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Abstrakt

Vyhledáváńı takového trojúhelńıku trojúhelńıkové śıtě, který obsahuje
požadovaný bod (tzv. problém lokace bodu), je jedńım z nejčastěji řešených
problémů výpočetńı geometrie. Obvykle je potřeba provést velké množstv́ı vy-
hledávaćıch operaćı, a proto jsou kladeny velké nároky na rychlost použitých al-
goritmů. Daľśımi d̊uležitými aspekty výběru vhodného algoritmu jsou i odolnost
algoritmu v̊uči změnám v trojúhelńıkové śıti, minimálńı pamět’ové nároky anebo
přijatelná implementačńı náročnost. Tzv. algoritmy procházky patř́ı mezi nej-
obĺıbeněǰśı řešeńı problému lokace bodu, protože nab́ızej́ı odolnost v̊uči změnám
v trojúhelńıkové śıti při zanedbatelných pamět’ových požadavćıch a obvykle jed-
noduché implementaci za stále přijatelně ńızké očekávané výpočetńı složitosti.
Proto jsou také často vhodným řešeńım pro konkrétńı aplikace.

Práce představuje soubor sedmi komentovaných odborných článk̊u napsaných
autorem práce (spolu se spoluautory) během autorova doktorského studia.
Články se zaměřuj́ı předevš́ım na výzkum procházkových algoritmů pro
konkrétńı aplikace. Bylo vyvinuto několik procházkových algoritmů aplikova-
telných na rovinné trojuhelńıkové śıtě, př́ıpadně na povrchové trojúhelńıkové
modely 3D objekt̊u. Nově navržené algoritmy maj́ı uplatněńı v řadě oblast́ı, jako
např́ıklad v poč́ıtačové grafice, geografických informačńıch systémech, haptice,
virtuálńı realitě atd. Dva z prezentovaných článk̊u byly publikovány v impakto-
vaných časopisech, jeden článek je v recenzńım ř́ızeńı impaktovaného časopisu
a čtyři daľśı články byly otisknuty ve sborńıćıch mezinárodńıch konferenćı.
I proto představuje d̊uležitou součást této práce př́ıloha, která nab́ıźı jednot-
livé články v jejich otisknuté podobě.
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Abstract

Finding which triangle in a triangle mesh contains a query point (so-called point
location problem) is one of the most frequent tasks in computational geometry.
Usually, a large number of point locations has to be performed, and so there is
a need for fast algorithms. Moreover, the resistance to changes in the triangle
mesh is frequently required as well as minimal additional memory demands or
acceptable implementation effort. The so-called walking algorithms rank among
the most popular solutions for point location problem since they are offering low
complexity, resistance to the changes in the mesh, an easy implementation, and
negligible additional memory requirements, which makes them often suitable
for particular applications.

The thesis provides a survey for the collection of seven commented research
papers which were written by the author of this thesis with co-authors during
the author’s doctoral study. The papers focus on the research into walking
location algorithms during which several walking algorithms offering a number
of contributions were developed. Their applications cover variety of areas (e.g.,
computer graphics, geographic information systems, haptics and virtual reality,
etc.) in two different domains: planar triangle meshes and triangulated meshes
of 3D model objects. Two of the presented research papers were published in the
JSR international journals, one paper has been submitted to journal publication
and four other papers were published in proceedings of international conferences.
Therefore, substantial part forming the thesis is an appendix where the articles
are attached.
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“All truly great thoughts are conceived by walking.”

- Friedrich Nietzsche
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Chapter 1

Introduction

The point location problem is a very frequent task of computational geome-
try. There are plenty of applications in a variety of areas, including computer
graphics, virtual reality simulations, geographic information systems, computer
aided design, haptics, etc. In general, points are searched in meshes consist-
ing of arbitrary (also non-convex) polygons, however, in this thesis we focus on
point locations in the following two types of meshes: planar triangle meshes and
surface triangle meshes of 3D model objects.

The definition for point location problem in planar triangle meshes is straight-
forward. Given a query point q and a planar triangle mesh T , the task is to find
such a triangle of the mesh T in which q geometrically lies. For surface trian-
gle meshes, the problem definition is usually further specified using additional
conditions, since the query point rarely lies exactly on the surface of one of the
triangles. Therefore the problem definition varies depending on the particular
application.

In many applications, a large number of point locations has to be performed,
and so there is a need for fast algorithms. The algorithms solving point loca-
tion problems can be divided into two groups: algorithms using preprocessing
(usually for constructing an additional data structures) and algorithms work-
ing without preprocessing. The former algorithms concentrate on achieving
the lowest expected computational complexity possible (O(1) for suitable data
but generally O(log n) per point query, where n is a number of vertices in the
mesh) which is achieved by using sophisticated data structures. The latter
group includes so called walking algorithms. Despite their low computational
complexity, the former algorithms have some disadvantages. Optimal complex-
ity is achieved at the cost of required data preprocessing, additional memory
demands and more complicated maintenance, especially in the case when the
triangle mesh is frequently changed.

The name of walking algorithms has arisen from their operating principle. They
use triangle neighborhood relations to navigate through the triangle mesh be-
tween an initial triangle and the triangle which contains the query point. The
initial triangle for such a walk may be arbitrary, however, its clever selection
may radically shorten the length of the walk. Walking algorithms do not need
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any additional data structures and usually do not need any data preprocessing.
Only neighborhood relations are required, however, they are usually utilized in
applications for other purposes. Walking algorithms also offer easy implemen-
tation and still acceptable sublinear expected time complexity. Therefore, they
are often more favored possibility than the optimal time complexity solutions.

This chapter introduces the problematics of walking algorithms: provides basic
geometrical background which is used in the walking algorithms and shows
necessary prerequisites for the mesh (Section 1.1), explains a selection of the
initial triangle (Section 1.2) and appoints a classification of walking algorithms
(Section 1.3). Other chapters are organized as follows. Chapter 2 presents an
overview of contributions of the papers attached with the thesis. Chapter 3
provides a summary of the research and presents a future work and Chapter 4
contains the list of authors publications, talks and related projects. Finally, the
reprints of the research papers, forming the most important part of the thesis,
are provided in appendices.

1.1 Background Mathematics

To determine the position of a point v with respect to an oriented edge (or

oriented line)
−→
tu, the sign of the determinant in a so-called 2D orientation

test [2] is used:

orientation2D(t,u,v) =

∣∣∣∣
ux − tx vx − tx
uy − ty vy − ty

∣∣∣∣ (1.1)

where a positive value is returned for v on the left of
−→
tu and a negative for v

on the right of
−→
tu.

Figure 1.1 shows the resulting signs of orientation tests from Equation 1.1 for
a triangle τt0t1t2 with CCW (counterclockwise) order of vertices.

t0

t2

t1

+-

+-
+-

+-

+-

+-

+-
+- +-

Figure 1.1: Example of orientation tests for triangle edges

Sometimes, it is more suitable to use the implicit line equation of the oriented
line instead of the equation above. To determine the position of a point v
with respect to an oriented line λ =

−→
tu, we compute its implicit equation -
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Equations 1.2, 1.3. The position of v is given by the sign of Equation 1.4 as in
the orientation test.

λ : a · x+ b · y + c = 0 (1.2)

(a, b, c) = (tx, ty, 1)× (ux, uy, 1) (1.3)

position(λ,v) = a · vx + b · vy + c (1.4)

A keystone for the walking-based approach in the third dimension is the so-called
3D orientation test which determines position of a point against a plane: let us
have a plane given by three points t,u,v and a tested point w. Equation 1.5
computes whether w lies above, on or below the given plane when seen from
the side where t,u,v points are CCW oriented. In other words, the test decides
whether the orientation of these points is positive, neutral or negative.

orientation3D(t,u,v,w) =

∣∣∣∣∣∣

ux − tx vx − tx wx − tx
uy − ty vy − ty wy − ty
uz − tz vz − tz wz − tz

∣∣∣∣∣∣
(1.5)

Triangle mesh has to fulfill some necessary prerequisites to make the utilization
of walking algorithms possible. First, the neighborhood relations are required
(information about neighbors is stored for each triangle). Second, the mesh
must not contain errors. Third, all the triangle vertices are usually requested
to be ordered in a uniform orientation. And fourth, the planar mesh should be
usually convex-shaped and without holes, however, the thesis also provides a
solution for non-convex shaped planar triangle meshes with holes. The convexity
is not required for the surface triangle meshes, but all the triangles have to hold
connectivity for all their three neighbors.

1.2 Selection of the initial triangle

Process of the point location by walking algorithms usually works in two steps.
The first step is a selection of the initial triangle for the walk and the second
step is a using of the neighborhood relationships between the triangles (walking)
to find the target triangle, containing the query point.

A proper selection of the initial triangle is very important and may radically
shorten the walk and thus speed up the whole location process. Therefore, walk-
ing algorithms can reach the lowest expected computational complexity possible
O(log n) (or even O(1) for appropriate data) if sophisticated data structures
(such as grids, trees, hash tables, hierarchical structures) are used for the choice
of the initial triangle. Walking algorithms are then used only for the final loca-
tion which is usually short. However, as outlined above, the use of additional
data structures provides several disadvantages and therefore it is not suitable
for a variety of applications. The most important disadvantage is the need of
maintaining the structures valid - especially if the triangle mesh is frequently
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changed. Sometimes additional memory requirements may also be a problem
similarly as an inefficient parallelization due to the bottleneck problem of the
data structure.

Thus the initial triangle is frequently chosen in a clever way without additional
structures. For example, the initial triangle is taken as the closest triangle
from a set A of randomly chosen triangles from the triangle mesh T , where
||A|| � ||T ||. Note that the triangles from A are generated on the fly and are
not stored except the closest one. Sometimes some additional information about
the data is known and can be used in the selection of the initial triangle for the
speed-up of the process. Such information can be the knowledge of the range of
the mesh vertices coordinates, in which case all the locations start in the triangle
containing the point lying in the middle of the range. Or, in some applications
(e.g., the construction of Delaunay triangulation (DT) by incremental insertion),
the located points are known at the beginning; thus, the points can be sorted
in such an order that the next located query point will be close to the last one.
Then, the use of the target triangle from the last location as the initial one for
the next location provides a significant speed-up. Sometimes, the located points
are also ordered properly without additional sorting.

1.3 Classification of walking algorithms

Given an initial triangle, the walk may proceed. There exist several algorithms
solving this step, and according to the style of determining the walking way,
they can be classified into three groups: visibility, straight, and orthogonal
walks. Definitions of groups are various with respect to the dimension in which
the query points are searched and for the planar triangle meshes it is simple
and can be described as follows:

Visibility algorithms perform local tests (usually orientation tests) in each tri-
angle they walk through. These tests look for such an edge that defines a line
separating the query point from the third vertex of the triangle. The walk then
moves across this edge to the neighborhood triangle. For convex-shaped tri-
angle meshes they never cross the border of the mesh. However, deterministic
versions of visibility walk algorithms may loop for non-Delaunay triangulations.
Unlike deterministic versions, randomized (stochastic) versions of visibility walk
algorithms do not loop but they are slower because a randomization step is done
in each triangle.

Straight walk algorithms use not only local comparisons to determine the way
of the walk but also use a line connecting one point of the starting triangle with
the query point and traverse triangles crossed by this line. This way, their walk
is short and does not loop. For convex-shaped triangle meshes, they never cross
the border of the mesh and they do not loop.

Orthogonal walks first navigate along one coordinate axis and then along the
other, which makes the local tests cheaper, since only coordinate components
can be compared during the walk. However, more triangles are visited during
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the walk. The border of a triangle mesh may be crossed during the walk, in
which case a special modification is needed, resulting in a slower location process
and additional implementation effort.

The thesis presents the following research regarding planar point location algo-
rithms. Appendix A shows a straight walk algorithm which uses a combination
of faster tests and of one visibility walk algorithm and provides a speed-up of
the original straight walk principle. Appendix B describes an algorithm which
combines directness of the straight walk algorithms and cheap test of the or-
thogonal walk algorithms. Appendix B uses the visibility walk principle, too.
A new visibility walk algorithm is presented in Appendix C. This algorithm is
useful mainly for Delaunay triangulation especially where the appropriate hier-
archical structure is used. A special modification of the straight walk algorithm
which can search in non-convex triangle meshes and, moreover, which can deter-
mine whether the point lies outside the mesh, is given in Appendix D. Finally,
Appendix E describes the best known representatives from all three groups of
walking algorithms for the planar triangle meshes, compares them and provides
advice for the choice of the proper algorithm for a particular application.

Problem definition of the point location on the surface triangle meshes is not
so straightforward as for the planar triangle meshes and usually is applied for
a specific particular application. Appendix F could be an example. It describes
an effective walking algorithm for point location on the surface of a general
star-shaped polyhedron. Also, a point location algorithm can be used as a way
to solve other problems of computational geometry. Appendix G could serve as
an example where a surface walking algorithm is successfully used as a tool for
solving of the collision detection problem.
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Chapter 2

Overview of contributions

This chapter summarizes main contribution of the work collected in this thesis.
The overview is structured into two main sections addressing contribution in
the areas of planar walking algorithms and surface walking algorithms.

2.1 Planar walking algorithms

The thesis presents four planar walking algorithms while three of them bring
significant speed-up against previous algorithms (up to tens of percents - Ap-
pendix A, B, C) and one of these algorithms shows possibility to use a walking
algorithm also for non-convex meshes with holes (Appendix D). The thesis also
contains a survey of planar walking algorithms for the use in TINs (triangulated
irregular networks - Appendix E) but most of its conclusions are applicable in
general, not only for TIN meshes.

2.1.1 Straight walk algorithm modification for point lo-
cation in a triangulation

Appendix A presents an algorithm improving the original straight walk algo-
rithm [3]. The proposed algorithm is based on the standard straight walk prin-
ciples and copies the path but 2D orientation tests (see Equation 1.1) are sub-
stituted by the implicit line equation tests (Equation 1.4) which are cheaper.
Implicit line equations (Equations 1.2, 1.3) are pre-processed in the initializa-
tion phase of each location query. It results in faster location process. The
proposed algorithm allows substitution by cheaper tests at the cost that tar-
get triangle may not be found exactly. Therefore, the stochastic visibility walk
(which is using 2D orientation tests) is used for the final (and usually short)
determination of the target triangle.
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2.1.2 Hybrid walking point location algorithm

Appendix B describes an interesting possibility how to carry out the location
query with path similar to the straight walk algorithm while using only the
comparison of each coordinate value instead of some orientation tests (likewise
in orthogonal walk algorithms). The main idea of the approach is to compute
such a transformation that the line connecting a selected vertex of the starting
triangle and the query point is parallel with x-axis. This transformation (a
scale-loss rotation) is then used for the tested points throughout the walk to
enable a cheap comparison of their position with respect to this line. Despite
the use of transformation, the walk is still rather fast since only the query point
and the tested points (one per visited triangle) are transformed. However, the
improvement is rather minor and orthogonal walks still usually achieve better
results.

2.1.3 A new visibility walk algorithm for point location
in planar triangulation

Appendix C provides a simple visibility walk algorithm which is able to search
for the query point with only one 2D orientation test for each visited triangle
(except the first triangle where two orientation tests are needed). The algorithm
utilizes properties of the barycentric coordinates. It remembers the result of 2D
orientation test from the last visited triangle and computes a 2D orientation
test for another triangle edge. Then the result of 2D orientation test for the last
third edge can be computed without the test itself. It is achieved by the use of
additional memory, where for each triangle vertices the value of 2D orientation
test is stored.

The store of the auxiliary values makes the algorithm inappropriate for appli-
cations where the triangle mesh is often changed or where there is a lack of
memory. On the other hand, the stored values can be useful for other purposes
since they inform about triangles area (the needed value is a double of the tri-
angle area). For longer location paths, the algorithm is slower than orthogonal
walk algorithms. But it is highly relevant for shorter walks since its initializa-
tion step is very cheap and there is no need of final locations. Therefore, the
use is expected mainly in applications with searching in popular hierarchical
triangle meshes [5, 1] since the location is usually very short in the individual
layers. Note that the algorithm is not appropriate for non-Delaunay triangula-
tions since it can theoretically cause an infinitive loop [7].

2.1.4 Walking algorithm for point location in a triangu-
lated non-convex domain with holes

The disadvantage of the walking algorithms may be a fact that they could
handle only triangulated convex domains without holes and sometimes it is not
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possible or suitable to triangulate the remaining empty space. Therefore, the
algorithm presented in Appendix D can search in both, in a triangulated non-
convex domains and in triangulated domains with holes. The algorithm uses
the straight walk principle with 2D orientation tests. If it reaches the border
of the triangle mesh, it walks along the border until it finds a triangle proper
for continuation of the walk (the triangle intersected by the line defining the
straight walk). If such a triangle does not exist, the walk returns the result
that the query point is outside the mesh. Thus, the algorithm is also able to
detect if the query point lies inside or outside of the triangulated polygon. The
algorithm can be used also for point-inside-polygon testing, although we do not
expect using of the algorithm for such queries.

2.1.5 Walking algorithms for point location in TIN mod-
els

It is obvious that several planar walking algorithms were published, each offers
different advantages, and the appropriate algorithm should be chosen accord-
ing to the particular application. However, these algorithms have never been
summarized, tested and compared to provide a tool for such a selection. This
is provided by Appendix E, with focus on the use in geosciences where walking
algorithms are very useful especially for point location in TIN models. Note
that planar walking algorithms are easily applicable for 2.5D terrain models
where the height information is omitted for the location purposes.

The article describes all substantial walking algorithms in detail to provide all
information needed for their implementation, discuss their behavior and test
them on different datasets including random data, data from a cadastre and
LIDAR data. All the algorithms are tested in two forms: with double precision
floating point arithmetic and also with adaptive floating point arithmetic [6].
The article also presents a simple comparison of the speed, implementation effort
and stability of the algorithm, and providing a tool for decision which algorithm
is suitable to implement in a particular solution. The scope of the article is not
limited only to geosciences or to TIN models. The most of conclusions has a
general validity and can be used in a variety of areas and applications.

2.2 Surface walking algorithms

The thesis presents two surface walking algorithms while the former of them
partly uses a transformation to 2D and then it is searching on the surface of a
star-shaped tetrahedron and the latter is an algorithm which works exclusively
in the third dimension and applies a walking location algorithm to the collision
detection problem.
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2.2.1 Star-shaped polyhedron point location with or-
thogonal walk algorithm

The star-shaped polyhedron point location problem, solved in Appendix F, is
defined as follows. For the given oriented half-line segment, defined by the center
point of the star-shaped polyhedron (generally an arbitrary point which lies in
the kernel of the polyhedron) and a query point, the goal is to find a triangle
from the polyhedron surface which is intersected by that half-line segment. The
main use of the algorithm is expected especially for spherical point location
queries which are important mainly for spherical remeshing methods.

The article presents a combination of two walking algorithms for point location
on the surface of the star-shaped polyhedron. The former is a modification of
the planar orthogonal walk algorithm and works in the simplified spherical coor-
dinate system. The main idea of this algorithm is based on a planar orthogonal
walk algorithm which locates points in planar triangle meshes. But unlike the
original orthogonal walk presented in [2] it uses only a comparison of each co-
ordinate value which is significantly faster and no orientation tests are needed.
Moreover, it uses only two tests per triangle (instead of three). Naturally, as
with the proposed straight walk algorithm (Section 2.1.1), the target triangle
may not be found exactly and thus the stochastic visibility walk is used for the
final (and also usually short) determination of the target triangle.

The latter algorithm is a spatial generalization of the stochastic visibility walk
algorithm and uses the 3D orientation test. Connection of these two algorithms
combined with the proposed solution for an effective choice of the initial triangle
using a non-uniform grid makes the algorithm very efficient.

2.2.2 Surface point location by walking algorithm for
haptic visualization of triangulated 3D models

Appendix G focuses on the collision detection problem of a haptic device with
the surface of 3D model which is defined by a triangle mesh. The goal is to find
a triangle (if such a triangle exists) which is in the collision trajectory of the
haptic probe to provide an appropriate feedback to the user. If such a triangle
does not exist, no feedback is provided.

The algorithm is based on the straight walk principle. However, unlike the
planar straight walk, where the walk follows the triangles intersected by the
line defined by the query point and a point inside the initial triangle, for the
surface straight walk algorithm, the path is defined by the plane generated by
the query point, by a point inside the initial triangle and by the motion vector
of the haptic probe. Since meshes can be generally non-convex-shaped, the
algorithm may not find the final triangle although it exists (it depends on a
selection of the initial triangle because it is the only part generating the plane
which is variable). Therefore, the problem of the initial triangle choice is one of
the key assumptions and it is solved by a spatial generalization of the algorithm
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which was originally proposed by [4] and which chooses the initial triangle as
the closest triangle from a randomly chosen set of triangles from the triangle
mesh. Moreover, it is necessary to repeat the whole location process if the result
is negative to ensure the validity of such a result.

Although the algorithm was developed for the haptic visualization, it is not
limited to the haptic collision detection only. It can be used for all point loca-
tion problems, where the input contains both, a point close to the surface of a
triangulated 3D model and a vector directing towards the model. For example,
for a parametric description of the model, we can get a point on the surface
as well as a vector directing towards the model (it may be the opposite surface
normal at this point). Results show that the proposed algorithm can handle
queries on rather complex-shaped models with hundreds of thousands of trian-
gles in a good time and thus it can be successfully used in haptic visualization.
The algorithm is suitable also for models changing in time. Although it is not a
primary task of the algorithm, it can also handle queries when the model is com-
posed of multiple components. Moreover, the algorithm is easily and effectively
parallelizable which can significantly speed up the search process.
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Chapter 3

Summary and Future work

This thesis presents issues of the point location problem and aims mainly at
the so-called walking algorithms. The most important part of the thesis is the
collection of author’s papers. The thesis addresses a variety of different aspects
of the walking algorithms: their advantages and disadvantages, reliability and
performance, suitability for particular applications, etc. As shown in the the-
sis, walking algorithms provide solutions with acceptable computational as well
as implementation complexity, low memory requirements and flexibility in the
case of the mesh modification. Therefore, they are very popular, especially for
engineering applications where the flexible changes of the mesh are requested.

The thesis presents several new walking algorithms where five of them are for
the planar point location and two of them search in the surface triangle meshes.
Some of them present a novel approach which has not been used yet for simi-
lar problem solutions (see Appendix D, Appendix F, Appendix G), some pro-
vide improvements of the original existing algorithm with a significant speed-
up against previous versions (up to tens of percents - see Appendix A, Ap-
pendix B, Appendix F) or are more effective for some particular solutions
(see Appendix C). And finally, the most significant planar walking algorithms
are summarized, tested and compared to provide a tool for a proper choice of
the relevant walking algorithm for a particular application (with the focus on
geosciences but the validity is more general - see Appendix E).

