
Západočeská univerzita v Plzni
Fakulta aplikovaných věd

AGENTNÍ PŘÍSTUP
K DIALOGOVÉMU ŘÍZENÍ

Tomáš Nestorovič

disertační práce
k získání akademického titulu

doktor

v oboru
Informatika a výpočetní technika

Školitel: Prof. Ing. Václav Matoušek, CSc.

Katedra informatiky a výpočetní techniky

Plzeň, 2015

University of West Bohemia in Pilsen
Faculty of Applied Sciences

AGENT-BASED
DIALOGUE MANAGEMENT

Tomáš Nestorovič

doctoral thesis
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in specialization
Computer Science and Engineering

Supervisor: Prof. Ing. Václav Matoušek, CSc.

Department of Computer Science and Engineering

Pilsen, 2015

i

Prohlášení

Předkládám tímto k posouzení a obhajobě dizertační práci zpracovanou na
závěr doktorského studia na Fakultě aplikovaných věd Západočeské univerzity
v Plzni.

Prohlašuji tímto, že tuto práci jsem vypracoval samostatně s použitím
odborné literatury a dostupných pramenů uvedených v seznamu, jež je součástí
této práce.

V Plzni dne 7. března 2015 Tomáš Nestorovič

ii

Abstract

This work focuses on dialogue management in human-computer interaction.
Dialogue systems are considered an attractive topic nowadays and we may
encounter them in many daily situations – they are in our cars, in our phones,
and sometimes even control our homes. Conversational agents that incorporate
principles of inter-human rationality and cooperation are highly preferred.
Viewing a dialogue as an interaction between two intelligent entities, the Beliefs-
Desires-Intentions (BDI) architecture has been the far most popular approach to
create such agents over the past decade.

This work consists of three main parts that were all developed during the
study and build upon each other. The 3 rst of them is an information management
framework. Inspired by the Semantic Interface Language (SIL), this framework
aims to represent detailed structure of knowledge. However, objects in this
framework miss any implied meaning and taxonomy. We argue that objects
receive their meaning and taxonomy within plans that deals with them, and
that such design signi3 cantly facilitates complex operations with objects during
cooperative dialogues, which the information management framework primarily
targets.

The second part is a general cooperative dialogue framework called Daisy.
It has been designed to host BDI conversational agents and provide "out of the
box" solutions. It uses existing work in speech act theory and discourse analysis,
namely the concepts of conversational acts and discourse segment intentions.
The dialogue control 6 ow is then derived automatically as the result of the
BDI interpretation cycle. The Daisy framework has been developed from scratch
during the study and among other things features the following functionalities:
intention detection and management, dialogue length optimization, and complex
utterances production – hence covers all major topics in dialogue systems.

The third part of the work is an experimental "Rogerian strategy", inspired
by the idea of the so called Rogerian therapy. The essence of this strategy is
to not push users to say what we want to hear from them but instead give
them reasonable amount of freedom to say what they want. An experimental
banking domain system has been developed to 3 nd out if this strategy performs
better than the common mixed-initiative way. It's application resulted in shorter
dialogues compared to classical mixed-initiative management. Naturally, strong
constraints are discussed and put on this strategy.

iii

Abstrakt

Práce se zaměřuje na dialogové řízení během interakce člověka s počítačem.
Dialogové systémy jsou dnes atraktivním tématem a můžeme se s nimi setkat
v mnoha každodenních situacích – jsou v našich automobilech, v našich
telefonech a někdy jimi dokonce ovládáme naše domy. Konverzační agenti, kteří
vykazují principy mezilidské racionality a spolupráce, jsou vysoce preferovány.
Během poslední dekády byla pro implementaci takových agentů velice populární
architektura Beliefs-Desires-Intentions (BDI), která pohlíží na dialog jako
na interakci dvou inteligentních entit.

Práce sestává ze tří hlavních částí, které staví jedna na druhé. První z nich je
framework správy informací, který našel inspiraci v Semantic Interface Language
(SIL) a je orientován na detailní reprezentaci struktury znalostí. Objekty v
tomto frameworku však postrádají jakoukoliv implicitní sémantiku a taxonomii,
což odůvodňujeme skutečností, že objekty získají svou sémantiku a taxonomii
v plánech, které s nimi nakládají, a že tento přístup výrazně usnadňuje složité
operace s objekty během kooperativního dialogu, na nějž je náš framework
správy informací primárně cílen.

Druhou částí naší práce je obecný framework kooperativního dialogu,
nazvaný Daisy. Tento framework byl navržen jako běhové prostředí poskytující
hotová řešení pro konverzační BDI agenty. Při jeho tvorbě byly použita teorie
řečových aktů a analýza konverzace, konkrétně koncept konverzačních aktů a
koncept záměrů v segmentech dialogu. Dialog je poté výsledkem interpretačního
cyklu konverzačního BDI agenta. Framework byl celý vyvinut v průběhu studia
a mimo jiné disponuje následujícími schopnostmi: rozpoznávání a správa záměrů,
optimalizace délky dialogu a komplexní produkce promluv.

Třetí částí naší práce je experimentální "Rogeriánská strategie", inspirovaná
tzv. Rogeriánskou terapií. Podstatou této strategie je netlačit uživatele, aby řekli,
co chce systém slyšet, ale naopak dát jim rozumně velkou svobodu, aby řekli, co
oni sami chtějí. Abychom ověřili, zda tato strategie účinkuje lépe než klasická
smíšená iniciativa, vytvořili jsme experimentální bankovní systém. Použití této
strategie vyústilo v kratší dialogy ve srovnání se smíšenou iniciativou. Samozřejmě
klademe silná omezení na tuto strategii, která níže diskutujeme.

iv

Contents

1 Introduction . 1
 1.1 Thesis Goals . 2

2 Dialogue System Architecture . 3
 2.1 Language as a Communication Medium: Pros and Cons 3
 2.2 Dialogue System Architecture . 5
 2.3 Computational Models to Dialogue Management 7
 2.3.1 State-based Dialogue Management 8
 2.3.2 Frame-based Dialogue Management 9
 2.3.3 Plan-based Dialogue Management 12
 2.3.4 Agent-based Dialogue Management 12
 2.3.5 Probabilistic Dialogue Management 15
 2.4 Summary . 18

3 Semantic Interface Language: De$ nition & Applications 19
 3.1 De3 nition . 19
 3.1.1 CoreSIL . 19
 3.1.2 SIL Expressions . 22
 3.2 Application 1: Utterance Semantics 25
 3.2.1 Utterance Field Objects . 25
 3.2.2 Informational Content . 26
 3.3 Application 2: Dialogue Context 26
 3.3.1 Elaborating User's Utterance Semantics 28
 3.3.2 Representing Dialogue Context 29
 3.3.3 Disambiguing User's Utterances 32
 3.4 Application 3: System Utterance Semantics 34
 3.5 Summary . 35

4 Daisy Dialogue Management Framework 37
 4.1 Reasons to Opt for Agent-based Approach 37
 4.2 Domain Data Model (DDM) . 38
 4.3 DDM Expressions . 43
 4.4 Semantics Representation . 45
 4.5 Information Management . 50
 4.5.1 Initial Approach . 50
 4.5.2 Requirement 1: Dialogue Is a Shared Space 53
 4.5.3 Requirement 2: Information Error Recovery Approach … 57
 4.5.4 Requirement 3: Representing Information Spanning Multiple … . 60
 4.5.5 Requirement 4: Representing User's Underspeci3 ed Information . . 63
 4.5.6 Requirement 5: Information Scalability 65
 4.6 Dialogue Context . 68
 4.6.1 Problem Identi3 cation . 68
 4.6.2 Dialogue Acts . 69
 4.6.3 Recognizing Dialogue Acts 70
 4.6.4 Approaching Grosz and Sidner's Work: Two-layered … 72
 4.6.5 Fragmenting User's Utterance Semantics 74
 4.6.5.1 Initiating the Fragmentation 75
 4.6.5.2 Analyzing Fragment Against Its Layer 77

v

 4.6.5.3 Evaluating Analysis Uni3 cation Pairs 80
 4.6.6 A Complete Example . 83
 4.7 Task Recognition and Dialogue Stack Management 85
 4.8 Dialogue Planning . 89
 4.8.1 The Role of User's Initiative 90
 4.8.2 Deliberation . 92
 4.9 Dialogue Strategies . 98
 4.9.1 Choices and Their Arbitration 98
 4.9.2 Rogerian Psychologist Strategy 100
 4.10 Discussion . 103
 4.10.1 Comparing DDM with SIL 103
 4.10.2 Extending Agent's Planning 105
 4.11 Summary . 106

5 Experiment and Results . 109
 5.1 The DORA Dialogue System Overview 109
 5.2 Tested Objectives and Preparation 115
 5.2.1 Dialogue Strategies Tested 115
 5.2.2 Experiment Description and Preparation 117
 5.2.3 Collection and Extraction of Measures 118
 5.3 Results and Evaluation . 120
 5.3.1 Reasoning about the Low Attendance 121
 5.3.2 Evaluation Using ANOVA 123
 5.3.3 Evaluation Using PARADISE Framework 126
 5.4 Remarks . 129
 5.5 Summary . 131

6 Conclusion . 133
 6.1 Contributions to Dialogue Management 134
 6.2 Future Work . 135

Bibliography . 137

Author's Publications . 143

Appendix . 145
 A.1 Daisy Input Semantics Grammar 145
 A.2 Information Management Algorithm 145
 A.2.1 Requirement 1 . 145
 A.2.2 Requirement 2 . 146
 A.2.3 Requirement 3 . 147
 A.2.4 Requirement 4 . 147
 A.3 DORA Web Instructions . 148
 A.3.1 Welcoming Page . 148
 A.3.2 Hints for Using DORA 148
 A.3.3 Task Formulations . 149
 A.4 CTA Responses . 149
 A.4.1 Question 7 . 149
 A.4.2 Question 8 . 150
 A.4.3 Question 9 . 150
 A.4.4 Question 10 . 150
 A.5 Evaluation Using the Three-Tiered Methodology 150
 A.6 SDL Notation Overview . 152

vi

List of Figures

2 Dialogue System Architecture
 Fig. 2.1 Traditional architecture to uni-modal dialogue systems. 5

3 Semantic Interface Language: De$ nition & Applications
 3.1 A small excerpt of a possible system of concepts to represent … 20
 3.2 SIL structure representing a time point of 8:30 22
 3.3 SIL expression time point 8:30 with cvalue property de3 ned 25
 3.4 MUFO example . 27
 3.5 SIL co-referential expression . 27
 3.6 S

inverse
 relation application example 27

 3.7 Compatible objects example . 31
 3.8 Compatible objects interpretation worlds 31
 3.9 Incompatible (concurrent) objects example 32
 3.10 Incompatible (concurrent) objects interpretation worlds 32
 3.11 SIL-based disambiguation . 33
 3.12 Utterance processing with and without dialogue context 35
 3.13 A lexicon entry for the C

arrive
 SILdef concept 36

4 Daisy Dialogue Management Framework
 4.1 Simpli3 ed timetable domain data model 42
 4.2 Information management initial approach algorithm 53
 4.3 Information management initial approach demonstration 54
 4.4 Shared space extension demonstration 56
 4.5 Processing of user's utterance "I do not want to depart from there …" . . 59
 4.6 Algorithm to extract either the "correct" part of a DDM expression … . 61
 4.7 Segmented multiple-tasks dialogue 63
 4.8 Focus stack transitions between utterances S

1
 and S

5
 in dialogue … . . 63

 4.9 Multi-topics information pool with three diJ erent discourse segment … . 64
 4.10 Two-layered approach to task-oriented dialogue context representation . . 74
 4.11 Input semantics fragmentation process motivational example 75
 4.12 Data layer content after speaking utterance S

2
 in Example 4.7 79

 4.13 Data layer content after S
6
 has been uttered 85

 4.14 Dialogue context after uttering S
8
 86

 4.15 "Departure time request" template with example task layers that … . . 87
 4.16 Segmented multi-domain dialogue example 89
 4.17 Evolution of the "departure time query" task plan 91
 4.18 Con3 rmation scheme to validate the time point 16:28 94
 4.19 Markov network is used to model transitions between strategies 98
 4.20 Agent's utterance generating procedure with the Rogerian … 102
 4.21 Comparison of structural representation of "train departing from …" . 104

5 Experiment and Results
 5.1 Original dialogue system functionality outline by Sympalog 110
 5.2 Dialogue system technical background 111
 5.3 Banking system DDM; concepts with underscore pre3 xed names … . 111
 5.4 Dialogue system main plans to model interaction with the user 113
 5.5 Number of calls distribution over the testing period 122

vii

6 Conclusion
 6.1 The standard built-in "About" dialogue box to incorporate … 136

Appendix
 A.1 DORA advertisement lea6 et . 153

viii

List of Tables

4 Daisy Dialogue Management Framework
 4.1 Application-neutral directives to modify the meaning of enclosed … . . 46
 4.2 Daisy framework intrinsic data types 66
 4.3 Data type de3 nition functions . 66
 4.4 Information combining behaviour for diJ erent mutual relationships … . . 67
 4.5 Dialogue acts . 70
 4.6 Nguyen's sample heuristic rules for dialogue act type determination . . . 71
 4.7 Daisy framework sample heuristic rules for dialogue act type … 71
 4.8 Daisy framework plan node types; asterisk denotes acts to which … . . 92
 4.9 Dialogue optimization criteria . 96

5 Experiment and Results
 5.1 Overview of logged measures about dialogue sessions 121

Appendix
 A.1 Confusion matrix for Agent A, data attributes matching key given … . 154
 A.2 Confusion matrix for Agent B, data attributes matching key given … . 155
 A.3 Experiment results . 156
 A.4 The Daisy framework API . 157

ix

List of De$ nitions

3 Semantic Interface Language: De$ nition & Applications
 3.1 SILdef concept . 19
 3.2 Projection functions . 21
 3.3 Elemental concepts . 21
 3.4 SIL expressions . 22
 3.5 SIL expression projection functions 23
 3.6 Local closure . 23
 3.7 Relations . 24
 3.8 Multiple UFO, MUFO . 25
 3.9 Eigen information, A-parameter 26
 3.10 Eigen information extraction . 26
 3.11 Inferrention . 29
 3.12 Interpretability . 33
 3.13 Disambiguation . 33

4 Daisy Dialogue Management Framework
 4.1 DDM concept, DDM collection, and data type 39
 4.2 Projection functions . 40
 4.3 DDM path . 41
 4.4 DDM root and DDM topic . 41
 4.5 Correct DDM . 42
 4.6 DDM expression . 43
 4.7 DDM expression projection functions 44
 4.8 DDM expression path . 45
 4.9 Information pool . 51
 4.10 Information content type, and user information hiding functions 55
 4.11 Salience and related projection functions 56
 4.12 DSP function . 62
 4.13 Event . 94
 4.14 Possible world . 95

x

List of Examples

3 Semantic Interface Language: De$ nition & Applications

 3.1 SILdef concepts . 20
 3.2 SILdef concepts continued . 21
 3.3 SIL expressions . 22
 3.4 SIL expression projection functions 23
 3.5 Relations . 24
 3.6 Compatible objects . 30
 3.7 Concurrent objects . 32
 3.8 Utterance semantics production . 35

4 Daisy Dialogue Management Framework
 4.1 DDM concepts and DDM collections 39
 4.2 Projection functions, topic, and DDM paths 41
 4.3 DDM expressions . 43
 4.4 Semantics directives usage . 46
 4.5 Attempting for semantics and taxonomy using DDM 47
 4.6 Motivational . 51
 4.7 Fragment analysis . 78

xi

List of Abbreviations

ASR Automatic Speech Recognition

AVM Atribute-Value Matrix

BDI Beliefs-Desires-Intentions

CON "Con3 rmation" event

CTA Cognitive Task Analysis

CTS Concept-to-Speech

DDM Domain Data Model

DS Discourse Segment

DSP Discourse Segment Purpose

FIA Form Interpretation Algorithm

HCI Human-Computer Interaction

HMM Hidden Markov Model

MDP Markov Decision Process

MUFO Multiple Utterance Field Object

NS "Narrow" Strategy

OS "Open" Strategy

PBX Private Branch Exchange

PLN "Plan interpretation" event

RL Reinforement Learning

RS "Rogerian" Strategy

SDL Speci3 cation and Description Language

SIL Semantic Interface Language

TTS Text-to-Speech

UFO Utterance Field Object

XML Extensible Markup Language

This page intentionally left blank.

1

Chapter 1

Introduction

Over the past ten years, we witnessed an expansion of spoken language interfaces
in various realms in our lives. They however are not a recent invention, as they
have already quite a long history behind. Beginning with the 1960's when the
3 rst spoken interfaces started to emerge, they represented merely a scienti3 c
experimentation with natural language applied to simple, constraint, and sealed
systems. One of such systems was Elisa [Wei66] which attempted to imitate a
human thinking by leading a "plausible" conversation governed by a complex
system of rules. Thus, by practically not regularly modeling a dialogue, Elisa
embodied merely a reactive entity. Later on, the 1970's were represented by an
intensive research of new approaches to understand the 6 uent natural language.
The basic idea was to use knowledge-based systems to analyse and understand a
speech. Along the way, also 3 rst complex analyses of dialogues emerged, focusing
on the structure and underlying intentions. A well known system from that era
is SHRDLU [Win72] to move objects on a screen from one place to another,
allowing its users to operate it using fully natural sentences.

The early 1980's in general experienced a decline of interest in speech
interfaces, mainly due to immaturity of hardware computational capacity. The
renascence came during break of decades with advancements of ASR technologies
performance that in turn led to rapid improvements in speech interfaces. The
1990's era is therefore characteristic with lots of commercial telephone-based
dialogue services. For instance, the MIT Voyager [Zue89, Zue91] is considered as
the 3 rst real spoken dialogue system to provide its users with detailed navigation
of Cambridge. At the end of the decade, an improved version of it was released
under the name JUPITER [Zue00]. Apart of that, the ATIS (Airline Travel
Information System) [Hem90] was another important project of the 1990's on
which many research institutes participated. Apart of providing users with
airline information, the project also aimed to collect spontaneus utterances from
users, annotate them, and analyse with respect to understanding the model

2

of a dialogue context. The outcome was the statistical approach to dialogue
management (discussed in the next chapter).

Nowadays, spoken dialogue interfaces have their established position in
situations in which safety is the main concern. For instance, we barely now can
think of a higher class car not equipped with a spoken interface to control the
radio, navigation, or in-car phone. Telephone-based spoken dialogue systems
have become quite a standard. A new term "conversational agent" emerges and
is becoming more popular. Its essence indicates that speech interfaces cease
to serve merely as an alternative way to put commands into an application.
Instead, conversational agents are to take over a certain level of autonomy in
solving tasks with users, for instance by proposing alternatives if no solution can
be found [Jok10].

Conversational agents are on the rise in one speci\ c family of applications:
enterprise software [Les04]. Over the recent years, the demand for cost-eJ ective
solutions to the customer service problem has increased dramatically. Deploying
automated solutions can signi\ cantly reduce the costs of company customer
service. By exploiting the web technologies in conjunction with computational
linguistics, conversational agents oJ er to companies the ability to provide
customer service much more economically than with traditional human-human
models. In customer-facing deployments, conversational agents interact directly
with customers to help them obtain answers to their questions. In internal-facing
deployments, they converse with customer service representatives to train them
and help them assist customers.

In addition to that, with the wide expansion of mobile devices, speech
interfaces have found themselves a brand new territory of usage, and this trend
does not seem to fade out in the foreseeable future. As even the largest graphical
displays suJ er from relatively small dimensions, speech interfaces represent a
reasonable and powerfull workaround to this limitation.

The spoken human-computer interaction has always been perceived as one of
the arti3 cial intelligence disciplines. Nonetheless, it should rather be understood
as an inter-disciplinary interest as it spans various realms, including acustics,
fonetics, information theory, signal processing, image recognition, and heuristic
searching, among others [Oce98].

1.1 Thesis Goals

Due to our previous success with dialogue management and dialogue systems
[Nes07] we would like to continue in this realm. The individual goals are as
follows:

1. analysis of state-of-the-art approaches to dialogue management,

2. proposal of an extension to the dialogue management,

3. implementation of a subset of functionality and its validation using
simple examples, and

4. evaluation and outline of possible future work.

3

Chapter 2

Dialogue System Architecture

2.1 Language as a Communication Medium:
Pros and Cons

Before we begin our exploration of dialogue systems, let us concern with some
major points in using the natural language as the communication means. Among
many pros, there are also some cons to take into account [Eck95]. Let us 3 rst
focus on them.

• Language provides a less quicker medium for information transfer than
any visual interface. Especially in case of larger amounts of information,
there is no such possibility like having a "quick look at the document". If
one searches for a particular information in a message, one needs to listen
to the message completely because language is a serial representation of
information.

• Information contained in a spoken message is quickly forgotten and
usually needs to be several times "refreshed", especially if the message
is longer or di\ cult to grasp. This is caused by the language being a
volatile medium [Boy99, Yan96] and humans having only a short-term
memory [Gus02, Les04]. In contrast, visual refreshing is a much quicker
process, requiring only a quick look at those parts of a scene which are
likely to contain the searched information.

• One of the considerable downsides of language is also that it cannot be
ignored, unlike with a computer screen [Hur05]. A talking computer may
create an unacceptable work environment in which other coworkers are
annoyed. One solution might be to localize such computer along with its
operator to a sound-proof box.

4

• Being a human-exclusive communication channel, synthesized language
will always be in direct competition with natural language. always being
thoroughly judged against even the tiniest mistakes and factiousness
[Oce98].

Apart of these limitations and challenges, there are also many applications
for which speech interfaces are a much more eJ ective (or the only) means. The
following points show some of them.

• User's both eyes and hands are fully employed with other tasks. A typical
example is when driving a car [Tsi12, Yam07]. Making use of a spoken
interface enables the driver to fully concentrate on the surrounding
tra\ c, leading to improved safety of all participants on the street.

• A spoken interface has the potential to understand complex intentional
structures, so common for inter-human communication. Not randomly
has therefore been language used in tutoring systems, in which an
automated agent substitutes the role of a teacher, including explanation
of a subject and testing the pupil [Lit06, Rot07, Gri13].

• The user is a handicapped person with impaired motion or sight. In
these cases, dialogue systems can mediate an access to information that
would otherwise be left unreachable to such people. Also their households
can already be controlled using voice, including lighting, television, or
temperature [Ger10, Pér06].

• Other reasons to opt for a spoken interface include: automation of a call
service; remote control of a service with no visual alternative; requirement
for a user to be mobile when interacting with a service; extension of a
mobile phone service to incorporate additional functionality.

Hence, a speech interface provides also many notable advantages. However,
there has still one crucial question left unanswered: How is one to know if a
speech interface is a suitable way to extend an application with? Eckert proposes
a short but valuable guideline that helps to answer it [Eck95]:

• Usage of a speech interface should bring in some bene3 ts for the user. It
should not be there just because it is currently "trendy" and eventually
increases sales in a short-term horizon.

• The speech recognizer (brie6 y discussed later) should be as reliable as at
least 95% for the user to be motivated to use the system again.

• It is very positively rewarded if users are provided with quick and non-
ambiguous responses in order for them to gain the feeling that they are a
real part of the communication process. The system should also provide
enough feedback for them to gain the feeling of controlling the system.

• A cooperative system should be conceived as a user-friendly and robust
entity. The system must be well prepared to deal with unexpected or
unusual user input.

5

2.2 Dialogue System Architecture

A computer-based dialogue system can be de3 ned as an arti! cial participant
in a dialogue [Qu02]. Without engaging in much details, the creation of such
participant means a long journey from the initial idea to the 3 rst real dialogue. It
also usually takes a team of highly specialized people to successfully accomplish
and deploy the system. Tasks to solve for are, for instance, system understanding
of user's speech, recognition of user's intentions, or production of system reaction,
among many other things. Hence people's quali3 cation must span various realms,
from Fourier transformation to search algorithms, and from raw data processing
to abstract data types [Eck95].

These requirements imply that practically the only correct architecture of a
dialogue system is a modular one. With such design, the complex task of human-
computer interaction is decomposed into smaller pieces. Modules are to an extent
independent on each other, which enables them to be evolved individually as
needed. Last but not least, modularity also makes the components portable to
other applications, possibly other dialogue systems.

Assuming now a uni-modal dialogue system (with a speech interface as
the only input and output channels), the modules that constitute the system
elemental skills are as follows (see also Fig. 2.1):

• Automatic speech recognition (ASR). This module is to perform all steps
between processing an utterance raw speech signal and producing an
equivalent textual representation. Additional functionality requirements
may be put on this module, for instance, "barge-in" capability [Kle00] or
a minimum recognition con3 dence for a given vocabulary [Sti01]. While
the former one is a domain-independent and user-neutral property, the
latter one is in6 uenced by the number of users to interact with the
system and the type of environment the system is to be used in [Pav09].

• Spoken language understanding. This module is fed in the textual
representation from the ASR to analyze its content against the scope of a
prede3 ned domain. This analysis is carried out until a suitable symbolic
representation of relevant information within the sequence of words has
been found. There are two competitive branches of analysis, grammatical
and stochastical. The grammatical approaches [Kni01, Jok10] rely on

Automatic
Speech

Recognition

Spoken
Language

Understanding

Dialogue
Management

Natural
Language
Generation

Speech Signal Presentation

Signal Processing
Speech Recognition

Dialogue Act Recognition
User Goal Recognition

Named Entity Recognition

Discourse Analysis
Database Query

System Action Prediction

Information Presentation
Utterance Realization

User Input System Output

Fig. 2.1 Traditional architecture to uni-modal dialogue systems; adopted from [Lee10].

6

a set of rules that describe possible sequences of words and produce
a corresponding symbolic representation. In contrast, the stochastical
approaches [Kon09] use for this procedure either neural networks or
Hidden Markov Models (HMMs). Both of the branches naturally have
their bene3 ts and disadvantages. For instance, grammar-based parsers
are transparent in representation but in6 exible as for handling non-
grammatical sentences; in contrast, stochastic parsers can deal with non-
grammatical sentences but may be quite fuzzy to properly train.

• Dialogue manager. This module is responsible for coordinating actions
between the system, user, and eventual back-end services. It takes over
the symbolic representation from the semantic analysis and compares it
with the past interaction to produce a suitable reaction. Depending on
the complexity of the manager, the resulting dialogue exhibits various
levels of naturalness. The dialogue management module is in closer detail
presented in the next section, and in Chapter 4.

• Natural language generation. This module receives the dialogue
manager reaction and transforms it into a corresponding speech signal
to convey the message to the user. The dialogue manager might have
produced either a textual representation of its response, in which case we
talk about a text-to-speech synthesis (TTS, see also Chapter 4), or an
abstract symbolic representation, in which case we talk about a concept-
to-speech synthesis (CTS, see also Chapter 3).

These four modules constitute a common ground for spoken dialogue system.
Depending on the complexity of the application domain (and other requirements
put on the resulting dialogue system), each of the modules can be internally
further divided into submodules. For instance, a system to perform isolated
spoken commands is considerably simpler in terms of its internal architecture,
than a sophisticated multi-modal agent that understands complex utterances.
This thesis, however, does not concern with multi-modal dialogue systems and
interaction.1

The 3 nal step in designing a dialogue system is to interconnect the modules
with a communication channel. In the case of all components running locally,
the blackboard approach is a su\ cient way [Wal04]. With a chunk of memory
serving as the shared blackboard, each module can write/read information to
and from it, modify existing information, or erase it. Presumably, there also
exists a superior control module to coordinate operation requests with the
blackboard. However, in the opposite situation of dialogue system components
running distributed across a heterogeneous environment (e.g., due to diJ erent
programming languages, computers, operating systems, number endians, etc.),
a network-based communication is one of the options [Tur05, Sto12, Boh07,
All01]. With a hub at the centre, each module can request another module or
1 In essence, to extend a uni-modal dialogue system to a multi-modal one requires the basic work6 ow

pipeline from Fig. 2.1 to be prepended with an input modality fusion module, melting partial
input semantics down to a single compound semantic, further passed over to the dialogue manager.
Eventually, the pipeline must also be appended with an output modality ! ssion module, splitting
the dialogue manager reaction into messages towards output modalities. An overview of these topics
may be found, for instance, in [Ovi02, Bui06].

7

remote service to perform an operation by posting a message to the hub. The
hub node then looks up the receiver of the message in its neighbourhood, passes
the message on, and when the result is ready, noti3 es the sender.

2.3 Computational Models to
Dialogue Management

In the remainder of this chapter, let us focus on the function of and approaches
to the dialogue management module. The dialogue manager controls the overall
interaction between the system and the user. The essential role of the dialogue
manager may be summarized into the following intrinsic tasks [Cen04, Tra03]:

• Interpret observation (usually user input/s) in context, and update the
internal representation of the dialogue.

• Provide context-dependent expectations for interpretation of upcoming
responses.

• Interface with task/domain processing (e.g., database, planner, execution
module, or other back-end subsystems) to coordinate dialogue and non-
dialogue behaviour and reasoning.

• Determine the next action of the dialogue system, based on some dialogue
management policy (with the aim to aJ ect the mental state of the user).

Although all of these tasks are performed by virtually all dialogue managers,
each of them is non-trivial and leads to a proliferation of diJ erent computational
approaches. In addition, the dialogue manager accesses a number of knowledge
sources which are sometimes collectively referred to as the "dialogue model".
These sources may include the following types of knowledge relevant to the
dialogue management [McT02]:

• Dialogue history. A trace of a dialogue observed and realized thus far.
The representation should provide a basis for conceptual coherence and
for the resolution of anaphora and ellipses.

• Task description. A representation of the solution to a particular task,
including relevant pieces of information to be exchanged between the two
participants.

• Domain model. A model with speci3 c information about the domain in
question (e.g., timetable domain).

• Common knowledge model. This model contains general background
information that contributes to the commonsense reasoning of the system.
For instance, the Christmas Eve is to be interpreted as December 24.

• Generic model of conversational competence. This includes knowledge
about the principles of conversational turn-taking and discourse
obligations; for instance, an appropriate response to a request for

8

information is to supply that information or provide a reason for not
being able to supply it.

• User model. A model to contain relatively stable information about a
user that may be relevant to the dialogue (e.g., user's age, preferences,
previous experiences, etc.).

Hence, the expected capabilities of the dialogue manager span a relatively
wide range. Over the past decades, many diJ erent approaches have emerged,
ranging from simple 3 nite state machines to Markov decision networks. However,
their categorization has not yet been standardized. Hence, for instance, Xu et al.
[Xu02] distinguishes among four groups of approaches: DITI (implicit dialogue
model, implicit task model: like state-based models), DITE (implicit dialogue
model, explicit task model: like frame-based models), DETI (explicit dialogue
model, implicit task model), and DETE (explicit dialogue model, explicit task
model). In contrast, Catizone et al. [Cat02] classi3 es approaches into mere three
groups based on their underlying principles: dialogue grammars (approaches that
put stress on the structure of dialogue, regardless of what controls the structure,
be it a state automaton or a dialogue gaming framework), plan-based approaches
(approaches that put stress on properly recognizing whatever intention a user may
have, expressed or implied), and cooperative approaches (dialogue controlled by
cooperative agents). Finally, Lee et al. [Lee10] groups approaches yet a diJ erent
way: knowledge-based approaches (in which knowledge of the application
domain plays the dominant role, including virtually everything between state-
based and agent-based management), data-driven approaches (various learning
strategies working in conjunction with various Markov decision processes), and
hybrid approaches (supervised learning of optimal dialogue strategies). Despite
the inconsistent divisions in the literature, the most commonly recognized
approaches are the following ones [McT02, Ngu06b, Jok10]: (1) 3 nite state
machine approaches, (2) frame-based approaches, (3) plan-based approaches, (4)
agent-based approaches, and (5) stochastic approaches. In the following sections,
we will present them and discuss their properties in detail.

2.3.1 State-based Dialogue Management

Finite state models are the simplest models to base a dialogue manager on. The
dialogue structure emerges implicitly by traversing a state transition network
in which nodes represent system utterances and edges among nodes represent
user's responses available at a given point in the dialogue [McT02, Chu05, Jok10].
The dialogue control is therefore system-driven and all the system utterances
are predetermined. State-based approaches are adopted by most of the current
commercial systems as they are suitable for applications in which the interaction
is well-de3 ned and can be structured as a sequential form-3 lling task or a tree,
preferably with yes/no or short answers [Son06, Mel05]. Apart of these "classical"
models, probabilistic 3 nite-state automatons can also be used to learn optimal
dialogue strategies automatically. As the design of such system is diametrically
diJ erent from designing a "classical" state automaton, this family of approaches
will closer be discussed below in Section 2.3.5.

9

The advantage of 3 nite state models is that their background formalism is
easy to understand and easy to implement. In this respect, designing a state-
based system is relatively straightforward and intuitive. To further facilitate
the development, several visualization toolkits have emerged over the years.
One of the most popular ones is the Rapid Application Developer of the CSLU
Toolkit [Sut98] which allows the designer to model the dialogue as a 3 nite state
automaton using a drag & drop interface.

In contrast, the main disadvantage is that a 3 nite state approach typically
leads to "unnatural dialogues" in which information is elicited from the user as
a sequence of questions. Also, because the dialogue is controlled by the system,
the dialogue 6 ow is very in6 exible: the user must strictly follow the structure
of the dialogue and answer the system questions [Wil06]. No user initiative is
permitted, and any additional information is ignored by the system. Each attempt
to extend the system with a repair mechanism (reactions to misunderstandings,
clari3 cations, etc.) lead to combinatorial explosion, as new states and edges among
them are necessary to be added, thus making the system very hard to maintain
[Mel05]. One possible workaround is to embed another 3 nite-state network into
one state, making the outer 3 nite state automaton easier to understand and
maintain [Mel05]. On a related note, there is practically none but explicit way
of con3 rming user-speci3 ed information: the user has no possibility to initiate
the correction, provided that after her or his misrecognized turn, the system has
transited to another state. Explicit con3 rmations are commonly perceived as
user unfriendly and lengthy [McT02]. One possible workaround to incorporate
user-initiated corrections may be to enable the state automaton to track one state
back [Ara03]. That way, the system may employ the more comfortable implicit
con3 rmation, knowing that the user will eventually return back. Last but not
least, the state methodology leads to systems tightly bound to a selected domain.
That is, porting a 3 nite state dialogue model to a new domain or application
typically requires developing a brand new 3 nite state automaton. The reason is
that 3 nite state systems lack a systematic delimitation between a task (i.e., what
the dialogue manager wants to achieve) and the dialogue strategy (i.e., how the
dialogue manager proceeds towards its goal) [Mel05].

2.3.2 Frame-based Dialogue Management

An extension to the state-based model has been developed to overcome the lack
of 6 exibility. Hence, rather than building a dialogue according to a predetermined
sequence of system utterances, the frame-based approach (sometimes also
referred to as the "extended state automaton") takes on the analogy of a form-
3 lling (or slot-3 lling) task in which a predetermined set of information is to be
gathered. The cornerstone here is a frame (other authors use the terms entity,
form, or template), consisting of a set of slots (alternatively termed as items,
! elds, or attributes). Each slot is related to a speci3 c category of information
recognized by the system. Given the notion of a frame, the approach already
supports more 6 exible dialogues by allowing the user to 3 ll in slots in diJ erent
orders and diJ erent combinations. The frame is then to cumulate related pieces

10

of information. Provided the current content of a frame, an accompanying
interpretation mechanism is to select an action to do next. These actions
usually cover the following situations [Mel05, Cen04]:

• no input – the user has not provided any utterance during the last turn,

• no match – the user answered but information provided does not 3 t in
the frame (probably an "out-of-task" information),

• value missing – the mandatory slot misses a value,

• request for repetition – the user has asked for a repetition of the last
system prompt,

• request for help – the user does not know how to answer the question
and requires closer explanation,

• start over – the user wants to restart the task in focus, or eventually the
whole interaction.

One of the well established representants of the so called " at frames is the
VoiceXML platform.2 Conceived within the Voice Browser Working Group of the
World Wide Web Consortium (W3C), VoiceXML is a markup language based on
XML that makes use of standard web programming techniques and languages,
including for instance, Speech Recognition Grammar Speci3 cation (SRGS),
Speech Synthesis Markup Language (SSML), Call Control Extensible Markup
Language (CCXML), and ECMA-Script (some VoiceXML interpreters also
support native code calls). The platform evolved as the result of various industry
initiatives with the aim of providing a standardized way for development and
deployment of speech applications. Hence, virtually all of the above actions have
been incorporated into the current de3 nition of VoiceXML. The mechanism to
chose a suitable action (or event, in the VoiceXML terminology) is referred to as
the Form Interpretation Algorithm (FIA). Provided the below short code snippet
(adopted from [Jok10]) and assuming the whole flight_info form is initially
empty, the FIA would opt for the value-missing event on the source 3 eld.

<form id="fl ight _ info">

 <fi eld name="source">

 <grammar src="airports.grxml" />

 <prompt> Where are you fl ying from? </prompt>

 </fi eld>

 <fi eld name="destination">

 <grammar src="airports.grxml" />

 <prompt> Where are you fl ying to? </prompt>

 </fi eld>

</form>

There are numerous variations to the basic 6 at frames and to the way of
describing dialogue strategies. One of the variations is the E-form, standing
for electronic form [God96]: slots are augmented with priorities and marked
as mandatory or optional. E-forms have been used in the WHEELS dialogue
2 http://www.w3.org/TR/voicexml21/

11

system [Men96] to capture diJ erent user preferences about car parameters, like
model, price, colour, etc., which usually do not have the same importance.

Another modi3 cation to the classical frame is a hierarchical frame structure
(also sometimes referred to as frame type hierarchy or simply nested frames),
in which one slot may be represented by a subframe. The underlying motivation
here is that a hierarchy of frames better 3 ts the structure of real world objects
[vZa99, Hul96]. For instance, a slot person may be closer described by a nested
frame containing slots given_name, family_name, age, etc. The mechanism to
chose suitable action must take into account the nested structure, which makes
it considerably more complex. However, one of the ways to determine the next
action may be traversing through the structure in the top-down, left-to-right
manner. Presuming frames are composed to re6 ect the structure of information
within a task, an acceptably natural dialogue structure emerges.

The hierarchical frame structure has further been extended by Nestorovič
[Nes10b, Nes09] with a set of journals to keep track of interrelated actions taken
over the course of a dialogue. The motivation for this extension was to automate
some commonly repeating routines, mostly related to causality tracking and
subsequent error recovery. To account for these, the system designer would
usually have to manually watch for slot updates and trigger corresponding
reactions within OnFilled-like event handlers. However, this manual approach
has a signi3 cant drawback: once the application logic gets more complicated, it
is hard to keep track of where to “jump“ next in a frame structure; there is also
the threat of drawing in inconsistencies among these reactions. In contrast, by
extending each frame with a journal, this procedure becomes automated. Full
speci3 cation of the approach is attached on the CD.

The slot-3 lling approaches are far the most frequently used dialogue
management techniques in practical systems [Pie09, vZa99, Son06, McT02,
Cen04]. This is partly due to the frame-based management being still a
simple enough approach with many available toolkits, for instance, VoiceXML
(interpreted using OptimTalk 3) or Philips HDDL (interpreted using Philips
SpeechMania 4). With using a frame-based management, we already can partly
separate task and dialogue strategy: the task is de3 ned by a (domain-speci3 c)
frame, whereas the strategy for 3 lling in the frame is rather domain-independent
(recall the above FIA, for instance) [Mel05].

On the other hand, even though task and dialogue strategies can be at least
partially separated (which is bene3 cial for portability), it is an open question as
for how scalable the approach is [McT02]. Extending an existing system with
another useful dialogue strategy usually requires a considerable amount of hand-
coding or may even be impossible: with handling a large number of rules or
types of system reactions, it is di\ cult to predict all consequences of modifying
an existing dialogue strategy [Mel05]. Another pitfall in frame-based systems
is that they capture a dialogue as mere elicitation of several parameters in
order to perform a task. However, dialogue is a more complex protocol, usually
spanning multiple topics in a single conversation. In this respect, frame-based
environments do not support mechanisms for topic detection, nor for explicit
3 http://www.optimsys.com/en/products/application-platform-optimtalk
4 http://www.kbs.twi.tudelft.nl/People/Students/J.K.deHaan/Part%202%20Tools/06%20

SpeechMania/index.html

12

representation of user goals (the goals are implicitly encoded in the structure of
a frame).

2.3.3 Plan-based Dialogue Management

Dialogue management using a plan detection is part of complex dialogue systems
exhibiting traces of free conversation. In the case of classical goal-oriented systems,
individual plans basically match traversing through a state network or a frame
structure. Such plans are of a short-term scope, with the aim to immediately
elicit required information or immediately con3 rm uncertain information. In
contrast, plans of a conversational agent may be considerably more abstract. For
instance, in order to reach its objectives, the agent may adopt assertiveness as
its long-term plan: if the user mentions that it would be nice to have X, then the
agent assertively expresses an agreement of wanting X too [Wal01].

The key question in designing a plan-based system is the design of individual
plans. Apart of the obvious empirical approach, the cognitive task analysis
(CTA) [Hof98] is a much more sophisticated way. At its centre stands an expert
in solving problems in a given domain, and an interviewer. The interviewer's
goal is to gain information from the expert in order to clarify her or his reactions
to observed or hypothetical situations. With a decent grain of salt, the CTA may
be considered an analogy to 3 lling the knowledge base of an automated expert
system.

Over the course of a dialogue, the agent changes its strategies (plans) in
accordance with the current state of the dialogue. This involves taking into
account not only the convergence towards agent's objectives, but also changes
in partner's detected intentions. Hence, the plan-based dialogue management
has its underlying idea in the real world, in which it is the listener's objective to
identify the speaker's intentions and respond to them accordingly [Cat02]. For
instance, in response to a customer's question of "Where are the steaks you
advertised?", a butcher's reply of "How many do you want?" is appropriate,
because the butcher understands the customer's underlying plan to buy the
steaks [Coh95]. On the other hand, the plan-based approaches have been widely
criticized for their tight dependence on the plan identi3 cation which is considered
their weakest point, provided that this process is computationally intractable in
the worst case [Ric01] and more importantly unreliable [Bui06]. Another down
side is the lack of any formal basis to lean the approaches on [Wil06].

2.3.4 Agent-based Dialogue Management

The agent-based approaches to dialogue management derive from the plan-based
methods. Its essence therefore takes over all drawbacks, including weak parts
in properly detecting partner's intentions. However, the agent-based approach
puts numerous additional constraints to the plan-based methodology. That
way, for instance, the detection of unspoken intentions5 gets eliminated. From a
certain perspective, these constraints represent the missing formal baseline. This

5 Sometimes also referred to as hidden intentions; see the customer-butcher example in Section 2.3.3.

13

baseline also includes typical agent characteristic [Zbo04, Woo00]: reactivity
(ability to perceive the surrounding environment and react to it in a timely
manner), pro-activity (ability to undertake goal-oriented actions in order to
meet the objectives), sociability (ability to communicate and negotiate with
other agents in the environment), and mobility (ability to perform actions at
remote locations).

The essence of agent-based approaches is to view a dialogue as an interaction
between two intelligent agents. In case of their collaboration, both of the agents
work together to achieve a mutual understanding of the dialogue. The elemental
cornerstone standing here behind this joint activity, is to handle classical
dialogue phenomena such as con3 rmation or clari3 cation [Bui06]. Hence, unlike
with all the other approaches discussed above (including plan-based ones), the
collaborative approaches try to capture the motivation behind a dialogue and the
mechanisms of a dialogue itself.

The critical factor in designing agent-based applications is to 3 nd the
proper tradeoJ between agent's reactivity and pro-activity [Woo95, Rao95].
Continuously reacting to changes in the environment results in ceaselessly
changing the direction of solution; contrarily, strictly insisting on a single
direction puts the agent in threat of getting to nowhere. Applied to the dialogue
management, a conversational agent must exhibit a certain level of pro-activity,
in order to recover from errors in a dialogue, as well as reactivity, in order to
meet user's objectives. Informally speaking, the pro-activity requirement may be
compared with the system-initiative strategy, whereas the reactivity requirement
corresponds with user-initiative one [Ngu06a].

Obviously, agent's behaviour is governed by its goals and knowledge about
objectives to ful3 ll. These two components constitute agent's mental state
[Zbo04]. One of popular implementations is the Beliefs-Desires-Intentions
(BDI) architecture [Rao95]. In the BDI model, actions in the environment aJ ect
agent's beliefs. The agent in turn can reason about its beliefs, and thus formulate
desires and intentions. Beliefs are how the agent perceives the environment,
desires are how the agent would like the environment to be, and intentions are
formulated plans of how to achieve these desires [Bra91]. Applying this again to
the dialogue management, the three components of the BDI architecture take on
the following responsibilities:

• Beliefs store a set of observations about a dialogue; for instance, the
agent may believe that the user has chosen a train as the transportation
means. This part of the architecture may therefore be perceived as the
knowledge base of an expert system: a priori beliefs can be obtained
from the ASR module, whereas a posteriori beliefs can be calculated
from newly derived knowledge.

• Desires represent a collection of agent's top-level goals. These goals
represent its motivation, and in turn in6 uence how the agent plans its
activity. In the case of a dialogue agent, desires are commonly organized
as a stack [Gro86]. The result of such organization is a sequence of
individual actions that the agent needs to carry out in order to meet its
objectives.

14

• Intentions are another name for the "individual actions" (eventually also
moves, in dialogue games terminology [Hul00]). Hence, this component
may be seen as the storage of agent's planning procedure outcomes
[Rao95].

Following the BDI architecture, a conversational agent must be provided
with a means to deliberate. This promotes it to the so-called deliberative agent.
One of the popular ways to provide such means assumes that each plan is a
sequence of actions which together lead to the satisfaction of a particular desire.
To following pseudo-code shows one possible realization of such deliberation
[Woo00].

repeat {

 perceive the surrounding environment

 update the internal model of the environment

 select a desire

 compose a plan to satisfy the desire

 launch plan

}

As it can be seen, the resulting deliberative agent is governed by a cascade of
actions enclosed in an in3 nite loop. This basic form fully su\ ces for the process
of implementing the deliberation of a monolithic conversational agent. Eventual
modi3 cation to the algorithm and underlying parent frameworks are overviewed,
for instance, in [Zbo04].

One of the widely known agent-based collaborative dialogue managers is
COLLAGEN (standing for COLLaborative AGENt) [Ric01]. It represents
an application-independent platform to provide routine tools for dialogue
management. Hence, when narrowed to a speci3 c domain (by being supplied
with a set of domain-speci3 c "recipes"), it performs desire recognition, tracks the
focus of attention, and maintains an "agenda" of actions that could satisfy the
desire. The underlying representation of beliefs and intentions is based on the
SharedPlan formalism by Grosz and Kraus [Gro96].

The SPA (standing for Smart Personal Assistant) [Ngu06b] is another
agent-based dialogue system to interact with a mobile device a multimodal
way. Covering two conversational domains (e-mail and calendar), SPA has been
designed as a multi-agent system. The central agent, i.e. the dialogue agent,
maintains the conversational context and other domain-speci3c knowledge as
its internal beliefs. The upcoming dialogue processing is done automatically as
the result of the BDI interpreter selecting and executing plans according to the
current state of beliefs. Each such plan is a modular unit, handling either a
discourse-level goal (such as recognizing the user’s intention) or a domain-level
aspect (such as performing a domain task). Thus, there is a separation between
discourse-level and domain-level plans, which enables to reuse discourse-level
plans also in additional domains in SPA, or applications other than SPA.

JASPIS [Tur05, Tur03] is another agent-based platform. Unlike with the
previous two, JASPIS represents a decentralized approach to creating dialogue
systems, with individual components running and communicating remotely.
The architecture requires three types of components: agents, evaluators, and

15

managers. Each agent specializes itself in a narrowed problem solving, such
as speech output presentation or various dialogue situations handling (ideally
one situation per agent; for instance, there may be multiple agents to propose
diJ erent ways to present a particular system response). Evaluators are used to
determine which agents are suitable for an observed situation (for instance, given
a system response, which presentation agent 3 ts user's priorities best). Finally,
managers are used for execution and overall coordination of actions (for instance,
sending the system response to the TTS module).

Hence as obvious from the discussion, agent-based approach is bene3 cial
in that it provides a way for clearly separing what the system wants to achieve
from how it really can achieve it. In other words, it is possible to extract general
domain-independent behaviour as agent's initial knowledge base, this way fully
supporting easier maintenance and portability to other domains. In addition, the
agent-based approach also enables for dealing with more complex dialogues which
may involve collaboration, problem solving, negotiation, and so on, either towards
the user or among subagents in a multi-agent system. However, a disadvantage
is that the agent-based approaches require much more complex resources and
processing than any other way to dialogue management.

