rm uncertain information. In 
contrast, plans of a conversational agent may be considerably more abstract. For 
instance, in order to reach its objectives, the agent may adopt assertiveness as 
its long-term plan: if the user mentions that it would be nice to have X, then the 
agent assertively expresses an agreement of wanting X too [Wal01].

The key question in designing a plan-based system is the design of individual 
plans. Apart of the obvious empirical approach, the cognitive task analysis 
(CTA) [Hof98] is a much more sophisticated way. At its centre stands an expert 
in solving problems in a given domain, and an interviewer. The interviewer's 
goal is to gain information from the expert in order to clarify her or his reactions 
to observed or hypothetical situations. With a decent grain of salt, the CTA may 
be considered an analogy to 3 lling the knowledge base of an automated expert 
system.

Over the course of a dialogue, the agent changes its strategies (plans) in 
accordance with the current state of the dialogue. This involves taking into 
account not only the convergence towards agent's objectives, but also changes 
in partner's detected intentions. Hence, the plan-based dialogue management 
has its underlying idea in the real world, in which it is the listener's objective to 
identify the speaker's intentions and respond to them accordingly [Cat02]. For 
instance, in response to a customer's question of "Where are the steaks you 
advertised?", a butcher's reply of "How many do you want?" is appropriate, 
because the butcher understands the customer's underlying plan to buy the 
steaks [Coh95]. On the other hand, the plan-based approaches have been widely 
criticized for their tight dependence on the plan identi3 cation which is considered 
their weakest point, provided that this process is computationally intractable in 
the worst case [Ric01] and more importantly unreliable [Bui06]. Another down 
side is the lack of any formal basis to lean the approaches on [Wil06].

2.3.4  Agent-based Dialogue Management

The agent-based approaches to dialogue management derive from the plan-based 
methods. Its essence therefore takes over all drawbacks, including weak parts 
in properly detecting partner's intentions. However, the agent-based approach 
puts numerous additional constraints to the plan-based methodology. That 
way, for instance, the detection of unspoken intentions5 gets eliminated. From a 
certain perspective, these constraints represent the missing formal baseline. This 

5 Sometimes also referred to as hidden intentions; see the customer-butcher example in Section 2.3.3.
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baseline also includes typical agent characteristic [Zbo04, Woo00]: reactivity 
(ability to perceive the surrounding environment and react to it in a timely 
manner), pro-activity (ability to undertake goal-oriented actions in order to 
meet the objectives), sociability (ability to communicate and negotiate with 
other agents in the environment), and mobility (ability to perform actions at 
remote locations).

The essence of agent-based approaches is to view a dialogue as an interaction 
between two intelligent agents. In case of their collaboration, both of the agents 
work together to achieve a mutual understanding of the dialogue. The elemental 
cornerstone standing here behind this joint activity, is to handle classical 
dialogue phenomena such as con3 rmation or clari3 cation [Bui06]. Hence, unlike 
with all the other approaches discussed above (including plan-based ones), the 
collaborative approaches try to capture the motivation behind a dialogue and the 
mechanisms of a dialogue itself.

The critical factor in designing agent-based applications is to 3 nd the 
proper tradeoJ  between agent's reactivity and pro-activity [Woo95, Rao95]. 
Continuously reacting to changes in the environment results in ceaselessly 
changing the direction of solution; contrarily, strictly insisting on a single 
direction puts the agent in threat of getting to nowhere. Applied to the dialogue 
management, a conversational agent must exhibit a certain level of pro-activity, 
in order to recover from errors in a dialogue, as well as reactivity, in order to 
meet user's objectives. Informally speaking, the pro-activity requirement may be 
compared with the system-initiative strategy, whereas the reactivity requirement 
corresponds with user-initiative one [Ngu06a].

Obviously, agent's behaviour is governed by its goals and knowledge about 
objectives to ful3 ll. These two components constitute agent's mental state 
[Zbo04]. One of popular implementations is the Beliefs-Desires-Intentions 
(BDI) architecture [Rao95]. In the BDI model, actions in the environment aJ ect 
agent's beliefs. The agent in turn can reason about its beliefs, and thus formulate 
desires and intentions. Beliefs are how the agent perceives the environment, 
desires are how the agent would like the environment to be, and intentions are 
formulated plans of how to achieve these desires [Bra91]. Applying this again to 
the dialogue management, the three components of the BDI architecture take on 
the following responsibilities:

• Beliefs store a set of observations about a dialogue; for instance, the 
agent may believe that the user has chosen a train as the transportation 
means. This part of the architecture may therefore be perceived as the 
knowledge base of an expert system: a priori beliefs can be obtained 
from the ASR module, whereas a posteriori beliefs can be calculated 
from newly derived knowledge.

• Desires represent a collection of agent's top-level goals. These goals 
represent its motivation, and in turn in6 uence how the agent plans its 
activity. In the case of a dialogue agent, desires are commonly organized 
as a stack [Gro86]. The result of such organization is a sequence of 
individual actions that the agent needs to carry out in order to meet its 
objectives.
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• Intentions are another name for the "individual actions" (eventually also 
moves, in dialogue games terminology [Hul00]). Hence, this component 
may be seen as the storage of agent's planning procedure outcomes 
[Rao95].

Following the BDI architecture, a conversational agent must be provided 
with a means to deliberate. This promotes it to the so-called deliberative agent. 
One of the popular ways to provide such means assumes that each plan is a 
sequence of actions which together lead to the satisfaction of a particular desire. 
To following pseudo-code shows one possible realization of such deliberation 
[Woo00].

repeat {

 perceive the surrounding environment

 update the internal model of the environment

 select a desire

 compose a plan to satisfy the desire

 launch plan

}

As it can be seen, the resulting deliberative agent is governed by a cascade of 
actions enclosed in an in3 nite loop. This basic form fully su\  ces for the process 
of implementing the deliberation of a monolithic conversational agent. Eventual 
modi3 cation to the algorithm and underlying parent frameworks are overviewed, 
for instance, in [Zbo04].

One of the widely known agent-based collaborative dialogue managers is 
COLLAGEN (standing for COLLaborative AGENt) [Ric01]. It represents 
an application-independent platform to provide routine tools for dialogue 
management. Hence, when narrowed to a speci3 c domain (by being supplied 
with a set of domain-speci3 c "recipes"), it performs desire recognition, tracks the 
focus of attention, and maintains an "agenda" of actions that could satisfy the 
desire. The underlying representation of beliefs and intentions is based on the 
SharedPlan formalism by Grosz and Kraus [Gro96].

The SPA (standing for Smart Personal Assistant) [Ngu06b] is another 
agent-based dialogue system to interact with a mobile device a multimodal 
way. Covering two conversational domains (e-mail and calendar), SPA has been 
designed as a multi-agent system. The central agent, i.e. the dialogue agent, 
maintains the conversational context and other domain-speci3c knowledge as 
its internal beliefs. The upcoming dialogue processing is done automatically as 
the result of the BDI interpreter selecting and executing plans according to the 
current state of beliefs. Each such plan is a modular unit, handling either a 
discourse-level goal (such as recognizing the user’s intention) or a domain-level 
aspect (such as performing a domain task). Thus, there is a separation between 
discourse-level and domain-level plans, which enables to reuse discourse-level 
plans also in additional domains in SPA, or applications other than SPA.

JASPIS [Tur05, Tur03] is another agent-based platform. Unlike with the 
previous two, JASPIS represents a decentralized approach to creating dialogue 
systems, with individual components running and communicating remotely. 
The architecture requires three types of components: agents, evaluators, and 
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managers. Each agent specializes itself in a narrowed problem solving, such 
as speech output presentation or various dialogue situations handling (ideally 
one situation per agent; for instance, there may be multiple agents to propose 
diJ erent ways to present a particular system response). Evaluators are used to 
determine which agents are suitable for an observed situation (for instance, given 
a system response, which presentation agent 3 ts user's priorities best). Finally, 
managers are used for execution and overall coordination of actions (for instance, 
sending the system response to the TTS module).

Hence as obvious from the discussion, agent-based approach is bene3 cial 
in that it provides a way for clearly separing what the system wants to achieve 
from how it really can achieve it. In other words, it is possible to extract general 
domain-independent behaviour as agent's initial knowledge base, this way fully 
supporting easier maintenance and portability to other domains. In addition, the 
agent-based approach also enables for dealing with more complex dialogues which 
may involve collaboration, problem solving, negotiation, and so on, either towards 
the user or among subagents in a multi-agent system. However, a disadvantage 
is that the agent-based approaches require much more complex resources and 
processing than any other way to dialogue management.

2.3.5  Probabilistic Dialogue Management

All of the above methodologies accounted for the traditional approach using a 
set of handcrafted rules, proposed by a dialogue designer on the basis of various 
decisions. For instance, to deal with potential ASR misrecognitions, the designer 
had to consider whether and when to con3 rm user's input (along with whether 
the ASR con3 dence score should be the in6 uential factor) [Bui06]. Such expert 
design is naturally based on experience and commonly agreed guidelines. It 
also results in an iterative process of designing and testing until the optimal 
system has been produced [Eck95]. We will not investigate in detail here what 
the criterium of optimality is. However, the most straightforward criterium is 
the overall user satisfaction, although there may be other conditions depending 
on the purpose and nature of the resulting speech application (e.g., in a military 
application, the criterium of optimality might be the task success rate [Sti01]).

In contrast to the expert way of designing, the family of probabilistic 
approaches represents an eJ ort to automate the process. Apart of that, it also 
aims to overcome the limitations observed in the state-based and frame-based 
approaches. The essence here is to use a corpus of dialogues to extract the 
necessary decisions of what to do next at each point in a task. One of the 
popular ways makes use of the reinforcement learning (RL) in conjunction with 
Markov Decision Processes (MDPs) [Hen08, Tsi12]. With the RL, the idea is 
to specify priorities for the system in terms of a real-valued reward function 
(or utility function); optimization then decides what action to take in a given 
state in order to maximize the immediate reward (or utility), as well as the total 
return associated with actions in the remainder of a dialogue [Jok10]. In other 
words, the optimal dialogue policy consists of choosing the best action at each 
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state in a dialogue in order to achieve a given success metric, such as maximum 
user satisfaction, or a successful and e\  cient completion of a task.

The underlying MDP carries the minimal and unambiguous information 
to represent a dialogue. Similarly as with classical state automatons, increasing 
amount of information makes the MDP grow exponentially. In each state of the 
MDP, the system has generally several choices to pick among. These choices 
may, for instance, correspond to diJ erent dialogue strategies. More formally, the 
underlying MDP can be described as follows [Jok10]:

• S = { s
i
 } is a set of system states, each representing one point in a 

dialogue,

• A = { a
i
 } is a collective set of actions that the system can take,

• P = P( s
i
 | s

i-1
 , a

j
 ) is a probability function of transiting from state s

i-1
 to 

state s
i
 by taking action a

j
 ,

• R = R( s
i
 , a

j
 ) is an immediate reward that is associated with taking a 

particular action at a given state.

In general, a dialogue conducted by a probabilistic manager begins in a state 
with all relevant information unknown (e.g., in case of a timetable domain, place 
of origin and destination, time of departure and arrival, etc.) Over the course 
of a dialogue, some of these attributes receive values which is re6 ected by the 
manager traversing through the dialogue state space, S. The transition from the 
current state s

i
 to the next state s

i+1
 is determined by the manager taking action 

a
j
 ∈ A as a response to user's last action observed, and possibly other factors. 

For instance, these actions may cover questioning the user about the value of an 
unknown attribute, asking for validation of some known attributes, or clarifying 
some ambiguities or clashes among attributes [Jok10]. Eventually, the dialogue 
manager reaches the 3 nal state in which all relevant attributes are known and it 
can successfully query a database for corresponding results.

To determine which action is optimal in each state, the transitions 
between states must be assigned rewards, R( s

i
 , a

j
 ). The rewards should re6 ect 

consequences of taking an action. This reward may therefore be in6 uenced either 
by some general principles (e.g., taking an action towards a 3 nal state results in 
a large positive reward), or by user feedback (e.g., user satisfaction as in [Wal98]). 
Arguably, by always taking the optimal action, the dialogue manager produces 
an optimal dialogue, 3 nished with the optimal return (sum of rewards). During 
the phase of "learning", the RL is used to systematically explore the choices 
and compute the best policy for action selection based on rewards associated 
with each state transition, using empirical data such as interactions of real of 
simulated users with the system [Jok10]. Hence this phase of system design 
typically requires hundreds of dialogues to learn the optimal policy. In the ideal 
case, all of the possibilities have been explored the same number of times in the 
training corpora [Fil05, Lit02].

Once trained, there is always an optimal action to take in each state. 
Assuming state s

i
  , the optimal action a

opt
 contributes to the 3 nal return, Q, as 

follows [Bel57]:
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where γ ∈ 〈0;1〉 is a coe\  cient to suppress or emphasize the weight of rewards 
received in the remainder of a dialogue.

One of the well known usages of the probabilistic approach is the NJFun 
dialogue system [Sin02], providing its users with information on entertainment in 
New Jersey. The system stores information about the state of a dialogue in the 
form of a 14-tuple feature vector. In this vector, one feature indicates if the system 
has greeted the user, and one feature informs which attribute is currently being 
elicited (entertainment type, place, or time); each of these attributes subsequently 
occupies four of the remaining features in the vector (attribute value, ASR 
con3 dence, number of attempts to elicit it, and strategy used to elicit it). Each 
of the underlying MDP states is fed in this attribute vector using another kind 
of vector, this time with seven features: system greeting, pointer to an attribute 
attempted to elicit, ASR con3 dence, success of elicitation, number of elicitation 
attempts, strategy used to elicit the attribute, and indicator of corrections of 
the attribute value by the user. Considering that each of the attributes in this 
7-tuple vector takes on a discrete value, the underlying MDP should consist of 
960 unique states. However, as many con3 gurations are invalid (for instance, if 
the system has not yet greeted, any other actions are forbidden), the 3 nal MDP 
consists of mere 42 states. In each of them, the system determines between two 
elicitation strategies and two con3 rmation strategies of a particular information. 
The optimal dialogue policy was established in the MDP by conducting 311 
dialogues with real users who evaluated their interactions as either "good" or 
"bad", this way contributing to the reward function determination.

The probabilistic approach has a signi3 cant bene3 t in that it does not 
require strong expertise in dialogue management – the "widely accepted" way 
of dialogue evolves automatically with enough training data. However, there are 
also several downsides accompanying this approach. The most notable one is 
that a trained dialogue manager is not portable to other domains and is also not 
open to eventual extensions. Hence, there is no other possibility to incorporate 
changes to an existing domain but retraining the manager. The other drawback 
is that the number of training dialogues should be great, and each MDP state 
should be explored ideally the same number of times. If these conditions are not 
met, the resulting manager is likely to be unprecise as for the optimal policy. 
Another important aspect is the MDP state space design. On one hand, it must 
be su\  ciently rich in order to support for learning of accurate model, however 
on the other hand, it must be maximally compact to keep the number of states 
low [Jok10]. Is the number of states high, the policy might have not been trained 
thoroughly as some states or transitions might have been visited insu\  cient 
number of times. Hence, all of these restrictions make the probabilistic approach 
an ideal choice only for sealed dialogue systems with minimal to no future 
updates.
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2.4 Summary

Dialogue systems are considered quite an appealing topic nowadays. This 
chapter has therefore aimed to brie6 y introduce the realm, and overview the 
widely established principles. After arguing for and against the use of speech 
interfaces, we brie6 y outlined the structure of a uni-modal, voice-controlled 
system. Then, we focused on the dialogue management module and discussed 
the "mainstream" approaches to how it can internally be accomplished. That is, 
our discussion has not covered some less popular approaches, as for instance, the 
script-based management (represented, for instance, by the Arti3 cial Intelligence 
Markup Language, AIML; not included as this family of approaches does not 
construct a proper inner model of a dialogue – instead, it leads to mere reactive 
agents, usually used only as blind chatting bots), or information state-based 
management [Tra03] (not included as its extended and more popular variation 
is the probabilistic dialogue management, discussed in this chapter). We also 
could see that individual approaches are not strictly distinct, but rather overlap 
in some aspects. For instance, the E-form stores some additional information 
in attempt to push the resulting frame-based manager towards an agent. The 
agent-based approach in turn overlaps with the probabilistic approach in that 
the MDP may be viewed as the agent's fully expanded deliberation space, 
hence something that a rational agent constructs dynamically as it explores the 
surrounding environment.

With such a number of diJ erent approaches to dialogue management, it is 
reasonable to ask which one is the best for a particular application. Obviously, the 
tractable complexity of the task model, dialogue model, and domain application 
increases from 3 nite state automatons towards agent-based approaches. 
Conversational agents that incorporate principles of inter-human rationality and 
cooperation would seem to be the obvious choice. Certainly, for applications 
that involve cooperative problem solving with negotiated solutions, the simpler 
types of dialogue control are not su\  cient [Bui06]. On the other hand, for simple 
applications and for constrained subtasks with some applications, more basic 
techniques such as some kind of frames may be appropriate.

However, the main point of our discussion in this chapter has been to provide 
merely a comprehensive overview of approaches, shortlisted as possible candidates 
for our work (presented in Chapter 4, and evaluated in Chapter 5). This chapter 
has not aimed to provide an exhaustive coverage of the whole matters, hence the 
reader has been currently left puzzled with terms like dialogue move, dialogue 
act, dialogue strategy, or dialogue stack – they all will be explained along the 
way of describing our work in Chapter 4, where also necessary theories on 
dialogue modelling will be provided.
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Chapter 3 

Semantic Interface Language: 
De$ nition & Applications

The Semantic Interface Language (SIL) [McG91] is a recognizable contribution to 
the realm of dialogue systems. Developed as part of the SUNDIAL project1[Fra93], 
SIL was originally intended only as a means to describe communication 
between the parser and the dialogue manager. Later on, it turned out that 
it is well possible to use it as a formalism to represent an arbitrary part of a 
natural environment by using a comprehensive symbolic notation. This chapter 
introduces ideas behind SIL, starting with de3 nitions of basic concepts, covering 
representation of user's utterances (the so called Utterance Field Objects, abbr. 
"UFOs"), and heading towards complex principles of dialogue context processing. 
An exhaustive description of the SIL framework and its application in the realm 
of dialogue systems may then be found in [Eck95].

3.1  De$ nition

3.1.1 CoreSIL

As announced above, the SIL formalism will 3 rst be considered from the lowest 
level point of view, the so called SILdef concepts. A SILdef concept represents 
a certain object or event in possible use, detailing its structure and eventual 
operations on it. A set of these (interconnected) SILdef concepts then constitute 
a semantic network-like structure, representing a static real world environment 
model. More formally in the following de3 nition.

De! nition 3.1 (SILdef concept)
Let C be a set of SILdef concepts. A SILdef concept C ∈ C is an ordered tripple 
C = ( V, E, S ), where V ∈ C ∪ � is a parent concept, E = { E

i
 } is a set of 

1 Speech UNderstading in DIALogue
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role edges, and S = { S
i
 } is a set of relations on C. Each role edge E

i
 ∈ E is an 

ordered pair E
i
 = ( r

i
, C

j
 ), where r

i
 is a role in C. □

Based on the de3 nition, we can characterize a SILdef concept as follows:

• It typi3 es a real world object (or event; for simplicity reasons, in the 
remainder of the text we will refer to any entity as an object).

• The structure of an object is described and further accessible via roles. 
These in turn are described using SILdef concepts, making up a hierarchy 
of nested objects.

• It derives from a parent SILdef concept, inherriting all of its properties. 
These properties involve not only roles but also a certain semantical 
meaning (see Fig. 3.1), that may be used for more elaborated processing, 
e.g., for utterance production [You92].

• Each possible operation on a given object is expressed using a relation 
(parametrized with roles and their eventual surroundings).

The de3 nition further implies that given a non-empty set of SILdef concepts 
C, there always exists a root concept from which all other concepts in the 
structure infer. To avoid ambiguity, we will silently assume there exists exactly 
a single root concept C

0
 = ( �, E

0
, S

0
 ).

Example 3.1  (SILdef concepts)
To illustrate the decomposition of the real environment into a set of SILdef 
concepts, let us model a simple time point information, fully speci3 ed by its 

Things Objects Living Natural persons
Corporate body

Non-living . . .
Application-speci3 c

Properties Number-related
Place-related
Time-related
Dialogue-related
Application-speci3 c

Events State . . .

Existence . . .

Action Mental Want
Believe
Doubt

AJ ective Say
Use
OJ er

Motion Location changing
Departure
Arrival

Fig. 3.1  A small excerpt of a possible system of concepts to represent the real world; adopted 
from [Eck95].
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particular hour and minute. The corresponding SILdef concept of type C
time_point

 
is appropriate to inherit from the built-in C

time_property
 parent concept (see Fig. 

3.1), not only to gain all of its "prefabricated" common characteristics, but also 
to facilitate elliptical utterances resolving (covered later). The hour and minute 
speci3 cs are modelled using edges E

1
 and E

2
, leading to nested SILdef concepts 

C
hour

 and C
minute

, respectively, i.e. E
1
 = ( thehour , C

hour
 ), E

2
 = ( theminute , 

C
minute

 ). We will leave the set of relations empty as so far we do not need to 
handle C

time_point
 concept any way.

1 2
( ,  { , },   )
( ,

{ ( , ),  ( , ) },

)

time_point

time_property

hour minute

C V E E

C

thehour C theminute C

= ∅
=

∅

To stick to the SIL notation throughout this text, each role will be pre3 xed with 
the article "the", whereas the concept names themselves will miss this pre3 x. □

Next, let us de3 ne several projection functions on SILdef concepts to extract 
their relevant components.

De! nition 3.2  (Projection functions)
Let C = ( V, E, S ) be a SILdef concept. Then, let V(C) = V be the parent 
concept, E(C) = E be the set of role edges, and S(C) = S be the set of relations 
de3 ned on C. Let further hold

  

*
*

*
*

,     if ( )  ( ) ( ( ))( )    
,     otherwise  ( )

,     if ( )  ( ( ))( )    
,     otherwise  

V CE C E V C
E C

E C

V CV V C
V C

C

 ≠ ∅∪= 


 ≠ ∅= 
  □

There is a special group of SILdef concepts to bear elemental information, 
with no additional subinformation embedded. An example may be any of the 
built-in SILdef concepts to hold atomic information, i.e. C

integer
, C

char
, or C

string
, 

among others. These concepts derive from the C
data

 super-concept, and their 
atomic information is accessible via the value role. To eliminate ambiguities, we 
again will silently assume that if there is an elemental concept, it contains no 
additional roles, as in the following (rather informal) de3 nition.

De! nition 3.3 (Elemental concepts)
We say C ∈ C is an elemental SILdef concept, if V*(C) = C

data
 ∧ E*(C) = �. □

Example 3.2 (SILdef concepts continued)
To 3 nish with the time point example, let us de3 ne both C

hour
 and C

minute
 as 

elemental concepts, deriving from the built-in C
integer

:

  C
hour

 = ( C
integer

, �, � ) ,  C
minute

 = ( C
integer

, �, � ) . □
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: 17
:

: 17

: :

: 8

:

: :

: 30

id tp
type time_point

id hour

thehour type hour

value

id mins17

theminutes type minutes

value

 
 
  
  
  
    

  
  
  
   

Fig. 3.2  SIL structure representing a time point of 8:30.

3.1.2  SIL Expressions

The above created set of SILdef concepts can be considered a passive, static 
information skeleton, of which any part may be "instantiated", resulting in a so 
called SIL expression. The following de3 nition formally describes such instances.

De! nition 3.4  (SIL expressions)
A SIL expression of an instance of the SILdef concept C is an ordered triple 
I = I(C) = ( D, C, E ), where D is a unique identi3 er and E = { E

i
 } is a set of 

edges. Each edge is an ordered pair E
i
 = ( r

i
, I

j
 ) representing a relationship with 

a (nested) SIL expression I(C
j
) via the r

i
 role. □

Let us make several observations regarding SIL expressions.

• Each instance I = I(C) must comply with its underlying SILdef concept 
C. In other words, roles of I must be a subset of roles of C.

• It is reasonable that each of its edges leads to a unique instance.

• The instance may be subjected projection functions V(.), E(.), S(.), E*(.), 
and V*(.) (see De3 nition 3.2) in such a way that these are applied to the 
underlying concept C.

• SIL expressions are 3 nite because their leaves are instances of elemental 
concepts, containing no further roles.

• Instance uniqueness is guaranteed by its identi3 er. From the technical 
point of view, identi3 ers are best approached by direct memory pointers.

Example 3.3 (SIL expressions)
Pondering Fig. 3.2, we may recognize tp17, hour17, and mins17 as particular 
identi3 ers for instances of the SILdef concepts C

time_point
, C

hour
, and C

minute
, 

respectively. By no means we say, however, that the instance time17 is always 
to have subinstances of both C

hour
 and C

minute
. According to De3 nition 3.4, any 

concept of C
time_point

 is legally instantiated even if it has none of the possible 
roles. As we will see later, any eventual ambiguity caused by a missing role may 
be resolved by supplying default values. □
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De! nition 3.5 (SIL expression projection functions)
Let I

i
 = ( D, C, E ) be a SIL expression. Instance I

j
 of role r

j
 can be extracted 

from I
i
 as I

j
 = Π( I

i
 , [r

i
] ) if it holds

  ,     if ( ) ( , )
( ,[ ])    

  ,     otherwise
j j i j j j

i i

I E E I E r I
I r

error

 ∈ ∧ =
Π = 



A path Π( I
i
, [r1, …, r

k
] ) from instance I

i
 leads over roles r1, …, r

k
 to a single 

SIL expression (accessible from within I
i
 ):

1 2 2 1

  ,     if 0
( ,[ , ,..., ])      ( ,[ ,..., ]) ,     if : ( ,[ ])

  ,     otherwise

i

i k j k j j i

I k
I r r r I r r I I I r

error

 =


Π = Π ∃ = Π



We furthermore say I
i
 is a parent of the SIL expression I

j
 if:

∃r
i
: Π( I

i
, [r

i
] ) = I

j
 .

We say I
i
 is the root of the SIL expression I

j
 if:

∀I
j
 ∃r

1
, …, r

k
: Π( I

i
, [r

1
, …, r

k
] ) = I

j
 .

Finally, let D(I) = D be a projection function to extract instance identi3 er. □

Example 3.4 (SIL expression projection functions)
Given the below SIL expression, we may access its particular instances as follows:

: 17
:

: 17
:

: 17
: : :

: 8

id time
type time

id tp
type time_point

id hour
thetimepoint thehour type hour

value

 
 
  
  
   
   
       

Π( time17, [thetimepoint] ) = tp17 , and 
Π( time17, [thetimepoint, thehour, value] ) = Π( tp17, [thehour, value] ) = 8 . □

There is an interesting property in the SIL formalism called the local closure 
(lokale Abgeschlossenheit, in German). It forbids two unrelated SIL expressions 
(e.g., user's two utterances) to have a common part. However, this reasonable 
constraint has to be breached as soon as inevitably recurrent structures are 
brought into play (covered later).

De! nition 3.6 (Local closure)
Let I be the root of a SIL expression. Also, let

1

*
1,...,

( ) ( ( ,[ ,..., ]) )
k

i kd d
D I D I r r= ∪ Π

be the set of all identi3 ers used in I. Then I is locally closed if it holds

   ∀I', D(I') ∉ D*(I): D*(I) ∩ D*(I') = � . □
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Before exemplifying, let us focus on another aspect of the SIL formalism, 
particularly on SILdef relations. Relations represent knowledge on how de3 ned 
concepts depend on each other, and eventually how new knowledge can be 
inferred from existing one. Let us therefore summarize the characteristics of this 
component in the following, rather informal de3 nition (more formally in [Eck95]).

De! nition 3.7 (Relations)
An n-tuple relation S

i
(x

1
, …, x

n
) = S

i
 ∈ S(C) is a projection χ such that χ: X

1
 × 

… × X
n
 → { fail, success }, where X

i
 is the domain of x

i
 for i ∈ { 1, …, n }. □

Let us make several observations regarding relations:

• Each parameter in the S
i
 relation takes on the form of a path.

• Mutual parameters are usually in a logical relationship rather than in 
a functional relationship (i.e., they are best approached and further 
handled using a Prolog-based interpretation system).

• The relation S
i
 is a local property of the concept C. The relation S

i
 is 

evaluated by binding given parameters with instances accessible from 
within the instance I(C) that triggered it.

• The application of S
i
 leads either to a "fail" or "success". The only side 

eJ ect of a "successful" application may be newly bound variables (which 
eventually may lead to instantiating inferred knowledge).

Relations are the building block of any (dialogue) system that is to incorporate 
the SIL framework as a means for its knowledge representation.

Example 3.5 (Relations)
Let us extend the C

time_point
 concept de3 ned in Section 3.1 with a relation 

S
hour_minute_time

 that composes the two currently separate pieces of information 
(hour and time) into a single integer as: time = 100 · hours + minutes. By 
a\  liating S

hour_minute_time
 to C

time_point
, we make it accessible for any other 

concept that infers from C
time_point

. The relation synopsis may be de3 ned as 
S

hour_minute_time
( Time, Hours, Minutes ). If triggered on instance tp17 from Fig. 

3.2 with parameters taking on the form

S
hour_minute_time

 ( [ tp17, cvalue ] , [ hour17, value ] , [ minute17, value ] ) ,

its application is "successful" with the new cvalue role of 830 being inferred (Fig. 
3.3). For completeness sake, let us add that the cvalue role has been inherited 
from the parent C

time_property
 built-in concept. Thus, although the relation had the 

Time variable unbound at the beginning, it was capable to determine its value 
given the remaining bound variables Hours and Minutes. In addition, given the 
Prolog-like notion of relations, the natural result of applying S

hour_minute_time
 to 

tp17 in Fig. 3.3 yields the same SIL expression and the relation 3 nishes with 
"success". Analogously, it is possible to use S

hour_minute_time
 in the "reverse" way by 

binding the Time variable, and asking about the Hours and Minutes variables. 
Thus, each relation can be considered an implementation of a set of functions. □



25

3.2 Application 1: Utterance Semantics

3.2.1  Utterance Field Objects

SIL is capable to describe not only grammatically correct utterances but also 
spontaneous, grammatically incorrect ones. In other words, it is possible to extract 
and represent merely those units of user's utterance that can be considered 
most consistent. The utterance can then be represented as a concatenation of 
these partial pieces. We therefore introduce the so called utterance ! eld objects 
(UFOs) which can cover a great part of spontaneous speech phenomenons, and 
multiple UFOs to express the semantics of the whole utterance.

De! nition 3.8 (Multiple UFO, MUFO)
Let I

1
, …, I

n
 be roots of SIL expressions and D

1
, …, D

n
 identi3 ers. A multiple 

utterance 3 eld object (MUFO) is

1
1

1

: : character_sequence
: ,

:

. . .

: : character_sequence
:

:
n

n

n

syntax string

semantics I

U

syntax string
D

semantics I

      
     

 =  
            

D

where I
i
 is the semantical representation of character_sequence

i
. A MUFO with 

n = 1 is denoted as a single utterance 3 eld object (UFO). □

An example of MUFO that ful3 lls this de3 nition is shown in Fig. 3.4.
A dedicated position in the SIL formalism have co-referential expressions, as 

in the fractional utterance "the train, which arrives in Erlangen at ! ve, departs 
from Schwandorf". Obviously, the nested sentence "[train,] which arrives in 
Erlangen at ! ve" extends properties of the train introduced in the primary 
sentence. Provided that the parser can determine the train object once it has 
encountered the conjunction "which", the utterance is described as shown in Fig. 
3.5. This expression is essentially a composition of two separate SIL expressions, 
each covering one of the two sentences in the utterance [Eck95]. The fact that 
the primary and referred train objects are the same is caught by co-indexing 
both of them by the same identi3 er, trn16.

The most notable point in describing co-references is that their resulting SIL 
expressions are cyclic; for instance, Π(go16, [thevehicle]) = trn16 = Π(trn16, 
[thedesc, thevehicle, thedesc, thevehicle]). This observation formally impacts 

17 , : , : 830
: : 17 , : , : 8

: : 17 , : , : 30

id tp type time_point cvalue

thehour id hour type hour value

theminutes id mins type minutes value

 
    

    

:         

          

          

Fig. 3.3  SIL expression time point 8:30 with cvalue property de3 ned.
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some techniques presented thus far (e.g., an expression is now to have a set of 
parents, instead of merely a single one). Elaboration of these impacts is beyond 
the scope of this text and interested reader may refer to [Eck95] for more details.

3.2.2 Informational Content

Once we have the semantical representation of user's utterance conveyed by a 
sequence of UFOs, we need to spot and extract those pieces of information that 
are suitable for a given task or domain. In other words, we need to 3 nd the 
contribution of user's utterance to the problem currently in question.

While this issue is sometimes considered already at lower processing phases 
of the semantical interpretation, it turns out that this may not be the correct 
approach, given that certain information conveyed in the natural speech may get 
lost (especially as for partial UFOs). Therefore by taking this approach, user's 
utterance may result in supplying no relevant information. This is the immediate 
cause of all eventual contexts to put this utterance into, be already disposed.

It is therefore introduced the term eigen information (eigentliche Information, 
in German) that delimits relevant pieces within the SIL structure. These pieces 
are projected onto roles of a special-purpose SILdef concept that mediates the 
transfer of them from the input semantics to the dialogue context (using transport 
relations, e.g., S

equality
). More formally in the following two de3 nitions.

De! nition 3.9  (Eigen information, A-parameter)
The set of application-relevant values, A-parameters, is de3 ned as a set of roles 
ψ

1
, …, ψ

n
 of the concept C

ψ
 ∈ C, along with C

ψ
-a\  liated relations to determine 

their corresponding values. These resulting values are then holders of eigen 
information in a particular domain. □

De! nition 3.10 (Eigen information extraction)
Let I be a SIL-expression and I

ψ
 = I(C

ψ
) = Π(I, [r

1
, …, r

j
]) be an instance 

accessible from within I. Then eigen information contained in I can be retrieved 
as ψ(I) = ∪

(i)
〈 ψ

i
, Π(I

ψ
, ψ

i
) 〉. □

Obviously, ψ(I) represents the set of parameter-value pairs. In the special 
case of I containing no instance of C

ψ
, the set ψ(I) is empty, implying I contains 

no eigen information. Last but not least, the A-parameters themselves can be 
used to measure the understanding capabilities of a given system.

3.3 Application 2: Dialogue Context

Up to this point, we have concerned ourselves with de3 ning the SIL formalism 
from the semantic information representation point of view. Beginning with this 
section, it will be shown how this general framework may be used to process 
sequential user's utterances. We will 3 rst start with merely a single fully speci! ed 
utterance, i.e. an utterance that is not ambiguous and whose content can thus 
be clearly determined. Afterwards, we will show how a context may be modeled, 
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1

2

: : to  Erlangen

: 17
:

: 17:
:

: 17
: : : :

: Erlangen

:

:

syntax string

id go
type go

id locufo
type location

id city
semantics thegoal thecity type city

value
U

syntax s

ufo

=

                               
: at eight o'clock

: 17
:

: 17
:

: 17
: : : :

: 8

tring

id time
type time

id hp
type hour_point

id hour
semantics thehourpoint thecity type hour

value










                                         





















Fig. 3.4  MUFO example.

: : the train, which arrives in Erlangen at five, departs from Schwandorf ,

: 16 ,   :
: 16 ,   :

: 116 ,   :
: : 16

: : :

syntax string

id go type go
id trn type train

id go type go
thevehicle id trn

U
semantics thevehicle thedesc

=

  

 
: Erlangen

: 500

: Schwandorf

thegoal

thegoaltime

thesource

 
                                            

Fig. 3.5  SIL co-referential expression.

: 43 ,   :
: : 43 ,   :  ,   : Erlangen

: 43 ,   :
: : 43 ,   :  ,   : Erlan

( [ 43],  [ 43, , ] )
inverse

id go type go
thegoal id loc type location value

id go type go
thegoal id loc type location value

S go go thejourney thejourneyevent

 
    

+

↓

gen

: 43 ,   :
:

: : 43 ,   : 43

: 43 ,   :

( [ 43, , , ],  [ 43, ] )
equality

id sjn type single_journey
thejourney

thejourneyevent id go type go

id go type go
thegoal

S go thejourney thearrival theplace go thegoal

 
            

+

↓

: : 43 ,   :  ,   : Erlangen

: 43 ,   :
: : 43 ,   : 43

: 43 ,   :: :
: 43

id loc type location value

id sjn type single_journey
thejourneyevent id go type go

id arr type arrivalthejourney thearrival
theplace loc


               






 
 
 

Fig. 3.6   S
inverse

 relation application example.
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given a sequence of user's utterances. Finally, we will return to the ambiguous 
utterances problem and revise our approaches to accommodate the solution. At 
the end of this chapter, our investigation will therefore result into a representation 
of a general (collaborative) dialogue context.

3.3.1  Elaborating User's Utterance Semantics

As outlined above, let us 3 rst start with showing how a single utterance needs to 
be handled in order for it to be further processable in the dialogue context scale. 
The approach presented here uses elemental and locally operating relations, 
de3 ned and exempli3 ed in Section 3.1.2. To describe the approach, let us 3 rst 
categorize each relation, based on its purpose in the system:

• Necessary processing relation represents an axiom or theorem valid 
for a given environment. For instance, time information of seventeen 
ten may be generally split into hour and minute values (and this way 
C

time_property
 upcasted to C

time_point
), and vice versa (downcasting; see also 

Fig. 3.3).

{ }17 17 : 10
10

hourseventeen ten            
minute

=⇔ ⇔=

• Default-value relation supplies a default value for a particular unde3 ned 
concept role, reducing the degree of freedom of an underspeci3 ed object. 
In other words, this kind of relation may be considered describing 
common knowledge. For instance, time information of thirteen o'clock 
may be explained by the system as a demand to set minutes = 0.

{ }13 13 : 00
0

hourthirteen            
minute

=⇔ ⇔=

• Identi! cation relation (S
equality

) is to extend one object with another by 
establishing a reference to it. In the following example, the identi3 cation 
relation assures a propagation of the built-in thegoal role value to the 
thearrival custom role.