Still, there is a lot of space for future work, mainly in particular applications. For
the planar triangle meshes, most of the development of the walking algorithms is
expected for unusual problems or for specific data where a specified solution will
be necessary. For the surface triangle meshes there is a space for development
in particular applications where the mesh is changing in time, e.g., the haptic
visualization. A specific solution is then dependent on the particular problem
definition. The area of tetrahedral meshes is also very perspective, especially if
the mesh is changing in time, as is in the area of the dynamic protein research
where some algorithms have been tested but yet without a relevant publication.
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Chapter 4

Activities

4.1 List of authors publications

• Soukal, R., Kolingerová, I.
Straight walk algorithm modification for point location in a triangulation.
Proceedings of the 25th European Workshop on Computational Geometry,
pp. 219–222, (2009)

• Soukal, R., Holub, P.
A note on packing chromatic number of the square lattics.
Electronic Journal of Combinatorics, Volume 17, Issue 1, pp. 1–8, (2010),
ISSN 1077–8926, IF 0.568 (2013)

• Soukal, R., Kolingerová, I.
Star-shaped polyhedron point location with orthogonal walk algorithm.
Procedia Computer Science, Volume 1, Issue 1, pp. 219-–228, Elsevier
(2010), ISSN 1877–0509

• Soukal, R., Málková, M., Vomáčka, T., Kolingerová, I.
Hybrid walking point location algorithm.
Proceedings of the 5th International Conference on Advanced Engineering
Computing and Applications in Sciences, pp. 7–12, IARIA XPS Press
(2011), ISSN 2308–4499, ISBN 978–1–61208–172–4

• Soukal, R., Málková, M., Kolingerová, I.
Walking algorithms for point location in TIN models.
Computational Geosciences, Volume 16, Issue 4, pp. 853–869, Springer
Verlag (2012), ISSN 1420–0597, IF 1.612 (2013)

• Soukal, R., Málková, M., Kolingerová, I.
A new visibility walk algorithm for point location in planar triangulation.
Lecture Notes in Computer Science (Advances in Visual Computing), Vol-
ume 7432, pp. 736–745, Springer Verlag (2012), ISBN 978–3–642–33190–9

25



• Soukal, R., Purchart, V., Kolingerová, I.
Surface point location by walking algorithm for haptic visualization of
triangulated 3D models.
Advances in Engineering Software, Volume 75, pp. 58–67, Elsevier (2014),
ISSN 0965–9978, IF 1.422 (2013)

4.2 Articles in the review process

• Soukal, R., Kolingerová, I.
Walking algorithm for point location in a triangulated non-convex domain
with holes.
Submitted to (currently in the first revision): International Journal of
Geographical Information Science, Taylor & Francis, IF 1.479 (2013)

4.3 Talks

• Walking algorithms for point location.
University of Maribor, 2008
Maribor, Slovenia

• Straight walk algorithm modification for point location in a triangulation.
25th European Workshop on Computational Geometry, 2009
Brussels, Belgium

• Star-shaped polyhedron point location with orthogonal walk algorithm.
10th International Conference on Computational Science, 2010
Amsterdam, Netherlands

• Hybrid walking point location algorithm.
5th International Conference on Advanced Engineering Computing
and Applications in Sciences, 2011
Lisbon, Portugal

• A new visibility walk algorithm for point location in planar triangulation.
8th International Symposium on Visual Computing, 2012
Rethymnon, Greece

4.4 Participation on projects

• Triangulated Models for Haptic and Virtual Reality.
Project 201/09/0097, Czech Science Foundation (GACR)
2009–2011
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• Advanced Computing and Information Systems.
Project SGS–2010–028, UWB grant
2010–2012

• Analysis and Visualization of Protein Structures.
Project 202/10/1435, Czech Science Foundation (GACR)
2011–2012

• INGEM – Interactive Gemetric Models for Simulation of Natural Phe-
nomena and Crowds.
Project Kontakt no. LH11006, Ministry of Education, Youth and Sports
of the Czech Republic
2013–2014

• Advanced Computing and Information Systems.
Project SGS–2013–029, UWB grant
2013–2014
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[4] Mücke, E. P., Saias, I., and Zhu, B. Fast randomized point loca-
tion without preprocessing in two and three-dimensional Delaunay triangu-
lations. In Proceedings of the 12th Annual Symposium on Computational
Geometry (1996), vol. 26, pp. 274–283.

[5] Mulmuley, K. Randomized multidimensional search trees: Dynamic sam-
pling. In Proceedings of the 7th Annual Symposium on Computational Ge-
ometry (1991), pp. 121–131.

[6] Shewchuk, Jonathan, R. Adaptive precision floating-point arithmetic
and fast robust geometric predicates. Discrete Computational Geometry 18,
3 (1997), 305–363.

[7] Weller, F. On the total correctness of Lawson’s oriented walk. In Pro-
ceedings of the 10th International Canadian Conference on Computational
Geometry (1998), pp. 10–12.

28



Appendices - Paper Reprints

29



Appendix A

Straight walk algorithm modification for point

location in a triangulation

Soukal, R., Kolingerová, I.
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Straight Walk Algorithm Modification for Point Location in a
Triangulation ∗

Roman Soukal † Ivana Kolingerová ‡

Abstract

Finding an element in a mesh which contains a query
point is a very frequent task in computational geom-
etry. This paper shows a modification of one planar
technique for point location in triangulation. This
algorithm is based on a modification of the straight
walk location algorithm combined with the visibility
walk algorithm where straight walk brings speedup
and visibility walk reliably finds a target. This modi-
fication does not improve the worst-case running time
although empirical data shows that its performance is
better than previous Straight walk algorithm.

1 Introduction

For a query point q and a given triangulation T of n
vertices in the plane the point location problem usu-
ally means how to find a triangle ω from T which
contains the query point. One of the possibilities how
to solve this problem is to use one of the walking lo-
cation techniques. The name of these algorithms has
arisen from the way of locating the triangle ω which
contains q. For a starting triangle α chosen as one
of the triangles of T and the query point q the walk-
ing strategy makes use of connectivity in the triangle
mesh and it goes through triangles between α and
ω. There are three main types of walking strategies.
First, the visibility walk makes use of an orientation
edge test to determinate which triangle is the next.
Second, the straight walk passes all triangles in the
mesh between α and ω which are intersected by a line
pq where p is a point inside α. Finally, the orthogonal
walk passes all triangles in the mesh between α and
ω in the directions of coordinate axes. The triangle α
may be chosen randomly or as the closest triangle to
q from the set A of randomly chosen triangles from
T , ‖A‖ � ‖T‖ [7]. This choice improves speed of the
algorithm. Walking algorithms are frequently used
despite suboptimal complexity (O( 3

√
n) up to O(

√
n)

[3] - depending on how the α was chosen).
Sophisticated data structures such as DAG [1], [6],

∗This work is supported by the Grant Agency of the Czech
Republic - the project GA 201/09/0097
†Department of Computer Science, Faculty of Applied Sci-

ences, University of West Bohemia, soukal@kiv.zcu.cz
‡Department of Computer Science, Faculty of Applied Sci-

ences, University of West Bohemia, kolinger@kiv.zcu.cz

skip list [11], quad tree, buckets [10], uniform grid
[9], [12] and data structures based on random sam-
pling [8], [2] are used in the point location algorithms
with the best known complexity O(log n) per point
query. However, these algorithms have some disad-
vantages. First, these data structures consume gener-
ally O(n) amount of memory which may be a problem
for huge datasets. Second, implementation effort for
most of these structures may be nontrivial (especially
for modifications of these structures). Finally, most
of these structures are hierarchical and the top level
of the hierarchy may be a bottleneck in case of paral-
lelization. Walking algorithms do not need any extra
memory, their implementation is rather simple and
their usability for parallelization is good, thus often
they are a better choice than optimal time complexity
solutions.

This paper shows a straight walk algorithm mod-
ification which is faster than the standard straight
walk algorithm [3]. The paper is organized as follows.
Section 2 and 3 present already existing algorithms
Remembering Stochastic walk and Straight walk. Sec-
tion 4 shows our modification of this algorithm, prob-
lem resulting from the character of this modification
and its solution. Empirical results are presented in
Section 5.

2 Remembering Stochastic Walk

Visibility walk algorithms use orientation test for a
triple of points t, u, v (Equation 1).

orientation(t, u, v) = sgn

(∣∣∣∣ux − tx vx − tx
uy − ty vy − ty

∣∣∣∣) (1)

Decision, whether or not the edge rl of the current
triangle τ (τ = srl) should be crossed to continue
the walk into the next triangle depends on the re-
sult after substitution q, r, l to the Equation 1 where
q is the query point. The walk continues to the
next triangle over the edge rl if orientation(q, r, l) =
−orientation(s, r, l) where s is vertex of τ , r, l 6= s
and q is the query point. Simple visibility walk algo-
rithms use edges of τ for tests in the given order, but
these visibility walks may loop for a non-Delaunay tri-
angulation [4]. For non-Delaunay triangulation it is
necessary to choose the tested edges of τ in a random
order. This modification is called Stochastic. Natu-
rally it is not necessary to test the edge incident with
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the previous triangle in the walk. This improvement
is called Remembering and may save up to one ori-
entation test for each triangle. Therefore, one or two
orientation tests are needed for each triangle (except
the triangle α).

3 Straight Walk

Generally, the straight walk passes all triangles in the
triangulation T intersected by the line pq where q is
the query point and p is a point in the given starting
triangle α. The standard straight walk algorithm [3]
is composed of two steps and point p is chosen as a
vertex of α. In the initialization step (grey color in
Figure 1) a triangle γ incident to p and intersected by
pq must be found. During this step one orientation
test is needed for each visited triangle and the number
of visited triangles is at most the degree of p, thus at
most n.

After the initialization is completed, the straight
walk (black color in Figure 1) may start. For each
triangle τ , τ = srl in the straight walk, the line
pq goes into τ, τ 6= α through edge e = rl (see τ
in Figure 1). Depending on the orientation(s, p, q),
new r (or new l) is selected as s. The singular case
orientation(s, p, q) = 0 is added to one of these situ-
ations. Now the straight walk goes out of τ through
the new edge e = rl. By testing on which side of e
the q lies it is decided whether the τ contains the q or
whether the walk must go on. In the latter case the
walk goes to the neighbor of τ through e. Therefore
the Straight walk evidently needs two orientation tests
per triangle and some orientation tests in the initial-
ization step. Pseudo code of the algorithm is given as
Algorithm 1 [3].

γ

τq
p

ω
e

l
s

r α

Figure 1: Straight walk example

4 The Proposed Modification of Straight Walk

The first idea is to simplify the initialization step of
the algorithm in Section 3 to a constant number of
operations. The second idea is to use a cheaper oper-
ation than the orientation test used in Straight walk
algorithm in Section 3.

// traverses the triangulation T

Input:

• the query point q
• the chosen starting triangle α, α ∈ T

Output:

• the triangle ω which contains q

// following the line segment from p to q
// initialization step

p = vertex of α;
if orientation(r, p, q) < 0 then

while orientation(l, p, q) < 0 do
r = l;
τ = neighbor of τ trough pl;
l = vertex of τ, l 6= p, l 6= r;

end

else
repeat

l = r;
τ = neighbor of τ trough pr;
r = vertex of τ, r 6= p, r 6= l;

until orientation(r, p, q) < 0 ;

end

// end of initialization and start of straight walk

// now pq has r on the right and l on the left side

while orientation(q, r, l) < 0 do
τ = neighbor of τ trough rl;
s = vertex of τ, s 6= r, s 6= l;
if orientation(s, p, q) < 0 then

r = s;
else

l = s;
end

end
// end of Straight walk step

// now τ contains q
return τ;

Algorithm 1: Straight Walk

A fundamental prerequisite for the initialization
step is to suitably choose the point p. In Section 3, p
is chosen as one vertex of the starting triangle α but
it is not necessary. The main idea is to choose p in a
way that no other operations in the initialization step
are needed. First, the point s is chosen as the closest
vertex from α to q. The edge e = rl is the edge of α
and α = srl. Next, p is chosen on e where r, l 6= p and
‖pq‖ > 0. Now the straight walk may start. For each
triangle τ in the straight walk (except α) the edge e
of τ is edge used to cross to τ and s is the vertex of τ
facing e. The line pq goes out of τ through the edge
e that is determined by the means of using the orien-
tation test. If s lies on the left side of pq, e (s ∈ e)
is the edge of τ on the right of s, else e (s ∈ e) is the
edge of τ on the left of s. By testing on which side
of e the q lies it is decided whether τ contains q or
whether the walk must go on.

For each triangle τ the position of s is tested against
the line pq and only s is changing during the walk, it
is therefore possible to use an implicit line equation
test in the place of the orientation test to speed up
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the process. The implicit line equation of pq is com-
puted in the initialization step (Equations 2, 3, 4)
and the position of s is found by a substitution into
Equation 5.

λ : a · x+ b · y + c = 0 (2)

[a, b, c] = [px, py, 1]× [qx, qy, 1] (3)

a = py − qy, b = qx − px, c = px · qy − py · qx (4)

position(λ, s) = sgn(a · sx + b · sy + c) (5)

The implicit line equation test is subject to higher
numerical imprecision than the orientation test but
the straight walk algorithm is robust enough to resist
it. Now there is one orientation test and one posi-
tion test per triangle. The orientation test is used to
detect whether the triangle ω was found. A direct
replacement of this orientation test is problematic be-
cause two points are changing during the walk, there-
fore the original algorithm must be modified. For this
modification a new line λn, λn ⊥ pq, q ∈ λn must be
computed in the initialization step (Equation 6, 7).

λn : a · x+ b · y + c = 0 (6)

a = λy, b = λx, c = λx · qy − λy · qx (7)

The orientation test for detection, whether the tri-
angle ω was found, is replaced with the position test
of λn and s. If s lays on the other side of λn than p,
the straight walk ends. A situation is possible where
τ 6= ω at the end of the straight walk (see Figure 2).
Because of it, Remembering Stochastic walk algorithm
is used for final location. As a rule, this final loca-
tion is very short, but extreme cases exist where al-
most the whole walk is performed by Remembering
Stochastic walk. However, this situation is not proba-
ble and degradation of Straight walk to Remembering
Stochastic walk is not a problem, because Remem-
bering Stochastic walk is not dramatically worse (see
Section 5). It is possible to a find more detailed de-
scription of this modified variant of Straight walk in
the pseudo code Algorithm 2 and in the example Fig-
ure 2. The straight walk step is coloured black and the
final location by Remembering Stochastic walk is grey.
The triangle γ is the triangle where the straight walk
step ends and Remembering Stochastic walk starts,
the edge eγ is the edge to γ and the point sγ is the
point s for γ, whose position at the other side of λn
than p causes the end of the straight walk.

5 Empirical Results

The following algorithms were tested: Remembering
walk, Remembering Stochastic walk, Straight walk (Al-
gorithm 1) and Modified Straight walk (Algorithm 2).
Tests were performed on Delaunay triangulations
of different sizes of datasets (especially 100000 and

ω

γ
α

p

q

 λn

τ

eτ

sτ

sγ

eγ

 λ

Figure 2: Modified Straight walk example

// traverses the triangulation T

Input:

• the query point q
• the chosen start triangle α, α ∈ T

Output:

• the triangle ω which contains q

// initialization step

τ = α;
s = the vertex of τ closest to q;
e = rl = edge of τ facing s;
choose p: p ∈ e, r, l 6= p,‖pq‖ > 0;
compute the line λ (pq);
compute the line λn;

found = false;

// end of initialization and start of straight walk

repeat
if position(λn, s) > 0 then

found = true;

else
if position(λ, s) > 0 then

e = edge of τ on the left from s, s ∈ e;
else

e = edge of τ on the right from s, s ∈ e;
end
t = neighbor of τ trough e;
s = vertex of τ facing e;

end

until found ;

// end of the straight walk step

// final location

τ = Remembering Stochastic Walk (τ, q);
// now τ contains q
return τ;

Algorithm 2: Modified Straight Walk

1000000 points) and on different types of point dis-
tributions (randomly in square, grid, gauss distribu-
tion, clusters, arcs, real data). First triangle δ was
randomly chosen for each location. 1000000 of ran-
domly generated points were located by each algo-
rithm on each dataset. Selected results are in Ta-
ble 1. The following properties were examined for
each algorithm: the average length of the walk (#∆),
the average number of the orientation tests (#ori),
the average number of position tests (#pos) and the
average time (t[µs])per one location (tested on Intel
Q6600 2,40GHz). The algorithms are coded in Java
with the double precision floating point arithmetic.
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#∆ #ori #pos t[µs]
Algorithm φ per located point

Delaunay triangulation of 100.000 points distributed in a square

Rem. walk 377.80 508.55 0 43.97
Rem. Stoch. walk 360.12 465.11 0 58.04
Straight walk [3] 338.98 677.21 0 57.14
Mod. Straight walk 340.83 3.77 677.23 41.07

Delaunay triangulation of 1.000.000 points distributed in a square

Rem. walk 1185.93 1590.30 0 214.97
Rem. Stoch. walk 1122.87 1443.80 0 255.57
Straight walk [3] 1069.09 2137.46 0 234.16
Mod. Straight walk 1071.11 3.76 2138.37 188.61

Delaunay triangulation of 100.000 points distributed in a clusters

Rem. walk 214.25 290.09 0 16.73
Rem. Stoch. walk 215.06 279.95 0 24.33
Straight walk [3] 173.66 346.68 0 20.87
Mod. Straight walk 174.40 5.21 341.42 12.06

Delaunay triangulation of 70.433 points from real data

Rem. walk 324.00 437.51 0 34.47
Rem. Stoch. walk 324.42 422.14 0 47.76
Straight walk [3] 297.08 593.46 0 46.81
Mod. Straight walk 298.02 5.22 588.59 32.6

Table 1: Comparison of algorithms

With regard to the number of tests, Remember-
ing Stochastic walk with about 1.30 orientation tests
per triangle is the best. Non-Stochastic Remembering
walk is a little worse with about 1.35 orientation tests
per triangle. Both straight walks have about two tests
per triangle (a small difference is due to the initializa-
tion step (the standard Straight walk) or due to the
final location (Modified Straight walk)) but Modified
Straight walk mainly uses faster tests. With regards
to the number of visited triangles, the best are the
Straight walk algorithms. In comparison of time per
one location, Modified Straight walk is the fastest way
because of faster tests. Remembering walk has good
results too but it is only usable for Delaunay triangu-
lations. Remembering Stochastic walk has very good
results regarding the number of tests per triangle but
the cost for the randomization is too high, therefore
the standard Straight walk with two orientation tests
per triangle is a little faster.

φ #∆ max #∆
Dataset per located point

DT of 100.000 random pts 1.77 10
DT of 1.000.000 random pts 1.76 9
DT of 100.000 pts in clusters 3.23 341
DT of 70.433 pts from real data 3.23 186

Table 2: Length of final location by Remembering
Stochastic walk in Modified Straight walk algorithm

Experiments show that the length of the final lo-
cation with Remembering Stochastic walk in Modified
Straight walk is generally short (see Table 2). There
are fluctuations on some types of datasets (e. g. clus-
ters) but they are rare and may be ignored on average.

6 Conclusion

The proposed algorithm was verified to find a point
in a Delaunay triangulations in a better time than
the popular Remembering Stochastic walk. Our algo-
rithm can be used also for non-Delaunay triangula-
tions. Testing on such data is our future work.
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[5] I. Kolingerová. A Small Improvement in the Walk-
ing Algorithm for Point Location in a Triangulation.
22nd European Workshop on Computational Geom-
etry, 221-224, 2006.
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Department of Computer Science and Engineering

University of West Bohemia
Plzen, Czech Republic

soukal@kiv.zcu.cz, mmalkov@kiv.zcu.cz, tvomacka@kiv.zcu.cz, kolinger@kiv.zcu.cz

Abstract—Finding which triangle in a planar triangular
mesh contains a query point (so-called point location problem)
is one of the most frequent tasks in computational geome-
try. Therefore, using an algorithm with the lowest possible
complexity is appropriate. However, such complexity may be
achieved only by using additional data structures, leading into
algorithms that are more difficult to implement and have
additional memory demands. A possible solution is to use
walking algorithms, which are easier to implement. They either
do not require any additional memory, or require only a small
portion of it in order to achieve the lowest possible complexity
as well. In this paper, we propose a new walking algorithm
combining two existing approaches to provide speed, robustness
and easy implementation, and compare it with the fastest
representatives of walking algorithms. Experiments proved that
our algorithm is faster than the fastest existing visibility and
straight walk algorithms, and depending on the character of
input data, either as fast as the orthogonal walk algorithms or
faster.

Keywords-Algorithm design and analysis; Computational geom-
etry; Computer graphics.

I. INTRODUCTION

Point location problem is a very frequent task in computa-
tional geometry problems, such as triangulation construction,
morphing and terrain editing. In this text, we focus on point
location algorithms for triangular meshes, since triangular
meshes are the most common way of data representation
and its manipulation. Other representations, such as convex
or non-convex polygonal meshes, can be triangulated first
to use these algorithms. The algorithms can also be used
for terrain models represented by triangular meshes without
any preprocessing only by not using the height information
during the location.

The point location problem is defined as follows. For a
given planar triangular mesh and a query point, the task is to
find which triangle from the mesh geometrically contains the
query point. Algorithms solving this problem can be divided
into two groups: algorithms with and without additional data
structures. The former concentrate on having the lowest time
complexity possible, in this case O(log n) per query point
(n is the number of vertices in the mesh). Despite their low
complexity, these algorithms have some disadvantages: they

have additional memory demands, they are more difficult to
implement, and they are often problematically modified to
cover adding or deleting vertices. The latter group tries to
avoid these disadvantages, but has a slightly higher, but still
sublinear, complexity.

The name of walking algorithms has arisen from their
operating principle. They use the triangle neighborhood
relations to go via the triangles between the starting triangle
and the one containing the query point. Such point location
process is called a walk. The starting triangle may be
arbitrary, however, its clever selection may radically shorten
the length of the walk, therefore we will cover this topic as
well. Walking algorithms do not need any additional data
structures, they use only the neighborhood relations in the
mesh, thus often they are more often chosen than the optimal
time complexity solutions.

There exist several walking algorithms solving the loca-
tion process, some are robust, others faster. In this paper, we
propose a new walking algorithm combining two existing
solutions in order to gain speed from the faster and still
remain robust. The main idea of our approach is to compute
such a transformation that the line connecting a selected
vertex of the starting triangle and the query point is parallel
with x-axis. This transformation is then used for the tested
points throughout the walk to enable a cheap comparison
of their position with respect to this line. Surprisingly,
despite the use of transformations, the walk is still fast,
because only the query point and the tested points (one
per visited triangle) are transformed. Since the walk goes
straight between the starting triangle and the query point, it
cannot cross the border of a convex triangular mesh, which
contributes to its robustness.

Section II presents the existing walking algorithms and
a sophisticated selection of the starting triangle for the
walk. Section III describes our new proposed algorithm,
Section IV shows experiments comparing our solution with
the existing algorithms. Section V summarizes the charac-
teristics of our algorithm.
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II. OVERVIEW

Point location by walking algorithms usually works in
two steps: (1) selection of the initial triangle for the walk,
and (2) using the neighborhood relationships between the
triangles (walking) to find the target triangle, containing the
query point.

A sophisticated selection of the initial triangle may radi-
cally improve the speed of the process. One way is to use
some additional knowledge about the data, i.e., if we know
the range of the mesh vertices coordinates, we can start all
the locations in a triangle containing the point lying in the
middle of the triangular mesh, used for instance by [1]. Or,
we may know that the next query point will be close to
the last one, in which case the best solution is to use the
target triangle from the last location as the initial one for
the next [11], [17].

Without any knowledge about the data, we may select
the initial triangle as the nearest triangle from a set A of
randomly chosen triangles from T , where ∥A∥ ≪ ∥T∥ [9].
Devroye et al. in [4] showed that such an improved straight
walk achieves O( 3

√
n) time complexity per one search for

uniformly distributed points, Zhu in [18] came to the same
complexity for the remembering stochastic walk.

Other solutions use some additional memory: [10] simpli-
fies the triangular mesh and locate the points in the simpli-
fied version first, [13] introduces a bucketing method, which
uses a uniform grid to quickly find a proper initial triangle.
Some algorithms [14], [16] try to avoid the sensitivity of
the original bucketing method on data uniformity by using
adaptive structures instead of a uniform grid.

When we know the initial triangle, the walk may proceed.
There are several algorithms solving this step. They can be
divided into three groups: visibility, straight and orthogonal
walks, according to the style how they determine the way
of the walk.

Visibility walks use local “visibility” tests to determine
the way of their walk. These tests look for such an edge
that defines a line separating the query point and the third
vertex of the triangle. The walk then moves across this edge
to the neighborhood triangle.

The first visibility walk algorithm is called Lawson’s
oriented walk [7]. The algorithm starts in the initial triangle
and uses the 2D orientation test to move to its neighbors
until it reaches the query point:

orientation2D(t,u,v) =

∣∣∣∣
ux − tx vx − tx
uy − ty vy − ty

∣∣∣∣ (1)

where points t,u define an oriented line and v is the tested
point. In each triangle, the algorithm tests the triangle edges
until it finds an edge, where the third vertex of the triangle
lies on the opposite side of the edge than the query point.
Then, it crosses such an edge to the next triangle. If such an
edge does not exist, the triangle containing the query point
has been found.

The Lawson’s oriented walk algorithm tests edges of
the current triangle in a deterministic order, depending on
the arrangement of edges in triangles, generated during the
construction of the triangulation. This leads to the fact that
the walk may loop for non-Delaunay triangulations [3], [15].
[3] proposed an algorithm avoiding the loop by choosing
the edges of the current triangle in a random order. This
modification is called stochastic. Furthermore, since it is not
necessary to test the edge incident to the previous triangle,
the process was sped up by remembering this edge and
skipping the test. This modification is called remembering
and brings a significant speedup, since only one or two
orientation tests are needed instead of up to three (except
of course the first triangle, where all the three edges may be
tested). As the second test is done only to find out whether
we are in the target triangle, [6] suggested to speed up the
process even more by testing only one edge for the first k
steps. If the triangle is found within this k steps, we circle
around it, so it is necessary to determine a proper k based
on the input.

Straight walk algorithms do not use only the local com-
parisons to determine the way of the walk, but they use
an oriented line −→pq, connecting one point p (its choice
depends on the particular solution) of the starting triangle
with the query point q and then pass all triangles intersected
by this line.