2.3.5 Probabilistic Dialogue Management

All of the above methodologies accounted for the traditional approach using a
set of handcrafted rules, proposed by a dialogue designer on the basis of various
decisions. For instance, to deal with potential ASR misrecognitions, the designer
had to consider whether and when to con3 rm user's input (along with whether
the ASR con3 dence score should be the in6 uential factor) [Bui06]. Such expert
design is naturally based on experience and commonly agreed guidelines. It
also results in an iterative process of designing and testing until the optimal
system has been produced [Eck95]. We will not investigate in detail here what
the criterium of optimality is. However, the most straightforward criterium is
the overall user satisfaction, although there may be other conditions depending
on the purpose and nature of the resulting speech application (e.g., in a military
application, the criterium of optimality might be the task success rate [Sti01]).

In contrast to the expert way of designing, the family of probabilistic
approaches represents an eJ ort to automate the process. Apart of that, it also
aims to overcome the limitations observed in the state-based and frame-based
approaches. The essence here is to use a corpus of dialogues to extract the
necessary decisions of what to do next at each point in a task. One of the
popular ways makes use of the reinforcement learning (RL) in conjunction with
Markov Decision Processes (MDPs) [Hen08, Tsi12]. With the RL, the idea is
to specify priorities for the system in terms of a real-valued reward function
(or utility function); optimization then decides what action to take in a given
state in order to maximize the immediate reward (or utility), as well as the total
return associated with actions in the remainder of a dialogue [Jok10]. In other
words, the optimal dialogue policy consists of choosing the best action at each

16

state in a dialogue in order to achieve a given success metric, such as maximum
user satisfaction, or a successful and e\ cient completion of a task.

The underlying MDP carries the minimal and unambiguous information
to represent a dialogue. Similarly as with classical state automatons, increasing
amount of information makes the MDP grow exponentially. In each state of the
MDP, the system has generally several choices to pick among. These choices
may, for instance, correspond to diJ erent dialogue strategies. More formally, the
underlying MDP can be described as follows [Jok10]:

• S = { s
i
 } is a set of system states, each representing one point in a

dialogue,

• A = { a
i
 } is a collective set of actions that the system can take,

• P = P(s
i
 | s

i-1
 , a

j
) is a probability function of transiting from state s

i-1
 to

state s
i
 by taking action a

j
 ,

• R = R(s
i
 , a

j
) is an immediate reward that is associated with taking a

particular action at a given state.

In general, a dialogue conducted by a probabilistic manager begins in a state
with all relevant information unknown (e.g., in case of a timetable domain, place
of origin and destination, time of departure and arrival, etc.) Over the course
of a dialogue, some of these attributes receive values which is re6 ected by the
manager traversing through the dialogue state space, S. The transition from the
current state s

i
 to the next state s

i+1
 is determined by the manager taking action

a
j
 ∈ A as a response to user's last action observed, and possibly other factors.

For instance, these actions may cover questioning the user about the value of an
unknown attribute, asking for validation of some known attributes, or clarifying
some ambiguities or clashes among attributes [Jok10]. Eventually, the dialogue
manager reaches the 3 nal state in which all relevant attributes are known and it
can successfully query a database for corresponding results.

To determine which action is optimal in each state, the transitions
between states must be assigned rewards, R(s

i
 , a

j
). The rewards should re6 ect

consequences of taking an action. This reward may therefore be in6 uenced either
by some general principles (e.g., taking an action towards a 3 nal state results in
a large positive reward), or by user feedback (e.g., user satisfaction as in [Wal98]).
Arguably, by always taking the optimal action, the dialogue manager produces
an optimal dialogue, 3 nished with the optimal return (sum of rewards). During
the phase of "learning", the RL is used to systematically explore the choices
and compute the best policy for action selection based on rewards associated
with each state transition, using empirical data such as interactions of real of
simulated users with the system [Jok10]. Hence this phase of system design
typically requires hundreds of dialogues to learn the optimal policy. In the ideal
case, all of the possibilities have been explored the same number of times in the
training corpora [Fil05, Lit02].

Once trained, there is always an optimal action to take in each state.
Assuming state s

i
 , the optimal action a

opt
 contributes to the 3 nal return, Q, as

follows [Bel57]:

17

()
()

(,) (,) max (| ,) (,)
k

j

i i j i k j ka
s

Q s a R s a P s s a Q s a= + γ ⋅ ⋅∑

where γ ∈ 〈0;1〉 is a coe\ cient to suppress or emphasize the weight of rewards
received in the remainder of a dialogue.

One of the well known usages of the probabilistic approach is the NJFun
dialogue system [Sin02], providing its users with information on entertainment in
New Jersey. The system stores information about the state of a dialogue in the
form of a 14-tuple feature vector. In this vector, one feature indicates if the system
has greeted the user, and one feature informs which attribute is currently being
elicited (entertainment type, place, or time); each of these attributes subsequently
occupies four of the remaining features in the vector (attribute value, ASR
con3 dence, number of attempts to elicit it, and strategy used to elicit it). Each
of the underlying MDP states is fed in this attribute vector using another kind
of vector, this time with seven features: system greeting, pointer to an attribute
attempted to elicit, ASR con3 dence, success of elicitation, number of elicitation
attempts, strategy used to elicit the attribute, and indicator of corrections of
the attribute value by the user. Considering that each of the attributes in this
7-tuple vector takes on a discrete value, the underlying MDP should consist of
960 unique states. However, as many con3 gurations are invalid (for instance, if
the system has not yet greeted, any other actions are forbidden), the 3 nal MDP
consists of mere 42 states. In each of them, the system determines between two
elicitation strategies and two con3 rmation strategies of a particular information.
The optimal dialogue policy was established in the MDP by conducting 311
dialogues with real users who evaluated their interactions as either "good" or
"bad", this way contributing to the reward function determination.

The probabilistic approach has a signi3 cant bene3 t in that it does not
require strong expertise in dialogue management – the "widely accepted" way
of dialogue evolves automatically with enough training data. However, there are
also several downsides accompanying this approach. The most notable one is
that a trained dialogue manager is not portable to other domains and is also not
open to eventual extensions. Hence, there is no other possibility to incorporate
changes to an existing domain but retraining the manager. The other drawback
is that the number of training dialogues should be great, and each MDP state
should be explored ideally the same number of times. If these conditions are not
met, the resulting manager is likely to be unprecise as for the optimal policy.
Another important aspect is the MDP state space design. On one hand, it must
be su\ ciently rich in order to support for learning of accurate model, however
on the other hand, it must be maximally compact to keep the number of states
low [Jok10]. Is the number of states high, the policy might have not been trained
thoroughly as some states or transitions might have been visited insu\ cient
number of times. Hence, all of these restrictions make the probabilistic approach
an ideal choice only for sealed dialogue systems with minimal to no future
updates.

18

2.4 Summary

Dialogue systems are considered quite an appealing topic nowadays. This
chapter has therefore aimed to brie6 y introduce the realm, and overview the
widely established principles. After arguing for and against the use of speech
interfaces, we brie6 y outlined the structure of a uni-modal, voice-controlled
system. Then, we focused on the dialogue management module and discussed
the "mainstream" approaches to how it can internally be accomplished. That is,
our discussion has not covered some less popular approaches, as for instance, the
script-based management (represented, for instance, by the Arti3 cial Intelligence
Markup Language, AIML; not included as this family of approaches does not
construct a proper inner model of a dialogue – instead, it leads to mere reactive
agents, usually used only as blind chatting bots), or information state-based
management [Tra03] (not included as its extended and more popular variation
is the probabilistic dialogue management, discussed in this chapter). We also
could see that individual approaches are not strictly distinct, but rather overlap
in some aspects. For instance, the E-form stores some additional information
in attempt to push the resulting frame-based manager towards an agent. The
agent-based approach in turn overlaps with the probabilistic approach in that
the MDP may be viewed as the agent's fully expanded deliberation space,
hence something that a rational agent constructs dynamically as it explores the
surrounding environment.

With such a number of diJ erent approaches to dialogue management, it is
reasonable to ask which one is the best for a particular application. Obviously, the
tractable complexity of the task model, dialogue model, and domain application
increases from 3 nite state automatons towards agent-based approaches.
Conversational agents that incorporate principles of inter-human rationality and
cooperation would seem to be the obvious choice. Certainly, for applications
that involve cooperative problem solving with negotiated solutions, the simpler
types of dialogue control are not su\ cient [Bui06]. On the other hand, for simple
applications and for constrained subtasks with some applications, more basic
techniques such as some kind of frames may be appropriate.

However, the main point of our discussion in this chapter has been to provide
merely a comprehensive overview of approaches, shortlisted as possible candidates
for our work (presented in Chapter 4, and evaluated in Chapter 5). This chapter
has not aimed to provide an exhaustive coverage of the whole matters, hence the
reader has been currently left puzzled with terms like dialogue move, dialogue
act, dialogue strategy, or dialogue stack – they all will be explained along the
way of describing our work in Chapter 4, where also necessary theories on
dialogue modelling will be provided.

19

Chapter 3

Semantic Interface Language:
De$ nition & Applications

The Semantic Interface Language (SIL) [McG91] is a recognizable contribution to
the realm of dialogue systems. Developed as part of the SUNDIAL project1[Fra93],
SIL was originally intended only as a means to describe communication
between the parser and the dialogue manager. Later on, it turned out that
it is well possible to use it as a formalism to represent an arbitrary part of a
natural environment by using a comprehensive symbolic notation. This chapter
introduces ideas behind SIL, starting with de3 nitions of basic concepts, covering
representation of user's utterances (the so called Utterance Field Objects, abbr.
"UFOs"), and heading towards complex principles of dialogue context processing.
An exhaustive description of the SIL framework and its application in the realm
of dialogue systems may then be found in [Eck95].

3.1 De$ nition

3.1.1 CoreSIL

As announced above, the SIL formalism will 3 rst be considered from the lowest
level point of view, the so called SILdef concepts. A SILdef concept represents
a certain object or event in possible use, detailing its structure and eventual
operations on it. A set of these (interconnected) SILdef concepts then constitute
a semantic network-like structure, representing a static real world environment
model. More formally in the following de3 nition.

De! nition 3.1 (SILdef concept)
Let C be a set of SILdef concepts. A SILdef concept C ∈ C is an ordered tripple
C = (V, E, S), where V ∈ C ∪ � is a parent concept, E = { E

i
 } is a set of

1 Speech UNderstading in DIALogue

20

role edges, and S = { S
i
 } is a set of relations on C. Each role edge E

i
 ∈ E is an

ordered pair E
i
 = (r

i
, C

j
), where r

i
 is a role in C. □

Based on the de3 nition, we can characterize a SILdef concept as follows:

• It typi3 es a real world object (or event; for simplicity reasons, in the
remainder of the text we will refer to any entity as an object).

• The structure of an object is described and further accessible via roles.
These in turn are described using SILdef concepts, making up a hierarchy
of nested objects.

• It derives from a parent SILdef concept, inherriting all of its properties.
These properties involve not only roles but also a certain semantical
meaning (see Fig. 3.1), that may be used for more elaborated processing,
e.g., for utterance production [You92].

• Each possible operation on a given object is expressed using a relation
(parametrized with roles and their eventual surroundings).

The de3 nition further implies that given a non-empty set of SILdef concepts
C, there always exists a root concept from which all other concepts in the
structure infer. To avoid ambiguity, we will silently assume there exists exactly
a single root concept C

0
 = (�, E

0
, S

0
).

Example 3.1 (SILdef concepts)
To illustrate the decomposition of the real environment into a set of SILdef
concepts, let us model a simple time point information, fully speci3 ed by its

Things Objects Living Natural persons
Corporate body

Non-living . . .
Application-speci3 c

Properties Number-related
Place-related
Time-related
Dialogue-related
Application-speci3 c

Events State . . .

Existence . . .

Action Mental Want
Believe
Doubt

AJ ective Say
Use
OJ er

Motion Location changing
Departure
Arrival

Fig. 3.1 A small excerpt of a possible system of concepts to represent the real world; adopted
from [Eck95].

21

particular hour and minute. The corresponding SILdef concept of type C
time_point

is appropriate to inherit from the built-in C

time_property
 parent concept (see Fig.

3.1), not only to gain all of its "prefabricated" common characteristics, but also
to facilitate elliptical utterances resolving (covered later). The hour and minute
speci3 cs are modelled using edges E

1
 and E

2
, leading to nested SILdef concepts

C
hour

 and C
minute

, respectively, i.e. E
1
 = (thehour , C

hour
), E

2
 = (theminute ,

C
minute

). We will leave the set of relations empty as so far we do not need to
handle C

time_point
 concept any way.

1 2
(, { , },)
(,

{ (,), (,) },

)

time_point

time_property

hour minute

C V E E

C

thehour C theminute C

= ∅
=

∅

To stick to the SIL notation throughout this text, each role will be pre3 xed with
the article "the", whereas the concept names themselves will miss this pre3 x. □

Next, let us de3 ne several projection functions on SILdef concepts to extract
their relevant components.

De! nition 3.2 (Projection functions)
Let C = (V, E, S) be a SILdef concept. Then, let V(C) = V be the parent
concept, E(C) = E be the set of role edges, and S(C) = S be the set of relations
de3 ned on C. Let further hold

*
*

*
*

, if () () (())()
, otherwise ()

, if () (())()
, otherwise

V CE C E V C
E C

E C

V CV V C
V C

C

 ≠ ∅∪= 


 ≠ ∅= 
 □

There is a special group of SILdef concepts to bear elemental information,
with no additional subinformation embedded. An example may be any of the
built-in SILdef concepts to hold atomic information, i.e. C

integer
, C

char
, or C

string
,

among others. These concepts derive from the C
data

 super-concept, and their
atomic information is accessible via the value role. To eliminate ambiguities, we
again will silently assume that if there is an elemental concept, it contains no
additional roles, as in the following (rather informal) de3 nition.

De! nition 3.3 (Elemental concepts)
We say C ∈ C is an elemental SILdef concept, if V*(C) = C

data
 ∧ E*(C) = �. □

Example 3.2 (SILdef concepts continued)
To 3 nish with the time point example, let us de3 ne both C

hour
 and C

minute
 as

elemental concepts, deriving from the built-in C
integer

:

 C
hour

 = (C
integer

, �, �) , C
minute

 = (C
integer

, �, �) . □

22

: 17
:

: 17

: :

: 8

:

: :

: 30

id tp
type time_point

id hour

thehour type hour

value

id mins17

theminutes type minutes

value

 
 
  
  
  
    

  
  
  
   

Fig. 3.2 SIL structure representing a time point of 8:30.

3.1.2 SIL Expressions

The above created set of SILdef concepts can be considered a passive, static
information skeleton, of which any part may be "instantiated", resulting in a so
called SIL expression. The following de3 nition formally describes such instances.

De! nition 3.4 (SIL expressions)
A SIL expression of an instance of the SILdef concept C is an ordered triple
I = I(C) = (D, C, E), where D is a unique identi3 er and E = { E

i
 } is a set of

edges. Each edge is an ordered pair E
i
 = (r

i
, I

j
) representing a relationship with

a (nested) SIL expression I(C
j
) via the r

i
 role. □

Let us make several observations regarding SIL expressions.

• Each instance I = I(C) must comply with its underlying SILdef concept
C. In other words, roles of I must be a subset of roles of C.

• It is reasonable that each of its edges leads to a unique instance.

• The instance may be subjected projection functions V(.), E(.), S(.), E*(.),
and V*(.) (see De3 nition 3.2) in such a way that these are applied to the
underlying concept C.

• SIL expressions are 3 nite because their leaves are instances of elemental
concepts, containing no further roles.

• Instance uniqueness is guaranteed by its identi3 er. From the technical
point of view, identi3 ers are best approached by direct memory pointers.

Example 3.3 (SIL expressions)
Pondering Fig. 3.2, we may recognize tp17, hour17, and mins17 as particular
identi3 ers for instances of the SILdef concepts C

time_point
, C

hour
, and C

minute
,

respectively. By no means we say, however, that the instance time17 is always
to have subinstances of both C

hour
 and C

minute
. According to De3 nition 3.4, any

concept of C
time_point

 is legally instantiated even if it has none of the possible
roles. As we will see later, any eventual ambiguity caused by a missing role may
be resolved by supplying default values. □

23

De! nition 3.5 (SIL expression projection functions)
Let I

i
 = (D, C, E) be a SIL expression. Instance I

j
 of role r

j
 can be extracted

from I
i
 as I

j
 = Π(I

i
 , [r

i
]) if it holds

 , if () (,)
(,[])

 , otherwise
j j i j j j

i i

I E E I E r I
I r

error

 ∈ ∧ =
Π = 



A path Π(I
i
, [r1, …, r

k
]) from instance I

i
 leads over roles r1, …, r

k
 to a single

SIL expression (accessible from within I
i
):

1 2 2 1

 , if 0
(,[, ,...,]) (,[,...,]) , if : (,[])

 , otherwise

i

i k j k j j i

I k
I r r r I r r I I I r

error

 =


Π = Π ∃ = Π



We furthermore say I
i
 is a parent of the SIL expression I

j
 if:

∃r
i
: Π(I

i
, [r

i
]) = I

j
 .

We say I
i
 is the root of the SIL expression I

j
 if:

∀I
j
 ∃r

1
, …, r

k
: Π(I

i
, [r

1
, …, r

k
]) = I

j
 .

Finally, let D(I) = D be a projection function to extract instance identi3 er. □

Example 3.4 (SIL expression projection functions)
Given the below SIL expression, we may access its particular instances as follows:

: 17
:

: 17
:

: 17
: : :

: 8

id time
type time

id tp
type time_point

id hour
thetimepoint thehour type hour

value

 
 
  
  
   
   
       

Π(time17, [thetimepoint]) = tp17 , and
Π(time17, [thetimepoint, thehour, value]) = Π(tp17, [thehour, value]) = 8 . □

There is an interesting property in the SIL formalism called the local closure
(lokale Abgeschlossenheit, in German). It forbids two unrelated SIL expressions
(e.g., user's two utterances) to have a common part. However, this reasonable
constraint has to be breached as soon as inevitably recurrent structures are
brought into play (covered later).

De! nition 3.6 (Local closure)
Let I be the root of a SIL expression. Also, let

1

*
1,...,

() ((,[,...,]))
k

i kd d
D I D I r r= ∪ Π

be the set of all identi3 ers used in I. Then I is locally closed if it holds

 ∀I', D(I') ∉ D*(I): D*(I) ∩ D*(I') = � . □

24

Before exemplifying, let us focus on another aspect of the SIL formalism,
particularly on SILdef relations. Relations represent knowledge on how de3 ned
concepts depend on each other, and eventually how new knowledge can be
inferred from existing one. Let us therefore summarize the characteristics of this
component in the following, rather informal de3 nition (more formally in [Eck95]).

De! nition 3.7 (Relations)
An n-tuple relation S

i
(x

1
, …, x

n
) = S

i
 ∈ S(C) is a projection χ such that χ: X

1
 ×

… × X
n
 → { fail, success }, where X

i
 is the domain of x

i
 for i ∈ { 1, …, n }. □

Let us make several observations regarding relations:

• Each parameter in the S
i
 relation takes on the form of a path.

• Mutual parameters are usually in a logical relationship rather than in
a functional relationship (i.e., they are best approached and further
handled using a Prolog-based interpretation system).

• The relation S
i
 is a local property of the concept C. The relation S

i
 is

evaluated by binding given parameters with instances accessible from
within the instance I(C) that triggered it.

• The application of S
i
 leads either to a "fail" or "success". The only side

eJ ect of a "successful" application may be newly bound variables (which
eventually may lead to instantiating inferred knowledge).

Relations are the building block of any (dialogue) system that is to incorporate
the SIL framework as a means for its knowledge representation.

Example 3.5 (Relations)
Let us extend the C

time_point
 concept de3 ned in Section 3.1 with a relation

S
hour_minute_time

 that composes the two currently separate pieces of information
(hour and time) into a single integer as: time = 100 · hours + minutes. By
a\ liating S

hour_minute_time
 to C

time_point
, we make it accessible for any other

concept that infers from C
time_point

. The relation synopsis may be de3 ned as
S

hour_minute_time
(Time, Hours, Minutes). If triggered on instance tp17 from Fig.

3.2 with parameters taking on the form

S
hour_minute_time

 ([tp17, cvalue] , [hour17, value] , [minute17, value]) ,

its application is "successful" with the new cvalue role of 830 being inferred (Fig.
3.3). For completeness sake, let us add that the cvalue role has been inherited
from the parent C

time_property
 built-in concept. Thus, although the relation had the

Time variable unbound at the beginning, it was capable to determine its value
given the remaining bound variables Hours and Minutes. In addition, given the
Prolog-like notion of relations, the natural result of applying S

hour_minute_time
 to

tp17 in Fig. 3.3 yields the same SIL expression and the relation 3 nishes with
"success". Analogously, it is possible to use S

hour_minute_time
 in the "reverse" way by

binding the Time variable, and asking about the Hours and Minutes variables.
Thus, each relation can be considered an implementation of a set of functions. □

25

3.2 Application 1: Utterance Semantics

3.2.1 Utterance Field Objects

SIL is capable to describe not only grammatically correct utterances but also
spontaneous, grammatically incorrect ones. In other words, it is possible to extract
and represent merely those units of user's utterance that can be considered
most consistent. The utterance can then be represented as a concatenation of
these partial pieces. We therefore introduce the so called utterance ! eld objects
(UFOs) which can cover a great part of spontaneous speech phenomenons, and
multiple UFOs to express the semantics of the whole utterance.

De! nition 3.8 (Multiple UFO, MUFO)
Let I

1
, …, I

n
 be roots of SIL expressions and D

1
, …, D

n
 identi3 ers. A multiple

utterance 3 eld object (MUFO) is

1
1

1

: : character_sequence
: ,

:

. . .

: : character_sequence
:

:
n

n

n

syntax string

semantics I

U

syntax string
D

semantics I

      
     

 =  
            

D

where I
i
 is the semantical representation of character_sequence

i
. A MUFO with

n = 1 is denoted as a single utterance 3 eld object (UFO). □

An example of MUFO that ful3 lls this de3 nition is shown in Fig. 3.4.
A dedicated position in the SIL formalism have co-referential expressions, as

in the fractional utterance "the train, which arrives in Erlangen at ! ve, departs
from Schwandorf". Obviously, the nested sentence "[train,] which arrives in
Erlangen at ! ve" extends properties of the train introduced in the primary
sentence. Provided that the parser can determine the train object once it has
encountered the conjunction "which", the utterance is described as shown in Fig.
3.5. This expression is essentially a composition of two separate SIL expressions,
each covering one of the two sentences in the utterance [Eck95]. The fact that
the primary and referred train objects are the same is caught by co-indexing
both of them by the same identi3 er, trn16.

The most notable point in describing co-references is that their resulting SIL
expressions are cyclic; for instance, Π(go16, [thevehicle]) = trn16 = Π(trn16,
[thedesc, thevehicle, thedesc, thevehicle]). This observation formally impacts

17 , : , : 830
: : 17 , : , : 8

: : 17 , : , : 30

id tp type time_point cvalue

thehour id hour type hour value

theminutes id mins type minutes value

 
    

    

:

Fig. 3.3 SIL expression time point 8:30 with cvalue property de3 ned.

26

some techniques presented thus far (e.g., an expression is now to have a set of
parents, instead of merely a single one). Elaboration of these impacts is beyond
the scope of this text and interested reader may refer to [Eck95] for more details.

3.2.2 Informational Content

Once we have the semantical representation of user's utterance conveyed by a
sequence of UFOs, we need to spot and extract those pieces of information that
are suitable for a given task or domain. In other words, we need to 3 nd the
contribution of user's utterance to the problem currently in question.

While this issue is sometimes considered already at lower processing phases
of the semantical interpretation, it turns out that this may not be the correct
approach, given that certain information conveyed in the natural speech may get
lost (especially as for partial UFOs). Therefore by taking this approach, user's
utterance may result in supplying no relevant information. This is the immediate
cause of all eventual contexts to put this utterance into, be already disposed.

It is therefore introduced the term eigen information (eigentliche Information,
in German) that delimits relevant pieces within the SIL structure. These pieces
are projected onto roles of a special-purpose SILdef concept that mediates the
transfer of them from the input semantics to the dialogue context (using transport
relations, e.g., S

equality
). More formally in the following two de3 nitions.

De! nition 3.9 (Eigen information, A-parameter)
The set of application-relevant values, A-parameters, is de3 ned as a set of roles
ψ

1
, …, ψ

n
 of the concept C

ψ
 ∈ C, along with C

ψ
-a\ liated relations to determine

their corresponding values. These resulting values are then holders of eigen
information in a particular domain. □

De! nition 3.10 (Eigen information extraction)
Let I be a SIL-expression and I

ψ
 = I(C

ψ
) = Π(I, [r

1
, …, r

j
]) be an instance

accessible from within I. Then eigen information contained in I can be retrieved
as ψ(I) = ∪

(i)
〈 ψ

i
, Π(I

ψ
, ψ

i
) 〉. □

Obviously, ψ(I) represents the set of parameter-value pairs. In the special
case of I containing no instance of C

ψ
, the set ψ(I) is empty, implying I contains

no eigen information. Last but not least, the A-parameters themselves can be
used to measure the understanding capabilities of a given system.

3.3 Application 2: Dialogue Context

Up to this point, we have concerned ourselves with de3 ning the SIL formalism
from the semantic information representation point of view. Beginning with this
section, it will be shown how this general framework may be used to process
sequential user's utterances. We will 3 rst start with merely a single fully speci! ed
utterance, i.e. an utterance that is not ambiguous and whose content can thus
be clearly determined. Afterwards, we will show how a context may be modeled,

27

1

2

: : to Erlangen

: 17
:

: 17:
:

: 17
: : : :

: Erlangen

:

:

syntax string

id go
type go

id locufo
type location

id city
semantics thegoal thecity type city

value
U

syntax s

ufo

=

                               
: at eight o'clock

: 17
:

: 17
:

: 17
: : : :

: 8

tring

id time
type time

id hp
type hour_point

id hour
semantics thehourpoint thecity type hour

value










                                         





















Fig. 3.4 MUFO example.

: : the train, which arrives in Erlangen at five, departs from Schwandorf ,

: 16 , :
: 16 , :

: 116 , :
: : 16

: : :

syntax string

id go type go
id trn type train

id go type go
thevehicle id trn

U
semantics thevehicle thedesc

=

  

 
: Erlangen

: 500

: Schwandorf

thegoal

thegoaltime

thesource

 
                                            

Fig. 3.5 SIL co-referential expression.

: 43 , :
: : 43 , : , : Erlangen

: 43 , :
: : 43 , : , : Erlan

([43], [43, ,])
inverse

id go type go
thegoal id loc type location value

id go type go
thegoal id loc type location value

S go go thejourney thejourneyevent

 
    

+

↓

gen

: 43 , :
:

: : 43 , : 43

: 43 , :

([43, , ,], [43,])
equality

id sjn type single_journey
thejourney

thejourneyevent id go type go

id go type go
thegoal

S go thejourney thearrival theplace go thegoal

 
            

+

↓

: : 43 , : , : Erlangen

: 43 , :
: : 43 , : 43

: 43 , :: :
: 43

id loc type location value

id sjn type single_journey
thejourneyevent id go type go

id arr type arrivalthejourney thearrival
theplace loc


               






 
 
 

Fig. 3.6 S
inverse

 relation application example.

28

given a sequence of user's utterances. Finally, we will return to the ambiguous
utterances problem and revise our approaches to accommodate the solution. At
the end of this chapter, our investigation will therefore result into a representation
of a general (collaborative) dialogue context.

3.3.1 Elaborating User's Utterance Semantics

As outlined above, let us 3 rst start with showing how a single utterance needs to
be handled in order for it to be further processable in the dialogue context scale.
The approach presented here uses elemental and locally operating relations,
de3 ned and exempli3 ed in Section 3.1.2. To describe the approach, let us 3 rst
categorize each relation, based on its purpose in the system:

• Necessary processing relation represents an axiom or theorem valid
for a given environment. For instance, time information of seventeen
ten may be generally split into hour and minute values (and this way
C

time_property
 upcasted to C

time_point
), and vice versa (downcasting; see also

Fig. 3.3).

{ }17 17 : 10
10

hourseventeen ten
minute

=⇔ ⇔=

• Default-value relation supplies a default value for a particular unde3 ned
concept role, reducing the degree of freedom of an underspeci3 ed object.
In other words, this kind of relation may be considered describing
common knowledge. For instance, time information of thirteen o'clock
may be explained by the system as a demand to set minutes = 0.

{ }13 13 : 00
0

hourthirteen
minute

=⇔ ⇔=

• Identi! cation relation (S
equality

) is to extend one object with another by
establishing a reference to it. In the following example, the identi3 cation
relation assures a propagation of the built-in thegoal role value to the
thearrival custom role.

: 33 , :
: : 33 , : , : Erlangen

([33, , ,], [33,])

: 33 , :
: : 33 , : ,

equality

id go type go
thegoal id loc type location value

S go thejourney thearrival theplace go thegoal

id go type go
thegoal id loc type location

 
    

+

↓

 : Erlangen
: 33 , :

: : 33 , ::
: 33

value

id sjn type single_journey
thejourney id arr type arrivalthearrival

theplace loc

 
               

29

• Recurrent identi! cation relation (S
inverse

) is to create cyclic structures,
required to properly represent utterances with cross- and co-references.
The example in Fig. 3.6 shows an application of the S

inverse
 relation to

create a co-reference (middle structure), followed by application of the
above already shown S

equality
 relation (bottommost structure).

These kinds of relations in fact describe the whole interpretation mechanism.
Their particular order in the list represents their importance in the interpretation
frame (thus for instance, no default-value relation must be used as long as there
are necessary relations 3 red).

De! nition 3.11 (Inferrention)
Let C be a SILdef concept hierarchy and I = I(C) an instance of concept C ∈ C.
The inferential step I → I' is achieved using relation S ∈ S(C) whose side eJ ect
causes a role from I to be bound (I' ⊃ I). In addition, we say I is maximally
inferred if ∀S ∈ S(C): I → I. We say I* is the maximal interpretation of I if I* is
maximally inferred. □

Apparently, for each SIL-expression I = I(C) there exists its maximal
interpretation I* resulting from the application of relations S

1
, …, S

n
 such that

1 2 * ' ... nSS S
I I I→ → → .

Assuming I is the root of user's particular utterance, then by maximally
interpreting it, we have brought it to the stable state from where no further
knowledge can be inferred. Of course the validity and entirety if this inferrention
is not guaranteed by the SIL framework itself but is always implied from and
dependent on a given design of a particular domain. We may call this the
"consistency" - the system of rules is "consistent" as long as its underlying set
of relations is neither underspeci3 ed (some real world objects relationships are
ignored) nor over-speci3 ed (some real world relationships work against each other).
Despite this is an important aspect in properly designing a SIL-based system,
we will leave this topic out due to space reasons. An interesting discussion on
impacts and recovery from both of these special cases may be found in [Eck95].

3.3.2 Representing Dialogue Context

The above outlined interpretation mechanism easily allows user's utterance to
achieve a stable expanded state using a set of relations. It is important to
note that this expansion is strictly monotonous, meaning no modi3 cation nor
negation can be considered. During the course of a dialogue, on the other hand,
informational state on either partner's side may be modi3 ed or retracted. The
monotonous interpretation therefore turns out to provide a too weak approach
for a dialogue context representation and needs to be further revised in order to
accommodate the mentioned dialogue phenomena.

To overcome the implied monotony, it is introduced the so called interpretation
worlds. This new axis sets each incoming utterance into its "own" interpretation
world where it can be elaborated in a monotonous way. Using this approach, no

30

object is necessary to be modi3 ed, retracted, or even negated (as by committing
any of these operations would cause the whole sequence knowledge to cease to
be valid). Using a new blank world, the utterance maximal interpretation can be
determined without clashing with any of the previous interpretations.

Interpretation worlds are stacked onto each other. By elaborating an utterance
in its own world, a new view is made and incorporated into the knowledge base.
The current state of a dialogue can then be determined by projecting these
layers, making sure that recent objects always hide older ones.

The stacked structure exposes the following apparent properties.

• The set C of SILdef concepts is located at the bottom of the stack and
constitutes the so called basic view. In this basic view, apparently no
new instances are created - it serves merely to describe the real world
objects and their relations. Once this world has been initialized at the
beginning, it remains unchanged until the end of the dialogue.

• A world always inherits all objects (along with their mutual relations)
from the world laying beneath it. In the simplest case, if an object has a
particular role value unde3 ned, the projection process makes sure that
it receives a value from the top-most "compatible" object - we say the
objects are uni! ed. Obviously, the case of binding unde3 ned and de3 ned
role values is merely a special case of extending one value with another.
This more general case arises, for instance, when precising one time
information ("tomorrow") with another ("morning") to assign the result
to the object corresponding role ("tomorrow morning"). At this point,
let us recall that we assume here user's fully speci3 ed utterances with
no ambiguities; the determination of meaning of underspeci3 ed objects
will be covered in the next section, and in more detail then in [Eck95].

• Instances in a given world always overlay incompatible instances in
the world beneath it. We may call such two incompatible instances
"concurrent". Concurrent instances usually occur when the user corrects
previously wrong understood piece of information. This correction
involves the rejection of the actual interpretation, implying no previous
information must be used.

Example 3.6 (Compatible objects)
To illustrate the idea of "stacked worlds", ponder the dialogue snippet shown
below (adopted from [Eck95]). In utterance U

1
, the instance go1 with the role

thesource is created with Bonn as the determined place of departure (see Fig.
3.7 and Fig. 3.8). After interpreting U

2
, a new world with the instance go2 is

created with the description of the place of arrival. Finally, once interpreted U
3

in another new world, there are three compatible go-typed objects that can be
uni3 ed in order to put all three originally separated pieces of information into
perspective (the user wants to go from Bonn to Erlangen at eight o'clock).

U
1

I want to go from Bonn.
S

1
From Bonn. Where do you want to go to?

U
2

To Erlangen.

31

unification

unification

view1

view2

view3

loc1
city1

Bonn

go1
loc1

city1

Bonn

thesource thecity

value

go2

loc2 city2 Erlangen

loc1
city1

Bonn

go3

loc2 city2 Erlangen

thegoal

thecity value

time3
hp3thesourcetime

thehour

8

value

Fig. 3.7 Compatible objects example.

1

1

1 1

: : from Bonn

: 1 , :
: 1 , :

:
: : 1 , ::

I want to go from Bonn.

From Bonn. Where do you want to go to?

:

:

: :

syntax string

id go type go
id loc type location

semantics
thesource id city type citythecity

value

U

S

view ufo

  

2

2

2

2

: Bonn

: : to Erlangen

: 2 , :
: 2

:
:

To Erlangen.

At what time do you want to go to Erlangen?

:

:

:

:

syntax string

id go type go
id loc

semantics
thegoal

U

S

ufo

view

  
                        

  

1

 , :
: 2 , ::

: Erlangen

: : from Bonn

: 1 , :
: 1 , :

:
:

:

:

type location
id city type citythecity
value

syntax string

id go type go
id loc type location

semantics
thesource ithecity

ufo

 
                  

  

3

3

2

: 1 , :
: Bonn

: : eight o'clock

: 3 , :
:

:
:

At eight o'clock.:

:

:

d city type city
value

syntax string

id go type go
id

semantics
thesourcetime

U

ufo

view

 
 
 
 
 
 
  
                        

  

2

3 , : , : 800
: 3 , ::

: 8

: : to Erlangen

: 2 , :
: 2 , :

:
:

:

tp type time_point cvalue
id hour type hourthehour
value

syntax string

id go type go
id loc type locat

semantics
thegoal

ufo

 
                  

  

1

: 2 , ::
: Erlangen

: : from Bonn

: 1 , :
: 1 , :

:
: : 1 , :

:

ion
id city type citythecity
value

syntax string

id go type go
id loc type location

semantics
thesource id city typthecity

ufo

 
                  

  

:
: Bonn

e city
value

 
 
 
 
 
 
 
 
 
 
 
 
                          

Fig. 3.8 Compatible objects interpretation worlds

32

overlay

go2 loc2
city2

Nürnberg

thesource thecity

value

go1
loc1

city1

Bonn

thesource thecity

value

view1

view2

Fig. 3.9 Incompatible (concurrent) objects example.

1

1

1

: : from Bonn

: 1 , :
: 1 , :

:
: : 1 , ::

: Bonn

I want to go from Bonn.:

:

:

syntax string

id go type go
id loc type location

semantics
thesource id city type citythecity

value

U

S

view

                     

2

2

: : from Nürnberg

: 2 , :
: 2 , :

:
: : 2 , ::

: Nürnberg

Do you want to depart from Bonn?

From Nürnberg.:

:

syntax string

id go type go
id loc type location

semantics
thesource id city type citythecity

value

U

view

  


  
   

 
           

Fig. 3.10 Incompatible (concurrent) objects interpretation worlds.

S
2

At what time do you want to go to Erlangen?
U

3
At eight o'clock. □

Example 3.7 (Concurrent objects)
A simple example is shown in Fig. 3.9 with the simpli3 ed resulting structure
depicted in Fig. 3.10 (adopted from [Eck95]). In view2, the role thesource of
the instance go2 was assigned a new value. Therefore from now on, the instance
go1 in view1 is overlaid and inaccessible whenever targeted via [go, thesource,
thecity, value] - the new value Nürnberg will be used instead. □

3.3.3 Disambiguing User's Utterances

Once we have seen how user's fully speci3 ed (i.e. unambiguous) utterances
are represented in the form of stacked worlds, we need to further extend this
approach by allowing for processing of elliptical (i.e. ambiguous) utterances.

In a dialogue system, the processing of elliptical utterances is a crucial feature
as such utterances are very often spoken by users: for instance, being asked for

33

the departure time by a timetable dialogue system, the user may simply respond
"at ! ve", instead of "I want to depart at ! ve". Hence, there are two essential
questions at this point: how can be SIL applied to predict actual context for a
response, and how can such prediction be further used to resolve user's elliptical
utterances. Before answering either of them, let us summarize our problem in the
following two de3 nitions.

De! nition 3.12 (Interpretability)
We denote an utterance I as interpretable if it conveys any eigen information, i.e.
it holds that ψ(I) ≠ �. □

De! nition 3.13 (Disambiguation)
An utterance I can be disambiguated using a dialogue context I

c
 if I on its own is

not interpretable but in conjunction with I
c
 yields an unambiguous interpretation:

 ψ(I) = � ∧ ψ(I
c
) = � ∧ ψ(I ∪ I

c
) ≠ �. □

Typically, disambiguing an utterance I using a dialogue context I
c
means

making I accessible from within I
c
. That is, I

c
 can be understood as the logical

surrounding of I:

∃s
1
, …, s

k
: Π(I

k
,[s

1
, …, s

k
]) = I .

To demonstrate the principle, ponder Fig. 3.11 in whose upper part (a), user's
fully speci3 ed information "departure at ten" is shown. In this case, the user
not only supplies the particular time information (at ten) but also narrows its
scope to departure. Reversing our thoughts, should the user say merely "at ten"
(utterance I with ψ(I) = �) at the moment the system asked for a departure
time (context I

c
 with ψ(I

c
) = �), user's response could be explained as conveying

departure time (because ψ(I ∪ I
c
) ≠ �). This leads to the SIL-expression (b)

that is the result of replacing the particular time information with a placeholder,
or formally anchor point (Ankerpunkt). Technically, the placeholder I

a
 = tp45

of type C
time_point

 is instantiated but does not contain any speci3 c roles nor
meaningful value. More importantly, it is compatible with any upcoming elliptical

: : departure at ten

: 45 , :()
: 45 , ::

:
at ten

: : departure at < >
() :

:

syntax string

id dep type depart
a

id tp type time_pointsemantics
thetime

syntax string

b id
semantics

               
  timePlaceholder

45 , :
: : 45 , :

: : at ten

: 61 , :()
: : 61 , ::

: 10

dep type depart
thetime id tp type time_point

syntax string

id tp type time_pointc
semantics id hour type hourthehour

value

 
         
               

Fig. 3.11 SIL-based disambiguation; (a) fully speci3 ed information, (b) system expectation,
(c) result of disambiguation.

34

time concept, and can therefore be uni3 ed with I = tp61 shown in (c). We call
such kind of uni3 cation anchoring (Verankerung) and will say that I has been
anchored in context I

a
. From this perspective, the process of anchoring can be

perceived as prepended to the utterance interpretation step (covered in Section
3.3.1), as depicted in Fig. 3.12.

Over the course of a dialogue, there of course may be multiple dialogue contexts
candidates I

C1
, …, I

Cn
 that correspond to diJ erent anchorings. Application of any

of these contexts must naturally result into a unique set of eigen information, i.e.

∀I: ψ(I
Ci
 ∪ I) ≠ � ∧ ψ(I

Cj
 ∪ I) ≠ � → ψ(I

Ci
 ∪ I) = ψ(I

Cj
 ∪ I) .

The process of anchoring can therefore be summarized as follows [Eck95]:

• Isolately interpretable utterances (with ψ(I) ≠ �) do not need to be
anchored.

• Only non-leaf concepts may serve as anchoring points (e.g., C
location_property

in Fig. 3.1). Contrarily, leaf concepts cannot be used as anchoring points.

• The process of anchoring is possible by instantiating a virtual context
whose description contains an empty information (placeholder) expected
in the very next user's utterance. Once supplied, the elliptical concept
then takes on the corresponding role within the virtual context.

3.4 Application 3: System Utterance Semantics

Receiving user's turn, the dialogue manager constructs a set of the so called
moves, i.e. possible continuations in the dialogue with respect to its current
state. Each of the moves is to inform the user about certain conceptual content.
Therefore each such move has assigned the communicative purpose indicated
by a particular dialogue act label, while the conceptual content is indicated
by a reference to the dialogue context. Consider the sentence "You want to
travel from Schwandorf to Erlangen. What time do you want to travel on?",
consisting of two moves, each expressed using its own UFO:

1

2

: 4
: 2

: 5
: :

: 1
: : : Schwandorf

: Erlangen

: 6
: :

: 1
: :

id ufo
card

id ufo
dialogue dact confirm

id dbtrain

ufo semantics sourcecity

goalcity

id ufo
dialogue dact open_request

id dbtrain
ufo semantics

thesou

 
            

  

: : 6 , :rcetime id tp type time_point

 
 
 
 
 
 
 
 
                 

The 3 rst move (ufo1) intends to con3 rm the departure and arrival cities
(dialogue act con! rm, and conceptual content targeting the two cities in the

35

dialogue context), while the second move (ufo2) aims to elicit the departure time
(dialogue act open_request, and instance tp6 with unde3 ned value).

Provided the abstract description of the intents in a system utterance, the next
step is the production of the system utterance semantics itself. Simple planning
rules are used to specify the type of semantic description to be extracted from
the dialogue context. For example, ufo1 triggers a rule which is to describe a
number of objects, O

1
, …, O

n
 (in our case n = 2) that in the simplest case have a

common parent object O
p
. The resulting description is then the SIL representation

of O
p
 that contains sub-descriptions for all of O

1
, …, O

n
. The production of the

SIL representation is driven by a grammar-lexicon. The underlying algorithm
can be understood as the process of 3 nding a lexical candidate that best matches
the input, and then recurrently generate its arguments.

Example 3.8 (Utterance semantics production)
Fig. 3.13 shows an example of a lexicon entry for the C

arrive
 SILdef concept.

Given the inheritance paradigm, this entry is applicable for any instance that is
of or derives from C

arrive
. Naturally, in derived concepts, the descriptive content

may be overridden. For instance, while it is reasonable to use the verb "go" when
expressing surface traveling, it is more appropriate to substitute it with "" y"
when speaking about 6 ying. This may be captured by two sibling concepts, both
inheriting a shared part from C

arrive
. In the case of C

arrive
, this shared part are

the syntactical arguments, each of which with its own syntax, semantics, order
(to indicate the surface position with respect to the head, i.e. "lexical parent"),
etc. For instance, theplace argument is optional and can occur at any position
after the head. □

Youd and McGlashan [You92] further describe the application of the SIL
formalism as a means for utterance production. The impacts on and implied
feedback to the dialogue manager module are then further discussed in [Eck95].

3.5 Summary

This chapter conceived with the Semantic Interface Language (SIL) formalism.
With roots in the SUNDIAL project [Fra93], SIL was developed as a methodology
for modeling semantic contents with focus on its use to be maximally application-
and language-independent. To prove the universality of the formalism, three
possible applications comprising diJ erent parts of a dialogue system were
presented in this chapter: utterance semantics (original aim of SIL), dialogue
context representation, and 3 nally system utterance production.

Utterance ambiguous? Anchoring in
dialogue context

Utterance
interpretation

Semantic
concepts

yes

no

Fig. 3.12 Utterance processing with and without dialogue context.

36

:
: : v

: : : n

::
:

:
: :

:

: : : prep(at)

::
: :

:

lexeme arrive

head major

syntax head major

id A
semantics

type object

dir pre
order adj any

opt oblig

syntax head major

id B
semantics

syntax type locati

args 〈

         
  
  
  
  
  

:
: :

:

: : : prep(at)

::
:

:
: :

:

on

dir post
order adj any

opt opt

syntax head major

id C
semantics

type time

dir post
order adj any

opt opt

〉

 
 







  
         

   
   
   
  

            
  
  
      

: : G
:

::
:

::
:

::
:

semantics id
type arrive

id A
thetheme

type object

id B
theplace

type location

id C
thetime

type time

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
   
     

  
    

   
      






























Fig. 3.13 A lexicon entry for the C
arrive

 SILdef concept.

37

Chapter 4

daisy Dialogue Management
Framework

In this chapter, the Daisy dialogue management framework, developed during
the study, will be presented in detail. The framework has been designed to
provide (a priori) uni-modal support for dialogue management, however,
additional modalities can be intuitively added by simply incorporating them into
particular dialogue plans. The framework follows an agent-based approach in
which the dialogue model is explicitly represented in agent's plans and beliefs.
The dialogue agent uses its beliefs to maintain information about the dialogue,
including dialogue history and the salient list, as well as the domain-speci3c
knowledge. Plans then govern the interaction with both the user and other parts
of the system.

This chapter begins with arguing for the decision for the agent-based
approach to dialogue management. The description of the framework itself then
begins with presenting the representation of the real world dialogue environment
that has been to an extent motivated by the SIL formalism [Eck95, Fra93]. The
remainder of the chapter then thoroughly concerns with the dialogue processing
as it occurs in the Daisy framework. The description can be informally divided
into three major parts targeting agent's beliefs, intentions, and desires. The
investigation is enriched with sample dialogue snippets to illustrate problems in
question as they arise at diJ erent stages of the dialogue processing.

4.1 Reasons to Opt for Agent-based Approach

As discussed in Chapter 2, most of business applications are focused on practical
tasks, as for instance telephone-based information inquiry or booking of diJ erent
kinds. These applications employ relatively simple dialogue models, in which the
dialogue state may be well modelled using 3 nite state machines or a hierarchy

38

of frames. Nonetheless, state-based dialogue models are very limited because of
their in6 exibility and high costs required to overcome this constraint. Although
this signi3 cant limitation is addressed by frame-based dialogue models, also
they suJ er from diJ erent disadvantages. One of them is the lack of modularity –
principles that model the intended dialogue behaviour cannot be shared, unless
they exist in duplicitous instances. In conjunction with stochastic approaches, all
of these dialogue models have one in common: they are di\ cult to extend, e.g.
with another task or another common behaviour.

Using this method of exclusion, the agent-based approach seems to be of the
best usability with respect to creating a general-purpose dialogue environment,
as was the goal. The essential notion of an agent also 3 ts the needs of a dialogue
management in a natural way. In particular, the dialogue is supposed to be
mainly user-driven. Nonetheless, system initiative is also essential in order
to clarify user's requests. Hence, from the agent's point of view, the dialogue
management requires some degree of pro-activeness to recover from errors, and
at the same time also reactiveness to ful3ll user’s requests. The fact of having
to be pro-active as well as reactive in diJ erent situations to meet the dialogue
objectives is a signi3 cant sign to opt for an agent-based approach, speci3cally
the BDI architecture (Section 2.3.4). Another bene3 t of taking this course is
the possibility to decompose a system into a set of autonomous, specialized
agents, each dedicated to handle a certain isolated part of the system, as for
instance shown in [Tur05, Ngu06b]. Last but not least, unlike with frame-based
or stochastic approaches, agent's behaviour can be well controlled and eventually
reused between diJ erent applications, as for instance shown in [Gus03, Tur05].

4.2 Domain Data Model (DDM)

To begin our investigation of the Daisy framework, let us 3 rst introduce a way
of de3 ning the "static" part of a domain, in charge of structuring agent's beliefs
– the domain data model (DDM). From a certain point of view, DDM can be
understood as a modi3 ed CoreSIL. The common goal of these two approaches
is to model (a subset of) the real environment using a network of interconnected
concepts. The essential distinction is, however, that while in SIL these concepts
take on some inherited meaning along with corresponding taxonomy, in DDM
these concepts are of a purely "data-centric" notion with any meaning being
given to them no earlier than within a particular plan instance.