          

: 33 ,   :
: : 33 ,   :  ,   : Erlangen

( [ 33, , , ],  [ 33, ] )

: 33 ,   :
: : 33 ,   :  ,

equality

id go type go
thegoal id loc type location value

S go thejourney thearrival theplace go thegoal

id go type go
thegoal id loc type location

 
    

+

↓

  : Erlangen
: 33 ,   :

: : 33 ,   ::
: 33

value

id sjn type single_journey
thejourney id arr type arrivalthearrival

theplace loc

 
               
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• Recurrent identi! cation relation (S
inverse

) is to create cyclic structures, 
required to properly represent utterances with cross- and co-references. 
The example in Fig. 3.6 shows an application of the S

inverse
 relation to 

create a co-reference (middle structure), followed by application of the 
above already shown S

equality
 relation (bottommost structure).

These kinds of relations in fact describe the whole interpretation mechanism. 
Their particular order in the list represents their importance in the interpretation 
frame (thus for instance, no default-value relation must be used as long as there 
are necessary relations 3 red).

De! nition 3.11 (Inferrention)
Let C be a SILdef concept hierarchy and I = I(C) an instance of concept C ∈ C. 
The inferential step I → I' is achieved using relation S ∈ S(C) whose side eJ ect 
causes a role from I to be bound (I' ⊃ I). In addition, we say I is maximally 
inferred if ∀S ∈ S(C): I → I. We say I* is the maximal interpretation of I if I* is 
maximally inferred. □

Apparently, for each SIL-expression I = I(C) there exists its maximal 
interpretation I* resulting from the application of relations S

1
, …, S

n
 such that

1 2 *  '   ...  nSS S
I I I→ → →  .

Assuming I is the root of user's particular utterance, then by maximally 
interpreting it, we have brought it to the stable state from where no further 
knowledge can be inferred. Of course the validity and entirety if this inferrention 
is not guaranteed by the SIL framework itself but is always implied from and 
dependent on a given design of a particular domain. We may call this the 
"consistency" - the system of rules is "consistent" as long as its underlying set 
of relations is neither underspeci3 ed (some real world objects relationships are 
ignored) nor over-speci3 ed (some real world relationships work against each other). 
Despite this is an important aspect in properly designing a SIL-based system, 
we will leave this topic out due to space reasons. An interesting discussion on 
impacts and recovery from both of these special cases may be found in [Eck95].

3.3.2  Representing Dialogue Context

The above outlined interpretation mechanism easily allows user's utterance to 
achieve a stable expanded state using a set of relations. It is important to 
note that this expansion is strictly monotonous, meaning no modi3 cation nor 
negation can be considered. During the course of a dialogue, on the other hand, 
informational state on either partner's side may be modi3 ed or retracted. The 
monotonous interpretation therefore turns out to provide a too weak approach 
for a dialogue context representation and needs to be further revised in order to 
accommodate the mentioned dialogue phenomena.

To overcome the implied monotony, it is introduced the so called interpretation 
worlds. This new axis sets each incoming utterance into its "own" interpretation 
world where it can be elaborated in a monotonous way. Using this approach, no 
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object is necessary to be modi3 ed, retracted, or even negated (as by committing 
any of these operations would cause the whole sequence knowledge to cease to 
be valid). Using a new blank world, the utterance maximal interpretation can be 
determined without clashing with any of the previous interpretations.

Interpretation worlds are stacked onto each other. By elaborating an utterance 
in its own world, a new view is made and incorporated into the knowledge base. 
The current state of a dialogue can then be determined by projecting these 
layers, making sure that recent objects always hide older ones.

The stacked structure exposes the following apparent properties.

• The set C of SILdef concepts is located at the bottom of the stack and 
constitutes the so called basic view. In this basic view, apparently no 
new instances are created - it serves merely to describe the real world 
objects and their relations. Once this world has been initialized at the 
beginning, it remains unchanged until the end of the dialogue.

• A world always inherits all objects (along with their mutual relations) 
from the world laying beneath it. In the simplest case, if an object has a 
particular role value unde3 ned, the projection process makes sure that 
it receives a value from the top-most "compatible" object - we say the 
objects are uni! ed. Obviously, the case of binding unde3 ned and de3 ned 
role values is merely a special case of extending one value with another. 
This more general case arises, for instance, when precising one time 
information ("tomorrow") with another ("morning") to assign the result 
to the object corresponding role ("tomorrow morning"). At this point, 
let us recall that we assume here user's fully speci3 ed utterances with 
no ambiguities; the determination of meaning of underspeci3 ed objects 
will be covered in the next section, and in more detail then in [Eck95].

• Instances in a given world always overlay incompatible instances in 
the world beneath it. We may call such two incompatible instances 
"concurrent". Concurrent instances usually occur when the user corrects 
previously wrong understood piece of information. This correction 
involves the rejection of the actual interpretation, implying no previous 
information must be used.

Example 3.6 (Compatible objects)
To illustrate the idea of "stacked worlds", ponder the dialogue snippet shown 
below (adopted from [Eck95]). In utterance U

1
, the instance go1 with the role 

thesource is created with Bonn as the determined place of departure (see Fig. 
3.7 and Fig. 3.8). After interpreting U

2
, a new world with the instance go2 is 

created with the description of the place of arrival. Finally, once interpreted U
3
 

in another new world, there are three compatible go-typed objects that can be 
uni3 ed in order to put all three originally separated pieces of information into 
perspective (the user wants to go from Bonn to Erlangen at eight o'clock).

U
1 

I want to go from Bonn.
S

1 
From Bonn. Where do you want to go to?

U
2 

To Erlangen.
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unification

unification

view1

view2

view3

loc1
city1

Bonn

go1
loc1

city1

Bonn

thesource thecity

value

go2

loc2 city2 Erlangen

loc1
city1

Bonn

go3

loc2 city2 Erlangen

thegoal

thecity value

time3
hp3thesourcetime

thehour

8

value

Fig. 3.7  Compatible objects example.

1

1

1 1

: : from Bonn

: 1 ,   :
: 1 ,   :

:
: : 1 ,   ::

I want to go from Bonn.

From Bonn. Where do you want to go to?

:

:

: :

syntax string

id go type go
id loc type location

semantics
thesource id city type citythecity

value

U

S

view ufo

  

2

2

2

2

: Bonn

: : to Erlangen

: 2 ,   :
: 2

:
:

To Erlangen.

At what time do you want to go to Erlangen?

:

:

:

:

syntax string

id go type go
id loc

semantics
thegoal

U

S

ufo

view

  
                        

  

1

 ,   :
: 2 ,   ::

: Erlangen

: : from Bonn

: 1 ,   :
: 1 ,   :

:
:

:

:

type location
id city type citythecity
value

syntax string

id go type go
id loc type location

semantics
thesource ithecity

ufo

 
                  

  

3

3

2

: 1 ,   :
: Bonn

: : eight o'clock

: 3 ,   :
:

:
:

At eight o'clock.:

:

:

d city type city
value

syntax string

id go type go
id

semantics
thesourcetime

U

ufo

view

 
 
 
 
 
 
  
                        

  

2

3 ,   :  ,   : 800
: 3 ,   ::

: 8

: : to Erlangen

: 2 ,   :
: 2 ,   :

:
:

:

tp type time_point cvalue
id hour type hourthehour
value

syntax string

id go type go
id loc type locat

semantics
thegoal

ufo

 
                  

  

1

: 2 ,   ::
: Erlangen

: : from Bonn

: 1 ,   :
: 1 ,   :

:
: : 1 ,   :

:

ion
id city type citythecity
value

syntax string

id go type go
id loc type location

semantics
thesource id city typthecity

ufo

 
                  

  

:
: Bonn

e city
value

 
 
 
 
 
 
 
 
 
 
 
 
                          

Fig. 3.8  Compatible objects interpretation worlds
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overlay

go2 loc2
city2

Nürnberg

thesource thecity

value

go1
loc1

city1

Bonn

thesource thecity

value

view1

view2

Fig. 3.9  Incompatible (concurrent) objects example.

1

1

1

: : from Bonn

: 1 ,   :
: 1 ,   :

:
: : 1 ,   ::

: Bonn

I want to go from Bonn.:

:

:

syntax string

id go type go
id loc type location

semantics
thesource id city type citythecity

value

U

S

view

                     

2

2

: : from Nürnberg

: 2 ,   :
: 2 ,   :

:
: : 2 ,   ::

: Nürnberg

Do you want to depart from Bonn?

From Nürnberg.:

:

syntax string

id go type go
id loc type location

semantics
thesource id city type citythecity

value

U

view

  


  
   

 
           

Fig. 3.10  Incompatible (concurrent) objects interpretation worlds.

S
2 

At what time do you want to go to Erlangen?
U

3 
At eight o'clock. □

Example 3.7 (Concurrent objects)
A simple example is shown in Fig. 3.9 with the simpli3 ed resulting structure 
depicted in Fig. 3.10 (adopted from [Eck95]). In view2, the role thesource of 
the instance go2 was assigned a new value. Therefore from now on, the instance 
go1 in view1 is overlaid and inaccessible whenever targeted via [go, thesource, 
thecity, value] - the new value Nürnberg will be used instead. □

3.3.3 Disambiguing User's Utterances

Once we have seen how user's fully speci3 ed (i.e. unambiguous) utterances 
are represented in the form of stacked worlds, we need to further extend this 
approach by allowing for processing of elliptical (i.e. ambiguous) utterances.

In a dialogue system, the processing of elliptical utterances is a crucial feature 
as such utterances are very often spoken by users: for instance, being asked for 
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the departure time by a timetable dialogue system, the user may simply respond 
"at ! ve", instead of "I want to depart at ! ve". Hence, there are two essential 
questions at this point: how can be SIL applied to predict actual context for a 
response, and how can such prediction be further used to resolve user's elliptical 
utterances. Before answering either of them, let us summarize our problem in the 
following two de3 nitions.

De! nition 3.12 (Interpretability)
We denote an utterance I as interpretable if it conveys any eigen information, i.e. 
it holds that ψ(I) ≠ �. □

De! nition 3.13 (Disambiguation)
An utterance I can be disambiguated using a dialogue context I

c
 if I on its own is 

not interpretable but in conjunction with I
c
 yields an unambiguous interpretation:

     ψ(I) = �   ∧   ψ(I
c
) = �   ∧   ψ(I ∪ I

c
) ≠ �. □

Typically, disambiguing an utterance I using a dialogue context I
c 
means 

making I accessible from within I
c
. That is, I

c
 can be understood as the logical 

surrounding of I:

∃s
1
, …, s

k
: Π( I

k
,[s

1
, …, s

k
] ) = I .

To demonstrate the principle, ponder Fig. 3.11 in whose upper part (a), user's 
fully speci3 ed information "departure at ten" is shown. In this case, the user 
not only supplies the particular time information (at ten) but also narrows its 
scope to departure. Reversing our thoughts, should the user say merely "at ten" 
(utterance I with ψ(I) = �) at the moment the system asked for a departure 
time (context I

c
 with ψ(I

c
) = �), user's response could be explained as conveying 

departure time (because ψ(I ∪ I
c
) ≠ �). This leads to the SIL-expression (b) 

that is the result of replacing the particular time information with a placeholder, 
or formally anchor point (Ankerpunkt). Technically, the placeholder I

a
 = tp45 

of type C
time_point

 is instantiated but does not contain any speci3 c roles nor 
meaningful value. More importantly, it is compatible with any upcoming elliptical 

: : departure at ten

: 45 ,   :( )
: 45 ,   ::

:
at ten

: : departure at < >
( ) :

:

syntax string

id dep type depart
a

id tp type time_pointsemantics
thetime

syntax string

b id
semantics

               
  timePlaceholder

45 ,   :
: : 45 ,   :

: : at ten

: 61 ,   :( )
: : 61 ,   ::

: 10

dep type depart
thetime id tp type time_point

syntax string

id tp type time_pointc
semantics id hour type hourthehour

value

 
         
               

Fig. 3.11  SIL-based disambiguation; (a) fully speci3 ed information, (b) system expectation, 
(c) result of disambiguation.
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time concept, and can therefore be uni3 ed with I = tp61 shown in (c). We call 
such kind of uni3 cation anchoring (Verankerung) and will say that I has been 
anchored in context I

a
. From this perspective, the process of anchoring can be 

perceived as prepended to the utterance interpretation step (covered in Section 
3.3.1), as depicted in Fig. 3.12.

Over the course of a dialogue, there of course may be multiple dialogue contexts 
candidates I

C1
, …, I

Cn
 that correspond to diJ erent anchorings. Application of any 

of these contexts must naturally result into a unique set of eigen information, i.e.

∀I:  ψ(I
Ci
 ∪ I) ≠ �   ∧   ψ(I

Cj
 ∪ I) ≠ �   →   ψ(I

Ci
 ∪ I) = ψ(I

Cj
 ∪ I) .

The process of anchoring can therefore be summarized as follows [Eck95]:

• Isolately interpretable utterances (with ψ(I) ≠ �) do not need to be 
anchored.

• Only non-leaf concepts may serve as anchoring points (e.g., C
location_property

 
in Fig. 3.1). Contrarily, leaf concepts cannot be used as anchoring points.

• The process of anchoring is possible by instantiating a virtual context 
whose description contains an empty information (placeholder) expected 
in the very next user's utterance. Once supplied, the elliptical concept 
then takes on the corresponding role within the virtual context.

3.4  Application 3: System Utterance Semantics

Receiving user's turn, the dialogue manager constructs a set of the so called 
moves, i.e. possible continuations in the dialogue with respect to its current 
state. Each of the moves is to inform the user about certain conceptual content. 
Therefore each such move has assigned the communicative purpose indicated 
by a particular dialogue act label, while the conceptual content is indicated 
by a reference to the dialogue context. Consider the sentence "You want to 
travel from Schwandorf to Erlangen. What time do you want to travel on?", 
consisting of two moves, each expressed using its own UFO:

1

2

: 4
: 2

: 5
: :

: 1
: : : Schwandorf

: Erlangen

: 6
: :

: 1
: :

id ufo
card

id ufo
dialogue dact confirm

id dbtrain

ufo semantics sourcecity

goalcity

id ufo
dialogue dact open_request

id dbtrain
ufo semantics

thesou

 
            

  

: : 6 ,   :rcetime id tp type time_point

 
 
 
 
 
 
 
 
                 

The 3 rst move (ufo1) intends to con3 rm the departure and arrival cities 
(dialogue act con! rm, and conceptual content targeting the two cities in the 
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dialogue context), while the second move (ufo2) aims to elicit the departure time 
(dialogue act open_request, and instance tp6 with unde3 ned value).

Provided the abstract description of the intents in a system utterance, the next 
step is the production of the system utterance semantics itself. Simple planning 
rules are used to specify the type of semantic description to be extracted from 
the dialogue context. For example, ufo1 triggers a rule which is to describe a 
number of objects, O

1
, …, O

n
 (in our case n = 2) that in the simplest case have a 

common parent object O
p
. The resulting description is then the SIL representation 

of O
p
 that contains sub-descriptions for all of O

1
, …, O

n
. The production of the 

SIL representation is driven by a grammar-lexicon. The underlying algorithm 
can be understood as the process of 3 nding a lexical candidate that best matches 
the input, and then recurrently generate its arguments.

Example 3.8 (Utterance semantics production)
Fig. 3.13 shows an example of a lexicon entry for the C

arrive
 SILdef concept. 

Given the inheritance paradigm, this entry is applicable for any instance that is 
of or derives from C

arrive
. Naturally, in derived concepts, the descriptive content 

may be overridden. For instance, while it is reasonable to use the verb "go" when 
expressing surface traveling, it is more appropriate to substitute it with "" y" 
when speaking about 6 ying. This may be captured by two sibling concepts, both 
inheriting a shared part from C

arrive
. In the case of C

arrive
, this shared part are 

the syntactical arguments, each of which with its own syntax, semantics, order 
(to indicate the surface position with respect to the head, i.e. "lexical parent"), 
etc. For instance, theplace argument is optional and can occur at any position 
after the head. □

Youd and McGlashan [You92] further describe the application of the SIL 
formalism as a means for utterance production. The impacts on and implied 
feedback to the dialogue manager module are then further discussed in [Eck95].

3.5 Summary

This chapter conceived with the Semantic Interface Language (SIL) formalism. 
With roots in the SUNDIAL project [Fra93], SIL was developed as a methodology 
for modeling semantic contents with focus on its use to be maximally application- 
and language-independent. To prove the universality of the formalism, three 
possible applications comprising diJ erent parts of a dialogue system were 
presented in this chapter: utterance semantics (original aim of SIL), dialogue 
context representation, and 3 nally system utterance production.

Utterance ambiguous? Anchoring in
dialogue context

Utterance
interpretation

Semantic
concepts

yes

no

Fig. 3.12  Utterance processing with and without dialogue context.
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:
: : v

: : : n

::
:

:
: :

:

: : : prep(at)

::
: :

:

lexeme arrive

head major

syntax head major

id A
semantics

type object

dir pre
order adj any

opt oblig

syntax head major

id B
semantics

syntax type locati

args 〈

         
  
  
  
  
  

:
: :

:

: : : prep(at)

::
:

:
: :

:

on

dir post
order adj any

opt opt

syntax head major

id C
semantics

type time

dir post
order adj any

opt opt

〉

 
 







  
         

   
   
   
  

            
  
  
      

: : G
:

::
:

::
:

::
:

semantics id
type arrive

id A
thetheme

type object

id B
theplace

type location

id C
thetime

type time

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
   
     

  
    

   
      






























Fig. 3.13  A lexicon entry for the C
arrive

 SILdef concept.
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Chapter 4 

daisy Dialogue Management 
Framework

In this chapter, the Daisy dialogue management framework, developed during 
the study, will be presented in detail. The framework has been designed to 
provide (a priori) uni-modal support for dialogue management, however, 
additional modalities can be intuitively added by simply incorporating them into 
particular dialogue plans. The framework follows an agent-based approach in 
which the dialogue model is explicitly represented in agent's plans and beliefs. 
The dialogue agent uses its beliefs to maintain information about the dialogue, 
including dialogue history and the salient list, as well as the domain-speci3c 
knowledge. Plans then govern the interaction with both the user and other parts 
of the system.

This chapter begins with arguing for the decision for the agent-based 
approach to dialogue management. The description of the framework itself then 
begins with presenting the representation of the real world dialogue environment 
that has been to an extent motivated by the SIL formalism [Eck95, Fra93]. The 
remainder of the chapter then thoroughly concerns with the dialogue processing 
as it occurs in the Daisy framework. The description can be informally divided 
into three major parts targeting agent's beliefs, intentions, and desires. The 
investigation is enriched with sample dialogue snippets to illustrate problems in 
question as they arise at diJ erent stages of the dialogue processing.

4.1 Reasons to Opt for Agent-based Approach

As discussed in Chapter 2, most of business applications are focused on practical 
tasks, as for instance telephone-based information inquiry or booking of diJ erent 
kinds. These applications employ relatively simple dialogue models, in which the 
dialogue state may be well modelled using 3 nite state machines or a hierarchy 
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of frames. Nonetheless, state-based dialogue models are very limited because of 
their in6 exibility and high costs required to overcome this constraint. Although 
this signi3 cant limitation is addressed by frame-based dialogue models, also 
they suJ er from diJ erent disadvantages. One of them is the lack of modularity – 
principles that model the intended dialogue behaviour cannot be shared, unless 
they exist in duplicitous instances. In conjunction with stochastic approaches, all 
of these dialogue models have one in common: they are di\  cult to extend, e.g. 
with another task or another common behaviour.

Using this method of exclusion, the agent-based approach seems to be of the 
best usability with respect to creating a general-purpose dialogue environment, 
as was the goal. The essential notion of an agent also 3 ts the needs of a dialogue 
management in a natural way. In particular, the dialogue is supposed to be 
mainly user-driven. Nonetheless, system initiative is also essential in order 
to clarify user's requests. Hence, from the agent's point of view, the dialogue 
management requires some degree of pro-activeness to recover from errors, and 
at the same time also reactiveness to ful3ll user’s requests. The fact of having 
to be pro-active as well as reactive in diJ erent situations to meet the dialogue 
objectives is a signi3 cant sign to opt for an agent-based approach, speci3cally 
the BDI architecture (Section 2.3.4). Another bene3 t of taking this course is 
the possibility to decompose a system into a set of autonomous, specialized 
agents, each dedicated to handle a certain isolated part of the system, as for 
instance shown in [Tur05, Ngu06b]. Last but not least, unlike with frame-based 
or stochastic approaches, agent's behaviour can be well controlled and eventually 
reused between diJ erent applications, as for instance shown in [Gus03, Tur05].

4.2  Domain Data Model (DDM)

To begin our investigation of the Daisy framework, let us 3 rst introduce a way 
of de3 ning the "static" part of a domain, in charge of structuring agent's beliefs 
– the domain data model (DDM). From a certain point of view, DDM can be 
understood as a modi3 ed CoreSIL. The common goal of these two approaches 
is to model (a subset of) the real environment using a network of interconnected 
concepts. The essential distinction is, however, that while in SIL these concepts 
take on some inherited meaning along with corresponding taxonomy, in DDM 
these concepts are of a purely "data-centric" notion with any meaning being 
given to them no earlier than within a particular plan instance.

The loose coupling of data and meaning allows for creation of explicit and 
strongly tied structures of information. We call these structures collections. 
The purpose of a collection is to group "similar" pieces of information, this way 
allowing for more sophisticated dialogue processing at later stages.

This section covers the de3 nition and syntax of DDM. Despite all distinctions, 
DDM may be well described in a very similar fashion like CoreSIL. Given this 
fact, some of the upcoming de3 nitions will merely slightly diJ er from those 
already encountered in Chapter 3. However, the main distinction will be in 
de3 ning the model not only from the elemental concepts standpoint but also 
from their grouping collections standpoint.
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De! nition 4.1  (DDM concept, DDM collection, and data type)
Let C be a set of domain data model (DDM) concepts. A DDM concept, C ∈ 
C, is identi3 ed by its domain-wide unique name and has no further parameters, 
i.e. C

name
 = ( ).

Let K be a set of domain data model collections. A DDM collection, K ∈ 
K, is identi3 ed by its domain-wide unique name and represented as an ordered 
triple K

name
 = ( C, E, T ), where C = { C

i
 } is a non-empty set of DDM concepts, 

E = { E
i
 } is a set of edges to parent DDM concepts, and T is a data type for 

each DDM concept C
i
  ∈ C to hold. Furthermore, an edge E

i
 ∈ E is an ordered 

pair E
i
 = ( C

i
, R

i
 ), where C

i
 is a DDM concept, and R

i
 ∈ N+ is the maximum 

cardinality of K
name

 with respect to C
i
.

A data type, T
i
= { f

j
 }, is a set of functions that completely and unambiguously 

de3 ne the range and operations with an eigen information ψ
i 
. □

Before exemplifying, let us point out several characteristic about DDM 
concepts and collections:

• Concepts represents real-world or abstract objects. Each concept is an 
exclusive part of its containing collection. For instance, given that a train 
and bus are two similar real world objects intended for transportation, 
both may be groupped under a transportation means collection and 
cannot be members of any other collection.

• Concepts contain subcollections. This recurrent pattern is further 
constraint by each concept being allowed to contain at most one collection 
of a given name.

• Each edge is assigned a cardinality resembling an "ERA model-like" 
relationship "1:1" or "1:N" (the remaining relationships, "N:1" and "M:N", 
are performed as needed automatically by the framework over the course 
of a dialogue).

Example 4.1  (DDM concepts and DDM collections)
To demonstrate the DDM terms, let us revisit the time point object we already 
encountered in Example 2.1 when examining the SIL formalism. Recall that a 
time point is speci3 ed by its particular hour and minute information. A time 
point DDM concept is identi3 ed by its DDM-wide unique name, i.e.

C
time_point

 = ( ) .

It is reasonable for us to de3 ne the C
time_point

 concept as an exclusive part of the 
K

time_point
 collection. This collection contains no other concepts, i.e. C

time_point
 is 

not collectible with any other object:

( ,  ,   )
( {  },

,

)

time_point

time_property

K C E T

C

=
=

∅
∅
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The name of the collection has been chosen identical with the concept name, 
which is not in contradiction with the demand on uniqueness among all collection 
names. The collection currently has no parents, and no type (as apparently the 
essential information is the hour and minute).

The hour and minute information is de3 ned by the K
hour

 and K
minute 

collections 
containing the only C

hour
 and C

minute
 concepts, respectively. Given that both of 

the pieces of information are of a discrete nature, they can be represented by 
the built-in T

ordinal
 data type (equivalent to C

integer
 concept found in SIL). Finally, 

the name of the "time point" suggests it contains at most one piece of hour and 
minute information, leading to both of these being bound with a "1:1" relationship 
to the C

time_point
 concept:

( {  },         ( {  },
{  }, {  },

), )

hour hour minute minute

time_point time_point

ordinal ordinal

K C K C

E E

T T

= =

Finally, the resulting K
time_point

 collection may graphically be depicted as:

         

M in u t e

ORDINAL
1

H ou r

ORDINAL1T im eP oin t

 □

To further handle DDM contents, let us de3 ne several projection functions 
analogous to their SIL counterparts.

De! nition 4.2 (Projection functions)
Let K = ( C, E, T ) be a DDM collection. Let then C(K) = C be the set of 
concepts, E(K) = E the set of edges to parent concepts, and T(K) = T the type 
of information each concept is to hold. In addition, let C be a DDM concept. 
Let then K(C) = K: C ∈ C(K) be the reference to the collection K that contains 
the concept C, and P(C) = { K

i
: ( C, R

j
 ) ∈ E(K

i
) } the set of all subcollections 

directly accessible from C. Let further be

*

( )*
( )

* *

( )

  ( ) ( ( ))     , if ( )
( )    

                                  , else 

( )    ( )

i

j i

jK P C
C C K

C C K

P C P C P C
P C

P K P C

∈
∈

∈

 ∪ ≠ ∅
= 

 ∅

=

∪

∪
a set of all subcollections recurrently available from concept C and collection K, 
respectively. Finally, each projection function f which is applicable to collection 
K is applicable to a concept C ∈ C(K) using f(C) = f( K(C) ). □

Before exemplifying, let us de3 ne three key components of the DDM: root, 
topics, and paths, all of which will be extensively used at diJ erent stages of the 
dialogue processing. The root is, presumably, the "starting point" of the model 
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from which any other concept may be addressed. However, at most of the times, 
the root will be considered a rather logical unit of its own existence instead of a 
physically present entity. The collection K

time_point
 from Example 4.1 is therefore 

not to be taken as the root of the DDM (the upcoming Example 4.2 will show it).
A topic is supposed to be tightly related with a certain task in a dialogue 

system (or generally a set of similar tasks). Such task may be, for instance, 
providing information on departure times, in case of a timetable dialogue system. 
The notion of a topic is therefore to serve as a representative of a given task 
while grouping its related information. This ambiguous usage has already been 
proposed in [Rei81]. Apparently, the properties of a topic are best approached by 
a root-bound collection within the DDM. The collection K

time_point
 from Example 

4.1 is therefore a topic (see also upcoming Example 4.2).
A path takes on an identical notion like a path in SIL, i.e. its ultimate 

purpose is to address a particular DDM collection or concept. However, unlike 
with SIL, there are two distinct and non-interchangeable kinds of paths: one 
addressing the DDM itself, and another addressing DDM expressions (covered 
next). The following two de3 nitions formalize all of the presented terms (except 
for expression paths), i.e. paths, topics, and root.

De! nition 4.3 (DDM path)
Let C be a set of DDM concepts. A concept C

T
 is immediately targeted from a 

source concept C
S
 if there exists exactly one edge E

i
 such that

  { [ , ] } ,     if ( , ) ( )
( , )    

  ,     otherwise
S T i S i T

S T

C C E C R E C
C C

error

 ∈
Π = 



A concept C
T
 is addressable from a concept C

S
 if K(C

T
) ∈ P*(C

S
), i.e. if there 

exists a set of distinct paths over concepts C
1
, …, C

N
:

1 1 1 1

1

1 1

[ , ,..., , ] : ( , ) ( )    
( , )    {2,..., } : ( , ) ( )   

( , ) ( )

S N T S

S T i i i i

N N N T

C C C C E C R E C

C C i N E C R E C

E C R E C
−

+ +

 ∈ ∧
 

Π = ∀ ∈ ∈ ∧ 
 ∈ 

Let K be a set of DDM collections. A collection K
T
 is addressable from a 

collection K
S
 if there exists a set of distinct paths over collections K

1
, …, K

N
:

1
1[ , ,..., , ] ( , )

( , )    [ , ( ),..., ( ), ]
S N T S T

S T S N TC C C C C C
K K K K C K C K

∈Π
Π = ∪

where C
S
 ∈ C(K

S
) and C

T
 ∈ C(K

T
). □

De! nition 4.4 (DDM root and DDM topic)
We call the DDM root a collection ρ = K

ρ
 = ( { C

ρ
 }, �, � ). We call a DDM 

topic a collection τ = K
τ
 = ( { C

τ
 }, { E

ρ
 }, � ). □

Example 4.2  (Projection functions, topic, and DDM paths)
Ponder the timetable domain data model in Fig. 4.1. It shows that a given 
timetable schedule consists of bus and train connections. Each of these connections 
departs and arrives at a particular time point, modeled by the above C

time_point
. 
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Notice the cardinality of 3 in E( C
timetable

, 3 ). It is to limit the maximum number 
of connections that are actively dealt with (and possibly presented to the user) in 
a given task. All other edges are left to their expected "1:1" relationships.

It holds that C(K
connection

) = { C
bus

, C
train

 }, i.e. the set of connections is 
generally a mixture of buses and trains, i.e. buses and trains are collectible. 
For C

train
 it holds that P(C

train
) = { K

arrival
, K

departure
 }, i.e. both K

arrival
 and 

K
departure

 are direct subcollections of C
train

. Furthermore, for K
connection

 it holds 
that P*(K

connection
) = P*(C

bus
) = P*(C

train
) = { K

arrival
, K

departure
, K

time_point
, K

hour
, 

K
minute

 } are subcollections of K
connection

.
The root ρ is explicitly shown in this example. The DDM has a single topic, 

τ = τ
timetable

 = K
timetable

, leading currently merely to information on connections 
K

connection
. Given the absence of meaning, this topic may be used by multiple tasks 

focused on providing timetable information (e.g., departure times, arrival times, 
route planning, etc.). Let us recall that the DDM is necessary to be understood 
as a purely passive component that only describes how domain objects (real or 
abstract) relate to each other.

There are two  paths from K
connection

 to K
time_point

: ∏( K
connection

, K
time_point

 ) 
= { [K

connection
, K

arrival
, K

time_point
], [K

connection
, K

departure
, K

time_point
] }. Furthermore, 

it holds that | ∏( K
timetable

,K
hour

) | = 2 = |{ [ K
timetable

, K
connection

, K
arrival

 /
K

departure
, K

time_point
, K

hour
] }|, whereas | ∏( C

timetable
, C

hour
 ) | = 4 = | { [C

timetable
, C

bus
 /

C
train

, C
arrival 

/C
departure

, C
time_point

 ] } |. □

Finally, to facilitate further use of the DDM, let us make several assumptions 
about its structure, guaranteeing the resulting DDM to be correct.

De! nition 4.5  (Correct DDM)
Let K be a set of DDM collections, and C be a set of DDM concepts. We say 
the DDM consisting of K and C is correct if all of the below conditions are met:

• All concepts within a collection K Î K are either leaves or "intermediate":

  ( ) ,     if ( ) , i.e.  is intermediate,
( ) :  

  ( ) ,     if ( ) , i.e.  is leaf.i

P Ci P K K
C C K

P Ci P K K

 ≠ ∅ ≠ ∅∀ ∈  = ∅ = ∅

Criterion
UTF8_STRING

1

Timetable
1

Discount
ORDINAL

3

Class
ORDINAL

1
Coach

20
Type
UTF8_STRING

1

Price
FLOAT1

1

Departure
1
1

City
UTF8_STRING1

Location
1
1

Minute
ORDINAL1

Hour
UTF8_STRING

1

TimePoint
1
1

Arrival

1
1

Conn:Train

Conn:Bus

3

1
Ticket1

ρ

Fig. 4.1  Simpli3 ed timetable domain data model.
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• Each eigen information (see De3 nition 3.9) is stored exclusively in leaf 
collections, i.e. it holds

∀K
i
 ∈ K: T(K

i
) ≠ �   →   P(K

i
) = � .

• Each two path alternatives between distinct collections K
i
 and K

j
 are 

mutually non-uni3 able, i.e. no alternative emerged from another by 
omitting one or more of its "intermediate" collections.

• The resulting structure is an acyclic graph. □

It can be easily prooved that the DDMs from Example 4.1 and Example 4.2 
conform to the de3 nition of correctness.

4.3  DDM Expressions

A correct DDM can be instantiated as the so called DDM expressions (compare 
with principles in SIL). Given the new informational axis (collections), DDM 
expressions need to be covered from both concepts and collections point of view. 
Provided that no concept features any taxonomy, DDM expressions are de3 ned 
as not necessarily having to follow the exact structure of their underlying model.

De! nition 4.6 (DDM expression)
We call a DDM expression an instance I = I(C) of a DDM concept C, or an 
instance Y = Y(K) of a DDM collection K. An instance of a concept C is an 
ordered triple I = ( D, C, X ), where D is a unique identi3 er and X is a value 
of type T(C). An instance of a collection K is an ordered triple Y = ( K, I, F ), 
where I = { I

i
 } is a non-empty set of instances of concepts C

i
 ∈ C(K), and F = 

{ F
i
 } is a set of edge instances F

i
 = ( E

i
, I

i
 ) = ( ( C

i
 , R

i
 ), I

i
 ) each of which leads 

to a recurrently accessible parent concept instance I
i
 , i.e. F = { F

i
: K ∈ P*(C

i
) }. 

Furthermore, the following constraints apply to each DDM expression:

• The number of concept instances within a collection satis3 es the 
cardinality of each binding edge, i.e.

∀Y = ( K, I, F ): | I | ≤ min( R
j
: ( ( C

j
 , R

j
 ), I

j
 ) ∈ F ) .

• Concept instances are not to be shared among collections, i.e.

∀Y
i
 = ( K, I

i
 , F

i
 ), Y

j
 = ( K, I

j
 , F

j
 ), Y

i
 ≠ Y

j
:  I

i
 ∩ I

j
 = � .

• Each concept instance has at most one subcollection of a given type K,

       ∀Y
i
 = ( K, I

i
 , F

i
 ), Y

j
 = ( K, I

j
 , F

j
 ), Y

i
 ≠ Y

j
: F

i
 ∩ F

j
 = � . □

Example 4.3 (DDM expressions)
Naturally, each instance, along with all its parametrization, must entirely 
conform to its underlying de3 nition. Of the following DDM expressions, only (a) 
and (b) are correct and comply with the data model in Fig. 4.1. In the incorrect 
expression (c), the collection Y

hour
 violates the prescribed number of concept 
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instances dictated by the underlying model; in expression (d), I
time_point

 breaches 
the rule of containing at most one K

hour
 by containing two instances instead; 

3 nally, as for expression (e), air133 is of unknown type as no C
aircraft

 concept 
exists in the underlying model.

(a)
trn133  Conn:Train

bus129  Conn:Bus

dep133  Departure tp134  TimePoint hour134  Hour
7

(b) hour148  Hour
7

arr147  Arrivaltim146  Timetable

(c) trn129  Conn:Train arr130  Arrival tp131  TimePoint

hour132  Hour
7

hour133  Hour
9

(d) dep129  Departure tp130  TimePoint

hour131  Hour
7

hour132  Hour
9

(e) arr134  Arrival

air133  Conn:Aircraft

trn135  Conn:Train

tim134  Timetable

 □

De! nition 4.7  (DDM expression projection functions)
Let Y = ( K, I, F ) be a DDM collection instance. Let then K(Y) = K be the 
underlying DDM collection, I(Y) = I the set of concepts, F(Y) = F the set of edge 
instance. Each function f applicable to K is applicable to Y as f(Y) = f( K(Y) ). 
In addition, let I = ( D, C, X ) be a DDM concept instance. Let then D(I) = D 
be the concept instance identi3 er, C(I) = C the underlying DDM concept, and 
X(I) = X the data type particular value instantiated using I. Also, let Y(I) = 
Y: I ∈ I(Y) be the reference to the collection Y that contains the concept instance 
I, and P(I) = { Y

i
 : ( E

j
 , I ) ∈ F(Y

i
) } the set of all subcollection instances directly 

accessible from I. Let further be

*

( )*
( )

* *

( )

  ( ) ( ( ))     , if ( )
( )    

                               , else 

( )    ( )

i

j i

jY P I
I I Y

I I Y

P I P I P I
P I

P Y P I

∈
∈

∈

 ∪ ≠ ∅
= 

 ∅

=

∪

∪

a set of all subcollections recurrently available from concept instance I and 
collection instance Y, respectively. Finally, each function f applicable to C is 
applicable to I as f(I) = f( C(I) ), and each function applicable to a collection Y 
is applicable to I ∈ I(Y) using f(I) = f( Y(I) ). □
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All of the above projection functions are analogous to those already 
presented for the data model (Section 4.2) – they will be therefore left without 
demonstration, similarly as DDM expression paths, de3 ned next. Presumably, 
expression paths allow us to comfortably address particular instances.

De! nition 4.8 (DDM expression path)
A concept instance I

T
 is immediately targeted from a source concept instance I

S
 

if there exists exactly one edge instance F
i
 such that

  { [ , ] } ,     if ( , ) ( )
( , )    

  ,     otherwise
S T i i S T

S T

I I F E I F I
I I

error

 ∈
Π = 



A concept instance I
T
 is addressable from a concept instance I

S
 if Y(I

T
) ∈ P*(I

S
), 

i.e. if there exists a set of distinct paths over concept instances I
1
, …, I

N
:

1 1 1 1

1

1 1

[ , ,..., , ] : ( , ) ( )    
( , )    {2,..., } : ( , ) ( )   

( , ) ( )

S N T S

S T i i i i

N N N T

I I I I F E I F I

I I i N F E I F I

F E I F I
−

+ +

 ∈ ∧
 

Π = ∀ ∈ ∈ ∧ 
 ∈ 

A collection instance Y
T
 is addressable from a source collection instance Y

S
 if 

there exists a set of distinct paths over collection instance Y
1
, …, Y

N
:

1
1[ , ,..., , ] ( , )

( , )    [ , ( ),..., ( ), ]
S N T S T

S T S N TI I I I I I
Y Y Y Y I Y I Y

∈Π
Π = ∪

where I
S
 ∈ I(Y

S
) and I

T
 ∈ I(Y

T
). □

4.4  Semantics Representation

The input semantics representation has been designed to easily allow for all 
further processing stages, described and discussed in the upcoming sections 
(context representation, user's intentions detection, deliberation, etc.). As already 
partly revealed earlier, the dialogue context makes an extensive use of DDM 
expressions. It is therefore reasonable that each input semantics is represented 
as a sequence of DDM expressions.