The standard straight walk algorithm [3], [8] works in
two steps: an initialization step and a straight walk step.
In the initialization step, a point p is chosen as any of the
starting triangle vertices and a triangle intersected by the line
segment −→pq is found. The walk starts from this triangle, and
in each step, it uses such a vertex of the current triangle that
is opposite to the edge used to enter this triangle and finds
out its position with respect to −→pq (using the 2D orientation
test). Based on its position, it selects which edge it should
cross to the next triangle. Before crossing, it computes the
orientation test for the point q with respect to this edge. If
the point q is on the inner side of the edge, the final triangle
has been found. Otherwise, the walk crosses the edge to the
next triangle and continues.

[12] proposed a modification of this method simplifying
the initialization step and speeding up the algorithm. Instead
of the 2D orientation tests, an implicit line equation of −→pq is
used. The equation is precomputed in the initialization step
along with an implicit equation of a line normal to −→pq in q,
which is used to determine if there is a possibility that the
target triangle has been found. However, the location of the
target triangle is not precise, so the remembering stochastic
walk algorithm is used for the short, final location (usually
about 2 triangles, for more detail see Section IV).

Orthogonal walks first navigate along one coordinate
axis and then along the other, which makes the local
tests cheaper, since only components of the coordinates are
compared during the walk. The walk is usually longer than
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other walks, but its tests are much cheaper, which results in
a faster location.

The original orthogonal walk [3] consists of three steps:
an initialization step, a walk along the x-axis, and a walk
along the y-axis. During the initialization step, any vertex p
of the starting triangle is chosen and two lines are defined:
a horizontal line, containing this vertex and parallel to the
x-axis, and a vertical line, containing the query point and
parallel to the y-axis. A triangle intersected by the horizontal
line and containing p is found. The walk then follows this
line in a similar manner as the straight walk, but with
component comparisons only: y-values are used to determine
the next triangle, x-values are used to determine if the
triangle intersected by the vertical line is found. When it
is done, the walk continues by following the vertical line,
where y-values are used to determine the next triangles and
x-values to determine the target triangle containing the query
point. For a few final triangles in each walk direction, it uses
2D orientation tests for a precise location.

The original orthogonal walk has a significant drawback:
it does not solve the case, when the walk crosses the border
of the triangular mesh. If the horizontal walk crosses the
border, the vertical walk starts from the last triangle and
usually does not find the correct triangle.

[1] proposes a modification, where the initialization step
is simplified, and the walk is sped up by using fewer
comparisons. Instead of two comparisons determining when
the target triangle may be found, in which case the original
walk uses the 2D orientation test to be sure, it uses only
one comparison. This way the walk may stop too early, but
since the previous tests were not precise anyway, slightly
less precision is not so important, and the Remembering
stochastic walk algorithm (RSW - details see in [3]) is used
for the last few steps. The use of RSW also solves the
problem with the possibility of crossing borders of the
triangular mesh, because in such a case, the algorithm does
not end at the correct triangle, but the final location with
RSW does. However, the final walk is then longer and slows
down the whole location.

Figure 1 shows such a situation: the horizontal walk
reaches the border at the triangle γ. Here, the algorithm
switches to the vertical walk, where the vertical line is
moved to the last tested point. The vertical walk stops at
the triangle δ, because the y component of sj is higher then
the one of q. This should mean that the triangle contains q
or is close to the target triangle, but as the horizontal walk
had to stop early, the triangle is still quite far. The original
algorithm would stop here and would not locate the right
triangle. Its modification uses the RSW algorithm at this
step and therefore locates the right triangle, but for a higher
time cost, because the RSW algorithm has more expensive
tests.

The complexity of the presented algorithms has been
proved only for their basic representatives, and also either

sip

qsj

α
γ

δ

Figure 1. A case when the orthogonal walk crosses the border of the
triangular mesh (a dotted line denotes the horizontal walk, a chain line
denotes the vertical walk, a chain line with double dots denotes the final
location by the RSW algorithm; the dashed and solid line denote the lines
controlling the walk).

the time complexity or the number of visited triangles has
been derived (note that these two values do not necessarily
correspond). The stochastic walk has been shown to need
O(

√
n · log n) expected time for uniform data [18]. The

straight walk has been proved to visit O(
√

n) triangles in
the expected case and uniform distribution [5], [10], a bound
based on [2] shows that the orthogonal walk has similar
complexity as the straight walk [4], [10].

III. THE PROPOSED ALGORITHM

The algorithm described in this paper is called a Hybrid
walk, because it combines the basic idea of two walking
strategies: straight and orthogonal walk, to keep the advan-
tages of both. The algorithm works in four steps. In the
initialization step, a point p is chosen as any of the vertices
of the starting triangle, and a transformation matrix M is
set to transform the tested points in a way as if the line −→pq
was parallel with the x-axis and p′

x < q′
x (prime symbol

denotes the transformed vertices, i.e., p′ = p · M ). From
this point, each tested vertex is first transformed, and then
only its coordinate components are compared in the tests. In
the next step, a triangle intersected by −→pq and containing p
is found. The third step is the walk itself, following the line−→pq. The final, short location (about 2 triangles) is done by
the RSW algorithm.

There exist many transformations meeting the previous
requirements, to achieve the fastest computation possible, we
chose the transformation matrix combining rotation by angle
φ and scaling by k. The variables φ and k are determined
by the mutual position of the points p,q. The equation used
for transforming a vertex v is as follows:

v′ = (vx, vy) ·
(

k · cos φ k · sinφ
−k · sinφ k · cos φ

)
(2)
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Figure 2. Components of the transformation matrix (x′ is parallel with
the x-axis, y′ with the y-axis).

Computing sine and cosine of φ would be slow, but it
can be avoided by using triangle similarity (see Figure 2),
so qy −py and qx −px are computed instead of k · sin φ and
k · cos φ. Note that this fast computation of sine and cosine
is the reason why k was introduced, otherwise k = 1 would
be used.

Now, let us describe the algorithm in detail (for pseu-
docode, see Algorithm 1). In further text, we assume that
the vertices of the triangles are in a CCW order. During
the initialization step, the point p needs to be selected as
simply and fast as possible, because the tests done after the
transformation are cheaper. Therefore, we choose any of the
vertices of the starting triangle as p (as is done in [3]) and
compute the transformation matrix.

When the transformation matrix is set, the triangle δ
intersected by −→pq and containing p needs to be located.
This is done in a similar manner as in the straight walk, but
with cheaper tests thanks to the use of transformations. We
select a different vertex than p from the starting triangle,
let us denote it r, and compute the y-coordinate of its
transformed version r′. Then we turn around p until we
find the desired triangle. In each triangle, we determine
which edge we should cross to the neighborhood triangle
by comparing r′

y with q′
y . Therefore, during this step, only

one transformed coordinate has to be computed and one
coordinate component comparison per triangle is performed.

The walk starts from the triangle δ and follows the line−→pq. In each triangle τi with vertices li, ri, si, the edge ϵliri

is used to cross to this triangle, li is to the left of −→pq and ri
to the right. The edge to cross is determined by comparing
the y components of s′

i and q′. If s′
i is above

−−→
p′q′, we cross

the edge ϵrisi , otherwise, we cross the edge ϵlisi . Note that
if the line leaves the triangle through its vertex, the walk
may continue by both ϵrisi and ϵlisi , in the pseudocode we
choose the latter one. Also the x-components of s′

i and q′ are
compared to end the walk if there is the possibility that the
target triangle has been found. Therefore, during this step,
both transformed components of si have to be computed and
two component comparisons per triangle are performed.

The triangle in which the walk ends does not necessarily

Input: the query point q, the chosen starting triangle α ∈ T
Output: the triangle ω which contains q

// initialization step
triangle τ = α = lrs;
point p = s;
if p = q then return τ ;
vector a = q − p;
// k = ∥a∥
double kcos = ax;
double ksin = ay ;
q′

x = qx · kcos − qy · ksin;
q′

y = qx · ksin + qy · kcos;
double r′

y = rx · ksin + ry · kcos;
if r′

y > q′
y then

// r is above −→pq
double l′y = lx · ksin + ly · kcos;
while l′y > q′

y do
τ = neighbor of τ trough ϵpl;
r = l;
l = vertex of τ , where l ̸= p, l ̸= r;
l′y = lx · ksin + ly · kcos;

end
s = l; l = r; r = p;

else
// r is below −→pq
repeat

τ = neighbor of τ trough ϵpr ;
l = r;
r = vertex of τ , where r ̸= p, r ̸= l;
r′

y = rx · ksin + ry · kcos;
until r′

y > q′
y ;

s = r; r = l; l = p;
end
// now −→pq intersects τ

// walk step - following the line segment −→pq
s′

x = sx · kcos − sy · ksin;
while s′

x < q′
x do

s′
y = sx · ksin + sy · kcos;

if s′
y < q′

y then r = s; else l = s;
τ = neighbor of τ trough ϵlr ;
s = vertex of τ where s ̸= r, s ̸= l;
s′

x = sx · kcos − sy · ksin;
end
return remembering stochastic walk(q, τ);

Algorithm 1: Hybrid Walk

contain the query point, but it is usually very close to the
one that does. The final location is performed by the RSW
algorithm (as can be seen in Section IV, it visits about 2
triangles in average). For its implementation, we used the
pseudocode from [3].

IV. EXPERIMENTAL RESULTS

For the testing purposes, we implemented the proposed
algorithm and the previous algorithms in Java with double
precision floating point arithmetic. The algorithms were
tested on Intel Q6600 2,40GHz. Based on the tests per-
formed on different types of triangulations, we chose De-
launay triangulation as a sufficient representative. The tests
were performed on triangulations of many different datasets,
which were of three different types: randomly distributed
points in the unit square, the real geodetic data from land
registers and LIDAR data.

We selected the fastest of the existing algorithms and
compared them with our proposed solution. The selected
algorithms were: Remembering stochastic walk (RSW),
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Figure 3. A hybrid walk example (a dashed line denotes the initialization
step, a chain line denotes the walk and the final location by RSW algorithm
is marked by a dotted line).

Normal Straight Walk (NSW), Improved Orthogonal Walk
(IOW) and our Hybrid Walk (HW). Remembering walk is
faster than its modification RSW, however, it may loop for
other than Delaunay triangulations, thus to be objective, we
did not include it in our test results.

In each test, 107 pairs of the initial triangle and the target
point were generated randomly, and the average number of
the tested properties were computed. Such properties were:
the length of the walk (#∆), the number of the tests (#tests)
and the time per one location (t[µs]). The properties #tests
and #∆ consist of two values for some algorithms. The
former value concerns the walk, the latter concerns the final
location performed by RSW.

Table I contains selected results of the tests for a triangular
mesh enclosed in a rectangle preventing the orthogonal
walk from crossing the border of the triangular mesh. Note
that the number of triangles visited by our algorithm is
about the same as in NSW, because both algorithms visit
triangles intersected by the line connecting a point from the
starting triangle with the query point, the only difference
is in the particular selected point. However, tests done in
each triangle by NSW are slower than by our algorithm,
therefore the time per one location is higher. RSW algorithm
is the slowest because of the 2D orientation tests and
randomization done in each step. We included it in the tests
as a representative of visibility walk group, but especially
because it is used for the final location in all NSW, IOW
and HW algorithms.

Table II compares our algorithm with IOW for randomly
distributed points in a rectangle 2:1, rotated by π/6, which
aims to resemble a more realistic situation, where some
particular walks cross the border of the triangular mesh.
It can be seen that our algorithm is the most suitable for
such data that are not enclosed in a shape preventing the
walk from crossing the border of the triangular mesh. Even
a small percentage of walks leaving the triangular mesh
slows down the whole location process in a way that our

algorithm is faster. With a growing percentage of such
walks, our algorithm becomes significantly faster. Recall
Figure 1, providing an explanation for this behavior. Each
walk leaving a triangular mesh in OW leads into a longer
final walk done by RSW algorithm, which is slower (see
Table I).

Even for the cases, when the walk does not cross the
triangular mesh border (Table I), our algorithm has compa-
rable results to OW, particularly for a uniform distribution
its speed is similar or better. Moreover, its implementation is
simpler than the one of OW, because our algorithm does not
have four different cases which need to be solved separately.

V. CONCLUSION

We presented a new walking algorithm, combining the
basic idea of two walking strategies (straight and orthogonal
walk). Experiments proved that our algorithm is faster than
the fastest existing visibility and straight walk algorithms,
and comparable with orthogonal walk algorithms. If there is
even a small percentage of walks that cross the boundary of
the triangular mesh, our algorithm becomes faster than the
orthogonal walk. Furthermore, its implementation is simpler,
because the problem does not split into cases which has to
be solved separately, as it is for the orthogonal walk.
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Abstract. Finding which triangle in a planar triangle mesh contains
a query point is one of the most frequent tasks in computational geome-
try. Usually, a large number of point locations has to be performed, and
so there is a need for fast algorithms resistant to changes in triangula-
tion and having minimal additional memory requirements. The so-called
walking algorithms offer low complexity, easy implementation and neg-
ligible additional memory requirements, which makes them suitable for
such applications. In this paper, we propose a walking algorithm which
significantly improves the current barycentric approach and propose how
to effectively combine this algorithm with a suitable hierarchical struc-
ture in order to improve its computational complexity. The hierarchical
data structure used in our solution is easy to implement and requires low
additional memory while providing a significant acceleration thanks to
the logarithmic computational complexity of the search process.

1 Introduction

The point location problem is often solved in computational geometry tasks, such
as triangulation construction and deformation, morphing and terrain editing. In
this text, we focus on point location algorithms for triangle meshes, which are
the most common geometry representation.These algorithms can also be used for
terrain models represented by triangle meshes without any preprocessing, only by
omitting the height information during the location. The input mesh is expected
to be convex and without holes, other types of data should be triangulated first.

The point location problem is defined as follows. For a given planar triangle
mesh and a query point, the task is to find which triangle from the mesh geomet-
rically contains the query point. Algorithms solving this problem can be divided
into two groups: algorithms with and without additional data structures. The
former concentrate on having the lowest computational complexity possible, in
this case O(log n) per query point (n is the number of vertices in the mesh).
However, these algorithms have additional memory demands, they are more
difficult to implement, and their modification to cover adding or removing ver-
tices is often problematic. The latter group tries to avoid these disadvantages,
but has a slightly higher, but still sublinear complexity. The most important
representatives of this group are walking algorithms.

Walking algorithms use the triangle neighborhood relations to go (walk) via
the triangles between the starting triangle and the one containing the query

G. Bebis et al. (Eds.): ISVC 2012, Part II, LNCS 7432, pp. 736–745, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Example of the point location with a walking algorithm on the part of a terrain
model

point (see Figure 1). The starting triangle may be arbitrary, however, its clever
selection may radically shorten the length of the walk.

The so-called barycentric walk [1] is an easily implementable algorithm which
is independent of the triangles orientation. Although, in its original form, it is
also one of the slowest walking algorithms, but has a high potential for speed-
up, because its walk is the shortest among the existing walking algorithms. Our
approach significantly improves the speed of this algorithm, making it more in-
teresting for further use in complex algorithms and applications. We also propose
its combination with a suitable additional data structure in order to improve its
computational complexity. The hierarchical data structure used in our solution
is easy to implement and requires low additional memory, but it provides a sig-
nificant acceleration thanks to the logarithmic computational complexity of the
search process.

The rest of the paper is organised as follows. Section 2 presents the exist-
ing walking algorithms and several approaches for a sophisticated selection of
the starting triangle for the walk. Section 3 describes our new proposed algo-
rithm, Section 4 shows experiments comparing our solution with the existing
algorithms. Section 5 summarizes the paper.

2 State of the Art

Point location by walking algorithms usually works in two steps: (1) selection
of the initial triangle for the walk, and (2) using the neighborhood relationships
between the triangles to find the triangle containing the query point (walking).

Clever selection of the initial triangle may radically improve the speed of the
process. Some approaches provide solutions using additional information about
the data, such as the range of the mesh vertices [2], take advantage of sorted
vertices [3] or sort them properly prior to the location ([4],[5], [6], [7]).
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Without any additional memory, we can speed up the process by selecting the
initial triangle as the closest one from a randomly chosen subset of triangles [8].
An ideal size of such a set is O( 3

√
n) [9] for a random input.

More efficient solutions lead to some additional memory consumption. [10]
proposed a method simplifying the mesh and locating the point in the simplified
version first. From the triangulation T with n vertices, only m = k · n vertices
(where k ∈ (0, 1)) are randomly selected, triangulated and so a higher layer for
the location is created. The number of triangles is much smaller in the new layer
and it radically improves the speed of a walk in it. If m is still bigger than a
chosen size, other layers are constructed in the same way. The point location
then runs in several steps. First, the triangle containing the query point is found
on the highest layer. The closest vertex of this triangle defines the starting point
for the walk in the lower layer, until the triangle in the lowest layer is found.
In each layer, the walk is short and therefore fast. [11] analyses this algorithm,
specifies the computational complexity as O(log n) for any input and proposes
the optimal value of k = 0.025 which is valid for random input and leads to the
best rate between speed and memory usage.

[12] introduce a bucketing method, which uses a uniform grid to quickly find
a proper initial triangle. Empty cells slow down the algorithm, therefore it is
suitable mainly for uniformly distributed vertices. Some algorithms (e.g., [13],
[14]) try to avoid the sensitivity of the original bucketing method to data unifor-
mity by using adaptive structures instead of a uniform grid. However, on highly
non-uniform data, the dynamic hierarchy algorithm mentioned above [10], [11]
still provides better results with lower additional memory.

When we know the initial triangle, the walk may proceed. There exist several
algorithms solving this step, and according to the style how they determine the
way of the walk, they can be divided into three groups: visibility, straight and
orthogonal walks.

Visibility walks use local “visibility” tests to determine the way of their walk.
These tests look for such an edge that defines a line separating the query point
and the third vertex of the triangle. The walk then moves across this edge to
the neighborhood triangle.

The first visibility walk algorithm is called Lawson’s oriented walk [15]. The
algorithm starts in the initial triangle and uses this 2D orientation test to move
to its neighbors until it reaches the query point:

orientation2D(t,u,v) =

∣∣∣∣
ux − tx vx − tx
uy − ty vy − ty

∣∣∣∣ , (1)

where points t,u define an oriented line and v is the tested point.
The algorithm tests the edges of the current triangle in a deterministic order,

leading to the fact that the walk may loop for non-Delaunay triangulations (see
Figure 3a). [16] proposed an algorithm avoiding the loops by choosing the edges
of the current triangle in a random order. This modification is called stochastic.
Furthermore, since it is not necessary to test the edge incident to the previous
triangle, the process was speeded up by remembering this edge and skipping the
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test. The stochastic walk has been shown in [17] to need O(
√

n · log n) expected
time for uniform data.

[1] proposed a visibility walk algorithm which uses barycentric coordinates
instead of the 2D orientation test. Barycentric coordinates b0, b1, b2 describe the
position of a point q with respect to a triangle τt0t1t2 (see Figure 2). The point
q is an affine combination of t0, t1, t2:

q = b0 · t0 + b1 · t1 + b2 · t2 (2)

where bi ∈ R, i = 0, 1, 2, b0 + b1 + b2 = 1.
bi can by computed using the 2D orientation tests:

bi(t0, t1, t2,q) =
orientation2D(t[(i+1) mod 3], t[(i+2) mod 3],q)

orientation2D(t0, t1, t2)
(3)

t0

t2

t1

q

b0b1

b2

t0

t2

t1

q

b0b1

b2

tt11bb

tt

-
+

-

-
+

+

τ

ω

Fig. 2. Barycentric coordinates of q inside a triangle ω, b(ω) = (0.25, 0.35, 0.4), and
outside a triangle τ , b(τ ) = (−0.75, −0.25, 2)

Each barycentric component bi corresponds to one edge of the triangle, defining
on which side of this edge the point q lies: either inner (positive value), or outer
(negative value) side of the triangle, disregarding the orientation of the triangle.
The higher the value of the component is, the bigger the triangle defined by the
edge and the query point is. The walk via bigger triangles is usually shorter,
therefore, the algorithm takes advantage of it by crossing such an edge of the
triangle that corresponds to the component with the highest negative value.

The barycentric components of q are computed for each visited triangle. Since
the third component can be computed from the other two components, we need
three 2D orientation tests for each visited triangle. Although not stated by [1],
the algorithm may loop in some rare cases - see Figure 3b. In the triangle τ , the
area s2 is greater than s1, so the walk does not cross the edge leading to the
triangle containing q. A similar case happens in other thin triangles.

Straight walk algorithms walk along an oriented line −→pq, connecting one point
p (its choice depends on the particular solution) of the starting triangle with the
query point q and then pass all triangles intersected by this line. This way, the
walk is short.

The standard straight walk algorithm [16,19] chooses p as any of the starting
triangle vertices and moves around it until it finds the triangle intersected by
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q q

s1 s2τ

a) b)

Fig. 3. a) Loop of Lawson’s oriented walk [18] and b) Loop of the Barycentric walk

the line segment −→pq. Then it follows this line segment, using one orientation test
to choose the proper edge, and another for checking if q is still on the outer side
of this edge.

Orthogonal walks first navigate along one coordinate axis and then along the
other, which makes the walk longer, but the local tests much cheaper, since only
components of the coordinates are compared during the walk.

The original orthogonal walk [16] chooses one vertex of the starting triangle
and then follows the horizontal line defined by this vertex, until it finds the
triangle intersected by the vertical line defined by the query point. Then it
continues along this line to the target triangle. This approach has a significant
drawback: the border of a triangulation may be crossed during the walk, in which
case a special modification is needed, resulting in a slower location process and
additional implementation effort.

A speed-up of this walk was proposed in [2], where fewer tests are done during
the location for a price that the walk may not find the correct target triangle,
but only a triangle in its neighborhood, and a visibility walk algorithm is used
for the final short location. The algorithm does not need any modification for
dealing with the crossing of the border, but the final location by a visibility walk
in this case may be much longer.

3 Proposed Algorithm

Our algorithm is based on the original barycentric walk [1]. However, unlike [1]
it does not use the barycentric coordinates, but only the orientation tests of the
edges, with respect to their relation to barycentric coordinates.

To decide which edge to cross to the next triangle, we compute the same
orientation test as the Lawson’s oriented walk [15], but we use not only its sign,
but also the values. Let us call the proposed algorithm direct walk because the
purpose of this change is to maintain the shortest walk of [1] while speeding up
the algorithm by performing less orientation tests in each triangle.

If we denote the value of the orientation test for the point q and an edge
opposite to vertex vi as ci (let us call it orientation coordinate), we can derive
interesting properties from its relation to the barycentric coordinate bi:
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ci(t0, t1, t2,q) = bi(t0, t1, t2,q) · orientation2D(t0, t1, t2) (4)

where ci ∈ R, i = 0, 1, 2 and c0 + c1 + c2 = orientation2D(t0, t1, t2).
Our algorithm uses the properties of the orientation coordinates in the follow-

ing way. In each triangle, it uses the orientation coordinate cprev corresponding
to the edge crossed to this triangle. The new coordinate ci for this edge can be
obtained as ci = −cprev. The coordinate c[(i+1) mod 3] is computed using the
orientation test (Eq. 1), and the last coordinate c[(i+2) mod 3] is derived from
the knowledge of the area A of the current triangle as c[(i+2) mod 3] = 2A − ci −
c[(i+1) mod 3] (the barycentric property), where 2A = orientation2D(t0, t1, t2).

As a result, for each visited triangle we have to compute two orientation tests:
one for an edge and one to get the doubled area of the triangle (three for the
first triangle, where we have to compute cprev as well). In applications working
with areas of the triangles of the input mesh, one may prefer to store them.
The use of these values during the location then results in the need of only one
orientation test per visited triangle (two for the first triangle).

Just as the barycentric walk, our algorithm is resistant to variable orientation
of the triangles. If there is a possibility of such a case, we need to test the sign
of the triangle area and in case of the negative sign, we reverse the signs of all
the orientation coordinates. The orientation information can be easily obtained
from the 2A value which produces a signed value. For more details, see the
pseudo-code in Algorithm 1.