The loose coupling of data and meaning allows for creation of explicit and
strongly tied structures of information. We call these structures collections.
The purpose of a collection is to group "similar" pieces of information, this way
allowing for more sophisticated dialogue processing at later stages.

This section covers the de3 nition and syntax of DDM. Despite all distinctions,
DDM may be well described in a very similar fashion like CoreSIL. Given this
fact, some of the upcoming de3 nitions will merely slightly diJ er from those
already encountered in Chapter 3. However, the main distinction will be in
de3 ning the model not only from the elemental concepts standpoint but also
from their grouping collections standpoint.

39

De! nition 4.1 (DDM concept, DDM collection, and data type)
Let C be a set of domain data model (DDM) concepts. A DDM concept, C ∈
C, is identi3 ed by its domain-wide unique name and has no further parameters,
i.e. C

name
 = ().

Let K be a set of domain data model collections. A DDM collection, K ∈
K, is identi3 ed by its domain-wide unique name and represented as an ordered
triple K

name
 = (C, E, T), where C = { C

i
 } is a non-empty set of DDM concepts,

E = { E
i
 } is a set of edges to parent DDM concepts, and T is a data type for

each DDM concept C
i
 ∈ C to hold. Furthermore, an edge E

i
 ∈ E is an ordered

pair E
i
 = (C

i
, R

i
), where C

i
 is a DDM concept, and R

i
 ∈ N+ is the maximum

cardinality of K
name

 with respect to C
i
.

A data type, T
i
= { f

j
 }, is a set of functions that completely and unambiguously

de3 ne the range and operations with an eigen information ψ
i
. □

Before exemplifying, let us point out several characteristic about DDM
concepts and collections:

• Concepts represents real-world or abstract objects. Each concept is an
exclusive part of its containing collection. For instance, given that a train
and bus are two similar real world objects intended for transportation,
both may be groupped under a transportation means collection and
cannot be members of any other collection.

• Concepts contain subcollections. This recurrent pattern is further
constraint by each concept being allowed to contain at most one collection
of a given name.

• Each edge is assigned a cardinality resembling an "ERA model-like"
relationship "1:1" or "1:N" (the remaining relationships, "N:1" and "M:N",
are performed as needed automatically by the framework over the course
of a dialogue).

Example 4.1 (DDM concepts and DDM collections)
To demonstrate the DDM terms, let us revisit the time point object we already
encountered in Example 2.1 when examining the SIL formalism. Recall that a
time point is speci3 ed by its particular hour and minute information. A time
point DDM concept is identi3 ed by its DDM-wide unique name, i.e.

C
time_point

 = () .

It is reasonable for us to de3 ne the C
time_point

 concept as an exclusive part of the
K

time_point
 collection. This collection contains no other concepts, i.e. C

time_point
 is

not collectible with any other object:

(, ,)
({ },

,

)

time_point

time_property

K C E T

C

=
=

∅
∅

40

The name of the collection has been chosen identical with the concept name,
which is not in contradiction with the demand on uniqueness among all collection
names. The collection currently has no parents, and no type (as apparently the
essential information is the hour and minute).

The hour and minute information is de3 ned by the K
hour

 and K
minute

collections
containing the only C

hour
 and C

minute
 concepts, respectively. Given that both of

the pieces of information are of a discrete nature, they can be represented by
the built-in T

ordinal
 data type (equivalent to C

integer
 concept found in SIL). Finally,

the name of the "time point" suggests it contains at most one piece of hour and
minute information, leading to both of these being bound with a "1:1" relationship
to the C

time_point
 concept:

({ }, ({ },
{ }, { },

),)

hour hour minute minute

time_point time_point

ordinal ordinal

K C K C

E E

T T

= =

Finally, the resulting K
time_point

 collection may graphically be depicted as:

M in u t e

ORDINAL
1

H ou r

ORDINAL1T im eP oin t

 □

To further handle DDM contents, let us de3 ne several projection functions
analogous to their SIL counterparts.

De! nition 4.2 (Projection functions)
Let K = (C, E, T) be a DDM collection. Let then C(K) = C be the set of
concepts, E(K) = E the set of edges to parent concepts, and T(K) = T the type
of information each concept is to hold. In addition, let C be a DDM concept.
Let then K(C) = K: C ∈ C(K) be the reference to the collection K that contains
the concept C, and P(C) = { K

i
: (C, R

j
) ∈ E(K

i
) } the set of all subcollections

directly accessible from C. Let further be

*

()*
()

* *

()

 () (()) , if ()
()

 , else

() ()

i

j i

jK P C
C C K

C C K

P C P C P C
P C

P K P C

∈
∈

∈

 ∪ ≠ ∅
= 

 ∅

=

∪

∪
a set of all subcollections recurrently available from concept C and collection K,
respectively. Finally, each projection function f which is applicable to collection
K is applicable to a concept C ∈ C(K) using f(C) = f(K(C)). □

Before exemplifying, let us de3 ne three key components of the DDM: root,
topics, and paths, all of which will be extensively used at diJ erent stages of the
dialogue processing. The root is, presumably, the "starting point" of the model

41

from which any other concept may be addressed. However, at most of the times,
the root will be considered a rather logical unit of its own existence instead of a
physically present entity. The collection K

time_point
 from Example 4.1 is therefore

not to be taken as the root of the DDM (the upcoming Example 4.2 will show it).
A topic is supposed to be tightly related with a certain task in a dialogue

system (or generally a set of similar tasks). Such task may be, for instance,
providing information on departure times, in case of a timetable dialogue system.
The notion of a topic is therefore to serve as a representative of a given task
while grouping its related information. This ambiguous usage has already been
proposed in [Rei81]. Apparently, the properties of a topic are best approached by
a root-bound collection within the DDM. The collection K

time_point
 from Example

4.1 is therefore a topic (see also upcoming Example 4.2).
A path takes on an identical notion like a path in SIL, i.e. its ultimate

purpose is to address a particular DDM collection or concept. However, unlike
with SIL, there are two distinct and non-interchangeable kinds of paths: one
addressing the DDM itself, and another addressing DDM expressions (covered
next). The following two de3 nitions formalize all of the presented terms (except
for expression paths), i.e. paths, topics, and root.

De! nition 4.3 (DDM path)
Let C be a set of DDM concepts. A concept C

T
 is immediately targeted from a

source concept C
S
 if there exists exactly one edge E

i
 such that

 { [,] } , if (,) ()
(,)

 , otherwise
S T i S i T

S T

C C E C R E C
C C

error

 ∈
Π = 



A concept C
T
 is addressable from a concept C

S
 if K(C

T
) ∈ P*(C

S
), i.e. if there

exists a set of distinct paths over concepts C
1
, …, C

N
:

1 1 1 1

1

1 1

[, ,..., ,] : (,) ()
(,) {2,..., } : (,) ()

(,) ()

S N T S

S T i i i i

N N N T

C C C C E C R E C

C C i N E C R E C

E C R E C
−

+ +

 ∈ ∧
 

Π = ∀ ∈ ∈ ∧ 
 ∈ 

Let K be a set of DDM collections. A collection K
T
 is addressable from a

collection K
S
 if there exists a set of distinct paths over collections K

1
, …, K

N
:

1
1[, ,..., ,] (,)

(,) [, (),..., (),]
S N T S T

S T S N TC C C C C C
K K K K C K C K

∈Π
Π = ∪

where C
S
 ∈ C(K

S
) and C

T
 ∈ C(K

T
). □

De! nition 4.4 (DDM root and DDM topic)
We call the DDM root a collection ρ = K

ρ
 = ({ C

ρ
 }, �, �). We call a DDM

topic a collection τ = K
τ
 = ({ C

τ
 }, { E

ρ
 }, �). □

Example 4.2 (Projection functions, topic, and DDM paths)
Ponder the timetable domain data model in Fig. 4.1. It shows that a given
timetable schedule consists of bus and train connections. Each of these connections
departs and arrives at a particular time point, modeled by the above C

time_point
.

42

Notice the cardinality of 3 in E(C
timetable

, 3). It is to limit the maximum number
of connections that are actively dealt with (and possibly presented to the user) in
a given task. All other edges are left to their expected "1:1" relationships.

It holds that C(K
connection

) = { C
bus

, C
train

 }, i.e. the set of connections is
generally a mixture of buses and trains, i.e. buses and trains are collectible.
For C

train
 it holds that P(C

train
) = { K

arrival
, K

departure
 }, i.e. both K

arrival
 and

K
departure

 are direct subcollections of C
train

. Furthermore, for K
connection

 it holds
that P*(K

connection
) = P*(C

bus
) = P*(C

train
) = { K

arrival
, K

departure
, K

time_point
, K

hour
,

K
minute

 } are subcollections of K
connection

.
The root ρ is explicitly shown in this example. The DDM has a single topic,

τ = τ
timetable

 = K
timetable

, leading currently merely to information on connections
K

connection
. Given the absence of meaning, this topic may be used by multiple tasks

focused on providing timetable information (e.g., departure times, arrival times,
route planning, etc.). Let us recall that the DDM is necessary to be understood
as a purely passive component that only describes how domain objects (real or
abstract) relate to each other.

There are two paths from K
connection

 to K
time_point

: ∏(K
connection

, K
time_point

)
= { [K

connection
, K

arrival
, K

time_point
], [K

connection
, K

departure
, K

time_point
] }. Furthermore,

it holds that | ∏(K
timetable

,K
hour

) | = 2 = |{ [K
timetable

, K
connection

, K
arrival

 /
K

departure
, K

time_point
, K

hour
] }|, whereas | ∏(C

timetable
, C

hour
) | = 4 = | { [C

timetable
, C

bus
 /

C
train

, C
arrival

/C
departure

, C
time_point

] } |. □

Finally, to facilitate further use of the DDM, let us make several assumptions
about its structure, guaranteeing the resulting DDM to be correct.

De! nition 4.5 (Correct DDM)
Let K be a set of DDM collections, and C be a set of DDM concepts. We say
the DDM consisting of K and C is correct if all of the below conditions are met:

• All concepts within a collection K Î K are either leaves or "intermediate":

 () , if () , i.e. is intermediate,
() :

 () , if () , i.e. is leaf.i

P Ci P K K
C C K

P Ci P K K

 ≠ ∅ ≠ ∅∀ ∈  = ∅ = ∅

Criterion
UTF8_STRING

1

Timetable
1

Discount
ORDINAL

3

Class
ORDINAL

1
Coach

20
Type
UTF8_STRING

1

Price
FLOAT1

1

Departure
1
1

City
UTF8_STRING1

Location
1
1

Minute
ORDINAL1

Hour
UTF8_STRING

1

TimePoint
1
1

Arrival

1
1

Conn:Train

Conn:Bus

3

1
Ticket1

ρ

Fig. 4.1 Simpli3 ed timetable domain data model.

43

• Each eigen information (see De3 nition 3.9) is stored exclusively in leaf
collections, i.e. it holds

∀K
i
 ∈ K: T(K

i
) ≠ � → P(K

i
) = � .

• Each two path alternatives between distinct collections K
i
 and K

j
 are

mutually non-uni3 able, i.e. no alternative emerged from another by
omitting one or more of its "intermediate" collections.

• The resulting structure is an acyclic graph. □

It can be easily prooved that the DDMs from Example 4.1 and Example 4.2
conform to the de3 nition of correctness.

4.3 DDM Expressions

A correct DDM can be instantiated as the so called DDM expressions (compare
with principles in SIL). Given the new informational axis (collections), DDM
expressions need to be covered from both concepts and collections point of view.
Provided that no concept features any taxonomy, DDM expressions are de3 ned
as not necessarily having to follow the exact structure of their underlying model.

De! nition 4.6 (DDM expression)
We call a DDM expression an instance I = I(C) of a DDM concept C, or an
instance Y = Y(K) of a DDM collection K. An instance of a concept C is an
ordered triple I = (D, C, X), where D is a unique identi3 er and X is a value
of type T(C). An instance of a collection K is an ordered triple Y = (K, I, F),
where I = { I

i
 } is a non-empty set of instances of concepts C

i
 ∈ C(K), and F =

{ F
i
 } is a set of edge instances F

i
 = (E

i
, I

i
) = ((C

i
 , R

i
), I

i
) each of which leads

to a recurrently accessible parent concept instance I
i
 , i.e. F = { F

i
: K ∈ P*(C

i
) }.

Furthermore, the following constraints apply to each DDM expression:

• The number of concept instances within a collection satis3 es the
cardinality of each binding edge, i.e.

∀Y = (K, I, F): | I | ≤ min(R
j
: ((C

j
 , R

j
), I

j
) ∈ F) .

• Concept instances are not to be shared among collections, i.e.

∀Y
i
 = (K, I

i
 , F

i
), Y

j
 = (K, I

j
 , F

j
), Y

i
 ≠ Y

j
: I

i
 ∩ I

j
 = � .

• Each concept instance has at most one subcollection of a given type K,

 ∀Y
i
 = (K, I

i
 , F

i
), Y

j
 = (K, I

j
 , F

j
), Y

i
 ≠ Y

j
: F

i
 ∩ F

j
 = � . □

Example 4.3 (DDM expressions)
Naturally, each instance, along with all its parametrization, must entirely
conform to its underlying de3 nition. Of the following DDM expressions, only (a)
and (b) are correct and comply with the data model in Fig. 4.1. In the incorrect
expression (c), the collection Y

hour
 violates the prescribed number of concept

44

instances dictated by the underlying model; in expression (d), I
time_point

 breaches
the rule of containing at most one K

hour
 by containing two instances instead;

3 nally, as for expression (e), air133 is of unknown type as no C
aircraft

 concept
exists in the underlying model.

(a)
trn133 Conn:Train

bus129 Conn:Bus

dep133 Departure tp134 TimePoint hour134 Hour
7

(b) hour148 Hour
7

arr147 Arrivaltim146 Timetable

(c) trn129 Conn:Train arr130 Arrival tp131 TimePoint

hour132 Hour
7

hour133 Hour
9

(d) dep129 Departure tp130 TimePoint

hour131 Hour
7

hour132 Hour
9

(e) arr134 Arrival

air133 Conn:Aircraft

trn135 Conn:Train

tim134 Timetable

 □

De! nition 4.7 (DDM expression projection functions)
Let Y = (K, I, F) be a DDM collection instance. Let then K(Y) = K be the
underlying DDM collection, I(Y) = I the set of concepts, F(Y) = F the set of edge
instance. Each function f applicable to K is applicable to Y as f(Y) = f(K(Y)).
In addition, let I = (D, C, X) be a DDM concept instance. Let then D(I) = D
be the concept instance identi3 er, C(I) = C the underlying DDM concept, and
X(I) = X the data type particular value instantiated using I. Also, let Y(I) =
Y: I ∈ I(Y) be the reference to the collection Y that contains the concept instance
I, and P(I) = { Y

i
 : (E

j
 , I) ∈ F(Y

i
) } the set of all subcollection instances directly

accessible from I. Let further be

*

()*
()

* *

()

 () (()) , if ()
()

 , else

() ()

i

j i

jY P I
I I Y

I I Y

P I P I P I
P I

P Y P I

∈
∈

∈

 ∪ ≠ ∅
= 

 ∅

=

∪

∪

a set of all subcollections recurrently available from concept instance I and
collection instance Y, respectively. Finally, each function f applicable to C is
applicable to I as f(I) = f(C(I)), and each function applicable to a collection Y
is applicable to I ∈ I(Y) using f(I) = f(Y(I)). □

45

All of the above projection functions are analogous to those already
presented for the data model (Section 4.2) – they will be therefore left without
demonstration, similarly as DDM expression paths, de3 ned next. Presumably,
expression paths allow us to comfortably address particular instances.

De! nition 4.8 (DDM expression path)
A concept instance I

T
 is immediately targeted from a source concept instance I

S

if there exists exactly one edge instance F
i
 such that

 { [,] } , if (,) ()
(,)

 , otherwise
S T i i S T

S T

I I F E I F I
I I

error

 ∈
Π = 



A concept instance I
T
 is addressable from a concept instance I

S
 if Y(I

T
) ∈ P*(I

S
),

i.e. if there exists a set of distinct paths over concept instances I
1
, …, I

N
:

1 1 1 1

1

1 1

[, ,..., ,] : (,) ()
(,) {2,..., } : (,) ()

(,) ()

S N T S

S T i i i i

N N N T

I I I I F E I F I

I I i N F E I F I

F E I F I
−

+ +

 ∈ ∧
 

Π = ∀ ∈ ∈ ∧ 
 ∈ 

A collection instance Y
T
 is addressable from a source collection instance Y

S
 if

there exists a set of distinct paths over collection instance Y
1
, …, Y

N
:

1
1[, ,..., ,] (,)

(,) [, (),..., (),]
S N T S T

S T S N TI I I I I I
Y Y Y Y I Y I Y

∈Π
Π = ∪

where I
S
 ∈ I(Y

S
) and I

T
 ∈ I(Y

T
). □

4.4 Semantics Representation

The input semantics representation has been designed to easily allow for all
further processing stages, described and discussed in the upcoming sections
(context representation, user's intentions detection, deliberation, etc.). As already
partly revealed earlier, the dialogue context makes an extensive use of DDM
expressions. It is therefore reasonable that each input semantics is represented
as a sequence of DDM expressions.

With processing-related bene3 ts on one side, this approach introduces
drawbacks in representing some linguistical constructs, that, on the other hand,
may easily be modeled using the SIL formalism (see Fig. 3.1). Given that the domain
data model cannot account for meaning of contained objects, it is impossible, for
instance, to represent the mere sentence "Yes". A more complex situation arises
when attempting to represent a general content. For instance, recall the sentence
"the train, which arrives in Erlangen at ! ve, departs from Schwandorf" where
a known train is referred (by its arrival) and further described (by its departure),
resulting in a co-referential SIL expression discussed in Section 2.2.1. Last but
not least, the SIL formalism has also the potential of representing (although not
directly detecting) implicit intentions in user's statements (e.g., "I want to know
the nearest train to Erlangen" instead of "When does the nearest train to
Erlangen go?") that are usually pre-processed yet before the dialogue manager

46

module by detecting the corresponding "shape" of the sentence and transforming
it to a manager-aware "question-like" token [Eck95, Boh09, Ngu06b].

The above plotted limitations are of a crucial importance. Solving them is
further constrained by having to always conform with the given DDM in a global
manner (unlike with SIL whose subconcept roles are of a local nature). Therefore,
the implication for the simple sentence "Yes" is that it cannot be represented
as a concept instance, unless C

yes
 has been involved into the DDM with a

domain-wide agreed meaning of representing an agreement. To work around this
constraint, the semantics representation includes the ability to decorate arbitrary
portion of it with one or more pre-de3 ned directives. Each directive is to supply
a simple (elemental) meaning to the content it encapsulates, preventing resulting
expression from violating the underlying DDM. Table 4.1 gives an overview of
currently available directives, and the following example shows their usage.

Example 4.4 (Semantics directives usage)
In its raw form, semantics is to be written using a "Prolog-style" notation, see
Appendix A.1 for syntax grammar. We will stick to this notation throughout the
text as it is su\ ciently comprehensive; we also will enclose directives between
underscores to visually distinguish them from regular concepts:

(a) _agree_
 Example sentences: "Yes.", "I want.", "I agree."

(b) _imperative_(Arrival(Location(City:"Ostrava")))
 "I said to Ostrava!"

(c) _disagree_(Departure(City:"Praha") , _agree_(Arrival(Location)))
 disagree(Departure(City:"Praha")) , _agree_(Arrival(Location)) ♣
 agree(Arrival(Location) , _disagree_(Departure(City:"Praha")))
 "I didn't say from Praha but to there."

(d) _help_
 "Help.", "I'm lost." □

Table 4.1 Application-neutral directives to modify the meaning of enclosed DDM expressions.

Directive Description

utterance dialogue act classification

confirmation or basic mental state

explicit (parser-detectable) cross-reference

declarative
interrogative
imperative

agree
disagree

reference

timeout
help
repeat














local dialogue control acts


47

In the above example, the middle semantics in (c) (marked with ♣) may
be in some sense taken as a concatenation of _disagree_ and _agree_ UFO-
like units. Generally, DDM expressions are not intended to imitate the notion of
UFOs as they are a weaker tool. The reason implies from the constraints put on
the underlying model. As already discussed, the model cannot account for any
object meaning as objects receive their meaning within a particular plan. For a
semantics represented using DDM expressions, it is therefore di\ cult to capture,
for instance, speaker's opinion or mental state – recall the workaround of using
directives to express the opinion of disagreeing with departure from Praha.
From the framework point of view, all of the above built-in directives share a
common aspect: their meaning can be immediately re6 ected by accordingly
updating the dialogue context. For instance, the above mentioned disagreement
in (c) immediately results in Praha ceasing to be the location of departure.
However, should a "permanent" meaning be represented, the local character of
directives would not su\ ce. The following example attempts for a "permanent"
meaning along with elaborating a "proxy" solution.

Example 4.5 (Attempting for semantics and taxonomy using DDM)
Let us try to model the situation that a person may think or doubt about an idea
while performing an action (compare with Fig. 3.1):

(a) I think of the idea.
(b) I doubt of the idea.
(c) I think that I doubt of the idea.
(d) I doubt that I think of the idea.

The essential problem here is the lack of object taxonomy. While it is
reasonable to represent the action as a topic in the model, it is di\ cult to 3 gure
out the right order of nested subconcepts to produce a sensible DDM structure.
The 3 rst approach we may try out is to de3 ne that thinking and doubting are
mental states requiring exactly one agent (person) and at least one object (idea):

Idea
UTF8_STRING25

25

Person
UTF8_STRING

1
1

State:Doubt

State:Think

2Action1
ρ

Apparently, C
think

 and C
doubt

 attempt to imitate SIL de3 ning a domain-wide
agreed meaning and taxonomy. Our model is correct as long as C

think
 and C

doubt

cannot act as subobjects in each other. While this holds true for sentences (a)
and (b), it is not met with sentences (c) and (d):

(a) Think(Person , Idea)
(b) Doubt(Person , Idea)
(c) Think(Person , Doubt(Person , Idea))
(d) Doubt(Person , Think(Person , Idea))

Neither of expressions (c) and (d) complies with our model. Unfortunately, we
cannot rede3 ne it correspondingly, as objects must not be recurrently nested (see
De3 nition 4.5). Nonetheless, if we constrain ourselves to these two sentences,

48

we 3 nd that a person may think or doubt, and that an idea may be thought
or doubted. Furthermore, if we accept that thinking and doubting are person's
opinions, we can remodel our situation as follows:

Idea
UTF8_STRING25

25

Person
UTF8_STRING

1
1

State2:Doubted

State2:Thought

2
2

State1:Doubt

State1:Think

2Action1
ρ

To avoid the recurrency, each C
idea

 is now to be "marked" (or "pre3 xed") with
a C

thought
 or C

doubted
 concepts. In addition, notice edges with cardinality of two.

For instance, E(C
action

, 2) ∈ I(K
state1

) guarantees that a person can think and
doubt of diJ erent ideas at the same time as the model allows both C

think
 and

C
doubt

 be instantiated at the same time. Hence, according to this model, our four
motivational sentences can be expressed as follows:

(a) Person(Think(Thought(Idea)))
(b) Person(Doubt(Thought(Idea)))
(c) Person(Think(Doubted(Idea)))
(d) Person(Doubt(Thought(Idea)))

Obviously, this approach puts additional requirements on the semantic
parser (or semantics post-processing): if the person has not explicitly announced
doubting, any supplied idea is to be taken implicitly thought.

To conclude our investigation, let us add that this approach also allows for
retracting person's opinion by simply "re-binding" an idea (along with its C

thought

or C
doubted

 pre3 x) to the competitive opinion:

I no longer think I doubt the idea. ≡ I think I no longer doubt the idea.
Person(Think(_disagree_(Doubted(_agree_(Idea))) , _agree_(Thought)))

Finally, despite its feasibility, the resulting model can reasonably be considered
cumbersome. However, it is only one of possible solutions to capture meaning
using DDM, and there are more sophisticated solutions that, however, exceed our
current initial investigation. □

As the example has shown, the absence of meaning may require diJ erent
approaches to modeling with SIL and DDM. A similar situation is encountered
when taking into account co-referential (and in DDM case also cross-referential)
expressions: "the person, that thinks the idea, goes to Praha". The absence of
meaning has already been discussed to have a limiting character to the underlying
model, hence it will not be revisited here and such referential phrases will not
be considered. We instead constrain ourselves to cases in which such semantical
entities do not appear, as, for instance, in "the train, which arrives in Erlangen
at ! ve, departs from Schwandorf", already roughly analyzed in Section 2.2.1
(and closer elaborated in [Eck95]).

Similarly as with SIL, referential DDM expressions rely on proper structure of
objects describing a reference. Due to the absence of taxonomy, the transformation
of user's reference into a DDM expression is a "one-way" operation – the result
cannot be approximated back to user's original utterance as with SIL (Section

49

3.4). Instead, related instances are bound in a "speci3 ed-specifying" relationship,
i.e. each concept instance narrows the characteristics of its parent. Therefore, the
DDM expression that describes "the train, which arrives in Erlangen at ! ve,
departs from Schwandorf" takes on the following form:

ref(Train(Arrival(City:"Erlangen") , Departure(City:"Schwandorf")))

Note that the absence of C
location

 is not a mistake here (recall that DDM
expressions do not have to strictly follow the underlying model). Nevertheless, if
this reference is to be resolved, there must exist a train in the dialogue context
for which it holds that it both arrives in Erlangen and departs from Schwandorf.
Also notice the pre3 xing _ref_ directive, here to denote an explicit reference.
This directive is optional and can be omitted in most of the cases.1 This directive
is necessary, however, to express references using unexpressed nominative, as in:

S

The ticket costs 10 coins. Do you want to purchase it?
U

Yes, I buy it.

 Semantics: _agree_ , Purchase(_ref_)

Last but not least, references can be nested. For the "most outer" reference it
holds that its successful resolution is conditioned by resolving 3 rst all its nested
subreferences, as for instance in:

S

The ticket costs 10 coins. Do you want to purchase it?
U

No. How much is a ticket for the train with the " rst class coach?

 Semantics: _disagree_ ,
 Ticket(Price:— ,
 ref(Train(_ref_(Coach(Class:"1"))))
)

Finally, references can be performed in diJ erent genders (ten, ta, to in Czech,
or der, die, das in German) to precise their resolution. This feature has not been
included in De3 nition 4.1 in Section 4.2 and thus will be not discussed and used
further (however, see Appendix A.1 for syntax of gender-speci3 c references).

The last topic to cover is intention description using DDM expressions.
Naturally, with respect to the absence of meaning, their descriptive capabilities
are limited to only question-like explicit intentions [Gro86, Coh95]. However,
similarly as with SIL, DDM expressions may convey mere fragmented intentions
that resulted from either poor recognition or incompletely formulated requests.
The word "potential" has been used intentionally here. Eckert in his work [Eck95]
uses a very 6 at approach to convey and further deal with intentions, or more
precisely, task identi3 cation: is there an empty eigen information ψ

i
 encountered

in the input semantics, then ψ
i
 is considered the information user has asked

about (e.g., departure time). As Eckert argues, this approach su\ ces: if the user
has called a timetable information system, then it is quite certain that she or he
will want to query about one of the timetable-related services [Eck95].

Generally, semantics may be understood as a mixture of task and task-
related information, as in the following situation:

1 In fact, it is merely intended to take a precise control over the reference resolution mechanism.

50

S

There is a train at 14 o'clock and a bus at 15 o'clock going to Praha.
U

When does the train arrive there?

 Semantics: _ref_(Train(Arrival(Time:—)))

In the dialogue snippet, the user wants to know the arrival time of the
particular transportation means. There is a similarity with Eckert's approach as
for instantiating the C

time
 concept with an empty value to indicate information

to 3 nd. Note, however, that such case is only one of clues to estimate user's
intentions (more on their detection in Section 4.7). With respect to the performed
reference, this sample situation already becomes relatively complex to resolve.

4.5 Information Management

The dialogue snippets in the previous section have shown quite a broad variety of
possible ways to convey information: ellipses, intentions, references, corrections,
etc. For us to deal with them, it is necessary to 3 rst know how information
is internally organized in the framework. No earlier than after this has been
explained we will be able to proceed with particular processing of ellipses
"anchoring", intentions detection, and references resolving. This section will
therefore concern with pure information management. At this point, we will
assume input information is fully speci3 ed (non-elliptical), does not contribute
to intentional shift, and contains no references. However, it may contain user's
corrections, covered later in this section.

The information management is a procedure too complex to cover in a
single section or conceive in a single de3 nition. It therefore will be presented
in an iterative manner, with each iteration revising its predecessor to pinpoint
problems and present solutions. This section is organized so that it 3 rst infers
the initial approach, and afterwards re3 nes it several times by incorporating
additional "requirements on functionality". At the end of this section, we will
have a working model of information management to subsequently represent the
dialogue context within the next section.

4.5.1 Initial Approach

The initial approach to the information management is best compared with
creating a SIL view (see Section 3.3.2). Recall that the view is a "projection" of
dialogue history using operations of uni3 cation and hiding to concepts instances
that are compatible and concurrent, respectively (see Fig. 3.7 and Fig. 3.9).
Hence, information that was originally scattered across diJ erent interpretation
worlds, is now put together to produce a compact information representation.

As Eckert points out, the information representation is far from being a
trivial task, given that the semantics is strongly oriented towards the linguistical
structure of utterances [Eck95]. Therefore, presuming there are no further
operations beyond the uni3 cation and hiding, there probably have to be additional
rules (built-in or domain-speci3 c) to overcome the incompatibility of otherwise
compatible objects, caused by one being nested in a linguistical concept while the
other not, like in the following illustrative snippet:

51

S

Where do you want to go to?
U

I want to Erlangen.

S

When do you want to go to Erlangen?
U

Eight o'clock.

: 116 , :
: 116 , :

:
: Erlangen

id want type want
id go type go

value
thegoal

 
  
   
     

: 61 , :

: 800

id go type go

thesourcetime

 
  
   

Intuitively, there is a complication with unifying the go116 and go61 concepts
due to one being part of a C

want
 concept instance. Unfortunately, such singular

cases have not been addressed in Eckert's work and it is therefore di\ cult to
estimate the behaviour of a SIL-based dialogue manager.

With DDM expressions, the above plotted situation cannot occur as they
must comply with an arbitrary complex but strongly structured correct model.
As seen earlier, any user's meaning is to be supplied using directives or explicit
concepts. This fact signi3 cantly simpli3 es otherwise complex operations (e.g.,
corrections), discussed later.

The most notable distinction between the SIL and our information management
is the way information itself is stored. While in the former case, information is kept
scattered across the dialogue history, in the latter case information is maintained
in an "already projected state", comprising the so called information pool. This
factual distinction also changes the set of operations to manipulate concept
instances to inferrention and disposal. Exempli3 ed shortly, given an instantiated
concept in the pool, the goal of the inferrention is to derive a new concept of
the same type and update its state in accordance with the input semantics. The
goal of the disposal is to determine if the original concept is further necessary
to be held in the pool, and if not, remove it (either by marking it as historical2
or disposing it permanently). However, before putting these operations into a
perspective, let us formally de3 ne the term information pool.

De! nition 4.9 (Information pool)
An information pool Y is a set of DDM expressions for which it holds:

 ∀Y ∈ Y, ∀Y
i
 ∈ P*(Y): Y

i
 ∈ Y . □

Thus, the information pool is a compact entity: if a collection instance is
part of it, then all its subcollections must be as well. The root instance of the
information pool, I(ρ), then navigates to the open topics currently in focus.

Example 4.6 (Motivational)
To begin with, ponder the below shown information pool. It may be considered
a single expression with a single open topic τ

timetable
 (multi-expression and multi-

topic information pools to follow). Its structure represents a train and a bus which
arrive at 11.30 and 12 o'clock, respectively. Particular identi3 ers are unimportant
at this moment.
2 A collection instance (i.e. not merely a separate concept) may become historical if it is "sealed",

meaning there has left nothing to discuss about it and it is recurrently con3 rmed.

52

hour* Hour
11

mnt* Minute
30

tp* TimePointarr* Arrival

hour* Hour
12

tp* TimePointarr* Arrival

trn* Conn:Train

bus* Conn:Bus

tim* Timetable

For demonstrative purposes, consider the bus arrival time has to be changed to
11 o'clock (say, to re6 ect user's new wish). This can be simply done by "updating"
merely its hour information. The following semantics carries such update:

hour132 Hour
11

tp132 TimePointarr131 Arrivalbus130 Conn:Bustim129 Timetable

Presumably, the expected result is as follows (IDs are again unimportant):

mnt* Minute
30tp* TimePointarr* Arrival

hour* Hour
11tp* TimePointarr* Arrival

trn* Conn:Train

bus* Conn:Bus

tim* Timetable

 □

Given the above motivation, the initial approach may be simply put as follows:

• Start from the respective roots of the information pool and semantics.

• For each immediate subconcept of the semantics root, 3 nd an equivalent
subconcepts in the information pool root. Infer a new subconcept.

• Take the new subconcept and recurrently process the rest of the semantics.

• Once backtracking, attempt to dispose the original subconcept.

This recurrent algorithm is closer elaborated in Fig. 4.2. Its particular steps
that have transformed the initial information pool from Example 4.6 to its 3 nal
state are then caught in Fig. 4.3 (see the 3 gure legend for more information).

Thus, the initial approach can handle whatever a semantics that carries a fully
speci3 ed information and "incorporates" it into the information pool using the
inferential and disposal operations, applied recurrently. Once done, an arbitrary
sequence of initially isolated pieces of information (isolated input semantics) is
stored in a "6 at" manner to avoid the SIL-like projection. The algorithm can
also deal with collections of information in such a way that inferred collections
replace their original counterparts or eventually absorb their concepts (Lines
12–15 in Fig. 4.2). Finally, the algorithm on its own is naturally of a very
limited usability. The upcoming sections will therefore aim to improve it by
accommodating features to deal with regular cooperative dialogue requirements.

4.5.2 Requirement 1: Dialogue Is a Shared Space

This requirement aims to equip the user and the system with the same possibility
of in6 uencing the dialogue information state. The fact that we are dealing here

53

with a collaborative dialogue facilitates our situation. The proposed information
pool usage cases are follows:

1. User describes brand new information about the world (e.g., wants to
3 nd a train that goes to Praha at around 8 o'clock). The term "brand
new" is signi3 cant here as references to "already known" information
will be discussed later. Recall that similar pieces of information may
be collected. To eliminate ambiguity in upcoming processing, user's
collections may only consist of at most one instance of each concept
type. For example, the user may evolve information regarding only one
train and/or only one bus (see the DDM in Fig. 4.1). Naturally, the user
is given the possibility to evolve only a selected concept, leaving the rest
of the collection untouched, as seen in Example 4.6.

 procedure Incorporate(Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y) {

 // instantiate a new "empty" collection Y (not yet a DDM expression) of the type K
S

1 Y := (K
S
 , �, {(E

parent
, I

parent
)})

 // 3 nd in and remove from I
parent

 the original collection instance Y
orig

2 Y
orig

 := (K
S
 , I

orig
, F

orig
): ∃F

parent
 = (E

parent
, I

parent
) ∈ F

orig

3 if Y
orig

 ≠ � {
4 Y

orig
 := Y

orig
 \ F

parent

 }
 // re-instantiate I(Y

S
) in Y (raising Y to a DDM expression)

5 ∀I
S
 = (D

S
 , C

S
 , X

S
) ∈ I(Y

S
) {

 // re-instantiate I
S
 as I

6 I := I(C
S
)

7 I(Y) := I(Y) ∪ I
 // inherit all subcollections from an original I

0
 = (D

S
 , C

S
 , X

S
) ∈ I

orig
 (if any)

8 ∀Y
sub

 = (K
sub

 , I
sub

 , F
sub

) ∈ P(I
0
) {

9 F
sub

 := F
sub

 ∪ (E, I), where E = (C
S
, R) ∈ K

sub

 }
 // recurrently process
10 ∀Y

sub
 = (K

sub
 , I

sub
 , F

sub
) ∈ P(I

S
) {

11 Incorporate(Y
sub

 , I)
 }
 }
 // absorb uncontained concept instances from Y

orig
 into Y

12 if I(Y) ⊆ I
orig

 { // no new concept introduced by Y
S

13 I(Y) := I(Y) ∪ { I = (D, C, X): I ∈ I
orig

 ∧ I ∉ I(Y) }
 }
 // attempt to dispose Y

orig

14 if Y
orig

 no longer referred {
15 Y := Y \ Y

orig

 }
 // add Y into Y
16 Y := Y ∪ Y
 }

Usage: Incorporate(Y(ρ) ∈ Semantics , I(ρ) ∈ Y)

Fig. 4.2 Information management initial approach algorithm.

tim129 Timetable

hour159 Hour
11

mnt167 Minute
30

tp156 TimePointarr152 Arrival

hour140 Hour
12

tp137 TimePointarr134 Arrival

trn149 Conn:Train

bus131 Conn:Bus

tim175 Timetable

ρ

(a) derrived new timetable instance tim175, sharing subcollections with the original, tim129.

tim129 Timetable

hour159 Hour
11

mnt167 Minute
30

tp156 TimePointarr152 Arrival
trn149 Conn:Train

bus131 Conn:Bus

hour140 Hour
12

tp137 TimePointarr134 Arrivalbus175 Conn:Bus
tim175 Timetableρ

(b) derrived new bus instance bus175, sharing subcollections with the original, tim131.

tim129 Timetable

hour159 Hour
11

mnt167 Minute
30

tp156 TimePointarr152 Arrivaltrn149 Conn:Train

bus131 Conn:Bus arr134 Arrival

hour140 Hour
12

tp137 TimePointarr14 Arrival

bus175 Conn:Bustim175 Timetableρ

(c) derrived new arrival instance arr14, sharing subcollections with the original, arr134.

tim129 Timetable

hour159 Hour
11

mnt167 Minute
30

tp156 TimePointarr152 Arrivaltrn149 Conn:Train

bus131 Conn:Bus tp137 TimePointarr134 Arrival

hour140 Hour
12

tp23 TimePoint

arr14 Arrivalbus175 Conn:Bustim175 Timetableρ

(d) derrived new time point instance tp23, sharing subcollections with the original, tp137.

tim129 Timetable

hour159 Hour
11

mnt167 Minute
30

tp156 TimePointarr152 Arrivaltrn149 Conn:Train

bus131 Conn:Bus tp137 TimePointarr134 Arrival hour140 Hour
12

hour131 Hour
11

tp23 TimePointarr14 Arrivalbus175 Conn:Bustim175 Timetableρ

(e) created new hour instance hour131; initiation of back tracking.

tim129 Timetable

trn149 Conn:Train

bus131 Conn:Bus tp137 TimePointarr134 Arrival hour140 Hour
12

hour159 Hour
11

mnt167 Minute
30

tp156 TimePointarr152 Arrival

hour131 Hour
11

tp23 TimePointarr14 Arrival

trn132 Conn:Train

bus175 Conn:Bus

tim175 Timetableρ

(f) added new train instance trn132; original collection {bus131, trn149} still referred from tim129.

hour159 Hour
11

mnt167 Minute
30

tp156 TimePointarr152 Arrival

hour131 Hour
11

tp23 TimePointarr14 Arrival

trn132 Conn:Train

bus175 Conn:Bus

tim175 Timetableρ

(g) original timetable tim129 not referred from anywhere – disposed along with all its subcontent.

Fig. 4.3 Information management initial approach demonstration.

55

2. System supplies new information about the world that may override
user's one (e.g., 3 nds that there is a matching train at quarter past eight).
Such information is to override user's eventual one. Nevertheless, the
overriding must be temporal to meet the notion of the information pool
serving as a shared space. However, unlike with user's collections, system
ones may contain multiple instances of the same concept (supported
by the fact that the system is never wrong) which cannot be further
evolved (supported by the fact that the system is always accurate).

3. User re-speci! es his demands, eventually rejects system current
information (e.g., yet wants a seat in the 3 rst class coach). Under such
conditions, user's imagination of the world must override the system one
(compare with processing a sequence of utterances in SIL).

To allow for the two cases of information overriding, it is necessary to introduce
a function that determines who of the participants has provided the information.
We term this the information content type function. The overriding itself is
then implemented as user information hiding. The following de3 nition clari3 es
these two functions.

De! nition 4.10 (Information content type, and user information hiding functions)
Let Y = Y(K) ∈ Y be a DDM collection instance. The information content
type function is a projection A: Y → { user, system, dereferenced } with the
following characteristics:

, if has been provided by the user

() , if has been provided by the system

, if has been used to resolve user's reference

user Y

AY system Y

dereferenced Y




= 



Let τ ∈ Y be a topic instance. Let it hold Π(τ, Y
1
, …, Y

N
, K(Y)) = { [τ, Y

1
, …, Y

N
, Y],

[τ, Y
1
, …, Y

N
, Y

U
] }, Y ≠ Y

U
. Then the user information hiding function is a

projection U: Y → Y such that

 , if ()
()

 , otherwise
U

Y AY user
U Y

Y

 == 
 □

The user information hiding function is to "mine" user-provided information
from a particular "address" (path) in the information pool. Apparently, if the
information Y addressed by a given path has been provided by the user, then
we are done and return Y. Otherwise, Y has been introduced by the system and
eventually hides user-provided information, Y

U
 . As we will see in the revised

algorithm, system-provided information is removed from the information pool
once the system has been overridden (an operation outside the U(.) function),
hence there is no implied ambiguity. Fig. 4.4 illustrates the idea (see the 3 gure
legend for more information).

However, before presenting the updated information management approach
(Appendix A.2.1), let us introduce one more term from Grosz and Sidner's work

56

on discourse attention [Gro86], the salience. The salience is a meta-information
on how "recent" a given object is. Let us represent the salience as a number with
the following semantic: the higher the number the older the object, i.e. the less
salient it is, and vice versa.

De! nition 4.11 (Salience and related projection functions)
Let I = I(C) be a DDM concept instance. The salience is a projection S: Y → ℜ+
such that S(I) < S(I

i
), if I has been uttered later than I

i
 = I(C

i
), and S(I) =

0, if I has not been uttered yet. In addition, let M = {I
i
} be a set of concept

instances. Then S(M) = { S(I
i
) } (set of corresponding saliences). Finally, let

S(�) = 0. □

The new parts in the approach account for: 1) information overriding (Lines
5–12), 2) subinformation spreading (Lines 16–21), and 3) meta-information
setting (Line 23). While the 3 rst and last ones are self-explanatory, the second
one desires a short explanation. The subinformation spreading is motivated by

city27 City
Praha

lctn23 Location

hour38 Hour
around_noon

tp35 TimePoint

arr20 Arrivaltrn18 Conn:Traintim15 Timetableρ

(a) user has introduced brand new information into a blank information pool

trn18 Conn:Train arr20 Arrival

lctn23 Location city27 City
Praha

tp35 TimePoint hour38 Hour
around_noon

city126 City
Domažlice

lctn121 Location

dep121 Departure

city52 City
Praha

lctn55 Location

hour59 Hour
11

mnt151 Minute
20

tp62 TimePoint

arr53 Arrival

city1 City
Domažlice

lctn107 Locationdep107 Departure

city0 City
Praha

lctn5 Location

hour10 Hour
12

mnt117 Minute
20

tp11 TimePoint

arr1 Arrival

trn118 Conn:Train

trn105 Conn:Train

tim33 Timetableρ

(b) system has introduced new information (thick frames); this information
overrides user's original one (system "backs up" the user; dashed line)

city27 City
Praha

lctn23 Location

hour28 Hour
afternoon

tp40 TimePoint

arr30 Arrivaltrn25 Conn:Traintim33 Timetableρ

(c) user has made changes to its imagination of the world, disposing system content, if any

Fig. 4.4 Shared space extension demonstration.

57

the fact that users are unlikely to repeat one piece of information for each sibling
concept, like in "I am searching for a bus to Praha or a train to Praha". They
rather use an ellipsis to intuitively specify both siblings, as in "I am searching
for a bus or train to Praha", semantically represented as

 Timetable(Bus, Train(Arrival(Location(City:"Praha")))) .

The C
bus

 instance is left without any closer speci3 cation. To allow for the
common-sense understanding of the arrival in Praha relating to both the train
and bus, the C

arrival
 subinformation must be spread from C

train
 to C

bus
. Presuming

an empty information pool, Rule 4 3 res and carries out such update, drawing the
semantics to fhe following state,3

 Timetable(Bus(Arrival(Location(City:"Praha"))),
 Train(Arrival(Location(City:"Praha")))) .

4.5.3 Requirement 2: Information Error
Recovery Approach (Corrections)

Dialogue is an error-prone environment, causing inconsistencies between the user
and system dialogue models. It is reasonable to claim that the earlier such
inconsistency is revealed the easier it is to recover from it. Naturally, the best way
to avoid inconsistencies is to con3 rm each incoming information immediately;
nevertheless, this leads to boring interactions [McT02]. Alternatively, a reliable
user model may be employed to predict obstacles in conversation, hence again
avoid inconsistencies [Hja05].

The Daisy framework currently contains only limited possibilities to predict
errors. The source of predictions is rather a blind process constraining merely
to a selection of one of dialogue strategies. In Section 4.9, we will see diJ erent
strategies to switch between over the course of a dialogue in order to improve the
dialogue 6 ow after errors have already been observed. With the proper strategy
selected, the system con3 rmation behaviour can be adjusted.

Taking this limitation into account, the Daisy framework has been equipped
with a strong error recovery approach at the level of information management.
The approach assumes the worst case: a late discovery of an error and multiple
corrections in a single utterance. To begin our investigation, ponder the below
dialogue snippet. As it can be seen, there were two errors in the dialogue.
Although they both appeared at diJ erent times, the framework managed to
recover from them to a consistent state.

3 The information spreading may be perceived analogous to the SIL semantics elaboration. However,
unlike with SIL, this process is hard-coded as it carries out a single-purpose operation only.

58

U
1

I want to go by train to Klatovy at " fteen o'clock.
 Timetable(Train(Departure(← error
 Location(City:"Klatovy") ,
 TimePoint(Hour:"15")
)))

city212 City
Klatovy

lctn211 Location

hour214 Hour
15

tp213 TimePoint

dep210 Departuretrn210 Conn:Traintim209 Timetable

S
1

What class do you want to travel in?
U

2
Second.

 Timetable(Train(Coach(Class:"1"))) ← error

city212 City
Klatovy

lctn211 Location

hour214 Hour
15

tp213 TimePoint

dep210 Departure

clss229 Class
1

cch229 Coach

trn228 Conn:Traintim227 Timetable

S
2

I understood you want to depart at 15 o'clock from Klatovy
by the " rst class train. Where do you want to go to?

U
3

No, I do not want to depart from there but to arrive.
 1 _disagree_ ,
 2 Timetable(Train(
 3 _disagree_(Departure(Location)) ,
 4 _agree_(Arrival)
 5))

clss217 Class
1

cch216 Coach

hour209 Hour
15

tp208 TimePointdep208 Departure

city207 City
Klatovy

lctn222 Locationarr225 Arrival

trn201 Conn:Traintim239 Timetable

The error recovery is a non-trivial process. The main reason is that the
information pool is of a 6 at nature, with information originating from diJ erent
utterances. In general, user's corrective intention is recognized by the co-
occurrence of the following two features in a semantics:

• Disagreement or imperative utterance type (either required). Accepted
is either a blank disagreement whenever the system has not posed a Yes-
No question (e.g., Line 1 in U

3
 semantics, corresponding to the initial

"No"), or a closer speci3 ed disagreement (e.g., Line 3, corresponding to "I
don't want to depart").

• Agreement (optional). Any agreed (or more speci3 cally "not explicitly
disagreed") information is considered to carry correct information to
replace the disagreed one, if any. To "link" the agreed and disagreed
pieces together is the objective of the error recovery algorithm itself.

59

The essential clue for recovering from an error is the observation of user's
disagreement. In the ideal case, the user pinpoints the particular information
s/he disagrees with (as in "I do not want to depart from there"). When
incorporating such disagreement into the information pool, the corresponding
concept instances get marked correspondingly, as in Fig. 4.5b (notice city212
has been marked despite not explicitly disagreed by the user; we will clear that
below). When an agreed part of the semantics is then encountered (Line 4 in
U

3
 semantics), the correction processing melts down to a simple rule of 3 nding

an object (dep47 in Fig. 4.5b) that contains "compatible" disagreed subobjects
(loc110). It is reasonable to replace the path to these disagreed subobjects with a
path from the agreed portion in the semantics (i.e. replacing Π(…, dep47, loc110,
city212) with Π(…, arr225, loc222, city207) as shown in Fig. 4.5c).