With processing-related bene3 ts on one side, this approach introduces 
drawbacks in representing some linguistical constructs, that, on the other hand, 
may easily be modeled using the SIL formalism (see Fig. 3.1). Given that the domain 
data model cannot account for meaning of contained objects, it is impossible, for 
instance, to represent the mere sentence "Yes". A more complex situation arises 
when attempting to represent a general content. For instance, recall the sentence 
"the train, which arrives in Erlangen at ! ve, departs from Schwandorf" where 
a known train is referred (by its arrival) and further described (by its departure), 
resulting in a co-referential SIL expression discussed in Section 2.2.1. Last but 
not least, the SIL formalism has also the potential of representing (although not 
directly detecting) implicit intentions in user's statements (e.g., "I want to know 
the nearest train to Erlangen" instead of "When does the nearest train to 
Erlangen go?") that are usually pre-processed yet before the dialogue manager 
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module by detecting the corresponding "shape" of the sentence and transforming 
it to a manager-aware "question-like" token [Eck95, Boh09, Ngu06b].

The above plotted limitations are of a crucial importance. Solving them is 
further constrained by having to always conform with the given DDM in a global 
manner (unlike with SIL whose subconcept roles are of a local nature). Therefore, 
the implication for the simple sentence "Yes" is that it cannot be represented 
as a concept instance, unless C

yes
 has been involved into the DDM with a 

domain-wide agreed meaning of representing an agreement. To work around this 
constraint, the semantics representation includes the ability to decorate arbitrary 
portion of it with one or more pre-de3 ned directives. Each directive is to supply 
a simple (elemental) meaning to the content it encapsulates, preventing resulting 
expression from violating the underlying DDM. Table 4.1 gives an overview of 
currently available directives, and the following example shows their usage.

Example 4.4 (Semantics directives usage)
In its raw form, semantics is to be written using a "Prolog-style" notation, see 
Appendix A.1 for syntax grammar. We will stick to this notation throughout the 
text as it is su\  ciently comprehensive; we also will enclose directives between 
underscores to visually distinguish them from regular concepts:

(a) _agree_
  Example sentences: "Yes.", "I want.", "I agree."

(b) _imperative_( Arrival( Location( City:"Ostrava" ) ) )
  "I said to Ostrava!"

(c) _disagree_( Departure( City:"Praha" ) , _agree_( Arrival( Location ) ) )
 _disagree_( Departure( City:"Praha" ) ) , _agree_( Arrival( Location ) ) ♣
 _agree_( Arrival( Location ) , _disagree_( Departure( City:"Praha" ) ) )
  "I didn't say from Praha but to there."

(d) _help_
  "Help.", "I'm lost." □

Table 4.1  Application-neutral directives to modify the meaning of enclosed DDM expressions.

Directive Description

utterance dialogue act classification

confirmation or basic mental state

explicit (parser-detectable) cross-reference

declarative
interrogative
imperative

agree
disagree

reference

timeout
help
repeat














local dialogue control acts

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In the above example, the middle semantics in (c) (marked with ♣) may 
be in some sense taken as a concatenation of _disagree_ and _agree_ UFO-
like units. Generally, DDM expressions are not intended to imitate the notion of 
UFOs as they are a weaker tool. The reason implies from the constraints put on 
the underlying model. As already discussed, the model cannot account for any 
object meaning as objects receive their meaning within a particular plan. For a 
semantics represented using DDM expressions, it is therefore di\  cult to capture, 
for instance, speaker's opinion or mental state – recall the workaround of using 
directives to express the opinion of disagreeing with departure from Praha. 
From the framework point of view, all of the above built-in directives share a 
common aspect: their meaning can be immediately re6 ected by accordingly 
updating the dialogue context. For instance, the above mentioned disagreement 
in (c) immediately results in Praha ceasing to be the location of departure. 
However, should a "permanent" meaning be represented, the local character of 
directives would not su\  ce. The following example attempts for a "permanent" 
meaning along with elaborating a "proxy" solution.

Example 4.5  (Attempting for semantics and taxonomy using DDM)
Let us try to model the situation that a person may think or doubt about an idea 
while performing an action (compare with Fig. 3.1):

(a) I think of the idea.
(b) I doubt of the idea.
(c) I think that I doubt of the idea.
(d) I doubt that I think of the idea.

The essential problem here is the lack of object taxonomy. While it is 
reasonable to represent the action as a topic in the model, it is di\  cult to 3 gure 
out the right order of nested subconcepts to produce a sensible DDM structure. 
The 3 rst approach we may try out is to de3 ne that thinking and doubting are 
mental states requiring exactly one agent (person) and at least one object (idea):

Idea
UTF8_STRING25

25

Person
UTF8_STRING

1
1

State:Doubt

State:Think

2Action1
ρ

Apparently, C
think

 and C
doubt

 attempt to imitate SIL de3 ning a domain-wide 
agreed meaning and taxonomy. Our model is correct as long as C

think
 and C

doubt
 

cannot act as subobjects in each other. While this holds true for sentences (a) 
and (b), it is not met with sentences (c) and (d):

(a) Think( Person , Idea )
(b) Doubt( Person , Idea )
(c) Think( Person , Doubt( Person , Idea ) )
(d) Doubt( Person , Think( Person , Idea ) )

Neither of expressions (c) and (d) complies with our model. Unfortunately, we 
cannot rede3 ne it correspondingly, as objects must not be recurrently nested (see 
De3 nition 4.5). Nonetheless, if we constrain ourselves to these two sentences, 
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we 3 nd that a person may think or doubt, and that an idea may be thought 
or doubted. Furthermore, if we accept that thinking and doubting are person's 
opinions, we can remodel our situation as follows:

Idea
UTF8_STRING25

25

Person
UTF8_STRING

1
1

State2:Doubted

State2:Thought

2
2

State1:Doubt

State1:Think

2Action1
ρ

To avoid the recurrency, each C
idea

 is now to be "marked" (or "pre3 xed") with 
a C

thought
 or C

doubted
 concepts. In addition, notice edges with cardinality of two. 

For instance, E( C
action

, 2 ) ∈ I( K
state1

 ) guarantees that a person can think and 
doubt of diJ erent ideas at the same time as the model allows both C

think
 and 

C
doubt

 be instantiated at the same time. Hence, according to this model, our four 
motivational sentences can be expressed as follows:

(a) Person( Think( Thought( Idea ) ) )
(b) Person( Doubt( Thought( Idea ) ) )
(c) Person( Think( Doubted( Idea ) ) )
(d) Person( Doubt( Thought( Idea ) ) )

Obviously, this approach puts additional requirements on the semantic 
parser (or semantics post-processing): if the person has not explicitly announced 
doubting, any supplied idea is to be taken implicitly thought.

To conclude our investigation, let us add that this approach also allows for 
retracting person's opinion by simply "re-binding" an idea (along with its C

thought
 

or C
doubted

 pre3 x) to the competitive opinion:

I no longer think I doubt the idea.   ≡   I think I no longer doubt the idea.
Person( Think( _disagree_( Doubted( _agree_( Idea ) ) ) , _agree_( Thought ) ) )

Finally, despite its feasibility, the resulting model can reasonably be considered 
cumbersome. However, it is only one of possible solutions to capture meaning 
using DDM, and there are more sophisticated solutions that, however, exceed our 
current initial investigation. □

As the example has shown, the absence of meaning may require diJ erent 
approaches to modeling with SIL and DDM. A similar situation is encountered 
when taking into account co-referential (and in DDM case also cross-referential) 
expressions: "the person, that thinks the idea, goes to Praha". The absence of 
meaning has already been discussed to have a limiting character to the underlying 
model, hence it will not be revisited here and such referential phrases will not 
be considered. We instead constrain ourselves to cases in which such semantical 
entities do not appear, as, for instance, in "the train, which arrives in Erlangen 
at ! ve, departs from Schwandorf", already roughly analyzed in Section 2.2.1 
(and closer elaborated in [Eck95]).

Similarly as with SIL, referential DDM expressions rely on proper structure of 
objects describing a reference. Due to the absence of taxonomy, the transformation 
of user's reference into a DDM expression is a "one-way" operation – the result 
cannot be approximated back to user's original utterance as with SIL (Section 
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3.4). Instead, related instances are bound in a "speci3 ed-specifying" relationship, 
i.e. each concept instance narrows the characteristics of its parent. Therefore, the 
DDM expression that describes "the train, which arrives in Erlangen at ! ve, 
departs from Schwandorf" takes on the following form:

_ref_( Train( Arrival( City:"Erlangen" ) , Departure( City:"Schwandorf" ) ) )

Note that the absence of C
location

 is not a mistake here (recall that DDM 
expressions do not have to strictly follow the underlying model). Nevertheless, if 
this reference is to be resolved, there must exist a train in the dialogue context 
for which it holds that it both arrives in Erlangen and departs from Schwandorf. 
Also notice the pre3 xing _ref_ directive, here to denote an explicit reference. 
This directive is optional and can be omitted in most of the cases.1 This directive 
is necessary, however, to express references using unexpressed nominative, as in:

S
 

The ticket costs 10 coins. Do you want to purchase it?
U

 
Yes, I buy it.

 Semantics: _agree_ , Purchase( _ref_ )

Last but not least, references can be nested. For the "most outer" reference it 
holds that its successful resolution is conditioned by resolving 3 rst all its nested 
subreferences, as for instance in:

S
 

The ticket costs 10 coins. Do you want to purchase it?
U

 
No. How much is a ticket for the train with the " rst class coach?

 Semantics: _disagree_ ,
   Ticket( Price:— ,
    _ref_( Train( _ref_( Coach( Class:"1" ) ) ) )
    )

Finally, references can be performed in diJ erent genders (ten, ta, to in Czech, 
or der, die, das in German) to precise their resolution. This feature has not been 
included in De3 nition 4.1 in Section 4.2 and thus will be not discussed and used 
further (however, see Appendix A.1 for syntax of gender-speci3 c references).

The last topic to cover is intention description using DDM expressions. 
Naturally, with respect to the absence of meaning, their descriptive capabilities 
are limited to only question-like explicit intentions [Gro86, Coh95]. However, 
similarly as with SIL, DDM expressions may convey mere fragmented intentions 
that resulted from either poor recognition or incompletely formulated requests. 
The word "potential" has been used intentionally here. Eckert in his work [Eck95] 
uses a very 6 at approach to convey and further deal with intentions, or more 
precisely, task identi3 cation: is there an empty eigen information ψ

i
 encountered 

in the input semantics, then ψ
i
 is considered the information user has asked 

about (e.g., departure time). As Eckert argues, this approach su\  ces: if the user 
has called a timetable information system, then it is quite certain that she or he 
will want to query about one of the timetable-related services [Eck95].

Generally, semantics may be understood as a mixture of task and task-
related information, as in the following situation:

1 In fact, it is merely intended to take a precise control over the reference resolution mechanism.
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S
 

There is a train at 14 o'clock and a bus at 15 o'clock going to Praha.
U

 
When does the train arrive there?

 Semantics: _ref_( Train( Arrival( Time:— ) ) )

In the dialogue snippet, the user wants to know the arrival time of the 
particular transportation means. There is a similarity with Eckert's approach as 
for instantiating the C

time
 concept with an empty value to indicate information 

to 3 nd. Note, however, that such case is only one of clues to estimate user's 
intentions (more on their detection in Section 4.7). With respect to the performed 
reference, this sample situation already becomes relatively complex to resolve.

4.5  Information Management

The dialogue snippets in the previous section have shown quite a broad variety of 
possible ways to convey information: ellipses, intentions, references, corrections, 
etc. For us to deal with them, it is necessary to 3 rst know how information 
is internally organized in the framework. No earlier than after this has been 
explained we will be able to proceed with particular processing of ellipses 
"anchoring", intentions detection, and references resolving. This section will 
therefore concern with pure information management. At this point, we will 
assume input information is fully speci3 ed (non-elliptical), does not contribute 
to intentional shift, and contains no references. However, it may contain user's 
corrections, covered later in this section.

The information management is a procedure too complex to cover in a 
single section or conceive in a single de3 nition. It therefore will be presented 
in an iterative manner, with each iteration revising its predecessor to pinpoint 
problems and present solutions. This section is organized so that it 3 rst infers 
the initial approach, and afterwards re3 nes it several times by incorporating 
additional "requirements on functionality". At the end of this section, we will 
have a working model of information management to subsequently represent the 
dialogue context within the next section.

4.5.1  Initial Approach

The initial approach to the information management is best compared with 
creating a SIL view (see Section 3.3.2). Recall that the view is a "projection" of 
dialogue history using operations of uni3 cation and hiding to concepts instances 
that are compatible and concurrent, respectively (see Fig. 3.7 and Fig. 3.9). 
Hence, information that was originally scattered across diJ erent interpretation 
worlds, is now put together to produce a compact information representation.

As Eckert points out, the information representation is far from being a 
trivial task, given that the semantics is strongly oriented towards the linguistical 
structure of utterances [Eck95]. Therefore, presuming there are no further 
operations beyond the uni3 cation and hiding, there probably have to be additional 
rules (built-in or domain-speci3 c) to overcome the incompatibility of otherwise 
compatible objects, caused by one being nested in a linguistical concept while the 
other not, like in the following illustrative snippet:
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S
 

Where do you want to go to?
U

 
I want to Erlangen.

S
 

When do you want to go to Erlangen?
U

 
Eight o'clock.

: 116 ,   :
: 116 ,   :

:
: Erlangen

id want type want
id go type go

value
thegoal

 
  
   
                

: 61 ,   :

: 800

id go type go

thesourcetime

 
  
   

Intuitively, there is a complication with unifying the go116 and go61 concepts 
due to one being part of a C

want
 concept instance. Unfortunately, such singular 

cases have not been addressed in Eckert's work and it is therefore di\  cult to 
estimate the behaviour of a SIL-based dialogue manager.

With DDM expressions, the above plotted situation cannot occur as they 
must comply with an arbitrary complex but strongly structured correct model. 
As seen earlier, any user's meaning is to be supplied using directives or explicit 
concepts. This fact signi3 cantly simpli3 es otherwise complex operations (e.g., 
corrections), discussed later.

The most notable distinction between the SIL and our information management 
is the way information itself is stored. While in the former case, information is kept 
scattered across the dialogue history, in the latter case information is maintained 
in an "already projected state", comprising the so called information pool. This 
factual distinction also changes the set of operations to manipulate concept 
instances to inferrention and disposal. Exempli3 ed shortly, given an instantiated 
concept in the pool, the goal of the inferrention is to derive a new concept of 
the same type and update its state in accordance with the input semantics. The 
goal of the disposal is to determine if the original concept is further necessary 
to be held in the pool, and if not, remove it (either by marking it as historical2 
or disposing it permanently). However, before putting these operations into a 
perspective, let us formally de3 ne the term information pool.

De! nition 4.9 (Information pool)
An information pool Y is a set of DDM expressions for which it holds:

   ∀Y ∈ Y, ∀Y
i
 ∈ P*(Y): Y

i
 ∈ Y . □

Thus, the information pool is a compact entity: if a collection instance is 
part of it, then all its subcollections must be as well. The root instance of the 
information pool, I(ρ), then navigates to the open topics currently in focus.

Example 4.6  (Motivational)
To begin with, ponder the below shown information pool. It may be considered 
a single expression with a single open topic τ

timetable
 (multi-expression and multi-

topic information pools to follow). Its structure represents a train and a bus which 
arrive at 11.30 and 12 o'clock, respectively. Particular identi3 ers are unimportant 
at this moment.
2 A collection instance (i.e. not merely a separate concept) may become historical if it is "sealed", 

meaning there has left nothing to discuss about it and it is recurrently con3 rmed.



52

hour*  Hour
11

mnt*  Minute
30

tp*  TimePointarr*  Arrival

hour*  Hour
12

tp*  TimePointarr*  Arrival

trn*  Conn:Train

bus*  Conn:Bus

tim*  Timetable

For demonstrative purposes, consider the bus arrival time has to be changed to 
11 o'clock (say, to re6 ect user's new wish). This can be simply done by "updating" 
merely its hour information. The following semantics carries such update:

hour132  Hour
11

tp132  TimePointarr131  Arrivalbus130  Conn:Bustim129  Timetable

Presumably, the expected result is as follows (IDs are again unimportant):

   

mnt*  Minute
30tp*  TimePointarr*  Arrival

hour*  Hour
11tp*  TimePointarr*  Arrival

trn*  Conn:Train

bus*  Conn:Bus

tim*  Timetable

 □

Given the above motivation, the initial approach may be simply put as follows:

• Start from the respective roots of the information pool and semantics.

• For each immediate subconcept of the semantics root, 3 nd an equivalent 
subconcepts in the information pool root. Infer a new subconcept.

• Take the new subconcept and recurrently process the rest of the semantics.

• Once backtracking, attempt to dispose the original subconcept.

This recurrent algorithm is closer elaborated in Fig. 4.2. Its particular steps 
that have transformed the initial information pool from Example 4.6 to its 3 nal 
state are then caught in Fig. 4.3 (see the 3 gure legend for more information).

Thus, the initial approach can handle whatever a semantics that carries a fully 
speci3 ed information and "incorporates" it into the information pool using the 
inferential and disposal operations, applied recurrently. Once done, an arbitrary 
sequence of initially isolated pieces of information (isolated input semantics) is 
stored in a "6 at" manner to avoid the SIL-like projection. The algorithm can 
also deal with collections of information in such a way that inferred collections 
replace their original counterparts or eventually absorb their concepts (Lines 
12–15 in Fig. 4.2). Finally, the algorithm on its own is naturally of a very 
limited usability. The upcoming sections will therefore aim to improve it by 
accommodating features to deal with regular cooperative dialogue requirements.

4.5.2  Requirement 1: Dialogue Is a Shared Space

This requirement aims to equip the user and the system with the same possibility 
of in6 uencing the dialogue information state. The fact that we are dealing here 
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with a collaborative dialogue facilitates our situation. The proposed information 
pool usage cases are follows:

1. User describes brand new information about the world (e.g., wants to 
3 nd a train that goes to Praha at around 8 o'clock). The term "brand 
new" is signi3 cant here as references to "already known" information 
will be discussed later. Recall that similar pieces of information may 
be collected. To eliminate ambiguity in upcoming processing, user's 
collections may only consist of at most one instance of each concept 
type. For example, the user may evolve information regarding only one 
train and/or only one bus (see the DDM in Fig. 4.1). Naturally, the user 
is given the possibility to evolve only a selected concept, leaving the rest 
of the collection untouched, as seen in Example 4.6.

 procedure Incorporate( Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y ) {

  // instantiate a new "empty" collection Y (not yet a DDM expression) of the type K
S

1  Y := ( K
S
 , �, {( E

parent
, I

parent
 )} )

  // 3 nd in and remove from I
parent

 the original collection instance Y
orig

2  Y
orig

 := ( K
S
 , I

orig
,  F

orig
 ): ∃F

parent
 = ( E

parent
, I

parent
 ) ∈ F

orig

3  if  Y
orig

 ≠ �  {
4   Y

orig
 := Y

orig
 \ F

parent

  }
  // re-instantiate I(Y

S
) in Y (raising Y to a DDM expression)

5  ∀I
S
 = ( D

S
 , C

S
 , X

S
 ) ∈ I(Y

S
)  {

   // re-instantiate I
S
 as I

6   I := I(C
S
)

7   I(Y) := I(Y) ∪ I
   // inherit all subcollections from an original I

0
 = ( D

S
 , C

S
 , X

S
 ) ∈ I

orig
 (if any)

8   ∀Y
sub

 = ( K
sub

 , I
sub

 , F
sub

 ) ∈ P(I
0
)  {

9    F
sub

 := F
sub

 ∪ ( E, I ), where E = ( C
S
, R ) ∈ K

sub

   }
   // recurrently process
10   ∀Y

sub
 = ( K

sub
 , I

sub
 , F

sub
 ) ∈ P(I

S
)  {

11    Incorporate( Y
sub

 , I )
   }
  }
  // absorb uncontained concept instances from Y

orig
 into Y

12  if  I(Y) ⊆ I
orig

  { // no new concept introduced by Y
S

13   I(Y) := I(Y)  ∪  { I = ( D, C, X ): I ∈ I
orig

  ∧  I ∉ I(Y) }
  }
  // attempt to dispose Y

orig

14  if  Y
orig

 no longer referred {
15   Y := Y \ Y

orig

  }
  // add Y into Y
16  Y := Y ∪ Y
 }

Usage: Incorporate( Y(ρ) ∈ Semantics , I(ρ) ∈ Y )

Fig. 4.2  Information management initial approach algorithm.



tim129  Timetable

hour159  Hour
11

mnt167  Minute
30

tp156  TimePointarr152  Arrival

hour140  Hour
12

tp137  TimePointarr134  Arrival

trn149  Conn:Train

bus131  Conn:Bus

tim175  Timetable

ρ

(a) derrived new timetable instance tim175, sharing subcollections with the original, tim129.

tim129  Timetable

hour159  Hour
11

mnt167  Minute
30

tp156  TimePointarr152  Arrival
trn149  Conn:Train

bus131  Conn:Bus

hour140  Hour
12

tp137  TimePointarr134  Arrivalbus175  Conn:Bus
tim175  Timetableρ

(b) derrived new bus instance bus175, sharing subcollections with the original, tim131.

tim129  Timetable

hour159  Hour
11

mnt167  Minute
30

tp156  TimePointarr152  Arrivaltrn149  Conn:Train

bus131  Conn:Bus arr134  Arrival

hour140  Hour
12

tp137  TimePointarr14  Arrival

bus175  Conn:Bustim175  Timetableρ

(c) derrived new arrival instance arr14, sharing subcollections with the original, arr134.

tim129  Timetable

hour159  Hour
11

mnt167  Minute
30

tp156  TimePointarr152  Arrivaltrn149  Conn:Train

bus131  Conn:Bus tp137  TimePointarr134  Arrival

hour140  Hour
12

tp23  TimePoint

arr14  Arrivalbus175  Conn:Bustim175  Timetableρ

(d) derrived new time point instance tp23, sharing subcollections with the original, tp137.

tim129  Timetable

hour159  Hour
11

mnt167  Minute
30

tp156  TimePointarr152  Arrivaltrn149  Conn:Train

bus131  Conn:Bus tp137  TimePointarr134  Arrival hour140  Hour
12

hour131  Hour
11

tp23  TimePointarr14  Arrivalbus175  Conn:Bustim175  Timetableρ

(e) created new hour instance hour131; initiation of back tracking.

tim129  Timetable

trn149  Conn:Train

bus131  Conn:Bus tp137  TimePointarr134  Arrival hour140  Hour
12

hour159  Hour
11

mnt167  Minute
30

tp156  TimePointarr152  Arrival

hour131  Hour
11

tp23  TimePointarr14  Arrival

trn132  Conn:Train

bus175  Conn:Bus

tim175  Timetableρ

(f) added new train instance trn132; original collection {bus131, trn149} still referred from tim129. 

hour159  Hour
11

mnt167  Minute
30

tp156  TimePointarr152  Arrival

hour131  Hour
11

tp23  TimePointarr14  Arrival

trn132  Conn:Train

bus175  Conn:Bus

tim175  Timetableρ

(g) original timetable tim129 not referred from anywhere – disposed along with all its subcontent.

Fig. 4.3  Information management initial approach demonstration.
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2. System supplies new information about the world that may override 
user's one (e.g., 3 nds that there is a matching train at quarter past eight). 
Such information is to override user's eventual one. Nevertheless, the 
overriding must be temporal to meet the notion of the information pool 
serving as a shared space. However, unlike with user's collections, system 
ones may contain multiple instances of the same concept (supported 
by the fact that the system is never wrong) which cannot be further 
evolved (supported by the fact that the system is always accurate).

3. User re-speci! es his demands, eventually rejects system current 
information (e.g., yet wants a seat in the 3 rst class coach). Under such 
conditions, user's imagination of the world must override the system one 
(compare with processing a sequence of utterances in SIL).

To allow for the two cases of information overriding, it is necessary to introduce 
a function that determines who of the participants has provided the information. 
We term this the information content type function. The overriding itself is 
then implemented as user information hiding. The following de3 nition clari3 es 
these two functions.

De! nition 4.10  (Information content type, and user information hiding functions)
Let Y = Y(K) ∈ Y be a DDM collection instance. The information content 
type function is a projection A: Y → { user, system, dereferenced } with the 
following characteristics:

,     if  has been provided by the user

( )    ,     if  has been provided by the system

,     if  has been used to resolve user's reference

user Y

AY system Y

dereferenced Y




= 



Let τ ∈ Y be a topic instance. Let it hold Π( τ, Y
1
, …, Y

N
, K(Y) ) = { [ τ, Y

1
, …, Y

N
, Y ], 

[ τ, Y
1
, …, Y

N
, Y

U
 ] }, Y ≠ Y

U
.  Then the user information hiding function is a 

projection U: Y → Y such that

   

  ,     if ( )
( )    

  ,     otherwise
U

Y AY user
U Y

Y

 == 
  □

The user information hiding function is to "mine" user-provided information 
from a particular "address" (path) in the information pool. Apparently, if the 
information Y addressed by a given path has been provided by the user, then 
we are done and return Y. Otherwise, Y has been introduced by the system and 
eventually hides user-provided information, Y

U
 . As we will see in the revised 

algorithm, system-provided information is removed from the information pool 
once the system has been overridden (an operation outside the U(.) function), 
hence there is no implied ambiguity. Fig. 4.4 illustrates the idea (see the 3 gure 
legend for more information).

However, before presenting the updated information management approach 
(Appendix A.2.1), let us introduce one more term from Grosz and Sidner's work 
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on discourse attention [Gro86], the salience. The salience is a meta-information 
on how "recent" a given object is. Let us represent the salience as a number with 
the following semantic: the higher the number the older the object, i.e. the less 
salient it is, and vice versa.

De! nition 4.11 (Salience and related projection functions)
Let I = I(C) be a DDM concept instance. The salience is a projection S: Y → ℜ+ 
such that S(I) < S(I

i
), if I has been uttered later than I

i
 = I(C

i
), and S(I) = 

0, if I has not been uttered yet. In addition, let M = {I
i
} be a set of concept 

instances. Then S(M) = { S(I
i
) } (set of corresponding saliences). Finally, let 

S(�) = 0. □

The new parts in the approach account for: 1) information overriding (Lines 
5–12), 2) subinformation spreading (Lines 16–21), and 3) meta-information 
setting (Line 23). While the 3 rst and last ones are self-explanatory, the second 
one desires a short explanation. The subinformation spreading is motivated by 

city27  City
Praha   

lctn23  Location

hour38  Hour
around_noon

tp35  TimePoint

arr20  Arrivaltrn18  Conn:Traintim15  Timetableρ

(a) user has introduced brand new information into a blank information pool

trn18  Conn:Train arr20  Arrival

lctn23  Location city27  City
Praha   

tp35  TimePoint hour38  Hour
around_noon

city126  City
Domažlice 

lctn121  Location

dep121  Departure

city52  City
Praha   

lctn55  Location

hour59  Hour
11

mnt151  Minute
20

tp62  TimePoint

arr53  Arrival

city1  City
Domažlice 

lctn107  Locationdep107  Departure

city0  City
Praha   

lctn5  Location

hour10  Hour
12

mnt117  Minute
20

tp11  TimePoint

arr1  Arrival

trn118  Conn:Train

trn105  Conn:Train

tim33  Timetableρ

(b) system has introduced new information (thick frames); this information 
overrides user's original one (system "backs up" the user; dashed line)

city27  City
Praha   

lctn23  Location

hour28  Hour
afternoon

tp40  TimePoint

arr30  Arrivaltrn25  Conn:Traintim33  Timetableρ

(c) user has made changes to its imagination of the world, disposing system content, if any

Fig. 4.4  Shared space extension demonstration.
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the fact that users are unlikely to repeat one piece of information for each sibling 
concept, like in "I am searching for a bus to Praha or a train to Praha". They 
rather use an ellipsis to intuitively specify both siblings, as in "I am searching 
for a bus or train to Praha", semantically represented as

   Timetable( Bus, Train( Arrival( Location( City:"Praha" ) ) ) ) .

The C
bus

 instance is left without any closer speci3 cation. To allow for the 
common-sense understanding of the arrival in Praha relating to both the train 
and bus, the C

arrival
 subinformation must be spread from C

train
 to C

bus
. Presuming 

an empty information pool, Rule 4 3 res and carries out such update, drawing the 
semantics to fhe following state,3

   Timetable( Bus( Arrival( Location( City:"Praha" ) ) ),
          Train( Arrival( Location( City:"Praha" ) ) ) ) .

4.5.3 Requirement 2: Information Error 
Recovery Approach (Corrections)

Dialogue is an error-prone environment, causing inconsistencies between the user 
and system dialogue models. It is reasonable to claim that the earlier such 
inconsistency is revealed the easier it is to recover from it. Naturally, the best way 
to avoid inconsistencies is to con3 rm each incoming information immediately; 
nevertheless, this leads to boring interactions [McT02]. Alternatively, a reliable 
user model may be employed to predict obstacles in conversation, hence again 
avoid inconsistencies [Hja05].

The Daisy framework currently contains only limited possibilities to predict 
errors. The source of predictions is rather a blind process constraining merely 
to a selection of one of dialogue strategies. In Section 4.9, we will see diJ erent 
strategies to switch between over the course of a dialogue in order to improve the 
dialogue 6 ow after errors have already been observed. With the proper strategy 
selected, the system con3 rmation behaviour can be adjusted.

Taking this limitation into account, the Daisy framework has been equipped 
with a strong error recovery approach at the level of information management. 
The approach assumes the worst case: a late discovery of an error and multiple 
corrections in a single utterance. To begin our investigation, ponder the below 
dialogue snippet. As it can be seen, there were two errors in the dialogue. 
Although they both appeared at diJ erent times, the framework managed to 
recover from them to a consistent state.

3 The information spreading may be perceived analogous to the SIL semantics elaboration. However, 
unlike with SIL, this process is hard-coded as it carries out a single-purpose operation only.
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U
1 

I want to go by train to Klatovy at " fteen o'clock.
 Timetable( Train( Departure(  ←  error
  Location( City:"Klatovy" ) ,
  TimePoint( Hour:"15" )
 ) ) )

city212  City
Klatovy  

lctn211  Location

hour214  Hour
15

tp213  TimePoint

dep210  Departuretrn210  Conn:Traintim209  Timetable

S
1 

What class do you want to travel in?
U

2 
Second.

 Timetable( Train( Coach( Class:"1" ) ) ) ←  error

city212  City
Klatovy  

lctn211  Location

hour214  Hour
15

tp213  TimePoint

dep210  Departure

clss229  Class
1

cch229  Coach

trn228  Conn:Traintim227  Timetable

S
2 

I understood you want to depart at 15 o'clock from Klatovy 
by the " rst class train. Where do you want to go to?

U
3 

No, I do not want to depart from there but to arrive.
 1 _disagree_ ,
 2 Timetable( Train(
 3  _disagree_( Departure( Location ) ) ,
 4  _agree_( Arrival )
 5 ) )

clss217  Class
1

cch216  Coach

hour209  Hour
15

tp208  TimePointdep208  Departure

city207  City
Klatovy  

lctn222  Locationarr225  Arrival

trn201  Conn:Traintim239  Timetable

The error recovery is a non-trivial process. The main reason is that the 
information pool is of a 6 at nature, with information originating from diJ erent 
utterances. In general, user's corrective intention is recognized by the co-
occurrence of the following two features in a semantics:

• Disagreement or imperative utterance type (either required). Accepted 
is either a blank disagreement whenever the system has not posed a Yes-
No question (e.g., Line 1 in U

3
 semantics, corresponding to the initial 

"No"), or a closer speci3 ed disagreement (e.g., Line 3, corresponding to "I 
don't want to depart").

• Agreement (optional). Any agreed (or more speci3 cally "not explicitly 
disagreed") information is considered to carry correct information to 
replace the disagreed one, if any. To "link" the agreed and disagreed 
pieces together is the objective of the error recovery algorithm itself.
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The essential clue for recovering from an error is the observation of user's 
disagreement. In the ideal case, the user pinpoints the particular information 
s/he disagrees with (as in "I do not want to depart from there"). When 
incorporating such disagreement into the information pool, the corresponding 
concept instances get marked correspondingly, as in Fig. 4.5b (notice city212 
has been marked despite not explicitly disagreed by the user; we will clear that 
below). When an agreed part of the semantics is then encountered (Line 4 in 
U

3
 semantics), the correction processing melts down to a simple rule of 3 nding 

an object (dep47 in Fig. 4.5b) that contains "compatible" disagreed subobjects 
(loc110). It is reasonable to replace the path to these disagreed subobjects with a 
path from the agreed portion in the semantics (i.e. replacing Π(…, dep47, loc110, 
city212) with Π(…, arr225, loc222, city207) as shown in Fig. 4.5c).

In the case of the user having not explicitly speci3 ed disagreed information, 
the above rule of searching compatible disagreed subobjects fails. Consider the 
following alternative dialogue continuation to the previous example:

S
2 

I understood you want to depart at 15 o'clock from Klatovy 
by the " rst class train. Where do you want to go to?

U
4 

No, I want to go there.
 _disagree_ ,
 Timetable( Train( Arrival( Location ) ) )

city212  City
Klatovy  U1-U1

lctn211  Location
U1-U1

hour214  Hour
15U1-U1

tp213  TimePoint
U1-U1

dep210  Departure
U1-U1

clss229  Class
1U2-U2

cch229  Coach
U2-U2

trn228  Conn:Train
U2-U1

tim227  Timetable
U2-U1

ρ

(a) initial state with misunderstood information

lctn211  Location
U1-U1

dep210  Departure
U1-U1

trn228  Conn:Train
U2-U1

clss229  Class
1U2-U2

cch229  Coach
U2-U2

hour214  Hour
15U1-U1

tp213  TimePoint
U1-U1

city212  City
Klatovy  U1-U1

lctn110  Location
U3-U1

dep47  Departure
U3-U1

city206  City
Klatovy  U1-U1

lctn206  Location
U3-U1

arr239  Arrival
U3-U1

trn9  Conn:Train
U3-U1

tim0  Timetable
U3-U1

ρ

(b) information pool with disagreed portion of a semantics marked

clss217  Class
1U2-U2

cch216  Coach
U2-U2

hour209  Hour
15U1-U1

tp208  TimePoint
U1-U1

dep208  Departure
U3-U1

city207  City
Klatovy  U1-U1

lctn222  Location
U3-U1

arr225  Arrival
U3-U1

trn201  Conn:Train
U3-U1

tim239  Timetable
U3-U1

ρ

(c) corrected information pool (disagreed portion extracted and re-incorporated to the correct place)

Fig. 4.5  Processing of user's utterance "I do not want to depart from there but to arrive";  
instances are annotated with utterance–last_update pairs.
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While the core principle remains (i.e. searching for compatible subobjects to 
change their paths with agreed portions of the semantics), the underlying "linking" 
rule has to be reformulated. For the above situation, the missing disagreement 
may be naturally understood as "disagreeing with the most recently used 
information compatible with location", or generally speaking, "disagreeing with 
the most recently used compatible subobject". Given that the user's intention is 
the same in both U

3
 and U

4
, application of this rule marks the same objects as in 

Fig. 4.5b, now also including city212 – it is the most recently used information 
within loc110 (both loc110 and city212 have been 3 rst introduced in U

1
).

Let us now make several notes regarding the underlying recovery algorithm 
itself (Fig. 4.6). Apart of the self-explanatory set of rules (RULES), the 3 rst 
point to make is that it can operate in two complementary modes (MODE): 
correct, to extract the correct part of a DDM expression, i.e. the part which has 
not been marked as disagreed, and incorrect, to extract only the marked portion 
of the DDM expression. To brie6 y illustrate, given the marked instances in 
Fig. 4.5b, the incorrect-mode result is Timetable( Train( Departure( Location( 
City:"Klatovy" ))))), while the correct-mode result is the "remainder". The result 
is always stored in an auxiliary concept (I

EXTRACT
) to allow for further handling 

of the returned expression (e.g., in revised algorithm in Appendix A.2.2).
The recovery algorithm is based on applying extraction rules to subobjects 

of a given parent concept instance. The application occurs at two diJ erent levels: 
collection instances (to determine if the collection as a whole is "relevant" in 
the given mode), and concept instances (soft-grained handling and recurrent 
processing). The implementation of this process then accounts for yet one level 
(edge instances) which is, however, due to simplicity reasons not included in 
the algorithm outline in Fig. 4.6, nor are included some singular extraction 
situations. Interested reader is therefore advised to trace the Extrakce procedure 
in Vrstva.pas to gain a complete view at the extraction process.

4.5.4  Requirement 3: Representing Information 
Spanning Multiple Intentions

We so far assumed a dialogue consisted of merely a single intention that was 
collaboratively solved and then replaced by another intention (or the dialogue 
3 nished). This is rarely the case, unless considering state-based approaches 
[McT02, Jok10]. The agent-based approach usually uses some variant of Grosz 
and Sidner's work on collaborative dialogues [Ric01, Ngu06b, Rot07] which holds 
also in our case. We nonetheless will not consider their whole framework at this 
moment but focus ourselves merely on the following two aspects:

• organizing information of multiple intentions,

• passing information between two intentions.