Input: the query point q, the chosen starting triangle α ∈ T

Output: the triangle ω which contains q

integer i;
edge ε;
triangle τ = α = t0t1t2;
double min, c0, c1, c2, ca;

c0 = orientation2D(t1, t2, q);
c1 = orientation2D(t2, t0, q);
ca = stored double area of τ ; // or ca = orientation2D(t0, t1, t2)
c2 = ca − c0 − c1;

// the following condition is necessary for non-uniform triangle orientation
// if ca < 0 then begin c0 = −c0; c1 = −c1; c2 = −c2; end

min = minimal cj where j ∈ {0, 1, 2};
ε = edge corresponding to minimal cj ;

while min < 0 do
τ = neighbour of τ over ε;
i = index of ε in τ ;
ci = −min;
c[(i+1) mod 3] = orientation2D(t[(i+2) mod 3], t[(i+3) mod 3], q);

ca = stored double area of τ ; // or ca = orientation2D(t0, t1, t2)
c[(i+2) mod 3] = ca − ci − ci+1;

// the following condition is necessary for non-uniform triangle orientation
// if ca < 0 then begin c0 = −c0; c1 = −c1; c2 = −c2; end

min = minimal cj where j ∈ {0, 1, 2};
ε = edge corresponding to minimal cj ;

end
return τ ;

Algorithm 1. Direct walk
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Often, there is a need for a faster algorithm for a price of some memory con-
sumption, in which case, we offer to use our walking algorithm in a combination
with a hierarchical structure proposed by [11] favoured for its low memory re-
quirements, an easy modification (in terms of adding or deleting vertices from the
input triangle mesh) and excellent results for non-uniform data. For the detailed
description of the hierarchical structure, see Section 2. Here we will describe its
combination with our method.

Our algorithm is suitable for such a structure thanks to its fast initialization
step, which is performed in each layer. Also, when moving to the lower layer, we
do not have to compute which vertex of the target triangle is closest to the query
point - we already know its orientation coordinates and can therefore easily select
the vertex with the highest orientation coordinate ci and use it as the starting
for the walk in the lower layer. This way, we save three distance computations in
each descend. Also, since there is only a fragment of the original number of the
triangles in the higher layers, we can store the area information there and thus
speed up the algorithm even more for a low additional memory consumption.

4 Experimental Results

We selected the most popular and also the fastest of the mentioned algorithms
to compare with our method: the remembering walk (RW) [15], the remem-
bering stochastic walk (RSW) [16], the barycentric walk (BW) [1], the straight
walk (SW) [16], and the orthogonal walk (OW) [2].

For the test purposes, we implemented the specified algorithms in C++ and
tested on Intel Q6600 2,40GHz. SSE2 random generator was used for RSW
algorithm since is declared as up to five times faster then the standard C random
generator [21].

The tests were performed on the triangulations on three types of datasets:
randomly distributed points in a unit square, LIDAR data and data from a
cadastre. On each dataset, we constructed four types of triangulations: Delaunay
(DT), Greedy, MWT and Min-max angle. The results were similar, so we present
them on the most popular triangulation type, DT.

In each case, we performed 107 location processes and computed the average
number of the tested quantities. The following qualities were examined for each
algorithm: the average number of visited triangles (#Δ), the average number
of tests (#tests) and the average time per one location (t[μs]). Note that the
number of tests done by each algorithm is presented only to measure how many
tests per triangle the particular algorithm does on average, not to compare the
performance of the algorithms - for that, we should use the time values, since
the speed of their tests differ among the algorithms. The properties #tests and
#Δ consists of two values for OW: the former value concerns the walk, the latter
concerns the final location performed by RW.

Table 1 shows the results of the tests for a random initial triangle and a ran-
dom target point. Table 2 presents the performance of the algorithms when they
are used in the hierarchical approach by [11]. The hierarchical approach was
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tested on randomly generated rectangular datasets, the datasets for testing the
original algorithms were bounded by a rectangle and retriangularized to obtain
a fair measurement of the orthogonal walk, which is slower for non-rectangular
data, where it often crosses the border of the triangulation.

Two versions of our algorithm were tested, DW1 uses the precomputed area
information, DW2 does not. For the hierarchical approach, DW2 stores the area
information only for the higher layers, not for the original mesh.

Algorithms that performed remarkably worse with the selected hierarchical
structure, such as the original barycentric walk and the straight walk, were not
included in the final tests.

The results in Table 1 confirm that the shortest length of the barycentric
walk was maintained and its speed was improved. Although the barycentric
walk without the precomputed areas (DW2) is still slightly slower than the RW
algorithm, it can be preferred when the triangle orientation varies throughout
the triangulation. If the intended application uses the triangle areas for other
purposes, DW1 can be used to obtain the best performance.

When combined with the hierarchical structure (see Table 2), our algorithm
becomes the fastest, thanks to the short walk and avoiding the computation of

Table 1. Comparison of the walking algorithms with randomly chosen α (#Δ repre-
sents the number of visited triangles, #tests represents the number of performed tests,
t[μs] represents the time per one location)

#Δ #tests t[μs] #Δ #tests t[μs] #Δ #tests t[μs]
φ per located point φ per located point φ per located point

Cadastre data
4897 vertices (9774 Δ) 15824 vertices (31642 Δ) 70437 vertices (140868 Δ)

RW 94.4 129.5 3.48 160.5 213.2 6.52 321.3 417.9 14.90
RSW 92.1 122.2 5.89 158.1 208.5 10.71 312.9 414.8 23.04
BW 87.4 262.2 5.92 149.6 448.8 10.72 283.1 849.2 21.87
SW 2.8+88.2 3.3+175.4 4.75 2.7+149.6 3.2+298.3 8.63 2.8+294.8 3.3+588.9 18.72
OW 94.2+4.3 192.6+7.0 2.01 176.5+2.7 357.3+5.2 4.32 319.0+3.5 642.0+6.4 9.50

DW2 87.4 175.8 4.34 149.6 300.2 8.00 283.1 567.2 17.43
DW1 87.4 88.4 2.87 149.6 150.6 5.48 283.1 284.1 12.63

LIDAR
34932 vertices (69858 Δ) 313348 vertices (626690 Δ) 3722068 vertices (7444130 Δ)

RW 205.5 275.4 8.98 613.5 823.3 38.18 2569.1 3444.2 181.51
RSW 202.6 265.6 14.26 608.5 792.6 54.09 2543.3 3305.4 248.08
BW 179.3 537.9 13.34 509.1 1527.3 47.24 2203.3 6609.8 222.76
SW 2.7+180.8 3.2+360.6 10.94 2.7+542.8 3.2+1084.6 42.98 2.8+2316.4 3.3+4631.8 202.65
OW 240.7+1.7 485.8+3.8 6.60 695.0+1.7 1394.3+3.8 31.88 2741.8+2.2 5487.8+4.5 148.45

DW2 179.3 359.6 10.20 509.1 1019.2 38.41 2203.3 4407.6 184.06
DW1 179.3 180.3 7.23 509.1 510.1 29.90 2203.3 2204.3 147.73

Randomly distributed points in the unit square

104 vertices (19994 Δ) 105 vertices (199994 Δ) 106 vertices (1999994 Δ)
RW 118.1 159.2 4.34 366.1 491.5 19.43 1144.7 1533.0 81.39
RSW 115.8 152.5 7.40 362.5 474.5 29.02 1130.5 1476.5 110.94
BW 103.2 309.6 7.08 326.8 980.1 27.60 1028.2 3084.5 105.12
SW 2.8+105.5 3.3+210.0 5.71 2.7+335.6 3.2+670.2 23.56 2.7+1065.4 3.2+2129.8 93.96
OW 137.8+1.8 279.9+3.9 2.84 433.3+1.7 870.8+3.8 15.71 1336.3+1.8 2676.9+3.9 72.42

DW2 103.2 207.4 5.22 326.8 654.6 21.71 1028.2 2057.4 86.89
DW1 103.2 104.2 3.46 326.8 327.8 16.16 1028.2 1029.2 69.37
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Table 2. Comparison of the walking algorithms with hierarchical structure (#Δ repre-
sents the number of visited triangles, #tests represents the number of performed tests,
t[μs] represents the time per one location)

#Δ #tests t[μs] #Δ #tests t[μs] #Δ #tests t[μs]
φ per located point φ per located point φ per located point

102 vertices (2 layers) 103 vertices (2 layers) 104 vertices (3 layers)
RW 7.8 10.8 0.40 13.4 18.7 0.60 24.0 32.0 1.06
RSW 7.6 11.2 0.60 13.2 18.4 0.96 22.6 29.0 1.63
OW 10.8 + 2.3 25.9 + 3.3 0.63 13.8 + 3.5 31.7 + 7.4 0.74 19.5 + 4.8 43.1 + 10.6 1.08

DW2 6.3 13.5 0.35 11.8 19.8 0.55 20.7 30.1 0.87
DW1 6.3 8.3 0.22 11.8 13.8 0.40 20.7 23.7 0.71

105 vertices (3 layers) 106 vertices (4 layers) 107 vertices (4 layers)
RW 30.9 41.2 1.36 24.5 30.8 1.21 35.5 47.9 1.84
RSW 27.0 36.7 1.95 23.3 32.1 1.81 36.3 48.8 2.88
OW 25.8 + 5.8 58.2 + 12.4 1.36 23.8 + 5.9 51.9 + 14.2 1.43 30.5 + 9.27 65.3 + 18.25 1.87

DW2 22.7 29.3 0.90 22.0 30.4 0.94 31.3 45.0 1.58
DW1 22.7 25.7 0.81 22.0 26.0 0.84 31.3 35.3 1.34

distances in each descend. Note that between the location time for 105 and 106

vertices, there is not much difference. The explanation is simple - 105 vertices
is just below the limit for the creation of a new layer, while for 106 vertices the
new layer is created.

Although we identified a situation where both the barycentric walk and our
improvement can loop, during our thorough tests on the types of triangulations
listed above, neither of the algorithms looped.

5 Conclusion

We presented a modification of the barycentric approach for the point location
and proposed how to combine it with a popular hierarchical structure to gain
more speed-up than in combination with other walking algorithms.

We compared the performance of our algorithm with the most popular and
also the fastest of the existing walking algorithms. We compared both the original
algorithms and their combination with the selected hierarchical data structure.
Our approach proved to be faster than the original, while maintaining its advan-
tages. When combined with the hierarchical structure, our algorithm becomes
the fastest, thanks to its suitability for the structure.

Acknowledgement. This work has been supported by the Czech Science Foun-
dation under the project P202/10/1435 and by University of West Bohemia
under the project SGS-2010-02.

References

1. Sundareswara, R., Schrater, P.: Extensible point location algorithm. In: Interna-
tional Conference on Geometric Modeling and Graphics, pp. 84–89 (2003)

51



A New Visibility Walk Algorithm for Point Location in Planar Triangulation 745
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Submitted to (currently in the first revision):

International Journal of Geographical Information Science, Taylor & Francis,
IF 1.479 (2013)

53



International Journal of Geographical Information Science
Vol. 00, No. 00, Month 200x, 1–21

RESEARCH ARTICLE

Walking algorithm for point location in a triangulated
non-convex domain with holes

Roman Soukala∗ and Ivana Kolingerováab
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bNTIS - New Technologies for Information Society, Univesity of West Bohemia,
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1. Introduction

For a given query point, the point location problem in a triangulated terrain model means
to find the triangle from the model, in which the given point lies. It is a frequent operation
in the GIS algorithms and software: it is needed in the construction and the modification
of the triangulated terrain model (Amenta et al. 2003, Boissonnat and Teillaud 1986,
Buchin 2005, Dæhlen et al. 2001, Devillers 2002, Green and Sibson 1978, Lawson 1977,
Purchart et al. 2012, Sloan 1987, Su and Drysdale 1995, Zadravec and Žalik 2005, Žalik,
B. and Kolingerová, I. 2003), in the interactive inspection of the model (Purchart et al.
2012), in the identification of the place where some shapes are to be inserted (Dæhlen
et al. 2001, Koch 2005, Schilling et al. 2007, 2009), in the accuracy verification of the
model (Höhle et al. 2010), etc. Usually, many point location queries have to be performed,
so the location algorithm should be efficient - with low computational complexity, and
it should be easily programmed and maintained. Moreover, triangulated model can be
frequently changed and vertices can move over time, therefore location algorithm should
be able to handle these possibilities.

Due to the importance of the point location problem, many algorithms have been
developed, but not all of them are suitable for a non-convex shape of the triangulated
domain. Optimal computational complexity O(log n) for a model with O(n) triangles is
achieved at a price of additional memory for location data structures and more com-
plicated manipulation, especially in the case when the triangulated model is frequently
changed or vertices are moving over time. Therefore, the so-called walking algorithms
are often used, thanks to their simplicity, still sublinear expected complexity and ability
to handle triangulated models which are changing over time without significant changes.

The name of the walking algorithms describes their principle: the search goes from a
triangle to its neighbor in the direction of the given query point until the target triangle,
containing the given point, is found. No additional data structures are needed; just
neighborhood relations between triangles have to be available. The starting triangle for
such a walk may be arbitrary; however, an appropriately selected starting triangle may
radically shorten the length of the walk.

For terrain models, the point location is usually formulated as a planar problem: for a
given planar triangle mesh of a set of points, bounded by its convex hull, find the triangle
which contains the given planar point. The omission of the third coordinate giving the
height of points does not make a problem as this simplification is generally accepted
and widely used in the terrain representation. However, as far as we know, all existing
walking algorithms concentrate on convex triangulated areas only and the limitation to a
convex shape of the triangulated domain might be too restricting. Terrain data can have
any non-convex shape, even with holes. For example, it is ordinary for common LiDAR
data, where water surfaces usually absorb laser rays (Antonarakis et al. 2008).

It seems that the solution can be an additional triangualization of the non-triangulated
areas. But in practice, since vertices are missing in these areas, it causes a variety of com-
plications. For example, the triangles near the border of the convex hull are skinny and
cause troubles in modeling and visualization, such as incorrect shading (Shewchuk 2002)
and erroneous shape of contour lines computed on such triangles (Kolingerová et al.
2009). Moreover, additionally triangulated areas often contain lots of long narrow tri-
angles which make standard walking algorithms less effective and may cause numerical
problems. Therefore, we have developed a new walking algorithm, suitable for non-convex
triangulated domains with holes without any preprocessing (see the illustrative example
in Fig. 1) and present it in this paper. Note that an auxiliary data structure for bound-
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Figure 1. Illustrative example of a walking algorithm in a triangulated non-convex domain with
holes (cadaster data)

ary representation is not expected since its construction and maintenance have similar
drawbacks as other additional data structures.

The paper is organized as follows. Section 2 describes the notation and the mathemat-
ical background used throughout the text. Section 3 provides an overview in the task
of a point location in a triangulated non-convex domain with holes and presents some
modifications of existing methods to solve the problem. Section 4 describes the proposed
walking algorithms for point location in a triangulated non-convex domain with holes.
Section 5 presents our experiments performed on real geodetic and CAD datasets and
shows detailed results of the algorithm, Section 6 concludes the paper.

2. Basic Notation and Mathematical Backgorund

The term border (of the triangle mesh) denotes both the outer border of the triangulated
domain and the border of an inner hole.

Vectors, points and vertices are denoted by bold lower case characters (e.g. a,b). Scalar
variables are denoted by lower case characters in italic (e.g., k, l). For an oriented line

segment between two points (e.g., points a,b where a ̸= b),
−→
ab is used.

The letter ϵ denotes an edge of a triangle, subscripts are used to specify vertices that
belong to this edge. Other lower case Greek letters are used for triangles. A query point
is usually denoted as q, T is the triangle mesh in which we want to locate q. The starting
triangle of the walking is always marked as α (α ∈ T ), the triangle which contains q is
denoted as ω (ω ∈ T ), the i-th triangle visited by the walking algorithm is denoted as τi.

To determine the position of a point v with respect to an oriented edge (or oriented

line)
−→
tu, we use the sign of the determinant in the so-called 2D orientation test (Devillers

et al. 2001):
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Figure 2. Example of orientation tests for triangle
edges

orientation2D(t,u,v) =

∣∣∣∣
ux − tx vx − tx
uy − ty vy − ty

∣∣∣∣ (1)

where the positive value is returned for v on the left of
−→
tu and negative for v on the

right of
−→
tu.

Figure 2 shows the resulting signs of orientation tests from Equation 1 for a triangle
τt0t1t2 with the CCW order of vertices.

3. State of the Art

Let us describe two main categories of point location algorithms: the walking algorithms
and the algorithms using additional location data structures.

3.1. Walking algorithms

There are several walking algorithms solving point location problem, and according to
the style how they determine the way of the walk, they can be divided into three groups:
visibility, straight and orthogonal walks. The survey of these algorithms is provided in
(Soukal et al. 2012b, Devillers et al. 2001). If the triangulated domain is convex, most
of walking algorithms never cross the border of the triangle mesh, however, as far as we
know, there is no walking algorithm solving complex cases such as triangle meshes with
holes or triangle meshes with non-convex boundaries.

Visibility algorithms perform local tests (usually 2D orientation tests - see Equation 1)
in each triangle they walk through. These tests look for such an edge which defines a line
separating the query point from the third vertex of the triangle. The walk then moves
across this edge to the neighboring triangle. For a triangulated convex domain, it never
crosses the border of the triangle mesh, however, deterministic versions of visibility walk
algorithms (Lawson 1977) may loop for non-Delaunay triangulations (Devillers et al.
2001, Weller 1998). It has been shown that for a planar Delaunay triangulation, the
deterministic versions cannot loop (Floriani et al. 1991, Weller 1998). For non-Delaunay
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triangulations, a randomized (stochastic) version exists (Devillers et al. 2001), it is slower,
because the randomization step is done in each triangle, but it does not loop. The stochas-
tic walk has been shown in Zhu (2003) to need O(

√
n · log n) expected time for the uni-

form data. Kolingerová (2006), Soukal et al. (2012a) present improvements which save
some tests and bring speed-up, but may also loop for non-Delaunay triangulations. Sun-
dareswara and Schrater (2003) presents an algorithm which uses barycentric coordinates
and as well as Soukal et al. (2012a) does not require a consistent orientation of triangle
vertices. However, this algorithm is slow and may also loop for non-Delaunay triangula-
tions.

Straight walk algorithms use not only local comparisons to determine where to walk,
but also use a line connecting one point of the starting triangle with the query point and
traverse triangles crossed by this line. This way, their walk is short and does not loop.
For convex triangulations, the algorithms never cross the border of the triangulation
and they do not loop. The straight walk has been proved to visit O(

√
n) triangles in

the expected case and uniform distribution of vertices (Green and Sibson 1978, Mücke
et al. 1996). The standard straight walk algorithm (Mehlhorn and Näher 1995, Devillers
et al. 2001), which uses 2D orientation tests (see Equation 1), was sped up by Soukal
and Kolingerová (2009) using faster tests.

Orthogonal walks first navigate along one coordinate axis and then along the other,
which makes the local tests cheaper, since only coordinate components are compared dur-
ing the walk. However, more triangles are visited during the walk. The domain boundary
may be crossed during the walk, in which case a special modification is needed, result-
ing in a slower location process and additional implementation effort. Bounds based on
Boissonnat and Teillaud (1993) show that the orthogonal walk has similar complexity
as the straight walk (Devroye et al. 1998, Mücke et al. 1996). The original orthogonal
walk (Devillers et al. 2001) does not handle boundary crossing during the location. Such
a situation usually causes location failure (the target triangle is not found). It is solved
in the modification (Soukal and Kolingerová 2010) which also brings the speedup of the
original algorithm.

A clever selection of the starting triangle for walking may radically improve the speed of
the algorithm, since it reduces the number of visited triangles during the walk. If any ad-
ditional information about the data is known, it can be used in the selection which speeds
up the process without any additional memory and additional time requirements (Soukal
and Kolingerová 2010, Sloan 1987, Zhou and Jones 2005, Amenta et al. 2003, Buchin
2005, Purchart et al. 2012). Without any knowledge of the data, the initial triangle can
be chosen randomly. A better, yet still fast and simple alternative without any additional
memory use was proposed in Mücke et al. (1996), where the initial triangle is selected as
the nearest triangle from a set A of randomly chosen triangles from T , where ∥A∥ ≪ ∥T∥.
Note that the subset A is generated randomly on the fly for each location process, thus
no additional data structure is needed. For Delaunay triangulation of random points, an
analysis of the ideal size of such a random subset has been proposed by Devroye et al.
(1998), leading to the size of O( 3

√
n).

3.2. Point location using additional data structures

Efficient point location solutions usually use hierarchical structures, but it leads to some
additional memory consumption. Most of these solutions are used to find such a starting
triangle for the walking algorithm, which is close to the triangle containing the query
point. The final location is then performed by the walking algorithm and is usually
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short. But as we mentioned in the previous subsection, walking algorithms do not handle
triangle meshes with holes or triangle meshes in non-convex domains, therefore, these
algorithms should be modified to make the location process reliable.

Mulmuley (1991) proposed a method simplifying the Delaunay triangulation to a
smaller one and locating the point in the simplified version first. From the triangula-
tion T with n vertices, only m = k · n vertices (where k ∈ (0, 1)) are randomly selected,
triangulated and in this way a higher layer for the location is created. The number of
triangles is much smaller in the new layer and it reduces the walk length and speeds up
the location process. If m is still bigger than a chosen size, more layers are computed in
the same way. A point location then runs in several steps. First, the triangle containing
the query point is found in the highest layer. The nearest vertex of this triangle defines
a starting point for the walk in the lower layer, until the triangle in the lowest layer
is found. In each layer, the walk is short and therefore fast. Devillers (2002) analyses
this algorithm, precises the time complexity to O(log n) for any input and proposes an
optimal value of k = 0.025 which is valid for a random input and leads to the best
rate between speed and memory use. The possible solution how to make this algorithm
working for non-convex triangulated domains or domains with holes is to additionally
triangulate the holes and non-convexities in the lowest layer and save a flag for these
new triangles to easily decide, if the query point is outside the triangle mesh (the query
point is inside the triangle with this flag).

Su and Drysdale (1995) introduce a bucketing method, which uses a uniform grid to
quickly find a proper initial triangle. Each cell of the grid (a bucket) contains at most
one vertex of the triangulation. During the point location, the cell containing the query
point is found. If it contains also a triangulation vertex, the walk starts from this vertex
(from any triangle formed by this vertex), if it does not, the nearest cell containing
the vertex is found using a spiral search. As a bigger number of empty cells causes a
longer spiral search, the algorithm is useful mainly for triangle meshes with uniformly
distributed vertices where most of the cells contain a vertex. For triangle meshes in
non-convex triangulated domains or in domains with holes, each bucket can remember
all the triangles incident to the bucket and then those triangles are tested. But this
solution may consume a big additional amount of memory, especially for non-uniformly
distributed vertices.

Some algorithms (e.g. Žalik, B. and Kolingerová, I. (2003), Zadravec and Žalik (2005))
try to avoid the sensitivity of the original bucketing method on data uniformity by using
adaptive structures instead of a uniform grid and it would work for triangulated non-
convex domains with holes without significant changes, but it has high memory require-
ments. However, on highly non-uniform data, the dynamic hierarchy algorithm (Mulmu-
ley 1991, Devillers 2002) with additional triangualization of holes and non-convexities
still provides better results with lower additional memory.

4. Proposed Algorithm

Let us have a query point and a triangulated domain which may have a non-convex shape
and may contain holes. We suppose that the triangulated domain is edge-connected,
i.e., each triangle is connected with the rest of triangles by at least one edge. This
condition ensures that there exists a path for the walking between any two triangles. If
the given triangulated domain does not fulfill this condition, e.g., the domain consists of
several separated triangulated polygons - the algorithm still could be used, however, more
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restarts for particular polygons would be necessary. The algorithm uses the 2D orientation
tests during the location and assumes the triangle mesh to have all its triangles oriented
in the same way - either all clockwise (CW) or all counterclockwise (CCW). If this
assumption is not met, one more 2D orientation test determining the triangle orientation
is needed for each triangle visited during the walk. In the following text, we assume the
CCW order of the vertices.

The proposed algorithm consists of three phases: an initialization, a walk and a bor-
der walk. The initialization is performed only once at the start of the location process
and then other two phases are used as many times as needed. The walk phase is used
preferably and it switches to the border walk phase only if the border of the triangle
mesh is reached and the walk phase cannot continue. The border walk phase tries to
find a suitable triangle for the continuation of the walk phase. When such a triangle is
found, the walk phase is invoked again, otherwise the algorithm ends with the result
that q is outside the tested triangle mesh. Although the main idea is straightforward,
particular realization should be complex and effective, therefore, especially in the border
walk phase, we focus on performing the minimum number of mathematical tests.

The border walk phase gets its name because it walks around the border of the triangle
mesh or around the border of the hole in the triangle mesh. The switching between the
walk phase and the border walk phase is repeated until the triangle ω containing the
query point q is found during the walk phase or a suitable triangle for the continuation
of the walk phase is not found during the border walk phase (q is outside the triangle
mesh).

We chose the straight walk algorithm (see Section 3.1) as a base of our algorithm, since
its path is deterministic – under the same initial conditions, the resulting path will be
always identical. Generally, the straight walk algorithm goes through all the triangles
between p and q intersected by the oriented line −→pq, where the point p is chosen inside
a starting triangle α, and q is the query point.