In the case of the user having not explicitly speci3 ed disagreed information,
the above rule of searching compatible disagreed subobjects fails. Consider the
following alternative dialogue continuation to the previous example:

S
2

I understood you want to depart at 15 o'clock from Klatovy
by the " rst class train. Where do you want to go to?

U
4

No, I want to go there.
 disagree ,
 Timetable(Train(Arrival(Location)))

city212 City
Klatovy U1-U1

lctn211 Location
U1-U1

hour214 Hour
15U1-U1

tp213 TimePoint
U1-U1

dep210 Departure
U1-U1

clss229 Class
1U2-U2

cch229 Coach
U2-U2

trn228 Conn:Train
U2-U1

tim227 Timetable
U2-U1

ρ

(a) initial state with misunderstood information

lctn211 Location
U1-U1

dep210 Departure
U1-U1

trn228 Conn:Train
U2-U1

clss229 Class
1U2-U2

cch229 Coach
U2-U2

hour214 Hour
15U1-U1

tp213 TimePoint
U1-U1

city212 City
Klatovy U1-U1

lctn110 Location
U3-U1

dep47 Departure
U3-U1

city206 City
Klatovy U1-U1

lctn206 Location
U3-U1

arr239 Arrival
U3-U1

trn9 Conn:Train
U3-U1

tim0 Timetable
U3-U1

ρ

(b) information pool with disagreed portion of a semantics marked

clss217 Class
1U2-U2

cch216 Coach
U2-U2

hour209 Hour
15U1-U1

tp208 TimePoint
U1-U1

dep208 Departure
U3-U1

city207 City
Klatovy U1-U1

lctn222 Location
U3-U1

arr225 Arrival
U3-U1

trn201 Conn:Train
U3-U1

tim239 Timetable
U3-U1

ρ

(c) corrected information pool (disagreed portion extracted and re-incorporated to the correct place)

Fig. 4.5 Processing of user's utterance "I do not want to depart from there but to arrive";
instances are annotated with utterance–last_update pairs.

60

While the core principle remains (i.e. searching for compatible subobjects to
change their paths with agreed portions of the semantics), the underlying "linking"
rule has to be reformulated. For the above situation, the missing disagreement
may be naturally understood as "disagreeing with the most recently used
information compatible with location", or generally speaking, "disagreeing with
the most recently used compatible subobject". Given that the user's intention is
the same in both U

3
 and U

4
, application of this rule marks the same objects as in

Fig. 4.5b, now also including city212 – it is the most recently used information
within loc110 (both loc110 and city212 have been 3 rst introduced in U

1
).

Let us now make several notes regarding the underlying recovery algorithm
itself (Fig. 4.6). Apart of the self-explanatory set of rules (RULES), the 3 rst
point to make is that it can operate in two complementary modes (MODE):
correct, to extract the correct part of a DDM expression, i.e. the part which has
not been marked as disagreed, and incorrect, to extract only the marked portion
of the DDM expression. To brie6 y illustrate, given the marked instances in
Fig. 4.5b, the incorrect-mode result is Timetable(Train(Departure(Location(
City:"Klatovy"))))), while the correct-mode result is the "remainder". The result
is always stored in an auxiliary concept (I

EXTRACT
) to allow for further handling

of the returned expression (e.g., in revised algorithm in Appendix A.2.2).
The recovery algorithm is based on applying extraction rules to subobjects

of a given parent concept instance. The application occurs at two diJ erent levels:
collection instances (to determine if the collection as a whole is "relevant" in
the given mode), and concept instances (soft-grained handling and recurrent
processing). The implementation of this process then accounts for yet one level
(edge instances) which is, however, due to simplicity reasons not included in
the algorithm outline in Fig. 4.6, nor are included some singular extraction
situations. Interested reader is therefore advised to trace the Extrakce procedure
in Vrstva.pas to gain a complete view at the extraction process.

4.5.4 Requirement 3: Representing Information
Spanning Multiple Intentions

We so far assumed a dialogue consisted of merely a single intention that was
collaboratively solved and then replaced by another intention (or the dialogue
3 nished). This is rarely the case, unless considering state-based approaches
[McT02, Jok10]. The agent-based approach usually uses some variant of Grosz
and Sidner's work on collaborative dialogues [Ric01, Ngu06b, Rot07] which holds
also in our case. We nonetheless will not consider their whole framework at this
moment but focus ourselves merely on the following two aspects:

• organizing information of multiple intentions,

• passing information between two intentions.

Thus our current aim is not the recognition of user's intentions but rather
mere management of information that relates to them.

61

 RULES = set of prioritized 3 ltration rules to extract relevant information := {
 [priority: highest, rule: "subcollection contains disagreed concept instances"],
 [priority: medium, rule: "subcollection was uttered in system last utterance"],
 [priority: lowest, rule: "subcollection was last updated
 at the same moment as the parent instance"]
 }
 MODE = extraction mode to generate a DDM expression ∈ { correct, incorrect }
 I

EXTRACT
 = I(�, ρ, �)

 procedure _Xtract_(I
parent

 = I(C
parent

)) {
 Rule := highest priority rule in RULES that 3 res for any of I

parent
 subcollections

 ∀Y
sub

 := U(Y
sub

) = (K, I
sub

 , F
sub

) ∈ P(I
parent

) {
 // check if user subcollection Y

sub
 is relevant for the DDM expression to extract

 if Rule(Y
sub

) not 3 red {
 if MODE = incorrect { F

sub
 := F

sub
 \ (E

parent
 , I

parent
) }

 skip Y
sub

 }
 // check if Y

i
 is entirely relevant, incl. subcollections (defererenced objects only)

 if A(Y
sub

) = dereferenced ∧ MODE = correct { skip Y
sub

 }
 // check which of Y

sub
 concept instances are relevant

 Y
dup

 = (K, �, �)
 ∀I

i
 = (D

i
 , C

i
 , X

i
) ∈ I(Y

sub
) {

 // duplicate I
i
 (incl. all edges to nested subcollections)

 I
dup

 = I(C
i
)

 // check if I
i
 is relevant

 if Rule(I
i
) not 3 red {

 if MODE = correct { I(Y
dup

) := I(Y
dup

) ∪ I
dup

 }
 skip I

i

 }
 // recurrently process and evaluate result
 Xtract(I

dup
)

 if MODE = correct ∧ P(I
dup

) = � { skip I
i
 }

 // add I
dup

 to Y
dup

 I(Y
dup

) := I(Y
dup

) ∪ I
dup

 }
 // determine if Y

dup
 contains concept instances (and is thus a DDM expression)

 if I(Y
dup

) ≠ � {
 F(Y

dup
) := F(Y

dup
) ∪ (E

parent
 , I

parent
) // add Y

dup
 as subcollection of I

parent

 }
 F

sub
 := F

sub
 \ (E

parent
 , I

parent
) // delete edge to "original" subcollection Y

sub

 }
 }

 procedure Extract(Y = (K, I, F) ∈ Y , Mode ∈ { correct, incorrect }) {
 MODE = Mode
 F := F ∪ F

EXTRACT
, where F

EXTRACT
 = (E

EXTRACT
 , I

EXTRACT
)

 Xtract(I
EXTRACT

) // the result of extraction is stored in I
EXTRACT

 }

Usage: Extract(Y , correct/incorrect), Y ∈ Y

Fig. 4.6 Algorithm to extract either the "correct" part of a DDM expression or the "incorrect"
part (MODE switch)

62

To begin with, ponder the dialogue snippet in Fig. 4.7. As it can be seen,
the dialogue consists of user's two sub-intentions (beginning with U

1
 and U

2
)

and two system sub-intentions (beginning with S
1
 and S

5
) that together de3 ne

the logical segmentation of the dialogue into the so called discourse segments
(DSs), labeled as DS

1…4
. As Grosz and Sidner propose in their work, each of

these segments is assigned a focus space, "recording the objects, properties, and
relations that are salient in its scope – either because they have been mentioned
explicitly in the segment or because they became salient in the process of
producing or comprehending the utterances in the segment" [Gro86]. Each
focus space also includes a discourse segment purpose (DSP) to keep track of
"why" given information is being discussed in the dialogue. Fig. 4.8 illustrates
the linkage between the focus spaces and intentions – they are proposed to
constitute a stack. Information in lower spaces is therefore accessible from higher
ones but "less" than the information in higher spaces. In terms of salience, the
lower positioned focus spaces are of lower salience than their higher positioned
counterparts. Note that we at this moment will not examine why DSP2 has
been placed "above" DSP1 or why DSP4 has "replaced" DSP3 in the stack (the
necessary management foundation will be covered later).

The fact that focus spaces are stacked onto each other has natural implications
on interpreting user's utterances. For instance, if an airplane existed in DS2 and
another diJ erent one in DS1, then user's sentence "the airplane" uttered in DS2
would be understood to address the particular airplane in DS2. Contrarily, if
a ship existed only in DS1, user's sentence "the ship" uttered in DS2 would be
understood as referring to that ship in DS1.

De! nition 4.12 (DSP function)
Let F denote the set of tasks (funtionality) of a given system. Let Y = Y(K) ∈
Y be a topic instance. A discourse segment purpose function is a projection
DSP: Y → F. □

Hence, Grosz and Sidner's work is approached using topics. Recall from
Section 4.2 that topics are an abstraction of a task or a group of similar tasks.
DiJ erent DSPs then distinguish instances of the same topic from each other.
Of course, the information pool plays here merely a role of a blob of known
information grouped into topics; these topics are not organized into a stack.
However, this can be worked around by keeping topics salience up-to-date with
their most salient related object.

Fig. 4.9 demonstrates this idea. As it can be seen, the train and bus instances
(trn28 and bus23) have been passed over from DS1 (tim34) to DS2 (tim1), being
still a\ liated to DSP1 just as expected. The information pool also allow for
objects overriding. In such case, objects are 3 rst passed over and then changed,
resulting in the unmodi3 ed part of them being shared among DSPs while the
changed part being speci3 c only for the DSP that triggered the modi3 cation
(notice two arrows directing from system K

conn
 to tim34 and tim1 topics). This

operation is naturally in coherence with Grosz and Sidner's work.
Finally, see Appendix A.2.3 for updates to the information management

approach, accommodating now information spanning multiple intentions.

63

S
1

How may I help you?
U

1
I need to get from Ostrava to Pardubice at nine.

S
2

There is a train going from Ostrava to Pardubice at 9:08, and a bus at 9:13.
U

2
When do they arrive there?

S
3

The train arrives in Pardubice at 21:05, and the bus at 20:48.

May I help you " nd another connection?

U
3

No.

I will take one ticket for the bus.

S
4

…

Thank you for the payment.

May I help you with anything else?

U
4

No, thanks.
S

5
Thank you for using our services and have a nice day.

Fig. 4.7 Segmented multiple-tasks dialogue.

time

FS1
DSP1

FS1
DSP1

∅

FS2
DSP2

Dep(City:"Ostrava")
Arr(City:"Pardubice")
Train(Arr(TmPt:"0905"),
 Dep(TmPt:"2107"))
Bus(Arr(TmPt:"0913"),
 Dep(TmPt:"2048"))

∅

FS1
DSP1

∅

FS2
DSP2

FS3
DSP3

Dep(City:"Ostrava")
Arr(City:"Pardubice")
Train(Arr(TmPt:"0905"),
 Dep(TmPt:"2107"))
Bus(Arr(TmPt:"0913"),
 Dep(TmPt:"2048"))

*Train
*Bus

FS1
DSP1

∅

FS2
DSP2

FS4
DSP4

Dep(City:"Ostrava")
Arr(City:"Pardubice")
Train(Arr(TmPt:"0905"),
 Dep(TmPt:"2107"))
Bus(Arr(TmPt:"0913"),
 Dep(TmPt:"2048"))

Ticket(*Bus)

FS1
DSP1

∅

Fig. 4.8 Focus stack transitions between utterances S
1
 and S

5
 in dialogue from Fig. 4.7.

D
S
3

D
S
2

D
S
4

D
S
1

4.5.5 Requirement 4: Representing User's
Underspeci$ ed Information

This section is on representing information that cannot be resolved using the
dialogue context or dialogue history. With respect to the DDM in Fig. 4.1, such
case occurs, for instance, in the following dialogue snippet:

S
1

How may I help you?
U

1
I want to go to Praha.

 Semantics: Location(City:"Praha") ← error
(C

timetable
 and C

arrival
 not recognized)

Here, error recognition caused user's information originally fully speci3 ed
to be observed as underspeci3 ed. Assuming the information pool is empty at
the beginning, the system cannot resolve if the user talks about a departure
or an arrival, nor if the information contributes to a timetable search or ticket

64

purchase. One of the anticipated dialogue continuations in such situation could
be (dialogue planning covered later in Section 4.8):

S
2

Should the city of Praha regard your departure or arrival?

Each piece of underspeci3 ed information is in the information pool represented
as an "unbound" DDM expression, with root having no parent, i.e. Y: F(Y) = �.
For the above snippet, the following information pool shows the result:

lctn143 Location city144 City
Praha

ρ

It is necessary to point out that the system perceives unbound expressions
as mostly vague pieces of information which eventually may not even contribute
to the current DSP in focus (e.g., due to ASR failure). Hence, the management
of such information is additionally constraint as follows:

• Unbound expressions are not subject of object passing between discourse
segments (they therefore cannot be shared nor overridden in order to not
spread the possible error that may stand behind them).

• Unbound expressions exist in a single instance within a given discourse
segment (it is therefore impossible to have two unbound city locations
within a DS – should such situation arise, the current unbound location
replaces the previous one).

trn28 Conn:Train
DSP1

bus23 Conn:Bus
DSP1

dep29 Departure
DSP1

lctn30 Location
DSP1

city30 City
OstravaDSP1

arr31 Arrival
DSP1

lctn32 Location
DSP1

city33 City
PardubiceDSP1

tim1 Timetable
DSP2

city41 City
OstravaDSP1

lctn40 Location
DSP1

hour42 Hour
9DSP1

mnt43 Minute
13DSP1

tp42 TimePoint
DSP1

dep40 Departure
DSP1

city45 City
PardubiceDSP1

lctn45 Location
DSP1

hour47 Hour
20DSP1

mnt167 Minute
48DSP1

tp46 TimePoint
DSP1

arr44 Arrival
DSP1

prc168 Price
32.500000DSP1

city44 City
OstravaDSP1

lctn43 Location
DSP1

hour46 Hour
9DSP1

mnt47 Minute
8DSP1

tp45 TimePoint
DSP1

dep43 Departure
DSP1

city36 City
PardubiceDSP1

lctn35 Location
DSP1

hour37 Hour
21DSP1

mnt38 Minute
5DSP1

tp36 TimePoint
DSP1

arr34 Arrival
DSP1

prc39 Price
35.000000DSP1

bus39 Conn:Bus
DSP1

trn42 Conn:Train
DSP1

tim34 Timetable
DSP1

tim133 Timetable
DSP0

ρ

Fig. 4.9 Multi-topics information pool with three diJ erent discourse segment purposes.

65

• Unbound expressions disappear as soon as a concept instance that can
contain them, emerges (e.g., for the above sample snippet, as soon as the
user decides Praha being the location of either departure or arrival). The
containing instance can in turn become an unbound expression.

Despite the fact that the representation of unbound expressions is very
straightforward, they mean a signi3 cant update to the information management.
To spare on space, only updates to the Incorporate procedure are shown in
Appendix A.2.4. Interested reader is suggested to have a closer look at the
Extrakce procedure in Vrstva.pas to gain a complete view at the extraction
process for unbound DDM expressions.

4.5.6 Requirement 5: Information Scalability

So far, we concerned with merely simple types with strictly disjunctive values;
for instance, we assumed integer values (as in Class:"1") or string values (as in
City:"Cheb"). Such values were reasonably supposed to have nothing in common,
implying one could always be easily replaced with the other (Class:"1" →
Class:"2", or City:"Cheb" → City:"Praha"). The mentioned integer and string are
part of the elemental built-in data types set, natively provided by the framework
(see Table 4.2).4 These intrinsic types are, however, of a limited usability. For
instance, it is impossible to adjust the wrong understood city of Hradec Králové
simply by saying "No, I mean u Stoda" to change the location to Hradec u Stoda,
as for the string type it holds City:"Hradec Králové" → City:"u Stoda".

Generally, a particular object value is the result of an information type-
speci3 c operation [Men96]: a new value can not only replace but can also extend
or infer from an old value; for instance, we can replace the number of passengers
on a ticket, merge ticket discounts, and evolve the name of a city by combining
two pieces of information. Given that the listed sample operations are all of
distinct nature, the information management does not provide any "combinatorial
pattern" to determine a new value. Instead, it passes this responsibility to
external resources – domain-speci3 c libraries that de3 ne the so called external
data types.

As already seen in De3 nition 4.1, each data type T is a set of functions
that together completely and unambiguously de3 ne the range and operations
with eigen information ψ, i.e. T = { f

i
 }. The functions proposed to provide such

properties are listed in Table 4.3.5 For instance, the above outlined problem of

4 For optimization reasons, these types have been chosen with respect to their local language
independence, and do not contain types whose range is a subset of another type – for instance, Char
⊂ String ⊂ Utf8String (the input semantics lexical analysis guarantees that any later comparison of
two strings is as quick as a comparison of two characters) or Boolean → {0,1} ⊂ Integer.

5 From the technical point of view, note that each of the binary functions is considered a tolerance
with re6 exive and asymmetric properties. The re6 exivity eliminates randomness from processing by
pertaining any old value if related to itself. The asymmetry says the order of arguments matters.
This is important when developing external data types. As a rule, the left argument is always the
comparer while the right argument is always the comparee, as, for instance, in the IsContainedIn
function whose semantics is "true if inf

2
 is contained in inf

1
, otherwise false".

66

city name misunderstanding can easily be solved for by de3 ning an external data
type with the following combinatorial pattern (schematic):

 () , if is a known name,
() ()

 () , otherwise
old new old new

old new
new

X City City City City
X City X City

X City

 ⊕ ⊕
⊕ = 



where ⊕ is a value-combination operator and X(.) is the value projection function
as introduced in De3 nition 4.7.

Apparently, the "completeness" requirement for a data type operations refers
to covering all possible combinatorial situations. Given that each combination
always accounts for an old and a new information, each of which may be either
agreed or disagreed, the combinatorial situation falls into the Cartesian space

Table 4.2 Daisy framework intrinsic data types; the Size and Capacity columns
apply to x86 platform.

Name Size Capacity

Ordinal 4 Bytes -2147483648 … 2147483647

Double 8 Bytes ten digits of precision

UTF8 String 1 Byte minimum unlimited

Table 4.3 Data type de3 nition functions.

Function C-style synopsis and description

void *Create (char *description)
 Creates information based on its textual description.

int GetCardinality (void *inf)
 Returns the cardinality of the speci3 ed information.

bool Equal (void *inf
1
 , *inf

2
)

 Returns true if both pieces of information are equal, otherwise false.

bool IsCombinable (void **inf
1
 , int nInf

1
 , void *inf

2
)

 Returns true if inf
1
 can be combined with inf

2
, otherwise false.

void *Combine (void *inf
1
 , *inf

2
)

 Returns the result of combining inf
2
 with inf

1
.

void *Negate (void *inf)
 Returns the negation of the speci3 ed information.

bool IsInstantiable (void *inf)
 Returns true if the speci3 ed information is instantiable, otherwise false.

bool IsContainedIn (void *inf
1
 , *inf

2
)

 Returns true if inf
2
 is fully contained in inf

1
.

bool IsUnde! ned (void *inf)
 Returns true if the speci3 ed information does not contain value.

char *ToText (void *inf)
 Returns TTS module-processable form of the speci3 ed information.

void Destroy (void *inf)
 Destroys speci3 ed information.

67

T
a
b
le

 4
.4

 I

nf
or

m
at

io
n

co
m

bi
ni

ng
 b

eh
av

io
ur

 f
or

 d
iJ
 e

re
nt

 m
ut

ua
l

re
la

ti
on

sh
ip

s
of

 O
ld

 a
nd

 N
ew

 i
nf

or
m

at
io

n;
 ⊕

 i
s

th
e

in
fo

rm
at

io
n-

co
m

bi
ni

ng
 o

pe
ra

to
r,
 a

nd
 s

ub
sc

ri
pt

ed
 D

 d
en

ot
es

 a
 d

is
ag

re
ed

 p
or

ti
on

 o
f
in

fo
rm

at
io

n
(t

o
be

 r
em

ov
ed

 f
ro

m
 t

he
 c

on
ta

in
in

g
lis

t)
.

R
u
le

 (
C

o
n
d
it
io

n
 →

 w
h
it
e
-l
is

t
[a

tt
ri

b
u
te

s]
 ;
 b

la
ck

-l
is

t
[a

tt
ri

b
u
te

s]
)

(
O

ld
 ⊕

 N
ew

)
 =

∅

→

(
O

ld
)

 ;
 —

O

ld
 a

nd
 N

ew
 i
nf

or
m

at
io

n
do

 n
ot

 h
av

e
an

yt
hi

ng
 i
n

co
m

m
on

 –
 t

he
y

w
ill

 e
xi

st
s

in
 p

ar
al

le
l
as

 t
he

y
ca

nn
ot

 b
e

co
m

bi
ne

d.

(
O

ld
 ⊕

 N
ew

)
 =

 O
ld

→

(
O

ld
)

 ;
 —

N

ew
 i
nf

or
m

at
io

n
is

 f
ul

ly
 c

on
ta

in
ed

 i
n

O
ld

 i
nf

or
m

at
io

n.

(
O

ld
 ⊕

 N
ew

)
 ≠

∅

→

(
O

ld
 ⊕

 N
ew

)
 ;
 —

G

en
er

al
 c

om
bi

na
ti
on

 o
f
ag

re
ed

 O
ld

 a
nd

 N
ew

 i
nf

or
m

at
io

n.

(
O

ld
 ⊕

 ¬
N

ew
)

 =

∅

→

(

O
ld

)
D
 ;
 —

D

is
ag

re
ed

 ¬
N

ew
 o

bj
ec

t
co

m
pl

et
el

y
co

nt
ra

di
ct

s
O

ld
 o

bj
ec

t,
 h

en
ce

 O
ld

 i
s

ne
ce

ss
ar

y
to

 b
e

m
ar

ke
d

as
 d

is
ag

re
ed

.

(
O

ld
 ⊕

 ¬
N

ew
)

 =

O

ld

→

(

O
ld

)
 ;
 —

N

on
-d

is
ag

re
ed

 p
or

ti
on

 o
f
N

ew
 s

up
po

rt
s

O
ld

.

(
O

ld
 ⊕

 ¬
N

ew
)

 ≠

∅

→

(

O
ld

 ⊕
 ¬

N
ew

)
 ,
 (

 O
ld

 ⊕
 N

ew
)

D
 ;
 —

G

en
er

al
 c

om
bi

na
ti
on

 o
f
di

sa
gr

ee
d

¬
N

ew
 w

it
h

w
hi

te
-l
is

te
d

O
ld

 i
nf

or
m

at
io

n.

(
¬

O
ld

 ⊕
 N

ew
)

 =

∅

→

—

 ;
 (

 ¬
(O

ld
 ⊕

 ¬
N

ew
)

)
,
(

¬
N

ew
)

D

N

ew
 p

ar
ti
al

ly
 c

on
tr

ad
ic

ts
 w

it
h

¬
O

ld
.

(
¬

O
ld

 ⊕
 N

ew
)

 =
 ¬

O
ld

→

—
 ;
 (

 ¬
(O

ld
 ⊕

 ¬
N

ew
)

)
,
(

¬
N

ew
)

D

N

ew
 p

ar
ti
al

ly
 c

on
tr

ad
ic

ts
 w

it
h

¬
O

ld
.

(
¬

O
ld

 ⊕
 N

ew
)

 ≠

∅

→

—

 ;
 (

 ¬
(O

ld
 ⊕

 ¬
N

ew
)

)
,
(

¬
(O

ld
 ⊕

 N
ew

)
) D

G

en
er

al
 c

om
bi

na
ti
on

 o
f
ag

re
ed

 N
ew

 w
it
h

bl
ac

kl
is

te
d

¬
O

ld
 i
nf

or
m

at
io

n.

(
¬

O
ld

 ⊕
 ¬

N
ew

)
 =

 ∅

→

—

 ;
 (

 ¬
O

ld
)

D

is
ag

re
ed

 ¬
N

ew
 i
nf

or
m

at
io

n
do

es
 n

ot
 c

on
tr

ad
ic

t
w

it
h

bl
ac

kl
is

te
d

¬
O

ld
,
i.e

.
bo

th
 c

an
 e

xi
st

 i
n

pa
ra

lle
l.

(
¬

O
ld

 ⊕
 ¬

N
ew

)
 =

 ¬
O

ld

→

—

 ;
 (

 ¬
O

ld
)

D

is
ag

re
ed

 ¬
N

ew
 i
s

a
su

pe
rs

et
 o

f
bl

ac
kl

is
te

d
¬

O
ld

,
i.e

.
bo

th
 c

an
 e

xi
st

 i
n

pa
ra

lle
l
re

su
lt
in

g
in

 a
 u

ni
on

 o
f
di

sa
gr

ee
m

en
ts

).

(
¬

O
ld

 ⊕
 ¬

N
ew

)
 ≠

∅

→

—
 ;
 (

 ¬
O

ld
)

G

en
er

al
 c

om
bi

na
ti
on

 o
f
di

sa
gr

ee
m

en
ts

 i
s

re
pl

ac
ed

 b
y

bo
th

 o
f
th

em
 c

oe
xi

st
in

g
in

 p
ar

al
le

l,
re

su
lt
in

g
in

 a
 u

ni
on

 o
f
di

sa
gr

ee
m

en
ts

.

68

of { agreed , disagreed } × { agreed , disagreed }. Furthermore, for each such
situation, we distinguish its three signi3 cant results: (1) both pieces of information
have nothing in common, (2) are equal, or (3) overlap. Table 4.4 overviews these
relationships along with short explanations of their meaning.

4.6 Dialogue Context

4.6.1 Problem Identi$ cation

As already mentioned, our approach to dialogue context follows Grosz and
Sidner's work on discourse [Gro86]. They propose that the attentional component
in a dialogue can be recognized as noun and pronoun phrases. Contrarily, the
recognition of intentions at the level of DSPs is a large research problem in itself.
As it turns out, the clues for a proper intention recognition come from a variety
of sources that must be put together to fully identify the intention [Gro86]:

• Cue phrases. Phrases like "excuse me", "by the way", etc. are the most
apparent linguistical means to indicate discourse segment boundaries
and thus the beginning or end of a DSP. Grosz and Sidner divide these
phrases into categories (e.g., attentional change, interruption, etc.)
that further help organize the structure of the dialogue. However, cue
phrases are ambiguous; e.g., if several interruptions have been made
in a dialogue, the cue phrase "but anyway" indicates a return to some
previously interrupted discourse, but does not specify which one [Gro86].

• Utterance-level intention. Intention is to describe utterance meaning
[Gri69]. Generally, a DS consists of several utterance-level meanings,
which must be combined in some way to produce the overall DSP. This
is a quite complex process as it is necessary to recognize that subsequent
utterances do not bear standalone purposes but should be used in the
same context.

• Shared knowledge about the domain. This refers to both conversational
partners knowing the taxonomy of domain tasks and how diJ erent tasks
can be "nested" into each other.

The intention recognition process must be capable of operating on partial
information. It thus must allow for incrementally constraining the range of
possibilities as more information becomes available over the course of a particular
discourse segment.

Hence, this section aims to spot the general problem of properly representing
a dialogue context with respect to user's intention recognition. Grosz and Sidner's
work has been partially implemented in the past (e.g., in [Ric01, Ngu06b, Rot07]),
with "partially" referring to diJ erent workarounds to utterance-level intentions.
However, the generally preferred way to representing and recognizing intentions
is by analyzing utterance linguistical structure for dedicated "request" tokens
[Eck95, Boh09, Ngu06b]. Presumably, both of these competitive approaches have
their pros and cons: while Grosz and Sidner's approach plays a rather universal

69

role, it is unnecessarily over-scaled for common collaborative dialogues (e.g., as
simpli3 cations in [Ngu06b] illustrate); contrarily, the "request" token-approach is
simple enough to be easily accounted for, but lacks 6 exibility as for evolution of
user's intentions.6

Presumably, for our framework to be as general as possible, Grosz and
Sidner's work has been partially adopted too. Before describing, let us introduce
the term dialogue act and its importance for maintaining a coherent dialogue
with the user.

4.6.2 Dialogue Acts

Dialogue acts have their roots in theory of purpose and eJ ect of speech.
More particularly, by making an utterance, the speaker in a dialogue intends
to perform some action known as a speech act [Sea69]. In this respect, the
important application of speech acts is to give a clue for a proper recognition
of speaker's intentions by observing their performed speech acts. They may be
therefore seen as the cornerstone in natural speech processing, be it at the level
of automated conversational agents, or during an annotation post-processing
of existing dialogue transcripts [Eck95]. For practical reasons, conversational
partners' utterances need to be described a more abstract way in order to account
for the necessary terms like clari! cation or response, dealt within a dialogue.
These abstract terms are referred to as dialogue acts. Each dialogue act is fully
characterized by a semantic content (information conveyed or requested by the
particular utterance) and a communicative function (the purpose of saying that
utterance7). Thus, in order for a conversational agent to maintain a coherent
dialogue with the user, it is necessary to 3 rst recognize the associated dialogue
acts that lead to understanding user's underlying intentions.

Given that the agent must allow for a mixed-initiative style of interaction, the
proposed set of dialogue acts must be modeled correspondingly. Our proposition
can be seen in Table 4.5. The notion of the mixed-initiative is captured by
giving a user the possibility to take a turn when requesting a task (Request)
or con3rming information (Con! rm); contrarily, the system can take a turn
when requesting clari3cation (Request-clarify) or informing about task results,
thus 3 nishing the task and the corresponding discourse segment (Respond).
This mixed-initiative behaviour occurs automatically as the result of the agent
selecting appropriate dialogue strategies by observing a known context situation
patterns (more on them in Section 4.9). The following snippet shows a dialogue
with sentences annotated with their corresponding dialogue acts.

S

Welcome to the Timetable Information System. Politeness

How may I help you? Request
U

When does the next train go to Hradec? Request

S

Do you mean Hradec Králové or Hradec u Stoda? Request-clarify
U

Hradec u Stoda. Clarify

6 This means that their requests have to be expressed a "parser-aware" way within a single turn.
7 This function is usually related to a task, but often some of the function is to maintain the interaction

process. Dialogue acts with such notion are called dialogue control acts [All92].

70

S

There is a train going to Hradec u Stoda at … Respond

Do you want to buy a ticket now? Request-yn
U

No, thanks. Con! rm

S

Thank you for using our services and have a nice day. Politeness

At the beginning, the user asks for information about departure times. Since
"Hradec" is an ambiguous city name, the system performs a Request-clarify
act to gain more detailed information from the user. The task can then be
completed successfully and the system performs a Respond act to inform about
the connections found, immediately followed by a Request act to propose possible
continuation in the interaction. With the user refusing, the system performs
a farewell Politeness act and terminates the dialogue. In this regard, let us
note that we group agent's all polite phrases under the Politeness dialogue
act, despite the common way of classifying them individually, e.g., Greeting,
Goodbye, Please, etc.

4.6.3 Recognizing Dialogue Acts

With the dialogue acts de3 ned, the arising question is how to recognize them
in user's utterances. DiJ erent approaches may be used, depending on the
overall complexity of the dialogue management and desired functionality of the
resulting system. For instance, in information state-based systems, the way of
recognizing dialogue acts is relatively easy to conduct. Given the observable
eJ ects of utterance on the underlying information state, user's dialogue acts (or
set of) can be simply induced by the update they have caused [Tra03, Bui06].
Contrarily, in a SIL-based dialogue manager, a set of 6 at rules is proposed to
extract dialogue act(s) from user's current utterance and corresponding UFOs

Table 4.5 Dialogue acts.

Act type Description

Politeness General politeness padding

Request Ask the dialogue parter to ful3l a request

Request-yn Same as Request but with con3 rmation accepted

Respond Give results to a request

Request-clarify Ask the dialogue partner to clarify some ambiguities

Clarify Clarify some ambiguities

Request-con! rm Ask the dialogue partner to con3rm some proposition

Con! rm Con3rm some proposition

Help Request contextual help

Repeat Request repetition of dialogue partner's last proposition

Ack Express acknowledgement

Rogerian-psychologist Ask the dialogue partner to clarify some ambiguities

71

(e.g., if an UFO contains an A-parameter that is part of a wh-question, then the
user has performed a Request dialogue act) [Eck95].

Nevertheless, in the case of the Daisy framework, we adopt Nguyen's
approach consisting of a set of heuristic rules 3 red under distinct combinations of
both participants' last dialogue acts and user's current utterance syntactic class
(Table 4.6). However, we made two modi3 cations to her approach. First, we do
not consider the Cancel dialogue act; provided that cancellation is a destructive
operation, we think it should not be roughly estimated merely upon observing
imperative utterance as in Rule 5. Instead, we propose it to be modeled as a
meta-task with a special phrase as a trigger. And second, we do not take into
account user's last dialogue act. The reason is that this feature is redundant in
Nguyen's approach. Table 4.7 shows our resulting set of rules.

Probably the most notable point to make regards the "Request-suspected"
dialogue meta-act. As its name suggests, it is to indicate those utterances that
possibly may be recognized as Request dialogue acts (with additional analysis
of their semantics, covered next). The following dialogue snippet with four
alternative user responses shows the motivation behind this approach:

S

… There is a train and bus going to Cheb at 7 o'clock. Respond

Table 4.6 Nguyen's [Ngu06b] sample heuristic rules for dialogue act type determination.

Rule User's last act Agent's last act Utterance type Result

1 Request Respond imperative Request

2 Clarify Respond wh-question Request

3 Cancel Ack yn-question Request

4 Request Request-clarify declarative Clarify

5 Request Request-clarify imperative Cancel

6 Request Request-con! rm declarative Con! rm

Table 4.7 Daisy framework sample heuristic rules for dialogue act type determination;
acts marked with an asterisk must have been performed on intentional layer, and dash
denotes unimportant parameter.

Rule Agent's last act Utterance type Result

1 — interrogative Request

2 Request / Request-yn declarative Request-suspected

3 Request-clarify * — Request-suspected

4 Rogerian-psychologist * — Request-suspected

5 Request-clarify declarative Clarify

6 Request-con! rm declarative Con! rm

72

Do you want to buy a ticket now? Request-yn
U

alt1
Is there anything departing later? Request

U
alt2

I am quite sure there was yet something later.
 Request-suspected → Clarify

U
alt3

Yes. Request-suspected → Con! rm
U

alt4
Say me their arrival times, please. Request-suspected → Request

As it can be seen (currently wihtout further explanation), while U
alt1

 describes
a direct question caught by Rule 1 as a Request dialogue act, U

alt2
 and U

alt3

show a false suspicion as their respective contents are recognized by Rule 2 and
additional analysis as Clarify and Con! rm acts. Finally, U

alt4
 shows a successful

suspicion of a Request dialogue act, caught also by Rule 2. However, before we
can cover the additional analysis on determining if a sentence contributes to
the current discourse segment or creates a new one (or possibly returns to a
dominant one), we need to 3 rst describe the overall structure of our adoption of
Grosz and Sidner's work.

4.6.4 Approaching Grosz and Sidner's Work:
Two-layered Representation

Grosz and Sidner's work on discourse [Gro86] is widely agreed as it puts together
and further develops theory from diJ erent realms of dialogue processing: focusing
in discourse, utterance-level intentions, and discourse intention recognition.
They suggest that a discourse is a combination of three components: linguistical
structure, intentional structure, and attentional state. The linguistical structure
refers to recognizing the boundaries of discourse segments (DSs), i.e. sequences
of utterances that "ful3 l certain functions with respect to the overall discourse".
We already saw example of dialogue segmentation in Fig. 4.7. The intentional
structure describes discourse purposes (DPs) that stay behind engaging in the
particular discourse. At the level of DSs, the overall DP is decomposed into
discourse segment purposes (DSPs) each of which specifying the contribution to
achieving the DP. Finally, the attentional state is a stack of focus spaces as they
were described in Section 4.5.4.

These three components do not act as separate entities but rather mutually
depend on and in6 uence each other. For instance, the linguistical structure is
aJ ected by determining mutual relationships between subsequent DSPs (the
so called dominance and satisfaction-precedence relationships). On the other
hand, although there is an in3 nite number of intentions a discourse participant
may have, there is only a small number of intentions relevant to the current
discourse structure [Gro86].

For a successful application in automated task-oriented systems, Grosz and
Sidner's work may be signi3 cantly simpli3 ed. Given the domain-wise orientation
of nowadays dialogue system, there is always a 3 xed number of tasks the user
may intend to discuss. We also can presume that the user always makes the
intention explicit so that it can be recognized (i.e. the user does not have
hidden intentions, unrecognizable from the system standpoint). Hence, these

73

individual tasks can be considered the discourse segment purposes. Given the
assumed collaborative behaviour of the user, the overall discourse purpose may
be understood as to ful3ll a domain task. In addition, each user's utterance in
the dialogue plays at least one of the two roles: specifying her of his intention in
the current segment (i.e. a task to be performed) or adjusting the recognition of
that intention (e.g., clarifying or giving more information).

The above mentioned two roles of an utterance play a signi3 cant clue within
our dialogue context model. They in fact determine its layout as two distinct
"layers" of inter-related information regarding currently open tasks (task layer)
and their related "parametrizations" (data layer) [Nes10a, Nes13]. Naturally, the
data layer approaches the attentional state in Grosz and Sidner's work, and not
surprisingly may be represented using the information pool developed in Section
4.5. However, when designing the task layer, our aim has been to overcome the
common limitation in dialogue systems, namely that tasks have to be recognizable
from a single utterance [Eck95, Tur05, Boh09, Sin02, Wal97] so that eventually
a new discourse segment is created, and recognized task set as its purpose
[Ngu06b, Gus02]. Despite su\ cient in majority of cases, diJ erent circumstances
may cause this simple approach to fail, as illustrated in the following snippet:

S
1

How may I help you?
U

1
Karlovy Vary, please.

S
2

I understood Karlovy Vary. Should that be
your departure or target location?

U
2

Target location.
S

3
Can I help you " nd a connection to Karlovy Vary or
do you want to proceed to the ticketing service?

U
3

Find connection, please.

Here, the system attempts to recognize user's intention by elaborating so far
known, hence narrowing the set of possible intentional candidates. An alternative
reaction to the incomplete request in U

1
 might be to list all available system

functionality in S
2
, e.g., "I can o$ er you information on arrival times, departure

times, ticketing service, local weather, tourism, …", eventually categorized and
browsed as a hierarchy of menus.

The second motivational example shows a situation of the system posing a
con3 rmation on the uncertainly recognized task, responded to by the user with
a disagreement and a correction:

S
1

How may I help you?
U

1
When does the next train to Karlovy Vary depart?

S
2

Pardon me, I am not sure now, have you
asked for arrival information?

U
2

No, departure, please.
S

3
There is a train going to Karlovy Vary at …

As it can be seen, in both of the above dialogue snippets, the task recognition
spans multiple utterances. Therefore, to allow for an incremental evolution of the
task speci3 cation, the task layer is represented using an information pool as well.
In this information pool, Requirements 1 and 3 from Section 4.5 are naturally

74

left unexploited (as we do not distinguish who of the two dialogue participants
initiated the given task, nor is there the need to organize recognized tasks into
advanced structures – the order of tasks is implicitly given by saliences of their
corresponding instances); however, the remaining Requirements 2, 4, and 5 in
their respective order guarantee that, apart of spanning multiple utterances,
each task speci3 cation may be corrected, be speci3 ed at least partially, and
target any custom information.

With task and data layers approached by information pools (Fig. 4.10), let us
denote them Y

T
 and Y

D
, respectively. At this moment, we are facing the problem

of 3 nding those pieces of information in the input semantics that correspond to
the notion of either of the layers. Apparently, detecting the Request (or Request-
suspected) dialogue act is insu\ cient in this regard. For instance, although user's
utterance "When does the next train to Karlovy Vary depart?" is recognizable
as a Request using Rule 1 in Table 4.7, the utterance not only speci3 es a new
task (departure time request) but it also brings in task-related information (next
train to Karlovy Vary).

4.6.5 Fragmenting User's Utterance Semantics

The idea behind 3 nding either of the two kinds of information targets splitting
the input semantics into two distinct fragments. These are not necessarily
disjunctive, however, presumably homomor3 c with the input semantics. We call
the process of splitting the fragmentation, and its results the task fragment and
the data fragment, respectively, denoted as F

T
 and F

D
.

The essential constraint put on the fragmentation is to operate with paths from
semantics root to semantics leaves, i.e. Π(Y(ρ), Y(K

1
), …, Y(K

N
)), where Y(K

N
) is

a leaf iJ P(Y(K
N
)) = �. Apparently, a semantics leaf does not necessarily has

to be the underlying model leaf (e.g., Y(K
train

) instance is a leaf in the semantics
Timetable(Train), but K

train
 itself is not a leaf in the DDM in Fig. 4.1). The

bene3 t of constraining to paths to leaves is in maximizing the compactness of
the outcoming task and data fragments (see also Fig. 4.11).

DSP1

DSP2

DSP3

DSP4

input semantics

task layer

dialogue stack

data layer
(attentional state)

data affiliation

task recognition

Fig. 4.10 Two-layered approach to task-oriented dialogue context representation.

75

In the following sections, we will concern ourselves with two major questions:
when to initiate the fragmentation process and how to determine the optimal
fragmentation.

4.6.5.1 Initiating the Fragmentation

To illustrate the problem, let us suppose a single path to leaf (to simplify the
terminology and explanations, we from now on will say only "path", unless a
diJ erent kind of path is meant). This path may be part of: (1) the task fragment
only, (2) the data fragment only, or (3) both of the fragments. Thus, the complexity
of the fragmentation problem is in general O(3N), where N is the total number of
paths in the input semantics. To lessen the computational demands, a heuristics
is used to mark those paths whose membership in either of the fragments is
certain. The heuristics can be easily described by introducing the cardinality of
information carried by the leaf, as follows:

• atomic information (e.g., a single time point "14:30") has a zero cardinality
since it is always certain (i.e. it involves a single option),

• non-atomic information (e.g., a time interval "around 14 o'clock") has a
non-zero cardinality since it tends to be uncertain (i.e. it involves more
options), and 3 nally,

• unde3 ned information (e.g., an unknown time point hidden behind the
word "when") has an in! nite cardinality since it is uncertain.

Although exempli3 ed for diJ erent time point values, we do not provide any
formal general recipe on how exactly to compute the cardinality. The reason is
that any computation of the cardinality is information-dependent matter. For
example, each C

discount
 object (Fig. 4.1) might take on one of three values: Child,

Premium Customer, or Senior. The cardinality returning function for this

trn148 Conn:Train dep149 Departure

lctn150 Location city150 City
Hradec

tp152 TimePoint hour152 Hour
around 8

(a) original input semantics (unfragmented)

trn145 Conn:Train dep146 Departure tp147 TimePoint hour148 Hour
around 8

(b) task-related component in the input semantics (task fragment)

trn148 Conn:Train dep149 Departure

lctn150 Location city150 City
Hradec

tp152 TimePoint hour152 Hour
around 8

(c) data-related component in the input semantics (data fragment)

Fig. 4.11 Input semantics fragmentation process motivational example.

76

object would be computed as follows: if the value is de3ned, then return zero,
otherwise return in3nity. If we want to combine discounts (i.e. create a collection
of multiple C

discount
 instances to catch, for instance, that a senior may also be a

premium customer), the cardinality returning function would need to remain the
same – unlike with the time point, "more options" in this case do not indicate
that the value is uncertain.

Given the information cardinality, we can spot two important points. First,
atomic information cannot contribute to an intentional shift as there is nothing
to discuss about it – it is therefore always a part of the data fragment only.
Second, an empty information never brings data to the dialogue and is thus
guaranteed to be added to the task fragment. This, however, does not regard
an exclusive membership. For instance, consider the following dialogue snippet:

S

There is a train going to Karlovy Vary at 9:30, and a bus at 9:40.
U

When does the train arrive?

 interrogative(
 Timetable(_ref_(Train(Arrival(TimePoint(Hour:—)))))
)

The single leaf in user's utterance contains unde3 ned information. The
in3 nite cardinality naturally grants the corresponding path to the task layer.
However, the utterance also refers to the previously mentioned train object – it
therefore needs to be considered as a candidate for the data layer as well.

For completeness sake, let us note that the membership for an non-atomic
information cannot be determined any other way but using an exhaustive
fragmentation. However, we furthermore can reduce the exponential costs by
constraining to cases that potentially contain the expected intentional shift. One
of the obvious cases is to directly recognize the Request or Request-suspected
dialogue acts in user's utterance (as in the earlier example in Section 4.6.3).
The second case occurs when agent's last dialogue act has been a Request (e.g.,
recall "How may I help you?") or Request-yn. In such cases, user's declarative
response should be interpreted as an indirect Request act. The following two
rules summarize the initiation of the fragmentation process.

Rule 1. If the user currently performed either a Request or Request-
suspected dialogue acts, initiate the fragmentation process.

Rule 2. If the agent lastly performed a Request or Request-yn dialogue
acts, initiate the fragmentation process.

If neither of the two rules 3 res, user's utterance is assumed to contribute
to the data layer only, and the fragmentation is bypassed by setting the task
fragment empty and the data fragment equivalent to the input semantics, i.e. F

T

= � and F
D
 = Semantics.

In this section, we responded the 3 rst of the two questions: when to fragment.
We also have described ways to minimize the computational expenses of the
process. Interested reader is suggested to trace the UrciOptimalniFragmenta-
ciSemantiky procedure in Semantika.pas to see additional, although merely
minor, facilitating constraints put on the fragmentation process.

77

The second question, how to approach the optimal fragmentation, is a complex
one and as such needs to be split into two related subproblems: analyzing a given
fragment against it respective layer content, and evaluating the result of the
analysis. The following two sections cover these subproblems.

4.6.5.2 Analyzing Fragment Against Its Layer

The analysis can be simply described as matching a given fragment against the
layer content in order to qualify the fragment from three distinct points of view:

• what is the information that the fragment brings into the layer,

• how can underspe3 ed information be "explained" using the current
content of the layer, and

• which existing objects the fragment refers to.

Naturally, there are slight diJ erences in analyzing the data and task fragments
(which exceed the most apparent dereferencing, which reasonably cannot be
carried out on the task layer). Nonetheless, with not taking these distinctions
into account, we will be able to describe the basic analysis more clearly.

Let us start with the 3 rst of the three points – spotting new pieces of
information conveyed by the fragment. The essence is in fact very similar to
the one we saw earlier in Section 4.5.1: starting from the roots of the fragment
and the layer, a current concept instance (element of the layer) is tested for
existence of a particular subcollection (element of the fragment). The process
then recurrently continues up to fragment leaf concepts. However, unlike with
the algorithm in Fig. 4.2, no instantiation nor inferrention occur. Intuitively,
given the below layer content:

city150 City
Kdyné

lctn149 Locationdep148 Departuretrn147 Conn:Traintim147 Timetableρ

the process 3 nds the following new information in the below fragment (in gray):

hour150 Hour
around 8

tp149 TimePointdep148 Departuretrn147 Conn:Traintim146 Timetable

The second aspect of the analysis, how can underspe3 ed information
be explained, does not refer only to the SIL-like anchoring. In fact, it is a
wider conception of which anchoring is merely one special case. The process of
information explanation aims to match underspeci3 ed information against some
known structure. This structure may be either the current content of the layer,
or the underlying DDM itself ("basic view" in SIL terms), should the current
content fail to explain it completely. For instance, given an empty layer, user's
information City:"Kdyně" will be explained as a location. The reason is that the
empty layer fails to explain it, however, in the underlying DDM from Fig. 4.1, the
only parent of C

city
 is C

location
. The remaining parents cannot be resolved at this

moment: it is not clear if the location regards a departure or arrival, whether it

78

should concern train or bus, and 3 nally, if the user speaks about a timetable or
a ticketing service.

city140 City
Kdyné

City:"Kdyně"

→
lctn142 Location city140 City

Kdyné

Location(City:"Kdyně")

The 3 nal aspect of the analysis is to dereference known objects. In order for
the dereferention to account for both current and historical objects (no longer in
the data layer but in the dialogue history), these objects are ordered descendant
by their salience (a similar approach may be found in [Zah03, Nes09]). Moreover,
the framework supports two ways of dereferencing objects, explicit and implicit.
We have already encountered the explicit dereferention earlier in Section 4.4.
To recall, hints for explicit dereferences are indicated with the _ref_ directive;
for instance, the sentence "I will buy a ticket for the train" can be represented
as Ticket(_ref_(Train)), causing the framework to attempt to match such
expression against the list of salient objects.