Thus our current aim is not the recognition of user's intentions but rather 
mere management of information that relates to them.
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 RULES = set of prioritized 3 ltration rules to extract relevant information := {
   [ priority: highest, rule: "subcollection contains disagreed concept instances" ],
   [ priority: medium, rule: "subcollection was uttered in system last utterance" ],
   [ priority: lowest, rule: "subcollection was last updated
         at the same moment as the parent instance" ]
 }
 MODE = extraction mode to generate a DDM expression ∈ { correct, incorrect }
 I

EXTRACT
 = I( �, ρ, � )

 procedure _Xtract_( I
parent

 = I(C
parent

) )  {
  Rule := highest priority rule in RULES that 3 res for any of I

parent
 subcollections

  ∀Y
sub

 := U(Y
sub

) = ( K, I
sub

 , F
sub

 ) ∈ P(I
parent

)  {
   // check if user subcollection Y

sub
 is relevant for the DDM expression to extract

   if  Rule(Y
sub

) not 3 red  {
    if  MODE = incorrect  {  F

sub
 := F

sub
 \ ( E

parent
 , I

parent
 )  }

    skip Y
sub

   }
   // check if Y

i
 is entirely relevant, incl. subcollections (defererenced objects only)

   if  A(Y
sub

) = dereferenced  ∧  MODE = correct  {  skip Y
sub

  }
   // check which of Y

sub
 concept instances are relevant

   Y
dup

 = ( K, �, � )
   ∀I

i
 = ( D

i
 , C

i
 , X

i
 ) ∈ I(Y

sub
)  {

    // duplicate I
i
 (incl. all edges to nested subcollections)

    I
dup

 = I(C
i
)

    // check if I
i
 is relevant

    if  Rule(I
i
) not 3 red  {

     if  MODE = correct  {  I(Y
dup

) := I(Y
dup

) ∪ I
dup

  }
     skip I

i

    }
    // recurrently process and evaluate result
    _Xtract_( I

dup
 )

    if  MODE = correct  ∧  P(I
dup

) = �  {  skip I
i
  }

    // add I
dup

 to Y
dup

    I(Y
dup

) := I(Y
dup

) ∪ I
dup

   }
   // determine if Y

dup
 contains concept instances (and is thus a DDM expression)

   if  I(Y
dup

) ≠ �  {
    F(Y

dup
) := F(Y

dup
) ∪ ( E

parent
 , I

parent
 )     // add Y

dup
 as subcollection of I

parent

   }
   F

sub
 := F

sub
 \ ( E

parent
 , I

parent
 )     // delete edge to "original" subcollection Y

sub

  }
 }

 procedure Extract( Y = ( K, I, F ) ∈ Y , Mode ∈ { correct, incorrect } )  {
  MODE = Mode
  F := F ∪ F

EXTRACT
,  where F

EXTRACT
 = ( E

EXTRACT
 , I

EXTRACT
 )

  _Xtract_( I
EXTRACT

 ) // the result of extraction is stored in I
EXTRACT

 }

Usage: Extract( Y , correct/incorrect ), Y ∈ Y

Fig. 4.6  Algorithm to extract either the "correct" part of a DDM expression or the "incorrect" 
part (MODE switch)
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To begin with, ponder the dialogue snippet in Fig. 4.7. As it can be seen, 
the dialogue consists of user's two sub-intentions (beginning with U

1
 and U

2
) 

and two system sub-intentions (beginning with S
1
 and S

5
) that together de3 ne 

the logical segmentation of the dialogue into the so called discourse segments 
(DSs), labeled as DS

1…4
. As Grosz and Sidner propose in their work, each of 

these segments is assigned a focus space, "recording the objects, properties, and 
relations that are salient in its scope – either because they have been mentioned 
explicitly in the segment or because they became salient in the process of 
producing or comprehending the utterances in the segment" [Gro86]. Each 
focus space also includes a discourse segment purpose (DSP) to keep track of 
"why" given information is being discussed in the dialogue. Fig. 4.8 illustrates 
the linkage between the focus spaces and intentions – they are proposed to 
constitute a stack. Information in lower spaces is therefore accessible from higher 
ones but "less" than the information in higher spaces. In terms of salience, the 
lower positioned focus spaces are of lower salience than their higher positioned 
counterparts. Note that we at this moment will not examine why DSP2 has 
been placed "above" DSP1 or why DSP4 has "replaced" DSP3 in the stack (the 
necessary management foundation will be covered later).

The fact that focus spaces are stacked onto each other has natural implications 
on interpreting user's utterances. For instance, if an airplane existed in DS2 and 
another diJ erent one in DS1, then user's sentence "the airplane" uttered in DS2 
would be understood to address the particular airplane in DS2. Contrarily, if 
a ship existed only in DS1, user's sentence "the ship" uttered in DS2 would be 
understood as referring to that ship in DS1.

De! nition 4.12 (DSP function)
Let F denote the set of tasks (funtionality) of a given system. Let Y = Y(K) ∈ 
Y be a topic instance. A discourse segment purpose function is a projection 
DSP: Y → F. □

Hence, Grosz and Sidner's work is approached using topics. Recall from 
Section 4.2 that topics are an abstraction of a task or a group of similar tasks. 
DiJ erent DSPs then distinguish instances of the same topic from each other. 
Of course, the information pool plays here merely a role of a blob of known 
information grouped into topics; these topics are not organized into a stack. 
However, this can be worked around by keeping topics salience up-to-date with 
their most salient related object.

Fig. 4.9 demonstrates this idea. As it can be seen, the train and bus instances 
(trn28 and bus23) have been passed over from DS1 (tim34) to DS2 (tim1), being 
still a\  liated to DSP1 just as expected. The information pool also allow for 
objects overriding. In such case, objects are 3 rst passed over and then changed, 
resulting in the unmodi3 ed part of them being shared among DSPs while the 
changed part being speci3 c only for the DSP that triggered the modi3 cation 
(notice two arrows directing from system K

conn
 to tim34 and tim1 topics). This 

operation is naturally in coherence with Grosz and Sidner's work.
Finally, see Appendix A.2.3 for updates to the information management 

approach, accommodating now information spanning multiple intentions.
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S
1 

How may I help you?
U

1 
I need to get from Ostrava to Pardubice at nine.

S
2 

There is a train going from Ostrava to Pardubice at 9:08, and a bus at 9:13.
U

2 
When do they arrive there?

S
3 

The train arrives in Pardubice at 21:05, and the bus at 20:48.
 

 
May I help you " nd another connection?

U
3 

No.
 

 
I will take one ticket for the bus.

S
4 

…

 
 
Thank you for the payment.

 
 
May I help you with anything else?

U
4 

No, thanks.
S

5 
Thank you for using our services and have a nice day.

Fig. 4.7  Segmented multiple-tasks dialogue.

time

FS1
DSP1

FS1
DSP1

∅

FS2
DSP2

Dep(City:"Ostrava")
Arr(City:"Pardubice")
Train(Arr(TmPt:"0905"),
       Dep(TmPt:"2107"))
Bus(Arr(TmPt:"0913"),
      Dep(TmPt:"2048"))

∅

FS1
DSP1

∅

FS2
DSP2

FS3
DSP3

Dep(City:"Ostrava")
Arr(City:"Pardubice")
Train(Arr(TmPt:"0905"),
       Dep(TmPt:"2107"))
Bus(Arr(TmPt:"0913"),
      Dep(TmPt:"2048"))

*Train
*Bus
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DSP1

∅

FS2
DSP2

FS4
DSP4

Dep(City:"Ostrava")
Arr(City:"Pardubice")
Train(Arr(TmPt:"0905"),
       Dep(TmPt:"2107"))
Bus(Arr(TmPt:"0913"),
      Dep(TmPt:"2048"))

Ticket(*Bus)

FS1
DSP1

∅

Fig. 4.8  Focus stack transitions between utterances S
1
 and S

5
 in dialogue from Fig. 4.7.
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4.5.5  Requirement 4: Representing User's 
Underspeci$ ed Information

This section is on representing information that cannot be resolved using the 
dialogue context or dialogue history. With respect to the DDM in Fig. 4.1, such 
case occurs, for instance, in the following dialogue snippet:

S
1 

How may I help you?
U

1 
I want to go to Praha.

 Semantics: Location( City:"Praha" ) ←  error 
(C

timetable
 and C

arrival
 not recognized)

Here, error recognition caused user's information originally fully speci3 ed 
to be observed as underspeci3 ed. Assuming the information pool is empty at 
the beginning, the system cannot resolve if the user talks about a departure 
or an arrival, nor if the information contributes to a timetable search or ticket 
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purchase. One of the anticipated dialogue continuations in such situation could 
be (dialogue planning covered later in Section 4.8):

S
2 

Should the city of Praha regard your departure or arrival?

Each piece of underspeci3 ed information is in the information pool represented 
as an "unbound" DDM expression, with root having no parent, i.e. Y: F(Y) = �. 
For the above snippet, the following information pool shows the result:

lctn143  Location city144  City
Praha   

ρ

It is necessary to point out that the system perceives unbound expressions 
as mostly vague pieces of information which eventually may not even contribute 
to the current DSP in focus (e.g., due to ASR failure). Hence, the management 
of such information is additionally constraint as follows:

• Unbound expressions are not subject of object passing between discourse 
segments (they therefore cannot be shared nor overridden in order to not 
spread the possible error that may stand behind them).

• Unbound expressions exist in a single instance within a given discourse 
segment (it is therefore impossible to have two unbound city locations 
within a DS – should such situation arise, the current unbound location 
replaces the previous one).

trn28  Conn:Train
DSP1

bus23  Conn:Bus
DSP1

dep29  Departure
DSP1

lctn30  Location
DSP1

city30  City
OstravaDSP1

arr31  Arrival
DSP1

lctn32  Location
DSP1

city33  City
PardubiceDSP1

tim1  Timetable
DSP2

city41  City
OstravaDSP1

lctn40  Location
DSP1

hour42  Hour
9DSP1

mnt43  Minute
13DSP1

tp42  TimePoint
DSP1

dep40  Departure
DSP1

city45  City
PardubiceDSP1

lctn45  Location
DSP1

hour47  Hour
20DSP1

mnt167  Minute
48DSP1

tp46  TimePoint
DSP1

arr44  Arrival
DSP1

prc168  Price
32.500000DSP1

city44  City
OstravaDSP1

lctn43  Location
DSP1

hour46  Hour
9DSP1

mnt47  Minute
8DSP1

tp45  TimePoint
DSP1

dep43  Departure
DSP1

city36  City
PardubiceDSP1

lctn35  Location
DSP1

hour37  Hour
21DSP1

mnt38  Minute
5DSP1

tp36  TimePoint
DSP1

arr34  Arrival
DSP1

prc39  Price
35.000000DSP1

bus39  Conn:Bus
DSP1

trn42  Conn:Train
DSP1

tim34  Timetable
DSP1

tim133  Timetable
DSP0

ρ

Fig. 4.9  Multi-topics information pool with three diJ erent discourse segment purposes.
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• Unbound expressions disappear as soon as a concept instance that can 
contain them, emerges (e.g., for the above sample snippet, as soon as the 
user decides Praha being the location of either departure or arrival). The 
containing instance can in turn become an unbound expression.

Despite the fact that the representation of unbound expressions is very 
straightforward, they mean a signi3 cant update to the information management. 
To spare on space, only updates to the Incorporate procedure are shown in 
Appendix  A.2.4. Interested reader is suggested to have a closer look at the 
Extrakce procedure in Vrstva.pas to gain a complete view at the extraction 
process for unbound DDM expressions.

4.5.6 Requirement 5: Information Scalability

So far, we concerned with merely simple types with strictly disjunctive values; 
for instance, we assumed integer values (as in Class:"1") or string values (as in 
City:"Cheb"). Such values were reasonably supposed to have nothing in common, 
implying one could always be easily replaced with the other (Class:"1" → 
Class:"2", or City:"Cheb" → City:"Praha"). The mentioned integer and string are 
part of the elemental built-in data types set, natively provided by the framework 
(see Table 4.2).4 These intrinsic types are, however, of a limited usability. For 
instance, it is impossible to adjust the wrong understood city of Hradec Králové 
simply by saying "No, I mean u Stoda" to change the location to Hradec u Stoda, 
as for the string type it holds City:"Hradec Králové" → City:"u Stoda".

Generally, a particular object value is the result of an information type-
speci3 c operation [Men96]: a new value can not only replace but can also extend 
or infer from an old value; for instance, we can replace the number of passengers 
on a ticket, merge ticket discounts, and evolve the name of a city by combining 
two pieces of information. Given that the listed sample operations are all of 
distinct nature, the information management does not provide any "combinatorial 
pattern" to determine a new value. Instead, it passes this responsibility to 
external resources – domain-speci3 c libraries that de3 ne the so called external 
data types.

As already seen in De3 nition 4.1, each data type T is a set of functions 
that together completely and unambiguously de3 ne the range and operations 
with eigen information ψ, i.e. T = { f

i
 }. The functions proposed to provide such 

properties are listed in Table 4.3.5 For instance, the above outlined problem of 

4 For optimization reasons, these types have been chosen with respect to their local language 
independence, and do not contain types whose range is a subset of another type – for instance, Char 
⊂ String ⊂ Utf8String (the input semantics lexical analysis guarantees that any later comparison of 
two strings is as quick as a comparison of two characters) or Boolean → {0,1} ⊂ Integer.

5 From the technical point of view, note that each of the binary functions is considered a tolerance 
with re6 exive and asymmetric properties. The re6 exivity eliminates randomness from processing by 
pertaining any old value if related to itself. The asymmetry says the order of arguments matters. 
This is important when developing external data types. As a rule, the left argument is always the 
comparer while the right argument is always the comparee, as, for instance, in the IsContainedIn 
function whose semantics is "true if inf

2
 is contained in inf

1
, otherwise false".
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city name misunderstanding can easily be solved for by de3 ning an external data 
type with the following combinatorial pattern (schematic):

  ( ) , if  is a known name,
( ) ( )  

  ( ) , otherwise
old new old new

old new
new

X City City City City
X City X City

X City

 ⊕ ⊕
⊕ = 



where ⊕ is a value-combination operator and X(.) is the value projection function 
as introduced in De3 nition 4.7.

Apparently, the "completeness" requirement for a data type operations refers 
to covering all possible combinatorial situations. Given that each combination 
always accounts for an old and a new information, each of which may be either 
agreed or disagreed, the combinatorial situation falls into the Cartesian space 

Table 4.2  Daisy framework intrinsic data types; the Size and Capacity columns 
apply to x86 platform.

Name Size Capacity

Ordinal 4 Bytes -2147483648 … 2147483647

Double 8 Bytes ten digits of precision

UTF8 String 1 Byte minimum unlimited

Table 4.3  Data type de3 nition functions.

Function C-style synopsis and description

void *Create ( char *description )
      Creates information based on its textual description.

int GetCardinality ( void *inf )
      Returns the cardinality of the speci3 ed information.

bool Equal ( void *inf
1
 , *inf

2
 )

      Returns true if both pieces of information are equal, otherwise false.

bool IsCombinable ( void **inf
1
 , int nInf

1
 , void *inf

2
 )

      Returns true if inf
1
 can be combined with inf

2 
, otherwise false.

void *Combine ( void *inf
1
 , *inf

2
 )

      Returns the result of combining inf
2
 with inf

1 
.

void *Negate ( void *inf )
      Returns the negation of the speci3 ed information.

bool IsInstantiable ( void *inf )
      Returns true if the speci3 ed information is instantiable, otherwise false.

bool IsContainedIn ( void *inf
1
 , *inf

2
 )

      Returns true if inf
2
 is fully contained in inf

1 
.

bool IsUnde! ned ( void *inf )
      Returns true if the speci3 ed information does not contain value.

char *ToText ( void *inf )
      Returns TTS module-processable form of the speci3 ed information.

void Destroy ( void *inf )
      Destroys speci3 ed information.
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of { agreed , disagreed } × { agreed , disagreed }. Furthermore, for each such 
situation, we distinguish its three signi3 cant results: (1) both pieces of information 
have nothing in common, (2) are equal, or (3) overlap. Table 4.4 overviews these 
relationships along with short explanations of their meaning.

4.6  Dialogue Context

4.6.1 Problem Identi$ cation

As already mentioned, our approach to dialogue context follows Grosz and 
Sidner's work on discourse [Gro86]. They propose that the attentional component 
in a dialogue can be recognized as noun and pronoun phrases. Contrarily, the 
recognition of intentions at the level of DSPs is a large research problem in itself. 
As it turns out, the clues for a proper intention recognition come from a variety 
of sources that must be put together to fully identify the intention [Gro86]:

• Cue phrases. Phrases like "excuse me", "by the way", etc. are the most 
apparent linguistical means to indicate discourse segment boundaries 
and thus the beginning or end of a DSP. Grosz and Sidner divide these 
phrases into categories (e.g., attentional change, interruption, etc.) 
that further help organize the structure of the dialogue. However, cue 
phrases are ambiguous; e.g., if several interruptions have been made 
in a dialogue, the cue phrase "but anyway" indicates a return to some 
previously interrupted discourse, but does not specify which one [Gro86].

• Utterance-level intention. Intention is to describe utterance meaning 
[Gri69]. Generally, a DS consists of several utterance-level meanings, 
which must be combined in some way to produce the overall DSP. This 
is a quite complex process as it is necessary to recognize that subsequent 
utterances do not bear standalone purposes but should be used in the 
same context.

• Shared knowledge about the domain. This refers to both conversational 
partners knowing the taxonomy of domain tasks and how diJ erent tasks 
can be "nested" into each other.

The intention recognition process must be capable of operating on partial 
information. It thus must allow for incrementally constraining the range of 
possibilities as more information becomes available over the course of a particular 
discourse segment.

Hence, this section aims to spot the general problem of properly representing 
a dialogue context with respect to user's intention recognition. Grosz and Sidner's 
work has been partially implemented in the past (e.g., in [Ric01, Ngu06b, Rot07]), 
with "partially" referring to diJ erent workarounds to utterance-level intentions. 
However, the generally preferred way to representing and recognizing intentions 
is by analyzing utterance linguistical structure for dedicated "request" tokens 
[Eck95, Boh09, Ngu06b]. Presumably, both of these competitive approaches have 
their pros and cons: while Grosz and Sidner's approach plays a rather universal 
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role, it is unnecessarily over-scaled for common collaborative dialogues (e.g., as 
simpli3 cations in [Ngu06b] illustrate); contrarily, the "request" token-approach is 
simple enough to be easily accounted for, but lacks 6 exibility as for evolution of 
user's intentions.6

Presumably, for our framework to be as general as possible, Grosz and 
Sidner's work has been partially adopted too. Before describing, let us introduce 
the term dialogue act and its importance for maintaining a coherent dialogue 
with the user.

4.6.2  Dialogue Acts

Dialogue acts have their roots in theory of purpose and eJ ect of speech. 
More particularly, by making an utterance, the speaker in a dialogue intends 
to perform some action known as a speech act [Sea69]. In this respect, the 
important application of speech acts is to give a clue for a proper recognition 
of speaker's intentions by observing their performed speech acts. They may be 
therefore seen as the cornerstone in natural speech processing, be it at the level 
of automated conversational agents, or during an annotation post-processing 
of existing dialogue transcripts [Eck95]. For practical reasons, conversational 
partners' utterances need to be described a more abstract way in order to account 
for the necessary terms like clari! cation or response, dealt within a dialogue. 
These abstract terms are referred to as dialogue acts. Each dialogue act is fully 
characterized by a semantic content (information conveyed or requested by the 
particular utterance) and a communicative function (the purpose of saying that 
utterance7). Thus, in order for a conversational agent to maintain a coherent 
dialogue with the user, it is necessary to 3 rst recognize the associated dialogue 
acts that lead to understanding user's underlying intentions.

Given that the agent must allow for a mixed-initiative style of interaction, the 
proposed set of dialogue acts must be modeled correspondingly. Our proposition 
can be seen in Table 4.5. The notion of the mixed-initiative is captured by 
giving a user the possibility to take a turn when requesting a task (Request) 
or con3rming information (Con! rm); contrarily, the system can take a turn 
when requesting clari3cation (Request-clarify) or informing about task results, 
thus 3 nishing the task and the corresponding discourse segment (Respond). 
This mixed-initiative behaviour occurs automatically as the result of the agent 
selecting appropriate dialogue strategies by observing a known context situation 
patterns (more on them in Section 4.9). The following snippet shows a dialogue 
with sentences annotated with their corresponding dialogue acts.

S
 

Welcome to the Timetable Information System. Politeness
 
 

How may I help you? Request
U

 
When does the next train go to Hradec? Request

S
 

Do you mean Hradec Králové or Hradec u Stoda? Request-clarify
U

 
Hradec u Stoda. Clarify

6 This means that their requests have to be expressed a "parser-aware" way within a single turn.
7 This function is usually related to a task, but often some of the function is to maintain the interaction 

process. Dialogue acts with such notion are called dialogue control acts [All92].
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S
 

There is a train going to Hradec u Stoda at … Respond
 
 

Do you want to buy a ticket now? Request-yn
U

 
No, thanks. Con! rm

S
 

Thank you for using our services and have a nice day. Politeness

At the beginning, the user asks for information about departure times. Since 
"Hradec" is an ambiguous city name, the system performs a Request-clarify 
act to gain more detailed information from the user. The task can then be 
completed successfully and the system performs a Respond act to inform about 
the connections found, immediately followed by a Request act to propose possible 
continuation in the interaction. With the user refusing, the system performs 
a farewell Politeness act and terminates the dialogue. In this regard, let us 
note that we group agent's all polite phrases under the  Politeness dialogue 
act, despite the common way of classifying them individually, e.g., Greeting, 
Goodbye, Please, etc.

4.6.3  Recognizing Dialogue Acts

With the dialogue acts de3 ned, the arising question is how to recognize them 
in user's utterances. DiJ erent approaches may be used, depending on the 
overall complexity of the dialogue management and desired functionality of the 
resulting system. For instance, in information state-based systems, the way of 
recognizing dialogue acts is relatively easy to conduct. Given the observable 
eJ ects of utterance on the underlying information state, user's dialogue acts (or 
set of) can be simply induced by the update they have caused [Tra03, Bui06]. 
Contrarily, in a SIL-based dialogue manager, a set of 6 at rules is proposed to 
extract dialogue act(s) from user's current utterance and corresponding UFOs 

Table 4.5  Dialogue acts.

Act type Description

Politeness General politeness padding

Request Ask the dialogue parter to ful3l a request

Request-yn Same as Request but with con3 rmation accepted

Respond Give results to a request

Request-clarify Ask the dialogue partner to clarify some ambiguities

Clarify Clarify some ambiguities

Request-con! rm Ask the dialogue partner to con3rm some proposition

Con! rm Con3rm some proposition

Help Request contextual help

Repeat Request repetition of dialogue partner's last proposition

Ack Express acknowledgement

Rogerian-psychologist Ask the dialogue partner to clarify some ambiguities
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(e.g., if an UFO contains an A-parameter that is part of a wh-question, then the 
user has performed a Request dialogue act) [Eck95].

Nevertheless, in the case of the Daisy framework, we adopt Nguyen's 
approach consisting of a set of heuristic rules 3 red under distinct combinations of 
both participants' last dialogue acts and user's current utterance syntactic class 
(Table 4.6). However, we made two modi3 cations to her approach. First, we do 
not consider the Cancel dialogue act; provided that cancellation is a destructive 
operation, we think it should not be roughly estimated merely upon observing 
imperative utterance as in Rule 5. Instead, we propose it to be modeled as a 
meta-task with a special phrase as a trigger. And second, we do not take into 
account user's last dialogue act. The reason is that this feature is redundant in 
Nguyen's approach. Table 4.7 shows our resulting set of rules.

Probably the most notable point to make regards the "Request-suspected" 
dialogue meta-act. As its name suggests, it is to indicate those utterances that 
possibly may be recognized as Request dialogue acts (with additional analysis 
of their semantics, covered next). The following dialogue snippet with four 
alternative user responses shows the motivation behind this approach:

S
 

… There is a train and bus going to Cheb at 7 o'clock. Respond

Table 4.6  Nguyen's [Ngu06b] sample heuristic rules for dialogue act type determination.

Rule User's last act Agent's last act Utterance type Result

1 Request Respond imperative Request

2 Clarify Respond wh-question Request

3 Cancel Ack yn-question Request

4 Request Request-clarify declarative Clarify

5 Request Request-clarify imperative Cancel

6 Request Request-con! rm declarative Con! rm

Table 4.7  Daisy framework sample heuristic rules for dialogue act type determination; 
acts marked with an asterisk must have been performed on intentional layer, and dash 
denotes unimportant parameter.

Rule Agent's last act Utterance type Result

1 — interrogative Request

2 Request / Request-yn declarative Request-suspected

3 Request-clarify * — Request-suspected

4 Rogerian-psychologist * — Request-suspected

5 Request-clarify declarative Clarify

6 Request-con! rm declarative Con! rm
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Do you want to buy a ticket now? Request-yn
U

alt1 
Is there anything departing later? Request

U
alt2 

I am quite sure there was yet something later.
 Request-suspected  →  Clarify

U
alt3 

Yes. Request-suspected  →  Con! rm
U

alt4 
Say me their arrival times, please. Request-suspected  →  Request

As it can be seen (currently wihtout further explanation), while U
alt1

 describes 
a direct question caught by Rule 1 as a Request dialogue act, U

alt2
 and U

alt3
 

show a false suspicion as their respective contents are recognized by Rule 2 and 
additional analysis as Clarify and Con! rm acts. Finally, U

alt4
 shows a successful 

suspicion of a Request dialogue act, caught also by Rule 2. However, before we 
can cover the additional analysis on determining if a sentence contributes to 
the current discourse segment or creates a new one (or possibly returns to a 
dominant one), we need to 3 rst describe the overall structure of our adoption of 
Grosz and Sidner's work.

4.6.4 Approaching Grosz and Sidner's Work:
Two-layered Representation

Grosz and Sidner's work on discourse [Gro86] is widely agreed as it puts together 
and further develops theory from diJ erent realms of dialogue processing: focusing 
in discourse, utterance-level intentions, and discourse intention recognition. 
They suggest that a discourse is a combination of three components: linguistical 
structure, intentional structure, and attentional state. The linguistical structure 
refers to recognizing the boundaries of discourse segments (DSs), i.e. sequences 
of utterances that "ful3 l certain functions with respect to the overall discourse". 
We already saw example of dialogue segmentation in Fig. 4.7. The intentional 
structure describes discourse purposes (DPs) that stay behind engaging in the 
particular discourse. At the level of DSs, the overall DP is decomposed into 
discourse segment purposes (DSPs) each of which specifying the contribution to 
achieving the DP. Finally, the attentional state is a stack of focus spaces as they 
were described in Section 4.5.4.

These three components do not act as separate entities but rather mutually 
depend on and in6 uence each other. For instance, the linguistical structure is 
aJ ected by determining mutual relationships between subsequent DSPs (the 
so called dominance and satisfaction-precedence relationships). On the other 
hand, although there is an in3 nite number of intentions a discourse participant 
may have, there is only a small number of intentions relevant to the current 
discourse structure [Gro86].

For a successful application in automated task-oriented systems, Grosz and 
Sidner's work may be signi3 cantly simpli3 ed. Given the domain-wise orientation 
of nowadays dialogue system, there is always a 3 xed number of tasks the user 
may intend to discuss. We also can presume that the user always makes the 
intention explicit so that it can be recognized (i.e. the user does not have 
hidden intentions, unrecognizable from the system standpoint). Hence, these 
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individual tasks can be considered the discourse segment purposes. Given the 
assumed collaborative behaviour of the user, the overall discourse purpose may 
be understood as to ful3ll a domain task. In addition, each user's utterance in 
the dialogue plays at least one of the two roles: specifying her of his intention in 
the current segment (i.e. a task to be performed) or adjusting the recognition of 
that intention (e.g., clarifying or giving more information).

The above mentioned two roles of an utterance play a signi3 cant clue within 
our dialogue context model. They in fact determine its layout as two distinct 
"layers" of inter-related information regarding currently open tasks (task layer) 
and their related "parametrizations" (data layer) [Nes10a, Nes13]. Naturally, the 
data layer approaches the attentional state in Grosz and Sidner's work, and not 
surprisingly may be represented using the information pool developed in Section 
4.5. However, when designing the task layer, our aim has been to overcome the 
common limitation in dialogue systems, namely that tasks have to be recognizable 
from a single utterance [Eck95, Tur05, Boh09, Sin02, Wal97] so that eventually 
a new discourse segment is created, and recognized task set as its purpose 
[Ngu06b, Gus02]. Despite su\  cient in majority of cases, diJ erent circumstances 
may cause this simple approach to fail, as illustrated in the following snippet:

S
1 

How may I help you?
U

1 
Karlovy Vary, please.

S
2 

I understood Karlovy Vary. Should that be 
your departure or target location?

U
2 

Target location.
S

3 
Can I help you " nd a connection to Karlovy Vary or 
do you want to proceed to the ticketing service?

U
3 

Find connection, please.

Here, the system attempts to recognize user's intention by elaborating so far 
known, hence narrowing the set of possible intentional candidates. An alternative 
reaction to the incomplete request in U

1
 might be to list all available system 

functionality in S
2
, e.g., "I can o$ er you information on arrival times, departure 

times, ticketing service, local weather, tourism, …", eventually categorized and 
browsed as a hierarchy of menus.

The second motivational example shows a situation of the system posing a 
con3 rmation on the uncertainly recognized task, responded to by the user with 
a disagreement and a correction:

S
1 

How may I help you?
U

1 
When does the next train to Karlovy Vary depart?

S
2 

Pardon me, I am not sure now, have you 
asked for arrival information?

U
2 

No, departure, please.
S

3 
There is a train going to Karlovy Vary at …

As it can be seen, in both of the above dialogue snippets, the task recognition 
spans multiple utterances. Therefore, to allow for an incremental evolution of the 
task speci3 cation, the task layer is represented using an information pool as well. 
In this information pool, Requirements 1 and 3 from Section 4.5 are naturally 
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left unexploited (as we do not distinguish who of the two dialogue participants 
initiated the given task, nor is there the need to organize recognized tasks into 
advanced structures – the order of tasks is implicitly given by saliences of their 
corresponding instances); however, the remaining Requirements 2, 4, and 5 in 
their respective order guarantee that, apart of spanning multiple utterances, 
each task speci3 cation may be corrected, be speci3 ed at least partially, and 
target any custom information.

With task and data layers approached by information pools (Fig. 4.10), let us 
denote them Y

T
 and Y

D
, respectively. At this moment, we are facing the problem 

of 3 nding those pieces of information in the input semantics that correspond to 
the notion of either of the layers. Apparently, detecting the Request (or Request-
suspected) dialogue act is insu\  cient in this regard. For instance, although user's 
utterance "When does the next train to Karlovy Vary depart?" is recognizable 
as a Request using Rule 1 in Table 4.7, the utterance not only speci3 es a new 
task (departure time request) but it also brings in task-related information (next 
train to Karlovy Vary).

4.6.5  Fragmenting User's Utterance Semantics

The idea behind 3 nding either of the two kinds of information targets splitting 
the input semantics into two distinct fragments. These are not necessarily 
disjunctive, however, presumably homomor3 c with the input semantics. We call 
the process of splitting the fragmentation, and its results the task fragment and 
the data fragment, respectively, denoted as F

T
 and F

D
.

The essential constraint put on the fragmentation is to operate with paths from 
semantics root to semantics leaves, i.e. Π( Y(ρ), Y(K

1
), …, Y(K

N
) ), where Y(K

N
) is 

a leaf iJ  P( Y(K
N
) ) = �. Apparently, a semantics leaf does not necessarily has 

to be the underlying model leaf (e.g., Y(K
train

) instance is a leaf in the semantics 
Timetable( Train ), but K

train
 itself is not a leaf in the DDM in Fig. 4.1). The 

bene3 t of constraining to paths to leaves is in maximizing the compactness of 
the outcoming task and data fragments (see also Fig. 4.11).

DSP1

DSP2

DSP3

DSP4

input semantics

task layer

dialogue stack

data layer
(attentional state)

data affiliation

task recognition

Fig. 4.10  Two-layered approach to task-oriented dialogue context representation.
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In the following sections, we will concern ourselves with two major questions: 
when to initiate the fragmentation process and how to determine the optimal 
fragmentation.

4.6.5.1  Initiating the Fragmentation

To illustrate the problem, let us suppose a single path to leaf (to simplify the 
terminology and explanations, we from now on will say only "path", unless a 
diJ erent kind of path is meant). This path may be part of: (1) the task fragment 
only, (2) the data fragment only, or (3) both of the fragments. Thus, the complexity 
of the fragmentation problem is in general O(3N), where N is the total number of 
paths in the input semantics. To lessen the computational demands, a heuristics 
is used to mark those paths whose membership in either of the fragments is 
certain. The heuristics can be easily described by introducing the cardinality of 
information carried by the leaf, as follows:

• atomic information (e.g., a single time point "14:30") has a zero cardinality 
since it is always certain (i.e. it involves a single option),

• non-atomic information (e.g., a time interval "around 14 o'clock") has a 
non-zero cardinality since it tends to be uncertain (i.e. it involves more 
options), and 3 nally,

• unde3 ned information (e.g., an unknown time point hidden behind the 
word "when") has an in! nite cardinality since it is uncertain.

Although exempli3 ed for diJ erent time point values, we do not provide any 
formal general recipe on how exactly to compute the cardinality. The reason is 
that any computation of the cardinality is information-dependent matter. For 
example, each C

discount
 object (Fig. 4.1) might take on one of three values: Child, 

Premium Customer, or Senior. The cardinality returning function for this 

trn148  Conn:Train dep149  Departure

lctn150  Location city150  City
Hradec   

tp152  TimePoint hour152  Hour
around 8

(a) original input semantics (unfragmented)

trn145  Conn:Train dep146  Departure tp147  TimePoint hour148  Hour
around 8

(b) task-related component in the input semantics (task fragment)

trn148  Conn:Train dep149  Departure

lctn150  Location city150  City
Hradec   

tp152  TimePoint hour152  Hour
around 8

(c) data-related component in the input semantics (data fragment)

Fig. 4.11  Input semantics fragmentation process motivational example.



76

object would be computed as follows: if the value is de3ned, then return zero, 
otherwise return in3nity. If we want to combine discounts (i.e. create a collection 
of multiple C

discount
 instances to catch, for instance, that a senior may also be a 

premium customer), the cardinality returning function would need to remain the 
same – unlike with the time point, "more options" in this case do not indicate 
that the value is uncertain.

Given the information cardinality, we can spot two important points. First, 
atomic information cannot contribute to an intentional shift as there is nothing 
to discuss about it – it is therefore always a part of the data fragment only. 
Second, an empty information never brings data to the dialogue and is thus 
guaranteed to be added to the task fragment. This, however, does not regard 
an exclusive membership. For instance, consider the following dialogue snippet:

S
 

There is a train going to Karlovy Vary at 9:30, and a bus at 9:40.
U

 
When does the train arrive?

 _interrogative_(
  Timetable( _ref_( Train( Arrival( TimePoint( Hour:— ) ) ) ) )
 )

The single leaf in user's utterance contains unde3 ned information. The 
in3 nite cardinality naturally grants the corresponding path to the task layer. 
However, the utterance also refers to the previously mentioned train object – it 
therefore needs to be considered as a candidate for the data layer as well.

For completeness sake, let us note that the membership for an non-atomic 
information cannot be determined any other way but using an exhaustive 
fragmentation. However, we furthermore can reduce the exponential costs by 
constraining to cases that potentially contain the expected intentional shift. One 
of the obvious cases is to directly recognize the Request or Request-suspected 
dialogue acts in user's utterance (as in the earlier example in Section 4.6.3). 
The second case occurs when agent's last dialogue act has been a Request (e.g., 
recall "How may I help you?") or Request-yn. In such cases, user's declarative 
response should be interpreted as an indirect Request act. The following two 
rules summarize the initiation of the fragmentation process.

Rule 1. If the user currently performed either a Request or Request-
suspected dialogue acts, initiate the fragmentation process.

Rule 2. If the agent lastly performed a Request or Request-yn dialogue 
acts, initiate the fragmentation process.

If neither of the two rules 3 res, user's utterance is assumed to contribute 
to the data layer only, and the fragmentation is bypassed by setting the task 
fragment empty and the data fragment equivalent to the input semantics, i.e. F

T
 

= � and F
D
 = Semantics.

In this section, we responded the 3 rst of the two questions: when to fragment. 
We also have described ways to minimize the computational expenses of the 
process. Interested reader is suggested to trace the UrciOptimalniFragmenta-
ciSemantiky procedure in Semantika.pas to see additional, although merely 
minor, facilitating constraints put on the fragmentation process.
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The second question, how to approach the optimal fragmentation, is a complex 
one and as such needs to be split into two related subproblems: analyzing a given 
fragment against it respective layer content, and evaluating the result of the 
analysis. The following two sections cover these subproblems.

4.6.5.2 Analyzing Fragment Against Its Layer

The analysis can be simply described as matching a given fragment against the 
layer content in order to qualify the fragment from three distinct points of view:

• what is the information that the fragment brings into the layer,

• how can underspe3 ed information be "explained" using the current 
content of the layer, and

• which existing objects the fragment refers to.

Naturally, there are slight diJ erences in analyzing the data and task fragments 
(which exceed the most apparent dereferencing, which reasonably cannot be 
carried out on the task layer). Nonetheless, with not taking these distinctions 
into account, we will be able to describe the basic analysis more clearly.

Let us start with the 3 rst of the three points – spotting new pieces of 
information conveyed by the fragment. The essence is in fact very similar to 
the one we saw earlier in Section 4.5.1: starting from the roots of the fragment 
and the layer, a current concept instance (element of the layer) is tested for 
existence of a particular subcollection (element of the fragment). The process 
then recurrently continues up to fragment leaf concepts. However, unlike with 
the algorithm in Fig. 4.2, no instantiation nor inferrention occur. Intuitively, 
given the below layer content:

city150  City
Kdyné    

lctn149  Locationdep148  Departuretrn147  Conn:Traintim147  Timetableρ

the process 3 nds the following new information in the below fragment (in gray):

hour150  Hour
around 8

tp149  TimePointdep148  Departuretrn147  Conn:Traintim146  Timetable

The second aspect of the analysis, how can underspe3 ed information 
be explained, does not refer only to the SIL-like anchoring. In fact, it is a 
wider conception of which anchoring is merely one special case. The process of 
information explanation aims to match underspeci3 ed information against some 
known structure. This structure may be either the current content of the layer, 
or the underlying DDM itself ("basic view" in SIL terms), should the current 
content fail to explain it completely. For instance, given an empty layer, user's 
information City:"Kdyně" will be explained as a location. The reason is that the 
empty layer fails to explain it, however, in the underlying DDM from Fig. 4.1, the 
only parent of C

city
 is C

location
. The remaining parents cannot be resolved at this 

moment: it is not clear if the location regards a departure or arrival, whether it 



78

should concern train or bus, and 3 nally, if the user speaks about a timetable or 
a ticketing service.

city140  City
Kdyné    

City:"Kdyně"

→
lctn142  Location city140  City

Kdyné    

Location( City:"Kdyně" )

The 3 nal aspect of the analysis is to dereference known objects. In order for 
the dereferention to account for both current and historical objects (no longer in 
the data layer but in the dialogue history), these objects are ordered descendant 
by their salience (a similar approach may be found in [Zah03, Nes09]). Moreover, 
the framework supports two ways of dereferencing objects, explicit and implicit. 
We have already encountered the explicit dereferention earlier in Section 4.4. 
To recall, hints for explicit dereferences are indicated with the _ref_ directive; 
for instance, the sentence "I will buy a ticket for the train" can be represented 
as Ticket( _ref_( Train ) ), causing the framework to attempt to match such 
expression against the list of salient objects.