Although the straight walk algorithm presented by Soukal and Kolingerová (2009) is
faster than the standard straight walk algorithm (Mehlhorn and Näher 1995, Devillers
et al. 2001) due to cheaper tests, we chose the latter one (Mehlhorn and Näher 1995,
Devillers et al. 2001), since the former algorithm utilizes a visibility walk algorithm for
final location and it may reach the border during this final location.

We need to define some more terminology. Since the line −→pq is oriented, for each
triangle intersected by −→pq, let us denote its edge where −→pq enters this triangle as the
input edge and the edge where −→pq leaves the triangle as the output edge. Thus, during
the straight walk, for each visited triangle τi, the input edge of τi is the edge which was
used to go to τi. The second edge of τi which is crossed by −→pq is the output edge of τi.
The output edge of τi is also the input edge of τi+1.

Furthermore, let us denote each edge, which is on the border of the triangle mesh, a
border edge. If the border edge is also an input edge or an output edge, respectively, let
us denote it a border input edge or border output edge, respectively (see Fig. 3, where
ϵb−in are border input edges and ϵb−out are border output edges). A border input triangle
is a triangle which contains a border input edge in its set of edges and a border output
triangle is a triangle which contains a border output edge in its set of edges.

4.1. Initialization Phase

At the beginning of the initialization phase, we suppose that the first triangle α has been
already chosen - randomly or in some clever way (see Section 3).
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Figure 3. Example of border input edges (ϵb-in) and border output edges (ϵb-out)
on a non-convex mesh with holes

There are two goals in the initialization phase: to choose suitably the point p (p ∈ α)
defining −→pq and to determine the edge of α intersected by −→pq which will be used to go
to the next triangle.

Before the point p is chosen, 2D orientation test (see Equation 1) is performed for all
the edges of α similarly as in the visibility walk algorithms. Thus, the position of q with
respect to the starting triangle edges is tested. If all the results are non-negative, the
starting triangle contains the query point and the algorithm ends. Otherwise one edge
with a negative value is selected and the point p defining −→pq is chosen in the middle of
that edge, which is used to determine the next triangle. The initialization phase is now
finished. Note that three orientation tests are done during the initialization phase.

4.2. Walk Phase

There are two goals for each visited triangle τi in the straight walk during the walk
phase: to find the output edge of τi intersected by −→pq which will be used to go to the
next triangle and to decide whether the current triangle τi contains q or whether the
walk will continue.

For each triangle τi = (li, ri, si), where the vertices li, ri determine the input edge
ϵliri

and the vertex si is opposite to ϵliri
, the algorithm determines the output edge by

comparing the vertex si to −→pq using the 2D orientation test. If si is on the right side of−→pq, the output edge is ϵsili , otherwise, the output edge is ϵrisi
.

Before the algorithm continues through the output edge to the next triangle, it com-
putes the orientation test for the point q with respect to the output edge. If the point
q is on the left side of the edge (the orientation test returns a positive sign), the final
triangle containing q has been found. Otherwise, the walk continues through the output
edge to the next triangle (see example of the walk phase in Figure 4). Note that two
orientation tests per triangle are done during the walk phase.

If the output edge is also a border output edge, the walk phase cannot continue and
switches to the border walk phase, which tries to find a triangle suitable for the contin-
uation of the walk phase (a border input triangle intersected by −→pq). If such a triangle
is found during the border walk phase, then the walk phase continues from this triangle,
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Figure 4. Initialization (triangle α) and walk phase of the straight walk
algorithm (dashed line)

otherwise q is outside the tested triangle mesh.

4.3. Border Walk Phase

The border walk phase follows the border of the triangle mesh always in the same direc-
tion (CW direction was chosen for the following text). A fixed direction is necessary for
three main reasons. First, it is impossible to identify reliably in advance which direction
is shorter since the algorithm works only with local information. Second, the algorithm
is simpler and more straightforward than it would be if some heuristic to determinate
the appropriate direction was incorporated. Third, if the border walk phase is invoked
repeatedly during one location process, the use of the same direction is necessary for
proper functionality.

Let us suppose that in the walk phase the search came to a border output edge. Let
us denote this border output edge as ϵ′

rl and the intersection point of the −→pq with ϵ′
rl as

g, see Fig. 5. Then the border walk goes around the border of the triangle mesh until a
triangle with a border input edge intersected by the line −→pq is met, see ϵrl1 in Fig. 5. If g
and q are on the opposite sides of this border input edge, the continuation triangle has
been successfully found and the search may continue by the walk phase. Confirmation,
whether g and q are on the opposite sides of the border input edge ϵrl, can be done by
two orientation tests in which we substitute vertices of the border input edge (r, l) and
consecutively points g and q.

If g and q are not on the opposite sides (see ϵrl1 in Fig. 6), then the search continues
around the border of the triangle mesh to find another border input edge, see ϵrl2 in
Fig. 6. The points g and q are again checked and if they are on the opposite sides of the
border input edge, the border walk phase is interrupted and the search continues by the
walk phase.

When the border walk phase is walking along the border of the triangle mesh, it visits
alternatively border input edges and border output edges. If the query point is outside
the tested triangle mesh, like q in Fig. 7, the border walk phase comes back to the triangle
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Figure 5. Simple example of proposed walking algorithm on
the mesh with holes (walk phase is shown by dashed polyline
and border walk phase by doted polyline)

Figure 6. Example of proposed walking algorithm on the mesh
with holes (walk phase is shown by dashed polyline and border
walk phase by doted polyline)

where it started. This case has to be distinguished from the previous case. It is done by
the check whether the border output edge is identical with the border output edge ϵ′

rl.
If so, it means that the search has inspected all the triangles around the border of the
tested triangle mesh and has come to the conclusion that the query point is outside.

Note that orientation tests are performed only for the visited triangles where the border
edge is detected (one orientation test is done per each tested border edge and two more
orientation tests are performed per each border input edge). It distinctly speeds up the
border walk phase due to savings in the orientation tests but, on the other hand, the
border walk phase cannot be interrupted elsewhere than in the border triangles.

Let us demonstrate that the algorithm is capable of handling also more complicated
situations, such as in Fig. 8. The first run of the border walk phase (see 1 st border walk
phase in Fig. 8) demonstrates the case where the first visited border input edge ϵrl1 is
before the point g (g1 in Fig. 8). In such a case the relevant triangle is not suitable
for the continuation of the walk phase and the continuation of the border walk phase is
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Figure 7. Example of proposed walking algorithm on the mesh
with holes, where the query point is outside triangulated area
(walk phase is shown by dashed polyline and border walk phase
by doted polyline)

necessary. Then the walk phase continues from the border input edge ϵrl2 (see 2 nd walk
phase in Fig. 8). The second run of the border walk phase (see 2 nd border walk phase
in Fig. 8) shows why the relevant point g (g2 for 2nd border walk phase in Fig. 8) is
useful: it avoids continuation of the walk phase from the border input edge ϵrl4 and the
walk phase (see 3 rd walk phase) correctly continues from the border input edge ϵrl5.

Fig. 9 shows a complicated shape of the triangulated domain, where almost all the
triangles are visited during the border walk phase. First the walk phase walks from p to
g (the dashed line), then the border walk phase walks around the mesh boundary to the
triangle with border input edge ϵlr3 (the dotted line), since other input edges ϵlr1 and
ϵlr2 are not between g and q. Finally, the walk phase walks to the goal triangle ω (the
query point q) or the border walk phase continues to the triangle with the border output
edge ϵ′

lr and decides that the query point is outside the mesh (the query point q′).
For further description and implementation details of the algorithm see pseudo-code

in Algorithm 1.

5. Experimental results

For the test purposes, we implemented our algorithm in C++ in two versions: with the
double precision floating point arithmetic (standard solution) and also with adaptive
floating point arithmetic (Shewchuk 1997) (numerically robust solution) to avoid numer-
ical problems. The solutions were tested on Intel Q6600 2.40GHz in the single thread
mode. The SSE2 random generator was used for the choice of the first triangle, since it
is declared as up to five times faster then the standard C random generator (Owens and
Parikh 2009).

The tests are presented on two types of datasets: data from the cadaster of cities
(7 different datasets, where vertices define the boundaries of building sites - see shape
illustrations in Figure 10a-g) and CAD data (2 different datasets - see shape illustrations
in Figure 10h-i). Thanks to its popularity and triangulation quality, we chose Delaunay
triangulation for experimental results with preserved non-convex domain boundaries by
the technique (Kolingerová and Žalik 2006). For each dataset, we generated two testing
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Input: the query point q, the chosen starting triangle α ∈ T

Output: the triangle which contains q

/* initialization phase */
triangle τ = α;
point r, l, s;
foreach edge ϵ ∈ τ do

r = first vertex of ϵ;
l = second vertex of ϵ;
if orientation2D(r, l, q) < 0 then break ;

end

/* checks, if τ contains q and returns τ , if so */
if orientation2D(r, l, q) ≥ 0 then return τ ;

point p = point on the edge ϵrl where p ̸= l, p ̸= r;

point p′ = p;

/* now −→pq has r on the right and l on the left side */

repeat
/* walk phase - follows the line segment −→pq */
if neighbor of τ over ϵrl is not null then

τ = neighbor of τ over ϵrl;
s = vertex of τ where s /∈ ϵrl;
if orientation2D(p, q, s) < 0 then r = s;
else l = s;

end

/* border walk phase - walks around non-triangulated space */
else

g = intersection point of ϵrl with −→pq;

edge ϵ′
rl = ϵrl;

repeat
/* looking for border input edge */
repeat

s = r; r = l;
l = vertex of τ where l /∈ ϵrs;
while neighbor of τ over ϵrl is not null do

τ = neighbor of τ over ϵrl;
l = vertex of τ where new l /∈ ϵrl;

end

until orientation2D(p, q, l) ≤ 0;
/* now ϵrl is the border input edge */

/* checks, if τ is suitable as a new starting triangle for the walk phase and breaks the border walk phase loop, if
τ is suitable */

if orientation2D(r, l, g) < 0 and orientation2D(r, l, q) ≥ 0 then break;

/* looks for the border output edge */
repeat

s = r; r = l;
l = vertex of τ where l /∈ ϵrs;
while neighbor of τ over ϵrl is not null do

τ = neighbor of τ over ϵrl;
l = vertex of τ where new l /∈ ϵrl;

end

until orientation2D(p, q, l) ≥ 0;
/* now ϵrl is the border output edge */

/* checks, if the border output edge ϵrl is the same as edge where the border walk has started */

until ϵrl = ϵ′
lr;

/* checks, if q is outside the triangle mesh */
if ϵrl is border output edge then return null;
else

/* ϵrl is border input edge */
/* initialization of the walk phase */
s = vertex of τ where s /∈ ϵrl;
if orientation2D(p, q, s) < 0 then

l = r; r = s;
end
else

r = l; l = s;
end

/* now −→pq has r on the right and l on the left side */

end

end

until orientation2D(r, l, q) ≥ 0;

return τ ;

Algorithm 1: Straight walk algorithm for point location in a triangulated non-convex
domain with holes
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Figure 8. Complex example of the proposed walking algorithm on a triangulated non-convex
domain with holes, the walk phase is marked by dashed polyline and the border walk phase is
marked by dotted polyline

sets: the set of 106 query points distributed randomly inside the tested triangle mesh
and the set of 106 query points distributed randomly inside the convex hull of the tested
triangle mesh. Tests were performed for both sets of query points twice: with the first
triangle randomly chosen and using selection of the first triangle without any additional
memory proposed by (Mücke et al. 1996), where the first triangle is selected as the closest
triangle from a set A of randomly chosen triangles from T , where ∥A∥ ≪ ∥T∥. We used
∥A∥ = 3

√
n as proposed in (Devroye et al. 1998) for Delaunay triangulations of random

points, where n is the number of vertices in the mesh. Only one vertex of each triangle
was used for distance computation purposes.

Selected results are in Table 1. The following quantities were examined for each dataset:
the size (∥A∥) of the set of triangles A from which the nearest triangle to the target point
is chosen as the first triangle for the walk (the value 1 is used if the first triangle was
chosen randomly); the percentage of the query points located inside the triangle mesh
(Q. pts in [%]); the average total number of visited triangles during one location process
(during the choice of the first triangle, the walk phase and the border walk phase - Total
ϕ ∆); the average time per one location with double precision floating point arithmetic
(t[µs]) and the average time per one location with numerically robust arithmetic (te[µs]).
Moreover, the walk phase and the border walk phase were examined in detail. For each
of these phases, we tested the following qualities: the average number of runs (ϕ #);
the average number of visited triangles (ϕ ∆); the average number of orientation edge
tests (ϕ tests) and the maximal number of the visited triangles during the longest of
106 location queries (max ∆). Table 1 also shows for each dataset its type, the numbers
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Figure 9. Specific example of the proposed walking algorithm on a triangulated non-convex
domain, where almost all triangle are visited during the location, and where q is inside
triangle mesh and q′ is outside triangle mesh, the walk phase is by dashed polyline and the
border walk phase is by dotted polyline

of vertices, triangles and border edges, and also the percentage of the convex hull (in
Table 1 as CH) area which was triangulated.

As is evident in Table 1, the location process is faster and the path is shorter if we use
the choice of the first triangle proposed by (Mücke et al. 1996), thus Fig. 11 and Fig 12
show the dependency of the number of visited triangles on the number of dataset vertices,
where the choice of the first triangle by (Mücke et al. 1996) was used. Although the tested
data are very diverse, the selected size of ∥A∥ = 3

√
n seems as a good compromise for all

the tested data. Fig. 11 shows the number of visited triangles in each phase during the
location for the query points randomly distributed in the mesh, Fig. 12 shows the same
relation for query points randomly distributed in the convex hull of the mesh.

CAD datasets are characteristic by specific vertices distribution, where vertices are
sampled in very high detail near the borders. Therefore, these data sets are very useful
to provide more complicated configurations to test our algorithm. The special character
of these data sets results in fluctuations in the border walk length (see ϕ ∆ of the border
walk phase in Table 1), thus we have not included corresponding results to Fig. 11 and
Fig 12. We can see in Table 1 that both datasets have high percentage of vertices on
the border, for example the CAD dataset with 39721 vertices has 11708 from its 39721
vertices on the border, which results in a long walk - especially, if the query point is
outside the tested mesh, since the border walk has to walk around all the outer border.

For a non-convex triangulated domain, the number of visited triangles by the pro-
posed algorithm during the walk phase is usually equal or lower than the number of
visited triangles with the original straight walk algorithm for the same input in the fully
triangulated domain. It is caused by the border walk phase, which sometimes performs a
part of the walk, which is normally performed by the straight walk algorithm in the fully
triangulated domain. Therefore, the expected complexity of the walk phase is at least
equal to the expected complexity of the straight walk algorithm, where O(

√
n) triangles

are visited in the expected case and uniform distribution of vertices is expected (Green
and Sibson 1978, Mücke et al. 1996).
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a)                          b)                                    c)                                                 d)

e)                                                f)                                                        g)

h)                                                                             i)

Figure 10. Shape illustrations of used datasets (cadaster data (a-g) and CAD data (h-i)), trian-
gulated area is grey

As we can see in Table 1, Fig. 11 and Fig 12, the number of visited triangles during
the border walk phase is dependent not only on the number of vertices, but also on
the character of data. Assuming m border edges in a triangle mesh, the border walk
phase visits maximally m border triangles, if the query point is inside the triangle mesh,
and maximally 2m border triangles, if the query point is outside the triangle mesh. A
degenerate case for the query point inside the triangle mesh, where almost all the border
triangles are visited during the border walk phase, can be seen in Fig. 9 (query point q).
A similar example, where almost all the border triangles are visited twice and where the
query point is outside the triangle mesh, can be derived from the example in Fig.9 (let
us imagine the query point outside the mesh, on the right side from q, lying on −→pq). The
border triangles are visited for the first time, when the triangle for the continuation of
the walk phase is searched, and the second time, when the outside position of the query
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Query points Q. pts Walk phase Border walk phase Total Query time

distribution ∥A∥ in [%] ϕ # ϕ ∆ ϕ tests max ∆ ϕ # ϕ ∆ ϕ tests max ∆ ϕ ∆ t[µs] te[µs]

cadaster data, 4897 vertices (9635∆), 163 border edges, triangulated 75.53% of CH area (see Fig. 10a)

tested mesh 1 100 1.08 64.9 129.5 197 0.08 13.1 4.1 553 78.0 4.42 6.07

convex hull 1 75.56 1.11 69.1 137.6 227 0.35 142.2 42.9 1022 211.3 7.23 9.42

tested mesh 17 100 1.05 21.6 42.9 179 0.05 11.9 3.7 551 49.5 2.85 3.52

convex hull 17 75.56 1.06 21.1 41.9 158 0.31 121.8 36.4 973 158.9 4.88 5.96

cadaster data, 13829 vertices (27297∆), 377 border edges, triangulated 36.25% of CH area (see Fig. 10b)

tested mesh 1 100 1.65 140.8 280.4 494 0.65 67.8 17.0 1471 208.6 10.62 14.77

convex hull 1 36.26 1.52 90.8 180.5 450 1.16 1010.7 229.2 3123 1101.5 26.61 31.85

tested mesh 24 100 1.10 32.2 63.9 411 0.10 21.4 5.1 1406 76.5 4.31 5.36

convex hull 24 36.26 1.08 25.8 51.3 313 0.72 862.1 194.1 2788 910.9 21.92 24.74

cadaster data, 15819 vertices (31267∆), 391 border edges, triangulated 65.16% of CH area (see Fig. 10c)

tested mesh 1 100 1.32 109.2 217.8 382 0.32 21.8 7.0 850 131.0 7.90 11.12

convex hull 1 65.16 1.63 89.4 178.0 383 0.98 209.1 62.6 1615 298.5 11.12 13.78

tested mesh 25 100 1.13 31.5 62.5 254 0.13 7.7 2.6 876 63.1 4.07 5.06

convex hull 25 65.16 1.15 28.3 56.3 191 0.50 185.7 54.4 1624 238.0 7.76 9.57

cadaster data, 19993 vertices (39554∆), 472 border edges, triangulated 65.19% of CH area (see Fig. 10d)

tested mesh 1 100 1.60 128.3 255.8 487 0.60 82.0 26.1 1138 210.3 10.78 14.54

convex hull 1 65.19 1.66 108.8 216.6 472 1.00 319.7 99.3 2051 428.4 15.44 19.85

tested mesh 27 100 1.17 32.7 64.9 216 0.17 18.9 6.1 1045 77.6 4.55 5.67

convex hull 27 65.19 1.17 32.4 64.3 219 0.52 304.2 93.1 2023 362.6 11.50 14.02

cadaster data, 41851 vertices (82950∆), 862 border edges, triangulated 74.91% of CH area (see Fig. 10e)

tested mesh 1 100 1.84 192.1 383.0 796 0.84 39.4 13.0 1575 231.5 14.94 19.50

convex hull 1 74.88 1.98 180.8 360.2 923 1.23 263.9 77.2 2885 444.7 20.48 26.41

tested mesh 35 100 1.31 40.4 80.1 320 0.31 23.0 7.2 1503 97.4 6.01 7.15

convex hull 35 74.88 1.30 39.6 78.5 325 0.55 235.2 67.5 2811 308.7 12.01 13.42

cadaster data, 60234 vertices (119824∆), 702 border edges, triangulated 68.71% of CH area (see Fig. 10f)

tested mesh 1 100 1.36 198.9 397.0 641 0.36 59.4 19.7 1856 258.3 16.04 21.29

convex hull 1 68.74 1.40 210.3 419.8 852 0.71 568.0 184.3 3570 778.3 32.70 41.48

tested mesh 39 100 1.10 46.4 92.3 318 0.10 24.3 8.1 1721 108.6 6.92 8.25

convex hull 39 68.74 1.13 44.8 89.1 297 0.44 523.3 169.4 3372 606.1 21.25 25.25

cadaster data, 70428 vertices (139706∆), 1270 border edges, triangulated 50.53% of CH area (see Fig. 10g)

tested mesh 1 100 2.21 203.3 405.1 879 1.21 203.5 65.4 2600 406.8 20.94 27.31

convex hull 1 50.47 2.02 228.6 455.7 764 1.52 1248.5 389.0 4867 1477.1 53.57 65.14

tested mesh 41 100 1.25 49.5 98.5 443 0.25 48.7 15.6 2413 138.2 8.17 9.47

convex hull 41 50.47 1.25 44.9 89.2 443 0.74 1072.0 332.5 4723 1156.9 38.43 45.71

CAD data, 39721 vertices (67766∆), 11708 border edges, triangulated 75.82% of CH area (see Fig. 10h)

tested mesh 1 100 1.66 111.5 222.2 2021 0.66 482.2 309.4 18027 593.7 24.91 33.21

convex hull 1 75.84 1.49 141.0 281.2 2007 0.74 3211.1 1614.1 25577 3352.1 111.66 136.34

tested mesh 34 100 1.17 41.0 81.6 1114 0.17 111.8 76.6 12432 185.8 9.7 11.4

convex hull 34 75.84 1.14 35.5 70.6 1074 0.38 2598.1 1228.2 24862 2666.6 88.17 102.1

CAD data, 78090 vertices (143289∆), 12903 border edges, triangulated 82.59% of CH area (see Fig. 10i)

tested mesh 1 100 1.65 199.5 398.1 1585 0.65 477.9 295.1 16657 677.4 33.36 43.84

convex hull 1 82.64 1.32 182.0 363.4 1350 0.49 2396.0 1391.9 28785 2578.0 106.48 131.14

tested mesh 43 100 1.08 46.4 92.4 824 0.08 78.5 47.8 14402 166.9 9.83 11.43

convex hull 43 82.64 1.07 42.6 84.8 1099 0.25 2168.9 1233.1 28705 2253.4 86.35 104.4

Table 1. The comparison of the algorithm parameters on different datasets; Query points distribution
shows whether targets are randomly generated in the mesh or in the convex hull of the mesh, ∥A∥ shows
the number of triangles from which the suitable first triangle is selected, Q. in [%] shows percentage
of query points inside the mesh, Total ϕ ∆ shows the average total number of visited triangles during
the one location process, t[µs] and te[µs] shows the average time per one location query with (te[µs])
and without numerically robust tests (t[µs]) and ϕ #, ϕ ∆, ϕ tests and max ∆ shows parameters of
location phases, where ϕ # is average number of phase executions during one location, ϕ ∆ is average
total number of visited triangles by the phase during the one location, ϕ ∆ is average total number of
orientation tests performed by the phase during the one location and max ∆ is maximal number of
visited triangles by the phase during the longest of 106 locations
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Figure 11. Dependency of average number of visited triangles in each phase (y-axis) on the number
of vertices in the mesh (x-axis) during one point location for query points randomly distributed in
the mesh (cadaster data)

point is verified.
Note that the average number of the visited border triangles during the border walk

phase does not correspond to the average number of visited triangles (ϕ ∆) during the
same phase, which is higher. But as follows from the algorithm, the average number of
visited border edges during the border walk phase corresponds to the average number of
orientation edge tests (see ϕ tests in Table 1) during the same phase, since one orientation
test is performed for each visited border edge. This number is very similar to the average
number of visited border triangles, but not necessarily equal, since one border triangle
may contain two border edges in its set of edges. According to the tests (see Table 1), the
border walk phase visits in average from 1.5 times up to 5 times more triangles (including
border triangles) than border triangles. It can be assumed that the border walk phase
visits O(m) triangles in the worst case, but we are aware that singular cases may exist
where m ≈ n. However, we do not suppose that it is a common case for an ordinary
terrain model data.

Let us see ϕ ∆ of the border walk phase, cadaster data and query points distributed
inside the mesh in Table 1 and Fig. 11. As we can see, ϕ ∆ of the border walk phase is
usually lower or comparable to ϕ ∆ of the walk phase. Therefore, we assume the same
expected complexity for the border walk phase as is for the straight walk (O(

√
n) visited

triangles), if the query points are inside the mesh, the mesh shape is not complicated and
the mesh has uniformly distributed vertices, since the border walk phase is performed
only if the border is crossed during the walk phase. For more complicated shapes, the

70



18 Roman Soukal and Ivana Kolingerová
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Figure 12. Dependency of average number of visited triangles in each phase (y-axis) on the number
of vertices in the mesh (x-axis) during one point location for query points randomly distributed in
the convex hull of the mesh (cadaster data)

expected complexity may tend to O(m). We can see some fluctuations also in our cadaster
data (see Fig. 11), for example in the datasets with 13829 or 70428 vertices, where the
fluctuations are caused by a higher ’level of non-convexity’.

Expected complexity of the border walk phase for general query points is O(m), and
appropriate ϕ ∆ depends not only on the shape of the triangle mesh, but especially on
the percentage of query points lying outside the tested mesh (see the percentage of query
points inside the mesh in Table 1 and the relevant fluctuations in Fig. 12).