In contrast, the implicit dereferention does not rely on being supplied correctly
parsed references. Instead, it assumes that references remained unrecognized or
unexpressed (which may be the case in some languages, for instance Czech), and
that each object in the semantics is a potential reference. The analysis therefore
3 rst attempts for the dereferention, and no earlier than once failed continues with
spotting new information (as already described above). To illustrate, the sentence
"I will buy a ticket for the train" would be now represented as Ticket(Train).
Given that C

ticket
 is a topic, the only relevant candidate for dereferention is

the I
train

. Therefore it will be 3 rst subjected the implicit dereferention, and if
unsuccessful, declared as new information.

To put all of these three elemental processes into perspective, the following
example roughly demonstrates the overall principle of the fragment analysis.

Example 4.7 (Fragment analysis)
Let us suppose the following dialogue:

U
1

I want to go from Brno to Hodonín.
S

1
There is a local express train going from Brno to Hodonín
at 7 o'clock, and an intercity train at 9 and 10 o'clock.

Can I help you with anything else?
U

2
When do they arrive there?

S
2

The express train arrives in Hodonín at 9 o'clock, the intercity
train at 9 arrives at 10, and the one at 10 arrives at 11 o'clock.

After the dialogue, the corresponding data layer content looks like shown in Fig.
4.12. Let us suppose the dialogue continues with:

U
3

I will buy a ticket for the intercity train at ten o'clock.
 Ticket(Price:— , Type:"intercity", Hour:"10")

Notice the presence of C
price

 enclosed within C
ticket

 as an explicit indicator
of "purchasing something". This instance can be introduced by the parser to

79

overcome the lack of indirect queries detection by recognizing the "shape" of
the sentence,8 the so called "task token", see Section 4.4. The C

price
 instance is

assigned in3 nite cardinality, while both the C
type

 and C
hour

 zero cardinality, hence
the whole semantics equals the data fragment. Let us show how its analysis
is conducted with respect to the data layer in Fig. 4.12 (notice instances are
annotated diJ erently than in Fig. 4.5; also, although Brno and Hodonín have
been said merely once in S

1
, each appearance is individually salient – the reason

relates to utterance production, not covered here).

• The analysis begins with the layer and the fragment roots. The attempt to
3 nd an instance of C

ticket
 in the layer fails, hence the analysis turns to the

underlying DDM (Fig. 4.1) to 3 nd that C
ticket

 is directly accessible from
within the root. Hence, semantics I

ticket
 is recognized as new information.

• The framework attempts to trigger implicit dereferention using children
of I

ticket
. Given that the dialogue history is empty, only the ordered list

of data layer salient objects is considered. In this list, the candidates are
trn40, trn129, and trn25 as only they can be the immediate children of
the ticket instance.

8 As buying a ticket cannot be formulated as a direct interrogative question.

trn6 Conn:Train
U1-1534

lctn8 Locationdep7 Departure
U1-1533

city8 City
Brno U1-1532

lctn10 Locationarr10 Arrival
U1-1531

city11 City
Hodonín U1-1530

tim138 Timetable

type41 Type
local_expressS3-250

city31 City
Brno S3-252

lctn42 Location

hour33 Hour
7S2-1023

tp32 TimePoint

dep41 Departure
S2-1020

city35 City
Hodonín S3-253

lctn34 Location

hour36 Hour
9S3-255

tp36 TimePoint

arr34 Arrival
S3-254

prc48 Price
25.000000

type128 Type
intercityS3-244

city80 City
Brno S3-246

lctn238 Location

hour20 Hour
9S2-1017

tp83 TimePointdep100 Departure
S2-1014

city75 City
Hodonín S3-247

lctn4 Location

hour13 Hour
10S3-249

tp38 TimePoint

arr46 Arrival
S3-248

prc40 Price
35.000000

type21 Type
intercityS3-238

city77 City
Brno S3-240

lctn102 Location

hour0 Hour
10S2-1011

tp41 TimePointdep20 Departure
S2-1008

city81 City
Hodonín S3-241

lctn16 Location

hour133 Hour
11S3-243

tp151 TimePoint

arr15 Arrival
S3-242

prc130 Price
35.000000

trn40 Conn:Train
S3-251

trn129 Conn:Train
S3-245

trn25 Conn:Train
S3-239

tim19 Timetable

tim153 Timetable

ρ

Fig. 4.12 Data layer content after speaking utterance S
2
 in Example 4.7; instances annotated

with utterance–salience pairs.

80

• The 3 rst cadidate, trn40, is tested. The analysis attempts to match
the Price:—, Type:"intercity", and Hour:"10" speci3 cations. The train
satis3 es the price speci3 cation with prc48 ; the attempt to match types
fails, however. The analysis is therefore abandoned and trn40 refused.

• The next candidate, trn129, already satis3 es the type demand. The C
hour

speci3 cation is explained by traversing instances arr46 and tp38. This
train therefore fully matches all requirements, and one of the analysis
results, called uni! cation, therefore is:

prc34 Price
35.000000

city32 City
Hodonín

lctn31 Location

hour33 Hour
10

tp33 TimePoint

arr30 Arrival

city28 City
Brno

lctn27 Location

hour29 Hour
9

tp29 TimePoint

dep27 Departure

type26 Type
intercity

trn25 Conn:Traintim25 Timetableρ

• Finally, the last candidate, trn25, satis3 es the demands with the C
hour

speci3 cation explained using instances dep20 and tp41. Therefore, the
second uni3 cation is:

prc211 Price
35.000000

city205 City
Brno

lctn204 Location

hour206 Hour
10

tp205 TimePoint

dep204 Departure

city208 City
Hodonín

lctn208 Location

hour210 Hour
11

tp209 TimePoint

arr207 Arrival

type203 Type
intercity

trn203 Conn:Traintim21 Timetableρ

Thus, as it can be seen, the analysis is a non-trivial operation that purposely
switches between the three intrinsic processes to meet its objective of analyzing a
fragment against a respective layer. Nevertheless, this example demonstrated the
analysis merely from a rough top-level point of view. Interested reader is therefore
advised to trace the spodproc procedure in Semantika.pas to see the analysis
at work in full detail. Note in this regard, that, due to historical reasons, the
three elemental processes are called there akceEmulace, akceDomysleni, and
akceDereference, respectively. To be able to interact together, they comprise
a great state-based automaton that is the core of the analysis, with additional
supportive routines called on its behalf. □

4.6.5.3 Evaluating Analysis Uni$ cation Pairs

At this moment, we suppose that the input semantics has been split, resulting
in the task and data fragments, and both of the fragments have been analyzed
against their respective layers. We call the task and data fragments a pair. Each
pair must now be evaluated with respect to the current state of the dialogue
context. In other words, it is necessary to quantify the match with the layer

81

content from three distinct points of view (compare with points in the previous
section):

• how many new pieces of information are brought in by the fragment,

• how well can underspe3 ed information be "explained" using the current
content of the respective layer, and

• how well are existing objects referred by the fragment.

The evaluation conceives of a set of rules concerning with diJ erent context
situations. Each rule is to penalize a fragment if it does not 3 t the particular
situation. The 3 nal sum of the penalties, denoted as P, then indicates how well
the pair 3 ts the layers (for instance, how well system expectation is met, discussed
later). The pair that yields the lowest compound penalty, P*, is considered optimal
and integrated into the layers using the algorithm presented in Section 4.5.

The cornerstone in the rules is salience. Let us recall that we de3 ned it as
a number with the following semantics: the higher the number the older the
information, and vice versa. The rules involved in the evaluation are as follows:

Rule 3. (extending the set of Rules 1 and 2 from Section 4.6.5.1)
describes the most obvious situation – a user referring to an object.
We want to address the most salient object that matches user's
description, therefore we add each object's salience to the penalty sum
(recall that the higher the salience, the lower the penalty). Formally:
Let there be a path from root ρ to leaf information L in a Fragment
(to spare space, we will abbreviate as 〈 ρ ← L 〉 ∈ Fragment) that is
completely uni3 able9 with the layer content. Then for each object on
the path add its salience to the total penalty P.

Rule 4. Describes a situation in which the user introduces new
information (e.g., when no object matches user's reference). In
this case, we add the minimal penalty for the user changing the
layer content. Formally: Let 〈 ρ ← L 〉 ∈ Fragment. Let 〈 ρ ← E 〉
⊂ 〈 ρ ← L 〉 be the maximum length subpath uni3 able with the layer
content (we say 〈 ρ ← L 〉 is partially uni! able). Then for each object
whose distance is greater than E add minimal penalty P

m
 to P. (This

rule can be considered a special case of Rule 3.)

Rule 5. Dictates that an addressed object must fully match a given
reference, otherwise it cannot be considered resolving it. Formally:
Let 〈 ρ ← L 〉 ∈ Fragment be completely uni3 able with a layer. Let
E ∈ 〈 ρ ← L 〉 be an object for which Rule 4 applies. Then for each
object on the path add its salience to P.

Rule 6. Demands objects to be maximally described by the semantics
(e.g., it is wrong to not consider all information from the semantics that
matches an addressed object during reference resolving). Formally:

9 Object X is said to be uni! able with object Y if parents of X are subset of parents of Y and one of
the following holds (Prolog-like uni3 cation): (1) values of both objects are equal, or (2) at least one of
the objects has unde3 ned value.

82

Let 〈 ρ ← L 〉 ∉ Fragment be completely uni3 able with a layer content.
Then for each object on the path add twice its salience to P.

Rule 7. Requires objects that the user disagrees with to exist.
Formally: Let 〈 ρ ← L 〉 ∈ Fragment be partially uni3 able with a
layer content. Let E ∈ 〈 ρ ← L 〉 be an object marked as disagreed.
Then for each object on the path add thrice its salience to P.

Rule 8. De3 nes that in3 nite cardinality objects are more “valuable”
for task detection than non-zero cardinality objects. Formally: If the
task fragment contains at least one leaf with in3 nite cardinality, then
all paths from the fragment root to leaves with non-zero cardinality
must be uni3 able with the task layer content, otherwise assign P
in3 nite penalty.

Rule 9. Forbids information that most probably regards task detection
to be integrated into the data layer. Formally: In a data fragment, all
paths from the root to leaves with in3 nite cardinality must be uni3 able
with the data layer content, otherwise assign P in3 nite penalty.

Rule 10. Forces the task fragment to always exist if the semantics content
indicates a possible intentional shift. Formally: Let the semantics
contain a non-zero or in3 nite cardinality piece of information. If the
task fragment is empty, assign P in3 nite penalty.

Rule 11. Favours objects currently in the system focus over those that
are not; that is, this rule accounts for an implicit arbitration for cases
in which analysis of the semantics would be ambiguous. Formally:
Let 〈 ρ ← L 〉 ∈ Fragment. Let 〈 ρ ← E 〉 ⊂ 〈 ρ ← L 〉 be the maximum
length subpath uni3 able with system focus, 〈 ρ ← F 〉. Then for each
object with distance greater than E add maximum penalty P

M
 to P.

Rule 12. Favours objects either expected by the agent (e.g., required to
solve a task) or used by the agent (e.g., in some of planned steps) over
objects that are useless in the scope of the given task. This supports
Grosz and Sidner's term satisfaction-precedence (covered later).
Formally: Let 〈 ρ ← L 〉 ∈ Fragment be not completely uni3 able
with any system expectation 〈 ρ ← X

i
 〉. Then for each object on the

path add maximum object penalty P
M
 to P.

With having mentioned several diJ erent penalty increments in the above
rules (constant or salience-based), let us put them in their mutual relationships
to symbolically indicate their in6 uential character on the compound penalty P:

0 ≤ P
m
 ≤ S(object) ≤ P

M
 < ∞ .

Recall that the rules aim to describe common situations that may arise over
the course of a dialogue. The bene3 t of encoding these situations into rules is the
scalability of the approach. Nonetheless, the downside is the "proper" assignment
of corresponding penalties. It requires a decent amount of eJ ort to equilibrate
the whole system of rules to evaluate the fragmentation pairs as desired. A good

83

clue for assigning reasonable penalties may be to prioritize the situations that
the rules express. Not surprisingly, the multipliers of penalties in Rules 6 and 7
intend to approach such priorities (yielding Rule 6 is preferred over Rule 7 by
its penalty being less multiplied). The similar notion then also holds for the two
constant penalties, P

m
 and P

M
, used in Rules 4, 11, and 12. Finally, to overcome

the issue of the penalization being dependent on the current path number (the
more paths there are in a fragment the higher penalty would be gathered),
the sum of penalties P is divided by this number, producing the "normalized"
pair penalty P

norm
. Interested reader may further trace the ohodnotFragment

function in Semantika.pas, returning the normalized pair penalty P
norm

.

4.6.6 A Complete Example

Before moving on, let us demonstrate the working cycle of our dialogue context
approach in its entirety. Ponder the following dialogue snippet:

S
1

How may I help you?
U

1
I need to go to Ostrava.

 declarative(
 Timetable(
 Departure(Hour: —) ,
 Arrival(City:"Ostrava")
)
)

S
2

Which transportation means would you prefer?
U

2
A cheap one, please

 declarative(Criterion:"cheap")

S
3

I understood Ostrava. I can o' er you a train, bus, or airplane
connection. Which transportation means would you prefer?

U
3

A cheap one, so bus or train?
 interrogative(Criterion:"cheap" , Bus , Train)

S
4

What time approximately would you like to depart?
U

4
About eleven.

 declarative(Hour:"about 11")

S
5

I understood you want from Brno to Ostrava by
bus or train, departing at eleven. Please con" rm this
by saying Yes, or say your correct request.

U
5

Yes.
 declarative(_agree_)

S
6

The next cheapest bus from Brno to Ostrava leaves at 15:30, train
at 13 o'clock, and bus at 13:30. Do you want to order a ticket now?

U
6

What are the prices?
 interrogative(Timetable(Price:—))

S
7

The ticket for the bus departing at 15:30 costs 30 coins, train 35
coins, and bus at 13:30 40 coins. Can I help you any further?

U
7

When does the train arrive?
 interrogative(Train(Arrival(TimePoint(Hour:—))))

S
8

The train arrives in Ostrava at 18 o'clock. Do
you want to order a ticket now?

84

U
8

Yes, please.
 declarative(_agree_)

S
9

Ticketing service. …

As usually, let us suppose that both of the layers are empty at the beginning.
The system performs a Request act in S

1
, responded to by the user with a

declaration of wanting to get to Ostrava. By speaking U
1
, the user performs

a Request-suspected dialogue act. The utterance semantics itself consists of
an unde3 ned Time object (to indicate the queried information) and an atomic
City object. Rule 2 forces semantics to be split. Rule 10 then requires the task
fragment to exist (as it contains an unde3 ned value object). The task fragment
therefore consists of the 〈 ρ ← Time 〉 path, as the atomic City object cannot
update the task layer. The data fragment consists of the 〈 ρ ← City 〉 path only,
as, according to Rule 9, the unde3 ned Time object cannot be introduced into the
data layer. This splitting also equals the optimal fragmentation. Given that the
optimal task fragment is not empty, implying an intentional shift has been made
by the user, the Request-suspected dialogue act is further narrowed as a regular
Request act. Thus, after incorporating U

1
 into the dialogue context, the task and

data layers contain the 〈 ρ ← Time 〉 and 〈 ρ ← City 〉 information, respectively.
Utterance U

2
 is anchored into the data layer only as there is only a single

object 〈 ρ ← Criterion 〉 with zero cardinality recognized, causing neither of Rules
1 and 2 be triggered. In U

3
, the interrogative type of the utterance triggers Rule

1. The task fragment then consists of both of the transportation means only (our
heuristics prevents the atomic Criterion be part of the task fragment). However,
the data fragment has two possibilities: (1) complete semantics with penalty P =
2·P

m
 + 2·S(Criterion) (because Rule 4 yields minimal penalty P

m
 for I

bus
 and

I
train

 , and Rule 3 yields the penalty of the 〈 ρ ← Criterion 〉 path salience), or (2)
〈 ρ ← Criterion 〉 object only with penalty P = 2·P

m
 + 4·S(Criterion) (as Rule

4 yields minimal penalty P
m
 for for I

bus
 and I

train
 , and Rule 6 twice penalizes

〈 ρ ← Criterion 〉 for being not part of the fragment). The latter option does not
beat the former one, hence the non-atomic I

bus
 and I

train
 objects are contained in

both of the fragments. The following utterance U
4
 is of a trivial nature similarly

as U
2
 , i.e. no fragmentation is required and the semantics updates the data

layer only. Rule 11 interprets the information as a departure time due to the
system being focused on a departure in S

4
 . Utterance U

5
 does not contain any

instantiable objects, i.e. again no fragmentation is necessary. Once the system
has said S

6
 , the data layer looks like in Fig. 4.13.

Utterances U
6
 and U

7
 are spoken under similar dialogue conditions (the agent

performs a Request act and the user responds with an interrogation), hence let us
proceed to U

7
 . Rule 1 makes U

7
 a subject of the fragmentation process. The task

fragment is created by Rule 10 and consists of the 〈 ρ ← Time 〉 path. However,
there are two options for the data fragment: (1) 〈 ρ ← Time 〉 which is treated by
Rule 3 as a reference to the trn130 object introduced by the agent in S

6
 (and

further used in S
7
); this uni3 cation gains the penalty P = S(Train); (2) empty

which is penalized by Rule 6 (I
train

 object could be used to resolve a reference,
however, the uni3 cation does not account for it), and thus gains the penalty P =
2·S(Train). For completeness sake, let us note that the agent passes the referred

85

trn130 over to the “arrival time query” submissive for further handling. At the
moment of uttering S

8
 , the layers looks like in . The rest of the dialogue is then

processed analogously.

4.7 Task Recognition
and Dialogue Stack Management

So far, we intuitively recognized tasks in user's utterances. For instance, we
were able to 3 nd in "When does the train arrive?" a reference to the "arrival
time request" task that should operate with a train object, known to the user.
To maintain a coherent dialogue with the user, the agent needs to perform the
recognition too. However, not all user's utterances are Request acts – some are
to clarify ambiguities or provide more information.

In task-oriented systems, the recognition is usually approached using a simple
solution. For instance, in [Eck95], the task is recognized from the overall structure
of the utterance by passing the duty over to the parser that eventually produces
a token to identify the task (e.g., the tripple (request , sourcetime , wh_asked)

city28 City
OstravaU1-2299

lctn28 Locationarr208 Arrival
U1-2300

trn133 Conn:Train
U4-757

bus135 Conn:Bus
U4-750

tp136 TimePointdep136 Departure
U4-511

hour137 Hour
about_11U4-510

cri207 Criterion
cheapU3-1023

city240 City
Brno S5-251

lctn132 Location

hour241 Hour
15S5-254

mnt242 Minute
30S5-255

tp241 TimePoint

dep131 Departure
S5-253

city244 City
OstravaS5-252

lctn243 Location

hour245 Hour
20

tp244 TimePoint
arr243 Arrival

prc245 Price
30.000000

city145 City
Brno S5-246

lctn147 Location

hour142 Hour
13S5-249

tp143 TimePoint

dep125 Departure
S5-248

city128 City
OstravaS5-247

lctn132 Location

hour239 Hour
18

tp223 TimePoint

arr210 Arrival

prc145 Price
35.000000

city227 City
Brno S5-239

lctn223 Location

hour207 Hour
13S5-242

mnt124 Minute
30S5-244

tp138 TimePoint

dep212 Departure
S5-241

city147 City
OstravaS5-240

lctn127 Location

hour149 Hour
17

tp149 TimePoint

arr126 Arrival

prc129 Price
40.000000

bus141 Conn:Bus
S5-250

trn130 Conn:Train
S5-245

bus153 Conn:Bus
S5-238

tim179 Timetable
DSP1

tim35 Timetable
DSP0

ρ

Fig. 4.13 Data layer content after S
6
 has been uttered.

86

dep39 Departure
U1-3838

hour26 Hour
undefinedU7-766

tp33 TimePoint

arr7 Arrival
U7-767

bus201 Conn:Bus
U3-2558

trn240 Conn:Train
U3-2557

tim104 Timetableρ

(a) Task layer content after uttering S
8

city28 City
OstravaU1-3835

lctn28 Locationarr208 Arrival
U1-3836

trn133 Conn:Train
U4-2293

bus135 Conn:Bus
U4-2286

tp136 TimePointdep136 Departure
U4-2047

hour137 Hour
about_11U4-2046 hour119 Hour

18U8-254
tp119 TimePoint

city121 City
OstravaU8-252

lctn120 Location
arr118 Arrival
U8-253

prc118 Price
35.000000U7-762 hour122 Hour

13U7-761
tp122 TimePoint

city124 City
Brno U8-251

lctn123 Location
dep121 Departure
U7-760

trn117 Conn:Train
U8-250

tim177 Timetable
DSP2

cri82 Criterion
cheapU3-2559

city240 City
Brno S5-1787

lctn132 Location

hour241 Hour
15S5-1790

mnt242 Minute
30S5-1791

tp241 TimePoint

dep131 Departure
S5-1789

city244 City
OstravaS5-1788

lctn243 Location

hour245 Hour
20

tp244 TimePoint

arr243 Arrival

prc245 Price
30.000000

city145 City
Brno S5-1782

lctn147 Location

hour142 Hour
13S5-1785

tp143 TimePoint
dep125 Departure
S5-1784

city128 City
OstravaS5-1783

lctn132 Location

hour239 Hour
18

tp223 TimePoint

arr210 Arrival

prc145 Price
35.000000

city227 City
Brno S5-1775

lctn223 Location

hour207 Hour
13S5-1778

mnt124 Minute
30S5-1780

tp138 TimePoint

dep212 Departure
S5-1777

city147 City
OstravaS5-1776

lctn127 Location

hour149 Hour
17

tp149 TimePoint

arr126 Arrival

prc129 Price
40.000000

bus141 Conn:Bus
S5-1786

trn130 Conn:Train
S5-1781

bus153 Conn:Bus
S5-1774

tim179 Timetable
DSP1

tim71 Timetable
DSP0

ρ

(b) Task layer content after uttering S
8

Fig. 4.14 Dialogue context after uttering S
8
 .

87

indicates a request on departure times). A similar approach is also adopted in
[Boh09, Tur05]. Contrarily, in [Ngu06b], tasks are recognized merely on the basis
of keywords. This limitation is justi3 ed by the interactively complex nature of
the speech application and the intended aim "to reduce the eJ ects of speech
recognition errors and to avoid restricting the user’s vocabulary".

The task recognition is practically identical to the identi3 cation of discourse
segment boundaries – we need to recognize its beginning and its end. Recall
that we identify two essential components in the dialogue, tasks and task-related
information, and store them within two distinct layers. Each of these layers is
updated by incorporating a corresponding fragment of the input semantics. The
initial problem, when the user initiates a new task, can be easily resolved by
identifying the user’s dialogue act as a Request. As known from Section 4.6.5,
this guarantees a non-empty task fragment, describing the shift of actions.

The second problem, how to recognize the newly initiated task, can be solved
by making use of a plain template matching. Obviously, given that the task
layer aggregates all relevant information, this is a reasonable way – a general,
robust, and straightforward one, taking advantage of the overall nature of the
two-layered information model to recognize tasks that may span multiple user's
utterances. For instance, Fig. 4.15a schematically shows a template to recognize
a "departure time request" task (dashed around); it misses a K

conn
 de3 nition, as

the particular transportation means is irrelevant for the proper identi3 cation of
the task, as well is the presence of K

time_point
 (according to Fig. 4.1, K

hour
 can only

be parented by K
time_point

 , hence there is no ambiguity). The rest of Fig. 4.15 then
shows two sample task layers that contain this template (of course, Fig. 4.14a
contains it too).

Templates comprise a set in which each two patterns are mutually non-
interchangeable (although not necessarily disjunctive) in order for the tasks to
be uniquely identi3 able. As described above, the recognition is triggered once
user's Request act has been observed. It accounts for trying each pattern in the

Timetable Departure Hour

(a) Task recognition template

tp17 TimePointdep16 Departure hour17 Hour
undefined

tim16 Timetableρ

(b) Task layer that contains the recognition template

hour17 Hour
undefined

tp16 TimePointdep16 Departure

prc41 Price
undefined

bus15 Conn:Bus

trn41 Conn:Train

tim45 Timetableρ

(c) More complex task layer that contains the recognition template

Fig. 4.15 "Departure time request" template with example task layers that contain it.

88

set if it entirely matches against the task layer content. If it does, its score of
match is computed as the sum of saliences of object involved. Apparently, as the
task layer accommodates all task-related information in the dialogue, more than
one pattern may match. In such situation, the template with the highest score
is received as user's current intention. Apart of that, provided that the score of
match may be used as a metric of actuality, the scoring plays another important
role – it implicitly organizes the dialogue. This way, the most recent task with
the highest score is pushed onto the top of the stack, whereas the most dominant
task (usually the initial "How-may-I-help-you" task) always occupies the bottom.

However, before pushing any new task T onto the stack, and thus declaring
the beginning of a new discourse segment, we check if the currently topped task
T

Top
 dominates it,

(T
Top

 DOM T) → push (T) .

From a purely technical standpoint, note that our conception of the dominance
relationship is in6 uenced by the inner organization of the framework. Therefore,
the dominance relationship is realized as "T can be performed within the context
of T

Top
". In other words, unlike with Grosz and Sidner's work, T is not a priori

supposed to support the solution of T
Top

 . This implies from the fact that both of
the tasks need to be self-contained entities in order for the agent to deliberate on
them the optimal way. Nevertheless, the Domain Editor (see attached CD) even
so allows for a decomposition of a task into particular subproblems using the
conception of generic macros. During the "compilation procedure" of the domain,
the Domain Editor, among other things, expands these macros at places where
they are referred to produce a self-contained task solution plan. We will revisit
this essence once again in the next section on agent's deliberation. However,
despite the slight deviation in meaning, we will stick to Grosz and Sidner's terms.

If the domination relationship is not met (i.e. "T does not support the solution
of T

Top
", or in our terms, "T can not be performed within the context of T

Top
"),

it indicates a permanent change in user's intentional focus, and thus the end of
a discourse segment. The result is the top-positioned intention be popped out of
the stack and the domination relationship re-tested,

(T
Top

 ¬DOM T) → pop (T
Top

) ∧ re-test dominance .

The intentional shift is yet detected in two additional, less explicit ways,
both of which also express clues for the detection of the end of a discourse
segment. First, the user provides information that contributes to the satisfaction
of a dominant task. Intuitively, this rule is well applicable in a multi-domain
system and indicates the return to a previously discussed topic. Obviously, it
has the limitation of no two tasks be allowed to share the same topic concept.
The second rule therefore 3 lls in the gap by detecting the return to a dominant
task by observing that user's optimal data fragment suggests to override
system information in the data layer (see Section 4.5.2). To illustrate both of
the situations, ponder the dialogue snippet in Fig. 4.16. The task in DS2 is
intentionally unoptimized to demonstrate the applicability of the above two
detection rules (the preferred way would be to inform the user about the arrival
without her or him having to ask explicitly). As it can be seen, both DS3 and

89

DS4 are dominated by DS2, implying their tasks can be requested in the context
of DS2. In U

3
 , the user returns to DS2 by changing the departure time of the

bus to afternoon. Obviously, the C
departure

 and C
bus

 concepts do not contribute
to the task in DS3 on weather, but support the solution of the task in DS2 on
departure times. In U

4
 , the user initiates DS4 into which the bus object used by

the system in S
4
 is passed. In U

5
 , the C

hour
 concept behind the value "earlier" can

contribute to both DS4 and DS2 – the user either refuses the arrival at 15 o'clock
proposed by the system, or intends to change the departure from "afternoon"
to "around noon". In either case, the user is overriding the system (see the U(.)
function in De3 nition 4.10) and the control therefore needs to be returned to the
discourse segment in which the system has overridden the user, which is DS2.

To summarize our approach, we recognize the beginning of a new discourse
segment by matching a set of templates against the content of the task layer.
We recognize the end of a discourse segment as either (1) the new segment not
dominating the current one, (2) user's information contributing to a dominant
segment, (3) user overriding system information, or (4) user not re-opening a
segment considered by the system closed (this case has not been discussed here,
however is adopted from [Ric01]). Apparently, the template-based approach is
more general than the approaches overviewed at the beginning of this section
by, 3 rst, o� oading the parser the duty to recognize a task from the shape of
an utterance, and second, allowing a task identi3 cation to be evolved over time.

4.8 Dialogue Planning

Once the task has been recognized, a related plan is adopted by the agent to get
the task solved. A plan is commonly represented as a structure resembling a tree
[Boh09, Ric01, Jok10, Bui06]. Such representation usually accounts for the real
activities be stored in leaf nodes (e.g., utterances to say or back-end interaction
to carry out), while the remaining non-leaf nodes capture the relationships among
particular activities. The decomposition sometimes also accounts for one extra
axis, namely dynamic building of plans using a library of subplans, each solving
an elemental problem [Ing92]. The natural advantage is the scalability.

S
1

How may I help you?
U

1
I need to go to Brno tomorrow morning. When does any bus depart?

S
2

Tomorrow morning, there is a bus going to Brno at 8 o'clock.
U

2
What is the weather going to be there tomorrow?

S
3

The weather is forecasted to be rainy in the morning and sunny afternoon.
U

3
I see. When does any afternoon bus depart?

S
4

Tomorrow afternoon, there is a bus going to Brno at 13 o'clock.
U

4
When does it arrive there?

S
5

The bus arrives at 15 o'clock.
U

5
Is there any earlier connection?

S
6

There is a bus going to Brno at 12 o'clock. …

Fig. 4.16 Segmented multi-domain dialogue example.

D
S
3

D
S
4

D
S
2

D
S
1

90

4.8.1 The Role of User's Initiative

In our case, plans follow the tree paradigm as well. Nevertheless, we currently
do not consider a library of subplans. Instead, we constrain the design to a one-
to-one relationship between a task and a plan. In other words, each task has
a single accompanying static plan in which activities are spread over leaves, as
suggested above. Although this may be argued restrictive, the variability of the
single plan is guaranteed by, 3 rst, the possibility to create alternative solution
branches for a given problem, and second, by the variability of utterances that
may be parametrized with diJ erent prede3 ned conditions. Thus, the tight
coupling between a task and its plan is merely a minor constraint that may be
easily overcome by a proper design of the solution (branches) and interactions
(back-end communication and foremost utterances).

An example of a plan that solves the "departure time request" task may
be seen in Fig. 4.17a. Obviously, this plan is merely a demonstrative plot and
is not intended to provide a fully functional solution. Nonetheless, we will use
it throughout this section to demonstrate diJ erent aspects of agent's dialogue
planning capabilities. As it can be seen in the plan, 3 rst a background interaction
is carried out to establish the default departure city at the time of plan triggering,
if not yet speci3 ed by the user (action node labeled Init). Then, the user is asked
to specify the transportation means to 3 nd the departure time for (Req-clarify

1
)

and the criterion to apply during the search (Req-clarify
2
). The results of her or

his answers are bound to the respective variables M and C to facilitate further
addressing in the data layer. Next, if there are more transportation means allowed
(three, E(C

timetable
, 3) in Fig. 4.1), their parameters are constrained by posing (some

of) the disambiguation questions (Req-clarify
3
…

6
). Finally, gathered data may

be subjected to con3 rmation, depending on the current strategy (Req-con! rm),
database queried (Exec), and results presented to the user (Respond). No earlier
than now, the agent considers user's intention be satis3 ed.

The plan in Fig. 4.17a is rather a simple one, however, it is su\ cient enough
to demonstrate the 3 rst level of agent's adaptability. It accounts for simply
swapping plan tree branches according to the data layer object saliences. In other
words, the agent adopts the results of user's initiative – if she or he prefers to
discuss certain part of the task prior to discussing the rest, the agent adopts the
decision. For example, consider user's elliptical utterance “by train to Pardubice”
has been misrecognized by not understanding the transportation means. The
city of arrival (Pardubice) is now assigned the highest salience in the data layer.
From the agent's point of view, the user wants to 3 rst discuss the city of arrival
(Req-clarify

4
) and then continue with the rest of the task. The agent therefore

adjusts the plan tree structure by moving the corresponding branch towards the
beginning (Fig. 4.17b).10 However, this time the mandatory M variable remains
unbound due to the misrecognition error. The agent is therefore forced to traverse
through the tree structure, searching for how a value can be reached. Once
having found the Req-clarify

1
 node, it puts the corresponding branch to the

beginning of the plan again (Fig. 4.17c).

10 Naturally, parent nodes are respected; for instance, it is forbidden to change the order of nodes within
a Sequence parent node.

91

Act: Req-Clarify4

[M.Arr.Loc.City]

Act: Req-Clarify3

[M.Dep.Loc.City]
Act: Req-Clarify5

[M.Dep.Tp.*]

Act: Req-Clarify6

[M.Arr.Tp.*]

Act: Req-Clarify2

Variable: C
[Criterion]

Action: Exec
Variable: R

select ... where M

Act: Respond
The C R

from R.Dep.Loc.City
to R.Arr.Loc.City

departs at R.Dep.Tp.*.

AND

DISAMBIG

Act: Req-clarify1

Variable: M
[Conn]

Action: Init
Dep.Loc.City := ...

Act: Req-confirm
I understood you want
from M.Dep.Loc.City

...

Act: Request
CaseY: Continue

CaseN: Exit
Do you want to

buy a ticket now?

Action: Call
TicketingService

SEQUENCE

(a) initial order of actions to solve the "departure time request" task

Act: Req-clarify3

[M.Dep.Loc.City]

Act: Req-clarify4

[M.Arr.Loc.City]
Act: Req-clarify5

[M.Dep.Tp.*]

Act: Req-clarify6

[M.Arr.Tp.*]

Act: Req-clarify2

Variable: C
[Criterion]

Action: Exec
Variable: R

select ... where M

Act: Respond
The C R

from R.Dep.Loc.City
to R.Arr.Loc.City

departs at R.Dep.Tp.*.

AND

DISAMBIG

Act: Req-clarify1

Variable: M
[Conn]

Action: Init
Dep.Loc.City := ...

Act: Req-confirm
I understood you want
from M.Dep.Loc.City

...

Act: Request
CaseY: Continue

CaseN: Exit
Do you want to

buy a ticket now?

Action: Call
TicketingService

SEQUENCE

(b) agent's adaptation to user's initiative; the Request-clarify
4
 act is moved to the beginning of the plan

Act: Req-clarify3

[M.Dep.Loc.City]

Act: Req-clarify4

[M.Arr.Loc.City]
Act: Req-clarify5

[M.Dep.Tp.*]

Act: Req-clarify6

[M.Arr.Tp.*]

Act: Req-clarify2

Variable: C
[Criterion]

Action: Exec
Variable: R

select ... where M

Act: Respond
The C R

from R.Dep.Loc.City
to R.Arr.Loc.City

departs at R.Dep.Tp.*.

AND

DISAMBIG

Act: Req-clarify1

Variable: M
[Conn]

Action: Init
Dep.Loc.City := ...

Act: Req-confirm
I understood you want
from M.Dep.Loc.City

...

Act: Request
CaseY: Continue

CaseN: Exit
Do you want to

buy a ticket now?

Action: Call
TicketingService

SEQUENCE

(c) agent reorganizes the plan back to a feasible state

Fig. 4.17 Evolution of the "departure time query" task plan; abbreviations used: Dep =
Departure, Loc = Location, Arr = Arrival, Tp = TimePoint.

92

In the above example, the mutual relationship between the city of arrival
in Req-clarify

4
 and the transportation means in Req-clarify

1
 is obvious: one

informatively contributes to the other. Apparently, such behaviour is in coherence
with Grosz and Sidner's term satisfaction-precedence [Gro86]. The distinction
is that the two pieces of information are not discussed in separate discourse
segments, but instead, are part of a single segment.11 Similar structuring of
information within segments may be found in [Ngu06b, Boh09]. The overall
principle of the agent adopting user's initiative in the dialogue is then adopted
from [Boh09, Boh07].

Finally, Table 4.8 overviews plan node types available for task modeling in
the framework, along with corresponding dialogue acts, if any. In this section
example, we used the terms Init, Req-clarify, Req-con! rm, Exec, and Respond
to intuitively identify the INI, QUE, VAL, EXE, and STA node types, respectively.

4.8.2 Deliberation

One of agent's key characteristics is autonomous deliberation about the perceived
surrounding environment in order to meet its objectives [Woo00, Zbo04]. In case
of a conversational agent, this (among other things) means to simultaneously
optimize the dialogue 6 ow in a certain way to successfully satisfy the current task
in focus. A common approach to this is to employ a greedy algorithm [Ngu06b,
Eck95, Tur05, Boh09]. Depending on the overall design of the conversational
agent, this algorithm can successfully draw a task to a satisfaction state in no

11 Which can, however, be just a matter of segmentation.

Table 4.8 Daisy framework plan node types; asterisk denotes acts to which the Rogerian-
psychologist may also apply if corresponding strategy is allowed.

Type (abbr.) Dialogue act Description

AND — Conjunction of subactions, order is variant

CAL — Subplan or macro call

DIA — Groups disambiguation actions (constraints+relaxation)

EXE — External function call; a way in for system semantics

IFE — Branching if-else; condition queries existence of objects

INI — Task initialization

QUE Request-clarify * Missing information; can be skipped

REQ Request Subtask elicitation; may be answered with yes-no

SEL Request-clarify * Selection of objects proposed by the system

SEQ — Conjunction of subactions, order is 3 xed

STA Respond Statement; can be marked satisfying the intention

TES — Forced termination of the current session

VAL Request-con! rm Information con3 rmation

YNQ Request-yn Yes-no question

93

more than O(n2) explorations, where n is the maximum number of possible
interactions in any task at any time point. Despite its quickness and easy
applicability, the downside is its local manner with respect to optimization.

Before explaining our approach to the dialogue optimization, let us 3 rst
brie6 y recall particular entities that describe the mental state of the agent:

• task and data layers – represent agent's fundamental beliefs in information
exchanged during a dialogue,

• task instances – recognized in the task layer, they represent agent's
desires to take part in solving a given problem with a user,

• plans – do not serve as the source of agent's intentions; they are merely
to represent recipes for joint activity with the user.

Hence, as it can be seen, these entities serve as heterogeneous containers
of diJ erent kinds of information. To bridge these containers, we have adopted
and further evolved a system of events (McGlashan uses a similar approach
[McG96], however, applies event-like principles to "dialogue data" only). In our
case, events of diJ erent types represent elemental intentions the agent can have.
We distinguish among the following ones:

• generalization event (further denoted as GEN) – triggered if an object
misses its parent (i.e. the parent could not have been resolved during
the fragmentation process, see Section 4.6); this event may relate to any
DDM collection instance in either of the layers,

• con! rmation event (CON) – an object has been recognized with a
con3 dence score lower than a custom threshold and might need an
explicit con3 rmation; this event may relate to any DDM collection
instance, DDM edge instance, or task instance,

• value-missing event (DEF) – an object has unde3 ned value; this event
relates to DDM collection instances in the data layer only,

• plan-interpretation event (PLN) – the current plan contains leaf nodes
that can be processed by the plan interpreter; this value applies to plan
instances only.

As events relate to speci3 c entities (collection instance, task instance, etc.),
they may be understood as an abstraction of contents in the heterogeneous
containers. Each event represents one option the agent can take at a given point
in a dialogue. Hence, event allow the agent to make decisions when planning
its behaviour. For instance, consider the simple con3 rmation scheme in Fig.
4.18. There are three pending con3 rmation events, CON

1…3
 , each proposing a

diJ erent way to interact with the user in order to con3 rm the time information.12
The agent may therefore want to 3 rst con3 rm the hour110 instance by handling
the CON

2
 event ("I understood you said 16 hours. Is that correct?"), and

12 The particular utterances are an embodied part of the DDM de3 nition. For simplicity reasons, this
feature has not been discussed in Section 4.2. In the Domain Editor (see attached CD), collection-
related con3 rmation utterances may be de3 ned by clicking the Data Model → Show menu option.

94

then con3 rm the min111 instance by handling the CON
3
 event ("I understood

you said 28 minutes. Is that correct?"). Once con3 rmed, the CON
1
 event

becomes satis3 ed as well, as it no longer refers to any uncon3 rmed information.
However, the agent may also want to begin with con3 rming the tp109 instance
by handling the CON

1
 event ("I understood you said 16 hours 28 minutes. Is

that correct?"). If successful, both the CON
2
 and CON

3
 events would be satis3 ed

as well. Which one of these two plotted courses will be preferred depends on the
deliberation mechanism.

An event may be at diJ erent phases of processing. For most of the events, the
agent must (1) utter to the user (initial phase), (2) wait for the user's response
(expectation phase), and 3 nally (3) check the event satisfaction (satisfaction
phase). All events follow this cascade model. Additionally, for each event we
track its recovery state. An event is said to be recovered if it reached the
satisfaction phase but user's interaction has turned it back to the initial phase
(by making changes to the dialogue context). With this 3 nal parametrization, we
can formally describe events as follows.

De! nition 4.13 (Event)
An event is an ordered quadruple V = (Entity, Intention, Phase, Recovered),
where Entity is an instance (DDM, task, or plan), Intention ∈ { GEN, CON,
DEF, PLN }, Phase ∈ { initial, expectation, satisfaction }, and Recovered ∈
{ no, yes }. □

Events constitute a foundation for agent's deliberation, constrained to the
current task. This is not a limiting characteristic, provided that the task plan
must be a self-contained entity. This way, Grosz and Sidner's satisfaction
precedence is easily accounted for by optimizing plans based on their 3 nal
outcomes, cutting oJ unrelated (unnecessary) interactions with the user.13 In
addition, this also simpli3 es the deliberation: the task layer content is 3 xed and
only the data layer is evolved. Nonetheless, this is not to say events do not 3 re
on the task layer – in contrast, the result of deliberation may involve actions
regarding both layers.
13 If a decomposition into subproblems is suitable (e.g. timetable and ticketing services may have a

common part of requesting the user to specify the transportation means), these parts can be de3 ned
as macros in the Domain Editor (see attached CD). When "compiling" the domain, the Domain
Editor expands these macros at places where referred, this way complying with the framework notion
of Grosz and Sidner's satisfaction precedence.

mnt111 Minute
28

hour110 Hour
16

tp109 TimePoint

Fig. 4.18 Con3 rmation scheme to validate the time point 16:28.

CON1

CON2

CON3

I understood you
said [$.Hour hours]
[$.Minute minutes].

Is that correct?

I understood you
said $.Hour hours.

Is that correct?

I understood you
said $.Minute minutes.
Is that correct?

95

The principle of the deliberation is as follows. At the beginning, all pending
events are gathered and put into an event queue, denoted as Q. The initial
contents of the task and data layers comprise one possible world [Woo95],
denoted as W

0
 , from which we can move to another by satisfying one or more of

pending events in the queue. We search through a space of possible worlds until
we have found one in which the objective of the task is met and the task is thus
satis3 ed. We denote such world as W

S
 . Before explaining further, let us formally

de3 ne this notion of a possible world.

De! nition 4.14 (Possible world)
A possible world is an ordered triple W = (Q , Y

T
 , Y

D
 , W

p
), where Q = { V

i
 =

(E
i
 , I

i
 , initial , R

i
) } is an event queue associated with W, Y

T
 and Y

D
 are the task

and data layer information pools, and W
p
 is the "parent" possible world that W

infers from. □

The above outlined principle naturally 3 ts the principle of the A* algorithm.
Given a possible world W

i
 , the A* algorithm evaluates it as

* *() () ()
i i i

f W g W h W= +

where g(.) is a function evaluating the "path" from the initial world W
0
 to W

i
 ,

and h*(.) is a function ideally estimating the value of the remaining path from
W

i
 to the 3 nal world W

S
 , with the word "ideally" referring to its ideal behaviour

of f *(W
i
) ≅ g(W

i
), i.e. the estimated value always tightly approaching the real

value. Hence, with using the A* algorithm, the problem of optimizing a dialogue
reduces to 3 nding such sequence of pending events whose satisfaction transforms
the initial world W

0
 to the 3 nal state W

S
 the optimal way,

0 0 1 11 1

0 1
 . . . i i i iV Q V Q V QV Q

i S
W W W W− −∈ ∈ ∈∈→ → → →

We currently consider only one optimization criterion: the length of the
dialogue in terms of dialogue turns. (Therefore, in the con3 rmation scheme in
Fig. 4.18, con3 rming the tp109 instance by handling the CON

1
 event would be

the preferred way, as it yields the shortest dialogue.) There naturally may be
more optimization criteria, for instance the length of the dialogue in terms of
real time (elapsed and remaining14). However, the current implementation of the
framework currently does not account for any multi-criteria optimization.

The g(.) and h*(.) functions are realized as a set of heuristic rules, each
capturing one independent dialogue optimization criterion (Table 4.9). To
guarantee the monotony of g(.), the notion of each rule is to penalize the world
for "being not optimal". For better comprehensibility, the contributive penalty of
each rule is hidden – the precise computation would require knowledge of diJ erent
backgrounds we currently do not have, or we do have but not to the extent
required. Nevertheless, given the intuitive nature of the rules, showing their
precise computation would be redundant, and interested reader is suggested to
trace the usuzujNadObsahemVrstvy procedure in plan.pas to see the evolution

14 The estimation of the remaining time should cover merely system utterances as the only source of
well predictable data is agent’s Prompt Planner module. Estimation of user’s utterance times would
require user modeling.

96

of the total penalty f *(.), encoded in gSuma and hHvezda that correspond to g(.)
and h*(.), respectively.

By using the rules in Table 4.9, the f *(.) function can be rewritten as

7
*

1

() ()
R

i r i
r

f W RULE W
=

=

= ∑

The A* algorithm is then to 3 nd such sequence of pending events, V
0
 , V

1
 , …,

V
N
 , that gains the minimum total penalty, i.e.,

0 0

0 1

*
0 1 0 1

[, ,...,]

[, ,...,] (()) : . . . N N

N

X Q X Q

N S N S
X X X

V V V argmin f W W W W W
∈ ∈= → →

Due to the structural complexity of the search space, the A* algorithm
accounts merely for the OPEN list to accommodate yet unexplored worlds in a
penalty-ascending order. The CLOSED list is not used, as the determination if a
world has already been explored would be computationally ine\ cient, given the
unpredictable variability of utterances the agent may speak to the user. Hence,
the working cycle of the A* algorithm may be put as follows.

1. Assuming the task in focus must be con3 rmed, the event V
task

 = (Task,
CON, initial, no) is to be created. In addition, for the plan associated
with the task to be interpreted, a plan-interpretation event V

plan
 =

(Plan, PLN, initial, no) must be created as well. The OPEN list is then
initialized by the world W

0
 = ({ V

task
 , V

plan
 }, Y

T0
 , Y

D0
 , �), where Y

T0

and Y
D0

 are the current task and data layers, respectively.

2. The least penalized world W
i
 = (Q

i
 , Y

Ti
 , Y

Di
 , W

i-1
) is popped out of the

OPEN list. If the transition W
i-1

 → W
i
 involved the system performing a

Response act, W
i
 is considered the satisfactory world, W

S
 ≡ W

i
 , and the

Table 4.9 Dialogue optimization criteria.

Penalization criterion and description

Utterance is generated incompletely
 (Agent prefers fully generable utterances)

Utterance uses already valid objects
 (Agent prefers implicit validation)

Event is not recovered
 (Agent first processes corrections supplied by the user)

Event priority penalty
 (Agent prefers processing events in a certain order)

Average salience of objects involved in satisfying an event
 (Agent prefers s

()

ticking to the current course in a dialogue)

Interaction with user penalty
 (Agent prefers satisfying events without involving the user)

Number of remaining pending events
 (

i
g W



















*()
Agent estimates the difficulty of satisfying an intention) i

h W




97

optimal sequence of events [V
0
 , V

1
 , …, V

i-2
 , V

i-1
] (between worlds W

0
 ,

W
1
 , …, W

i-1
 , W

i
) is backtracked, i.e.,

0 1 2 1 1
[, ,..., ,], {0,..., 1} : j jV Q

i i j j
V V V V j i W W

∈

− − +
∀ ∈ − →

3. The queue Q
i
 is extended with pending events not present in W

i-1
 (these

regard objects newly added to W
i
 in response to the parent transition

W
i-1

 → W
i
).

4. The world W
i
 is explored by examining each of its queued events V

j
 ∈

Q
i
 , and inferring a new world W

j
 from W

i
 , i.e. W

j
 = (Q

i
 , Y

Ti
 , Y

Di
 , W

i
),

currently fully adopting its layers. In this new world, eJ ects of V
j
 on the

adopted layers are examined and adopted. For instance, objects referred
in a Request-con! rm act (wrapped in a CON event) are con3 rmed,
or expectation of a Request-clarify act (wrapped in a PLN event) is
satis3 ed by incorporating the corresponding Clarify act into the data
layer (thus predicting user's upcoming behaviour). Finally, the updated
W

j
 = (Q

j
 , Y

Tj
 , Y

Dj
 , W

i
) is inserted into the OPEN list.