In contrast, the implicit dereferention does not rely on being supplied correctly 
parsed references. Instead, it assumes that references remained unrecognized or 
unexpressed (which may be the case in some languages, for instance Czech), and 
that each object in the semantics is a potential reference. The analysis therefore 
3 rst attempts for the dereferention, and no earlier than once failed continues with 
spotting new information (as already described above). To illustrate, the sentence 
"I will buy a ticket for the train" would be now represented as Ticket( Train ). 
Given that C

ticket
 is a topic, the only relevant candidate for dereferention is 

the I
train

. Therefore it will be 3 rst subjected the implicit dereferention, and if 
unsuccessful, declared as new information.

To put all of these three elemental processes into perspective, the following 
example roughly demonstrates the overall principle of the fragment analysis.

Example 4.7  (Fragment analysis)
Let us suppose the following dialogue:

U
1 

I want to go from Brno to Hodonín.
S

1 
There is a local express train going from Brno to Hodonín 
at 7 o'clock, and an intercity train at 9 and 10 o'clock.

 
 

Can I help you with anything else?
U

2 
When do they arrive there?

S
2 

The express train arrives in Hodonín at 9 o'clock, the intercity 
train at 9 arrives at 10, and the one at 10 arrives at 11 o'clock.

After the dialogue, the corresponding data layer content looks like shown in Fig. 
4.12. Let us suppose the dialogue continues with:

U
3 

I will buy a ticket for the intercity train at ten o'clock.
 Ticket( Price:— , Type:"intercity", Hour:"10" )

Notice the presence of C
price

 enclosed within C
ticket

 as an explicit indicator 
of "purchasing something". This instance can be introduced by the parser to 
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overcome the lack of indirect queries detection by recognizing the "shape" of 
the sentence,8 the so called "task token", see Section 4.4. The C

price
 instance is 

assigned in3 nite cardinality, while both the C
type

 and C
hour

 zero cardinality, hence 
the whole semantics equals the data fragment. Let us show how its analysis 
is conducted with respect to the data layer in Fig. 4.12 (notice instances are 
annotated diJ erently than in Fig. 4.5; also, although Brno and Hodonín have 
been said merely once in S

1
, each appearance is individually salient – the reason 

relates to utterance production, not covered here).

• The analysis begins with the layer and the fragment roots. The attempt to 
3 nd an instance of C

ticket
 in the layer fails, hence the analysis turns to the 

underlying DDM (Fig. 4.1) to 3 nd that C
ticket

 is directly accessible from 
within the root. Hence, semantics I

ticket
 is recognized as new information.

• The framework attempts to trigger implicit dereferention using children 
of I

ticket 
. Given that the dialogue history is empty, only the ordered list 

of data layer salient objects is considered. In this list, the candidates are 
trn40, trn129, and trn25 as only they can be the immediate children of 
the ticket instance.

8 As buying a ticket cannot be formulated as a direct interrogative question.

trn6  Conn:Train
U1-1534

lctn8  Locationdep7  Departure
U1-1533

city8  City
Brno    U1-1532

lctn10  Locationarr10  Arrival
U1-1531

city11  City
Hodonín U1-1530

tim138  Timetable

type41  Type
local_expressS3-250

city31  City
Brno    S3-252

lctn42  Location

hour33  Hour
7S2-1023

tp32  TimePoint

dep41  Departure
S2-1020

city35  City
Hodonín S3-253

lctn34  Location

hour36  Hour
9S3-255

tp36  TimePoint

arr34  Arrival
S3-254

prc48  Price
25.000000

type128  Type
intercityS3-244

city80  City
Brno    S3-246

lctn238  Location

hour20  Hour
9S2-1017

tp83  TimePointdep100  Departure
S2-1014

city75  City
Hodonín S3-247

lctn4  Location

hour13  Hour
10S3-249

tp38  TimePoint

arr46  Arrival
S3-248

prc40  Price
35.000000

type21  Type
intercityS3-238

city77  City
Brno    S3-240

lctn102  Location

hour0  Hour
10S2-1011

tp41  TimePointdep20  Departure
S2-1008

city81  City
Hodonín S3-241

lctn16  Location

hour133  Hour
11S3-243

tp151  TimePoint

arr15  Arrival
S3-242

prc130  Price
35.000000

trn40  Conn:Train
S3-251

trn129  Conn:Train
S3-245

trn25  Conn:Train
S3-239

tim19  Timetable

tim153  Timetable

ρ

Fig. 4.12  Data layer content after speaking utterance S
2
 in Example 4.7; instances annotated 

with utterance–salience pairs.
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• The 3 rst cadidate, trn40, is tested. The analysis attempts to match 
the Price:—, Type:"intercity", and Hour:"10" speci3 cations. The train 
satis3 es the price speci3 cation with prc48 ; the attempt to match types 
fails, however. The analysis is therefore abandoned and trn40 refused.

• The next candidate, trn129, already satis3 es the type demand. The C
hour

 
speci3 cation is explained by traversing instances arr46 and tp38. This 
train therefore fully matches all requirements, and one of the analysis 
results, called uni! cation, therefore is:

prc34  Price
35.000000

city32  City
Hodonín 

lctn31  Location

hour33  Hour
10

tp33  TimePoint

arr30  Arrival

city28  City
Brno    

lctn27  Location

hour29  Hour
9

tp29  TimePoint

dep27  Departure

type26  Type
intercity

trn25  Conn:Traintim25  Timetableρ

• Finally, the last candidate, trn25, satis3 es the demands with the C
hour

 
speci3 cation explained using instances dep20 and tp41. Therefore, the 
second uni3 cation is:

prc211  Price
35.000000

city205  City
Brno    

lctn204  Location

hour206  Hour
10

tp205  TimePoint

dep204  Departure

city208  City
Hodonín 

lctn208  Location

hour210  Hour
11

tp209  TimePoint

arr207  Arrival

type203  Type
intercity

trn203  Conn:Traintim21  Timetableρ

Thus, as it can be seen, the analysis is a non-trivial operation that purposely 
switches between the three intrinsic processes to meet its objective of analyzing a 
fragment against a respective layer. Nevertheless, this example demonstrated the 
analysis merely from a rough top-level point of view. Interested reader is therefore 
advised to trace the spodproc procedure in Semantika.pas to see the analysis 
at work in full detail. Note in this regard, that, due to historical reasons, the 
three elemental processes are called there akceEmulace, akceDomysleni, and 
akceDereference, respectively. To be able to interact together, they comprise 
a great state-based automaton that is the core of the analysis, with additional 
supportive routines called on its behalf. □

4.6.5.3 Evaluating Analysis Uni$ cation Pairs

At this moment, we suppose that the input semantics has been split, resulting 
in the task and data fragments, and both of the fragments have been analyzed 
against their respective layers. We call the task and data fragments a pair. Each 
pair must now be evaluated with respect to the current state of the dialogue 
context. In other words, it is necessary to quantify the match with the layer 
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content from three distinct points of view (compare with points in the previous 
section):

• how many new pieces of information are brought in by the fragment,

• how well can underspe3 ed information be "explained" using the current 
content of the respective layer, and

• how well are existing objects referred by the fragment.

The evaluation conceives of a set of rules concerning with diJ erent context 
situations. Each rule is to penalize a fragment if it does not 3 t the particular 
situation. The 3 nal sum of the penalties, denoted as P, then indicates how well 
the pair 3 ts the layers (for instance, how well system expectation is met, discussed 
later). The pair that yields the lowest compound penalty, P*, is considered optimal 
and integrated into the layers using the algorithm presented in Section 4.5.

The cornerstone in the rules is salience. Let us recall that we de3 ned it as 
a number with the following semantics: the higher the number the older the 
information, and vice versa. The rules involved in the evaluation are as follows:

Rule 3. (extending the set of Rules 1 and 2 from Section 4.6.5.1) 
describes the most obvious situation – a user referring to an object. 
We want to address the most salient object that matches user's 
description, therefore we add each object's salience to the penalty sum 
(recall that the higher the salience, the lower the penalty). Formally: 
Let there be a path from root ρ to leaf information L in a Fragment 
(to spare space, we will abbreviate as 〈 ρ ← L 〉 ∈ Fragment) that is 
completely uni3 able9 with the layer content. Then for each object on 
the path add its salience to the total penalty P.

Rule 4. Describes a situation in which the user introduces new 
information (e.g., when no object matches user's reference). In 
this case, we add the minimal penalty for the user changing the 
layer content. Formally: Let 〈 ρ ← L 〉 ∈ Fragment. Let 〈 ρ ← E 〉 
⊂ 〈 ρ ← L 〉 be the maximum length subpath uni3 able with the layer 
content (we say 〈 ρ ← L 〉 is partially uni! able). Then for each object 
whose distance is greater than E add minimal penalty P

m
 to P. (This 

rule can be considered a special case of Rule 3.)

Rule 5. Dictates that an addressed object must fully match a given 
reference, otherwise it cannot be considered resolving it. Formally: 
Let 〈 ρ ← L 〉 ∈ Fragment be completely uni3 able with a layer. Let 
E ∈ 〈 ρ ← L 〉 be an object for which Rule 4 applies. Then for each 
object on the path add its salience to P.

Rule 6. Demands objects to be maximally described by the semantics 
(e.g., it is wrong to not consider all information from the semantics that 
matches an addressed object during reference resolving). Formally: 

9 Object X is said to be uni! able with object Y if parents of X are subset of parents of Y and one of 
the following holds (Prolog-like uni3 cation): (1) values of both objects are equal, or (2) at least one of 
the objects has unde3 ned value.
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Let 〈 ρ ← L 〉 ∉ Fragment be completely uni3 able with a layer content. 
Then for each object on the path add twice its salience to P.

Rule 7. Requires objects that the user disagrees with to exist. 
Formally: Let 〈 ρ ← L 〉 ∈ Fragment be partially uni3 able with a 
layer content. Let E ∈ 〈 ρ ← L 〉 be an object marked as disagreed. 
Then for each object on the path add thrice its salience to P.

Rule 8. De3 nes that in3 nite cardinality objects are more “valuable” 
for task detection than non-zero cardinality objects. Formally: If the 
task fragment contains at least one leaf with in3 nite cardinality, then 
all paths from the fragment root to leaves with non-zero cardinality 
must be uni3 able with the task layer content, otherwise assign P 
in3 nite penalty.

Rule 9. Forbids information that most probably regards task detection 
to be integrated into the data layer. Formally: In a data fragment, all 
paths from the root to leaves with in3 nite cardinality must be uni3 able 
with the data layer content, otherwise assign P in3 nite penalty.

Rule 10. Forces the task fragment to always exist if the semantics content 
indicates a possible intentional shift. Formally: Let the semantics 
contain a non-zero or in3 nite cardinality piece of information. If the 
task fragment is empty, assign P in3 nite penalty.

Rule 11. Favours objects currently in the system focus over those that 
are not; that is, this rule accounts for an implicit arbitration for cases 
in which analysis of the semantics would be ambiguous. Formally: 
Let 〈 ρ ← L 〉 ∈ Fragment. Let 〈 ρ ← E 〉 ⊂ 〈 ρ ← L 〉 be the maximum 
length subpath uni3 able with system focus, 〈 ρ ← F 〉. Then for each 
object with distance greater than E add maximum penalty P

M
 to P.

Rule 12. Favours objects either expected by the agent (e.g., required to 
solve a task) or used by the agent (e.g., in some of planned steps) over 
objects that are useless in the scope of the given task. This supports 
Grosz and Sidner's term satisfaction-precedence (covered later). 
Formally: Let 〈 ρ ← L 〉 ∈ Fragment be not completely uni3 able 
with any system expectation 〈 ρ ← X

i
 〉. Then for each object on the 

path add maximum object penalty P
M
 to P.

With having mentioned several diJ erent penalty increments in the above 
rules (constant or salience-based), let us put them in their mutual relationships 
to symbolically indicate their in6 uential character on the compound penalty P:

0  ≤  P
m
  ≤  S(object)  ≤  P

M
  <  ∞ .

Recall that the rules aim to describe common situations that may arise over 
the course of a dialogue. The bene3 t of encoding these situations into rules is the 
scalability of the approach. Nonetheless, the downside is the "proper" assignment 
of corresponding penalties. It requires a decent amount of eJ ort to equilibrate 
the whole system of rules to evaluate the fragmentation pairs as desired. A good 
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clue for assigning reasonable penalties may be to prioritize the situations that 
the rules express. Not surprisingly, the multipliers of penalties in Rules 6 and 7 
intend to approach such priorities (yielding Rule 6 is preferred over Rule 7 by 
its penalty being less multiplied). The similar notion then also holds for the two 
constant penalties, P

m
 and P

M
, used in Rules 4, 11, and 12. Finally, to overcome 

the issue of the penalization being dependent on the current path number (the 
more paths there are in a fragment the higher penalty would be gathered), 
the sum of penalties P is divided by this number, producing the "normalized" 
pair penalty P

norm 
. Interested reader may further trace the ohodnotFragment 

function in Semantika.pas, returning the normalized pair penalty P
norm 

.

4.6.6 A Complete Example

Before moving on, let us demonstrate the working cycle of our dialogue context 
approach in its entirety. Ponder the following dialogue snippet:

S
1 

How may I help you?
U

1 
I need to go to Ostrava.

 _declarative_(
  Timetable(
  Departure( Hour: — ) ,
  Arrival( City:"Ostrava" )
  )
 )

S
2 

Which transportation means would you prefer?
U

2 
A cheap one, please

  _declarative_( Criterion:"cheap" )

S
3 

I understood Ostrava. I can o' er you a train, bus, or airplane 
connection. Which transportation means would you prefer?

U
3 

A cheap one, so bus or train?
 _interrogative_( Criterion:"cheap" , Bus , Train )

S
4 

What time approximately would you like to depart?
U

4 
About eleven.

 _declarative_( Hour:"about 11" )

S
5 

I understood you want from Brno to Ostrava by 
bus or train, departing at eleven. Please con" rm this 
by saying Yes, or say your correct request.

U
5 

Yes.
 _declarative_( _agree_ )

S
6 

The next cheapest bus from Brno to Ostrava leaves at 15:30, train 
at 13 o'clock, and bus at 13:30. Do you want to order a ticket now?

U
6 

What are the prices?
 _interrogative_( Timetable( Price:— ) )

S
7 

The ticket for the bus departing at 15:30 costs 30 coins, train 35 
coins, and bus at 13:30 40 coins. Can I help you any further?

U
7 

When does the train arrive?
 _interrogative_( Train( Arrival( TimePoint( Hour:— ) ) ) )

S
8 

The train arrives in Ostrava at 18 o'clock. Do 
you want to order a ticket now?
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U
8 

Yes, please.
 _declarative_( _agree_ )

S
9 

Ticketing service.  …

As usually, let us suppose that both of the layers are empty at the beginning. 
The system performs a Request act in S

1
, responded to by the user with a 

declaration of wanting to get to Ostrava. By speaking U
1 
, the user performs 

a Request-suspected dialogue act. The utterance semantics itself consists of 
an unde3 ned Time object (to indicate the queried information) and an atomic 
City object. Rule 2 forces semantics to be split. Rule 10 then requires the task 
fragment to exist (as it contains an unde3 ned value object). The task fragment 
therefore consists of the 〈 ρ ← Time 〉 path, as the atomic City object cannot 
update the task layer. The data fragment consists of the 〈 ρ ← City 〉 path only, 
as, according to Rule 9, the unde3 ned Time object cannot be introduced into the 
data layer. This splitting also equals the optimal fragmentation. Given that the 
optimal task fragment is not empty, implying an intentional shift has been made 
by the user, the Request-suspected dialogue act is further narrowed as a regular 
Request act. Thus, after incorporating U

1
 into the dialogue context, the task and 

data layers contain the 〈 ρ ← Time 〉 and 〈 ρ ← City 〉 information, respectively.
Utterance U

2
 is anchored into the data layer only as there is only a single 

object 〈 ρ ← Criterion 〉 with zero cardinality recognized, causing neither of Rules 
1 and 2 be triggered. In U

3 
, the interrogative type of the utterance triggers Rule 

1. The task fragment then consists of both of the transportation means only (our 
heuristics prevents the atomic Criterion be part of the task fragment). However, 
the data fragment has two possibilities: (1) complete semantics with penalty P = 
2·P

m
 + 2·S(Criterion) (because Rule 4 yields minimal penalty P

m
 for I

bus
 and 

I
train

 , and Rule 3 yields the penalty of the 〈 ρ ← Criterion 〉 path salience), or (2) 
〈 ρ ← Criterion 〉 object only with penalty P = 2·P

m
 + 4·S(Criterion) (as Rule 

4 yields minimal penalty P
m
 for for I

bus
 and I

train
 , and Rule 6 twice penalizes 

〈 ρ ← Criterion 〉 for being not part of the fragment). The latter option does not 
beat the former one, hence the non-atomic I

bus
 and I

train
 objects are contained in 

both of the fragments. The following utterance U
4
 is of a trivial nature similarly 

as U
2
 , i.e. no fragmentation is required and the semantics updates the data 

layer only. Rule 11 interprets the information as a departure time due to the 
system being focused on a departure in S

4
 . Utterance U

5
 does not contain any 

instantiable objects, i.e. again no fragmentation is necessary. Once the system 
has said S

6
 , the data layer looks like in Fig. 4.13.

Utterances U
6
 and U

7
 are spoken under similar dialogue conditions (the agent 

performs a Request act and the user responds with an interrogation), hence let us 
proceed to U

7
 . Rule 1 makes U

7
 a subject of the fragmentation process. The task 

fragment is created by Rule 10 and consists of the 〈 ρ ← Time 〉 path. However, 
there are two options for the data fragment: (1) 〈 ρ ← Time 〉 which is treated by 
Rule 3 as a reference to the trn130 object introduced by the agent in S

6
 (and 

further used in S
7
); this uni3 cation gains the penalty P = S(Train); (2) empty 

which is penalized by Rule 6 (I
train

 object could be used to resolve a reference, 
however, the uni3 cation does not account for it), and thus gains the penalty P = 
2·S(Train). For completeness sake, let us note that the agent passes the referred 
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trn130 over to the “arrival time query” submissive for further handling. At the 
moment of uttering S

8
 , the layers looks like in . The rest of the dialogue is then 

processed analogously.

4.7  Task Recognition 
and Dialogue Stack Management

So far, we intuitively recognized tasks in user's utterances. For instance, we 
were able to 3 nd in "When does the train arrive?" a reference to the "arrival 
time request" task that should operate with a train object, known to the user. 
To maintain a coherent dialogue with the user, the agent needs to perform the 
recognition too. However, not all user's utterances are Request acts – some are 
to clarify ambiguities or provide more information.

In task-oriented systems, the recognition is usually approached using a simple 
solution. For instance, in [Eck95], the task is recognized from the overall structure 
of the utterance by passing the duty over to the parser that eventually produces 
a token to identify the task (e.g., the tripple ( request , sourcetime , wh_asked ) 

city28  City
OstravaU1-2299

lctn28  Locationarr208  Arrival
U1-2300

trn133  Conn:Train
U4-757

bus135  Conn:Bus
U4-750

tp136  TimePointdep136  Departure
U4-511

hour137  Hour
about_11U4-510

cri207  Criterion
cheapU3-1023

city240  City
Brno    S5-251

lctn132  Location

hour241  Hour
15S5-254

mnt242  Minute
30S5-255

tp241  TimePoint

dep131  Departure
S5-253

city244  City
OstravaS5-252

lctn243  Location

hour245  Hour
20

tp244  TimePoint
arr243  Arrival

prc245  Price
30.000000

city145  City
Brno    S5-246

lctn147  Location

hour142  Hour
13S5-249

tp143  TimePoint

dep125  Departure
S5-248

city128  City
OstravaS5-247

lctn132  Location

hour239  Hour
18

tp223  TimePoint

arr210  Arrival

prc145  Price
35.000000

city227  City
Brno    S5-239

lctn223  Location

hour207  Hour
13S5-242

mnt124  Minute
30S5-244

tp138  TimePoint

dep212  Departure
S5-241

city147  City
OstravaS5-240

lctn127  Location

hour149  Hour
17

tp149  TimePoint

arr126  Arrival

prc129  Price
40.000000

bus141  Conn:Bus
S5-250

trn130  Conn:Train
S5-245

bus153  Conn:Bus
S5-238

tim179  Timetable
DSP1

tim35  Timetable
DSP0

ρ

Fig. 4.13  Data layer content after S
6
 has been uttered.
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dep39  Departure
U1-3838

hour26  Hour
undefinedU7-766

tp33  TimePoint

arr7  Arrival
U7-767

bus201  Conn:Bus
U3-2558

trn240  Conn:Train
U3-2557

tim104  Timetableρ

(a) Task layer content after uttering S
8

city28  City
OstravaU1-3835

lctn28  Locationarr208  Arrival
U1-3836

trn133  Conn:Train
U4-2293

bus135  Conn:Bus
U4-2286

tp136  TimePointdep136  Departure
U4-2047

hour137  Hour
about_11U4-2046 hour119  Hour

18U8-254
tp119  TimePoint

city121  City
OstravaU8-252

lctn120  Location
arr118  Arrival
U8-253

prc118  Price
35.000000U7-762 hour122  Hour

13U7-761
tp122  TimePoint

city124  City
Brno    U8-251

lctn123  Location
dep121  Departure
U7-760

trn117  Conn:Train
U8-250

tim177  Timetable
DSP2

cri82  Criterion
cheapU3-2559

city240  City
Brno    S5-1787

lctn132  Location

hour241  Hour
15S5-1790

mnt242  Minute
30S5-1791

tp241  TimePoint

dep131  Departure
S5-1789

city244  City
OstravaS5-1788

lctn243  Location

hour245  Hour
20

tp244  TimePoint

arr243  Arrival

prc245  Price
30.000000

city145  City
Brno    S5-1782

lctn147  Location

hour142  Hour
13S5-1785

tp143  TimePoint
dep125  Departure
S5-1784

city128  City
OstravaS5-1783

lctn132  Location

hour239  Hour
18

tp223  TimePoint

arr210  Arrival

prc145  Price
35.000000

city227  City
Brno    S5-1775

lctn223  Location

hour207  Hour
13S5-1778

mnt124  Minute
30S5-1780

tp138  TimePoint

dep212  Departure
S5-1777

city147  City
OstravaS5-1776

lctn127  Location

hour149  Hour
17

tp149  TimePoint

arr126  Arrival

prc129  Price
40.000000

bus141  Conn:Bus
S5-1786

trn130  Conn:Train
S5-1781

bus153  Conn:Bus
S5-1774

tim179  Timetable
DSP1

tim71  Timetable
DSP0

ρ

(b) Task layer content after uttering S
8

Fig. 4.14  Dialogue context after uttering S
8
 .
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indicates a request on departure times). A similar approach is also adopted in 
[Boh09, Tur05]. Contrarily, in [Ngu06b], tasks are recognized merely on the basis 
of keywords. This limitation is justi3 ed by the interactively complex nature of 
the speech application and the intended aim "to reduce the eJ ects of speech 
recognition errors and to avoid restricting the user’s vocabulary".

The task recognition is practically identical to the identi3 cation of discourse 
segment boundaries – we need to recognize its beginning and its end. Recall 
that we identify two essential components in the dialogue, tasks and task-related 
information, and store them within two distinct layers. Each of these layers is 
updated by incorporating a corresponding fragment of the input semantics. The 
initial problem, when the user initiates a new task, can be easily resolved by 
identifying the user’s dialogue act as a Request. As known from Section 4.6.5, 
this guarantees a non-empty task fragment, describing the shift of actions.

The second problem, how to recognize the newly initiated task, can be solved 
by making use of a plain template matching. Obviously, given that the task 
layer aggregates all relevant information, this is a reasonable way – a general, 
robust, and straightforward one, taking advantage of the overall nature of the 
two-layered information model to recognize tasks that may span multiple user's 
utterances. For instance, Fig. 4.15a schematically shows a template to recognize 
a "departure time request" task (dashed around); it misses a K

conn
 de3 nition, as 

the particular transportation means is irrelevant for the proper identi3 cation of 
the task, as well is the presence of K

time_point
 (according to Fig. 4.1, K

hour
 can only 

be parented by K
time_point

 , hence there is no ambiguity). The rest of Fig. 4.15 then 
shows two sample task layers that contain this template (of course, Fig. 4.14a 
contains it too).

Templates comprise a set in which each two patterns are mutually non-
interchangeable (although not necessarily disjunctive) in order for the tasks to 
be uniquely identi3 able. As described above, the recognition is triggered once 
user's Request act has been observed. It accounts for trying each pattern in the 

Timetable Departure Hour

(a) Task recognition template

tp17  TimePointdep16  Departure hour17  Hour
undefined

tim16  Timetableρ

(b) Task layer that contains the recognition template

hour17  Hour
undefined

tp16  TimePointdep16  Departure

prc41  Price
undefined

bus15  Conn:Bus

trn41  Conn:Train

tim45  Timetableρ

(c) More complex task layer that contains the recognition template

Fig. 4.15  "Departure time request" template with example task layers that contain it.
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set if it entirely matches against the task layer content. If it does, its score of 
match is computed as the sum of saliences of object involved. Apparently, as the 
task layer accommodates all task-related information in the dialogue, more than 
one pattern may match. In such situation, the template with the highest score 
is received as user's current intention. Apart of that, provided that the score of 
match may be used as a metric of actuality, the scoring plays another important 
role – it implicitly organizes the dialogue. This way, the most recent task with 
the highest score is pushed onto the top of the stack, whereas the most dominant 
task (usually the initial "How-may-I-help-you" task) always occupies the bottom.

However, before pushing any new task T onto the stack, and thus declaring 
the beginning of a new discourse segment, we check if the currently topped task 
T

Top
 dominates it,

( T
Top

 DOM T )   →   push ( T ) .

From a purely technical standpoint, note that our conception of the dominance 
relationship is in6 uenced by the inner organization of the framework. Therefore, 
the dominance relationship is realized as "T can be performed within the context 
of T

Top
". In other words, unlike with Grosz and Sidner's work, T is not a priori 

supposed to support the solution of T
Top

 . This implies from the fact that both of 
the tasks need to be self-contained entities in order for the agent to deliberate on 
them the optimal way. Nevertheless, the Domain Editor (see attached CD) even 
so allows for a decomposition of a task into particular subproblems using the 
conception of generic macros. During the "compilation procedure" of the domain, 
the Domain Editor, among other things, expands these macros at places where 
they are referred to produce a self-contained task solution plan. We will revisit 
this essence once again in the next section on agent's deliberation. However, 
despite the slight deviation in meaning, we will stick to Grosz and Sidner's terms.

If the domination relationship is not met (i.e. "T does not support the solution 
of T

Top
", or in our terms, "T can not be performed within the context of T

Top
"), 

it indicates a permanent change in user's intentional focus, and thus the end of 
a discourse segment. The result is the top-positioned intention be popped out of 
the stack and the domination relationship re-tested,

( T
Top

 ¬DOM T )   →   pop ( T
Top

 )  ∧  re-test dominance .

The intentional shift is yet detected in two additional, less explicit ways, 
both of which also express clues for the detection of the end of a discourse 
segment. First, the user provides information that contributes to the satisfaction 
of a dominant task. Intuitively, this rule is well applicable in a multi-domain 
system and indicates the return to a previously discussed topic. Obviously, it 
has the limitation of no two tasks be allowed to share the same topic concept. 
The second rule therefore 3 lls in the gap by detecting the return to a dominant 
task by observing that user's optimal data fragment suggests to override 
system information in the data layer (see Section 4.5.2). To illustrate both of 
the situations, ponder the dialogue snippet in Fig. 4.16. The task in DS2 is 
intentionally unoptimized to demonstrate the applicability of the above two 
detection rules (the preferred way would be to inform the user about the arrival 
without her or him having to ask explicitly). As it can be seen, both DS3 and 
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DS4 are dominated by DS2, implying their tasks can be requested in the context 
of DS2. In U

3
 , the user returns to DS2 by changing the departure time of the 

bus to afternoon. Obviously, the C
departure

 and C
bus

 concepts do not contribute 
to the task in DS3 on weather, but support the solution of the task in DS2 on 
departure times. In U

4
 , the user initiates DS4 into which the bus object used by 

the system in S
4
 is passed. In U

5
 , the C

hour
 concept behind the value "earlier" can 

contribute to both DS4 and DS2 – the user either refuses the arrival at 15 o'clock 
proposed by the system, or intends to change the departure from "afternoon" 
to "around noon". In either case, the user is overriding the system (see the U(.) 
function in De3 nition 4.10) and the control therefore needs to be returned to the 
discourse segment in which the system has overridden the user, which is DS2.

To summarize our approach, we recognize the beginning of a new discourse 
segment by matching a set of templates against the content of the task layer. 
We recognize the end of a discourse segment as either (1) the new segment not 
dominating the current one, (2) user's information contributing to a dominant 
segment, (3) user overriding system information, or (4) user not re-opening a 
segment considered by the system closed (this case has not been discussed here, 
however is adopted from [Ric01]). Apparently, the template-based approach is 
more general than the approaches overviewed at the beginning of this section 
by, 3 rst, o�  oading the parser the duty to recognize a task from the shape of 
an utterance, and second, allowing a task identi3 cation to be evolved over time.

4.8  Dialogue Planning

Once the task has been recognized, a related plan is adopted by the agent to get 
the task solved. A plan is commonly represented as a structure resembling a tree 
[Boh09, Ric01, Jok10, Bui06]. Such representation usually accounts for the real 
activities be stored in leaf nodes (e.g., utterances to say or back-end interaction 
to carry out), while the remaining non-leaf nodes capture the relationships among 
particular activities. The decomposition sometimes also accounts for one extra 
axis, namely dynamic building of plans using a library of subplans, each solving 
an elemental problem [Ing92]. The natural advantage is the scalability.

S
1 

How may I help you?
U

1 
I need to go to Brno tomorrow morning. When does any bus depart?

S
2 

Tomorrow morning, there is a bus going to Brno at 8 o'clock.
U

2 
What is the weather going to be there tomorrow?

S
3 

The weather is forecasted to be rainy in the morning and sunny afternoon.
U

3 
I see. When does any afternoon bus depart?

S
4 

Tomorrow afternoon, there is a bus going to Brno at 13 o'clock.
U

4 
When does it arrive there?

S
5 

The bus arrives at 15 o'clock.
U

5 
Is there any earlier connection?

S
6 

There is a bus going to Brno at 12 o'clock. …

Fig. 4.16  Segmented multi-domain dialogue example.

D
S
3

D
S
4

D
S
2

D
S
1
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4.8.1  The Role of User's Initiative

In our case, plans follow the tree paradigm as well. Nevertheless, we currently 
do not consider a library of subplans. Instead, we constrain the design to a one-
to-one relationship between a task and a plan. In other words, each task has 
a single accompanying static plan in which activities are spread over leaves, as 
suggested above. Although this may be argued restrictive, the variability of the 
single plan is guaranteed by, 3 rst, the possibility to create alternative solution 
branches for a given problem, and second, by the variability of utterances that 
may be parametrized with diJ erent prede3 ned conditions. Thus, the tight 
coupling between a task and its plan is merely a minor constraint that may be 
easily overcome by a proper design of the solution (branches) and interactions 
(back-end communication and foremost utterances).

An example of a plan that solves the "departure time request" task may 
be seen in Fig. 4.17a. Obviously, this plan is merely a demonstrative plot and 
is not intended to provide a fully functional solution. Nonetheless, we will use 
it throughout this section to demonstrate diJ erent aspects of agent's dialogue 
planning capabilities. As it can be seen in the plan, 3 rst a background interaction 
is carried out to establish the default departure city at the time of plan triggering, 
if not yet speci3 ed by the user (action node labeled Init). Then, the user is asked 
to specify the transportation means to 3 nd the departure time for (Req-clarify

1
) 

and the criterion to apply during the search (Req-clarify
2
). The results of her or 

his answers are bound to the respective variables M and C to facilitate further 
addressing in the data layer. Next, if there are more transportation means allowed 
(three, E(C

timetable 
, 3) in Fig. 4.1), their parameters are constrained by posing (some 

of) the disambiguation questions (Req-clarify
3
…

6
). Finally, gathered data may 

be subjected to con3 rmation, depending on the current strategy (Req-con! rm), 
database queried (Exec), and results presented to the user (Respond). No earlier 
than now, the agent considers user's intention be satis3 ed.

The plan in Fig. 4.17a is rather a simple one, however, it is su\  cient enough 
to demonstrate the 3 rst level of agent's adaptability. It accounts for simply 
swapping plan tree branches according to the data layer object saliences. In other 
words, the agent adopts the results of user's initiative – if she or he prefers to 
discuss certain part of the task prior to discussing the rest, the agent adopts the 
decision. For example, consider user's elliptical utterance “by train to Pardubice” 
has been misrecognized by not understanding the transportation means. The 
city of arrival (Pardubice) is now assigned the highest salience in the data layer. 
From the agent's point of view, the user wants to 3 rst discuss the city of arrival 
(Req-clarify

4
) and then continue with the rest of the task. The agent therefore 

adjusts the plan tree structure by moving the corresponding branch towards the 
beginning (Fig. 4.17b).10 However, this time the mandatory M variable remains 
unbound due to the misrecognition error. The agent is therefore forced to traverse 
through the tree structure, searching for how a value can be reached. Once 
having found the Req-clarify

1
 node, it puts the corresponding branch to the 

beginning of the plan again (Fig. 4.17c).

10 Naturally, parent nodes are respected; for instance, it is forbidden to change the order of nodes within 
a Sequence parent node.
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Act: Req-Clarify4

[ M.Arr.Loc.City ]

Act: Req-Clarify3

[ M.Dep.Loc.City ]
Act: Req-Clarify5

[ M.Dep.Tp.* ]

Act: Req-Clarify6

[ M.Arr.Tp.* ]

Act: Req-Clarify2

Variable: C
[ Criterion ]

Action: Exec
Variable: R

select ... where M

Act: Respond
The C  R

from R.Dep.Loc.City
to R.Arr.Loc.City

departs at R.Dep.Tp.*.

AND

DISAMBIG

Act: Req-clarify1

Variable: M
[ Conn ]

Action: Init
Dep.Loc.City := ...

Act: Req-confirm
I understood you want
from M.Dep.Loc.City

...

Act: Request
CaseY: Continue

CaseN: Exit
Do you want to

buy a ticket now?

Action: Call
TicketingService

SEQUENCE

(a) initial order of actions to solve the "departure time request" task

Act: Req-clarify3

[ M.Dep.Loc.City ]

Act: Req-clarify4

[ M.Arr.Loc.City ]
Act: Req-clarify5

[ M.Dep.Tp.* ]

Act: Req-clarify6

[ M.Arr.Tp.* ]

Act: Req-clarify2

Variable: C
[ Criterion ]

Action: Exec
Variable: R

select ... where M

Act: Respond
The C  R

from R.Dep.Loc.City
to R.Arr.Loc.City

departs at R.Dep.Tp.*.

AND

DISAMBIG

Act: Req-clarify1

Variable: M
[ Conn ]

Action: Init
Dep.Loc.City := ...

Act: Req-confirm
I understood you want
from M.Dep.Loc.City

...

Act: Request
CaseY: Continue

CaseN: Exit
Do you want to

buy a ticket now?

Action: Call
TicketingService

SEQUENCE

(b) agent's adaptation to user's initiative; the Request-clarify
4
 act is moved to the beginning of the plan

Act: Req-clarify3

[ M.Dep.Loc.City ]

Act: Req-clarify4

[ M.Arr.Loc.City ]
Act: Req-clarify5

[ M.Dep.Tp.* ]

Act: Req-clarify6

[ M.Arr.Tp.* ]

Act: Req-clarify2

Variable: C
[ Criterion ]

Action: Exec
Variable: R

select ... where M

Act: Respond
The C  R

from R.Dep.Loc.City
to R.Arr.Loc.City

departs at R.Dep.Tp.*.

AND

DISAMBIG

Act: Req-clarify1

Variable: M
[ Conn ]

Action: Init
Dep.Loc.City := ...

Act: Req-confirm
I understood you want
from M.Dep.Loc.City

...

Act: Request
CaseY: Continue

CaseN: Exit
Do you want to

buy a ticket now?

Action: Call
TicketingService

SEQUENCE

(c) agent reorganizes the plan back to a feasible state

Fig. 4.17  Evolution of the "departure time query" task plan; abbreviations used: Dep = 
Departure, Loc = Location, Arr = Arrival, Tp = TimePoint.
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In the above example, the mutual relationship between the city of arrival 
in Req-clarify

4
 and the transportation means in Req-clarify

1
 is obvious: one 

informatively contributes to the other. Apparently, such behaviour is in coherence 
with Grosz and Sidner's term satisfaction-precedence [Gro86]. The distinction 
is that the two pieces of information are not discussed in separate discourse 
segments, but instead, are part of a single segment.11 Similar structuring of 
information within segments may be found in [Ngu06b, Boh09]. The overall 
principle of the agent adopting user's initiative in the dialogue is then adopted 
from [Boh09, Boh07].

Finally, Table 4.8 overviews plan node types available for task modeling in 
the framework, along with corresponding dialogue acts, if any. In this section 
example, we used the terms Init, Req-clarify, Req-con! rm, Exec, and Respond 
to intuitively identify the INI, QUE, VAL, EXE, and STA node types, respectively.

4.8.2 Deliberation

One of agent's key characteristics is autonomous deliberation about the perceived 
surrounding environment in order to meet its objectives [Woo00, Zbo04]. In case 
of a conversational agent, this (among other things) means to simultaneously 
optimize the dialogue 6 ow in a certain way to successfully satisfy the current task 
in focus. A common approach to this is to employ a greedy algorithm [Ngu06b, 
Eck95, Tur05, Boh09]. Depending on the overall design of the conversational 
agent, this algorithm can successfully draw a task to a satisfaction state in no 

11 Which can, however, be just a matter of segmentation.

Table 4.8  Daisy framework plan node types; asterisk denotes acts to which the Rogerian-
psychologist may also apply if corresponding strategy is allowed.