Note that the average number of triangles visited by each phase cannot be compared
directly, since two orientation tests are done for each triangle during the walk phase,
but much less than one orientation test is performed for each visited triangle during
the border walk phase (since the orientation tests are performed only for the border
triangles). Therefore the border walk phase is faster than the walk phase with the same
number of visited triangles.

Let us sum up this reasoning and our tests to compare average times per point query.
Naturally, location of the query points lying inside the mesh is distinctly faster than
for the general query points lying inside the convex hull, but we have shown that our
algorithm can be successfully utilized also for the general query points, which may lay
outside the mesh. We have not mentioned the time differences between the double pre-
cision floating point arithmetic solution and the robust adaptive floating point solution.
As can be seen from Table 1, they are not significant, therefore, we recommend the use
of the numerically robust version with the adaptive floating point arithmetic.
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Apart from the datasets above, the algorithm was tested also on numerous generated
non-convex datasets with different ’levels of non-convexity’. During all the tests, we
did not register any cases of instability or infinite looping. Algorithm works robustly
and reliably and may be used for any continuous non-convex triangulated domain. The
accuracy of the results from our algorithm (the numerically robust version) was verified
and verification confirmed the correctness of the results.

6. Conclusion

We presented a new algorithm for the point location in a triangulated domain with holes,
based on the walking principle. As far as we know, it is the only walking algorithm for non-
convex shapes of the triangulated domain. The properties of the algorithm correspond
to the class of walking algorithms: no extra location data structures with the exception
of the neighborhood relations between triangles (which are usually needed for other
purposes, anyway), suboptimal (but sublinear in average) time complexity.

The algorithm was tested and verified on real cadaster data, on CAD datasets and on
artificially generated examples. The tests showed a strong dependence on the complexity
of shape of the boundary which is unavoidable for the walking principle but behavior
was reasonable namely for the cadaster data.

The algorithm could be used also for the related problem to find whether a given point
lies inside a triangulated polygon domain. However, as we expect the main use in the
point location problem and as many efficient algorithms exist for the point-inside-polygon
problem, we did not research into this direction in detail.
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Abstract Finding which triangle in a planar or 2.5D
triangle mesh contains a query point (so-called point
location problem) is a frequent task in geosciences,
especially when working with triangulated irregular
network models. Usually, a large number of point lo-
cations has to be performed, and so there is a need
for fast algorithms having minimal additional memory
requirements and resistant to changes in the triangula-
tion. So-called walking algorithms offer low complexity,
easy implementation, and negligible additional mem-
ory requirements, which makes them suitable for such
applications. In this article, we focus on these algo-
rithms, summarize, and compare them with regard to
their use in geosciences. Since such a summary has not
been done yet, our article should serve those who are
dealing with this problem in their application to decide
which algorithm would be the best for their solution.
Moreover, the influence of the triangulation type on the
number of the visited triangles is discussed.
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1 Introduction

In this text, we focus on the planar point location prob-
lem in triangle meshes which means that for a given
planar triangle mesh and a query point, a triangle geo-
metrically containing the query point has to be found.

Point location finds applications in a variety of areas,
including computer graphics, geographic information
systems, computer aided design, etc. In geosciences,
its main use lies in applications working with a trian-
gulated irregular network (TIN)-based digital terrain
model (DTM), since TIN meshes are one of the most
frequent representations of terrain models and since
point location in TIN meshes is a very important task in
construction, manipulation, or analysis of these models,
e.g., inserting new objects into an existing DTM [5, 14,
23, 24], verification of accuracy of the DTM model [13],
or interactive dynamic erosion surface modeling [22].

Naturally, algorithms presented here can be used for
2.5D terrain models without any preprocessing only by
omitting the height information during the location. All
the algorithms expect the mesh to be convex shaped
and without holes. However, the data used in geo-
sciences are usually triangulated point clouds fulfilling
this expectation. Other types of data should be triangu-
lated first.

In many applications, a large number of point lo-
cations have to be performed, and so there is a need
of fast algorithms. For a fast search, the location al-
gorithms use additional data structures. Optimal com-
putational complexity O(log n) is achieved at the price
of additional memory demands and more complicated
manipulation, especially in the case when the triangle
mesh is frequently changed. Therefore, the so-called
walking algorithms are often used, thanks to their
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Fig. 1 Example of a point location with a walking algorithm on a part of a TIN model

easy implementation and still expected sublinear time
complexity.

The name of walking algorithms has arisen from
their operating principle. They use the triangle neigh-
borhood relations to navigate through the triangle
mesh and locate the triangle containing the query point
(see Fig. 1). The starting triangle for such a walk may
be arbitrary; however, its clever selection may radically
shorten the length of the walk. Walking algorithms
do not need any additional data structures, only the
neighborhood relations, which are usually utilized in
the application for other purposes.

There are several walking algorithms published, each
offers different advantages, and the appropriate algo-
rithm should be chosen according to the particular ap-
plication. However, these algorithms have never been
summarized, tested, and compared to provide a tool
for such a selection. The aim of this article is to do
so, especially for use in geosciences. We describe all
substantial walking algorithms in detail to provide all
information needed for their implementation, discuss
their behavior, and test them on different datasets in-
cluding random data, data from a cadastre, and light
detection and ranging (LIDAR) data.

Section 2 describes the notation used throughout the
text. The mathematic background for the algorithms is
presented in Section 3. Section 4 covers the task of a
clever selection of the starting triangle and provides an
overview of the walking algorithms. Sections 5, 6, and
7 describe the types of walking algorithms along with
their extensions: visibility walks, straight walks, and
orthogonal walks. Section 8 presents our experiments
performed on random data and real geodetic datasets.
The influence of the triangulation type on the number
of visited triangles is discussed, and performance tests

of all the presented algorithms are proposed, followed
by a summarizing comparison based on both measur-
able properties of the algorithms and our own experi-
ence. Appendix contains pseudocodes of the presented
walking algorithms.

2 Basic notation

Vectors, points, and vertices are denoted by bold lower-
case characters (e.g., a, b), and a query point is usually
denoted as q. Scalar variables are denoted by lower-
case characters in italic (e.g., k, l). For a line segment
between two points (e.g., points a, b where a �= b), we
use

−→
ab.

The letter λ is used to denote a line, which will be
always considered as oriented; subscripts are used for
lines having a relation to λ (e.g., λn is a line orthogonal
to λ). An edge of a triangle is denoted by letter ε, and
subscripts are used to specify vertices that belong to
this edge. Other lowercase Greek letters are used for
triangles.

A letter T is used for the triangle mesh in which we
want to locate the query point q. The starting triangle is
always marked as α (α ∈ T), the triangle which contains
q is denoted as ω (ω ∈ T), and the ith triangle visited by
the walking algorithm is denoted as τi. Capital letters
X and Y are usually used for random variables in
statistics.

3 Background mathematics

This section presents basic geometric tasks appearing in
the walking algorithms. To determine the position of a
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point v with respect to an oriented edge (or oriented
line)

−→
tu , we use the sign of the determinant in a so-

called 2D orientation test [7]:

orientation2D(t, u, v) =
∣
∣
∣
∣
∣

ux − tx vx − tx

uy − ty vy − ty

∣
∣
∣
∣
∣

(1)

where a positive value is returned for v on the left of
−→
tu

and negative for v on the right of
−→
tu .

Sometimes, it is more suitable to use the implicit line
equation of the oriented line instead of the equation
above. To determine the position of a point v with
respect to an oriented line

−→
tu , we compute its implicit

equation—Eqs. 2 and 3. The position of v is given by
the sign of Eq. 4 as in the orientation test.

λ : a · x + b · y + c = 0 (2)

(a, b , c) = (tx, ty, 1) × (ux, uy, 1) (3)

position(λ, v) = a · vx + b · vy + c (4)

Algorithms using the 2D orientation tests during the
location need the triangulation to have all its triangles’
vertices oriented in the same way—either all clock-
wise or all counterclockwise (CCW). In the presented
pseudocodes, we assume CCW order of the vertices.
Figure 2 shows the resulting signs of orientation tests
from Eq. 1 for a triangle τt0t1t2 with CCW order of
vertices.

Some walking algorithms do not use the tests
above but use the so-called barycentric coordinates
to navigate through the mesh. Barycentric coordinates
b 0, b 1, b 2 describe the position of a point v with respect

t0

t2

t1

+
-

+-
+

-

+
-

+
-

+
-

+
-

+- +-

Fig. 2 Example of orientation tests for triangle edges

t0

t2

t1

q
b0b1

b2
t0

q

b0

b2

t2

t1

b1 tt11bb

Fig. 3 Barycentric coordinates of q inside a triangle ω, b(ω) =
(0.25, 0.35, 0.4) and outside a triangle τ , b(τ ) = (−0.75, −0.25, 2)

to a triangle τt0t1t2 . The point v is an affine combination
of t0, t1, and t2:

v = b 0 · t0 + b 1 · t1 + b 2 · t2 (5)

where bi ∈ R, i = 0, 1, 2, and b 0 + b 1 + b 2 = 1.
bi(t0, t1, t2, v) can by computed using the 2D orien-

tation tests:

bi = orientation2D(t[(i+1) mod 3], t[(i+2) mod 3], v)

orientation2D(t0, t1, t2)
. (6)

We can use the 2D orientation tests to compute
the barycentric coordinates, since such a test computes
the double of the area of a triangle formed by the
three tested vertices, signed according to the orienta-
tion of the triangle. Each barycentric component bi

corresponds to one vertex of the examined triangle
and expresses the area of a triangle given by the edge
opposite to this vertex and the point v, divided by the
area of the examined triangle. A positive value of the
component means that the point is located on the same
side as the third vertex of the triangle, a zero value
means that the point lies on this edge, and a negative
value describes a point lying on the opposite side of this
edge than the third vertex of the triangle. Therefore,
we can easily decide if the point is inside the triangle
by checking whether all the barycentric components are
nonnegative. Figure 3 shows an example of barycentric
coordinate components of a vertex inside and outside
the tested triangle.

4 Overview

Point location by walking algorithms usually works in
two steps: (1) selection of the initial triangle for the
walk and (2) using the neighborhood relationships be-
tween the triangles (walking) to find the target triangle,
containing the query point.
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4.1 Selection of the relevant initial triangle

Clever selection of the initial triangle may radically
improve the speed of the process. If we know any addi-
tional information about the data, we can use it in our
selection and speed up the process without any addi-
tional memory or time requirements. Such information
can be the knowledge of the range of the mesh vertices
coordinates, in which case we start all the locations in a
triangle containing the point lying in the middle of the
range, used for instance by [28]. In some applications
(e.g., construction of Delaunay triangulation (DT) by
incremental insertion), we know the located points at
the beginning; thus, we can sort the points in such an
order that the next query point will be close to the
last one. Then, using the target triangle from the last
location as the initial one for the next location provides
a significant speedup [1, 4, 26, 36]. Sometimes, the
located points are ordered properly without additional
sorting (i.e., [22]).

Without any knowledge of the data, we may sim-
ply choose the initial triangle randomly. A better yet
still fast and simple alternative without any additional
memory use was proposed by [18], who select the
initial triangle as the closest triangle from a set A of
randomly chosen triangles from T, where ‖A‖ � ‖T‖.
An analysis of the ideal size of such a random subset
of a Delaunay triangulation has been proposed by [8],
leading to a size of O( 3

√
n).

More efficient solutions lead to some additional
memory consumption. Mulmuley [19] proposed a
method simplifying the triangulation and locating the
point in the simplified version first. From the triangu-
lation T with n vertices, only m = k · n vertices (where
k ∈ (0, 1)) are randomly selected and triangulated and
so a higher layer for the location is created. The number
of triangles is much smaller in the new layer, and it
radically improves the speed of a walk in it. If m is still
bigger than a chosen size, other layers are computed in
the same way. The point location then runs in several
steps. First, the triangle containing the query point is
found on the highest layer. The closest vertex of this
triangle defines the starting point for the walk in the
lower layer, until the triangle in the lowest layer is
found. In each layer, the walk is short and therefore
fast. Devillers [6] analyzes this algorithm, precises the
time complexity to O(log n) for any input, and proposes
an optimal value of k = 0.025 which is valid for random
input and leading to the best rate between speed and
memory use.

Su and Drysdale [29] introduce a bucketing method,
which uses a uniform grid to quickly find a proper
initial triangle. Each cell of the grid (a bucket) contains

at most one vertex of the triangulation. During the
point location, the cell containing the query point is
found. If it contains also a triangulation vertex, the walk
starts from this vertex (from any triangle formed by
this vertex); if it does not, the nearest cell containing a
vertex is found using a spiral search. Because the bigger
number of empty cells causes longer spiral search, the
algorithm is useful mainly for triangle meshes with
uniformly distributed vertices where most cells contain
a vertex.

Some algorithms (e.g., [34, 38]) try to avoid the
sensitivity of the original bucketing method on data
uniformity by using adaptive structures instead of a
uniform grid. However, on highly nonuniform data,
the dynamic hierarchy algorithm mentioned above [6,
19] still provides better results with lower additional
memory.

4.2 Walking algorithms

Given an initial triangle, the walk may proceed. There
exist several algorithms solving this step, and according
to the style on how they determine the way of the
walk, they can be divided into three groups: visibility,
straight, and orthogonal walks.

Visibility algorithms perform local tests in each tri-
angle they walk through. These tests look for such
an edge that defines a line separating the query point
from the third vertex of the triangle. The walk then
moves across this edge to the neighborhood triangle.
For convex triangulations, they never cross the border
of the triangulation; however, deterministic versions of
visibility walk algorithms may loop for non-Delaunay
triangulations. Randomized (stochastic) versions are
slower because a randomization step is done in each
triangle. The stochastic walk has been shown in
[37] to need O(

√
n · log n) expected time for uniform

data.
Straight walk algorithms use not only the local com-

parisons to determine the way of the walk but also use
a line connecting one point of the starting triangle with
the query point and traverse triangles crossed by this
line. This way, their walk is short and does not loop.
For convex triangulations, they never cross the border
of the triangulation and they do not loop. The straight
walk has been proved to visit O(

√
n) triangles in the ex-

pected case and uniform distribution of vertices [11, 18].
Orthogonal walks first navigate along one coordi-

nate axis and then along the other, which makes the
local tests cheaper, since only coordinate components
are compared during the walk. However, more trian-
gles are visited during the walk. The border of a trian-
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gulation may be crossed during the walk, in which case
a special modification is needed, resulting in a slower
location process and additional implementation effort.
Bounds based on [3] show that the orthogonal walk has
similar complexity as the straight walk [8, 18].

5 Visibility walk algorithms

The name of this group of algorithms comes from the
fact that they use local “visibility” tests to determine
the way of their walk. Let us recall that these tests
look for such an edge that defines a line separating the
query point from the third vertex of the triangle. The
walk then moves across this edge to the neighborhood
triangle. The algorithms differ in the particular way of
testing this visibility; the following subsections describe
each algorithm in detail.

5.1 Lawson’s oriented walk

This fundamental visibility walk algorithm was first
published by [16]. The algorithm uses the 2D orienta-
tion test (Eq. 1) to move until it reaches the target point
q. In each triangle τ , the algorithm tests the triangle
edges until it finds such an edge εab , where the third
vertex of the triangle, denoted as c, lies on the opposite
side of the edge than q (in our case, this means that
the test produces a negative sign, see Fig. 2). Then, it
crosses such an edge to the next triangle. If such an edge
does not exist, the triangle containing q has been found.
The pseudocode of the Lawson’s oriented walk can be
found in Algorithm 1.

The simple Lawson’s oriented walk algorithm tests
edges of τ in a deterministic order, which depends on
the order of edges in triangles, generated during the
construction of the triangulation. This leads to the fact
that the walk may loop in some specific configurations
of the triangle mesh [7, 33], see Fig. 4. It has been shown
that for a planar Delaunay triangulation, the Lawson’s
oriented walk cannot loop [10, 33]. However, on a

Fig. 4 Loop of Lawson’s
oriented walk [33]

q

constrained Delaunay triangulation and other triangu-
lation types, the walk may loop, and so the following
extension should be used.

5.2 Remembering stochastic walk

To prevent from the loop of the Lawson’s oriented
walk in a non-Delaunay triangulation, [7] proposed
an algorithm that chooses the edges of the current
triangle in a random order. This modification is called
stochastic. Furthermore, since it is not necessary to test
the edge incident with the previous triangle, the process
was speed up by remembering this edge and skipping
its test. This improved stochastic walk is called remem-
bering and brings a significant speedup, since only one
or two orientation tests are needed instead of one, two,
or three (except of course the first triangle, where all
the three edges may be tested). For a Delaunay trian-
gulation, this improvement should be used without the
stochastic modification, which slows down the process.
We call such an algorithm remembering walk (RW),
and the algorithm with the stochastic step is called
remembering stochastic walk (RSW). The pseudocode
of the RSW algorithm can be found in Algorithm 2, and
an example output of this algorithm is shown in Fig. 5.

5.3 Fast remembering stochastic walk

In each step of the RSW algorithm, one or two ori-
entation tests are performed because the orientation
test for the edge to the previous triangle is skipped.
Kolingerová [15] suggested to choose the next triangle
on the basis of only one orientation test. If the query
point is on the opposite side of the tested edge than
the third vertex of the triangle, the walk moves to the
neighbor triangle over this edge. Otherwise, it moves to
the neighbor triangle over the nontested edge.

The walk goes correctly, but there is no condition
to determine the target triangle, containing the query
point, which leads to an infinite walk, circling among
the triangles around the query point. Kolingerová sug-
gested to solve this problem by using this walk only
for k steps and continue with the RSW algorithm (or
for a Delaunay triangulation, RW algorithm). She also
proposed experiments showing how the optimal value
of k can be computed based on the number of mesh
vertices. However, the value of optimal k varies for
different vertex distributions and also for different im-
plementations, so a comparison based on a specific
value of k would be useless. Therefore, in further tests,
we will not include this algorithm to the comparison.
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Fig. 5 Example of
visibility walk outputs
(the remembering stochastic
walk is denoted by a chain
line, the barycentric walk by a
dashed line)

q

5.4 Barycentric walk

This algorithm differs from other visibility walk algo-
rithms in the way that it tests the position of the query
point with respect to the current triangle. Instead of the
2D orientation test, it uses the barycentric coordinates
(see Eq. 6). As already said, the barycentric coordinates
have a significant property—with respect to the triangle
containing the query point, its barycentric coordinates
are all nonnegative. Otherwise, the components with
negative values determine beyond which side(s) of the
triangle the point lies. This property was utilized by [30]
in their algorithm called Barycentric Walk.

The main idea of this algorithm (for pseudocode,
see Algorithm 3) is as follows: In each step, the al-
gorithm computes barycentric coordinates of q with
respect to the current triangle. If they are nonnegative,
the target triangle is found. Otherwise, we choose the
next triangle as a neighbor over the edge given by
two vertices with maximum values of the corresponding
barycentric coordinate components. We can invert this
choice and look for a vertex with a minimal value of its
corresponding barycentric coordinate, and the edge to
cross will be the one opposite to this vertex. Since the
third barycentric component can be computed from the
other two components (see Eq. 5), we need three 2D
orientation tests for each visited triangle. An example
output of this algorithm is shown in Fig. 5.

Fig. 6 Loop of the
barycentric walk

q
s1

s2τ

The main advantage of this algorithm is that it does
not depend on the triangles’ orientation, so it is very
useful when the orientation of the input triangles varies
throughout the mesh. Also, Sundareswara claims that
the number of triangles visited by the barycentric walk
is lower on average than by other visibility walk al-
gorithms, and our experiments confirm this claim (see
Section 8.2). Although not stated by [30], the algorithm
may loop in some rare cases—see Fig. 6. In the triangle
τ , the area s2 is greater than s1, so the walk does not
cross the edge leading to the triangle containing q. A
similar case happens in other thin triangles.

6 Straight walk algorithms

Straight walk algorithms do not use only the local com-
parisons to determine the way of the walk, but they also
use a line −→pq, connecting one point p from the starting
triangle with the query point q, and pass all triangles
intersected by this line.

6.1 Original straight walk

The standard straight walk (SW) algorithm [7, 17]
works in two steps: an initialization step and a straight
walk step. In the initialization step, a point p is chosen
as one of the vertices of the starting triangle, and by
turning around p, a triangle δ intersected by the line
segment −→pq is found. The walk step starts from δ,
and in each step, it determines the edge to cross by
comparing one of the triangle’s vertices to −→pq (using the
2D orientation test). Before crossing, it computes the
orientation test for the point q with respect to the edge
it is to cross. If the point q is on the inner side of the
edge (in our case, the orientation test returns a positive
sign), the final triangle has been found. Otherwise, the
walk crosses the edge to the next triangle and continues.
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Now, let us describe the walking step in detail (the
pseudocode of the whole algorithm can be found in
Algorithm 4, and an example of the walk is in Fig. 7).
For each triangle τi with vertices li, ri, and si, the line−→pq goes into τi(τi �= α) over its edge εliri . We compute
the orientation of the point si (si is opposite to εliri ) with
respect to the line −→pq. If si is on the right side of −→pq, we
cross the edge εsili ; otherwise, we cross the edge εrisi . As
already said, another test is then done: the orientation
test of the point q with respect to the edge chosen to
cross, deciding if the final triangle has been found.

During the initialization step, one orientation test is
needed for each visited triangle. During the walk, two
orientation tests per triangle are done.

6.2 Normal-line straight walk

During the initialization step, the number of performed
orientation tests to find the triangle δ is at most equal
to the degree of p, which may reach up to n. The
modification of [27] makes the number of operations
in the initialization step constant and also uses cheaper
operations for the location process to speed up the
algorithm. For this purpose, the algorithm uses not
only the line segment −→pq to guide the walk but also
its normal line in the point q. Therefore, it is named
normal-line straight walk (NSW).

The idea of improving the initialization step is as
follows (see also Fig. 8). Instead of using an arbitrary
point p and turning around it to find the triangle crossed
by the line −→pq, a point p is chosen such that the current
triangle is crossed by −→pq. First, from the vertices of
the initial triangle, the vertex v closest to q is chosen.

q

p

li

ri

i si

Fig. 7 Straight walk algorithm (a dotted line denotes the initial-
ization step, the walk is marked by a dashed line)

l

r

s

q

p

Fig. 8 Normal-line straight walk algorithm (a dashed line denotes
the walk, a dotted line denotes the final short walk by the RSW
algorithm)

Then, p can be chosen anywhere on the edge opposite
v except its endpoints (which could cause loop).

We tested this algorithm also with the original
straight walk initialization step, but since the results of
this combination were worse, we did not include these
tests in further comparisons.

After selecting the proper point p, the walk may
begin. The walk runs nearly in the same way as the
original straight walk, with two significant differences.
To compute the position of si with respect to the line−→pq, an implicit line equation of λ = −→pq (Eq. 4) is used
instead of the 2D orientation test. The implicit line
equation is precomputed in the initialization step. A
test using the implicit line equation is faster; however,
in the original form of the algorithm, it cannot be used
for the decision whether q is inside the current triangle.
This comparison is done with respect to an edge, which
is different in each step, so the implicit line equation of
this edge cannot be precomputed. Therefore, the orien-
tation test for this decision is replaced by the position
test of si with respect to the normal line λn, λn ⊥ λ, q ∈
λn, which is precomputed in the initialization step and
does not change during the walk. If si is on the other
side of λn than p, the straight walk ends. However,
this does not necessarily mean that the current triangle
contains q (see Fig. 8). Therefore, the RSW algorithm
(Section 5.2) is always used for the final location, which
is very short (usually about two triangles according to
our experiments in Section 8.2). See Algorithm 5 for
pseudocode of this modified straight walk algorithm.

7 Orthogonal walk algorithms

The main idea of this group of algorithms, proposed
by [7], is to make the position tests cheaper by walk-
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ing along the coordinate axis and comparing only one
coordinate at a time.

7.1 Original orthogonal walk

The original orthogonal walk [7] consists of three steps:
an initialization step, a walk along the x-axis, and a walk
along the y-axis (see Fig. 9). The walk is usually longer
than other walks, but its tests are much cheaper, which
result in a faster location.

Now, let us describe the algorithm in detail (its
pseudocode is in Algorithm 6). In the initialization step,
a point p is selected as one of the vertices of the starting
triangle and a point a is set as a = (

qx, py
)

. We rotate
around p to find a triangle δ that is intersected by the
line λx = −→pa, which is parallel to the x-axis. In the tests,
only the y-coordinates of the vertices are compared to
find δ and only one comparison is needed per triangle.