5. The deliberation continues by revisiting Step 2.

Before continuing, let us make three remarks. First, not all events are to
interact with the user. In fact, the agent prefers to not involve the user in the
conversation at all, attempting to solve the task only on its own. This is in
coherence with agent's pro-activity. Consequently, the optimal sequence returned
by the deliberation process needs to be interpreted as long as no interaction with
the user has been planed. In other words, the agent passes the turn to the user
only all if possibilities how to satisfy the task have been exhausted.

Second, the plan-interpretation event exists merely in a single instance whose
state is continuously renewed. A dedicated function returns the 3 rst unvisited
interpretable node in the plan. This is a conception preferred over each plan
node having its own pending event. Obviously, the reason is the computational
tractability. The latter case would in fact involve a random access to the plan,
causing an explosion of possibilities. However, a plan is usually a 3 xed sequence
of actions (e.g., initialization, user interaction, database querying, etc.). The
overall order of actions is therefore explicitly given and there is no need to
engage with combinatorial overhead (satisfaction-precedence between individual
subactions would cause actions to be implicitly re-ordered after all). Let us
note that this does not mean the agent follows a plan in a rigid way "from
left to right". The plan can be re-structured based on user's initiative (Section
4.8.1), or disambiguation requirements (constraints and relaxation, not covered
in this text). Interested can trace the high-level cyklusInterakce procedure in
Session.pas to gain a complex view at the agent's deliberation, execution, and
impacts on future behaviour.

Third, the rules in Table 4.9 call for being modular. That is, the current
penalization scheme represents merely one of agent's possible optimization
strategies (denoted as O

i
), and another one may easily be created by modifying

this scheme. We naturally take advantage of this approach, hence the agent has

98

some penalties when optimizing dialogue using the user-initiative strategy and
some diJ erent penalties when using the system-initiative strategy.

4.9 Dialogue Strategies

Recall from Section 2.1 that the acceptability of a system depends primarily
on its correct outcomes [McG96, Eck95, Chu00]. However, the user satisfaction
is also in6 uenced by the style of interaction. There are generally two opposite
styles, menu-based and free conversation. It is usually the agent's duty to choose
the proper style when interacting with a user.

4.9.1 Choices and Their Arbitration

As also already seen in Section 2.3, the most common parametrization covers the
following two aspects of interaction [Sin02, Wal97, vZa99, Lit02, Boh09, Jok10]:

• initiative – who of the participants is expected to be "pro-active", i.e.
who sets the course of actions (system or user),

• con! rmation – how the con3 rmation of user-provided information is to
be carried out (explicitly or implicitly).

The Daisy framework adopts the commonly opted combinations, "system-
initiative with explicit con! rmation" and "user-initiative with implicit
con! rmation". For simplicity reasons, we further will refer to them as the narrow
strategy (denoted as σ

n
) and open strategy (σ

o
) respectively, as these are more

appropriate names, provided the compound de3 nition of agent's utterances and
their production. In addition, we introduce an new strategy, called the Rogerian
psychologist strategy (σ

r
) discussed below.

To determine the appropriate strategy we adopt the approach from the Jaspis
architecture [Tur05, Tur03] – with having three strategies to decide among, it is
selected the one whose evaluation score reaches the highest value. The scoring is
based on four independent evaluation criteria:

• Quality of the dialogue using the current strategy, σ
c
 . Quality is a

wide term borrowed from the PARADISE framework on dialogue
system evaluation [Wal98]. We measure quality merely in terms of the
number of unsuccessful and successful applications of σ

c
 , denoted as λ

and µ, respectively. A simple Markov network is then used to model the

σn

λo = 0.5 λr = 0.5

µn = 0.5 µo = 0.5

σo σr

Fig. 4.19 Markov network is used to model transitions between strategies; 0.5 indicates it
takes two attempts in average to transit between the neighbouring states.

99

transitions between neighbouring strategies (Fig. 4.19) [Nes07, Nes10a].
In this respect, λ and µ are understood as the so called failure and
repair in the process of strategy arbitration.

• Task is not known, T
known

 . This criterion is used to support the open and
Rogerian strategies. The idea is to take advantage of system open-ended
prompts at the beginning of a dialogue to motivate the user to freely say
her or his request before transiting towards the narrow strategy.

• The number of missing pieces of eigen information, n
ψ
 . To shorten a

dialogue, this criterion supports the open-ended and Rogerian strategies
if at least two pieces of information are missing (inspired from [Cen04]).
Naturally, this is an alternative to the previous Rogerian criterion for
cases in which the desired task is already known.15

• The change in the number of pieces of eigen information after user's
last utterance, ∆

ψ
 . This number may be either negative (user has

supplied information), positive (user has retracted some information),
or zero (ambiguous). This criterion in fact determines if the user knew
what to say, i.e. ∆

ψ
 ≠ 0. This criterion is used to support the Rogerian

strategy only.

To facilitate further description, let us put these criteria into a vector P to
capture the current state of the dialogue progress,

integer

integer

integer

integer

 1
 is {0,1}

 1

 {0,1}

2 {0,1}

0 {0,1}

c

c

nAttempts

c nAttempts

known

unsuccessfull random e

successfull random e

T

n

−λ ⋅

−µ ⋅

λ

λ

  → < − σ → 
→ < −   

= ¬ →
> →

∆ ≠ →

P







 
 



In addition, each strategy σ
i
 is accompanied by scoring scheme S

i
 ,

corresponding to the above four criteria. These scoring schemes column-wise
comprise the scoring matrix S, taking on the following form,

n o r

5 5 5

0 2 2

0 1 2

0 0 1

 
 
  = =   
 
  

S S S S

Presumably, we gain the score for each of the strategies by multiplying the
vector P with the scoring matrix S,

15 In [Cen04], other features are proposed as well; for instance, agent's experience in similar dialogue
situations (user modeling) or the range of elicited information. Due to time reasons, these features
have currently left unimplemented in the Daisy framework.

100

n

T

o

r

SCORE

SCORE

SCORE

 
 

= ⋅ 
 
 

P S

The 3 nal arbitration is then made by normalizing each score, SCORE
i
 , by

the corresponding scoring scheme, S
i
 , to gain the proportional rate of suitability.

The most suitable strategy, σ
opt

 , is then selected,

{n,o,r}
 (| |)

opt i i
i

argmin SCORE
∈

σ = ⋅ S

Naturally, the selected strategy has not only a direct impact on the way the
agent speaks to the user (utterance production) but also prescribes particular
dialogue optimization scheme, O

opt
 (deliberation),

{n,o,r}
(| |)

i i

i

opt argmin SCORE
∈

⋅
=

S
O O

Hence, the optimization scheme must be in coherence with the nature of
the strategy. For instance, assuming the narrow strategy has been selected, the
optimization scheme must prefer explicit con3 rmation over implicit con3 rmation,
if available. It also needs to prefer working with smaller pieces of information
(ideally DDM leaf nodes) over more "abstract" concepts (closer to the DDM root).
Thus, for the con3 rmation situation in Fig. 4.18, the preferred way would be
satisfying events CON

2
 and CON

3
 (in any order) over CON

1
 .16

4.9.2 Rogerian Psychologist Strategy

The narrow and open strategies model the common adaptability habits in
which the system formulates an open-ended prompt (using the open strategy),
and if user's response does not provide enough information, asks for it one
piece at a time (narrow strategy) [Boh09, Tur05, Mel05, Cen04]. However, as
users generally adopt the interaction style suggested by the system [Gus03],
then once applying the system-initiative guidance, the task is constrained to a
linear progress as the system dictates it. Hence, we focused on suppressing this
side-eJ ect by modifying the outlined interaction pattern: let the user keep the
initiative as long as she or he knows what to say. More particularly, we involve
the Rogerian psychologist into our model whose goal is to gain more information
by “encouraging the user to keep on talking”. In terms of the so called Rogerian
therapy, clients are better helped if they are encouraged to focus on their current
subjective understanding rather than on some unconscious motive or someone
else's interpretation of a situation [Rog51]. Therefore, by applying the Rogerian
psychologist in a dialogue management, one of the anticipated implications is a
less forced dialogue as the conversational agent gives users more time (turns) to
formulate their intentions before taking over the initiative.

16 Note that a better design style would be to de3 ne a C
time_point

 concept with an external T
time_point

 data
type to represent the time information as a single value. The con3 rmation would then be as natural
as with the CON

1
 event. This once again shows the limiting character of the built-in intrinsic types,

as well as demonstrates the bene3 ts gained by declaring external domain-speci3 c types.

101

Nonetheless, the idea of initiative handed back is not completely new in
the realm of dialogue systems. One of the well known implementations is
Weizenbaum's Elisa [Wei66], a general chatting robot for leading a conversation
an uninformed way, i.e. without properly modeling or even understanding the
information being discussed. This behaviour is accomplished using a quite simple
procedure: the text is read and inspected for the presence of keywords. If such
word is found, the sentence is transformed in accordance with a rule associated
with the keyword; if it is not, a context free remark or an earlier transformation
is used instead [Bui06]. Thus, for instance, user's sentence “I visited my friend
yesterday” could be continued by the system with “That sounds interesting, tell
me more about your friend”.

Another example is a dialogue system called CONVERSE, embodying a
persona of a young female New York-based journalist [Lev97]. Given the nature
of the system, it covers about 80 conversational topics, represented as complex
scripts that can be interrupted and reentered later. It also makes use of diJ erent
informational resources, for instance Collins dictionary or personal information
elicited from the user that can be at any point involved into utterance generation.
Its control structure is a simple blackboard system in which the scripts compete
to take control over the generation and thus the upcoming course of the dialogue.
These decisions are made numerically based on weights assigned by the closeness
of 3 t of the input to their expected input [Wil06]. Naturally, the system has
merely a limited error recovery mechanism for cases in which it is unable to 3 nd
a relevant topic for the input to continue in the dialogue. As such, it therefore
mainly relies on handing the initiative back to the user whenever possible.

Thus, both Elisa and CONVERSE are systems to lead only a "plausible"
conversation with resulting dialogues having no particular goals. However, the
Rogerian psychologist is also one of the strategies humans use in a co-operative
conversation. For instance, Wallis et al. [Wal01] observed a phone call agent
to use it when attempting to gain more information from a client during a
car booking. After they have analyzed dialogue transcripts, they found that
instead of pushing them to say what she needed to know about their bookings,
she sometimes preferred either to keep silent or respond with a short sentences
accounting for a grounding ("Yep") or repeat the lastly gained bits of information.
Thus, without intervening the dialogue by taking over the initiative, she supported
clients to say more.

Hence, the Rogerian psychologist is for humans apparently a familiar approach
whose purpose they can recognize and properly respond to. The problem we
can spot now is to 3 nd conditions under which it can be used in an automated
dialogue management.

In general, the most obvious usability is in cases where the user has provided
some information that, however, is useless in the scope of a given task or domain
(that is, if we have extracted some useless semantics, or simply know the user was
not silent). Of course, this strategy cannot be overused – a conversational agent
must always make a tradeoJ between being reactive and pro-active, i.e. giving
users a chance to provide relevant information, and taking over the initiative
after judging about the dialogue qualities. Therefore, the Rogerian psychologist
strategy can be applied in dialogues that are evaluated as progressing well. In

102

our case, we approach this by checking if user's last response contributed to the
current task satisfaction (∆

ψ
 ≠ 0). In other words, if the user lastly knew what to

say, there is a chance that she or he will know what to say now as well. Another
contributive criterion for the Rogerian psychologist may be a high recognition
score: if user's responses are less certain, it is more safe to pose direct questions
and receive direct answers than later having to recover from errors.

Another application of the strategy may be in cases where the agent expects
multiple pieces of information. Naturally, if only one piece is missing, it is always
more e\ cient to ask for it directly. Finally, this strategy can be applied in cases
in which user's intentions are unknown (i.e. after the open-ended initial prompt)
or ambiguous (later in the dialogue when recognizing user's subintentions).

Finally, let us note that the current implementation of the strategy accounts
for both general context-free sentences as well as custom domain-speci3 c
alternatives. The context-free sentences are the default; they comprise a set of
three general-purpose prompts asking the user to provide additional information:
"Please say me more", "Please be more speci! c", and grounding-like "Uhu". This
initial set may be further extended or modi3 ed using the Domain Editor (see
attached CD), for instance with sentences "I see" or a system silence token. As
already revealed above, apart of the general context-free sentences, the model
also allows for domain-speci3 c alternatives, analogous with Elisa's rule-driven

 Procedure SelectBestStrategy () {
1 Let R denote user's response when discussing intention I.
2 Evaluate suitability of each strategy and choose the optimal strategy σ

opt
 .

3 If σ
opt

 is the Rogerian psychologist strategy {
4 If ¬A ∧ B ∧ ¬C ∧ D ∧ E (see 3 gure legend) {
5 If dialogue stagnates (system generates the same prompt as in its previous turn) {
6 If R supplied some information that supports getting I solved {
7 User has satis3 ed one of future expectations, ground with “Uhu.”, “Ok.”, or “I see.”
8 } else {
9 Response R did not bring any information into I, remain silent.
 }
10 } else {
11 System is about to generate a diJ erent utterance than in its previous turn
 because the expectation has been met – randomly choose one of sentences
 available to the Rogerian psychologist (e.g. “Please say me more.”)
 }
12 } else {
13 Rogerian psychologist strategy cannot be applied. Do not drop it, just override it
 by another strategy in this turn (thus temporarily assign σ

opt
 a diJ erent value).

 }
14 }
15 Generate response in accordance with the strategy σ

opt
 .

 }

Fig. 4.20 Agent's utterance generating procedure with the Rogerian psychologist approach at
Lines 3–14; A = agent's focus has changed, B = user's intention is known, C = user's 3 rst
turn response expected, D = agent produces a dialogue move that the Rogerian psychologist
can be applied to (e.g., it cannot be applied to Request act), E = two or more pieces of
information expected (missed).

103

ones, for instance “Please try to detail the train [to ! nd departure of; further;
a bit more;…]”). However, in either case, we put one restriction on their design –
the utterances should not contain any cue phrases that could indicate a possible
change in the dialogue course [Gro86], i.e., they should not make the user think
the system wants to take over the initiative (e.g., "and now", etc.).

Fig. 4.20 shows the Rogerian strategy in detail along with the surrounding
background logic of agent's utterance production (Lines 3–14). Note that the
strategy can be to an extent argued comparable with the open strategy. However,
the main diJ erence between them is that while the agent utters at least some
question in the open strategy (e.g., open-ended), it either keeps silent using the
Rogerian strategy (thus handing the initiative back to the user) or encourages
the user to say more by uttering one of context-free or domain-speci3 c sentences.

4.10 Discussion

4.10.1 Comparing DDM with SIL

As already discussed in Section 4.4 on semantics, the most signi3 cant distinction
is the lack of taxonomy in DDM. While objects in SIL are to an extent "self-
explanatory" thanks to the presence of their semantics and prede3 ned taxonomy,
objects in DDM merely describe the static, neutral data which gain their meaning
and taxonomy no earlier than during a particular plan processing. Another
signi3 cant diJ erence is the degree of freedom among concepts. While SIL in
fact allows for a random nesting (as long as nested concepts 3 t the semantical
role), DDM captures a strongly structured and 3 nite hierarchy of objects. The
implication is that while SIL in fact acts as a universal tool for describing any
kind of information, DDM along with all its restrictions allows merely for a
subset of it, as discussed in Example 4.5. The less important restrictions regard
the linearity of structures (i.e. absence of recurrent patterns) and unambiguous
addressability (i.e. without transitive subpaths, see De3 nition 4.5). The more
important restrictions regard the information layout – any information is to
be stored in leaves, and parents then disambiguate similar pieces of eigen
information (e.g., the city of arrival from the city of departure). Arguably, such
highly organized way puts additional requirements on the input semantics pre-
processing. In other words, the expected input is incompatible with the traditional
vector-like "6 at" semantics, and must therefore be "converted" to the expected
hierarchical form (see Appendix A.1). Contrarily, a sequence of UFOs resembles
the traditional 6 at semantics (Fig. 4.21).

The SIL and DDM expressions, naturally diJ er as well. First of all, the local
closure (De3 nition 2.6) that holds for SIL expressions does not apply to DDM.
Unrelated expressions may therefore have common parts (e.g., as demonstrated in
Fig. 4.14b in which tim177 and tim179 topics share the same part cri82). Hence,
there hold strict rules for comparing two expressions: they must be recurrently
absolutely "compatible" in order for one to merge with the other (e.g., exact
validity, exact set of 3 red events, etc.). On the other hand, splitting a common
DDM expression apart is not directly possible. If merging rules are not met, the

104

framework may only infer a new expression from the common one, and modify
a local portion of it.

The SIL formalism has also the potential of representing (although not
directly detecting) requested tasks in user's statements (recall "I want to know
the nearest train to Erlangen") that are usually pre-processed yet before the
dialogue manager by observing a particular utterance "shape" [Eck95, Boh09,
Ngu06b]. In this respect, the SIL formalism demonstrates why information is
best not to be decoupled into task and data sub-information – in general, simply
because some soft-grained aspects of user's semantics might get lost (e.g., that
the "nearest train to Erlangen" [data] is "wanted to be known" [mental state,
not a direct task]). On the other hand, SIL expressions on their own are a too
weak means to capture the organization of a dialogue. The projecting into views
is far from accounting for the Grosz & Sidner's work on discourse segmentation
[Gro86]. The eJ ort needed to incorporate their framework would very probably
result in an approach comparable with ours. In addition, some singular cases
of object uni3 cation would have to be cleared or even dropped to avoid the
overhead of rules required to deal with them. This is a step we had to make as
well (discussed in Section 4.4).

All spotted diJ erences can be justi3 ed by the two approaches being devised
for distinct cases of use. While SIL has been designed as a means for describing
any kind of knowledge, and is therefore strongly semantics-oriented, DDM puts
most stress on being capable to represent and further handle diJ erent situations
that arise during a dialogue. The apparent implication is naturally the diJ erent
representation of the dialogue context – while held as the history of raw semantics
in SIL, the same information is pre-processed and more eJ ectively stored in the
case of DDM. This then leads to easier and more elaborated approaches to solve
common issues in a dialogue:

• Corrections. By relaxing the demand on information monotony, it is
possible to perform diJ erent kinds of corrections, yet bene3 ting from
being able to keep track of the information causality – changes to the
data layer force the agent to re-deliberate on modi3 ed pieces. On the
other hand, the SIL representation allows for old overriden information

109 , :
: 111, :

: : 9 , :
:

: Pilsen

id trn type train

id loc type location

thesource id city type city
thecity

value

 
  
          

:

(a) SIL representation

city9 City
Pilsen

lctn111 Locationdep110 Departuretrn109 Conn:Train

(b) DDM representation

Fig. 4.21 Comparison of structural representation of "train departing from Pilsen".

105

be recovered once new information has been retracted (e.g., "to Erlangen"
+ "to Erfurt" + "not to Erfurt" → "to Erlangen").

• References. Their resolving is to an extent very similar. In our case,
we have added the support for gender-speci3 c references (ten, ta, to in
Czech, or der, die, das in German), unexpressed nominative (recall "I
buy it" with it referring to a known ticket object), and nested references
(recall "How much is a ticket for the train with the ! rst class coach?").

• Disambiguation. In DDM, disambiguation can be made by a reference
(that resolves to a set of candidate objects) or by providing new
information (e.g., parent for an underspeci3 ed information). Additionally,
there is a complex analysis of the input semantics against the dialogue
context to discover its relationship to existing objects. We believe that its
elemental parts cannot constitute isolated units as they are in SIL where
the "anchoring" stands apart from the remainder of processing, being
called only under speci3 c conditions (Fig. 3.12).

Hence, in DDM optimization has been made in favour of the dialogue
context processing. However, this is not to say that none of the above presented
features would be possible to incorporate into SIL. With respect to our previous
discussion, this would very probably mean to reduce (or eliminate altogether) a
number of built-in semantic concepts, i.e. the cornerstones of SIL (see example
at the beginning of Section 4.5.1). Eventually, another possibility would be to
construct a set of exception rules to work around the soft diJ erences that prevent
otherwise compatible objects from being uni3 able. Whichever way would be
taken, SIL could be extended with mentioned DDM features no earlier than after
this point.

4.10.2 Extending Agent's Planning

Our approach to agent's planning makes use of the A* algorithm. This is
considerably a diJ erent course of planning from the commonly adopted greedy
algorithm. In this section, we will discuss two additional extensions to the current
deliberation procedure, that due to time reasons remained unimplemented.

The 3 rst extension regards dialogue games [Man88]. Brie6 y, dialogue games
describe certain re-occurring patterns of utterance types commonly observed in
dialogues. For instance, it is usually the case that a question is responded by an
answer; a proposal is accepted or rejected; or a greeting is returned. However, as
Hulstijn points out [Hul00], dialogue planning and dialogue games are usually
considered two competitive approaches. As he further explains, they may be
merged together to create a robust and better organized dialogue management.
Thus, instead of structuring the whole dialogue as one stack of running dialogue
games, he proposes to identify dialogue games separately at the level of each
discourse segment ("stacks inside stacks").

Naturally, the opening of each dialogue game must be explicit: either the
user or the system needs to perform a corresponding move. Each move relates to
a type of utterance. So what we called the communicative function of a dialogue

106

act (Section 4.6.2) is now de3 ned as a game move. In contrast, the closing of
a dialogue game may occur multiple ways. One of them is that the original
initiative (e.g., a question) is followed by an appropriate reaction (e.g., a response).
Under such condition, the dialogue game is considered closed and popped out of
the stack. Another way may be to observe a newly opened game breaching the
satisfaction-precedence; in other words, it does not contribute to the solution, nor
is it possibly related to the current course of actions in a task. To accommodate
dialogue games in our framework, the set of recognized dialogue acts (Table 4.5)
would need to be further revised and extended in order to properly model the
diJ erent conversational situations that particular dialogue games describe. Also,
the set of penalization rules (Table 4.9) would have to be extended. The new
rule(s) would need to capture agent's goal of closing the currently running game
as its primary operation, i.e. with the lowest or no penalty. Apparently, this is an
alternative formulation of agent's pro-activity (compare with its current primary
goal of satisfying the open task in focus).

Let us now concern with the second possible extension to the deliberation
– a multi-agent environment. The overall framework currently behaves as a
monolithic entity, with each demand on any external functionality being of a
blocking nature (e.g., database requests, system-related component operations,
etc.). However, in a highly interactive and/or time-critical environment (and
possibly for the reason of facilitated maintenance), this may not be the preferred
way. The proper solution would therefore be a multi-agent approach. In such
environment, agents communicate among each other to exchange their current
statuses, demands, results of operations, etc. Therefore, each of the external
functionality calls is a priori non-blocking and the requesting agent may continue
working on its objectives until a response is received from the requested agent.

Apparently, the most straightforward way of preparing the current dialogue
agent for a multi-agent environment is to replace the event queue with a message
queue (as events may be understood as "internal messages"). The A* algorithm
can then be applied to optimize the dialogue agent's behaviour with taking into
account the messaged states of other agents in the system. Intuitively, one of the
signi3 cant modi3 cation to the A* algorithm might be to accommodate reasoning
about time. This can be possibly an important aspect to allow for agent's
e\ cient, time-aware planning. For instance, by knowing that the requested
operation result will be ready no earlier than after a certain period of time
(by the requested agent), the dialogue agent might continue working on other
things in the meantime (possibly other communications). However, the question
of proposing a suitable inter-agent communication has to be left unanswered
at this moment as available communication protocols have not been the main
subject in this thesis. The inter-agent communication and protocols to consider
are overviewed, for instance, in [Zbo04].

4.11 Summary

This chapter has aimed to provide a comprehensive and detailed description
of the Daisy framework. In its entirety, the framework has been designed to

107

provide a multi-user environment for multi-domain, task-oriented dialogues.
The framework has been implemented in accordance with the speci3 cations
found in this chapter, unless clearly stated otherwise. To further facilitate its
understanding, we several times referred to particular routines in source codes
where eventual ambiguities may be closer consulted against the underlying
documented code.

We furthermore would want to highlight the following achievements, each of
which has been thoroughly designed and implemented17 from scratch during the
study, targeting all major topics in the realm of dialogue systems:

• soft-grained data representation and their advanced management,

• intention detection and management,

• dialogue length optimization (unique),

• extended set of dialogue strategies (unique),

• robust and parametrizable utterance production,

• framework Domain Editor.18

17 Using "unmanaged" Delphi, i.e. without making use of any kind of managed components (e.g., String,
ArrayList, etc.) that could eventually impair the framework e\ ciency. Delphi has been prefered over
C++ as it is a block-structured language (i.e., allows functions to be "nested" within other functions)
which soon turned out to be very bene3 cial; Delphi has also been preferred over .NET due to
performance reasons (as at the beginning of the development it was not clear how many exponential
algorithms will be there and how time-consuming they were going to be) and portability (while there
exist numerous Object Pascal compilers on Linux and other operating systems, there is only the
Mono Project as for .NET whose compatibility with Microsoft implementation was not convincing at
the start of working on the Daisy framework).

18 Native Win32 build unstable due to Delphi's poor treatment of custom interfaces (which is a well
known and common issue of custom interfaces in the Delphi compiler version 7.2 or earlier). Interested
user is therefore advised to use the .NET 4.0 improved re-implementation instead, provided on the
attached CD as well.

This page intentionally left blank.

109

Chapter 5

Experiment and Results

In the previous chapter, we used a timetable application to demonstrate diJ erent
dialogue situations and work out their solutions. The application was a non-
public concern that was later abandoned as a new project was started, and
maintenance of two parallel projects became ine\ cient. The new project was
launched with the kind support of Sympalog Voice Solutions, GmbH.1 Unlike
with the timetable project, this one was a real spoken application tested publicly
with volunteers, and it is this application that we will be concerning with in
this chapter. We 3 rst will describe the application, showing its structure and
technical background (Section 5.1); then, the experiment prepared to test the
framework will be described (Section 5.2); 3 nally, we will present the results and
provide a thorough discussion both on them and further improvements to the
overall system (Section 5.3).

5.1 The DORA Dialogue System Overview

The new project started with Sympalog was a banking domain dialogue system.
This was in fact a reimplementation of a system created earlier for one of their
customers (Fig. 5.1). The functionality of this original system covered bank
branch information (opening hours, addresses, etc.), and individual account
basic information (balance, recent activity overview, etc.). While we kept all
branch-related services, the account information was in our case reduced to mere
balance status. The reason was a lack of interaction featured in these account-
related tasks – they simply were too straightforward to be used for testing of the
Rogerian strategy.

Before showing the usage of the framework in implementing the plotted
functionality, let us mention the technical background that we will refer to as
needed throughout this chapter. One of the main concerns in creating the system

1 http://sympalog.de

110

was to bridge two incompatible frameworks: Sympalog's SymBase and Daisy. The
SymBase framework (see lea6 et attached on the CD) constitutes a complex and
scalable platform for creating mixed-initiative dialogue agents. These in turn can
be hosted on desktop servers as well as mobile devices, with limited capabilities.
The platform as such consists of various modules each of which contributes with
unique services to the resulting dialogue system functionality, including speech
recognition, semantics processing, dialogue management, utterance production,
dialogue testing, etc. The modularity of course enables the platform to be split
apart at virtually any point and replaced with equivalent custom functionality.
We made use of this aspect to replace the dialogue management and utterance
production services. The result was a distributed dialogue system with modules
running in Erlangen, Nürnberg, and Pilsen. Fig. 5.2 shows the overall structure.

To properly model the banking system interaction, three components needed
to be prepared: data, plans, and dominance models. The 3 rst of them, the

phone # unknown

phone # known

account balance

branch info

Start phone #
testing

branch info
acc. balance

branch
specification

account #

branch
info type

card #

branch
info type

acc. balance

goodbye

menu

transaction
log

End

acc. balance
yes

no

current
offers

current
offers

yes

no

change
account

no

yes

♠

Fig. 5.1 Original dialogue system functionality outline by Sympalog, see Appendix A.6 for

SDL notation explanation [Bel89]; node marked with ♠ referred from the text.

111

data model, is shown in Fig. 5.3. As it can be seen, there are three topics,
τ
info

 (providing information of diJ erent kinds), τ
restart

 (restarting the current
task; more speci3 cally, restarting the task below the Restart-task in the stack),
and τ

goodbye
 (terminating the session after user's explicit con3 rmation). The last

two mentioned topics, τ
restart

 and τ
goodbye

 , were introduced due to the lack of
equivalent "out of the box" functionality in the Daisy framework;2 the τ

info
 topic

is already a "regular" one. As indicated by the DDM, information in τ
info

 always
concerns a bank. This bank has a name, several branches, and several accounts.
2 Because they also are leaves in the model, they must carry a dummy value, in this case of the T

ordinary

built-in type.

Daisy
dialogue agent

XML Server

application
logic

application
data storage

XML Client

SymBase platform
& modules

PBX ServerPBX Client

A/D

D/A

semantics
converter

<REQUEST/>

<RESPONSE/>

Fig. 5.2 Dialogue system technical background.

_NotMet
ORDINAL1

_IsDereferenced
ORDINAL

1

_Constraints

1
ZIP
ORDINAL

1
_NoStreet
ORDINAL

1

DistrictName
District

1

City
City1

District1

StreetName
Street

1

Number
ORDINAL

1

Street1

BranchOffice
Office

1
Equipment
UTF8_STRING

10

Day
Day7

Time
Time

1

OpeningHours

7

_NoBranch
ORDINAL

1

Branch
4

_Id
ORDINAL

1

1

PIN
ORDINAL

1

Balance
FLOAT

1

Account

1

Name
UTF8_STRING

1

Bank

1

_Newbie
ORDINAL1

_PhoneNumber
ORDINAL

1

_Caller1_Session

1

Info

1

Goodbye
ORDINAL

1
Restart
ORDINAL

1
ρ

Fig. 5.3 Banking system DDM; concepts with underscore pre3 xed names are for system
internal purposes only; camel-cased data types are external.

112

Furthermore, each branch has a name (K
branch_o& ce

), equipment,3 opening hours,
and is located in a street (which is located in a particular district, which in turn
is located in a particular city). Thus, the DDM captures a hierarchical structure
of underlying data in the domain. However, as already discussed in Section 4.4
on semantics, such representation is not used for raw semantics, for which a key-
value pair vector is more common. To suppress any incompatibilities (including
diJ erent dialogue control acts representation, like agreement, ask for help, etc.),
a one-way semantics converter was developed.4 For completeness sake, let us also
note that some concepts in the DDM are underscore pre3 xed, e.g. C

_session
 . These

were introduced for internal purposes only (database query result, etc.) and we
will ignore them in this chapter. Also in the DDM, external data type names are
camel-cased, while the built-in ones are fully capitalized. The T

city
 , T

district
, and

T
street

 external types have a common combinatorial behaviour – their values must
stay in boundaries of a prede3 ned set. Thus, when deciding about the replacement
or extension of an existing old value by an incoming new value, the result of
their hypothetical combination is matched against the set of known names. If a
match is found, extension is committed, otherwise replacement chosen. From the
technical point of view, this base behaviour is provided by the common external
type T

base
 which the three mentioned types infer from and override some of the

inherited functionality (the Domain Editor shows the dependency more clearly).
Finally, the T

day
 and T

time
 types are each of an individual behaviour. Particular

implementations of any of the 3 ve external types may be consulted with the 3 les
typ*.pas on the attached CD.

The second component, a set of plans, constitutes the domain-speci3 c,
managed logic. There are three essential tasks that are detailed in Fig. 5.4:
MainLoop, Info_OpeningHours, and Info_Address. The goal of the MainLoop
plan is to welcome the user an individual way (newbie user versus returning
user), ask for the 3 rst request, then ask for any subsequent request (the diJ erence
is merely in the formulation), and farewell. A diJ erent approach has been chosen
for the two Info plans. As they diJ er merely in the kind of information that
satis3 es user's request, they both 3 rst call a common macro to subsequently make
a task-satisfying statement about branches found by that macro. Presumably,
the macro covers all necessary interaction with the user and the back-end to
3 lter out a reasonably low number of branches that meet user's demands (four,
according to the DDM in Fig. 5.3). The macro itself unexpectedly starts with
querying the database for branches that match user-provided criteria, whatever
they are at this moment, eventually returning the whole data set (Exec

1
).5

Next, the macro checks if each of the criteria resolves to a unique value (node
And

2
 and its subnodes). If this is not the case, the system oJ ers possibilities

for user's ambiguous speci3 cation (e.g., user's "Frankfurt" is ambiguous with
Frankfurt am Main and Frankfurt an der Oder). Then, there is a "non-utterable"

3 Credit goes to Sympalog for retraining their original ASR to incorporate an ATM as the equipment
a branch can have.

4 By Václav Struhár.
5 The overhead is to be handled a domain-speci3 c way. One possibility might be to introduce a DDM

concept whose instantiation would indicate a "too many results to return" answer. As our full data set
consisted merely of 38 records, we left this case unaddressed. However, we recognize the "no results
to return" case by the presence of the Π(K

branch
 , K

_no_branch
) path in the result.

A
ct

:
R
es

po
n
d

W
el
co

m
e.

if
U

.N
ew

bi
e

→
sa

y
in

st
ru

ct
io

ns

A
N

D

A
ct

io
n
:
E
xe

c
V
ar

ia
bl

e:
 U

re
tu

rn
in

g
us

er

S
E
Q

U
E
N

C
E A

ct
:
R
eq

u
es

t
S
in

gl
e

u
se

C
as

eY
:


C
as

eN
:
C
al

l(
G

oo
db

ye
)

H
ow

 m
ay

 I
 h

el
p

yo
u?

A
ct

:
R
eq

u
es

t
C
as

eY
:


C
as

eN
:
C
al

l(
G

oo
db

ye
)

M
ay

 I
 h

el
p

yo
u

w
it
h

an
yt

hi
ng

 e
ls
e?

A
ct

io
n
:
C

al
l

In
fo

_
M

ac
ro

A
ct

:
R
es

po
n
d

T
he

re
 i
s

a
B
.B

ra
nc

hO
ff
ic

e
in

 B
.S

tr
ee

t.
S
tr

ee
tN

am
e

w
it
h

a
B
.E

qu
ip

m
en

t
.

A
ct

:
R
eq

u
es

t
C

as
eY

:
D

is
po

se
 a

ll
 d

at
a

C
as

eN
:
Q

u
it

C
an

 I
 h

el
p

yo
u

fin
d

an
ot

he
r

br
an

ch
 a

dd
re

ss
?

S
E
Q

U
E
N

C
E

A
ct

io
n
:
C
al

l
In

fo
_
M

ac
ro

A
ct

:
R
es

po
n
d

T
he

re
 i
s

a
B
.B

ra
nc

hO
ff
ic

e
op

en
ed

 B
.O

H
.D

ay
,
B
.O

H
.H

ou
r

w
it
h

a
B
.E

qu
ip

m
en

t
.

A
ct

:
R
eq

u
es

t
C
as

eY
:
D

is
po

se
 a

ll
 d

at
a

C
as

eN
:
Q

u
it

C
an

 I
 h

el
p

yo
u

fin
d

an
ot

he
r

br
an

ch
 o

pe
ni

ng
 h

ou
rs

?

S
E
Q

U
E
N

C
E

A
ct

io
n
:
E
xe

c 1
V
ar

ia
bl
e:

 B
se

le
ct

 m
at

ch
in

g
br

an
ch

es

A
N

D
2

A
ct

io
n
:
E
xe

c 2
V
ar

ia
bl

e:
 C

se
le
ct

 .
..
 f
ro

m
 C

it
ie

s

A
ct

:
R
eq

-c
la

ri
fy

1

C
on

di
ti
on

:
|C

|
>

 1
D

o
yo

u
m

ea
n

C
 ?

S
E
Q

U
E
N

C
E

A
ct

io
n
:
E
xe

c 3
V
ar

ia
bl
e:

 S
se

le
ct

 .
..
 f
ro

m
 S

tr
ee

ts

A
ct

:
R
eq

-c
la

ri
fy

2

C
on

di
ti
on

:
|S

|
>

 1
D

o
yo

u
m

ea
n

S
 ?

S
E
Q

U
E
N

C
E

A
ct

io
n
:
E
xe

c 4
V
ar

ia
bl
e:

 N
se

le
ct

 .
..
 f
ro

m
 O

ff
ic

es

A
ct

:
R
eq

-c
la

ri
fy

3

C
on

di
ti
on

:
|N

|
>

 1
D

o
yo

u
m

ea
n

N
 ?

S
E
Q

U
E
N

C
E

A
ct

:
R
eq

-c
la

ri
fy

4

S
ta

te
:
N

on
-u

tt
er

ab
le

V
ar

ia
bl

e:
 D

ia
E

[
In

fo
.B

an
k.

B
ra

nc
h.

E
qu

ip
m

en
t

]

A
ct

:
R
eq

-C
la

ri
fy

5

V
ar

ia
bl

e:
 D

ia
N

[
In

fo
.B

an
k.

B
ra

nc
h.

B
ra

nc
hO

ff
ic

e
]

A
ct

:
R
eq

-c
on

fi
rm

2

C
as

eY
:
C

on
ti
n
u
e

C
as

eN
:
D

is
po

se
 D

ia
N

D
o

yo
u

in
si
st

 o
n

D
ia

N
 ?

G
R
O

U
P

A
ct

:
R
eq

-C
la

ri
fy

6

V
ar

ia
bl
e:

 D
ia

S
[
..
.B

ra
nc

h.
S
tr

ee
t.
S
tr

ee
tN

am
e

]

A
ct

:
R
eq

-c
on

fi
rm

3

C
as

eY
:
C
on

ti
n
u
e

C
as

eN
:
D

is
po

se
 D

ia
S

D
o

yo
u

in
si
st

 o
n

D
ia

S
 ?

G
R
O

U
P

A
ct

:
R
eq

-C
la

ri
fy

7

V
ar

ia
bl
e:

 D
ia

C
[
..
.B

ra
nc

h.
S
tr

ee
t.
D

is
tr

ic
t.
C
it
y

]

A
ct

:
R
eq

-c
on

fi
rm

4

C
as

eY
:
C
on

ti
n
u
e

C
as

eN
:
D

is
po

se
 D

ia
C

D
o

yo
u

in
si
st

 o
n

D
ia

C
 ?

G
R
O

U
P

G
R
O

U
P

A
ct

:
R
eq

-c
on

fi
rm

1

C
as

eY
:
C

on
ti
n
u
e

C
as

eN
:
D

is
po

se
 D

ia
E

D
o

yo
u

in
si
st

 o
n

D
ia

E
 ?

D
IS

A
M

B
IG

S
E
Q

U
E
N

C
E

A
ct

io
n
:
If
-e

ls
e

C
as

eY
:
C
u
t

C
as

eN
:
C
on

ti
n
u
e

[
D

ia
E
]

A
ct

:
R
eq

-c
on

fi
rm

5

C
as

eY
:
C
on

ti
n
u
e

C
as

eN
:
C
u
t

S
ho

ul
d

th
e

br
an

ch
 h

av
e

an
y

sp
ec

ifi
c

eq
ui

pm
en

t
?

A
ct

:
R
eq

u
es

t
C
as

eY
:


C
as

eN
:
C
on

ti
n
u
e

O
k,

 w
ha

t
eq

ui
pm

en
t

do
 y

ou
 r

eq
ui

re
?

S
ay

 N
o
 t

o
ca

nc
el

.

S
E
Q

U
E
N

C
E

A
N

D
1

(d
)

F
in

d
B

ra
n
ch

es
 c

om
m

on
 m

ac
ro

F
ig

.
5
.4

 D

ia
lo

gu
e

sy
st

em
 m

ai
n

pl
an

s
to

 m
od

el
 i
nt

er
ac

ti
on

 w
it
h

th
e

us
er

.

(a
)

M
a
in

L
o
o
p

pl
an

(b
)

In
fo

_
A

d
d
re

s
pl

an
(c

)
In

fo
_

O
p
en

in
gH

o
u
rs

 p
la

n

114

query (Req-clarify
4
) to record demands on branch equipment, if any. Two facts

accompany queries of the non-utterable kind: 3 rst, their information is not
mandatory for the task satisfaction, i.e., the agent will not query the user if it
cannot 3 nd a corresponding value in the data layer; and second, information
may be elicited from the user at another, possibly more suitable point in the
plan (see below). Next, constraints gathered so far from the user are further
restricted or relaxed if the number of matching branches is greater or lower
than the given thresholds (Disambig). Restrictions are represented by regular
queries (Req-clarify

5…7
), whereas relaxations by yes-no queries (Req-con! rm

1…4
).

User's updates to the data layer return the agent to some previous point in
the plan. Finally, the system asks the user if she or he demands a speci3 c
equipment (Req-con! rm

5
), expecting yes, no, or the equipment directly. From

the technical point of view, in conjunction with Req-clarify
4
 , this may seem

an unnecessarily complicated solution, however, there are historical reasons for
that.6 Once processed, the agent has gathered enough information to satisfy the
given task by responding with information requested.

The third component, dominance model, de3 nes relations among tasks.
As already mentioned earlier, the functionality of the original application by
Sympalog was slightly reduced to eliminate some transitions and allow this way
for more straightforward decomposition into tasks evaluated as important for
testing. (Important tasks were those with possibly rich interactivity where the
Rogerian strategy could be invoked.) Therefore, for instance, the query node
marked with ♠ in Fig. 5.1, asking for the type of information an unknown
user wants to know about a branch, was included in the extension of the initial
prompt and its help ("I can o$ er you the following services: branch address,
branch opening hours, account balance, …"), leading to the following set of
tasks and dominance relationships among them:

MainLoop

Info_Address

Info_OpeningHours

AccountBalance

Presumably, some transitions do not have a matching counterpart in the
original design, however, the important matter is the new and original designs
intersect reasonably closely. To model the transitions exactly, some single-purpose,

6 One may argue that a regular query node (QUE) meets the desired objective as its implementation
may combine both Request-clarify and Request-con! rm acts at the same time. However, the domain
proposal originally counted with time information constraint as well, allowing the user to 3 lter
branches also by their opening hours. Thus, two additional non-utterable queries were present in a
similar fashion like Req-clarify

4
 to store eventual hours and minutes, respectively. The prompt in

Req-con! rm
5
 then read "Do you need the branch to have any speci! c equipment or be opened at a

certain time?", suggesting either information was accepted, allowing for mixed-initiative interaction.
Adopting this approach, the user could have collectively refused to provide any of this information
by simply responding with no. Contrarily, if the regular query node-based approach was taken, the
user would have to refuse it individually, one piece at a time, leading to three subsequent no's before
the dialogue could proceed.

115

mostly non-interactive "proxy tasks" would have to be introduced.7 This was,
however, evaluated as unnecessary. Also notice the mentioned tasks Restart and
Goodbye are not included in the model. This is caused by them being de3 ned as
"ambient" plans, i.e., a behaviour that may interrupt the dialogue at any time.
Finally, the Transaction Log, Current O$ ers, and Change Account functionality
was not included in our reimplementation as it was evaluated unimportant.

5.2 Tested Objectives and Preparation

The system utterances were designed to test diJ erent dialogue strategies. The
experiment as such required every user to complete a set of application tasks,
ideally in the ascending order, although this was not demanded. Instructions to
the users were given on a set of web pages (see Appendix A.3), one task per page.
Each web page consisted of a brief description of agent's functionality, a list of
hints for talking to the agent, a task description, and information on how to call
the agent. Each page also contained a form for specifying information acquired
from the agent during the dialogue. Users read the instructions before calling the
agent from their personal phones. Usage of public phones or shared o\ ce phones
was explicitly forbidden as the phone number was used as each user's unique
identi3 er. After completing the tasks, each user was given a survey designed to
probe her or his satisfaction with the system.

5.2.1 Dialogue Strategies Tested

The types of strategies diJ ered in terms of agent's initiative. More particularly, we
tested the usage of the narrow strategy (NS), open strategy (OS), and Rogerian
strategy (RS). To brie6 y recall, the NS strategy uses directive prompts and
controls the dialogue by explicitly querying the user for particular information. To
demonstrate, the following example is a real dialogue snippet (to comply with the
European personal privacy policy, we were obliged to obtain each user's explicit
permission prior to recording their voice; as in many cases the permission was
not granted, we only could log the internal representation of conducted dialogues
– software communications, utterance semantics, etc.; for consistency reason, we
use only these logs to abstract from user's literal expressions in all dialogues; as
the semantics conveys usually just a small amount of information, it is easy to
induce user's underlying intention that resolved to that semantics).

S

Hello, thank you for your call (…). How may I help you?
 (Hallo, danke für Ihren Anruf (…). Wie kann ich Ihnen helfen?)

U

timeout
S

I can o' er you the following services: account balance,
branch addresses, and branch opening hours.

 (Ich kann Ihnen die folgenden Dienste anbieten: Kontostand,
Filialauskunft und Ö' nungszeiten.)

U

declarative(Branch(OpeningHours(Time:—)))

7 This cumbersome approach is currently the only way how to imitate the "goto" feature of SymBase
frame-based management by using merely a dialogue stack. In the upcoming versions of the Daisy
framework, it is counted with adding a native support for this feature.

116

S

There are too many branches. Please say which
city the branch should be located in.

 (Es existieren zu viele Filialen. Bitte sagen Sie, in
welcher Stadt sich die Filiale be" nden soll.)

U

declarative(City:"Gelsenkirchen")
S

Ok, you are looking for a branch in Gelsenkirchen. In case you
know it, please say which street the branch should be located in.

 (Ok, Sie suchen eine Filiale in Gelsenkirchen. Bitte sagen Sie,
falls bekannt, die Straße, in der sich die Filiale be" ndet.)

In contrast with that, the open strategy does not propose directly what
possibilities there are at a given time. Instead, it assumes that users know what
to do and therefore it lets them control the dialogue as in the following snippet
where coincidentally the same amount of information has been exchanged.

S

Hello, thank you for your call and welcome back.
How may I help you?

 (Hallo, danke für Ihren Anruf und willkommen zurück. Wie kann ich Ihnen helfen?)

U

declarative(City:"Gelsenkirchen" ,
 Branch(OpeningHours(Time:—))
)

S

There are too many branches in Gelsenkirchen. In case you know
it, please say which street the branch should be located in.

Finally, the Rogerian strategy is an experimental one whose goal is to motivate
users to say more by handing the initiative back to them, using context-free or
context-aware sentences. Hence, the system may or may not suggest the topic of
discussion (see Section 3.9.2 for details). The following snippet shows a dialogue
with a successful application of the context-aware variant in S

5
–U

5
 turns. For

clarity, each system prompt is now also labeled with the strategy in use at the
moment of particular prompt production.

S
1

RS Hello, thank you for your call and welcome back.
How may I help you?

U
1

declarative(Equipment:"Geldautomat" , City:"Gladbeck")
S

2
RS Ok.

U
2

timeout
S

3
NS I can o' er you the following services: account balance,

branch addresses, branch opening hours.
U

3
declarative(Branch(StreetName:—))

S
4

NS There are too many branches in Gelsenkirchen. In case you know it,
please say which street the branch should be located in. —Pause—
If you don't wish a particular street, continue with saying No.

U
4

declarative(_disagree_)
S

5
RS Please specify the searched branch further.

 (Bitte spezi" zieren Sie weiter die Filiale, die Sie suchen.)

U
5

declarative(BranchO& ce:"Filiale_Bertlich")

We did not focus on investigating the suitability of the NS and OS strategies
(as previous work has shown best suitability for novice and experienced users,
respectively [Lit02, Wal97, vZa99]). We instead focused on the Rogerian strategy
by intending to proof two hypotheses: (1) users can respond to it, despite they

117

hear it from a computer, and (2) the strategy gradually improves the information
exchange rate by decreasing the number of turns needed to solve a task with
a dialogue agent. Thus we hypothesized that a system without the Rogerian
strategy might be superior for the 3 rst task, but that a system with the Rogerian
strategy would have better performance by the last task.

5.2.2 Experiment Description and Preparation

Each user performed three tasks of diJ erent levels of di\ culty in a sequence.
Each task was represented by a scenario where the user had to 3 nd a branch
satisfying certain constraints, by using the agent to retrieve and process online
branch information. The tree tasks were as follows:

• Task 1. Try to 3 nd all Bertlich branches with an ATM in Gladbeck.
Please write down their exact addresses that you were told by the system.

• Task 2. Given the below map of Herten, try to 3 nd the exact address
of the nearest Hassel branch that has an ATM (based on your current
position depicted in the map, it is up to you to determine the shortest
route!). Once known, check its opening hours and make sure you can
visit it even after 6 pm. Please spot the nearest branch you have found,
and also write down its exact address.