Type (abbr.) Dialogue act Description

AND — Conjunction of subactions, order is variant

CAL — Subplan or macro call

DIA — Groups disambiguation actions (constraints+relaxation)

EXE — External function call; a way in for system semantics

IFE — Branching if-else; condition queries existence of objects

INI — Task initialization

QUE Request-clarify * Missing information; can be skipped

REQ Request Subtask elicitation; may be answered with yes-no

SEL Request-clarify * Selection of objects proposed by the system

SEQ — Conjunction of subactions, order is 3 xed

STA Respond Statement; can be marked satisfying the intention

TES — Forced termination of the current session

VAL Request-con! rm Information con3 rmation

YNQ Request-yn Yes-no question
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more than O(n2) explorations, where n is the maximum number of possible 
interactions in any task at any time point. Despite its quickness and easy 
applicability, the downside is its local manner with respect to optimization.

Before explaining our approach to the dialogue optimization, let us 3 rst 
brie6 y recall particular entities that describe the mental state of the agent:

• task and data layers – represent agent's fundamental beliefs in information 
exchanged during a dialogue,

• task instances – recognized in the task layer, they represent agent's 
desires to take part in solving a given problem with a user,

• plans – do not serve as the source of agent's intentions; they are merely 
to represent recipes for joint activity with the user.

Hence, as it can be seen, these entities serve as heterogeneous containers 
of diJ erent kinds of information. To bridge these containers, we have adopted 
and further evolved a system of events (McGlashan uses a similar approach 
[McG96], however, applies event-like principles to "dialogue data" only). In our 
case, events of diJ erent types represent elemental intentions the agent can have. 
We distinguish among the following ones:

• generalization event (further denoted as GEN) – triggered if an object 
misses its parent (i.e. the parent could not have been resolved during 
the fragmentation process, see Section 4.6); this event may relate to any 
DDM collection instance in either of the layers,

• con! rmation event (CON) – an object has been recognized with a 
con3 dence score lower than a custom threshold and might need an 
explicit con3 rmation; this event may relate to any DDM collection 
instance, DDM edge instance, or task instance,

• value-missing event (DEF) – an object has unde3 ned value; this event 
relates to DDM collection instances in the data layer only,

• plan-interpretation event (PLN) – the current plan contains leaf nodes 
that can be processed by the plan interpreter; this value applies to plan 
instances only.

As events relate to speci3 c entities (collection instance, task instance, etc.), 
they may be understood as an abstraction of contents in the heterogeneous 
containers. Each event represents one option the agent can take at a given point 
in a dialogue. Hence, event allow the agent to make decisions when planning 
its behaviour. For instance, consider the simple con3 rmation scheme in Fig. 
4.18. There are three pending con3 rmation events, CON

1…3
 , each proposing a 

diJ erent way to interact with the user in order to con3 rm the time information.12 
The agent may therefore want to 3 rst con3 rm the hour110 instance by handling 
the CON

2
 event ("I understood you said 16 hours. Is that correct?"), and 

12 The particular utterances are an embodied part of the DDM de3 nition. For simplicity reasons, this 
feature has not been discussed in Section 4.2. In the Domain Editor (see attached CD), collection-
related con3 rmation utterances may be de3 ned by clicking the Data Model → Show menu option.



94

then con3 rm the min111 instance by handling the CON
3
 event ("I understood 

you said 28 minutes. Is that correct?"). Once con3 rmed, the CON
1
 event 

becomes satis3 ed as well, as it no longer refers to any uncon3 rmed information. 
However, the agent may also want to begin with con3 rming the tp109 instance 
by handling the CON

1
 event ("I understood you said 16 hours 28 minutes. Is 

that correct?"). If successful, both the CON
2
 and CON

3
 events would be satis3 ed 

as well. Which one of these two plotted courses will be preferred depends on the 
deliberation mechanism.

An event may be at diJ erent phases of processing. For most of the events, the 
agent must (1) utter to the user (initial phase), (2) wait for the user's response 
(expectation phase), and 3 nally (3) check the event satisfaction (satisfaction 
phase). All events follow this cascade model. Additionally, for each event we 
track its recovery state. An event is said to be recovered if it reached the 
satisfaction phase but user's interaction has turned it back to the initial phase 
(by making changes to the dialogue context). With this 3 nal parametrization, we 
can formally describe events as follows.

De! nition 4.13 (Event)
An event is an ordered quadruple V = ( Entity, Intention, Phase, Recovered  ), 
where Entity is an instance (DDM, task, or plan), Intention ∈ { GEN, CON, 
DEF, PLN }, Phase ∈ { initial, expectation, satisfaction }, and Recovered ∈ 
{ no, yes }. □

Events constitute a foundation for agent's deliberation, constrained to the 
current task. This is not a limiting characteristic, provided that the task plan 
must be a self-contained entity. This way, Grosz and Sidner's satisfaction 
precedence is easily accounted for by optimizing plans based on their 3 nal 
outcomes, cutting oJ  unrelated (unnecessary) interactions with the user.13 In 
addition, this also simpli3 es the deliberation: the task layer content is 3 xed and 
only the data layer is evolved. Nonetheless, this is not to say events do not 3 re 
on the task layer – in contrast, the result of deliberation may involve actions 
regarding both layers.
13 If a decomposition into subproblems is suitable (e.g. timetable and ticketing services may have a 

common part of requesting the user to specify the transportation means), these parts can be de3 ned 
as macros in the Domain Editor (see attached CD). When "compiling" the domain, the Domain 
Editor expands these macros at places where referred, this way complying with the framework notion 
of Grosz and Sidner's satisfaction precedence.

mnt111  Minute
28

hour110  Hour
16

tp109  TimePoint

Fig. 4.18  Con3 rmation scheme to validate the time point 16:28.

CON1

CON2

CON3

I understood you 
said [$.Hour hours] 
[$.Minute minutes]. 

Is that correct?

I understood you 
said $.Hour hours.

Is that correct?

I understood you
said $.Minute minutes.
Is that correct?
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The principle of the deliberation is as follows. At the beginning, all pending 
events are gathered and put into an event queue, denoted as Q. The initial 
contents of the task and data layers comprise one possible world [Woo95], 
denoted as W

0
 , from which we can move to another by satisfying one or more of 

pending events in the queue. We search through a space of possible worlds until 
we have found one in which the objective of the task is met and the task is thus 
satis3 ed. We denote such world as W

S
 . Before explaining further, let us formally 

de3 ne this notion of a possible world.

De! nition 4.14 (Possible world)
A possible world is an ordered triple W = ( Q , Y

T
 , Y

D
 , W

p
 ), where Q = { V

i
 = 

( E
i
 , I

i
 , initial , R

i
 ) } is an event queue associated with W, Y

T
 and Y

D
 are the task 

and data layer information pools, and W
p
 is the "parent" possible world that W 

infers from. □

The above outlined principle naturally 3 ts the principle of the A* algorithm. 
Given a possible world W

i
 , the A* algorithm evaluates it as

* *( )  ( )  ( )
i i i

f W g W h W= +

where g(.) is a function evaluating the "path" from the initial world W
0
 to W

i
 , 

and h*(.) is a function ideally estimating the value of the remaining path from 
W

i
 to the 3 nal world W

S
 , with the word "ideally" referring to its ideal behaviour 

of f *(W
i 
) ≅ g(W

i 
), i.e. the estimated value always tightly approaching the real 

value. Hence, with using the A* algorithm, the problem of optimizing a dialogue 
reduces to 3 nding such sequence of pending events whose satisfaction transforms 
the initial world W

0
 to the 3 nal state W

S
 the optimal way,

0 0 1 11 1

0 1
      . . .      i i i iV Q V Q V QV Q

i S
W W W W− −∈ ∈ ∈∈→ → → →

We currently consider only one optimization criterion: the length of the 
dialogue in terms of dialogue turns. (Therefore, in the con3 rmation scheme in 
Fig. 4.18, con3 rming the tp109 instance by handling the CON

1
 event would be 

the preferred way, as it yields the shortest dialogue.) There naturally may be 
more optimization criteria, for instance the length of the dialogue in terms of 
real time (elapsed and remaining14). However, the current implementation of the 
framework currently does not account for any multi-criteria optimization.

The g(.) and h*(.) functions are realized as a set of heuristic rules, each 
capturing one independent dialogue optimization criterion (Table 4.9). To 
guarantee the monotony of g(.), the notion of each rule is to penalize the world 
for "being not optimal". For better comprehensibility, the contributive penalty of 
each rule is hidden – the precise computation would require knowledge of diJ erent 
backgrounds we currently do not have, or we do have but not to the extent 
required. Nevertheless, given the intuitive nature of the rules, showing their 
precise computation would be redundant, and interested reader is suggested to 
trace the usuzujNadObsahemVrstvy procedure in plan.pas to see the evolution 

14 The estimation of the remaining time should cover merely system utterances as the only source of 
well predictable data is agent’s Prompt Planner module. Estimation of user’s utterance times would 
require user modeling.



96

of the total penalty f *(.), encoded in gSuma and hHvezda that correspond to g(.) 
and h*(.), respectively.

By using the rules in Table 4.9, the f *(.) function can be rewritten as

7
*

1

( ) ( )
R

i r i
r

f W RULE W
=

=

= ∑

The A* algorithm is then to 3 nd such sequence of pending events, V
0
 , V

1
 , …, 

V
N
 , that gains the minimum total penalty, i.e.,

0 0

0 1

*
0 1 0 1

[ , ,..., ]

[ , ,..., ] ( ( ) ) : . . .  N N

N

X Q X Q

N S N S
X X X

V V V argmin f W  W W     W W
∈ ∈= → →

Due to the structural complexity of the search space, the A* algorithm 
accounts merely for the OPEN list to accommodate yet unexplored worlds in a 
penalty-ascending order. The CLOSED list is not used, as the determination if a 
world has already been explored would be computationally ine\  cient, given the 
unpredictable variability of utterances the agent may speak to the user. Hence, 
the working cycle of the A* algorithm may be put as follows.

1. Assuming the task in focus must be con3 rmed, the event V
task

 = ( Task, 
CON, initial, no ) is to be created. In addition, for the plan associated 
with the task to be interpreted, a plan-interpretation event V

plan
 = 

( Plan, PLN, initial, no ) must be created as well. The OPEN list is then 
initialized by the world W

0
 = ( { V

task
 , V

plan
 }, Y

T0
 , Y

D0
 , � ), where Y

T0
 

and Y
D0

 are the current task and data layers, respectively.

2. The least penalized world W
i
 = ( Q

i
 , Y

Ti
 , Y

Di
 , W

i-1
 ) is popped out of the 

OPEN list. If the transition W
i-1

 → W
i
 involved the system performing a 

Response act, W
i
 is considered the satisfactory world, W

S
 ≡ W

i
 , and the 

Table 4.9  Dialogue optimization criteria.

Penalization criterion and description

Utterance is generated incompletely
     (Agent prefers fully generable utterances)

Utterance uses already valid objects
     (Agent prefers implicit validation)

Event is not recovered
     (Agent first processes corrections supplied by the user)

Event priority penalty
     (Agent prefers processing events in a certain order)

Average salience of objects involved in satisfying an event
     (Agent prefers s

( )

ticking to the current course in a dialogue)

Interaction with user penalty
     (Agent prefers satisfying events without involving the user)

Number of remaining pending events
     (

i
g W



















*( )
Agent estimates the difficulty of satisfying an intention) i

h W



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optimal sequence of events [ V
0
 , V

1
 , …, V

i-2
 , V

i-1
 ] (between worlds W

0
 , 

W
1
 , …, W

i-1
 , W

i
 ) is backtracked, i.e.,

0 1 2 1 1
[ , ,..., , ],  {0,..., 1} :    j jV Q

i i j j
V V V V j i W W

∈

− − +
∀ ∈ − →

3. The queue Q
i
 is extended with pending events not present in W

i-1
 (these 

regard objects newly added to W
i
 in response to the parent transition 

W
i-1

 → W
i
 ).

4. The world W
i
 is explored by examining each of its queued events V

j
 ∈ 

Q
i
 , and inferring a new world W

j
 from W

i
 , i.e. W

j
 = ( Q

i
 , Y

Ti
 , Y

Di
 , W

i
 ), 

currently fully adopting its layers. In this new world, eJ ects of V
j
 on the 

adopted layers are examined and adopted. For instance, objects referred 
in a Request-con! rm act (wrapped in a CON event) are con3 rmed, 
or expectation of a Request-clarify act (wrapped in a PLN event) is 
satis3 ed by incorporating the corresponding Clarify act into the data 
layer (thus predicting user's upcoming behaviour). Finally, the updated 
W

j
 = ( Q

j
 , Y

Tj
 , Y

Dj
 , W

i
 ) is inserted into the OPEN list.

5. The deliberation continues by revisiting Step 2.

Before continuing, let us make three remarks. First, not all events are to 
interact with the user. In fact, the agent prefers to not involve the user in the 
conversation at all, attempting to solve the task only on its own. This is in 
coherence with agent's pro-activity. Consequently, the optimal sequence returned 
by the deliberation process needs to be interpreted as long as no interaction with 
the user has been planed. In other words, the agent passes the turn to the user 
only all if possibilities how to satisfy the task have been exhausted.

Second, the plan-interpretation event exists merely in a single instance whose 
state is continuously renewed. A dedicated function returns the 3 rst unvisited 
interpretable node in the plan. This is a conception preferred over each plan 
node having its own pending event. Obviously, the reason is the computational 
tractability. The latter case would in fact involve a random access to the plan, 
causing an explosion of possibilities. However, a plan is usually a 3 xed sequence 
of actions (e.g., initialization, user interaction, database querying, etc.). The 
overall order of actions is therefore explicitly given and there is no need to 
engage with combinatorial overhead (satisfaction-precedence between individual 
subactions would cause actions to be implicitly re-ordered after all). Let us 
note that this does not mean the agent follows a plan in a rigid way "from 
left to right". The plan can be re-structured based on user's initiative (Section 
4.8.1), or disambiguation requirements (constraints and relaxation, not covered 
in this text). Interested can trace the high-level cyklusInterakce procedure in 
Session.pas to gain a complex view at the agent's deliberation, execution, and 
impacts on future behaviour.

Third, the rules in Table 4.9 call for being modular. That is, the current 
penalization scheme represents merely one of agent's possible optimization 
strategies (denoted as O

i
 ), and another one may easily be created by modifying 

this scheme. We naturally take advantage of this approach, hence the agent has  
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some penalties when optimizing dialogue using the user-initiative strategy and 
some diJ erent penalties when using the system-initiative strategy.

4.9  Dialogue Strategies

Recall from Section 2.1 that the acceptability of a system depends primarily 
on its correct outcomes [McG96, Eck95, Chu00]. However, the user satisfaction 
is also in6 uenced by the style of interaction. There are generally two opposite 
styles, menu-based and free conversation. It is usually the agent's duty to choose 
the proper style when interacting with a user.

4.9.1 Choices and Their Arbitration

As also already seen in Section 2.3, the most common parametrization covers the 
following two aspects of interaction [Sin02, Wal97, vZa99, Lit02, Boh09, Jok10]:

• initiative – who of the participants is expected to be "pro-active", i.e. 
who sets the course of actions (system or user),

• con! rmation – how the con3 rmation of user-provided information is to 
be carried out (explicitly or implicitly).

The Daisy framework adopts the commonly opted combinations, "system-
initiative with explicit con! rmation" and "user-initiative with implicit 
con! rmation". For simplicity reasons, we further will refer to them as the narrow 
strategy (denoted as σ

n
 ) and open strategy (σ

o
 ) respectively, as these are more 

appropriate names, provided the compound de3 nition of agent's utterances and 
their production. In addition, we introduce an new strategy, called the Rogerian 
psychologist strategy (σ

r
 ) discussed below.

To determine the appropriate strategy we adopt the approach from the Jaspis 
architecture [Tur05, Tur03] – with having three strategies to decide among, it is 
selected the one whose evaluation score reaches the highest value. The scoring is 
based on four independent evaluation criteria:

• Quality of the dialogue using the current strategy, σ
c
 . Quality is a 

wide term borrowed from the PARADISE framework on dialogue 
system evaluation [Wal98]. We measure quality merely in terms of the 
number of unsuccessful and successful applications of σ

c
 , denoted as λ 

and µ, respectively. A simple Markov network is then used to model the 

σn

λo = 0.5 λr = 0.5

µn = 0.5 µo = 0.5

σo σr

Fig. 4.19  Markov network is used to model transitions between strategies; 0.5 indicates it 
takes two attempts in average to transit between the neighbouring states.
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transitions between neighbouring strategies (Fig. 4.19) [Nes07, Nes10a]. 
In this respect, λ and µ are understood as the so called failure and 
repair in the process of strategy arbitration.

• Task is not known, T
known

 . This criterion is used to support the open and 
Rogerian strategies. The idea is to take advantage of system open-ended 
prompts at the beginning of a dialogue to motivate the user to freely say 
her or his request before transiting towards the narrow strategy.

• The number of missing pieces of eigen information, n
ψ
 . To shorten a 

dialogue, this criterion supports the open-ended and Rogerian strategies 
if at least two pieces of information are missing (inspired from [Cen04]). 
Naturally, this is an alternative to the previous Rogerian criterion for 
cases in which the desired task is already known.15

• The change in the number of pieces of eigen information after user's 
last utterance, ∆

ψ
 . This number may be either negative (user has 

supplied information), positive (user has retracted some information), 
or zero (ambiguous). This criterion in fact determines if the user knew 
what to say, i.e. ∆

ψ
 ≠ 0. This criterion is used to support the Rogerian 

strategy only.

To facilitate further description, let us put these criteria into a vector P to 
capture the current state of the dialogue progress,

 
integer

 

integer
 

integer

integer

    1
 is   {0,1}

       1

 {0,1}

2  {0,1}

0  {0,1}

c

c

nAttempts

c nAttempts

known

unsuccessfull random e

successfull random e

T

n

−λ ⋅

−µ ⋅

λ

λ

  → < − σ → 
→ < −   

= ¬ →
> →

∆ ≠ →

P







 
 



In addition, each strategy σ
i
 is accompanied by scoring scheme S

i
 , 

corresponding to the above four criteria. These scoring schemes column-wise 
comprise the scoring matrix S, taking on the following form,

n o r

5 5 5

0 2 2
    

0 1 2

0 0 1

 
 
  = =   
 
  

S S S S

Presumably, we gain the score for each of the strategies by multiplying the 
vector P with the scoring matrix S,

15 In [Cen04], other features are proposed as well; for instance, agent's experience in similar dialogue 
situations (user modeling) or the range of elicited information. Due to time reasons, these features 
have currently left unimplemented in the Daisy framework.
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n

T

o

r

SCORE

SCORE

SCORE

 
 

= ⋅ 
 
 

P S

The 3 nal arbitration is then made by normalizing each score, SCORE
i
 , by 

the corresponding scoring scheme, S
i
 , to gain the proportional rate of suitability. 

The most suitable strategy, σ
opt

 , is then selected,

{n,o,r}
  (  | | )

opt i i
i

argmin SCORE
∈

σ = ⋅ S

Naturally, the selected strategy has not only a direct impact on the way the 
agent speaks to the user (utterance production) but also prescribes particular 
dialogue optimization scheme, O

opt
 (deliberation),

{n,o,r}
(  | | )

  
i i

i

opt argmin SCORE
∈

⋅
=

S
O O

Hence, the optimization scheme must be in coherence with the nature of 
the strategy. For instance, assuming the narrow strategy has been selected, the 
optimization scheme must prefer explicit con3 rmation over implicit con3 rmation, 
if available. It also needs to prefer working with smaller pieces of information 
(ideally DDM leaf nodes) over more "abstract" concepts (closer to the DDM root). 
Thus, for the con3 rmation situation in Fig. 4.18, the preferred way would be 
satisfying events CON

2
 and CON

3
 (in any order) over CON

1
 .16

4.9.2 Rogerian Psychologist Strategy

The narrow and open strategies model the common adaptability habits in 
which the system formulates an open-ended prompt (using the open strategy), 
and if user's response does not provide enough information, asks for it one 
piece at a time (narrow strategy) [Boh09, Tur05, Mel05, Cen04]. However, as 
users generally adopt the interaction style suggested by the system [Gus03], 
then once applying the system-initiative guidance, the task is constrained to a 
linear progress as the system dictates it. Hence, we focused on suppressing this 
side-eJ ect by modifying the outlined interaction pattern: let the user keep the 
initiative as long as she or he knows what to say. More particularly, we involve 
the Rogerian psychologist into our model whose goal is to gain more information 
by “encouraging the user to keep on talking”. In terms of the so called Rogerian 
therapy, clients are better helped if they are encouraged to focus on their current 
subjective understanding rather than on some unconscious motive or someone 
else's interpretation of a situation [Rog51]. Therefore, by applying the Rogerian 
psychologist in a dialogue management, one of the anticipated implications is a 
less forced dialogue as the conversational agent gives users more time (turns) to 
formulate their intentions before taking over the initiative.

16 Note that a better design style would be to de3 ne a C
time_point

 concept with an external T
time_point

 data 
type to represent the time information as a single value. The con3 rmation would then be as natural 
as with the CON

1
 event. This once again shows the limiting character of the built-in intrinsic types, 

as well as demonstrates the bene3 ts gained by declaring external domain-speci3 c types.
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Nonetheless, the idea of initiative handed back is not completely new in 
the realm of dialogue systems. One of the well known implementations is 
Weizenbaum's Elisa [Wei66], a general chatting robot for leading a conversation 
an uninformed way, i.e. without properly modeling or even understanding the 
information being discussed. This behaviour is accomplished using a quite simple 
procedure: the text is read and inspected for the presence of keywords. If such 
word is found, the sentence is transformed in accordance with a rule associated 
with the keyword; if it is not, a context free remark or an earlier transformation 
is used instead [Bui06]. Thus, for instance, user's sentence “I visited my friend 
yesterday” could be continued by the system with “That sounds interesting, tell 
me more about your friend”.

Another example is a dialogue system called CONVERSE, embodying a 
persona of a young female New York-based journalist [Lev97]. Given the nature 
of the system, it covers about 80 conversational topics, represented as complex 
scripts that can be interrupted and reentered later. It also makes use of diJ erent 
informational resources, for instance Collins dictionary or personal information 
elicited from the user that can be at any point involved into utterance generation. 
Its control structure is a simple blackboard system in which the scripts compete 
to take control over the generation and thus the upcoming course of the dialogue. 
These decisions are made numerically based on weights assigned by the closeness 
of 3 t of the input to their expected input [Wil06]. Naturally, the system has 
merely a limited error recovery mechanism for cases in which it is unable to 3 nd 
a relevant topic for the input to continue in the dialogue. As such, it therefore 
mainly relies on handing the initiative back to the user whenever possible.

Thus, both Elisa and CONVERSE are systems to lead only a "plausible" 
conversation with resulting dialogues having no particular goals. However, the 
Rogerian psychologist is also one of the strategies humans use in a co-operative 
conversation. For instance, Wallis et al. [Wal01] observed a phone call agent 
to use it when attempting to gain more information from a client during a 
car booking. After they have analyzed dialogue transcripts, they found that 
instead of pushing them to say what she needed to know about their bookings, 
she sometimes preferred either to keep silent or respond with a short sentences 
accounting for a grounding ("Yep") or repeat the lastly gained bits of information. 
Thus, without intervening the dialogue by taking over the initiative, she supported 
clients to say more.

Hence, the Rogerian psychologist is for humans apparently a familiar approach 
whose purpose they can recognize and properly respond to. The problem we 
can spot now is to 3 nd conditions under which it can be used in an automated 
dialogue management.

In general, the most obvious usability is in cases where the user has provided 
some information that, however, is useless in the scope of a given task or domain 
(that is, if we have extracted some useless semantics, or simply know the user was 
not silent). Of course, this strategy cannot be overused – a  conversational agent 
must always make a tradeoJ  between being reactive and pro-active, i.e. giving 
users a chance to provide relevant information, and taking over the initiative 
after judging about the dialogue qualities. Therefore, the Rogerian psychologist 
strategy can be applied in dialogues that are evaluated as progressing well. In 
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our case, we approach this by checking if user's last response contributed to the 
current task satisfaction (∆

ψ
 ≠ 0). In other words, if the user lastly knew what to 

say, there is a chance that she or he will know what to say now as well. Another 
contributive criterion for the Rogerian psychologist may be a high recognition 
score: if user's responses are less certain, it is more safe to pose direct questions 
and receive direct answers than later having to recover from errors.

Another application of the strategy may be in cases where the agent expects 
multiple pieces of information. Naturally, if only one piece is missing, it is always 
more e\  cient to ask for it directly. Finally, this strategy can be applied in cases 
in which user's intentions are unknown (i.e. after the open-ended initial prompt) 
or ambiguous (later in the dialogue when recognizing user's subintentions).

Finally, let us note that the current implementation of the strategy accounts 
for both general context-free sentences as well as custom domain-speci3 c 
alternatives. The context-free sentences are the default; they comprise a set of 
three general-purpose prompts asking the user to provide additional information: 
"Please say me more", "Please be more speci! c", and grounding-like "Uhu". This 
initial set may be further extended or modi3 ed using the Domain Editor (see 
attached CD), for instance with sentences "I see" or a system silence token. As 
already revealed above, apart of the general context-free sentences, the model 
also allows for domain-speci3 c alternatives, analogous with Elisa's rule-driven 

 Procedure SelectBestStrategy ( ) {
1  Let R denote user's response when discussing intention I.
2  Evaluate suitability of each strategy and choose the optimal strategy σ

opt
 .

3  If σ
opt

 is the Rogerian psychologist strategy {
4   If ¬A ∧ B ∧ ¬C ∧ D ∧ E (see 3 gure legend) {
5    If dialogue stagnates (system generates the same prompt as in its previous turn) {
6     If R supplied some information that supports getting I solved {
7      User has satis3 ed one of future expectations, ground with “Uhu.”, “Ok.”, or “I see.”
8     } else {
9      Response R did not bring any information into I, remain silent.
     }
10    } else {
11     System is about to generate a diJ erent utterance than in its previous turn
     because the expectation has been met – randomly choose one of sentences
     available to the Rogerian psychologist (e.g. “Please say me more.”)
    }
12   } else {
13    Rogerian psychologist strategy cannot be applied. Do not drop it, just override it 
    by another strategy in this turn (thus temporarily assign σ

opt
 a diJ erent value).

   }
14  }
15  Generate response in accordance with the strategy σ

opt
 .

 }

Fig. 4.20  Agent's utterance generating procedure with the Rogerian psychologist approach at 
Lines 3–14; A = agent's focus has changed,  B = user's intention is known, C = user's 3 rst 
turn response expected,  D = agent produces a dialogue move that the Rogerian psychologist 
can be applied to (e.g., it cannot be applied to Request act), E =  two or more pieces of 
information expected (missed).
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ones, for instance “Please try to detail the train [to ! nd departure of; further; 
a bit more;…]”). However, in either case, we put one restriction on their design – 
the utterances should not contain any cue phrases that could indicate a possible 
change in the dialogue course [Gro86], i.e., they should not make the user think 
the system wants to take over the initiative (e.g., "and now", etc.).

Fig. 4.20 shows the Rogerian strategy in detail along with the surrounding 
background logic of agent's utterance production (Lines 3–14). Note that the 
strategy can be to an extent argued comparable with the open strategy. However, 
the main diJ erence between them is that while the agent utters at least some 
question in the open strategy (e.g., open-ended), it either keeps silent using the 
Rogerian strategy (thus handing the initiative back to the user) or encourages 
the user to say more by uttering one of context-free or domain-speci3 c sentences.

4.10 Discussion

4.10.1 Comparing DDM with SIL

As already discussed in Section 4.4 on semantics, the most signi3 cant distinction 
is the lack of taxonomy in DDM. While objects in SIL are to an extent "self-
explanatory" thanks to the presence of their semantics and prede3 ned taxonomy, 
objects in DDM merely describe the static, neutral data which gain their meaning 
and taxonomy no earlier than during a particular plan processing. Another 
signi3 cant diJ erence is the degree of freedom among concepts. While SIL in 
fact allows for a random nesting (as long as nested concepts 3 t the semantical 
role), DDM captures a strongly structured and 3 nite hierarchy of objects. The 
implication is that while SIL in fact acts as a universal tool for describing any 
kind of information, DDM along with all its restrictions allows merely for a 
subset of it, as discussed in Example 4.5. The less important restrictions regard 
the linearity of structures (i.e. absence of recurrent patterns) and unambiguous 
addressability (i.e. without transitive subpaths, see De3 nition 4.5). The more 
important restrictions regard the information layout – any information is to 
be stored in leaves, and parents then disambiguate similar pieces of eigen 
information (e.g., the city of arrival from the city of departure). Arguably, such 
highly organized way puts additional requirements on the input semantics pre-
processing. In other words, the expected input is incompatible with the traditional 
vector-like "6 at" semantics, and must therefore be "converted" to the expected 
hierarchical form (see Appendix A.1). Contrarily, a sequence of UFOs resembles 
the traditional 6 at semantics (Fig. 4.21).

The SIL and DDM expressions, naturally diJ er as well. First of all, the local 
closure (De3 nition 2.6) that holds for SIL expressions does not apply to DDM. 
Unrelated expressions may therefore have common parts (e.g., as demonstrated in 
Fig. 4.14b in which tim177 and tim179 topics share the same part cri82). Hence, 
there hold strict rules for comparing two expressions: they must be recurrently 
absolutely "compatible" in order for one to merge with the other (e.g., exact 
validity, exact set of 3 red events, etc.). On the other hand, splitting a common 
DDM expression apart is not directly possible. If merging rules are not met, the 
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framework may only infer a new expression from the common one, and modify 
a local portion of it.

The SIL formalism has also the potential of representing (although not 
directly detecting) requested tasks in user's statements (recall "I want to know 
the nearest train to Erlangen") that are usually pre-processed yet before the 
dialogue manager by observing a particular utterance "shape" [Eck95, Boh09, 
Ngu06b]. In this respect, the SIL formalism demonstrates why information is 
best not to be decoupled into task and data sub-information – in general, simply 
because some soft-grained aspects of user's semantics might get lost (e.g., that 
the "nearest train to Erlangen" [data] is "wanted to be known" [mental state, 
not a direct task]). On the other hand, SIL expressions on their own are a too 
weak means to capture the organization of a dialogue. The projecting into views 
is far from accounting for the Grosz & Sidner's work on discourse segmentation 
[Gro86]. The eJ ort needed to incorporate their framework would very probably 
result in an approach comparable with ours. In addition, some singular cases 
of object uni3 cation would have to be cleared or even dropped to avoid the 
overhead of rules required to deal with them. This is a step we had to make as 
well (discussed in Section 4.4).

All spotted diJ erences can be justi3 ed by the two approaches being devised 
for distinct cases of use. While SIL has been designed as a means for describing 
any kind of knowledge, and is therefore strongly semantics-oriented, DDM puts 
most stress on being capable to represent and further handle diJ erent situations 
that arise during a dialogue. The apparent implication is naturally the diJ erent 
representation of the dialogue context – while held as the history of raw semantics 
in SIL, the same information is pre-processed and more eJ ectively stored in the 
case of DDM. This then leads to easier and more elaborated approaches to solve 
common issues in a dialogue:

• Corrections. By relaxing the demand on information monotony, it is 
possible to perform diJ erent kinds of corrections, yet bene3 ting from 
being able to keep track of the information causality – changes to the 
data layer force the agent to re-deliberate on modi3 ed pieces. On the 
other hand, the SIL representation allows for old overriden information 

109 , :
: 111, :

: : 9 , :
:

: Pilsen

id trn type train

id loc type location

thesource id city type city
thecity

value

 
  
          

:     

    

    
 

 

(a) SIL representation

city9  City
Pilsen

lctn111  Locationdep110  Departuretrn109  Conn:Train

(b) DDM representation

Fig. 4.21  Comparison of structural representation of "train departing from Pilsen".
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be recovered once new information has been retracted (e.g., "to Erlangen" 
+ "to Erfurt" + "not to Erfurt" → "to Erlangen").

• References. Their resolving is to an extent very similar. In our case, 
we have added the support for gender-speci3 c references (ten, ta, to in 
Czech, or der, die, das in German), unexpressed nominative (recall "I 
buy it" with it referring to a known ticket object), and nested references 
(recall "How much is a ticket for the train with the ! rst class coach?").

• Disambiguation. In DDM, disambiguation can be made by a reference 
(that resolves to a set of candidate objects) or by providing new 
information (e.g., parent for an underspeci3 ed information). Additionally, 
there is a complex analysis of the input semantics against the dialogue 
context to discover its relationship to existing objects. We believe that its 
elemental parts cannot constitute isolated units as they are in SIL where 
the "anchoring" stands apart from the remainder of processing, being 
called only under speci3 c conditions (Fig. 3.12).

Hence, in DDM optimization has been made in favour of the dialogue 
context processing. However, this is not to say that none of the above presented 
features would be possible to incorporate into SIL. With respect to our previous 
discussion, this would very probably mean to reduce (or eliminate altogether) a 
number of built-in semantic concepts, i.e. the cornerstones of SIL (see example 
at the beginning of Section 4.5.1). Eventually, another possibility would be to 
construct a set of exception rules to work around the soft diJ erences that prevent 
otherwise compatible objects from being uni3 able. Whichever way would be 
taken, SIL could be extended with mentioned DDM features no earlier than after 
this point.

4.10.2 Extending Agent's Planning

Our approach to agent's planning makes use of the A* algorithm. This is 
considerably a diJ erent course of planning from the commonly adopted greedy 
algorithm. In this section, we will discuss two additional extensions to the current 
deliberation procedure, that due to time reasons remained unimplemented.

The 3 rst extension regards dialogue games [Man88]. Brie6 y, dialogue games 
describe certain re-occurring patterns of utterance types commonly observed in 
dialogues. For instance, it is usually the case that a question is responded by an 
answer; a proposal is accepted or rejected; or a greeting is returned. However, as 
Hulstijn points out [Hul00], dialogue planning and dialogue games are usually 
considered two competitive approaches. As he further explains, they may be 
merged together to create a robust and better organized dialogue management. 
Thus, instead of structuring the whole dialogue as one stack of running dialogue 
games, he proposes to identify dialogue games separately at the level of each 
discourse segment ("stacks inside stacks").

Naturally, the opening of each dialogue game must be explicit: either the 
user or the system needs to perform a corresponding move. Each move relates to 
a type of utterance. So what we called the communicative function of a dialogue 
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act (Section 4.6.2) is now de3 ned as a game move. In contrast, the closing of 
a dialogue game may occur multiple ways. One of them is that the original 
initiative (e.g., a question) is followed by an appropriate reaction (e.g., a response). 
Under such condition, the dialogue game is considered closed and popped out of 
the stack. Another way may be to observe a newly opened game breaching the 
satisfaction-precedence; in other words, it does not contribute to the solution, nor 
is it possibly related to the current course of actions in a task. To accommodate 
dialogue games in our framework, the set of recognized dialogue acts (Table 4.5) 
would need to be further revised and extended in order to properly model the 
diJ erent conversational situations that particular dialogue games describe. Also, 
the set of penalization rules (Table 4.9) would have to be extended. The new 
rule(s) would need to capture agent's goal of closing the currently running game 
as its primary operation, i.e. with the lowest or no penalty. Apparently, this is an 
alternative formulation of agent's pro-activity (compare with its current primary 
goal of satisfying the open task in focus).

Let us now concern with the second possible extension to the deliberation 
– a multi-agent environment. The overall framework currently behaves as a 
monolithic entity, with each demand on any external functionality being of a 
blocking nature (e.g., database requests, system-related component operations, 
etc.). However, in a highly interactive and/or time-critical environment (and 
possibly for the reason of facilitated maintenance), this may not be the preferred 
way. The proper solution would therefore be a multi-agent approach. In such 
environment, agents communicate among each other to exchange their current 
statuses, demands, results of operations, etc. Therefore, each of the external 
functionality calls is a priori non-blocking and the requesting agent may continue 
working on its objectives until a response is received from the requested agent.

Apparently, the most straightforward way of preparing the current dialogue 
agent for a multi-agent environment is to replace the event queue with a message 
queue (as events may be understood as "internal messages"). The A* algorithm 
can then be applied to optimize the dialogue agent's behaviour with taking into 
account the messaged states of other agents in the system. Intuitively, one of the 
signi3 cant modi3 cation to the A* algorithm might be to accommodate reasoning 
about time. This can be possibly an important aspect to allow for agent's 
e\  cient, time-aware planning. For instance, by knowing that the requested 
operation result will be ready no earlier than after a certain period of time 
(by the requested agent), the dialogue agent might continue working on other 
things in the meantime (possibly other communications). However, the question 
of proposing a suitable inter-agent communication has to be left unanswered 
at this moment as available communication protocols have not been the main 
subject in this thesis. The inter-agent communication and protocols to consider 
are overviewed, for instance, in [Zbo04].

4.11 Summary

This chapter has aimed to provide a comprehensive and detailed description 
of the Daisy framework. In its entirety, the framework has been designed to 
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provide a multi-user environment for multi-domain, task-oriented dialogues. 
The framework has been implemented in accordance with the speci3 cations 
found in this chapter, unless clearly stated otherwise. To further facilitate its 
understanding, we several times referred to particular routines in source codes 
where eventual ambiguities may be closer consulted against the underlying 
documented code.

We furthermore would want to highlight the following achievements, each of 
which has been thoroughly designed and implemented17 from scratch during the 
study, targeting all major topics in the realm of dialogue systems:

• soft-grained data representation and their advanced management,

• intention detection and management,

• dialogue length optimization (unique),

• extended set of dialogue strategies (unique),

• robust and parametrizable utterance production,

• framework Domain Editor.18

17 Using "unmanaged" Delphi, i.e. without making use of any kind of managed components (e.g., String, 
ArrayList, etc.) that could eventually impair the framework e\  ciency. Delphi has been prefered over 
C++ as it is a block-structured language (i.e., allows functions to be "nested" within other functions) 
which soon turned out to be very bene3 cial; Delphi has also been preferred over .NET due to 
performance reasons (as at the beginning of the development it was not clear how many exponential 
algorithms will be there and how time-consuming they were going to be) and portability (while there 
exist numerous Object Pascal compilers on Linux and other operating systems, there is only the 
Mono Project as for .NET whose compatibility with Microsoft implementation was not convincing at 
the start of working on the Daisy framework).