As the next step, the directions of the horizontal and
vertical walks need to be determined according to the
position of q with respect to p. In the following text, we
will describe only the case, when q is above and to the
right of p (qx > px, qy > py); other cases are analogous.

The horizontal walk follows the line λx, until the
current triangle contains a. For each triangle τi with
vertices li, ri, and si, let the edge εliri be the edge used
to cross to this triangle, li be above λx, and ri below.
The next edge to cross is determined by comparing
siy and ay. If siy > ay (si is above λx), the edge εrisi is
crossed to move to the next triangle; otherwise, the

p a

q

li

ri

lj

rj

sj

si

Fig. 9 Orthogonal walk algorithm (a dotted line denotes the
initialization step, the walk along the x-axis is marked by a dashed
line, and the walk along the y-axis is marked by a chain line)

edge εlisi is crossed (see Fig. 9). The horizontal walk
ends if a is inside τi: if the x-coordinate of any of the
vertices l and r is greater than ax, the orientation test
(orientation2D(li, ri, a) ≥ 0) is performed to verify if
the triangle containing a was found.

The vertical walk follows the line λy = −→aq, which is
parallel to the y-axis. At the beginning of the vertical
walk, such vertices lj, rj, sj are chosen so that lj is to
the left from λy and rj is to the right from λy. For each
triangle τ j with vertices lj, rj, and sj in the vertical walk,
the edge εl jr j is the edge used to cross to this triangle.
This time, we compare s jx and qx to determine which
edge to cross. If s jx < qx (sj is to the left of λy), we
cross the edge εs jr j ; otherwise, we cross the edge εl js j .
The vertical walk ends if q is inside τ j (again, using the
test orientation2D(lj, rj, q) ≥ 0).

Three comparisons are needed for each triangle
during the walk. Note that the orientation tests are
also used in the orthogonal walk, but only for a few
last triangles in each direction, to determine the exact
location of the points a and q.

The orthogonal walk has one significant drawback.
If it crosses the border of a triangle mesh during hor-
izontal or vertical walk, it usually does not find the
target triangle. In its original form proposed by [7], this
case is not handled, but the algorithm can be modified
to return the correct result—if the border is crossed
during the horizontal walk, it switches to the vertical
walk, but with a new vertical line, set by selecting a
new reference point a′ as an arbitrary inner point of
the current triangle and q′ = (a′

x, qy). If the border is
crossed during the vertical walk, the walk stops. If the
border was crossed during the horizontal or vertical
search, the algorithm uses its last visited triangle as the
new starting triangle and runs again.

Another possibility to avoid crossing the border is
to enclose our data in a rectangle and triangulate the
additional area during preprocessing. However, this is
not always desired.

7.2 Improved orthogonal walk

Improvements to orthogonal walk proposed by [28]
are analogous to those for the straight walk algorithm
(Section 6.2). The first idea is to simplify the initial-
ization step of the orthogonal walk algorithm to a
constant number of operations. Second idea is to use
a smaller number of coordinate comparisons per each
visited triangle and avoid the orientation tests during
the orthogonal walk, resulting in a need to use RSW
for a short final location of ω. The pseudocode of the
modified orthogonal walk can be found in Algorithm 7,
and an example of the walk is in Fig. 10.
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p

q

si

sj

Fig. 10 Improved orthogonal walk algorithm (a dashed line de-
notes the walk along the x-axis, the walk along the y-axis is
marked by a chain line, and the final short walk by the RSW
algorithm is marked by a chain line)

The idea of improving the initialization step is as
follows: First, the position of q is determined with
respect to an arbitrary vertex of the starting triangle α.
If q is above and to the right of p (qx > px, qy > py)
(other cases are analogous), a point sα is chosen as a
vertex of α with the maximal x-coordinate value.

During the walk, the original algorithm tested
whether the current triangle contains the query point
by comparing the target point with both endpoints of
the edge which should have been crossed. If at least
one of the endpoints had higher x-coordinate than q,
it performed the 2D orientation test on this edge, and
in the case of a negative result, the walk continued.
However, since it is not possible to determine the target
triangle only by testing the given coordinates of the two
points, the tests can be simplified by comparing only s
with q. This way, the walk not necessarily finishes in
the target triangle, but it does in a close neighborhood.
For the case of a walk in the x-axis direction, the target
triangle needs not be determined exactly, and for the
y-axis direction, a very short walk locating q is done by
the RSW algorithm (usually about three triangles for
rectangular input data according to our experiments in
Section 8.2). However, a simple initialization test has
to be added before the walk in the y-direction starts:
a point sγ is chosen as a vertex of γ with the maximal
y-coordinate value.

The improved orthogonal walk has the same prob-
lems with border crossing as the original one. The hor-
izontal crossing is solved in the same way. In a case of
a border crossing, the last triangle of the walk is usually
not in the close neighborhood of the one containing the

query point, but somewhere further. However, as the
RSW is used for the final location, it finds the correct
triangle, but it may perform more than only a few steps
in this case, which significantly slows down process.

8 Experimental results

We tested the following algorithms: the RW and the
RSW (see Section 5.2), the barycentric walk (BW,
Section 5.4), SW (Section 6.1), NSW (Section 6.2),
orthogonal walk (OW, Section 7.1), and improved or-
thogonal walk (IOW, Section 7.2).

The tests were performed on many different datasets
of three types: randomly distributed points in a unit
square, data from cadastre of the cities, where the
vertices defining the boundaries of built-up areas (see
Fig. 11) and almost regular LIDAR data scanned over
the landscape where occasionally some points missing
(i.e., on the water surfaces).

In the tests, we took into account also numerical
precision. If the located point is very close to the
edge of the final triangle, the algorithms may return
its neighbor as a result due to numerical problems.
Furthermore, if the query point is very close to a vertex
of a triangle mesh, it may cause looping of the visibility
walk algorithms (or algorithms using RSW for the final
location). We tested the possibility of such a loop on
a Delaunay triangulation of 105 randomly generated
points in a unit square. During 1010 location processes,
where the located points were selected at a maximal
distance of 10−15 around the mesh vertices, the RSW al-
gorithm looped three times. During location processes
performed for 1012 randomly generated query points,
the algorithm did not loop.

For the test purposes, we implemented the specified
algorithms in C++ with both double precision floating
point arithmetic and also with adaptive floating point
arithmetic [25] to avoid numerical problems. Adaptive
robust geometric predicates were used only where it
was needed, i.e., either for the final location or also dur-
ing the whole process of the visibility walks to prevent
the loop. The algorithms were tested on Intel Q6600
2.40 GHz. The SSE2 random generator was used for
the RSW algorithm because it is declared as up to five
times faster then the standard C random generator [20].

The sophisticated selection of the initial triangle
(Section 4.1) was not included in the tests, since it
speeds up all the algorithms in the same way. There-
fore, a random initial triangle and a random target
point were generated during the testing. Each time,
we performed 107 location processes and computed the
average number of the tested quantities.
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Fig. 11 Data from cadastre: dataset with 4,897 vertices (left) and with 15,824 vertices (right)

First, we tested the influence of the type and size
of the triangulation on the walk length (Section 8.1).
Then, we tested the specified algorithms on different
dataset types and sizes (Section 8.2).

8.1 Influence of the triangulation type on the walk
length

In the first part of our experiments, we tested the
influence of the triangulation type on the length of the
walk (number of triangles visited by the walk). The tests
were performed on two types of datasets: randomly
distributed points in the unit square and data from
cadastre. On each dataset, we constructed four types
of triangulations: a DT [25], a Greedy triangulation
(GT) [9], a minimum weight triangulation (MWT) [2],
and a min–max angle triangulation (min–max) [12]. We
also considered a regular triangulation [32], but we
decided not to include it in the final comparison, since
on the same dataset, it eliminates redundant vertices
[35]. Therefore, the number of vertices in the final
triangulation is smaller then in the other types of tri-
angulations, leading to unequal conditions for the tests
of the walk length. If lower weights are used for the
construction of the regular triangulation, the number
of vertices remains about the same; however, such a
triangulation is similar to DT.

The test results indicated that the number of visited
triangles depends on the geometric properties of the
triangulation, especially on the total sum of all edge
lengths 	ei. To confirm this assumption, we calculated

the correlation between 	ei and the number of visited
triangles during the walk. As a measure of correlation,
we used the Pearson correlation coefficient [21] in
the form presented by [31]. This coefficient r(X, Y) is
defined for two random variables X and Y:

r(X, Y) = cov(X, Y)

stdev(X) · stdev(Y)
(7)

where cov(X, Y) is the covariance between the vari-
ables X and Y and stdev(X) · stdev(Y) is a product
of their standard deviations. The coefficient cannot
exceed 1 in absolute value. If r(X, Y) = 1, then there
is a perfect increasing linear dependence (correlation)
between the variables, −1 shows a perfect decreas-
ing linear dependence (anticorrelation). The closer the
value is to zero, the less dependent the tested variables
are.

The correlation coefficient can be estimated from a
limited sample of the values:

r(x, y) =
∑n

i=1(xi − x̂) · (yi − ŷ)
√

∑n
i=1(xi − x̂)2 ·

√
∑n

i=1(yi − ŷ)2
(8)

where x̂ denotes the average value and the correlation
is evaluated for the number of visited triangles during
the walk (x) and 	ei (y) of the tested triangulations
and n is the number of tested cases. Each case con-
tained one of the four triangulations constructed on one
dataset.

Table 1 shows the behavior of RSW algorithm on
four selected datasets; other algorithms had similar
results in terms of correlation coefficients. The correla-
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Table 1 The relation between the average number of visited triangles (φ #�) by the RSW algorithm and the sum of the edge lengths
of the triangulations (	εi), r(x, y) denotes the correlation coefficient of φ #� and 	εi

DT GT MWT Min–max r(x, y) DT GT MWT Min–max r(x, y)

Dataset Uniform distribution, 104 vertices (19,994 �) Uniform distribution, 105 vertices (199,994 �)
	ei 723.09 707.12 706.43 770.15 0.998 2,207.64 2,158.76 2,156.69 2,355.01 0.997
φ #� 115.513 114.41 114.259 120.187 363.938 360.938 360.539 378.648

Dataset Real geodetic data, 15,824 vertices (31,642 �) Real geodetic data, 70,437 vertices (140,868 �)
	εi 12,091.4 10,447.3 10,403.7 15,408.6 0.999 20,398.0 18,492.4 18,449.9 28,390.4 0.997
φ #� 158.098 151.911 150.839 174.102 321.27 308.134 307.646 357.233

tion coefficient is nearly 1, indicating a perfect increas-
ing linear correlation. Our tests performed for all the
presented algorithms on many other datasets produced
similar results and so verified that the length of the walk
is linearly dependent on the sum of the length of the
triangulation edges.

8.2 Performance comparison of the algorithms

As we found that the walk is linearly dependent on the
sum of the length of the triangulation edges, there is no
need to present the test results for all the triangulation
types. Thanks to its popularity, we chose Delaunay
triangulation to compare the specified algorithms. Re-
call that the RW and BW algorithms may loop for
other types of triangulations, so despite their good
performance, they can be used safely only in algorithms
working with a Delaunay triangulation. The tests were
performed on many different datasets of three types:
randomly distributed points in a unit square, data from
cadastre, and LIDAR data (see details in the introduc-
tion of Section 8).

Selected results are in Table 2. The following qual-
ities were examined for each algorithm: the average
number of visited triangles (#�), the average number
of tests (#tests), the average time per one location with
double precision floating point arithmetic (t (µs)), and
the average time per one location with a numerically
robust solution (te (µs), the adaptive robust geometric
predicates are used wherever needed). The average
time per one location using numerically robust solution
(te (µs)) is also compared for randomly distributed
points in a unit square in Fig. 12, where the horizontal
axis shows the number of vertices in the dataset and the
vertical axis shows te (µs).

Note that the average number of tests performed
by each algorithm has only information value which is
not relevant as a measure of the performance of the
algorithms—for that, we should use the time values,
since the speed of the tests vary among the algorithms.
The properties #tests and #� consist of two values for

some algorithms. Mostly, the former value concerns
the walk and the latter concerns the final location per-
formed by RSW (or eventually by RW for the nonsto-
chastic versions of algorithms). For the SW algorithm
(Section 6.1), the former value concerns the initializa-
tion step and the latter concerns the walk step. For the
OW algorithm (Section 7.1), the former value of #tests
denotes the number of coordinate comparisons, and the
latter one, the number of 2D orientation tests. Results
are summarized in Section 8.3.

8.3 Comparison of the implementation issues

To provide more information to those willing to imple-
ment a walking algorithm, we consider in this section
not only measurable properties (stability and speed)
but also implementation effort, which we evaluated
according to our experience. The readers may choose
according to their priorities and requirements of the
intended application.

Table 3 shows the comparison of the proposed algo-
rithms. The specified properties are evaluated by inte-
gers from 1 to 5, where 1 denotes the best performance
and 5 the worst. Now, let us discuss the performance of
each algorithm.

In stability, we address four issues: possible loop-
ing caused by numerical problems, looping in non-
Delaunay triangulations, the possibility of crossing the
edge of the triangle mesh during the location, and
significant slowdown under specific circumstances. Nu-
merical problems can be avoided by using algorithms
with adaptive robust geometric predicates [25]; evalua-
tion of algorithms using these tests is listed in parenthe-
ses in Table 3.

RW (from Section 5.2) is very simple to implement
and also quite fast; however, it may loop on other
than Delaunay triangulations. On our datasets with
other types of triangulations than DT, it never looped;
however, it is not guaranteed. Therefore, for a stable
solution with a non-Delaunay triangulation, another al-
gorithm should be used. As other visibility walks, it can
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Fig. 12 The average time
of one robust location for
randomly distributed points
in a unit square
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also loop without adaptive robust geometric predicates,
but if the query point is not very close to any vertex of
the triangle mesh, this loop is very improbable. If the
input triangulation is guaranteed to be Delaunay, RW
should be preferred to RSW.

RSW (from Section 5.2) is a stable algorithm, but
like other visibility walks, it can loop without adap-
tive robust geometric predicates. However, this algo-
rithm is also the slowest because of the randomization
step, which provides space to improvements by a new
effective pseudorandomizer. Thanks to the stability and
simplicity of the algorithm, it is the most popular walk-
ing algorithm in the scientific community.

BW (from Section 5.4) is the second slowest algo-
rithm and can also loop for non-Delaunay triangula-
tions, but such a configuration is less probable than for
RW (see Fig. 6). As well as other visibility walks, it can
also loop without adaptive robust geometric predicates.
This algorithm is useful especially when the orientation
of the input triangles varies throughout the mesh, since
its tests do not depend on the triangle orientation.
Also, an interesting result from the tests is that the
algorithm visits the least number of triangles (even less
than straight walk).

SW (from Section 6.1) is the most stable algorithm,
and it cannot loop, even without adaptive robust geo-
metric predicates. It is faster than RSW; however, it is
more complicated to implement.

NSW (from Section 6.2) is easier to implement than
SW, but its implementation effort is similar, since apart
from the algorithm itself, RSW has to be implemented
for a final short location. It may seem that the im-

plicit line equation test (see Eq. 4) is less numerically
accurate; however, an incorrect decision causes only a
visit of another triangle and does not affect the stability
of the algorithm. Since the final location by RSW is
usually short (see Table 2), we can get exact results
without noticeable slowdown by using adaptive robust
geometric predicates only for the final location.

OW (from Section 7.1) is very fast thanks to its cheap
tests, however, not usable in its original form if there
is a possibility that the walk crosses the border of a
triangulation, so it has the worst stability mark. If we
implement an additional solution for such a situation,
the algorithm becomes slower. Note that to be able to
test this algorithm in our tests, we bounded our input
in a rectangle by adding four vertices to the mesh and
retriangulating it.

IOW (from Section 7.2) is the fastest walking algo-
rithm, but also complex to implement, because RSW

Table 3 Overall comparison of the algorithms (evaluation of
precise solutions using adaptive robust geometric predicates is
listed in parentheses)

Algorithm Implementation Stability Speed

RW 1 4 (3) 2 (3)
RSW 2 2 (1) 4 (5)
BW 2 3 (2) 4 (5)
SW 3 1 (1) 3 (4)
NSW 3 2 (1) 2 (2)
OW 5 5 (5) 1 (1)
IOW 5 3 (2) 1 (1)
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has to be implemented for the final, usually short lo-
cation. Again, we need the adaptive robust geometric
predicates only for the short final location by RSW. If
the walk crosses the border of a triangulation, its final
triangle will be further from the target, resulting in a
longer walk with RSW. Therefore, it is slower for such
cases (and has lower stability mark), but it is always
correct. Note that for our tests, we bounded the input
data by a rectangle to make the testing of OW possible;
thus, the final location by RSW was short.

For the most types of input data, we recommend
the NSW or the IOW algorithm with adaptive robust
geometric predicates. IOW for such cases where cross-
ing the border of a triangulation is less probable, NSW
in other cases. For the final location, it is desirable to
use RW instead of RSW when we are walking in DT.
For a quick solution, we recommend RSW (or RW for
DT) which is easy to implement. BW is useful espe-
cially when the orientation of the input triangles varies
throughout the mesh, since tests do not depend on the
triangle orientation. For a stable algorithm which can-
not loop without adaptive robust geometric predicates,
we recommend SW.

9 Conclusion

We presented a complete overview of the existing walk-
ing algorithms and their extensions for planar point
location in triangulations. We proposed experiments
comparing the time performance of these algorithms
on random as well as real datasets, on which we con-
structed the common triangulations. We discovered an
interesting linear dependence of the length of the walk
on the sum of edges of the triangulation. We also made
a simple comparison of the speed, implementation
effort, and stability of the algorithm, providing a tool
for decision which algorithm is suitable to implement
in a particular solution.
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Appendix: Pseudocodes

For easier implementation of the described walking al-
gorithms, this section provides their pseudocodes. Note
that to achieve better readability, we assume that the
query point lies inside the given triangle mesh. Other-

wise, a test if the neighboring triangle exists should be
included.

For the sake of simplicity, all the following algo-
rithms are considered to have the input and the output
in the following form:

Input

• The query point q
• the chosen starting triangle α ∈ T

Output

• The triangle ω which contains q
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Abstract

The point location problem is one of the most frequent tasks in computational geometry. The walking algorithms
are one of the most popular solutions for finding an element in a mesh which contains a query point. Despite their
suboptimal complexity, the walking algorithms are very popular because they do not require any additional memory
and their implementation is simple. This paper describes the modifications of two walking algorithms for point
location on a surface of a star-shaped polyhedron, a generalization of the Remembering Stochastic walk algorithm
for a star-shaped polyhedron and a modification of the planar Orthogonal walk algorithm. The latter uses spherical
coordinates to transfer the spatial point location problem to the planar point location problem. This way, the problem
can be solved by the traditional planar algorithms. Along with the modifications, the paper proposes new methods for
finding a proper starting triangle for the walking process with or without preprocessing.

Keywords: walking algorithms, spherical point location, star-shaped polyhedron, orthogonal walk, spherical
coordinate system

1. Introduction

Finding which polygon in a mesh contains a query point is a frequent task in computational geometry. For a query
point q and a given triangulation T of n vertices in the plane the planar point location problem usually means how to
find a triangle ω from T which contains q.

The algorithms solving this problem can be divided into two groups: algorithms using sophisticated data structures
and so called walking algorithms. The former concentrates on achieving the lowest complexity possible, in this case
O(log n) per point query which is achieved by using sophisticated data structures such as DAG [1, 2], skip list [3],
quad tree, buckets [4], uniform grid [5, 6] and data structures based on random sampling [7, 8]. Despite their low
complexity, these algorithms have some disadvantages. First, the data structures listed above consume generally
O(n) amount of memory which may be a problem for huge datasets. Second, the implementation effort for most of
these structures is nontrivial (especially for modifications of these structures). Finally, most of these structures are
hierarchical and the top level of the hierarchy may become a bottleneck in case of parallelization.

Walking algorithms do not need any extra memory, their implementation is rather simple and their usability for
parallelization is good, thus often they are a better choice than the optimal time complexity solutions. The name of
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these algorithms has arisen from the way of locating the triangle ωwhich contains q. From a starting triangle α chosen
as one of the triangles of T and the query point q the walking strategy makes use of connectivity of the triangle mesh
to go through triangles between α and ω.

In a higher dimension, the definition of a general spatial point location problem is not so straightforward. We
concentrated on the point location on a star-shaped polyhedron surface. For a star-shaped polyhedron P, its surface
triangulation T of n vertices and a center point c, the spatial point location problem of a query point q usually means
how to find a triangle ω from T which is intersected by the ray cq. Note that the center point c of P with surface
triangulation T is such a point inside P that each vertex of T is directly visible from c. In the following text, we
assume c is the part of input.

The star-shaped polyhedron point location is often used for a spherical point location but it is not limited to this
use. Its main application is in spherical remeshing methods [9, 10, 11]. Here, the surface triangulation T is an original
irregular mesh parametrized onto the unit sphere using a spherical parametrization [12, 13, 14, 15] and T ′ is a regular
spherical mesh. During the sampling process, for each vertex q of T ′, it is necessary to find the triangle ω from T
which contains q. Apparently, it is a star-shaped polyhedron point location problem.

In this paper we present two walking algorithms for point location on the surface of star-shaped polyhedron. The
former is a simple modification of the planar Remembering Stochastic walk algorithm [16]. The latter is a modifica-
tion of the Orthogonal walk algorithm [16]. This modification uses planar point location using the simplification of
spherical coordinate system.

The paper is organized as follows. Section 2 presents the existing planar walking algorithms and the only published
walking algorithm (as far as we know) for point location on a spherical surface. Section 3 describes our Remembering
Stochastic walk algorithm for point location on the surface of a star-shaped polyhedron. Section 4 presents our idea of
using the spherical coordinate system to enable the point location with the existing planar walking techniques. Planar
point location in spherical coordinates brings some difficulties which are discussed in this section. In Section 5, a
modification of the planar Orthogonal walk algorithm for point location in spherical coordinates is presented. The
possible preprocessing methods for the algorithm in Section 5 are proposed in Section 6. The empirical results of all
our modifications are presented in Section 7.

2. Walking algorithms

There are three main types of the walking strategies. The visibility walk makes use of point-inside-triangle tests to
determine which triangle is the next [17, 18, 19, 20]. The straight walk passes all such triangles in the mesh between α
and ω that are intersected by a line pq where p is a point inside α [21, 16]. The orthogonal walk passes all the triangles
in the mesh between α and ω in the directions of coordinate axes [16]. The complexity of the walking algorithms is
suboptimal from O( 3

√
n) up to O(

√
n) [16]. The starting triangle α may be chosen randomly, by the use of hierarchical

structures or as the closest triangle to q from a set A of randomly chosen triangles from T , ‖A‖ � ‖T‖ [18]. A proper
choice rapidly improves the speed of the algorithm.

Wu at al.[22] proposed a spherical modification of a planar location algorithm by Sundareswara at al.[19] which
uses barycentric coordinates to find the triangle ω. The main idea of this variant of visibility walk algorithm is to
compute the barycentric coordinates of q in the current triangle τ to determine which neighbor triangle is closer to q
and will be the next to visit. Wu at al. also proposed the choice of the first triangle using the subdivision of the regular
octahedron. The disadvantage of Wu’s algorithm is its limitation to a spherical surface.

3. Star-shaped Polyhedron Point Location Using Remembering Stochastic Walk

Lawson’s Oriented walk [17] is a very popular planar visibility walk algorithm which uses planar orientation
edge test (Equation 1) to determine which triangle is the next in its walk. Simple Lawson’s Oriented walk algorithm
uses edges of τ for tests in a given order, but this method may loop for a non-Delaunay triangulation [23, 24]. For
such a triangulation it is necessary to choose the tested edges of τ in a random order. This modification is called
Stochastic[16]. Furthermore, it is not necessary to test the edge incident with the previous triangle in the walk. This
improvement is called Remembering[16] and it may save up to one orientation test for each triangle. Therefore, one
or two orientation tests are needed for each triangle (except α).
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orientation2D(t, u, v) = sgn

(∣∣∣∣∣∣
ux − tx vx − tx

uy − ty vy − ty

∣∣∣∣∣∣

)
(1)

orientation3D(t, u, v,w) = sgn
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∣∣∣∣∣∣∣∣
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uz − tz vz − tz wz − tz

∣∣∣∣∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

We propose a modification of planar Remembering Stochastic walk algorithm as another possibility for point loca-
tion on a star-shaped polyhedron. Our modification uses the center point c of the polyhedron. Instead of the classical
edge test (Equation 1) which is used in the planar point location, we use spatial orientation facet test (Equation 2)
which is used for walking in tetrahedral meshes. The decision whether or not the edge rl of the current triangle τ
should be crossed to continue the walk into the next triangle depends on the result after substitution q, c, r, l to the
Equation 2 where q is the query point, c is the center point and r, l are vertices of τ. Assuming that the vertices of the
triangle are in the CCW order in left-handed coordinate system, the walk continues to the next triangle over the edge
rl if the orientation3D(q, c, r, l) = 1. If the orientation3D(q, c, v,w) ≤ 0 for all edges of τ, the triangle τ contains the
query point q. In the proposed algorithm, we use simple idea which allows walking on the triangulated surface of a
general star-shaped polyhedron, in contrast to Wu’s barycentric walk algorithm [22] which allows walking only on a
spherical surface. In the following text, we use the term spatial algorithms for this algorithm and Wu’s barycentric
walk algorithm for spherical location [22].