12

26

62

53

51

49

60

• Task 3. Try to 3 nd the opening hours of all Horst branches in
Gelsenkirchen. Check their addresses and make sure you can visit
any of them in Dorfstrasse even after 6pm. What is the exact location
of such a branch?

Thus, the 3 rst task consisted merely of a single goal of 3 nding a certain
branch address. The second task was already a compound one, consisting of
3 nding a branch address and afterwards checking its opening hours. Finally,
the third task was a compound one as well, but composed in the opposite order.

However, as the name of each branch (Bertlich, Hassel, and Horst, in
particular) basically identi3 es that branch, the original data set by Sympalog
was modi3 ed so that there were multiple branches with the same name in each
of the selected cities (two Bertlich branches in Gladbeck, four Hassel branches
in Herten, and three Horst branches in Gelsenkirchen, among other branches).
Although maybe confusing at 3 rst glance, this was the only way how to generate

118

enough parameters a branch can have and thus allowing for the Rogerian strategy
to eventually take place during a dialogue. In this respect a classical timetable
domain would have provided a much better (and more natural) parametrization
of objects the user and the system were to exchange (e.g., diJ erent transportation
means, tickets, locations speci3 ed by names, points of interests, etc.). Nonetheless,
such kind of domain was unfortunately not available at Sympalog at the time of
creating the banking system. Thus, the reason of introducing identically named
branches was to degrade the name as an identi3 er and make it a common input
parameter that merely contributes to the 3 nal selection of branches to present.
The resulting set of parameters then accounted for the branch name, street
name, city name, and equipment. Opening hours were not included in the input
parametrization as the amount of ways a time information can be supplied
spans a large number of possibilities that have to be recognized by the ASR;
for instance, the following expressions may be considered equal:8 in the evening,
after 6pm, between 6 and midnight, around 21 o'clock, etc.

Finally, to convey the system to the public, an advertisement lea6 et was
composed and published (Fig. A.1). To gather potentially as much data as
possible, the experiment was accompanied by a winning draw to stimulate user's
motivation in giving the system a call. Copies of the advertisement lea6 et were
then hanging at the Friedrich-Alexander Universität Erlangen-Nürnberg along
with the Regionales Rechenzentrum Erlangen (thanks to Dr. Tino Haderlein),
University of Regensburg (thanks to Prof. Václav Matoušek), and Vienna
University of Technology (thanks to Leszek Chmielewsky).

5.2.3 Collection and Extraction of Measures

In our study, experimental results were collected from individual users and
extracted from underlying dialogue logs. All metrics we mention in this section
are given in boldface. First, we logged the total time of each interaction (the
variable named Elapsed Time). In this respect, it could have been interesting
to have a more detailed layout of pauses in the interaction (especially as far
as reactions to the Rogerian strategy are concerned); however, the SymBase
platform unfortunately does not feature such measurement possibility.

Second, the agent's dialogue behaviour was logged in terms of particular
message, strategy used to produce that message, and time stamp of the
production. Among these, we were particularly interested in the number of
times the Rogerian strategy was used (Rogerian Turns). In addition, it was
also logged the number of timeouts (Timeouts) and the number of times that
the user accessed the task state-speci3 c help message (Help Requests). The
number of System Turns and User Turns were also calculated on the basis
of these logs, as well as the average number of pieces of eigen information in
user's turns (Average Turn Length). On a related note, the SymBase platform
features merely weak possibilities to measure user turn-related ASR parameters
(recognition score, etc.). Therefore, no speech recognition measures were gathered,
which to an extent was a limitation in our investigation. Let us also note that
we are only interested in the relevant part of each dialogue. We take as the
8 Personal communication with Dr. Martin Schröder.

119

relevant part anything between the beginning of a dialogue and the 3 rst point
where the user is provided the correct answer by the system; if the user then
interacted further with the system (e.g., asked for a repetition of the answer, or
checked the account balance), we do not take such interaction into account for
our evaluation.

Third, users were to specify information that they had acquired from the
agent (e.g., the address of the nearest branch in Task 2). This was then used
in conjunction with data that we had logged during the interaction to compute
Kappa (more on it below). Finally, users responded to a survey on their subjective
evaluation of their satisfaction with the agent's performance. The basic form of
the survey followed a common questionnaire on the standard Likert-scale [Lik32]:

• Question 1. Do you think it was easy to obtain the information we
requested you?

• Question 2. Was the pace of interaction appropriate? Were you able to
follow the information conveyed by the system?

• Question 3. Did you know what you could say at each point of the dialogue?

• Question 4. Do you reckon the speed of system's reactions was appropriate?

• Question 5. Did the system work the way you expected it to during the
dialogue?

• Question 6. Based on your current experience, do you think you would
use Dora regularly to access information on branches?

All of the responses ranged over prede3 ned values from { I don't agree, I
rather don't agree, I don't know, I rather agree, I agree }. Each of these values
was mapped respectively to an integer in 1…5. Each question emphasized the
user's experience with the system, with the hope that satisfaction measures would
indicate an overall evaluation of the system over the three tasks. We calculated
the User Satisfaction score (cumulative satisfaction) for each dialogue by
summing the scores of the multiple choice questions in the survey.

For interactions where the agent applied the Rogerian strategy, the
questionnaire continued with additional questions shown below. Their aim was
to determine the position of the RS strategy in the context of its applicability
informally. The questions were to imitate an interview with the user in the sense
of the cognitive task analysis (CTA) [Hof98]. Therefore, instead of aiming at
knowing how users experienced the system, we wanted to reveal what was going
on in their minds once they were exposed to one of the RS strategy utterances.

• Question 7. What was the 3 rst thing that came across your mind when
you 3 rst heard the prompt <—RS prompt transcript—> ?

• Question 8. Did you feel like being pushed to say more? Did you feel this
utterance was motivating you to say more?

• Question 9. Were you aware of being expected to say more information
on the branch to 3 nd?

120

• Question 10. Do such prompts like <—RS prompt transcript—> sound
acceptably to you?

The set of "CTA-like" questions evolved during a preparation phase with
3 ctional timetable dialogues. Because we needed to blend two mutually
contradictory procedures, particularly a face-to-face CTA interview with a
hidden "Wizard of Oz-like" (WoZ) simulation, we approached this phase with
two pre-composed dialogues printed on a paper to satisfy demands on both of
the procedures. Thus, the interviewer was the uncovered wizard as well – for
our purposes, however, the CTA interview had a higher priority over a regular
WoZ simulation. Afterwards, there were N=6 persons from the IT realm with
no previous experience in human-computer interaction. They all were given the
two pre-composed dialogues, one with the RS strategy involved and one without
it (in this order). The evolution of the dialogues proceeded in a turn-by-turn
manner, that is the interviewer read up the system utterance, one at a time,
and then waited for the person's reaction. The interviewer's main goal was to
ask the persons what they think they are asked about and what they can say at
each moment in the dialogue. The stress was, of course, put on the system turns
with the RS strategy applied. (The most interesting response was that the user
would have assumed the system was joking and would immediately hang up.)
Once the interviewer has gathered enough information, the expected reaction in
the dialogue was revealed to the person and the interviewer eventually posed
additional questions. No earlier than by now the interviewer continued in the
dialogue by reading up the next system utterance. The results of these individual
interviews constitute the basis of prede3 ned answers to Questions 7, 8, and 10
(see Appendix A.4; in case of DORA, Question 9 then ranged over the 3 ve
prede3 ned values used already for Questions 1…6).

Hence, to summarize the set of measures, our investigation leans mainly on
parameters that the system could log automatically, without the need of hand
labeling them. Table 5.1 illustrates the type of information that was accumulated
at the end of each experiment. Each row in the table represents a user for whom
the interaction with the agent was logged along with values for the measures
discussed in this section. However, at this stage, it is impossible to prejudge
which measures contribute to the user satisfaction most. Below, we therefore
use two dialogue system evaluation frameworks to tell us which measures have
merit, and to quantify their relative importance.

5.3 Results and Evaluation

The experimental data consists of N=9 users who produced in total M=19
relevant dialogues.9 We in advance say that this number is a huge disappointment,
and therefore, analyze the reasons that could have led to it in the next section.
Afterwards, in Sections 5.3.2 and 5.3.3, we process the results formally, making
them a subject of the ANOVA and PARADISE frameworks. We conclude with

9 We do not consider dialogues that were either abandoned or crashed. If a user solved one task more
than once, only the latest interaction is considered as relevant.

121

Section 5.4 that gives an informal view at the results and discusses interesting
aspects observed in individual dialogues.

5.3.1 Reasoning about the Low Attendance

Before engaging with the system evaluations, let us try to 3 nd reasons for the low
number of volunteers willing to participate in the project. We have pinpointed
three main reasons which serve us as lessons learned for further experiments of
similar kind.

First, our experimentation lacked any form of warm-up session [Smi92] that
could have helped users with getting them more familiar with the system. In
many cases, these sessions are conducted with an instructor who is to explain
the essence of the system, present basic keywords, and help subjects do their
3 rst steps in the system which usually involves accomplishing a simple task
[Ngu06a, Sti01, Ste07, Smi92, Sto12]. Such conducted warm-up session mainly
targets more complicated or highly specialized systems. For less sophisticated
systems like ours, a simple static dialogue transcript usually su\ ces [Wal98]. As
our system was accessed by remote users by phone, we could not have taken
the human instructor way. Neither did we, however, consider the latter way as
we wanted to imitate a queuing system for which users were not required to
read through illustrative dialogues (instead, such system was to adapt based on
the current qualities of a dialogue). Another reason is that we did not want to
in6 uence user's way of interaction by showing them an example. On the other
hand, this assumption might have been in collision with a HCI-related factor
that people do not trust unknown and attempt to avoid it [Yan95]. This factor
could have therefore discouraged potential users by the fact that they did not
know what was expected from them (our websites were accessed by more than
150 visitors). Hence, if we were to repeat the experiment, we would include a
warm-up session by opting for a dialogue transcript as an example.

The second aspect that could have impaired the experiment attendance were
technical di\ culties that the system suJ ered from during the 3 rst weeks of its
running. More speci3 cally, we dealt with typos in string literals ("#Gladbeck"
instead of "Gladbeck", and "strasse" instead of "Strasse"), malformed
communication messages between the XML Client and XML Server (see Fig.
5.2), and most importantly database communication failures – a hidden problem

Table 5.1 Overview of logged measures about dialogue sessions; US = User Satisfaction, ET
= Elapsed Time, STs = System Turns, TOs = Timeouts.

User Task Dialogue turns US κ ET STs TOs …

1 1 S
1
–U

1
 , S

2
–U

2
 , S

3
–U

3
 , … us k et st to …

1 2

1 3

… …

122

that was discovered no earlier than after a month the system was running. The
database di\ culties prevented users from submitting their answers acquired from
the system along with the 3 nal questionnaire as well. Looking at the dialogues
distribution over the testing period (Fig. 5.5), we believe this was the most
signi3 cant factor that contributed to the low attendance. Thus, after a promising
start in March, we suddenly observed a decline in the number of dialogues
(originally ascribed to the holiday season). In parallel to the decline, we also
observed an increased number of users who had 3 nished one task but did not
continue in the experiment.10 We believe the database problems have deteriorated
the system initial reputation to the extent which it was unfortunately unable to
recover from over the remaining months.

There is one more aspect that does not regard the in6 uence on the low
attendance in the experiment directly, however, has impacts on how we now
can evaluate the results – the 3 nal questionnaire itself. Let us recall that the
experiment was designed to show the 3 nal questionnaire to users who had
responded to all three tasks. Nonetheless, as some users did not continue in
the experiment after they had submitted the answer to the 3 rst task,11 we
unfortunately cannot evaluate their partial accomplishments formally (Sections
5.3.2 and 5.3.3); we, however, include these dialogues in our informal discussion
(Section 5.4). The motivation for leaving the 3 nal questionnaire to the end was
to evaluate the system as a whole. We found inspiration for this decision in
[Ngu06b] where ten users were to cooperate with the system in solving twelve
diJ erent tasks. Despite some of them did not 3 nish them all, it was the human
factor who then immediately decided whether the dialogues observed are worth
an evaluation. For our case, one way to work around the computer factor would
be to let users submit the questionnaire and check for ful3 llment of all tasks
manually. A better way would be to make users submit the questionnaire for every
task [Wal98, Lit02]. That way, each user's response to the questionnaire would

10 As we later tracked down, the problem was in the way the XML Server was connecting to the
database. Once connected on its start, it was supposed to remain connected until the end of July.
However, the database had set a disconnection timeout that 3 red after approximately three idle
days (i.e., if no call was received by then). For us, the server was always working as expected when
checking its functionality minutes after re-starting it. We then eventually received a complaint from
a user calling few days later.

11 We believe the reason might have been the overcomplicated formulation of Tasks 2 and 3.

month

of calls

Mar Apr May Jun Jul

5

10

15

completed dialogue
(with not necessarily correct answer)

crashed dialogue

unfinished dialogue
(user hung up)

Fig. 5.5 Number of calls distribution over the testing period between March and July 2014.

123

re6 ect the most recent dialogue she or he took part in; this could be combined to
evaluate their overall experience with the system or the questionnaire extended
with additional questions.

5.3.2 Evaluation Using ANOVA

To begin with our formal evaluation, let us 3 rst brie6 y describe the notion of
using ANOVA (ANalysis Of VAriance) in the dialogue systems realm [Coh95].
In general, ANOVA is a statistical method to compare diJ erences of means
among several measures. It does so by looking at variation in the data and where
that variation is found. More speci3 cally, it compares the amount of variation
between groups with the amount of variation within groups. When we take
samples from a measure, we expect each sample mean to diJ er simply because
we are taking a sample rather than measuring the whole population. Thus, we
always expect there to be some diJ erences in means among diJ erent groups. Like
other statistical tests, we use ANOVA to calculate a test statistic (the F-ratio, or
F-test) using which we can obtain the probability (the p-value) of obtaining the
data assuming the null hypothesis. The null hypothesis states that all population
means are equal, so there is no diJ erence among groups. A signi3 cant p-value
(for which p < α, where usually α = 0.05) suggests that at least one group mean
is signi3 cantly diJ erent from the others. In such case, we say that we reject the
null hypothesis.

To gather at least two groups of measures, we developed two versions of the
dialogue agent: Agent A, which was equipped with the "common" set of strategies
(NS+OS combination), and Agent B, which employed the Rogerian strategy
where applicable (NS+RS combination). Each calling subject was assigned one of
the agents on the basis of the phone number: even numbers were assigned Agent
A whereas odd numbers Agent B.

Our experimental design then consisted of two factors: strategy (with
nominal conditions Agent A and Agent B) and task (with nominal conditions
Task 1, Task 2, and Task 3). Each of our measures was analyzed using a
two-way, repeated-measure ANOVA for these two factors. For each result we
report F and p values indicating the statistical signi3 cance of the results for
α = 0.05. Apparently, eJ ects that are signi3 cant as a function of strategy indicate
diJ erences between the two strategies, whereas eJ ects that are signi3 cant as a
function of task are potential indicators of learning [Wal97].

Based on our results, the ANOVA test revealed that the amount of eigen
information supplied by the user per turn is a function of strategy (F(1,6) =
6.23, p = 0.047). This is a desired and hoped result, indicating that the RS
strategy had a positive impact on the information exchange rate: while the
average amount of supplied eigen information was 1.06 pieces per turn for Agent
A, it was 1.16 for Agent B (timeouts with zero exchange rate are not counted in).

In tandem with this observation, we also hoped to reveal a signi3 cant variance
between elapsed time per dialogue and strategy. The F-test nevertheless did not
reveal such variance (F(1,6) = 0.02, p = 0.886); the same then applies to the
number of turns per dialogue (F(1,6) = 1,15, p = 0.325). Despite that, we are
not disappointed to fail to reject the null hypothesis, i.e. that the strategies are

124

equivalent in terms of the amount of time or the number of turns, respectively.
We believe that the lack of an eJ ect on elapsed time re6 ects that the dominant
time aspect were longer utterances in Tasks 2 and 3, informing about opening
hours in Task 2 and using opening hours to refer to known branches in Task 3.12
On a similar note, we believe that we failed to reject the null hypothesis that the
strategies are equivalent in terms of impacts on the number of turns, due to the
lack of enough tested subjects during our experimentation.

A similar result is also obtained when computing how the number of RS
strategy applications across all subjects and tasks in Table A.3 correlates with
the number of dialogue turns, which provides us with the number 0.063. Taking
again into account the constrained number of subjects participating in the
experiment, this cannot be understood as a cardinal answer that the RS strategy
has a minor negative impact on the dialogue 6 ow. To make such claim, more
participants would be necessary to take part in the experiment (and eventually
additional experiments conducted across diJ erent domains). With these results,
we only can state that Agent B outperformed Agent A in terms of the average
number of dialogue turns with AvgTurns(A) = 12 and AvgTurns(B) = 10, this
way being 17% more eJ ective when making use of the RS strategy. By excluding
both of the extremes from each of the groups, i.e. the shortest and the longest
dialogues, we obtain AvgTurns(A) = 9.33 and AvgTurns(B) = 10.22 (improvement
by 8.70%), thus a less clear result, comparable with those received from ANOVA.

For completeness sake, the ANOVA test also showed two interesting but
statistically insigni3 cant covariances. The 3 rst of them is a dependence between
the number of turns and a task (F(2,6) = 3,68, p = 0.090). Calculating the
average number of turns per each task gives us 8.13, 15.17, and 10.00 for Task 1,
2, and 3, respectively. Thus, there is an apparent peak for Task 2 which can be
explained as the task being too complex (or fuzzy formulated) for users to solve.
We think users were confused by the goal of 3 nding the closest branch using an
underlying map. While we hoped this task to be the most enjoyable one as it was
no more complex than the other two, i.e. it su\ ced to provide the system with all
data stated in the formulation and then just check the returned answer against
the map, virtually each user chose the longer way of exploring depicted streets
individually, which naturally bloated the dialogue length. In addition, despite
diJ erent complexity, the reason that Tasks 1 and 3 had each approximately the
same number of turns can indicate the above mentioned aspect of users learning
to use the system.

The second statistically insigni3 cant covariance returned by ANOVA has
been observed between the number of timeouts and the strategy used (F(1,6)
= 5.05, p = 0.069). Calculating the average number of timeouts per strategy
provides us with 3.98 for Agent A and 1.75 for Agent B. If we exclude both of the
extremes from each group (i.e. the minimum and maximum number of timeouts
per dialogue), we obtain 3.22 for Agent A and 1.50 for Agent B. The reason for
this observation may be that, once heard the RS strategy prompt, users tended

12 E.g., "There is a Horst branch in Gelsenkirchen, opened daily between 9:00 and 17:00 o'clock, another
one opened daily 24 hours, and yet another one opened Monday, Wednesday, and Friday between
9:00 and 16:00, and Tuesday and Thursday between 9:00 and 18:30 o'clock."

125

to repeat information they already provided earlier, instead of letting their turn
timeout. The following is one of such cases:

S
n-2

NS … There are too many branches. In case you know it, please
say which city the branch should be located in. —Pause— If
you don't wish a particular city, continue with saying No.

U
n-2

declarative(City:"Gladbeck")
S

n-1
RS Please specify the searched branch further.

U
n-1

timeout
S

n
NS I've so far understood you are looking for a branch in Gladbeck.

I need now more information. I suggest you to say the street,
but you can say also the place, name, or equipment.
 (Bisher habe ich verstanden, dass die Filiale in Gladbeck sein soll. Ich

brauche jetzt weitere Informationen über die gesuchte Filiale. Ich schlage die
Straße vor, aber Sie können auch Ort, Name der Filiale oder Ausstattung
ändern und mir die entsprechende Information jetzt geben.)

U
n

declarative(Equipment:"Geldautomat")
S

n+1
RS Ok, you are searching for a branch with an ATM.

Please tell me more about the branch.
 (Ok, Sie suchen eine Filiale mit Geldautomat. Geben Sie mir bitte weitere Informationen.)

U
n+1

declarative(City:"Gladbeck")
S

n+2
RS Please specify the searched branch further.

U
n+2

timeout

As the number of unspoken mandatory information for a task was shrinking,
a RS repeated application was followed by a repeated known information, and
then eventually by a timeout. However, an eventual timeout is necessary to be
accepted as an inevitable response in some cases. It is a sign that the user does not
know what to say (more), which was well observed even in dialogues conducted
by Agent A. In our case, whenever a timeout arose after an application of the RS
strategy, Agent B imediatelly switched to the NS strategy whose prompt already
gave the user speci3 c information on how to continue in the dialogue.

Thus, we believe that the rejections we made in this section are a matter of
utterance design rather than the underlying notion of the RS strategy itself. Let
us also recall from Section 3.9.2 that the RS strategy was always used during
our experiments only in cases when

• a dialogue was progressing well, i.e. no timeouts were observed by
the agent, indicating that the user knew what to say; this situation is
illustrated by the following snippet:

S

RS Hello, thank you for your call and welcome back.
How may I help you?

U

declarative(Branch(StreetName:—))
S

RS There are too many branches. In case you know it, please

say which city the branch should be located in. —Pause— If
you don't wish a particular city, continue with saying No.

U

declarative(City:"Herten")
S

RS So you are searching for a branch in Herten.

Please tell me more about the branch.

126

U

declarative(Equipment:"Geldautomat" ,
 BranchO& ce:"Hauptstelle"

)
S

RS Unfortunately there are no Hauptstelle branches13 with an ATM.

Do you insist on the ATM?
 (Leider existieren keine Hauptstelle Filialen, die Geldautomat haben.

Bestehen Sie auf Geldautomat?)

U

declarative(_agree_)

• the task to discuss was unknown; however, this application virtually
always resulted in a timeout or repetition of already known information:

S

RS Hello, thank you for your call (…). How may I help you?
U

declarative(_agree_ , City:"Gladbeck")

S

RS Ok.
U

timeout

S

NS I can o' er you the following services: account balance,
branch addresses, and branch opening hours.

U

timeout
S

NS I can o' er you the following services: account balance,

branch addresses, and branch opening hours.
U

declarative(City:"Gladbeck")

• the agent missed two or more pieces of information; already exempli3 ed
in above dialogues.

5.3.3 Evaluation Using PARADISE Framework

The above ANOVA test indicated diJ erences between the two dialogue agents
in several aspects but it was unable track down the most important performance
features. We therefore make use of the PARADISE framework. The PARADISE
framework (PARAdigm for DIalogue System Evaluation) [Wal98] emerged as
a response to the lack of complex techniques to evaluate a dialogue system
performance. In a nutshell, the framework has been devised to compare diJ erent
dialogue strategies by providing a task representation that decouples what
an agent needs to achieve in terms of task requirements from how the agent
carries out the task via dialogue [Wal98]. The idea proposed is that the system
performance can be correlated with a meaningful external criterion such as
usability. Because user satisfaction ratings are commonly used as an indicator
of the usability, the user satisfaction is the agent's top level objective to be
maximized. There are three main assets the framework consists of:

• Task success. Each task is represented using an attribute-value matrix
(AVM), representing information that must be exchanged between the
user and the system at the end of a dialogue, regardless of the strategy
used. The AVM is in turn used to build a confusion matrix, counting

13 Although Daisy allows for branching in utterances, we omitted the case of "Hauptstelle Filiale" as
none of the tasks was on 3 nding the main branch; luckily, such word combinations occurred merely
a handful of times in our sessions.

127

how many times the system was supplied correct and incorrect attribute
values in the dialogue corpora. Finally, the Kappa coe& cient, κ, can
be calculated from a confusion matrix, summarizing how well the agent
achieves information requirements of a particular task, taking into account
that the size of the value set in6 uences the rate of misrecognitions.

• Dialogue costs. In general, any user or agent's behaviour that should
be minimized is to be considered a dialogue cost. Since it is not clear
in advance which cost factors may be the strongest contributors to the
user satisfaction, it is important that a wide range of these measures is
used during an experimentation [Wal98]. For instance, except for the
Kappa, Rogerian Turns, and User Satisfaction measures in Section
5.2.3, all remaining variables can be considered dialogue costs of either
quantitative nature (Elapsed Time, User Turns, etc.) or qualitative
nature (Timeouts, Help Requests, etc.).

• User satisfaction. Users who take part in the experimentation are asked
to 3ll out a survey. They are given a set of questions with prede3 ned
answers, each of which maps to a certain value, matching the degree to
which they agree with a statement about the system. Cumulating their
responses, the overall user satisfaction is approached.

To put all of these parts into perspective, it is proposed a weighted linear
combination of the task success and dialogue costs to model (and possibly also
predict) the user satisfaction, i.e.

()

 () ()
i i

i

Performance UserSatisfaction w c≈ = ⋅ − ⋅∑α κq q

where α is a weight on κ, the cost functions c
i
 are weighted by w

i
 , and q is a

Z-score normalization function [Coh95]. The normalization function is used to
overcome the problem that the values of c

i
 are not on the same scale [Wal98]

(e.g., elapsed time is measured in seconds whereas timeouts are calculated in
terms of number of utterances). If the values are not normalized, the coe\ cients
α and w

i
 will not re6 ect the relative contribution of each factor to performance.

This is easily solved by normalizing each factor x to its Z-score, i.e.

()
x

x x
x

−
=q

σ

where σ
x
 is the standard deviation for x.

Hence, in our application of the PARADISE framework, we 3 rst calculated
the Kappa coe& cient, indicating the overall task success, as

() ()

1 ()

P A P E

P E

−
=

−
κ

where P(A) is the proportion of times that the AVMs for the actual set of
dialogues agree with the AVMs for the scenario key, and P(E) is the proportion
of times that we would expect the AVMs for the dialogues and the keys to

128

agree by chance. Table A.1 and Table A.2 show the two confusion matrices
over all subjects and tasks that correspond to Agents A and B. Based on these
confusion matrices, we can calculate individual Kappa coe\ cients as κ

1
 =

0.588, and κ
2
 = 0.793. Table A.3 then summarizes measures for relevant parts

of dialogues considered for evaluation. We do not consider dialogues that were
either abandoned or crashed. If a user solved one task more than once, only the
latest interaction is considered. Note that the correctness of results returned
by the system as response was irrelevant to us – we only were interested in
observing reactions to the RS strategy rather than serving users with correct
information.

To determine the unknown coe\ cients α and w
i
 , we use the linear regression.

However, before that, we 3 rst have to exclude the number of turns (Turns) from
the set of measures as it highly correlates with both Elapsed Time (corr >
0.936) and Timeouts (corr > 0.81). We in turn also exclude Elapsed Time
itself for correlating with Timeouts (corr > 0.66), Restarts for correlation
with the number of Help Requests (corr > 0.887), and 3 nally also Kappa for
correlation with the Average Turn Length (corr > 0.681). These exclusions
are made due to the fact that correlation above 0.70 can aJ ect the coe\ cients
of the linear regression [Mon80]. In the subsequent linear regression, the User
Satisfaction is treated as the predicted factor whose variance is accounted for
by the remaining loosely correlated measures. For signi3 cant contributors to
the predicted factor, the linear regression produces coe\ cients constituting the
following performance estimation function (for con3 dence level of 90%):

 0.49 0.38Performance UserSatisfaction Timeouts AvgTurnLength≈ = − ⋅ + ⋅

Accounting for 85% of variance in User Satisfaction, the formula tells us
that users were satis3 ed the more the less timeouts they experienced and the
"longer" utterances they were saying. In other words, the satisfaction linearly
depends on whether users knew what to say: the less they knew the less they
were satis3 ed, and the more they knew what to say per turn the more they
were satis3 ed. It is interesting to note that although qualitative measures have
typically been assumed to be the most important factors in user satisfaction
[Wal98, Lit02], the relative magnitude coe\ cient for Timeouts in the above
equation is in absolute value greater than the coe\ cient for the Average Turn
Length. This implies that not knowing what to say has stronger importance for
users whereas knowing what to say is assumed rather common.

It is also interesting to note that according to the formula, the Rogerian
Turns measure we most focused on does not seem to aJ ect the User Satisfaction
(p > 0.32). That is, although we did not interview the users of the RS strategy,
the formula appears to con3 rm the informal results of interviewing users during
the CTA sessions (see Section 5.2.3 and Appendix A.4), implying that users are
not annoyed by the RS strategy exceptional utterances and can rather handle
them (the strategy ended with a timeout in 8 out of 26 cases of application;
it managed to elicit new information in 10 out of the 18 non-timeout cases).
Therefore, the factor with the most impact on user satisfaction remains the
quality of a dialogue after all. From this standpoint, the RS strategy appears
to be an acceptable way of eliciting more information. As already mentioned in

129

the previous section, Agent B outperformed Agent A in terms of the number of
timeouts per dialogue (1.50 versus 3.22), the length of a dialogue (9.33 versus
10.22), and also Kappa (0.793 versus 0.588). As no detailed feedback from users
was collected, we only can guess that better average Kappa coe\ cient was
obtained due to users being not pushed to say a speci3 c piece of information
at a particular point (e.g., name of a branch), but instead, were free to say
virtually anything relevant in any order. In contrast, Agent A's insisting on
particular information had sometimes the negative eJ ect on user saying "at least
something" to satisfy the system demand (e.g., satisfying the branch name with
saying "main branch", Hauptstelle, which was incorrect in any task). Of course,
Agent A oJ ered the possibility to skip that information elicitation (e.g., "If you
don't wish a particular city, continue with saying No"). Adopted by the user,
such behaviour prolonged the dialogue.

Finally, plugging our experimental data back into the above performance
function shows that the mean performance of Agent A is lower than the mean
performance of Agent B, hence Agent B performed better than Agent A.
Appendix A.5 extends this formal evaluation by brie6 y describing an alternative
way of evaluating spoken dialogue systems using the three-tiered methodology
by Stibler and Denny [Sti01].

5.4 Remarks

Before concluding the evaluation, let us make several notes about the Rogerian
strategy. As already mentioned in Section 4.9 on strategies, the Rogerian strategy
acts as a "prolonged user-initiative strategy". That is, while the common mixed-
initiative approach assumes that user's initiative is always followed by the system
initiative, the Rogerian strategy modi3 cation suggests that the user can keep the
initiative as long as she or he knows what to say. In such cases, the system hands
back its turn by speaking with mere hints or context-free sentences. Obviously,
this is a risky approach that may result in the opposite eJ ect of making the
interaction even longer. We observed users either repeating the already said or
letting their turn timeout; examples of such behaviour have already been given
above.

On the other hand, not knowing what to say to a Rogerian prompt is a
situation comparable to not knowing what to say to an open-ended prompt at the
beginning of a dialogue. For instance, one of our non-Rogerian sessions started
with:

S
1

OS Hello, thank you for your call (…). How may I help you?
U

1
declarative(City:"Gladbeck")

S
2

NS I can o' er you the following services: account balance,
branch addresses, branch opening hours.

U
2

timeout
S

3
NS I can o' er you the following services: account balance,

branch addresses, branch opening hours.
U

3
timeout

130

S
4

NS I can o' er you the following services: account balance,
branch addresses, branch opening hours.

U
4

declarative(Branch(StreetName:—))

It took four system turns to 3 nd out what the user wished. In contrast to
this, with the Rogerian strategy enabled, the same task was solved by another
user as follows:

S
1

RS Hello, thank you for your call (…). How may I help you?
U

1
declarative(City:"Gladbeck")

S
2

RS Ok.
U

2
timeout

S
3

NS I can o' er you the following services: account balance,
branch addresses, branch opening hours.

U
3

declarative(Branch(StreetName:—))
S

4
RS There are too many branches in Gladbeck.

Please specify the searched branch further.
U

4
declarative(BranchO& ce:"Filiale_Bertlich")

S
5

RS Ok, you are searching a Bertlich branch.
Do you need it to have a speci" c equipment?
 (Ok, Sie suchen eine Bertlich Filiale. Soll die Filiale eine bestimmte Ausstattung haben?)

U
5

declarative(_disagree_)
S

6
RS There is a Bertlich branch located in Sandstrasse 177 in Gladbeck

and another one in Voßstrasse 200.
Can I help you " nd another branch?
 (Es gibt eine Bertlich Filiale mit der Adresse Sandstrasse 177

in Gladbeck und eine andere mit der Adresse Voßstrasse 200.
Kann ich Ihnen helfen, eine weitere Filiale zu " nden?)

U
6

—dialogue continues with user asking for repetition—

Yet in contrast to this, the Rogerian strategy can be considered an
inappropriate way for information elicitation in the following session which was
terminated by the user preliminary:

S
1

RS Hello, thank you for your call (…). How may I help you?
U

1
declarative(City:"Gladbeck")

S
2

RS Ok.
U

2
timeout

S
3

NS I can o' er you the following services: account balance,
branch addresses, branch opening hours.

U
3

declarative(Branch(StreetName:—))
S

4
NS There are too many branches in Gladbeck. Please specify the

street that the branch should be located in. —Pause— If
you don't wish a particular street, continue with saying No.

U
4

declarative(_disagree_)
S

5
RS Please specify the searched branch further.

U
5

timeout
S

6
NS I've so far understood you are looking for a branch in Gladbeck.

I need now more information. I suggest you to say the street,
but you can say also the place, name, or equipment.

U
6

declarative(_agree_)

131

S
7

RS Please give me some more information about the branch.
U

7
timeout

S
8

NS I so far understood you are looking for a branch
in Gladbeck. You now may say or change the
location, name, or equipment of the branch.
 (Bisher habe ich verstanden, dass die Filiale in Gladbeck sein soll. Sie können

Ort, Name der Filiale oder Ausstattung jetzt sagen oder ändern.)

U
8

timeout
S

9
NS I so far understood …

After several more turns, the user gave up and hung up. However, what is
observable here is that the system repeatedly attempted the Rogerian strategy
and narrow strategy to elicit more information from the user. The 3 rst timeout
in U

2
 caused the 3 rst switch, after which the system provided a short help.

As the subsequent turns U
3
 and U

4
 supplied required information, the system

decided to switch back to the Rogerian style in S
5
 . However, this attempt was

responded to with a timeout in U
5
 . The turn S

6
 therefore summarizes so far

known and provides help. User continues with an unexpected agreement; from
the Rogerian strategy point of view, this is again evaluated as a sign of progress
in the dialogue, which is in conformance with the strategy current speci3 cation
in Section 4.9.14 The result is another switch towards the Rogerian strategy in S

7

that is responded to with a timeout, etc.
Thus, the above "good and bad" examples imply that the Rogerian strategy

should have even more restricted conditions of use. Obviously, we deal here with
a blind adaptability approach without regularly maintaining user's interaction
habits. A user model would therefore represent a valuable additional input to
the strategy evaluator (and in fact any other strategy). Had that been the case,
repeatedly experiencing the Rogerian strategy to fail, the system would eventually
stop using it to improve the dialogue progress. However, as we mentioned at the
beginning of this chapter, our system essence was to imitate a queuing system
rather than serving as a personalized agent. We will brie6 y discuss user modeling
possibilities in the below Section 6.2 on future work.

5.5 Summary

In this chapter, we used the general collaborative dialogue framework Daisy
to create a conversational agent DORA providing bank branch information.
We made use of the Domain Editor to model the agent's behaviour (DDM,
plans, and dominance). With the kind support of Sympalog Voice Solutions,
GmbH company, we delivered the system to real users who could called it by
using their ordinary cell phones. For each individual call, we automatically
logged conversation parameters, like semantics, system prompts, communication
messages, etc. Users who completed all experiment scenarios judged the system
on the Likert scale, and gave us this way underlying material for evaluating the
Rogerian strategy, which is an embedded part of the Daisy framework.15 The

14 Apparently, this evaluation should be further precised so that the agreements and disagreements
have a local logical relevance only.

15 Can be turned oJ and on using the SetProperty API function in Table A.4.

132

evaluation was to an extent limited with what measures we were supplied from
the SymBase platform (for instance, we were not supplied the silence period
before the 3 rst word in user responses, as the platform does not calculate such
measure; for the platform overview see lea6 et attached on the CD). Despite
that, we were able to evaluate two versions of the banking agent, the so called
Agents A and B. We 3 rst tested the experimental data against the ANOVA
F-test to 3 nd out that there was a trend towards the two agents being diJ erent.
Our next investigation continued with thorough performance analysis using the
PARADISE framework, whose results revealed that the user satisfaction linearly
depended on whether users knew what to say: the less they knew the less they
were satis3 ed, and the more they said per turn the more they were satis3 ed.
We do not 3 nd the results disappointing, provided that we dealt here with a
blind adaptability approach with no modeling of user's habits or preferences. We
therefore discuss possible extensions to the Daisy framework in the Future Work
section in the next chapter.

133

Chapter 6

Conclusion

This work has concerned with general collaborative dialogue management through
a spoken natural language. After specifying and explaining the approach, we
demonstrated its usability in a banking domain, developed on the basis of a
real dialogue system. Our reimplementation missed some non-interactive parts
which were of little use for our purposes. The resulting design featured services
on bank branch information and account balance. To 3 nish the development life-
cycle, we deployed the system to real users who interacted with it by giving it a
call (thanks the kind support of Sympalog Voice Solutions, GmbH 1). To comply
with the SymBase platform standards, the dialogue agent was wrapped in a
thin XML server. The dialogue agent itself acted as the central component for
maintaining a coherent spoken dialogue with the user as well as communicating
with the back-end assets (database and application libraries).

We proposed an agent-based approach to dialogue management which
meets the requirements for developing multi-domain spoken dialogue systems
to host concurrent dialogue sessions. Our decision for the agent-based approach
was motivated by disadvantages found in other approaches. While most of the
existing methods for dialogue management are suitable for simple and highly
constrained tasks, in which complex interactive behaviour has to be solved using
an overhead of development, our aim was to create a general framework with
most of the common behaviour available "out-of-the-box".

Our approach employs the BDI architecture to dialogue agent decomposition.
To model a dialogue, we use existing work in speech act theory and discourse
analysis, namely the concepts of conversational acts and discourse segment
intentions. To manage a dialogue, we consider it as a rational action, i.e. a
product of a goal-directed behaviour. Therefore, the dialogue model is explicitly
encoded in agent's plans, each specifying a set of steps to solve a particular
task. The dialogue control 6ow is then derived automatically as the result of the
BDI interpretation cycle. This, among other things, includes trading reactiveness

1 http://sympalog.de

134

in order to ful3ll user’s requests, and proactiveness such as for error recovery.
The conversational context along with other domain-speci3c knowledge are
maintained as agent’s internal beliefs.

6.1 Contributions to Dialogue Management

There are several contributions to the realm of dialogue management. Overviewing
them chronologically, the 3 rst contribution has been made to the frame-based
management in which nested frames have been extended with a system of
journal to automate some commonly repeating routines that otherwise have
to be handled manually – they foremost address causality tracking and error
recovery. There are proposed several embedded algorithms to manipulate the
journals and to override the underlying interpretation mechanism. The system of
journals can be applied to any frame(s) whose interpretation mechanism is state-
less (i.e., including VoiceXML and its FIA; see speci3 cation on the attached CD).

Later on, we abandoned frames and refocused on the more attractive BDI
agent-based management. To account for the beliefs component, we turned to
the SIL formalism which we have found very interesting as it can capture soft
details in information conveyed towards a conversational agent (among other
applications). However, its original proposal is quite impractical as for representing
information in a cooperative agent as many regular dialogue operations become
cumbersome or unnecessarily complicated. The main modi3 cations to SIL
therefore address: (1) collectability of objects (e.g., bus and train are collectable
as transporation means), (2) suppression of meaning and taxonomy of objects
(we argue that objects regain these properties within agent's plans), and (3) more
strict organization of objects (otherwise we face an overhead of rules to describe
exceptions under which structurally incompatible objects become compatible, see
example at the beginning of Section 4.5.1). The strict-organization modi3 cation
is susspected to be dropped or relaxed, however it has been currently preserved
due to time reasons (i.e., to facilitate the proposal of algorithms to deal with
dialogue error recovery through user's corrections). Hence, in conjunction with
accompanying embedded algorithms, the resulting approach again constitutes
a standalone framework, independent on the hosting conversational agent. We
subsequently use its two individual instances in the hosting Daisy framework,
speci3 cally to create the two-layered approach to dialogue context.

Apart of formally designed approaches, we also demonstrated the potential
of an experimental Rogerian strategy. The strategy was inspired by idea of the
so called Rogerian therapy, particularly that "clients are better helped if they
are encouraged to focus on their current subjective understanding rather than on
some unconscious motive or someone else's interpretation of a situation". In other
words, we tried our experiment subjects not to push them to say information we
wanted to hear from them, but instead, gave them reasonable amount of freedom
to express what they wanted. Surprisingly, this way resulted in shorter dialogues
compared to cases in which users were to follow system demands. Naturally, we
put strong constraints to this strategy. First, the domain in question must be
known to the users so that they can describe objects in the domain without aid
of the system. Second, the strategy can be used only in special situations during

135

a conversation. Assuming the domain is commonly known, these situations
include, for instance: user knows what to say, user's initial intention is unclear,
or agent misses more than one information.

6.2 Future Work

Let us continue with the Rogerian strategy and propose modi3 cations to it, and
let us then proceed to the Daisy dialogue framework itself.

According to our experience with the Rogerian strategy, we think the
following two statements 3 t its current state:

• The banking domain is relatively a simple one and more complex domains
with more information to discuss would be valuable.

• The cases of the Rogerian strategy application should be further restricted
and supported by user modeling.

As for the 3 rst point, we need to search for a domain that meets the condition
of being commonly known to potential users. A natural candidate is again an
information system which may or may not consist of multiple domains; in fact,
if there was such a chance, the latter option would seem to 3 t the bill better as
it naturally bloats the number of objects to discuss. It is assumed that in a more
complex domain with a rich information environment the Rogerian strategy will
succeed in higher rates due to higher chances that users will know what to say.
However, with a more complex domain there is also the ASR performance point
of view and one may argue that for complex domains with high variability in
input (i.e. utterances which possibly can carry a lot of diJ erent information) the
ASR may fail to recognize reliably as it is exposed to a too wide portion of a
language. A solution to this pitfall is in using context-aware Rogerian prompts.
As described, such prompts suggest the next topic to discuss, that way implicitly
constraining user's possible responses to a reasonable portion of a language.

With the second point, we propose a user model to be passed over to the
Rogerian strategy for evaluation. Lot of user modeling methodologies have been
developed over the past years. While some follow a domain-dependent features
approach to predict the system utterance that best corresponds with user's
behaviour [Chu00, Kom03, Wal00], we would rather like to follow an approach
containing domain independent features as Hjalmarsson demonstrates in her
work [Hja05] by making an extensive use of the PARADISE framework.

As for the Daisy framework itself, the most challenging feature to incorporate
is the representation and management of negative information. This spans far
beyond the elemental information combination cases depicted in Table 4.4 in
Section 3.5.6. Although we begun to take the 3 rst steps in implementing this
feature, it has remained un3 nished due to time reasons and is therefore blocked
in the current version of the framework on the attached CD. Less mentally
expensive updates to the framework then account for revising the two-layered
approach implementation (as some potential simpli3 cation are suspected), and
overall optimization as for speed, memory usage, and standard Windows libraries
usage.

136

Fig. 6.1 The standard built-in "About" dialogue box to incorporate
information about the framework into further Daisy-based applications
or possibly custom domain editors; invoked using the ShowAbout API
function, see Table A.4.

137

Bibliography

[All92] Allwood J., Nivre J., Ahlsén E., "On the Semantics and Pragmatics of
Linguistic Feedback." Journal of Semantics 9, pp. 1–26. 1992.

[All01] Allen J., Ferguson G., Stent A., "An Architecture for More Realistic
Conversational Systems." In Proc. of Intelligent User Interfaces. 2001.

[Ara03] Araki M., Kaga A., Nishimoto T., "Comparison of ‚Go back‘ implementations
in VoiceXML" In Proc. of Error Handling in Spoken Dialogue Systems, pp. 31–
34. 2003.

[Bel57] Bellman R., Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[Bel89] Belina F., Hogrefe D. "The CCITT-Speci3 cation and Description Language
SDL." Computer Networks and ISDN Systems 16, pp. 311–341. 1989.

[Boh07] Bohus D., Raux A., Harris T., Eskenazi M., Rudnicky A., "Olympus: An
Open-source Framework for Conversational Spoken Language Interface Research."
In Proc. of Bridging the Gap: Academic and Industrial Research in Dialog
Technology workshop at HLT/NAACL, pp. 32–39. 2007.

[Boh09] Bohus D., Rudnicky A., "The RavenClaw Dialogue Management Framework:
Architecture and Systems." Computer, Speech, and Language 23, pp. 332–361.
Elsevier, 2008.

[Boy99] Boyce S., "Spoken Natural Language Dialogue Systems: User Interface
Issues for the Future." Human Factors and Voice Interactive Systems, pp. 37–61.
Kluwer Academic Publishers, 1999.

[Bra91] Bratman M., Israel D., Pollack M., Plans and Resource-bounded Practical
Reasoning. MIT Press, Cambridge, 1991.

[Bui06] Bui T, Multimodal Dialogue Management. Technical Report, TR-
CTIT-06-01, University of Twente, Centre for Telematics and Information
Technology. Enschede, 2006.

[Cat02] Catizone R., Setzer A., Wilks Y., State of the Art in Dialogue Management.
Deliverable D5.1 of COMIC Project. 2002.

[Cen04] Cenek P., Hybrid Dialogue Management in Frame-Based Dialogue
Systems Exploiting VoiceXML. PhD thesis proposal, VUT, Faculty of Information
Technologies. Brno, 2004.

[Chu00] Chu-Carroll J., "MIMIC: An Adaptive Mixed Initiative Spoken Dialogue
System for Information Queries." In Proc. of Conference on Applied Natural
Language Processing, pp. 97–104. 2000.

[Chu05] Chu S., O´Neill I., Hanna P., McTear M., "An Approach to Multi-Strategy
Dialogue Management." In Proc. of INTERSPEECH, pp. 865–868. 2005.

[Coh95] Cohen P., Empirical Methods for Arti! cial Intelligence. MIT Press, 1995.
[Eck95] Eckert W., Gesprochener Mensch-Maschine-Dialog. PhD thesis, FAU,

Lehrstuhl für Mustererkennung. Erlangen, 1995.
[Fil05] Filisko E., SeneJ S., "Learning Decision Models in Spoken Dialogue Systems

via User Simulation." In Proc. of AAAI Workshop on Statistical and Empirical
Approaches to Spoken Dialogue Systems. 2005.

[Fra93] Fraser N., "The SUNDIAL Speech Understanding and Dialogue Project:
Results and Implications for Translation." Aslib Proceedings 46, pp. 141–148. 1993.

138

[Frø00] Frøkjær E., Hertzum M., Hornbæk K., "Measuring Usability: Are
EJectiveness, E\ciency, and Satisfaction Really Correlated?" In Proc. of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 345–352.
2000.

[Ger10] Gervás P., Amores G., Hervás R., Pérez G., Bautista S., Francisco V.,
Manchón P., "Integrating Aggregation Strategies in a In-Home Domain Dialogue
System." In Proc. of Text, Speech, and Dialogue, pp. 499–506. Springer Verlag,
2010.

[God96] Goddeau D., Meng H., Polifroni J., SeneJ S., Busayapongchai S., "A Form-
Based Dialogue Manager for Spoken Language Applications." In Proc. of ICSLP,
vol. 2, pp. 701–704. Philadelphia, USA, 1996.

[Gri69] Grice H., "Utterer's Meaning and Intentions." Philosophical Review 68, pp.
147–177. 1969.

[Gri13] Griol D., Callejas Z., "An Architecture to Develop Multimodal Educative
Applications with Chatbots." Intl. Journal of Advanced Robotic Systems 10, pp.
1–15. 2013.

[Gro86] Grosz B., Sidner C., "Attention, Intentions, and the Structure of Discourse."
Computational Linguistics 12, pp. 175–204. 1986.

[Gro96] Grosz B., Kraus S., "Collaborative Plans for Complex Group Action."
Arti! cial Intelligence 86, pp. 269–357. 1996.

[Gus02] Gustafson J., Developing Multimodal Spoken Dialogue Systems –
Empirical Studies of Spoken Human-Computer Interaction. Ph.D. thesis, KTH,
Department of Speech, Music and Hearing, 2002.

[Gus03] Gustafson J., Bell L., "Speech Technology on Trial: Experiences from the
Augustus System." Natural Language Engineering: Special Issue on Best Practice
in Spoken Dialogue Systems 3, pp. 273–286. 2003.

[Hem90] Hemphill C., Godfrey J., Doddington G., "The ATIS Spoken Language
Systems Pilot Corpus." In Proc. of ACL Workshop on Speech and Natural
Language, pp. 96–101. 1990.

[Hen08] Henderson J., Lemon O., Georgila K., "Hybrid reinforcement/supervised
learning of dialogue policies from 3 xed data sets." Computational Linguistics 34,
pp. 487−511. 2008.