18 Native Win32 build unstable due to Delphi's poor treatment of custom interfaces (which is a well 
known and common issue of custom interfaces in the Delphi compiler version 7.2 or earlier). Interested 
user is therefore advised to use the .NET 4.0 improved re-implementation instead, provided on the 
attached CD as well.
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Chapter 5 

Experiment and Results

In the previous chapter, we used a timetable application to demonstrate diJ erent 
dialogue situations and work out their solutions. The application was a non-
public concern that was later abandoned as a new project was started, and 
maintenance of two parallel projects became ine\  cient. The new project was 
launched with the kind support of Sympalog Voice Solutions, GmbH.1 Unlike 
with the timetable project, this one was a real spoken application tested publicly 
with volunteers, and it is this application that we will be concerning with in 
this chapter. We 3 rst will describe the application, showing its structure and 
technical background (Section 5.1); then, the experiment prepared to test the 
framework will be described (Section 5.2); 3 nally, we will present the results and 
provide a thorough discussion both on them and further improvements to the 
overall system (Section 5.3).

5.1  The DORA Dialogue System Overview

The new project started with Sympalog was a banking domain dialogue system. 
This was in fact a reimplementation of a system created earlier for one of their 
customers (Fig. 5.1). The functionality of this original system covered bank 
branch information (opening hours, addresses, etc.), and individual account 
basic information (balance, recent activity overview, etc.). While we kept all 
branch-related services, the account information was in our case reduced to mere 
balance status. The reason was a lack of interaction featured in these account-
related tasks – they simply were too straightforward to be used for testing of the 
Rogerian strategy.

Before showing the usage of the framework in implementing the plotted 
functionality, let us mention the technical background that we will refer to as 
needed throughout this chapter. One of the main concerns in creating the system 

1 http://sympalog.de
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was to bridge two incompatible frameworks: Sympalog's SymBase and Daisy. The 
SymBase framework (see lea6 et attached on the CD) constitutes a complex and 
scalable platform for creating mixed-initiative dialogue agents. These in turn can 
be hosted on desktop servers as well as mobile devices, with limited capabilities. 
The platform as such consists of various modules each of which contributes with 
unique services to the resulting dialogue system functionality, including speech 
recognition, semantics processing, dialogue management, utterance production, 
dialogue testing, etc. The modularity of course enables the platform to be split 
apart at virtually any point and replaced with equivalent custom functionality. 
We made use of this aspect to replace the dialogue management and utterance 
production services. The result was a distributed dialogue system with modules 
running in Erlangen, Nürnberg, and Pilsen. Fig. 5.2 shows the overall structure.

To properly model the banking system interaction, three components needed 
to be prepared: data, plans, and dominance models. The 3 rst of them, the 

phone # unknown

phone # known

account balance

branch info

Start phone #
testing

branch info
acc. balance

branch
specification

account #

branch
info type

card #

branch
info type

acc. balance

goodbye

menu

transaction
log

End

acc. balance
yes

no

current
offers

current
offers

yes

no

change
account

no

yes

♠

Fig. 5.1  Original dialogue system functionality outline by Sympalog, see Appendix A.6 for 

SDL notation explanation [Bel89]; node marked with ♠ referred from the text.
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data model, is shown in Fig. 5.3. As it can be seen, there are three topics, 
τ
info

 (providing information of diJ erent kinds), τ
restart

 (restarting the current 
task; more speci3 cally, restarting the task below the Restart-task in the stack), 
and τ

goodbye
 (terminating the session after user's explicit con3 rmation). The last 

two mentioned topics, τ
restart

 and τ
goodbye

 , were introduced due to the lack of 
equivalent "out of the box" functionality in the Daisy framework;2 the τ

info
 topic 

is already a "regular" one. As indicated by the DDM, information in τ
info

 always 
concerns a bank. This bank has a name, several branches, and several accounts. 
2 Because they also are leaves in the model, they must carry a dummy value, in this case of the T

ordinary
 

built-in type.

Daisy
dialogue agent

XML Server

application
logic

application
data storage

XML Client

SymBase platform
& modules

PBX ServerPBX Client

A/D

D/A

semantics
converter

<REQUEST/>

<RESPONSE/>

Fig. 5.2  Dialogue system technical background.
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Fig. 5.3  Banking system DDM; concepts with underscore pre3 xed names are for system 
internal purposes only; camel-cased data types are external.
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Furthermore, each branch has a name (K
branch_o&  ce

), equipment,3 opening hours, 
and is located in a street (which is located in a particular district, which in turn 
is located in a particular city). Thus, the DDM captures a hierarchical structure 
of underlying data in the domain. However, as already discussed in Section 4.4 
on semantics, such representation is not used for raw semantics, for which a key-
value pair vector is more common. To suppress any incompatibilities (including 
diJ erent dialogue control acts representation, like agreement, ask for help, etc.), 
a one-way semantics converter was developed.4 For completeness sake, let us also 
note that some concepts in the DDM are underscore pre3 xed, e.g. C

_session
 . These 

were introduced for internal purposes only (database query result, etc.) and we 
will ignore them in this chapter. Also in the DDM, external data type names are 
camel-cased, while the built-in ones are fully capitalized. The T

city
 , T

district 
, and 

T
street

 external types have a common combinatorial behaviour – their values must 
stay in boundaries of a prede3 ned set. Thus, when deciding about the replacement 
or extension of an existing old value by an incoming new value, the result of 
their hypothetical combination is matched against the set of known names. If a 
match is found, extension is committed, otherwise replacement chosen. From the 
technical point of view, this base behaviour is provided by the common external 
type T

base
 which the three mentioned types infer from and override some of the 

inherited functionality (the Domain Editor shows the dependency more clearly). 
Finally, the T

day
 and T

time
 types are each of an individual behaviour. Particular 

implementations of any of the 3 ve external types may be consulted with the 3 les 
typ*.pas on the attached CD.

The second component, a set of plans, constitutes the domain-speci3 c, 
managed logic. There are three essential tasks that are detailed in Fig. 5.4: 
MainLoop, Info_OpeningHours, and Info_Address. The goal of the MainLoop 
plan is to welcome the user an individual way (newbie user versus returning 
user), ask for the 3 rst request, then ask for any subsequent request (the diJ erence 
is merely in the formulation), and farewell. A diJ erent approach has been chosen 
for the two Info plans. As they diJ er merely in the kind of information that 
satis3 es user's request, they both 3 rst call a common macro to subsequently make 
a task-satisfying statement about branches found by that macro. Presumably, 
the macro covers all necessary interaction with the user and the back-end to 
3 lter out a reasonably low number of branches that meet user's demands (four, 
according to the DDM in Fig. 5.3). The macro itself unexpectedly starts with 
querying the database for branches that match user-provided criteria, whatever 
they are at this moment, eventually returning the whole data set (Exec

1
).5 

Next, the macro checks if each of the criteria resolves to a unique value (node 
And

2
 and its subnodes). If this is not the case, the system oJ ers possibilities 

for user's ambiguous speci3 cation (e.g., user's "Frankfurt" is ambiguous with 
Frankfurt am Main and Frankfurt an der Oder). Then, there is a "non-utterable" 

3 Credit goes to Sympalog for retraining their original ASR to incorporate an ATM as the equipment 
a branch can have.

4 By Václav Struhár.
5 The overhead is to be handled a domain-speci3 c way. One possibility might be to introduce a DDM 

concept whose instantiation would indicate a "too many results to return" answer. As our full data set 
consisted merely of 38 records, we left this case unaddressed. However, we recognize the "no results 
to return" case by the presence of the Π( K

branch
 , K

_no_branch
 ) path in the result.
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query (Req-clarify
4
) to record demands on branch equipment, if any. Two facts 

accompany queries of the non-utterable kind: 3 rst, their information is not 
mandatory for the task satisfaction, i.e., the agent will not query the user if it 
cannot 3 nd a corresponding value in the data layer; and second, information 
may be elicited from the user at another, possibly more suitable point in the 
plan (see below). Next, constraints gathered so far from the user are further 
restricted or relaxed if the number of matching branches is greater or lower 
than the given thresholds (Disambig). Restrictions are represented by regular 
queries (Req-clarify

5…7
), whereas relaxations by yes-no queries (Req-con! rm

1…4
). 

User's updates to the data layer return the agent to some previous point in 
the plan. Finally, the system asks the user if she or he demands a speci3 c 
equipment (Req-con! rm

5
), expecting yes, no, or the equipment directly. From 

the technical point of view, in conjunction with Req-clarify
4
 , this may seem 

an unnecessarily complicated solution, however, there are historical reasons for 
that.6 Once processed, the agent has gathered enough information to satisfy the 
given task by responding with information requested.

The third component, dominance model, de3 nes relations among tasks. 
As already mentioned earlier, the functionality of the original application by 
Sympalog was slightly reduced to eliminate some transitions and allow this way 
for more straightforward decomposition into tasks evaluated as important for 
testing. (Important tasks were those with possibly rich interactivity where the 
Rogerian strategy could be invoked.) Therefore, for instance, the query node 
marked with ♠ in Fig. 5.1, asking for the type of information an unknown 
user wants to know about a branch, was included in the extension of the initial 
prompt and its help ("I can o$ er you the following services: branch address, 
branch opening hours, account balance, …"), leading to the following set of 
tasks and dominance relationships among them:

MainLoop

Info_Address

Info_OpeningHours

AccountBalance

Presumably, some transitions do not have a matching counterpart in the 
original design, however, the important matter is the new and original designs 
intersect reasonably closely. To model the transitions exactly, some single-purpose, 

6 One may argue that a regular query node (QUE) meets the desired objective as its implementation 
may combine both Request-clarify and Request-con! rm acts at the same time. However, the domain 
proposal originally counted with time information constraint as well, allowing the user to 3 lter 
branches also by their opening hours. Thus, two additional non-utterable queries were present in a 
similar fashion like Req-clarify

4
 to store eventual hours and minutes, respectively. The prompt in 

Req-con! rm
5
 then read "Do you need the branch to have any speci! c equipment or be opened at a 

certain time?", suggesting either information was accepted, allowing for mixed-initiative interaction. 
Adopting this approach, the user could have collectively refused to provide any of this information 
by simply responding with no. Contrarily, if the regular query node-based approach was taken, the 
user would have to refuse it individually, one piece at a time, leading to three subsequent no's before 
the dialogue could proceed.
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mostly non-interactive "proxy tasks" would have to be introduced.7 This was, 
however, evaluated as unnecessary. Also notice the mentioned tasks Restart and 
Goodbye are not included in the model. This is caused by them being de3 ned as 
"ambient" plans, i.e., a behaviour that may interrupt the dialogue at any time. 
Finally, the Transaction Log, Current O$ ers, and Change Account functionality 
was not included in our reimplementation as it was evaluated unimportant.

5.2  Tested Objectives and Preparation

The system utterances were designed to test diJ erent dialogue strategies. The 
experiment as such required every user to complete a set of application tasks, 
ideally in the ascending order, although this was not demanded. Instructions to 
the users were given on a set of web pages (see Appendix A.3), one task per page. 
Each web page consisted of a brief description of agent's functionality, a list of 
hints for talking to the agent, a task description, and information on how to call 
the agent. Each page also contained a form for specifying information acquired 
from the agent during the dialogue. Users read the instructions before calling the 
agent from their personal phones. Usage of public phones or shared o\  ce phones 
was explicitly forbidden as the phone number was used as each user's unique 
identi3 er. After completing the tasks, each user was given a survey designed to 
probe her or his satisfaction with the system.

5.2.1 Dialogue Strategies Tested

The types of strategies diJ ered in terms of agent's initiative. More particularly, we 
tested the usage of the narrow strategy (NS), open strategy (OS), and Rogerian 
strategy (RS). To brie6 y recall, the NS strategy uses directive prompts and 
controls the dialogue by explicitly querying the user for particular information. To 
demonstrate, the following example is a real dialogue snippet (to comply with the 
European personal privacy policy, we were obliged to obtain each user's explicit 
permission prior to recording their voice; as in many cases the permission was 
not granted, we only could log the internal representation of conducted dialogues 
– software communications, utterance semantics, etc.; for consistency reason, we 
use only these logs to abstract from user's literal expressions in all dialogues; as 
the semantics conveys usually just a small amount of information, it is easy to 
induce user's underlying intention that resolved to that semantics).

S
 

Hello, thank you for your call (…). How may I help you?
 (Hallo, danke für Ihren Anruf (…). Wie kann ich Ihnen helfen?)

U
 

_timeout_
S

 
I can o' er you the following services: account balance, 
branch addresses, and branch opening hours.

  (Ich kann Ihnen die folgenden Dienste anbieten: Kontostand, 
Filialauskunft und Ö' nungszeiten.)

U
 

_declarative_( Branch( OpeningHours( Time:— ) ) )

7 This cumbersome approach is currently the only way how to imitate the "goto" feature of SymBase 
frame-based management by using merely a dialogue stack. In the upcoming versions of the Daisy 
framework, it is counted with adding a native support for this feature.
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S
 

There are too many branches. Please say which 
city the branch should be located in.

  (Es existieren zu viele Filialen. Bitte sagen Sie, in 
welcher Stadt sich die Filiale be" nden soll.)

U
 

_declarative_( City:"Gelsenkirchen" )
S

 
Ok, you are looking for a branch in Gelsenkirchen. In case you 
know it, please say which street the branch should be located in.

  (Ok, Sie suchen eine Filiale in Gelsenkirchen. Bitte sagen Sie, 
falls bekannt, die Straße, in der sich die Filiale be" ndet.)

In contrast with that, the open strategy does not propose directly what 
possibilities there are at a given time. Instead, it assumes that users know what 
to do and therefore it lets them control the dialogue as in the following snippet 
where coincidentally the same amount of information has been exchanged.

S
 

Hello, thank you for your call and welcome back. 
How may I help you?

 (Hallo, danke für Ihren Anruf und willkommen zurück. Wie kann ich Ihnen helfen?)

U
 

_declarative_( City:"Gelsenkirchen" ,
      Branch( OpeningHours( Time:— ) )
    )

S
 

There are too many branches in Gelsenkirchen. In case you know 
it, please say which street the branch should be located in.

Finally, the Rogerian strategy is an experimental one whose goal is to motivate 
users to say more by handing the initiative back to them, using context-free or 
context-aware sentences. Hence, the system may or may not suggest the topic of 
discussion (see Section 3.9.2 for details). The following snippet shows a dialogue 
with a successful application of the context-aware variant in S

5
–U

5
 turns. For 

clarity, each system prompt is now also labeled with the strategy in use at the 
moment of particular prompt production.

S
1 

RS Hello, thank you for your call and welcome back. 
How may I help you?

U
1 

_declarative_( Equipment:"Geldautomat" , City:"Gladbeck" )
S

2 
RS Ok.

U
2 

_timeout_
S

3 
NS I can o' er you the following services: account balance, 

branch addresses, branch opening hours.
U

3 
_declarative_( Branch( StreetName:— ) )

S
4 

NS There are too many branches in Gelsenkirchen. In case you know it, 
please say which street the branch should be located in. —Pause— 
If you don't wish a particular street, continue with saying No.

U
4 

_declarative_( _disagree_ )
S

5 
RS Please specify the searched branch further.

 (Bitte spezi" zieren Sie weiter die Filiale, die Sie suchen.)

U
5 

_declarative_( BranchO&  ce:"Filiale_Bertlich" )

We did not focus on investigating the suitability of the NS and OS strategies 
(as previous work has shown best suitability for novice and experienced users, 
respectively [Lit02, Wal97, vZa99]). We instead focused on the Rogerian strategy 
by intending to proof two hypotheses: (1) users can respond to it, despite they 
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hear it from a computer, and (2) the strategy gradually improves the information 
exchange rate by decreasing the number of turns needed to solve a task with 
a dialogue agent. Thus we hypothesized that a system without the Rogerian 
strategy might be superior for the 3 rst task, but that a system with the Rogerian 
strategy would have better performance by the last task.

5.2.2 Experiment Description and Preparation

Each user performed three tasks of diJ erent levels of di\  culty in a sequence. 
Each task was represented by a scenario where the user had to 3 nd a branch 
satisfying certain constraints, by using the agent to retrieve and process online 
branch information. The tree tasks were as follows:

• Task 1. Try to 3 nd all Bertlich branches with an ATM in Gladbeck. 
Please write down their exact addresses that you were told by the system.

• Task 2. Given the below map of Herten, try to 3 nd the exact address 
of the nearest Hassel branch that has an ATM (based on your current 
position depicted in the map, it is up to you to determine the shortest 
route!). Once known, check its opening hours and make sure you can 
visit it even after 6 pm. Please spot the nearest branch you have found, 
and also write down its exact address.

 

12

26

62

53

51

49

60

• Task 3. Try to 3 nd the opening hours of all Horst branches in 
Gelsenkirchen. Check their addresses and make sure you can visit 
any of them in Dorfstrasse even after 6pm. What is the exact location 
of such a branch?

Thus, the 3 rst task consisted merely of a single goal of 3 nding a certain 
branch address. The second task was already a compound one, consisting of 
3 nding a branch address and afterwards checking its opening hours. Finally, 
the third task was a compound one as well, but composed in the opposite order.

However, as the name of each branch (Bertlich, Hassel, and Horst, in 
particular) basically identi3 es that branch, the original data set by Sympalog 
was modi3 ed so that there were multiple branches with the same name in each 
of the selected cities (two Bertlich branches in Gladbeck, four Hassel branches 
in Herten, and three Horst branches in Gelsenkirchen, among other branches). 
Although maybe confusing at 3 rst glance, this was the only way how to generate 
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enough parameters a branch can have and thus allowing for the Rogerian strategy 
to eventually take place during a dialogue. In this respect a classical timetable 
domain would have provided a much better (and more natural) parametrization 
of objects the user and the system were to exchange (e.g., diJ erent transportation 
means, tickets, locations speci3 ed by names, points of interests, etc.). Nonetheless, 
such kind of domain was unfortunately not available at Sympalog at the time of 
creating the banking system. Thus, the reason of introducing identically named 
branches was to degrade the name as an identi3 er and make it a common input 
parameter that merely contributes to the 3 nal selection of branches to present. 
The resulting set of parameters then accounted for the branch name, street 
name, city name, and equipment. Opening hours were not included in the input 
parametrization as the amount of ways a time information can be supplied 
spans a large number of possibilities that have to be recognized by the ASR; 
for instance, the following expressions may be considered equal:8 in the evening, 
after 6pm, between 6 and midnight, around 21 o'clock, etc.

Finally, to convey the system to the public, an advertisement lea6 et was 
composed and published (Fig. A.1). To gather potentially as much data as 
possible, the experiment was accompanied by a winning draw to stimulate user's 
motivation in giving the system a call. Copies of the advertisement lea6 et were 
then hanging at the Friedrich-Alexander Universität Erlangen-Nürnberg along 
with the Regionales Rechenzentrum Erlangen (thanks to Dr. Tino Haderlein), 
University of Regensburg (thanks to Prof. Václav Matoušek), and Vienna 
University of Technology (thanks to Leszek Chmielewsky).

5.2.3  Collection and Extraction of Measures

In our study, experimental results were collected from individual users and 
extracted from underlying dialogue logs. All metrics we mention in this section 
are given in boldface. First, we logged the total time of each interaction (the 
variable named Elapsed Time). In this respect, it could have been interesting 
to have a more detailed layout of pauses in the interaction (especially as far 
as reactions to the Rogerian strategy are concerned); however, the SymBase 
platform unfortunately does not feature such measurement possibility.

Second, the agent's dialogue behaviour was logged in terms of particular 
message, strategy used to produce that message, and time stamp of the 
production. Among these, we were particularly interested in the number of 
times the Rogerian strategy was used (Rogerian Turns). In addition, it was 
also logged the number of timeouts (Timeouts) and the number of times that 
the user accessed the task state-speci3 c help message (Help Requests). The 
number of System Turns and User Turns were also calculated on the basis 
of these logs, as well as the average number of pieces of eigen information in 
user's turns (Average Turn Length). On a related note, the SymBase platform 
features merely weak possibilities to measure user turn-related ASR parameters 
(recognition score, etc.). Therefore, no speech recognition measures were gathered, 
which to an extent was a limitation in our investigation. Let us also note that 
we are only interested in the relevant part of each dialogue. We take as the 
8 Personal communication with Dr. Martin Schröder.
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relevant part anything between the beginning of a dialogue and the 3 rst point 
where the user is provided the correct answer by the system; if the user then 
interacted further with the system (e.g., asked for a repetition of the answer, or 
checked the account balance), we do not take such interaction into account for 
our evaluation.

Third, users were to specify information that they had acquired from the 
agent (e.g., the address of the nearest branch in Task 2). This was then used 
in conjunction with data that we had logged during the interaction to compute 
Kappa (more on it below). Finally, users responded to a survey on their subjective 
evaluation of their satisfaction with the agent's performance. The basic form of 
the survey followed a common questionnaire on the standard Likert-scale [Lik32]:

• Question 1. Do you think it was easy to obtain the information we 
requested you?

• Question 2. Was the pace of interaction appropriate? Were you able to 
follow the information conveyed by the system?

• Question 3. Did you know what you could say at each point of the dialogue?

• Question 4. Do you reckon the speed of system's reactions was appropriate?

• Question 5. Did the system work the way you expected it to during the 
dialogue?

• Question 6. Based on your current experience, do you think you would 
use Dora regularly to access information on branches?

All of the responses ranged over prede3 ned values from { I don't agree, I 
rather don't agree, I don't know, I rather agree, I agree }. Each of these values 
was mapped respectively to an integer in 1…5. Each question emphasized the 
user's experience with the system, with the hope that satisfaction measures would 
indicate an overall evaluation of the system over the three tasks. We calculated 
the User Satisfaction score (cumulative satisfaction) for each dialogue by 
summing the scores of the multiple choice questions in the survey.

For interactions where the agent applied the Rogerian strategy, the 
questionnaire continued with additional questions shown below. Their aim was 
to determine the position of the RS strategy in the context of its applicability 
informally. The questions were to imitate an interview with the user in the sense 
of the cognitive task analysis (CTA) [Hof98]. Therefore, instead of aiming at 
knowing how users experienced the system, we wanted to reveal what was going 
on in their minds once they were exposed to one of the RS strategy utterances.

• Question 7. What was the 3 rst thing that came across your mind when 
you 3 rst heard the prompt <—RS prompt transcript—> ?

• Question 8. Did you feel like being pushed to say more? Did you feel this 
utterance was motivating you to say more?

• Question 9. Were you aware of being expected to say more information 
on the branch to 3 nd?
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• Question 10. Do such prompts like <—RS prompt transcript—> sound 
acceptably to you?

The set of "CTA-like" questions evolved during a preparation phase with 
3 ctional timetable dialogues. Because we needed to blend two mutually 
contradictory procedures, particularly a face-to-face CTA interview with a 
hidden "Wizard of Oz-like" (WoZ) simulation, we approached this phase with 
two pre-composed dialogues printed on a paper to satisfy demands on both of 
the procedures. Thus, the interviewer was the uncovered wizard as well – for 
our purposes, however, the CTA interview had a higher priority over a regular 
WoZ simulation. Afterwards, there were N=6 persons from the IT realm with 
no previous experience in human-computer interaction. They all were given the 
two pre-composed dialogues, one with the RS strategy involved and one without 
it (in this order). The evolution of the dialogues proceeded in a turn-by-turn 
manner, that is the interviewer read up the system utterance, one at a time, 
and then waited for the person's reaction. The interviewer's main goal was to 
ask the persons what they think they are asked about and what they can say at 
each moment in the dialogue. The stress was, of course, put on the system turns 
with the RS strategy applied. (The most interesting response was that the user 
would have assumed the system was joking and would immediately hang up.) 
Once the interviewer has gathered enough information, the expected reaction in 
the dialogue was revealed to the person and the interviewer eventually posed 
additional questions. No earlier than by now the interviewer continued in the 
dialogue by reading up the next system utterance. The results of these individual 
interviews constitute the basis of prede3 ned answers to Questions 7, 8, and 10 
(see Appendix A.4; in case of DORA, Question 9 then ranged over the 3 ve 
prede3 ned values used already for Questions 1…6).

Hence, to summarize the set of measures, our investigation leans mainly on 
parameters that the system could log automatically, without the need of hand 
labeling them. Table 5.1 illustrates the type of information that was accumulated 
at the end of each experiment. Each row in the table represents a user for whom 
the interaction with the agent was logged along with values for the measures 
discussed in this section. However, at this stage, it is impossible to prejudge 
which measures contribute to the user satisfaction most. Below, we therefore 
use two dialogue system evaluation frameworks to tell us which measures have 
merit, and to quantify their relative importance.

5.3  Results and Evaluation

The experimental data consists of N=9 users who produced in total M=19 
relevant dialogues.9 We in advance say that this number is a huge disappointment, 
and therefore, analyze the reasons that could have led to it in the next section. 
Afterwards, in Sections 5.3.2 and 5.3.3, we process the results formally, making 
them a subject of the ANOVA and PARADISE frameworks. We conclude with 

9 We do not consider dialogues that were either abandoned or crashed. If a user solved one task more 
than once, only the latest interaction is considered as relevant.
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Section 5.4 that gives an informal view at the results and discusses interesting 
aspects observed in individual dialogues.

5.3.1 Reasoning about the Low Attendance

Before engaging with the system evaluations, let us try to 3 nd reasons for the low 
number of volunteers willing to participate in the project. We have pinpointed 
three main reasons which serve us as lessons learned for further experiments of 
similar kind.

First, our experimentation lacked any form of warm-up session [Smi92] that 
could have helped users with getting them more familiar with the system. In 
many cases, these sessions are conducted with an instructor who is to explain 
the essence of the system, present basic keywords, and help subjects do their 
3 rst steps in the system which usually involves accomplishing a simple task 
[Ngu06a, Sti01, Ste07, Smi92, Sto12]. Such conducted warm-up session mainly 
targets more complicated or highly specialized systems. For less sophisticated 
systems like ours, a simple static dialogue transcript usually su\  ces [Wal98]. As 
our system was accessed by remote users by phone, we could not have taken 
the human instructor way. Neither did we, however, consider the latter way as 
we wanted to imitate a queuing system for which users were not required to 
read through illustrative dialogues (instead, such system was to adapt based on 
the current qualities of a dialogue). Another reason is that we did not want to 
in6 uence user's way of interaction by showing them an example. On the other 
hand, this assumption might have been in collision with a HCI-related factor 
that people do not trust unknown and attempt to avoid it [Yan95]. This factor 
could have therefore discouraged potential users by the fact that they did not 
know what was expected from them (our websites were accessed by more than 
150 visitors). Hence, if we were to repeat the experiment, we would include a 
warm-up session by opting for a dialogue transcript as an example.

The second aspect that could have impaired the experiment attendance were 
technical di\  culties that the system suJ ered from during the 3 rst weeks of its 
running. More speci3 cally, we dealt with typos in string literals ("#Gladbeck" 
instead of "Gladbeck", and "strasse" instead of "Strasse"), malformed 
communication messages between the XML Client and XML Server (see Fig. 
5.2), and most importantly database communication failures – a hidden problem 

Table 5.1  Overview of logged measures about dialogue sessions; US = User Satisfaction, ET 
= Elapsed Time, STs = System Turns, TOs = Timeouts.

User Task Dialogue turns US κ ET STs TOs …

1 1 S
1
–U

1
 , S

2
–U

2
 , S

3
–U

3
 , … us k et st to …

1 2

1 3

… …
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that was discovered no earlier than after a month the system was running. The 
database di\  culties prevented users from submitting their answers acquired from 
the system along with the 3 nal questionnaire as well. Looking at the dialogues 
distribution over the testing period (Fig. 5.5), we believe this was the most 
signi3 cant factor that contributed to the low attendance. Thus, after a promising 
start in March, we suddenly observed a decline in the number of dialogues 
(originally ascribed to the holiday season). In parallel to the decline, we also 
observed an increased number of users who had 3 nished one task but did not 
continue in the experiment.10 We believe the database problems have deteriorated 
the system initial reputation to the extent which it was unfortunately unable to 
recover from over the remaining months.

There is one more aspect that does not regard the in6 uence on the low 
attendance in the experiment directly, however, has impacts on how we now 
can evaluate the results – the 3 nal questionnaire itself. Let us recall that the 
experiment was designed to show the 3 nal questionnaire to users who had 
responded to all three tasks. Nonetheless, as some users did not continue in 
the experiment after they had submitted the answer to the 3 rst task,11 we 
unfortunately cannot evaluate their partial accomplishments formally (Sections 
5.3.2 and 5.3.3); we, however, include these dialogues in our informal discussion 
(Section 5.4). The motivation for leaving the 3 nal questionnaire to the end was 
to evaluate the system as a whole. We found inspiration for this decision in 
[Ngu06b] where ten users were to cooperate with the system in solving twelve 
diJ erent tasks. Despite some of them did not 3 nish them all, it was the human 
factor who then immediately decided whether the dialogues observed are worth 
an evaluation. For our case, one way to work around the computer factor would 
be to let users submit the questionnaire and check for ful3 llment of all tasks 
manually. A better way would be to make users submit the questionnaire for every 
task [Wal98, Lit02]. That way, each user's response to the questionnaire would 

10 As we later tracked down, the problem was in the way the XML Server was connecting to the 
database. Once connected on its start, it was supposed to remain connected until the end of July. 
However, the database had set a disconnection timeout that 3 red after approximately three idle 
days (i.e., if no call was received by then). For us, the server was always working as expected when 
checking its functionality minutes after re-starting it. We then eventually received a complaint from 
a user calling few days later.

11 We believe the reason might have been the overcomplicated formulation of Tasks 2 and 3.

month

# of calls

Mar Apr May Jun Jul

5

10

15

completed dialogue
(with not necessarily correct answer)

crashed dialogue

unfinished dialogue
(user hung up)

Fig. 5.5  Number of calls distribution over the testing period between March and July 2014.
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re6 ect the most recent dialogue she or he took part in; this could be combined to 
evaluate their overall experience with the system or the questionnaire extended 
with additional questions.

5.3.2  Evaluation Using ANOVA

To begin with our formal evaluation, let us 3 rst brie6 y describe the notion of 
using ANOVA (ANalysis Of VAriance) in the dialogue systems realm [Coh95]. 
In general, ANOVA is a statistical method to compare diJ erences of means 
among several measures. It does so by looking at variation in the data and where 
that variation is found. More speci3 cally, it compares the amount of variation 
between groups with the amount of variation within groups. When we take 
samples from a measure, we expect each sample mean to diJ er simply because 
we are taking a sample rather than measuring the whole population. Thus, we 
always expect there to be some diJ erences in means among diJ erent groups. Like 
other statistical tests, we use ANOVA to calculate a test statistic (the F-ratio, or 
F-test) using which we can obtain the probability (the p-value) of obtaining the 
data assuming the null hypothesis. The null hypothesis states that all population 
means are equal, so there is no diJ erence among groups. A signi3 cant p-value 
(for which p < α, where usually α = 0.05) suggests that at least one group mean 
is signi3 cantly diJ erent from the others. In such case, we say that we reject the 
null hypothesis.

To gather at least two groups of measures, we developed two versions of the 
dialogue agent: Agent A, which was equipped with the "common" set of strategies 
(NS+OS combination), and Agent B, which employed the Rogerian strategy 
where applicable (NS+RS combination). Each calling subject was assigned one of 
the agents on the basis of the phone number: even numbers were assigned Agent 
A whereas odd numbers Agent B.

Our experimental design then consisted of two factors: strategy (with 
nominal conditions Agent A and Agent B) and task (with nominal conditions 
Task 1, Task 2, and Task 3). Each of our measures was analyzed using a 
two-way, repeated-measure ANOVA for these two factors. For each result we 
report F and p values indicating the statistical signi3 cance of the results for 
α = 0.05. Apparently, eJ ects that are signi3 cant as a function of strategy indicate 
diJ erences between the two strategies, whereas eJ ects that are signi3 cant as a 
function of task are potential indicators of learning [Wal97].

Based on our results, the ANOVA test revealed that the amount of eigen 
information supplied by the user per turn is a function of strategy (F(1,6) = 
6.23, p = 0.047). This is a desired and hoped result, indicating that the RS 
strategy had a positive impact on the information exchange rate: while the 
average amount of supplied eigen information was 1.06 pieces per turn for Agent 
A, it was 1.16 for Agent B (timeouts with zero exchange rate are not counted in).

In tandem with this observation, we also hoped to reveal a signi3 cant variance 
between elapsed time per dialogue and strategy. The F-test nevertheless did not 
reveal such variance (F(1,6) = 0.02, p = 0.886); the same then applies to the 
number of turns per dialogue (F(1,6) = 1,15, p = 0.325). Despite that, we are 
not disappointed to fail to reject the null hypothesis, i.e. that the strategies are 
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equivalent in terms of the amount of time or the number of turns, respectively. 
We believe that the lack of an eJ ect on elapsed time re6 ects that the dominant 
time aspect were longer utterances in Tasks 2 and 3, informing about opening 
hours in Task 2 and using opening hours to refer to known branches in Task 3.12 
On a similar note, we believe that we failed to reject the null hypothesis that the 
strategies are equivalent in terms of impacts on the number of turns, due to the 
lack of enough tested subjects during our experimentation.

A similar result is also obtained when computing how the number of RS 
strategy applications across all subjects and tasks in Table A.3 correlates with 
the number of dialogue turns, which provides us with the number 0.063. Taking 
again into account the constrained number of subjects participating in the 
experiment, this cannot be understood as a cardinal answer that the RS strategy 
has a minor negative impact on the dialogue 6 ow. To make such claim, more 
participants would be necessary to take part in the experiment (and eventually 
additional experiments conducted across diJ erent domains). With these results, 
we only can state that Agent B outperformed Agent A in terms of the average 
number of dialogue turns with AvgTurns(A) = 12 and AvgTurns(B) = 10, this 
way being 17% more eJ ective when making use of the RS strategy. By excluding 
both of the extremes from each of the groups, i.e. the shortest and the longest 
dialogues, we obtain AvgTurns(A) = 9.33 and AvgTurns(B) = 10.22 (improvement 
by 8.70%), thus a less clear result, comparable with those received from ANOVA.

For completeness sake, the ANOVA test also showed two interesting but 
statistically insigni3 cant covariances. The 3 rst of them is a dependence between 
the number of turns and a task (F(2,6) = 3,68, p = 0.090). Calculating the 
average number of turns per each task gives us 8.13, 15.17, and 10.00 for Task 1, 
2, and 3, respectively. Thus, there is an apparent peak for Task 2 which can be 
explained as the task being too complex (or fuzzy formulated) for users to solve. 
We think users were confused by the goal of 3 nding the closest branch using an 
underlying map. While we hoped this task to be the most enjoyable one as it was 
no more complex than the other two, i.e. it su\  ced to provide the system with all 
data stated in the formulation and then just check the returned answer against 
the map, virtually each user chose the longer way of exploring depicted streets 
individually, which naturally bloated the dialogue length. In addition, despite 
diJ erent complexity, the reason that Tasks 1 and 3 had each approximately the 
same number of turns can indicate the above mentioned aspect of users learning 
to use the system.

The second statistically insigni3 cant covariance returned by ANOVA has 
been observed between the number of timeouts and the strategy used (F(1,6) 
= 5.05, p = 0.069). Calculating the average number of timeouts per strategy 
provides us with 3.98 for Agent A and 1.75 for Agent B. If we exclude both of the 
extremes from each group (i.e. the minimum and maximum number of timeouts 
per dialogue), we obtain 3.22 for Agent A and 1.50 for Agent B. The reason for 
this observation may be that, once heard the RS strategy prompt, users tended 

12 E.g., "There is a Horst branch in Gelsenkirchen, opened daily between 9:00 and 17:00 o'clock, another 
one opened daily 24 hours, and yet another one opened Monday, Wednesday, and Friday between 
9:00 and 16:00, and Tuesday and Thursday between 9:00 and 18:30 o'clock."
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to repeat information they already provided earlier, instead of letting their turn 
timeout. The following is one of such cases:

S
n-2 

NS … There are too many branches. In case you know it, please 
say which city the branch should be located in. —Pause— If 
you don't wish a particular city, continue with saying No.

U
n-2 

_declarative_( City:"Gladbeck" )
S

n-1 
RS Please specify the searched branch further.

U
n-1 

_timeout_
S

n 
NS I've so far understood you are looking for a branch in Gladbeck. 

I need now more information. I suggest you to say the street, 
but you can say also the place, name, or equipment.
 (Bisher habe ich verstanden, dass die Filiale in Gladbeck sein soll. Ich 

brauche jetzt weitere Informationen über die gesuchte Filiale. Ich schlage die 
Straße vor, aber Sie können auch Ort, Name der Filiale oder Ausstattung 
ändern und mir die entsprechende Information jetzt geben.)

U
n 

_declarative_( Equipment:"Geldautomat" )
S

n+1 
RS Ok, you are searching for a branch with an ATM.

Please tell me more about the branch.
 (Ok, Sie suchen eine Filiale mit Geldautomat. Geben Sie mir bitte weitere Informationen.)

U
n+1 

_declarative_( City:"Gladbeck" )
S

n+2 
RS Please specify the searched branch further.

U
n+2 

_timeout_

As the number of unspoken mandatory information for a task was shrinking, 
a RS repeated application was followed by a repeated known information, and 
then eventually by a timeout. However, an eventual timeout is necessary to be 
accepted as an inevitable response in some cases. It is a sign that the user does not 
know what to say (more), which was well observed even in dialogues conducted 
by Agent A. In our case, whenever a timeout arose after an application of the RS 
strategy, Agent B imediatelly switched to the NS strategy whose prompt already 
gave the user speci3 c information on how to continue in the dialogue.

Thus, we believe that the rejections we made in this section are a matter of 
utterance design rather than the underlying notion of the RS strategy itself. Let 
us also recall from Section 3.9.2 that the RS strategy was always used during 
our experiments only in cases when

• a dialogue was progressing well, i.e. no timeouts were observed by 
the agent, indicating that the user knew what to say; this situation is 
illustrated by the following snippet:

S
 

RS Hello, thank you for your call and welcome back. 
How may I help you?

U
 

_declarative_( Branch( StreetName:— ) )
S

 
RS There are too many branches. In case you know it, please 

say which city the branch should be located in. —Pause— If 
you don't wish a particular city, continue with saying No.

U
 

_declarative_( City:"Herten" )
S

 
RS So you are searching for a branch in Herten. 

Please tell me more about the branch.
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U
 

_declarative_( Equipment:"Geldautomat" ,
          BranchO&  ce:"Hauptstelle"

 
 

       )
S

 
RS Unfortunately there are no Hauptstelle branches13 with an ATM. 

Do you insist on the ATM?
 (Leider existieren keine Hauptstelle Filialen, die Geldautomat haben. 

Bestehen Sie auf Geldautomat?)

U
 

_declarative_( _agree_ )

• the task to discuss was unknown; however, this application virtually 
always resulted in a timeout or repetition of already known information:

S
 

RS Hello, thank you for your call (…). How may I help you?
U

 
_declarative_( _agree_ , City:"Gladbeck" )

S
 

RS Ok.
U

 
_timeout_

S
 

NS I can o' er you the following services: account balance, 
branch addresses, and branch opening hours.

U
 

_timeout_
S

 
NS I can o' er you the following services: account balance, 

branch addresses, and branch opening hours.
U

 
_declarative_( City:"Gladbeck" )

• the agent missed two or more pieces of information; already exempli3 ed 
in above dialogues.

5.3.3  Evaluation Using PARADISE Framework

The above ANOVA test indicated diJ erences between the two dialogue agents 
in several aspects but it was unable track down the most important performance 
features. We therefore make use of the PARADISE framework. The PARADISE 
framework (PARAdigm for DIalogue System Evaluation) [Wal98] emerged as 
a response to the lack of complex techniques to evaluate a dialogue system 
performance. In a nutshell, the framework has been devised to compare diJ erent 
dialogue strategies by providing a task representation that decouples what 
an agent needs to achieve in terms of task requirements from how the agent 
carries out the task via dialogue [Wal98]. The idea proposed is that the system 
performance can be correlated with a meaningful external criterion such as 
usability. Because user satisfaction ratings are commonly used as an indicator 
of the usability, the user satisfaction is the agent's top level objective to be 
maximized. There are three main assets the framework consists of:

• Task success. Each task is represented using an attribute-value matrix 
(AVM), representing information that must be exchanged between the 
user and the system at the end of a dialogue, regardless of the strategy 
used. The AVM is in turn used to build a confusion matrix, counting 

13 Although Daisy allows for branching in utterances, we omitted the case of "Hauptstelle Filiale" as 
none of the tasks was on 3 nding the main branch; luckily, such word combinations occurred merely 
a handful of times in our sessions.
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how many times the system was supplied correct and incorrect attribute 
values in the dialogue corpora. Finally, the Kappa coe&  cient, κ, can 
be calculated from a confusion matrix, summarizing how well the agent 
achieves information requirements of a particular task, taking into account 
that the size of the value set in6 uences the rate of misrecognitions.

• Dialogue costs. In general, any user or agent's behaviour that should 
be minimized is to be considered a dialogue cost. Since it is not clear 
in advance which cost factors may be the strongest contributors to the 
user satisfaction, it is important that a wide range of these measures is 
used during an experimentation [Wal98]. For instance, except for the 
Kappa, Rogerian Turns, and User Satisfaction measures in Section 
5.2.3, all remaining variables can be considered dialogue costs of either 
quantitative nature (Elapsed Time, User Turns, etc.) or qualitative 
nature (Timeouts, Help Requests, etc.).

• User satisfaction. Users who take part in the experimentation are asked 
to 3ll out a survey. They are given a set of questions with prede3 ned 
answers, each of which maps to a certain value, matching the degree to 
which they agree with a statement about the system. Cumulating their 
responses, the overall user satisfaction is approached.

To put all of these parts into perspective, it is proposed a weighted linear 
combination of the task success and dialogue costs to model (and possibly also 
predict) the user satisfaction, i.e.

( )

    ( ) ( )
i i

i

Performance UserSatisfaction w c≈ = ⋅ − ⋅∑α κq q

where α is a weight on κ, the cost functions c
i
 are weighted by w

i
 , and q is a 

Z-score normalization function [Coh95]. The normalization function is used to 
overcome the problem that the values of c

i
 are not on the same scale [Wal98] 

(e.g., elapsed time is measured in seconds whereas timeouts are calculated in 
terms of number of utterances). If the values are not normalized, the coe\  cients 
α and w

i
 will not re6 ect the relative contribution of each factor to performance. 

This is easily solved by normalizing each factor x to its Z-score, i.e.

( )  
x

x x
x

−
=q

σ

where σ
x
 is the standard deviation for x.

Hence, in our application of the PARADISE framework, we 3 rst calculated 
the Kappa coe&  cient, indicating the overall task success, as

( ) ( )
  

1 ( )

P A P E

P E

−
=

−
κ

where P(A) is the proportion of times that the AVMs for the actual set of 
dialogues agree with the AVMs for the scenario key, and P(E) is the proportion 
of times that we would expect the AVMs for the dialogues and the keys to 
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agree by chance. Table A.1 and Table A.2 show the two confusion matrices 
over all subjects and tasks that correspond to Agents A and B. Based on these 
confusion matrices, we can calculate individual Kappa coe\  cients as κ

1
 = 

0.588, and κ
2
 = 0.793. Table A.3 then summarizes measures for relevant parts 

of dialogues considered for evaluation. We do not consider dialogues that were 
either abandoned or crashed. If a user solved one task more than once, only the 
latest interaction is considered. Note that the correctness of results returned 
by the system as response was irrelevant to us – we only were interested in 
observing reactions to the RS strategy rather than serving users with correct 
information.

To determine the unknown coe\  cients α and w
i
 , we use the linear regression. 

However, before that, we 3 rst have to exclude the number of turns (Turns) from 
the set of measures as it highly correlates with both Elapsed Time (corr > 
0.936) and Timeouts (corr > 0.81). We in turn also exclude Elapsed Time 
itself for correlating with Timeouts (corr > 0.66), Restarts for correlation 
with the number of Help Requests (corr > 0.887), and 3 nally also Kappa for 
correlation with the Average Turn Length (corr > 0.681). These exclusions 
are made due to the fact that correlation above 0.70 can aJ ect the coe\  cients 
of the linear regression [Mon80]. In the subsequent linear regression, the User 
Satisfaction is treated as the predicted factor whose variance is accounted for 
by the remaining loosely correlated measures. For signi3 cant contributors to 
the predicted factor, the linear regression produces coe\  cients constituting the 
following performance estimation function (for con3 dence level of 90%):

    0.49 0.38Performance UserSatisfaction Timeouts AvgTurnLength≈ = − ⋅ + ⋅

Accounting for 85% of variance in User Satisfaction, the formula tells us 
that users were satis3 ed the more the less timeouts they experienced and the 
"longer" utterances they were saying. In other words, the satisfaction linearly 
depends on whether users knew what to say: the less they knew the less they 
were satis3 ed, and the more they knew what to say per turn the more they 
were satis3 ed. It is interesting to note that although qualitative measures have 
typically been assumed to be the most important factors in user satisfaction 
[Wal98, Lit02], the relative magnitude coe\  cient for Timeouts in the above 
equation is in absolute value greater than the coe\  cient for the Average Turn 
Length. This implies that not knowing what to say has stronger importance for 
users whereas knowing what to say is assumed rather common.

It is also interesting to note that according to the formula, the Rogerian 
Turns measure we most focused on does not seem to aJ ect the User Satisfaction 
(p > 0.32). That is, although we did not interview the users of the RS strategy, 
the formula appears to con3 rm the informal results of interviewing users during 
the CTA sessions (see Section 5.2.3 and Appendix A.4), implying that users are 
not annoyed by the RS strategy exceptional utterances and can rather handle 
them (the strategy ended with a timeout in 8 out of 26 cases of application; 
it managed to elicit new information in 10 out of the 18 non-timeout cases). 
Therefore, the factor with the most impact on user satisfaction remains the 
quality of a dialogue after all. From this standpoint, the RS strategy appears 
to be an acceptable way of eliciting more information. As already mentioned in 
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the previous section, Agent B outperformed Agent A in terms of the number of 
timeouts per dialogue (1.50 versus 3.22), the length of a dialogue (9.33 versus 
10.22), and also Kappa (0.793 versus 0.588). As no detailed feedback from users 
was collected, we only can guess that better average Kappa coe\  cient was 
obtained due to users being not pushed to say a speci3 c piece of information 
at a particular point (e.g., name of a branch), but instead, were free to say 
virtually anything relevant in any order. In contrast, Agent A's insisting on 
particular information had sometimes the negative eJ ect on user saying "at least 
something" to satisfy the system demand (e.g., satisfying the branch name with 
saying "main branch", Hauptstelle, which was incorrect in any task). Of course, 
Agent A oJ ered the possibility to skip that information elicitation (e.g., "If you 
don't wish a particular city, continue with saying No"). Adopted by the user, 
such behaviour prolonged the dialogue.

Finally, plugging our experimental data back into the above performance 
function shows that the mean performance of Agent A is lower than the mean 
performance of Agent B, hence Agent B performed better than Agent A. 
Appendix A.5 extends this formal evaluation by brie6 y describing an alternative 
way of evaluating spoken dialogue systems using the three-tiered methodology 
by Stibler and Denny [Sti01].

5.4  Remarks

Before concluding the evaluation, let us make several notes about the Rogerian 
strategy. As already mentioned in Section 4.9 on strategies, the Rogerian strategy 
acts as a "prolonged user-initiative strategy". That is, while the common mixed-
initiative approach assumes that user's initiative is always followed by the system 
initiative, the Rogerian strategy modi3 cation suggests that the user can keep the 
initiative as long as she or he knows what to say. In such cases, the system hands 
back its turn by speaking with mere hints or context-free sentences. Obviously, 
this is a risky approach that may result in the opposite eJ ect of making the 
interaction even longer. We observed users either repeating the already said or 
letting their turn timeout; examples of such behaviour have already been given 
above.

On the other hand, not knowing what to say to a Rogerian prompt is a 
situation comparable to not knowing what to say to an open-ended prompt at the 
beginning of a dialogue. For instance, one of our non-Rogerian sessions started 
with:

S
1 

OS Hello, thank you for your call (…). How may I help you?
U

1 
_declarative_( City:"Gladbeck" )

S
2 

NS I can o' er you the following services: account balance, 
branch addresses, branch opening hours.

U
2 

_timeout_
S

3 
NS I can o' er you the following services: account balance, 

branch addresses, branch opening hours.
U

3 
_timeout_
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S
4 

NS I can o' er you the following services: account balance, 
branch addresses, branch opening hours.

U
4 

_declarative_( Branch( StreetName:— ) )

It took four system turns to 3 nd out what the user wished. In contrast to 
this, with the Rogerian strategy enabled, the same task was solved by another 
user as follows:

S
1 

RS Hello, thank you for your call (…). How may I help you?
U

1 
_declarative_( City:"Gladbeck" )

S
2 

RS Ok.
U

2 
_timeout_

S
3 

NS I can o' er you the following services: account balance, 
branch addresses, branch opening hours.

U
3 

_declarative_( Branch( StreetName:— ) )
S

4 
RS There are too many branches in Gladbeck. 

Please specify the searched branch further.
U

4 
_declarative_( BranchO&  ce:"Filiale_Bertlich" )

S
5 

RS Ok, you are searching a Bertlich branch. 
Do you need it to have a speci" c equipment?
 (Ok, Sie suchen eine Bertlich Filiale. Soll die Filiale eine bestimmte Ausstattung haben?)

U
5 

_declarative_( _disagree_ )
S

6 
RS There is a Bertlich branch located in Sandstrasse 177 in Gladbeck 

and another one in Voßstrasse 200. 
Can I help you " nd another branch?
 (Es gibt eine Bertlich Filiale mit der Adresse Sandstrasse 177 

in Gladbeck und eine andere mit der Adresse Voßstrasse 200. 
Kann ich Ihnen helfen, eine weitere Filiale zu " nden?)

U
6 

—dialogue continues with user asking for repetition—

Yet in contrast to this, the Rogerian strategy can be considered an 
inappropriate way for information elicitation in the following session which was 
terminated by the user preliminary:

S
1 

RS Hello, thank you for your call (…). How may I help you?
U

1 
_declarative_( City:"Gladbeck" )

S
2 

RS Ok.
U

2 
_timeout_

S
3 

NS I can o' er you the following services: account balance, 
branch addresses, branch opening hours.

U
3 

_declarative_( Branch( StreetName:— ) )
S

4 
NS There are too many branches in Gladbeck. Please specify the 

street that the branch should be located in. —Pause— If 
you don't wish a particular street, continue with saying No.

U
4 

_declarative_( _disagree_ )
S

5 
RS Please specify the searched branch further.

U
5 

_timeout_
S

6 
NS I've so far understood you are looking for a branch in Gladbeck. 

I need now more information. I suggest you to say the street, 
but you can say also the place, name, or equipment.

U
6 

_declarative_( _agree_ )
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S
7 

RS Please give me some more information about the branch.
U

7 
_timeout_

S
8 

NS I so far understood you are looking for a branch 
in Gladbeck. You now may say or change the 
location, name, or equipment of the branch.
 (Bisher habe ich verstanden, dass die Filiale in Gladbeck sein soll. Sie können 

Ort, Name der Filiale oder Ausstattung jetzt sagen oder ändern.)

U
8 

_timeout_
S

9 
NS I so far understood …

After several more turns, the user gave up and hung up. However, what is 
observable here is that the system repeatedly attempted the Rogerian strategy 
and narrow strategy to elicit more information from the user. The 3 rst timeout 
in U

2
 caused the 3 rst switch, after which the system provided a short help. 

As the subsequent turns U
3
 and U

4
 supplied required information, the system 

decided to switch back to the Rogerian style in S
5
 . However, this attempt was 

responded to with a timeout in U
5
 . The turn S

6
 therefore summarizes so far 

known and provides help. User continues with an unexpected agreement; from 
the Rogerian strategy point of view, this is again evaluated as a sign of progress 
in the dialogue, which is in conformance with the strategy current speci3 cation 
in Section 4.9.14 The result is another switch towards the Rogerian strategy in S

7
 

that is responded to with a timeout, etc.
Thus, the above "good and bad" examples imply that the Rogerian strategy 

should have even more restricted conditions of use. Obviously, we deal here with 
a blind adaptability approach without regularly maintaining user's interaction 
habits. A user model would therefore represent a valuable additional input to 
the strategy evaluator (and in fact any other strategy). Had that been the case, 
repeatedly experiencing the Rogerian strategy to fail, the system would eventually 
stop using it to improve the dialogue progress. However, as we mentioned at the 
beginning of this chapter, our system essence was to imitate a queuing system 
rather than serving as a personalized agent. We will brie6 y discuss user modeling 
possibilities in the below Section 6.2 on future work.

5.5 Summary

In this chapter, we used the general collaborative dialogue framework Daisy 
to create a conversational agent DORA providing bank branch information. 
We made use of the Domain Editor to model the agent's behaviour (DDM, 
plans, and dominance). With the kind support of Sympalog Voice Solutions, 
GmbH company, we delivered the system to real users who could called it by 
using their ordinary cell phones. For each individual call, we automatically 
logged conversation parameters, like semantics, system prompts, communication 
messages, etc. Users who completed all experiment scenarios judged the system 
on the Likert scale, and gave us this way underlying material for evaluating the 
Rogerian strategy, which is an embedded part of the Daisy framework.15 The 

14 Apparently, this evaluation should be further precised so that the agreements and disagreements 
have a local logical relevance only.

15 Can be turned oJ  and on using the SetProperty API function in Table A.4.
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evaluation was to an extent limited with what measures we were supplied from 
the SymBase platform (for instance, we were not supplied the silence period 
before the 3 rst word in user responses, as the platform does not calculate such 
measure; for the platform overview see lea6 et attached on the CD). Despite 
that, we were able to evaluate two versions of the banking agent, the so called 
Agents A and B. We 3 rst tested the experimental data against the ANOVA 
F-test to 3 nd out that there was a trend towards the two agents being diJ erent. 
Our next investigation continued with thorough performance analysis using the 
PARADISE framework, whose results revealed that the user satisfaction linearly 
depended on whether users knew what to say: the less they knew the less they 
were satis3 ed, and the more they said per turn the more they were satis3 ed. 
We do not 3 nd the results disappointing, provided that we dealt here with a 
blind adaptability approach with no modeling of user's habits or preferences. We 
therefore discuss possible extensions to the Daisy framework in the Future Work 
section in the next chapter.
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Chapter 6

Conclusion

This work has concerned with general collaborative dialogue management through 
a spoken natural language. After specifying and explaining the approach, we 
demonstrated its usability in a banking domain, developed on the basis of a 
real dialogue system. Our reimplementation missed some non-interactive parts 
which were of little use for our purposes. The resulting design featured services 
on bank branch information and account balance. To 3 nish the development life-
cycle, we deployed the system to real users who interacted with it by giving it a 
call (thanks the kind support of Sympalog Voice Solutions, GmbH 1). To comply 
with the SymBase platform standards, the dialogue agent was wrapped in a 
thin XML server. The dialogue agent itself acted as the central component for 
maintaining a coherent spoken dialogue with the user as well as communicating 
with the back-end assets (database and application libraries).

We proposed an agent-based approach to dialogue management which 
meets the requirements for developing multi-domain spoken dialogue systems 
to host concurrent dialogue sessions. Our decision for the agent-based approach 
was motivated by disadvantages found in other approaches. While most of the 
existing methods for dialogue management are suitable for simple and highly 
constrained tasks, in which complex interactive behaviour has to be solved using 
an overhead of development, our aim was to create a general framework with 
most of the common behaviour available "out-of-the-box".

Our approach employs the BDI architecture to dialogue agent decomposition. 
To model a dialogue, we use existing work in speech act theory and discourse 
analysis, namely the concepts of conversational acts and discourse segment 
intentions. To manage a dialogue, we consider it as a rational action, i.e. a 
product of a goal-directed behaviour. Therefore, the dialogue model is explicitly 
encoded in agent's plans, each specifying a set of steps to solve a particular 
task. The dialogue control 6ow is then derived automatically as the result of the 
BDI interpretation cycle. This, among other things, includes trading reactiveness 

1 http://sympalog.de
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in order to ful3ll user’s requests, and proactiveness such as for error recovery. 
The conversational context along with other domain-speci3c knowledge are 
maintained as agent’s internal beliefs.

6.1 Contributions to Dialogue Management

There are several contributions to the realm of dialogue management. Overviewing 
them chronologically, the 3 rst contribution has been made to the frame-based 
management in which nested frames have been extended with a system of 
journal to automate some commonly repeating routines that otherwise have 
to be handled manually – they foremost address causality tracking and error 
recovery. There are proposed several embedded algorithms to manipulate the 
journals and to override the underlying interpretation mechanism. The system of 
journals can be applied to any frame(s) whose interpretation mechanism is state-
less (i.e., including VoiceXML and its FIA; see speci3 cation on the attached CD).

Later on, we abandoned frames and refocused on the more attractive BDI 
agent-based management. To account for the beliefs component, we turned to 
the SIL formalism which we have found very interesting as it can capture soft 
details in information conveyed towards a conversational agent (among other 
applications). However, its original proposal is quite impractical as for representing 
information in a cooperative agent as many regular dialogue operations become 
cumbersome or unnecessarily complicated. The main modi3 cations to SIL 
therefore address: (1) collectability of objects (e.g., bus and train are collectable 
as transporation means), (2) suppression of meaning and taxonomy of objects 
(we argue that objects regain these properties within agent's plans), and (3) more 
strict organization of objects (otherwise we face an overhead of rules to describe 
exceptions under which structurally incompatible objects become compatible, see 
example at the beginning of Section 4.5.1). The strict-organization modi3 cation 
is susspected to be dropped or relaxed, however it has been currently preserved 
due to time reasons (i.e., to facilitate the proposal of algorithms to deal with 
dialogue error recovery through user's corrections). Hence, in conjunction with 
accompanying embedded algorithms, the resulting approach again constitutes 
a standalone framework, independent on the hosting conversational agent. We 
subsequently use its two individual instances in the hosting Daisy framework, 
speci3 cally to create the two-layered approach to dialogue context.

Apart of formally designed approaches, we also demonstrated the potential 
of an experimental Rogerian strategy. The strategy was inspired by idea of the 
so called Rogerian therapy, particularly that "clients are better helped if they 
are encouraged to focus on their current subjective understanding rather than on 
some unconscious motive or someone else's interpretation of a situation". In other 
words, we tried our experiment subjects not to push them to say information we 
wanted to hear from them, but instead, gave them reasonable amount of freedom 
to express what they wanted. Surprisingly, this way resulted in shorter dialogues 
compared to cases in which users were to follow system demands. Naturally, we 
put strong constraints to this strategy. First, the domain in question must be 
known to the users so that they can describe objects in the domain without aid 
of the system. Second, the strategy can be used only in special situations during 
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a conversation. Assuming the domain is commonly known, these situations 
include, for instance: user knows what to say, user's initial intention is unclear, 
or agent misses more than one information.

6.2  Future Work

Let us continue with the Rogerian strategy and propose modi3 cations to it, and 
let us then proceed to the Daisy dialogue framework itself.

According to our experience with the Rogerian strategy, we think the 
following two statements 3 t its current state:

• The banking domain is relatively a simple one and more complex domains 
with more information to discuss would be valuable.

• The cases of the Rogerian strategy application should be further restricted 
and supported by user modeling.

As for the 3 rst point, we need to search for a domain that meets the condition 
of being commonly known to potential users. A natural candidate is again an 
information system which may or may not consist of multiple domains; in fact, 
if there was such a chance, the latter option would seem to 3 t the bill better as 
it naturally bloats the number of objects to discuss. It is assumed that in a more 
complex domain with a rich information environment the Rogerian strategy will 
succeed in higher rates due to higher chances that users will know what to say. 
However, with a more complex domain there is also the ASR performance point 
of view and one may argue that for complex domains with high variability in 
input (i.e. utterances which possibly can carry a lot of diJ erent information) the 
ASR may fail to recognize reliably as it is exposed to a too wide portion of a 
language. A solution to this pitfall is in using context-aware Rogerian prompts. 
As described, such prompts suggest the next topic to discuss, that way implicitly 
constraining user's possible responses to a reasonable portion of a language.

With the second point, we propose a user model to be passed over to the 
Rogerian strategy for evaluation. Lot of user modeling methodologies have been 
developed over the past years. While some follow a domain-dependent features 
approach to predict the system utterance that best corresponds with user's 
behaviour [Chu00, Kom03, Wal00], we would rather like to follow an approach 
containing domain independent features as Hjalmarsson demonstrates in her 
work [Hja05] by making an extensive use of the PARADISE framework.

As for the Daisy framework itself, the most challenging feature to incorporate 
is the representation and management of negative information. This spans far 
beyond the elemental information combination cases depicted in Table 4.4 in 
Section 3.5.6. Although we begun to take the 3 rst steps in implementing this 
feature, it has remained un3 nished due to time reasons and is therefore blocked 
in the current version of the framework on the attached CD. Less mentally 
expensive updates to the framework then account for revising the two-layered 
approach implementation (as some potential simpli3 cation are suspected), and 
overall optimization as for speed, memory usage, and standard Windows libraries 
usage.
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Fig. 6.1 The standard built-in "About" dialogue box to incorporate 
information about the framework into further Daisy-based applications 
or possibly custom domain editors; invoked using the ShowAbout API 
function, see Table A.4.
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Appendix

A.1  Daisy Input Semantics Grammar
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A.2 Information Management Algorithm

A.2.1  Requirement 1

 procedure Incorporate( Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y ) {

  // instantiate a new "empty" collection Y (not yet a DDM expression) of the type K
S

1  . . .
  // 3 nd in and remove from I

parent
 the original collection instance Y

orig

2  Y
orig

 := ( K
S
 , I

orig
,  F

orig
 ): ∃F

parent
 = ( E

parent
, I

parent
 ) ∈ F

orig

3  if  Y
orig

 ≠ �  {
   // remove Y

orig
 from I

parent

4   Y
orig

 := Y
orig

 \ F
parent

   // determine the relationship between Y
S
 and Y

orig
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5   if  A(Y
S
) ∈ { system, dereferenced }  {

6    if  A(Y
orig

) ∈ { system, dereferenced }  {
     // system DDM expression replaces another system expression
7     U(Y) := U(Y

orig
)

8    } else {
     // system DDM expression overrides a user expression
9     U(Y) := Y

orig

10   } else
11    if  A(Y

orig
) ∈ { system, dereferenced }  {

     // user DDM expression overrides a system expression
12     Y

orig
 := U(Y

orig
)

    } else
     // user DDM expression replaces another user expression (do nothing)
  }
  // re-instantiate I(Y

S
) in Y (promoting Y to a DDM expression)

13  ∀I
S
 = ( D

S
 , C

S
 , X

S
 ) ∈ I(Y

S
)  {

   // re-instantiate I
S
 as I

14   . . .
   // inherit all subcollections from an original I

0
 = ( D

S
 , C

S
 , X

S
 ) ∈ I

orig
 (if any)

15   . . .
   // attempt to spread given user sibling concepts subinformation to I
16   if  A(Y) = user  {
17    ∀K = ( C, E, T ) ∈ P(C

S
)  {

     // Rule 1: if no original instance I
0
 exists, inherit the most salient K

18     if  I
0
 = �  { Incorporate( most salient Y

i
 = ( K, I

i
, F

i
 ) ∈ P(Y

orig
) , I ) }

     // Rule 2: TODO later (see Section 4.5.5)
     // Rule 3: if subinformation K is de3 ned on I

S
, we are done

19     if  Y
i
 = ( K, I

i
, F

i
 ) ∈ P(I

S
)   { skip all other Rules }

     // Rule 4: if any remaining I' ∈ I(Y
S
) contains information K, apply K to I

S

20     if  ∃I' = (D', C ', X'): S(I') > S(I
S
)  ∧  Y

i
 ∈ P(I') { F

i
 := F

i
 ∪ ( (C ',R

j
), I

S
) }

     // Rule 5: if instantiated I' ∈ I(Y
S
) contains information K, apply K to I

S

21     if  ∃I' = (D', C ', X'): S(I') < S(I
S
)  ∧  Y

i
 ∈ P(I') { F

i
 := F

i
 ∪ ( (C ',R

j
), I

S
) }

    }
   }
   // recurrently process
22   . . .
   // set instance I meta-information
23   S(I) := max( S(I

S
), S(I

0
), 0 )  // recall 0 = information unspoken

  }
  // rest of the procedure is the same
24  . . .
 }

Usage: Incorporate( Y(ρ) ∈ Semantics , I(ρ) ∈ Y )

A.2.2  Requirement 2

 procedure Incorporate( Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y ) {

  . . .
  // 3 nd in and remove from I

parent
 the original collection instance Y

orig

  . . .
  // carry out correction (agreed part of semantics)
  if  Semantics contains disagreement  ∧  Y

S
 is not disagreed  ∧  A(Y

S
) = user  ∧  P(Y

S
) = �  {

   ∀Y' = ( K', I', F ' ) ∈ { Y = ( K, I, F ) ∈ Y: P(K) ≠ �  ∧  A(Y) = user }  {
    // extract incorrect content from Y' into I

EXTRACT
, see Fig. 4.6

    Extract( Y' , incorrect )
    // attempt to pass extracted content over to Y

S

    ∀Y
i
 = ( K

i
 , I

i
 , F

i
 ) ∈ P(I

EXTRACT
), I

S
 = I(C

S
) ∈ I(Y

S
), E

S
 = ( C

S
 , R

S
 ) ∈ E(K

i
)  {
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     F
i
 := F

i
 ∪ ( E

S
 , I

S
 )

    }
    // clean up I

EXTRACT

    P(I
EXTRACT

) := �
    // if extracted concent passed to Y

S
, correction is done

    if  P(Y
S
) ≠ �  {  break  }

   }
  }
  // rest of the procedure is the same
  . . .
 }

Usage: Incorporate( Y(ρ) ∈ Semantics , I(ρ) ∈ Y )

A.2.3  Requirement 3

 procedure Incorporate( Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y ) {

  . . .
  // re-instantiate I(Y

S
) in Y (promoting Y to a DDM expression)

  . . .
  // pass objects between diJ erent DSPs: for each instantiated topic τ

i
,

  // try to transmit its objects to the current topic instance Y if they 3 t it
  if  K

S
 is a topic  {

   ∀τ
i 
, Y' = ( τ

i
 , I', F ' ) ∈ Y  {

    // attempt to pass each most salient object Y
j
 ∈ Y' to Y

    ∀K
j
 ∈ P(τ

i
) ∩ P(K

S
), Y

k
 = ( K

j
 , I

k
 , F

k
 ) ∈ Y  {

     // 3 nd original object of type K
j
 in Y (if any)

     Y
origObj

 := ( K
j
 , I

origObj
 , F

origObj
 ) ∈ Y: ∃F

m
 = ( E , I(Y) ) ∈ F

origObj

     // pass Y
k

     if  S(Y
k
) > S(Y

origObj
)  {

      F
origObj

 := F
origObj

 \ F
m
 // remove Y

origObj
 from Y

      Incorporate( Y
k
 , I(Y) ) // pass Y

k
 to the only concept instance in Y

     }
    }
   }
  }
  // rest of the procedure is the same
  . . .
 }

Usage: Incorporate( Y(ρ) ∈ Semantics , I(ρ) ∈ Y )

A.2.4  Requirement 4

 procedure Incorporate( Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y ) {

  // instantiate a new "empty" collection Y (not yet a DDM expression) of the type K
S

  . . .
  // determine if K

S
 can be a direct subcollection of C

parent

  E
direct

 := ( C
parent

, R
i
 ) ∈ E(K

S
)

  // 3 nd in and remove from I
parent

 the original collection instance Y
orig

  if  E
direct

 ≠ �  {
   // K

S
 is directly accessible from within C

parent

   . . .
  } else {
   // K

S
 is not directly accessible from within C

parent



148

   Y
orig

 := ( K
S
 , I

orig
 , � ): DSP(Y

orig
) = CURRENT_DSP

  }
  // carry out correction (agreed part of semantics)
  . . .
  // re-instantiate I(Y

S
) in Y (promoting Y to a DDM expression)

  . . .
    . . .
    // Rule 2: if an unbound expression of type K exists, I binds it
    if  ∃Y

unbound
 = ( K, I

unbound
 , � )  { Incorporate( Y

unbound
 , I ) }

    . . .
  // rest of the procedure is the same
  . . .
 }

Usage: Incorporate( Y(ρ) ∈ Semantics , I(ρ) ∈ Y )

A.3  DORA Web Instructions

A.3.1 Welcoming Page

Welcome!
DORA is an experimental spoken dialogue system that allows you to access 
your 3 ctional bank account and 3 nd information on branches via a telephone 
conversation. You will solve with DORA three diJ erent tasks. You should 
try to do each task as e\  ciently as you can and avoid listening to messages 
unnecessarily. Please make brief notes about the bank branches when you listen 
to the information on them. Instructions for calling DORA can be found at each 
task scenario. Please read through the instructions before calling. At the end of 
the task (after you hang up the phone), there are a few brief questions for you to 
answer. Even if DORA aborted before you could complete the task, please 3 nish 
the survey and continue to the next task. Thanks for participating!

A.3.2 Hints for Using DORA

• Speak naturally and pronounce well.

• If you don’t know what to say or don’t understand what DORA is doing, 
say Help to hear a help message.

• If you wait too long to tell DORA what to do, DORA will tell you what 
you can say.

• You can interrupt DORA at any time. For example, if you’ve heard 
enough or if you know what you want to do, you don’t have to wait 
for DORA to 3 nish talking. If you don’t hear everything when DORA 
presents the bank information, say Repeat to hear the information again.

• If you want to abort your current attempt at the task before 3 nishing, 
say I’m done here to start the task again.
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• When you are 3 nished with a task, say Goodbye to end the dialogue.

A.3.3 Task Formulations

• Task 1. Try to 3 nd all Bertlich branches with an ATM in Gladbeck. 
Please write down their exact addresses that you were told by the system.

• Task 2. Given the below map of Herten, try to 3 nd the exact address 
of the nearest Hassel branch that has an ATM (based on your current 
position depicted in the map, it is up to you to determine the shortest 
route!). Once known, check its opening hours and make sure you can 
visit it even after 6 pm. Please spot the nearest branch you have found, 
and also write down its exact address.

 

12

26

62

53

51

49

60

• Task 3. Try to 3 nd the opening hours of all Horst branches in 
Gelsenkirchen. Check their addresses and make sure you can visit 
any of them in Dorfstrasse even after 6pm. What is the exact location 
of such a branch?

A.4  CTA Responses

A.4.1 Question 7

What was the 3 rst thing that came across your mind when you 3 rst heard the 
prompt <—RS prompt transcript—> ?

• It’s too general. When I heard it, I though it was great that a machine 
agreed with me (note: regarding the "I see" sentence) but I want to 3nd 
that connection.

• When and where to go as in one city there may be more stations in one 
direction.

• To attempt to precise the information on that train.

• Is it joking?
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A.4.2 Question 8

Did you feel like being pushed to say more? Did you feel this utterance was 
motivating you to say more?

• Yes, but in the second sentence I didn’t 3gure out what was missing 
exactly – I was comparing with an online ticketing service where the only 
necessary pieces of information regard where to go from and to.

• Yes, I 3nd it reasonable.

• Yes, but speci3cation of what exactly am I supposed to say is missing.

• Yes, but it’s a bit weird.

• No, if I heard something like that from an on-line service, I’d reckon it's 
down or that somebody is joking, and de3nitely would hang up.

A.4.3 Question 9

Were you aware of being expected to say more information on the transportation 
means to 3nd?

• Five people out of six con3 rmed.

A.4.4 Question 10

Do prompts like <—RS prompt transcript—> sound acceptably to you?

• It does relatively.

• With some modi3cations it might sound naturally.

• It sounds weird, but one probably would 3gure out what to say.

• No, I’d go straight to what is missing, i.e. asked for time, etc.

A.5  Evaluation Using the Three-Tiered
Methodology

In Section 5.3.3, we described the system performance as a combination of various 
system parameters. Linear regression revealed us the most signi3 cant contributors 
to the overall performance, approached by user satisfaction. Although basically 
su\  cient for simple information systems like ours, the PARADISE framework 
turns out to be hardly usable for more complex systems. More speci3 cally, the 
notion of blending a set of generally unrelated measures may result in misleading 
or unprecise conclusions about the system. For instance, it may be assumed 
that the number of help requests per dialogue has little to do with back-end 
component speed, and therefore, these two should not be put directly next to 
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each other in a performance formula. In addition, it is not clear whether the 
system performance can be reliably indicated by a single performance formula as 
a combination of diJ erent evaluation measures [Ngu06b]. As Frøkjær et al. also 
point out [Frø00], there may be very low correlations between the three usability 
measures proposed in the PARADISE framework [Wal98]: e$ ectiveness (e.g., 
task completion rate, κ), e&  ciency (e.g., task completion time or help requests), 
and user satisfaction. Therefore, they should be considered independent aspects 
in a system evaluation. To overcome these pitfalls, the three-tiered methodology 
was developed [Sti01]. As its name suggests, it models the evaluation process at 
three levels of abstraction (below listed in a bottom-up manner):

• System component performance. Each system component is to be 
evaluated individually to reveal their in6 uences on other parts of a 
system, hence preventing potential negative impacts on the task success. 
The most notable component to measure in6 uences of, is the ASR. 
For instance, poor recognition may have impact on low scores of task 
completion, causing low user satisfaction. Metrics to evaluate the ASR 
performance include: word/utterance accuracy (system con3 dence score 
in recognizing a given word/utterance), concept accuracy (semantic 
understanding of the system), or component speed (time per turn).

• System support of task success. Behind this fuzzy name stand metrics 
to evaluate how capable the system is to meet individual task objectives. 
In general, for a system to be applicable in a certain domain of problems, 
it is essential to establish a de3 nition of task success early in the 
evaluation process. For instance, a task may be considered successfully 
accomplished if the user signs in the system, starts an intended request, 
supplies missing information, con3 rms it, and signs oJ  the system [Sti01]. 
Metrics to evaluate such interaction include: task completion (success 
rate of a given task), task complexity (minimal information to ful3 l a 
task), or task pace (time spent conversing with the system).

• User satisfaction. Same as with PARADISE, however user responses are 
further coped with individually, instead of being added to a single value.

Thus, the three-tiered methodology organizes a dialogue system analysis 
into a search for dependences among distinct metrics. To reveal the impact in 
one tier against metrics in another tier, the principal component analysis (PCA) 
may be employed. 

We did not engage with the PCA, mainly due to the lack of freely available 
computational toolkits. In fact, the only one we have managed to 3 nd is the 
OOoStat Statistics Macros,1 which however does not feature enough functionality 
to conduct a dialogue system precise analysis; the crucial missing part is factor 
rotation to better map as many experiment measures onto as few factors, that 
way allowing for the analysis of which measures contribute most to the Likert-
scale questions.

1 http://sourceforge.net/projects/ooomacros/! les/OOo%20Statistics/
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A.6  SDL Notation Overview

Only necessary minimum of symbols is presented here. For full de3 nition, see 
[Bel89].

Subdialog

Start symbol

Subdialog

Subdialog invocation

variable

Variable storage

system

System prompt

user

User input

condition

Branching logic
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Büchergutschein zu gewinnen
Wollten Sie schon immer einmal mit einer Maschine reden

und zu einem Forschungsprojekt beitragen?

n    Dann haben Sie jetzt die Chance, mit DORA zu sprechen.

n    DORA ist ein experimentelles Dialogsystem, das Auskunft über
      Bankfilialen gibt. Es wird wird im Rahmen eines Forschungsprojektes
      in Zusammenarbeit mit Sympalog, einer Ausgründung des Lehrstuhls
      für Mustererkennung, entwickelt.

n    Ziel des Experiments ist es, durch drei Anrufe bei DORA
      drei verschiedene Informationen über Filialen abzufragen.

n    Vorbereitung, Anrufe und Online-Beantwortung dauern nicht länger 
      als 20-30 Minuten (versprochen).

n    Wenn Sie DORA ausprobieren wollen, besuchen Sie

n    Unter allen Anrufern, die die Aufgabe bis zum 26.Juli 2014 
      vollständig durchführen, werden zwei Büchergutscheine von Thalia 
      im Wert von je 30 Euro verlost.

http://sympalog.net/Dora

Fig. A.1  DORA advertisement lea6 et.
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