[Hja05] Hjalmarsson A., "Towards User Modelling in Conversational Dialogue
Systems: A Qualitative Study of the Dynamics of Dialogue Parameters." In Proc.
of Interspeech, pp. 869–872. Lisbon, Portugal, 2005.

[Hof98] HoJ man R., Crandall B., Shadbolt N., "Use of the Critical Decision Method
to Elicit Expert Knowledge: A Case Study in the Methodology of Cognitive Task
Analysis." Human Factors 40, pp. 254–276. 1998.

[Hul96] Hulstijn H., Steetskamp R., Doest H., Burgt S., Nijholt A., "Topics in
SCHISMA Dialogues." In Proc. of the Twente Workshop on Language Technology,
pp. 89–99. University of Twente, 1996.

[Hul00] Hulstijn J., "Dialogue Games Are Receips for Joint Action." In Proc. of
Workshop on Semantics and Pragmatics of Dialogues, pp. 1–6. Göthenburg
Papers in Computational Linguistics, 2000.

[Hur05] Hurtig T., Jokinen K., "On multimodal route navigation in PDAs." In Proc.
of Baltic Conference on Human Language Technologies, pp. 261–166. 2005.

[Ing92] Ingrand F., GeorgeJ M., Rao A., "An Architecture for Real-Time Reasoning
and System Control." Intelligent Systems and Their Applications 7, pp. 34–44.
1992.

[Jok10] Jokinen K., McTear M., Spoken Dialogue Systems. Morgan & Claypool
Publishers, 2010.

139

[Kle00] Klemmer S., Sinha A., Chen J., Landay J., Aboobaker N., Wang A.,
"SUEDE: A Wizard of Oz Prototyping Tool for Speech User Interfaces.“ In Proc.
of ACM Symposium on User Interface Software and Technology, vol. 2, pp. 1–10.
ACM Press, 2000.

[Kni01] Knight S., Gorell G., Rayner M., Milward D., Koelling D., Lewin I.,
"Comparing Grammar-Based and Robust Approaches to Speech Understanding: A
Case Study." In Proc of Eurospeech, pp. 1779–1782. 2001.

[Kom03] Komatani K., Ueno S., Kawahara T., Okun H., "User Modeling in Spoken
Dialogue Systems for Fexible Guidance Generation." In Proc. of Eurospeech, pp.
745–748. 2003.

[Kon09] Konopík M., Hybrid Semantic Analysis. PhD thesis, UWB, Department of
Computer Science and Engineering. Pilsen, 2009.

[Lee10] Lee C., Jung S., Kim K., Lee D., Lee G., "Recent Approaches to Dialog
Management for Spoken Dialog Systems." Computing Science and Engineering 4,
pp. 1–22. 2010.

[Les04] Lester J., Branting K., Mott B., "Conversational Agents." The Practical
Handbook of Internet Computing. Chapman & Hall, 2004.

[Lev97] Levy D., Catizone R., Battacharia B., Krotov A. and Wilks Y., "CONVERSE:
A Conversational Companion." In Proc. of Intl. Workshop on Human-Computer
Conversation. Bellagio, Italy, 1997.

[Lik32] Likert R. "A Technique for the Measurement of Attitudes." Archives of
Psychology 140. The Science Press, 1932.

[Lit02] Litman D., Pan S., "Designing and Evaluating an Adaptive Spoken Dialogue
System." User Modelling and User-Adapted Interaction 12, pp. 111–137. ACM
Press, 2002.

[Lit06] Litman D., Rosé C., Forbes-Riley K., VanLehn K., Bhembe D., Silliman S.,
"Spoken Versus Typed Human and Computer Dialogue Tutoring." Intl. Journal of
Arti! cial Intelligence in Education 16, pp. 145–170. 2006.

[Man88] Mann W., "Dialogue Games: Conventions of Human Interaction."
Argumentation 2, pp. 511–532. 1988.

[McG91] McGlashan S., A Proposal for SIL. SUNDIAL WP6 (unpublished), 1991.
[McG96] McGlashan S. "Towards multimodal dialogue management." In Proc. of

Twente Workshop on Language Technology, pp. 1–10. Twente, 1996.
[McT02] McTear M., "Spoken Dialogue Technology: Enabling the Conversational

User Interface." ACM Computing Survey 34, pp. 90–169. ACM Press, 2002.
[Mel05] Melichar M., Template Driven Dialogue Management Approach in the

Framework of Multimodal Interaction. PhD thesis proposal, EPFL, Arti3 cial
Intelligence Laboratory, Lausanne, 2005.

[Men96] Meng H., Busayapongchai S., Glass J., Goddeau D., Hetherington L.,
Hurley E., Pao C., Polifroni J., SeneJ S., Zue V., "WHEELS: A Conversational
System in the Automobile Classi3eds Domain." In Proc. of ICSLP‚ pp. 542–545.
Philadelphia, USA, 1996.

[Mon80] Monge P., Capella J. Multivariate Techniques in Human Communication
Research. Academic Press, 1980.

[Nes07] Nestorovič T., Hlasové ovládání navigačního systému automobilu. Master
thesis, UWB, Department of Computer Science and Engineering. Pilsen, 2007.

[Nes09] Nestorovič T., "Towards Flexible Dialogue Management Using Frames." In
Proc. of Text, Speech, and Dialogue, pp. 419–426. Springer Verlag, 2009.

[Nes10a] Nestorovič T., "On Managing Collaborative Dialogue Using an Agent-based
Architecture.“ In Proc. of Mexican Intl. Conference on Arti! cial Intelligence,
pp. 56–68. Springer Verlag, 2010.

140

[Nes10b] Nestorovič T. "Frame-based Dialogue Management Automated Error
Recovery Approach." In Proc. of Australian Joint Conference on Arti! cial
Intelligence, pp. 32–41. Springer Verlag, 2010.

[Nes13] Nestorovič T., "Collaborative Dialogue Information Model." In Proc. of Intl.
Conference on Applied Mathematics and Computational Methods, pp. 62–67.
2013.

[Ngu06a] Nguyen T., Wobcke W., "An Agent-Based Approach to Dialogue Management
in Personal Assistants." In Proc. of IEEE/WIC/ACM, pp. 367–371. ACM Press,
2006.

[Ngu06b] Nguyen T., An Agent-based Approach to Dialogue Management in
Personal Assistants. PhD thesis, University of New South Wales, School of
Computer Science and Engineering. Australia, 2006.

[Oce98] Ocelíková J., Zpracování významu spontánních promluv při dialogu
člověka s počítačem. PhD thesis, UWB, Department of Computer Science and
Engineering. Pilsen, 1998.

[Ovi02] Oviatt S., "Multimodal Interfaces." Handbook of Human-Computer
Interaction. Lawrence Earlbaum, New Jersey, 2002.

[Pav09] Pavelka T., Hybrid Methods of Automatic Speech Recognition. PhD thesis,
UWB, Department of Computer Science and Engineering. Pilsen, 2009.

[Pér06] Pérez G., Amores G., Manchón P., "A Multimodal Architecture for Home
Control by Disabled Users." In Proc. of ACL Workshop on Spoken Language
Technology, pp. 134–137. 2006.

[Pie09] Pieraccini R., Suendermann D., Dayanidhi K., Liscombe J. "Are We There
Yet? Research in Commercial Spoken Dialog Systems." In Proc. of Text, Speech,
and Dialogue, pp. 3–13. Springer Verlag, 2009.

[Qu02] Qu Y., Green N., "A Constraint-based Approach for Cooperative Information-
seeking Dialogue." In Proc. of Intl. Natural Language Generation Conference,
pp. 136–143. 2002.

[Rao95] Rao A., GeorgeJ M., "BDI Agents: From Theory to Practice." In Proc. of
Intl. Conference on Multi-Agent Systems, pp. 312–319. 1995.

[Rei81] Reinhart T., "Pragmatics and Linguistics: An Analysis of Sentence Topics."
Philosophica 27, pp. 53–94. 1981.

[Ric01] Rich C., Sidner C., Lesh N., "COLLAGEN: Applying Collaborative Discourse
Theory to Human-Computer Interaction." AI Magazine 22, pp. 15–25. 2001.

[Rog51] Rogers C., Client Centered Therapy: Current Practice, Implications and
Theory. Houghton Mi� in, Boston, 1951.

[Rot07] Rotaru M., Litman D., "The Utility of a Graphical Representation of
Discourse Structure in Spoken Dialogue Systems." In Proc. of COLING, pp. 360–
367. Prague, 2007.

[Sea69] Searle J., Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge, 1969.

[Sin02] Singh S., Litman D., Kearns M., Walker M., "Optimizing Dialogue
Management with Reinforcement Learning: Experiments with the NJFun System."
Journal of Arti! cial Intelligence Research 16, pp. 105–133. 2002.

[Smi92] Smith R., "Integration of Domain Problem Solving with Natural Dialog: The
Missing Axiom Theory." Applications of Arti! cial Intelligence 10: Knowledge-
Based Systems, pp. 270–278. 1992.

[Son06] Sonntag D., "Towards Combining Finite State, Ontologies and Data-driven
Approaches to Dialogue Management for Multimodal Question Answering." In
Proc. of Intl. Language Technologies Conference. 2006.

141

[Ste07] Stenchikova S., Mucha B., HoJ man S., Stent A., "RavenCalendar: A
Multimodal Dialog System for Managing a Personal Calendar." In Proc. of the
Human Language Technology Conference: Demonstrations, pp. 15–16. 2007.

[Sti01] Stibler K., Denny J., "A Three-Tiered Evaluation Approach for Interactive
Spoken Dialogue Systems." In Proc. of Intl. Conference on Human Language
Technology, pp. 1–5. 2001.

[Sto12] Stoyanchev S., Stent A., "Concept Type Prediction and Responsive
Adaptation in a Dialogue System." Dialogue and Discourse 3, pp. 1–31. 2012.

[Sut98] Sutton S., Cole R., de Villers J., Schalkwyk J., Vermuelen P., Macon M.,
Yan Y., Rundle B., Shobaki K., Hosom P., Kain A., Wouters J., Massaro D., Cohen
M., "Universal Speech Tools: The CSLU Toolkit." in Proc. of ICSLP, pp. 3221–
3224. 1998.

[Tra03] Traum D., Larson S., "The Information State Approach to Dialogue
Management." Current and New Directions in Discourse and Dialogue, pp. 325–
353. Springer Verlag, 2003.

[Tsi12] Tsiakoulis P., Gasic M., Henderson M., Plannels-Lerma J., Prombonas J.,
Thomson B., Yu K., Young S., "Statistical Methods for Building Robust Spoken
Dialogue Systems in an Automobile." Advances in Human Aspects of Road and
Rail Transportation, pp. 744–753. CRC Press, 2012.

[Tur03] Turunen M., Hakulinen J., "Jaspis2 – An Architecture for Supporting
Distributed Spoken Dialogues." In Proc of Eurospeech, pp. 1913–1916. 2003.

[Tur05] Turunen M., Hakulinen J., Häihä K., Salonen E., Kainulainen A., Prusi P.,
"An Architecture and Applications for Speech-based Accessibility Systems." IBM
Systems Journal 44, pp. 485–504. 2005.

[vZa99] van Zanten G., "User Modelling in Adaptive Dialogue Management." In
Proc. of Eurospeech, pp. 1183–1186. 1999.

[Wal97] Walker M., Hindle D., Fromer J., di Fabbrizio J., Mestel C., "Evaluating
Competing Agent Strategies for a Voice Email Client." In Proc. of Eurospeech.
1997.

[Wal98] Walker M., Litman D., Kamm C., Abella A., "Evaluating Spoken Dialogue
Agents with PARADISE: Two Case Studies." Computer Speech Language 12, pp.
317–347. 1998.

[Wal00] Walker M., Langkilde I., Wright J., Gorin A., Litman D., "Learning to
Predict Problematic Situations in a Spoken Dialogue System: Experiments with
How May I Help You?" In Proc. of the North American Chapter of the ACL
Conference, pp. 210–217. Springer Verlag, 2000.

[Wal01] Wallis P., Mitchard H., Das Y., O‘Dea D., "Dialogue Modelling for a
Conversational Agent." In Proc. of Australian Joint Conference on Arti!cial
Intelligence, pp. 532–544. Springer Verlag, 2001.

[Wal04] Walker M., Whittaker S., Stent A., Maloor P., Moore J., Johnston M.,
Vasireddy G., "Generation and Evaluation of User Tailored Responses in Multimodal
Dialogue." Cognitive Science 28, pp. 811–840. Elsevier, 2004.

[Wei66] Weizenbaum J. "ELIZA – A Computer Program for the Study of Natural
Language Communication Between Man and Machine." Communications of the
Association for Computing Machinery 9, pp. 36–45. ACM Press, 1966.

[Wil06] Wilks Y., Catizone R., Turunen M., "Dialogue management: State of the
Art Papers." COMPANIONS Consortium: State Of The Art Papers. 2006.

[Win72] Winograd T. Understanding Natural Langauge. Academic Press, 1972.
[Woo95] Wooldridge M., Jennings N., "Intelligent Agents: Theory and Practice."

Knowledge Engineering Review 10, 115–152. 1995.
[Woo00] Wooldridge M., Reasoning about Rational Agents. MIT Press, 2000.

142

[Xu02] Xu W., Xu B., Huang T., Xia H., "Bridging the Gap Between Dialogue
Management and Dialogue Models." In Proc. of the SIGdial Workshop on
Discourse and Dialogue, pp. 201–210. 2002.

[Yam07] Yamaguchi Y., Hayashi K., Ono T., Kato S., Irie Y., Ohno T., Murao H.,
Matsubara S., Kawaguchi N., Takeda K., "Towards Robust Spoken Dialogue
Systems Using Large-Scale In-Car Speech Corpus." In Proc. of Advances for In-
Vehicle and Mobile Systems, pp. 211–222. Springer Verlag, 2007.

[Yan95] Yankelovich N., Levow G., Marx M., "Designing SpeechActs: Issues in
Speech User Interfaces." In Proc. of the SIGCHI Conference on Human Factors
in Computing systems, pp. 369–376. 1995.

[Yan96] Yankelovich N., "How Do Users Know What to Say?" Interactions 3, pp.
32–43. 1996.

[You92] Youd N., McGlashan S., "Generating Utterances in Dialogue Systems." In
Proc. of Intl. Workshop on Natural Language Generation: Aspects of Automated
Natural Language Generation, pp. 135–149. Springer Verlag, 1992.

[Zah03] Zahradil J., Müller L., Jurčíček F., "Model světa hlasového dialogového
systému." In Proc. of Znalosti, pp. 404–409. 2003.

[Zbo04] Zbořil F., Plánování a komunikace v multiagentních systémech. PhD
thesis, VUT, Faculty of Information Technologies. Brno, 2004.

[Zue89] Zue V., Glass J., Goodine D., Leung H., Phillips M., Polifroni J., SeneJ S.,
"Preliminary Evaluation of the VOYAGER Spoken Dialogue System." In DARPA
Workshop 89, pp. 160–167. 1989.

[Zue91] Zue V., Glass J., Goodine D., Leung H., Phillips M., Polifroni, J., SeneJ , S.:
"Integration of Speech Recognition and Natural Language Processing in the MIT
VOYAGER System." In Proc. of ICASSP, pp.713–716. 1991.

[Zue00] Zue V., SeneJ S., Glass J., Polifroni J., Pao C., Hazen T., Hetherington L.,
"JUPITER: A Telephone-based Conversational Interface for Weather Information."
IEEE Transactions on Speecb and Audio Processing 8, pp. 85–96. 2000.

143

Author's Publications

Relevant

Nestorovič T., Matoušek V., "Collaborative Dialogue Information Model." In Proc. of
Intl. Conference on Applied Mathematics and Computational Methods, pp. 62–
67. 2013.

Nestorovič T., Matoušek V., "Modi3 ed Conversational Agent Architecture." In Proc.
of IEEE Intl. Conference on Tools with Arti! cial Intelligence, pp. 682–689.
Washington, 2013.

Nestorovič T., Matoušek V., "Applying Rogerian Psychologist in Human-Computer
Interaction: A Case Study." In Proc. of Mexican Intl. Conference on Arti! cial
Intelligence, pp. 286–293. Springer Verlag, 2013.

Nestorovič T., "Creating a General Collaborative Dialogue Agent with Lounge Strategy
Feature." Expert Systems with Applications 39, pp. 1607–1625. Elsevier, 2012.

Nestorovič T., "Task-oriented Dialogue Agent Architecture." Journal of Digital
Information Management 9, pp. 1–8. 2011.

Nestorovič T. "Frame-based Dialogue Management Automated Error Recovery
Approach." In Proc. of Australian Joint Conference on Arti! cial Intelligence,
pp. 32–41. Springer Verlag, 2010.

Nestorovič T., "On Managing Collaborative Dialogue Using an Agent-based
Architecture.“ In Proc. of Mexican Intl. Conference on Arti! cial Intelligence,
pp. 56–68. Springer Verlag, 2010.

Nestorovič T., "General Agent-based Architecture for Collaborative Dialogue
Management." In Proc. of IEEE Intl. Conference on Software Technology and
Engineering, pp. 207–211. Puerto Rico, 2010.

Nestorovič T., "Agent-Based Dialogue Management Approach." In Proc. of IEEE
Intl. Conference on Application of Digital Information and Web Technologies.
Instanbul, 2010.

Nestorovič T., "Towards Flexible Dialogue Management Using Frames." In Proc. of
Text, Speech, and Dialogue, pp. 419–426. Springer Verlag, 2009.

Nestorovič T., "A Frame-Based Dialogue Management Approach." In Proc. of IEEE
Intl. Conference on Application of Digital Information and Web Technologies,
pp. 327–332. London, 2009.

Other

Veleba J., Nestorovič T., "On Steady-State Voltage Stability Analysis Performance in
MATLAB Environment." In Proc. of Intl. Conference on Energy, Environment,
Ecosystems, and Development, pp. 141–147. 2013.

Veleba J., Nestorovič T., "Performance of Static Voltage Stability Analysis in MATLAB
Environment with Further Applications." Intl. Journal of Education and
Information Technologies 4, pp. 133–145. 2013.

Vaněk J., Nestorovič T., "Thermal Comfort Determination Approach." In Proc. of Intl.
Conference on Energy and Environment, pp. 48–51. WSEAS Press, 2012.

144

Nestorovič T., Struhár V., "Designing a Personal Assistance Application Using Wizard
of Oz methodology." In Proc. of Intl. DAAAM Symposium, pp. 715–716. Vienna,
2011.

Nestorovič T., "Dog Disease Expert System." In Proc. of Intl. DAAAM Symposium,
pp. 1021–1022. Vienna, 2010.

Nestorovič T., "Voice and Graphical User Interfaces: Design Issues." In Proc. of
Electronic Speech Signal Processing, pp. 212–219. TUDpress, 2010.

Nestorovič T., "On Designing an Experimental Navigation System." In Proc. of Latest
Trends on Systems, pp. 417–421, WSEAS Press, 2010.

Matoušek V., Nestorovič T., "Grammar-based Dialogue Management Techniques." In
Proc. of Electronic Speech Signal Processing, pp. 64–71. TUDpress, 2009.

Nestorovič T., "Hlasová a gra3 cká uživatelská rozhraní." In Proc. of Mezinárodní
Baťova konference pro doktorandy a mladé vědecké pracovníky, pp. 1–13. Zlín,
2009.

Nestorovič T., "Navigation System: An Experiment." In Proc. of NAV/DAGA Intl.
Conference on Acoustics, pp. 1140–1143. Rotterdam, 2009.

Nestorovič T., "Grammar-Based Dialogue Management Techniques." In Proc. of Intl.
PhD Workshop on Systems and Control, pp. 1–6. Izola, Slovenia, 2008.

145

Appendix

A.1 Daisy Input Semantics Grammar

 { ' ' }
 [] |
 | | r

| [' ' ' '] { }

semantics expression expression
expression identifier subexpression localcontrol
identifier utttype correction eference

attribute
subexpression

→
→
→

→
Name Value

,

:" "
 ' ' [] ' '

 ' ' ' '
 ' ' | ' ' | ' ' |
 | |
 ''
 ' '
 ' '

expression
attribute attname
attname
utttype declarative interrogative imperative

declarative
interrogative

imperative
corre

→
→
→
→
→
→

Integer
Char

()
[]
c s v

.
?
!

 |
 ' '
 ' '
 ' ' [' ' ' ']
 ' ' | ' ' | ' '
 | |
 ' '
 ' '

ction agreement disagreement
agreement

disagreement
reference refgendre
refgendre

localcontrol timeout help repeat
timeout

help
r

→
→
→
→
→
→
→
→

+
-
REF :" "
m z s

%
*

 ' 'epeat → #

A.2 Information Management Algorithm

A.2.1 Requirement 1

 procedure Incorporate(Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y) {

 // instantiate a new "empty" collection Y (not yet a DDM expression) of the type K
S

1 . . .
 // 3 nd in and remove from I

parent
 the original collection instance Y

orig

2 Y
orig

 := (K
S
 , I

orig
, F

orig
): ∃F

parent
 = (E

parent
, I

parent
) ∈ F

orig

3 if Y
orig

 ≠ � {
 // remove Y

orig
 from I

parent

4 Y
orig

 := Y
orig

 \ F
parent

 // determine the relationship between Y
S
 and Y

orig

146

5 if A(Y
S
) ∈ { system, dereferenced } {

6 if A(Y
orig

) ∈ { system, dereferenced } {
 // system DDM expression replaces another system expression
7 U(Y) := U(Y

orig
)

8 } else {
 // system DDM expression overrides a user expression
9 U(Y) := Y

orig

10 } else
11 if A(Y

orig
) ∈ { system, dereferenced } {

 // user DDM expression overrides a system expression
12 Y

orig
 := U(Y

orig
)

 } else
 // user DDM expression replaces another user expression (do nothing)
 }
 // re-instantiate I(Y

S
) in Y (promoting Y to a DDM expression)

13 ∀I
S
 = (D

S
 , C

S
 , X

S
) ∈ I(Y

S
) {

 // re-instantiate I
S
 as I

14 . . .
 // inherit all subcollections from an original I

0
 = (D

S
 , C

S
 , X

S
) ∈ I

orig
 (if any)

15 . . .
 // attempt to spread given user sibling concepts subinformation to I
16 if A(Y) = user {
17 ∀K = (C, E, T) ∈ P(C

S
) {

 // Rule 1: if no original instance I
0
 exists, inherit the most salient K

18 if I
0
 = � { Incorporate(most salient Y

i
 = (K, I

i
, F

i
) ∈ P(Y

orig
) , I) }

 // Rule 2: TODO later (see Section 4.5.5)
 // Rule 3: if subinformation K is de3 ned on I

S
, we are done

19 if Y
i
 = (K, I

i
, F

i
) ∈ P(I

S
) { skip all other Rules }

 // Rule 4: if any remaining I' ∈ I(Y
S
) contains information K, apply K to I

S

20 if ∃I' = (D', C ', X'): S(I') > S(I
S
) ∧ Y

i
 ∈ P(I') { F

i
 := F

i
 ∪ ((C ',R

j
), I

S
) }

 // Rule 5: if instantiated I' ∈ I(Y
S
) contains information K, apply K to I

S

21 if ∃I' = (D', C ', X'): S(I') < S(I
S
) ∧ Y

i
 ∈ P(I') { F

i
 := F

i
 ∪ ((C ',R

j
), I

S
) }

 }
 }
 // recurrently process
22 . . .
 // set instance I meta-information
23 S(I) := max(S(I

S
), S(I

0
), 0) // recall 0 = information unspoken

 }
 // rest of the procedure is the same
24 . . .
 }

Usage: Incorporate(Y(ρ) ∈ Semantics , I(ρ) ∈ Y)

A.2.2 Requirement 2

 procedure Incorporate(Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y) {

 . . .
 // 3 nd in and remove from I

parent
 the original collection instance Y

orig

 . . .
 // carry out correction (agreed part of semantics)
 if Semantics contains disagreement ∧ Y

S
 is not disagreed ∧ A(Y

S
) = user ∧ P(Y

S
) = � {

 ∀Y' = (K', I', F ') ∈ { Y = (K, I, F) ∈ Y: P(K) ≠ � ∧ A(Y) = user } {
 // extract incorrect content from Y' into I

EXTRACT
, see Fig. 4.6

 Extract(Y' , incorrect)
 // attempt to pass extracted content over to Y

S

 ∀Y
i
 = (K

i
 , I

i
 , F

i
) ∈ P(I

EXTRACT
), I

S
 = I(C

S
) ∈ I(Y

S
), E

S
 = (C

S
 , R

S
) ∈ E(K

i
) {

147

 F
i
 := F

i
 ∪ (E

S
 , I

S
)

 }
 // clean up I

EXTRACT

 P(I
EXTRACT

) := �
 // if extracted concent passed to Y

S
, correction is done

 if P(Y
S
) ≠ � { break }

 }
 }
 // rest of the procedure is the same
 . . .
 }

Usage: Incorporate(Y(ρ) ∈ Semantics , I(ρ) ∈ Y)

A.2.3 Requirement 3

 procedure Incorporate(Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y) {

 . . .
 // re-instantiate I(Y

S
) in Y (promoting Y to a DDM expression)

 . . .
 // pass objects between diJ erent DSPs: for each instantiated topic τ

i
,

 // try to transmit its objects to the current topic instance Y if they 3 t it
 if K

S
 is a topic {

 ∀τ
i
, Y' = (τ

i
 , I', F ') ∈ Y {

 // attempt to pass each most salient object Y
j
 ∈ Y' to Y

 ∀K
j
 ∈ P(τ

i
) ∩ P(K

S
), Y

k
 = (K

j
 , I

k
 , F

k
) ∈ Y {

 // 3 nd original object of type K
j
 in Y (if any)

 Y
origObj

 := (K
j
 , I

origObj
 , F

origObj
) ∈ Y: ∃F

m
 = (E , I(Y)) ∈ F

origObj

 // pass Y
k

 if S(Y
k
) > S(Y

origObj
) {

 F
origObj

 := F
origObj

 \ F
m
 // remove Y

origObj
 from Y

 Incorporate(Y
k
 , I(Y)) // pass Y

k
 to the only concept instance in Y

 }
 }
 }
 }
 // rest of the procedure is the same
 . . .
 }

Usage: Incorporate(Y(ρ) ∈ Semantics , I(ρ) ∈ Y)

A.2.4 Requirement 4

 procedure Incorporate(Y(K
S
) = Y

S
 ∈ Semantics , I(C

parent
) = I

parent
 ∈ Y) {

 // instantiate a new "empty" collection Y (not yet a DDM expression) of the type K
S

 . . .
 // determine if K

S
 can be a direct subcollection of C

parent

 E
direct

 := (C
parent

, R
i
) ∈ E(K

S
)

 // 3 nd in and remove from I
parent

 the original collection instance Y
orig

 if E
direct

 ≠ � {
 // K

S
 is directly accessible from within C

parent

 . . .
 } else {
 // K

S
 is not directly accessible from within C

parent

148

 Y
orig

 := (K
S
 , I

orig
 , �): DSP(Y

orig
) = CURRENT_DSP

 }
 // carry out correction (agreed part of semantics)
 . . .
 // re-instantiate I(Y

S
) in Y (promoting Y to a DDM expression)

 . . .
 . . .
 // Rule 2: if an unbound expression of type K exists, I binds it
 if ∃Y

unbound
 = (K, I

unbound
 , �) { Incorporate(Y

unbound
 , I) }

 . . .
 // rest of the procedure is the same
 . . .
 }

Usage: Incorporate(Y(ρ) ∈ Semantics , I(ρ) ∈ Y)

A.3 DORA Web Instructions

A.3.1 Welcoming Page

Welcome!
DORA is an experimental spoken dialogue system that allows you to access
your 3 ctional bank account and 3 nd information on branches via a telephone
conversation. You will solve with DORA three diJ erent tasks. You should
try to do each task as e\ ciently as you can and avoid listening to messages
unnecessarily. Please make brief notes about the bank branches when you listen
to the information on them. Instructions for calling DORA can be found at each
task scenario. Please read through the instructions before calling. At the end of
the task (after you hang up the phone), there are a few brief questions for you to
answer. Even if DORA aborted before you could complete the task, please 3 nish
the survey and continue to the next task. Thanks for participating!

A.3.2 Hints for Using DORA

• Speak naturally and pronounce well.

• If you don’t know what to say or don’t understand what DORA is doing,
say Help to hear a help message.

• If you wait too long to tell DORA what to do, DORA will tell you what
you can say.

• You can interrupt DORA at any time. For example, if you’ve heard
enough or if you know what you want to do, you don’t have to wait
for DORA to 3 nish talking. If you don’t hear everything when DORA
presents the bank information, say Repeat to hear the information again.

• If you want to abort your current attempt at the task before 3 nishing,
say I’m done here to start the task again.

149

• When you are 3 nished with a task, say Goodbye to end the dialogue.

A.3.3 Task Formulations

• Task 1. Try to 3 nd all Bertlich branches with an ATM in Gladbeck.
Please write down their exact addresses that you were told by the system.

• Task 2. Given the below map of Herten, try to 3 nd the exact address
of the nearest Hassel branch that has an ATM (based on your current
position depicted in the map, it is up to you to determine the shortest
route!). Once known, check its opening hours and make sure you can
visit it even after 6 pm. Please spot the nearest branch you have found,
and also write down its exact address.

12

26

62

53

51

49

60

• Task 3. Try to 3 nd the opening hours of all Horst branches in
Gelsenkirchen. Check their addresses and make sure you can visit
any of them in Dorfstrasse even after 6pm. What is the exact location
of such a branch?

A.4 CTA Responses

A.4.1 Question 7

What was the 3 rst thing that came across your mind when you 3 rst heard the
prompt <—RS prompt transcript—> ?

• It’s too general. When I heard it, I though it was great that a machine
agreed with me (note: regarding the "I see" sentence) but I want to 3nd
that connection.

• When and where to go as in one city there may be more stations in one
direction.

• To attempt to precise the information on that train.

• Is it joking?

150

A.4.2 Question 8

Did you feel like being pushed to say more? Did you feel this utterance was
motivating you to say more?

• Yes, but in the second sentence I didn’t 3gure out what was missing
exactly – I was comparing with an online ticketing service where the only
necessary pieces of information regard where to go from and to.

• Yes, I 3nd it reasonable.

• Yes, but speci3cation of what exactly am I supposed to say is missing.

• Yes, but it’s a bit weird.

• No, if I heard something like that from an on-line service, I’d reckon it's
down or that somebody is joking, and de3nitely would hang up.

A.4.3 Question 9

Were you aware of being expected to say more information on the transportation
means to 3nd?

• Five people out of six con3 rmed.

A.4.4 Question 10

Do prompts like <—RS prompt transcript—> sound acceptably to you?

• It does relatively.

• With some modi3cations it might sound naturally.

• It sounds weird, but one probably would 3gure out what to say.

• No, I’d go straight to what is missing, i.e. asked for time, etc.

A.5 Evaluation Using the Three-Tiered
Methodology

In Section 5.3.3, we described the system performance as a combination of various
system parameters. Linear regression revealed us the most signi3 cant contributors
to the overall performance, approached by user satisfaction. Although basically
su\ cient for simple information systems like ours, the PARADISE framework
turns out to be hardly usable for more complex systems. More speci3 cally, the
notion of blending a set of generally unrelated measures may result in misleading
or unprecise conclusions about the system. For instance, it may be assumed
that the number of help requests per dialogue has little to do with back-end
component speed, and therefore, these two should not be put directly next to

151

each other in a performance formula. In addition, it is not clear whether the
system performance can be reliably indicated by a single performance formula as
a combination of diJ erent evaluation measures [Ngu06b]. As Frøkjær et al. also
point out [Frø00], there may be very low correlations between the three usability
measures proposed in the PARADISE framework [Wal98]: e$ ectiveness (e.g.,
task completion rate, κ), e& ciency (e.g., task completion time or help requests),
and user satisfaction. Therefore, they should be considered independent aspects
in a system evaluation. To overcome these pitfalls, the three-tiered methodology
was developed [Sti01]. As its name suggests, it models the evaluation process at
three levels of abstraction (below listed in a bottom-up manner):

• System component performance. Each system component is to be
evaluated individually to reveal their in6 uences on other parts of a
system, hence preventing potential negative impacts on the task success.
The most notable component to measure in6 uences of, is the ASR.
For instance, poor recognition may have impact on low scores of task
completion, causing low user satisfaction. Metrics to evaluate the ASR
performance include: word/utterance accuracy (system con3 dence score
in recognizing a given word/utterance), concept accuracy (semantic
understanding of the system), or component speed (time per turn).

• System support of task success. Behind this fuzzy name stand metrics
to evaluate how capable the system is to meet individual task objectives.
In general, for a system to be applicable in a certain domain of problems,
it is essential to establish a de3 nition of task success early in the
evaluation process. For instance, a task may be considered successfully
accomplished if the user signs in the system, starts an intended request,
supplies missing information, con3 rms it, and signs oJ the system [Sti01].
Metrics to evaluate such interaction include: task completion (success
rate of a given task), task complexity (minimal information to ful3 l a
task), or task pace (time spent conversing with the system).

• User satisfaction. Same as with PARADISE, however user responses are
further coped with individually, instead of being added to a single value.

Thus, the three-tiered methodology organizes a dialogue system analysis
into a search for dependences among distinct metrics. To reveal the impact in
one tier against metrics in another tier, the principal component analysis (PCA)
may be employed.

We did not engage with the PCA, mainly due to the lack of freely available
computational toolkits. In fact, the only one we have managed to 3 nd is the
OOoStat Statistics Macros,1 which however does not feature enough functionality
to conduct a dialogue system precise analysis; the crucial missing part is factor
rotation to better map as many experiment measures onto as few factors, that
way allowing for the analysis of which measures contribute most to the Likert-
scale questions.

1 http://sourceforge.net/projects/ooomacros/! les/OOo%20Statistics/

152

A.6 SDL Notation Overview

Only necessary minimum of symbols is presented here. For full de3 nition, see
[Bel89].

Subdialog

Start symbol

Subdialog

Subdialog invocation

variable

Variable storage

system

System prompt

user

User input

condition

Branching logic

153

Büchergutschein zu gewinnen
Wollten Sie schon immer einmal mit einer Maschine reden

und zu einem Forschungsprojekt beitragen?

n Dann haben Sie jetzt die Chance, mit DORA zu sprechen.

n DORA ist ein experimentelles Dialogsystem, das Auskunft über
 Bankfilialen gibt. Es wird wird im Rahmen eines Forschungsprojektes
 in Zusammenarbeit mit Sympalog, einer Ausgründung des Lehrstuhls
 für Mustererkennung, entwickelt.

n Ziel des Experiments ist es, durch drei Anrufe bei DORA
 drei verschiedene Informationen über Filialen abzufragen.

n Vorbereitung, Anrufe und Online-Beantwortung dauern nicht länger
 als 20-30 Minuten (versprochen).

n Wenn Sie DORA ausprobieren wollen, besuchen Sie

n Unter allen Anrufern, die die Aufgabe bis zum 26.Juli 2014
 vollständig durchführen, werden zwei Büchergutscheine von Thalia
 im Wert von je 30 Euro verlost.

http://sympalog.net/Dora

Fig. A.1 DORA advertisement lea6 et.

154

T
a
b
le

 A
.1

 C

on
fu

si
on

 m
at

ri
x

fo
r

A
ge

nt
 A

, d
at

a
at

tr
ib

ut
es

 m
at

ch
in

g
ke

y
gi

ve
n

in
 b

ol
df

ac
e;

 s
ee

 d
at

a
at

tr
ib

ut
e

le
ge

nd

fo
r

ke
y

va
lu

es
;
A

dd
r

=
 b

ra
nc

h
ad

dr
es

s,
 O

H
 =

 b
ra

nc
h

op
en

in
g

ho
ur

s.

D
A

T
A

K
E

Y

N
a
m

e
C

it
y

S
tr

e
e
t

E
q
u
ip

m
e
n
t

A
d
d
r

O
H

v
1

v
2

v
3

v
6

v
7

v
8

v
9

v
1
2

v
1
3

v
1
4

v
1
6

B
er

tl
ic

h
v
1

2

H
a
ss

el

v
2

2

H
o
rs

t
v
3

2

H
a
u
p
ts

te
ll
e

v
4

2

N
o
n
e

v
5

1
2

G
la

d
be

ck

v
6

3

H
er

te
n

v
7

4

G
el

se
n
ki

rc
h
en

v
8

4

N
o
n
e

v
9

7

M
a
rl

er
st

ra
ss

e
v
1
0

3

F
el

d
st

ra
ss

e
v
1
1

1

G
el

d
a
u
to

m
a
t

v
1
2

7
1

N
o
n
e

v
1
3

3

C
o
rr

ec
t

v
1
4

4

In
co

rr
ec

t
v
1
5

7

C
o
rr

ec
t

v
1
6

2

In
co

rr
ec

t
v
1
7

6

su
m

3
4

4
3

4
4

11
7

4
11

8

155

T
a
b
le

 A
.2

 C

on
fu

si
on

 m
at

ri
x

fo
r

A
ge

nt
 B

, d
at

a
at

tr
ib

ut
es

 m
at

ch
in

g
ke

y
gi

ve
n

in
 b

ol
df

ac
e;

 s
ee

 d
at

a
at

tr
ib

ut
e

le
ge

nd

fo
r

ke
y

va
lu

es
;
A

dd
r

=
 b

ra
nc

h
ad

dr
es

s,
 O

H
 =

 b
ra

nc
h

op
en

in
g

ho
ur

s.

D
A

T
A

K
E

Y

N
a
m

e
C

it
y

S
tr

e
e
t

E
q
u
ip

m
e
n
t

A
d
d
r

O
H

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
9

v
1
0

v
1
1

v
1
3

B
er

tl
ic

h
v
1

4

H
a
ss

el

v
2

2

H
o
rs

t
v
3

2

G
la

d
be

ck

v
4

4

H
er

te
n

v
5

2

G
el

se
n
ki

rc
h
en

v
6

2

N
o
n
e

v
7

6

M
a
rl

er
st

ra
ss

e
v
8

2

G
el

d
a
u
to

m
a
t

v
9

5

N
o
n
e

v
1
0

1
2

C
o
rr

ec
t

v
1
1

5

In
co

rr
ec

t
v
1
2

3

C
o
rr

ec
t

v
1
3

2

In
co

rr
ec

t
v
1
4

2

su
m

4
2

2
4

2
2

8
6

2
8

4

156

T
a
b
le

 A
.3

 E

xp
er

im
en

t
re

su
lt
s;
 E

T
 =

 e
la

ps
ed

 t
im

e,
 #

U
T

 =
 u

se
r

ut
te

ra
nc

es
,
#

T
O

 =
 n

um
be

r
of

 t
im

eo
ut

s,
 #

H
R

 =
 n

um
be

r
of

 h
el

p
re

qu
es

ts
,
A

T
 =

 a
ve

ra
ge

nu

m
be

r
of

 e
ig

en
 i
nf

or
m

at
io

n
pe

r
tu

rn
 (

ex
cl

.
ti
m

eo
ut

s)
,
#

R
S

=
 n

um
be

r
of

 R
og

er
ia

n
st

ra
te

gy
 a

pp
lic

at
io

ns
,
#

R
R

 =
 n

um
be

r
of

 r
es

ta
rt

 r
eq

ue
st

s,
 Q

1…
Q

6
=

 v
al

ue

fo
r

qu
es

ti
on

 o
n

L
ik

er
t-

sc
al

e,
 U

S
=

 u
se

r
sa

ti
sf

ac
ti
on

.

U
se

r
T

a
sk

κ
E

T
#

U
T

#
T

O
#

H
R

A
T

#
R

S
#

R
R

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

U
S

1
1

1
2:

13
5

1
0

1.
25

2
0

1
2

0.
5

6:
02

20
3

2
1.

15
5

1
4

4
4

5
4

4
25

1
3

1
3:

18
8

1
0

1.
14

4
0

2
1

1
1:

27
4

1
0

1.
25

2
0

2
2

0.
5

7:
33

19
2

0
1.

05
4

0
3

4
3

4
4

4
22

2
3

1
3:

01
7

1
0

1.
10

3
0

3
1

1
2:

15
8

3
0

1.
13

0
0

3
2

0.
33

1:
57

10
1

0
1.

10
0

0
3

4
3

4
4

4
22

3
3

1
2:

29
8

3
0

1.
13

0
0

4
1

0.
5

5:
00

14
4

0
1

0
0

4
2

0.
33

3
8:

29
29

13
1

1
0

0
3

3
2

3
3

2
16

4
3

0.
4

4:
32

18
8

0
1.

06
0

0

5
1

1
2:

46
7

1
0

1
0

0

5
2

0.
5

1:
57

6
1

0
1

0
0

 d

a
ta

ba
se

 i
ss

u
es

5
3

1
3:

17
8

4
0

1.
11

0
0

6
1

1
3:

20
11

4
0

1
4

0

7
3

0.
2

2:
52

11
3

0
1.

10
0

0

 u
se

r
a
ba

n
d
o
n
ed

8
2

0.
5

1:
21

7
2

0
1

0
0

9
1

0.
5

1:
10

5
1

0
1

2
0

                             

157

T
a
b
le

 A
.4

 T

he
 D

ai
sy

 f
ra

m
ew

or
k

A
P
I;
 i
ns

te
ad

 o
f
al

ph
ab

et
ic

al
ly

,
th

e
in

di
vi

di
al

 f
un

ct
io

ns
 a

re
 l
is

te
d

in
 o

rd
er

 o
f
th

ei
r

m
os

t
pr

ob
ab

le
 u

se
.

F
u
n
c
ti
o
n
 C

-s
ty

le
 s

y
n
o
p
si
s

a
n
d
 d

e
sc

ri
p
ti
o
n

vo
id

 *
L
o
a
d
D

o
m

a
in

(
co

ns
t

w
ch

ar
_

t
*!

 l
eN

a
m

e
,
co

ns
t

in
t

bu
$
er

S
iz

e
,
in

t
*e

rr
o
r

)
L
oa

ds
 a

 d
om

ai
n

sp
ec

i3
 c

at
io

n
co

ns
tr

uc
te

d
us

in
g

th
e

D
om

ai
n

E
di

to
r

(s
ee

 a
tt

ac
he

d
C

D
)

an
d

re
tu

rn
s

a
ha

nd
le

 o
f
th

e
lo

ad
ed

 d
om

ai
n.

 I
f
er

ro
rs

 o
cc

ur
,
th

e
er

ro
r

va
ri

ab
le

 i
nd

ic
at

es
 t

he
m

 b
it
w

is
e.

in
t

O
p
en

S
es

si
o
n
(

co
ns

t
vo

id
 *

d
o
m

a
in

 ,
 c

on
st

 c
ha

r
*n

a
m

e
,
vo

id
 *

re
se

rv
ed

)
P

ro
vi

de
d

a
do

m
ai

n
lo

ad
ed

 u
si

ng
 L

o
a
d
D

o
m

a
in

,
th

is
 f
un

ct
io

n
cr

ea
te

s
a

na
m

ed
 s

ta
nd

by
 s

es
si
on

 (
no

t
ye

t
ru

nn
in

g)
,
an

d
re

tu
rn

s
an

 e
rr

or
 c

od
e.

in
t

S
et

P
ro

p
er

ty
(

co
ns

t
ch

ar
 *

n
a
m

e
,
co

ns
t

in
t

*p
ro

p
er

ty
 ,
 c

on
st

 i
nt

 *
va

lu
e

)
Se

ts
 a

 p
ro

pe
rt

y
of

 a
n

ex
is

ti
ng

 s
ta

nd
by

 s
es

si
on

 i
de

nt
i3
 e

d
by

 i
ts

 n
am

e
to

 a
 s

pe
ci

3 e
d

va
lu

e.
 T

he
 f
un

ct
io

n
re

tu
rn

s
an

 e
rr

or
 c

od
e.

in
t

L
a
u
n
ch

S
es

si
o
n
(

co
ns

t
ch

ar
 *

n
a
m

e
,
vo

id
 *

p
a
ra

m
s

)
M

ak
es

 a
 s

ta
nd

by
 s

es
si
on

 r
un

ni
ng

;
no

 p
ro

pe
rt

y
ch

an
ge

s
ar

e
al

lo
w

ed
 t

o
a

ru
nn

in
g

se
ss

io
n.

 T
he

 f
un

ct
io

n
re

tu
rn

s
an

 e
rr

or
 c

od
e.

in
t

W
a
it
F
o
rS

ys
te

m
R

es
p
o
n
se

(
co

ns
t

ch
ar

 *
n
a
m

e
,
ch

ar
 *

bu
$
er

U
tf
8

)
Su

sp
en

ds
 t

he
 c

al
le

r
un

ti
l
th

e
sy

st
em

 h
as

 g
en

er
at

ed
 a

 r
es

po
ns

e
fo

r
th

e
ru

nn
in

g
se

ss
io

n
id

en
ti

3 e
d

by
 i
ts

 n
am

e.
 T

he
 f
un

ct
io

n
re

tu
rn

s
an

 e
rr

or
 c

od
e.

in
t

S
ig

n
a
lS

em
a
n
ti
cs

R
ea

d
y(

 c
on

st
 c

ha
r

*n
a
m

e
,
co

ns
t

ch
ar

 *
bu

$
er

U
tf
8

)
N

ot
i3
 e

s
th

e
sy

st
em

 t
ha

t
th

e
se

ss
io

n
id

en
ti

3 e
d

by
 i
ts

 n
am

e
ha

s
a

ne
w

 s
em

an
ti
ca

l
in

pu
t.
 T

he
 f
un

ct
io

n
re

tu
rn

s
an

 e
rr

or
 c

od
e.

in
t

S
ig

n
a
lC

o
m

p
o
si

te
S
em

a
n
ti
cs

R
ea

d
y(

 c
on

st
 c

ha
r

*n
a
m

e
,
co

ns
t

ch
ar

 *
bu

$
er

U
tf
8T

a
sk

F
ra

gm
en

t
,
co

ns
t

ch
ar

 *
bu

$
er

U
tf
8
D

a
ta

F
ra

gm
en

t
)

N
ot

i3
 e

s
th

e
sy

st
em

 t
ha

t
th

e
se

ss
io

n
id

en
ti

3 e
d

by
 i
ts

 n
am

e
ha

s
a

ne
w

 c
om

po
si
te

 s
em

an
ti
ca

l
in

pu
t.
 T

he
 f
un

ct
io

n
re

tu
rn

s
an

 e
rr

or
 c

od
e.

in
t

A
p
p
en

d
L
in

eT
oL

o
gF

il
e(

 c
on

st
 c

ha
r

*n
a
m

e
,
co

ns
t

ch
ar

 *
lo

gT
ex

t
)

A
pp

en
ds

 t
he

 s
pe

ci
3 e

d
te

xt
 a

s
a

ne
w

 l
in

e
to

 t
he

 l
og

 3
 le

 a
ss

oc
ia

te
d

w
it
h

th
e

na
m

ed
 s

es
si
on

 (
lo

gg
in

g
m

us
t

be
 p

er
m

it
te

d
on

 t
ha

t
se

ss
io

n)
.
T

he
 f
un

ct
io

n
re

tu
rn

s
an

 e
rr

or
 c

od
e.

in
t

C
lo

se
S
es

si
o
n
(

co
ns

t
ch

ar
 *

n
a
m

e
)

T
er

m
in

at
es

 t
he

 s
es

si
on

 i
de

nt
i3
 e

d
by

 i
ts

 n
am

e.
 T

he
 f
un

ct
io

n
re

tu
rn

s
an

 e
rr

or
 c

od
e.

vo
id

 D
es

tr
o
yD

o
m

a
in

(
co

ns
t

vo
id

 *
d
o
m

a
in

)
If

 t
he

re
 a

re
 n

o
ru

nn
in

g
se

ss
io

ns
 w

it
h

th
e

sp
ec

i3
 e

d
do

m
ai

n
pr

ev
io

us
ly

 l
oa

de
d

by
 L

o
a
d
D

o
m

a
in

,
de

st
ro

ys
 i
t.
 T

he
 f
un

ct
io

n
re

tu
rn

s
no

th
in

g.

in
t

S
h
o
w
A

bo
u
t(

 c
on

st
 H

W
N

D
 h

P
a
re

n
tW

n
d

,
vo

id
 *

re
se

rv
ed

)
Sh

ow
s

th
e

fr
am

ew
or

k
"A

bo
ut

"
m

od
al

 d
ia

lo
g

bo
x,

 a
s

sh
ow

n
in

 F
ig

.
6.

1.
 T

he
 f
un

ct
io

n
re

tu
rn

s
th

e
bu

tt
on

 c
od

e
pr

es
se

d
by

 t
he

 u
se

r
to

 c
lo

se
 t

he
 d

ia
lo

g
bo

x.

This page intentionally left blank.