4. Point Location in Spherical Coordinates

In this section, we present a technique which uses spherical parametrization and allows planar point location on
the surface of a star-shaped polyhedron. This technique is faster then spatial algorithms but brings some difficulties,
where planar algorithm does not return correct output, so it cannot be used separately. However, it serves well to find
a triangle close to the correct triangle. The search is then finished by one of spatial algorithms.

The star-shaped polyhedron triangulation mesh T consists of an array of vertices V and an array of faces (triangles)
F. Each element f = {vi, v j, vk} ∈ F contains indexes of its three vertices vi, v j, vk ∈ V and of its neighbor triangles
fm, fn, fo ∈ F where v jvk is the edge shared with (its neighbor) triangle fm, vkvi is the edge shared with fn and viv j

is the edge shared with fo. Each vertex vi of V can be denoted as a pair vi = (pi, hi), where pi = {xi, yi, zi} is a triple
of Cartesian coordinates and hi = {ϕi, θi} is a pair of spherical radian coordinates. The spherical coordinates {ϕi, θi}
of vi are computed from Cartesian coordinates using Equation 3. Note that c = {xc, yc, zc} is the center point of a
star-shaped polyhedron and the range of arctg2 function is defined as (−π, π〉.

ϕi = arctg2(yi − yc, xi − xc), θi = arccos
(

zi−zc√
(xi−xc)2+(yi−yc)2+(zi−zc)2

)
(3)

The query point q is given by either Cartesian or spherical coordinates. Assuming that the spherical coordinates
{ϕ, θ} are planar coordinates of points and vertices, we can use normal planar walking algorithms. Note that in the
following text, the third spherical coordinate r (radius) is ignored and we use the term planar walk for walking in
spherical coordinates, where we use ϕ instead of x and θ instead of y part of planar coordinates. However, to make
use of standard planar algorithms possible, we represented the edges of the model in spherical coordinates as line
segments, projecting only their endpoints. This way we obtain a standard planar triangulation, usable for planar
walking algorithms without any need of changes. This simplification brings some difficulties as follows.

The problem lies in the fact that spherical coordinate system is a curvilinear coordinate system [25] and the line
segment between two points in Cartesian coordinates is an arc in spherical coordinates. It contradicts to our sim-
plification where we represented the edges in spherical coordinates as line segments, projecting only their endpoints.
Figure 1 shows three examples, where the orientation test in spherical coordinates produced incorrect results regarding
the original position in Cartesian coordinates. This problem is shown on three levels of subdivision of an icosahe-
dron. Figure 1a shows the original icosahedron in spherical coordinates, Figures 1b, 1c its first and second level of
subdivision. A point d lies originally on an edge e (Figure 1b) of the icosahedron, but in spherical coordinates, it may
lie outside the edge (Figure 1a). The edge e and its subdivisions are bold and colored red. In Cartesian coordinates, a

R. Soukal, I. Kolingerová / Procedia Computer Science 1 (2012) 219–228 221

96



R. Soukal, I. Kolingerová / Procedia Computer Science 00 (2010) 1–10 4

a) b) c)

dq q
q

e
d

Figure 1: Problem of the planar orientation edge test in our simplification of spherical coordinates (the icosahedron (a) and its first (b) and second
(c) level of subdivision, red color represents the surface subdivisions of the edge e)

point q is located in a triangle which is colored yellow in Figures 1a, b, c, but in spherical coordinates it may lie on an
edge (Figure 1b) or even in a different triangle (Figure 1a).

Hence our simplification is not geometrically correct and the planar orientation edge test (Equation 1) in the
spherical coordinates occasionally returns incorrect results. The probability of incorrect results goes down with higher
density of mesh, but not to zero. However, the triangle returned from the planar point location is always very close to
the correct one, thus planar walking algorithms in spherical coordinates are a good choice for fast location of a proper
starting triangle for slower, but precise spatial algorithms. In most cases the final location with a spatial algorithm will
be very short (see Section 7).

For better readability, the border triangles (triangles whose vertices lie on the opposite sides in our simplification
of spherical coordinates) are not displayed in all planar figures, except Figure 2 (see Figure 2a where these triangles
are colored red and one chosen border triangle is highlighted by green). All types of the planar walking strategies
sometimes fail on such triangles and may loop. For bigger datasets, cases where the walk goes over these border
triangles are very rare and they appear only if α is chosen as one of the border triangles or one such triangle contains
q (see Figure 2b) or q is near to it. Hence if the planar walk detects that the current triangle τ is border, the planar
location ends and ω is located by one of spatial algorithms.

Border triangles are recognized and flagged during the computing of spherical coordinates. The detection is rather
simple. We substitute the spherical coordinates hi, h j, hk of the vertices vi, v j, vk of the triangle τ = vi, v j, vk to the
planar orientation test from Equation 1. The result of the orientation2D(hi, h j, hk) is opposite for the border triangle
than for the other triangles. Assuming that the vertices of the triangle are in CCW order on the surface of a polyhedron
in left-handed coordinate system, the triangle τ is the border triangle if the orientation2D(hi, h j, hk) = 1. Note that we
use ϕ coordinate instead of x and θ instead of y in test from Equation 1.

b)a)

q
α

Figure 2: Planar triangulation of the icosahedron with shown border triangles colored by red (a) and with location of point in the border triangle (b)

222 R. Soukal, I. Kolingerová / Procedia Computer Science 1 (2012) 219–228

97
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5. Orthogonal Walk Algorithm in Spherical Coordinates

In this section, we present a modification of an orthogonal walk algorithm for our simplification of spherical
coordinates. The planar Orthogonal walk was proposed by Devillers at al. [16] with an idea of cheaper tests. The
algorithm goes first in the direction of one coordinate axis and then in the other coordinate axis. Planar orientation
tests (Equation 1) were substituted by comparisons of coordinate values. An orthogonal walk is usually longer than
other walks (see Figure 3a) but the cost of its tests is significantly lower which results in a faster location.

Devillers’s Orthogonal walk reliably finds a proper location of q but from Section 4 we know that we need the
orthogonal walk to find only the approximate location of q, thus we can optimize the algorithm for time. If the returned
triangle is close to the proper triangle ω which contains q, it is enough. The original Orthogonal walk [16] uses three
comparisons for each visited triangle, computes few planar orientation tests (Equation 1) and contains quite a difficult
initialization step. Our modification (see Algorithm 1) simplifies the initialization step, uses only two comparisons
for each visited triangle and does not use the planar orientation tests.

Now let us explain our modification. The orthogonal walk algorithm starts in a triangle α (the proper choice is
explained in Section 6). First, the algorithm must choose a starting point a = {aϕ, aθ} anywhere inside α. Let us
assume q = {qϕ, qθ} is above and to the right of a (qθ > aθ, qϕ > aϕ), other three possibilities would be analogous. In
the initialization step we choose s = {sϕ, sθ} as a vertex of α with the maximal horizontal (ϕ) value. The vertices s, r, l
of α are in CCW order.

Now the walk in ϕ direction may start. For each triangle τ in the orthogonal walk (except α) the edge e of τ is the
edge used to cross to τ and s is the vertex of τ facing e = rl. The walk leaves τ over the edge f which is found by
comparing sθ with aθ. If sθ is lower than aθ, the walk continues over the edge f = rs, τ is the neighbor over f and
l = s, else the walk continues over the edge f = ls, τ is neighbor over f and r = s. The new s is chosen from the
vertices of τ, r, l � s. If sϕ > qϕ or τ is border, the walk in ϕ direction ends, else it continues for the current τ.

Now we choose s as a vertex of τ with the maximal vertical (θ) value and the walk in θ direction may start. The
edge f which is used to go to the next triangle is found by comparing sϕ with qϕ. If sϕ is lower than qϕ, the walk
continues over the edge f = rs, τ is the neighbor over f and l = s, else the walk continues over the edge f = ls, τ is
the neighbor over f and r = s. The new s is chosen from the vertices of τ, r, l � s. If sθ > qθ or τ is a border triangle,
the orthogonal walk ends. Now τ is close to the triangle ω which contains the query point q and the final location is
made by the Remembering Stochastic walk from Section 3.

Figure 3 shows an example of our orthogonal walk on the surface of a icosahedron in the first level of subdivision.
The triangle β is a triangle where the horizontal walk stops and vertical walk begins. The triangle γ is the final triangle
of our orthogonal walk and the first triangle of the final spatial location. Figure 3a shows the walk in our simplification
of spherical coordinates and Figure 3b shows the walk in the Cartesian coordinates.

p

q
ω γ

α
β

sγ

sβ
sα

q
ω
γ

β

α

a) b)

Figure 3: Our orthogonal walk algorithm in the spherical (a) and the Cartesian (b) coordinates
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6. Preprocessing

A very important part of a walking algorithm is the choice of the starting triangle which may improve the speed
of the algorithm. The easiest way is to choose the starting triangle α randomly or as the triangle of a planar mesh
which contains a point in the middle of this mesh. Mücke et al. proposes the way how to choose a good starting
triangle without preprocessing[18] where α is chosen as the closest triangle to q from a set A of randomly chosen
triangles from the mesh T , ‖A‖ � ‖T‖. For the best performance, Mücke recommends ‖A‖ = 2 4

√
n and our results

confirmed that. But if we choose the starting triangle α as the triangle containing the point b which is in the middle of
the spherical domain (bϕ = 0, bθ = 0.5π), the performance is very similar to [18].

Input:
• the query point q
• the chosen starting triangle α, α ∈ T

Output:

• the triangle ω which contains the query point q

a = a point generated anywhere inside α;

// we describe the case where q is above and to the right of a (qθ > aθ, qφ > aφ), other cases are analogous
τ = α = srl where s is the vertex with maximal ϕ coordinate;

// note that the vertices of τ (s, r, l) are always in CCW order

// traverses the triangulation T in the direction of the horizontal axis of ϕ
while sϕ < qϕ and notBorder(τ) do

if sθ < aθ then
τ = neighbor of τ over rs;
l = s;

else
τ = neighbor of τ over ls;
r = s;

end
s = vertex of τ where s � r, s � l;

end

τ = srl where s is the vertex with maximal θ coordinate;

// traverses the triangulation T in the direction of the vertical axis of θ
while sθ < qθ and notBorder(τ) do

if sϕ < qϕ then
τ = neighbor of τ over rs;
l = s;

else
τ = neighbor of τ over ls;
r = s;

end
s = vertex of τ where s � r, s � l;

end

// the final location is done by another walking algorithm (e. g. Remembering Stochastic walk in Section 3)
ω = SpatialRememberingStochasticWalk(q, τ);

return ω;

Algorithm 1: Our modification of the Orthogonal walk

At the cost of additional memory, we can improve performance of our algorithm in the following way. The
advantage of spherical coordinates is the known range of ϕ and θ values and it can be used to find a suitable starting
triangle for our orthogonal walk algorithm using a grid. For each cell gi j of the grid, the suitable starting triangle αi j

is triangle which contains the center point qi j of gi j. For the polyhedron whose triangles are very similar, each cell gi j

of the uniform grid (see Figure 4a) contains a different number of these similar triangles, especially near poles, the
triangles are very wide and the number of triangles in these cells is much lower.
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a) b)

Figure 4: The uniform and the nonuniform grid of 32 cells for finding a suitable starting triangle (the starting triangle for each cell of grid is yellow
colored)

This consideration leads us to use of a nonuniform grid preserving the character of the spherical projection. The
grid is nonuniformly subdivided only in the ϕ direction (the planar triangulation is divided uniformly to k longitudinal
strips and each strip Gi is divided vertically to li cells - see Figure 4b). Each cell gi j contains such triangles of T
that their area of these triangles on the spherical surface is similar for all gi j. Assuming that the surface of a unit
sphere (r = 1) can be approximated by the function sin(θ) in the plane, the spherical surface S i equivalent to a planar
longitudinal strip Gi for θ ∈ 〈a, b〉 in the spherical coordinates can be computed as the area of the planar strip bounded
by the functions f (ϕ) = 2πsin(θ), θ ∈ 〈a, b〉 (see Equation 4 and Figure 5 - the equations are derived from the definition
of determinant of Jacobian matrix for spherical coordinate parametrization and from the range of ϕ coordinate). The
surface S of the unit sphere can be computed as S = 2π (cos(0) − cos(π)) = 4π. Given m is a number of cells of
the nonuniform grid, k is the number of longitudinal strips and li is the number of cells in each longitudinal strip
Gi, Equations 5, 6 describe the computation of k and li. Figure 4 shows grid structures for the choice of the first
triangle where the first triangle for each cell of the grid is colored yellow. Figure 4a shows a uniform grid of 32 cells
and Figure 4b shows the nonuniform grid with the same number of cells. The matching cell gi j of a query point
q = {ϕq, θq} is computed identically (see Equations 7) for uniform and nonuniform grid (in the uniform grid, li is the
same for all i). Note that if θq = π then i = k − 1 or if ϕq = π then j = li − 1.

S i = 2π
∫ b

a
f (θ)dθ = 2π

∫ b

a
sin(θ)dθ = 2π [−cos(θ)]b

a = 2π (cos(a) − cos(b)) (4)

k =

⌊√
πm
4
+ 0.5

⌋
(5)

li =
⌊mS i

S
+ 0.5

⌋
=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
2

m
∫ (i+1)π

k

iπ
k

sin(θ)dθ + 0.5

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , i = 0, 1, ..., k − 1 (6)

i =

⌊
k
θq

π

⌋
, j =

⌊
li
ϕq + π

2π

⌋
(7)

7. Experimental Results

We tested the following algorithms: Remembering Stochastic walk presented in Section 3 (RSW), Wu’s Barycen-
tric walk [22] (WBW) and our orthogonal walk (OW). Tests were performed on sixteen different datasets (a real
parametrized models, subdivisions of regular polyhedra (tetrahedron, octahedron, icosahedron), a randomly gener-
ated star-shape polyhedra). The results correspond to the sizes of datasets and do not differ too much for different
datasets of the same size, therefore the results will be illustrated on the following datasets: Headus Skull, Stanford
Bunny, an icosahedron in the 7th level of subdivision and a randomly generated star-shape polyhedra with 105 vertices.
106 randomly generated points were located by each algorithm on each dataset.
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Figure 5: An illustrative example to computing an area of the strip (by red) in our simplification of spherical coordinates (a), its real surface area
on the unit sphere (b) adjusted for easier computation (c)

Selected results are in Table 1 (without preprocessing) and Table 2 (with preprocessing - see Section 6). The
following properties were examined for each algorithm: the average length of the walk (#Δ), the average number of
the tests (#test) and the average time (t[μs]) per one location (tested on Intel Q6600 2,40GHz). The properties #test
and #Δ for OW consists of two values, the former value concerns the orthogonal walk and the latter one concerns the
final location by RSW. In Table 2, we tested RSW with the uniform and the nonuniform grid and WBW, where we
choose a starting triangle using n levels of subdivision of a regular octahedron [22]. The properties #test and #Δ for
WBW consist of two values, where the former value concerns the choice of a starting triangle and the latter concerns
the final location. In Table 2, we compare such algorithms that have the same number of elements (i. e., for WBW,
the number of triangles in the lowest level of subdivision of octahedron is the same as the number of grid cells used
by RSW). The algorithms were coded in Java with double precision floating point arithmetic.

#Δ #test t[μs] #Δ #test t[μs]
Algorithm φ per located point φ per located point

Headus Skull (40000 Δ, 20002 vertices) Stanford Bunny (71882 Δ, 35943 vertices)
WBW 117.5 352.6 20.46 167.0 501.1 34.11
RSW 135.2 233.1 26.49 188.1 323.4 43.40
OW 159.1+2.1 318.1+5.1 11.23 240.9+2.1 481.8+5.2 21.04

Icosahedron (7th level, 327680 Δ, 163842 vertices) Star-shaped polyhedron (199996 Δ, 105 vertices)
WBW 361.2 1083.5 79.11 N/A N/A N/A
RSW 392.3 680.7 110.48 324.4 559.3 97.22
OW 515.1+1.93 1030.2+4.8 44.87 409.0+2.64 818.0+6.0 42.66

Table 1: Comparison of algorithms without preprocessing

To sum up the results without preprocessing (Table 1), the RSW is about 30% slower than WBW, but it can be
used for a general star-shaped polyhedron, therefore we use it for the final location in OW. The OW is almost twice
as fast as WBW and the time of the final location by RSW is not significant because its walk is usually very short in
average (see Table 1). To sum up the results with preprocessing, for the same number of elements (see above), the OW
is evidently faster than WBW and the grid is more memory-economical than the octahedron hierarchy used in [22].
The nonuniform grid is faster than the uniform grid but the difference is not great.

8. Conclusion and Future work

We presented two new walking algorithms for the point location on triangulated surface of general star-shaped
polyhedron. The best performance is achieved by using both these algorithms together and the proposed solution is
faster than other walking solutions. We also presented how to find a suitable starting triangle by using a uniform
and a nonuniform grid in O(1) time. This choice further improves the performance of our algorithms at the cost of
additional memory.
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#Δ #test t[μs] #Δ #test t[μs]
Algorithm φ per located point φ per located point

128 elements Stanford Bunny (71882 Δ, 35943 vertices) Icosahedron (7th level, 327680 Δ, 163842 vertices)
WBW (2nd level) 6.2+14.3 18.7+43.0 4.58 6.2+31.6 18.7+94.9 10.47
OW (uniform grid) 17.5+1.8 35.0+4.5 3.55 39.8+1.85 79.7+4.65 8.86
OW (nonuniform grid) 14.9+1.7 29.8+4.4 3.02 35.6+1.6 71.2+4.2 7.81

512 elements Stanford Bunny (71882 Δ, 35943 vertices) Icosahedron (7th level, 327680 Δ, 163842 vertices)
WBW (3rd level) 8.0+7.8 23.9+23.3 3.50 8.0+16.4 23.9+49.1 6.49
OW (uniform grid) 8.2+1.7 16.5+4.4 2.28 19.4+1.6 38.8+4.1 4.96
OW (nonuniform grid) 7.1+1.6 14.3+4.3 2.10 17.4+1.6 34.8+4.1 4.61

2048 elements Stanford Bunny (71882 Δ, 35943 vertices) Icosahedron (7th level, 327680 Δ, 163842 vertices)
WBW (4th level) 9.7+4.4 29.2+13.2 2.97 9.7+8.7 29.2+26.2 4.60
OW (uniform grid) 3.8+1.7 7.7+4.5 1.63 9.3+1.6 18.6+4.1 3.05
OW (nonuniform grid) 3.3+1.7 6.6+4.3 1.49 8.2+1.7 16.5+4.4 2.90

Table 2: Comparison of algorithms with preprocessing

As a future work, we would like to focus on point location in tetrahedral meshes, where we expect a practical
application in dynamic proteins research.
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a b s t r a c t

Haptic devices are nowadays gaining popularity because of their increasing availability. These special
input/output devices provide, unlike mouse or keyboard, a native 3D manipulation, especially a more
precise control and a force interaction. With more accurate description of the model, haptics can achieve
more realistic force feedback. Therefore, triangulated surface models are often used for an authentic
interpretation of 3D models. A common task in haptic visualization using triangulated surface models
is to find a triangle which is in the collision trajectory of the haptic probe. Since the render rate of the
haptic visualization is relatively high (usually about 1 kHz), the task becomes highly non-trivial for com-
plex mesh models, especially for the meshes which are changing over time. The paper presents a fast and
novel location algorithm able to find the triangle which is close to the haptic probe and in the direction of
the probe motion vector. The algorithm has negligible additional memory requirements, since it does not
need additional searching data structures and uses only the information usually available for triangulated
models. Therefore, the algorithm could handle even triangular meshes changing over time. Results show
that the proposed algorithm is fast enough to be used in haptic visualization of complex-shaped models
with hundreds of thousands of triangles.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

In this paper we focus on the collision detection problem of the
haptic device with the surface of 3D model which is defined by a
triangular mesh. The goal is to find a triangle (if such a triangle
exists) which is in the collision trajectory of the haptic probe to
provide appropriate feedback to the user.

Haptic visualization is a tactile feedback method which pro-
vides a sense of touch to the user via a haptic device by applying
forces, vibrations, or motions while visual perception is usually
mediated by a display device. See an example of the haptic device
Phantom Omni� used in our experiments in Fig. 1. The haptic visu-
alization finds applications in a variety of areas including haptic
surgery simulations [1–3], industry design-based manufacturing
[4], or the virtual reality for blind computer users [5]. The majority
of the haptic rendering techniques [6,7] require to detect collision
(and intersection) of a haptic cursor with the visualized model.
However, unlike graphics visualization where a sufficient render
rate is about 25 Hz, the render rate required by the haptics is about

1000 Hz to provide an authentic feedback (as it is mentioned by
Colgate and Brown [8] a human skin is sensitive to force change
of a frequency higher than 500 Hz). Therefore, collisions need to
be detected and computed as fast as possible.

Since a higher precision of model representation results in a
more realistic perception, many haptic applications [2,6,9,10] use
triangulated surface meshes for the representation of models.
Existing approaches for the triangulated surface meshes usually
deal with static scenes or local changes of the model, where the
location methods with search data structures (especially a spatial
subdivision techniques) provide adequate results [9]. As men-
tioned in [10], most of the existing algorithms address collision
detection and intersection computation for small models which
consist of a few thousands of polygons or they use some kind of
down-sampled finite element model [2].

However, in the haptic visualization and interaction used for
geometric modeling the model and its topology is often changing,
which results in updates of the search data structures. These
updates may not be trivial and if the changes in the triangular
mesh are frequent, updates of data structures may significantly
affect the performance. Moreover, search data structures consume
additional memory.

Therefore, the goal is to develop an algorithm which does not
utilize additional search data structures and still achieves the

http://dx.doi.org/10.1016/j.advengsoft.2014.05.004
0965-9978/� 2014 Elsevier Ltd. All rights reserved.
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performance necessary for the application in the haptic visualiza-
tion. When the haptic probe is moving on the surface of the model,
the render rate required by the haptics is about 1000 Hz, thus the
longest detection/location should take less than 1 ms. When the
haptic probe is moving in a free space, the collisions may be
detected in a lower rate, since a low delay of the first touch feed-
back is not noticeable. The frame rate about 100 Hz is sufficient,
thus the longest detection/location should take less than 10 ms.

The problem is more precisely defined as follows. For a given
position q of the haptic probe and its motion vector m (the current
direction of movement of the haptic probe), the goal is to find and
return such a triangle from the given surface triangular mesh,
which is intersected by the line k ¼ ½q;m� in the distance from q
lower than or equal to a defined maximal allowable distance
distmax. Moreover, m should direct towards the front face of the
found target triangle. If such a triangle does not exist, null should
be returned. Note that distmax should be small enough to ensure
unique result. We suppose that the model does not contain errors
or holes, all the triangles have uniform orientation and have infor-
mation about their neighbors.

The proposed solution ranks among walking algorithms, which
are popular especially for point location in planar triangular
meshes or in tetrahedral meshes. The name of walking algorithms
describes their principle: generally, the search goes from a triangle
to its neighbor in the direction of the given query point, until the
target triangle (which contains the query point) is found. In our
case, the walking algorithm is searching in the direction of a trian-
gle, which is intersected by the line defined by the position of the
haptic probe and the haptic motion vector (see Fig. 2). Since the
next triangle is chosen with respect to local tests, the utilization
of a walking algorithm for a point location on the triangulated sur-
face model is not simple and, to the best of our knowledge, no com-
plex walking algorithm for point location on a triangulated surface
model has been published.

The proposed algorithm has negligible additional memory
requirements since it does not need additional data structures. It
only needs the information about neighboring triangles, which is
usually required for other purposes as well. Therefore, the algo-
rithm can handle even triangular meshes which are changing over
time. Although the algorithm was developed especially for haptic
visualization, it is not limited to the haptic collision detection only.
It can be used for all point location problems, where the input con-
tains both: a point close to the surface of the triangulated 3D
model and a vector directing towards the model. For example,
for a parametric description of the model, we can get a point on
the surface as well as a vector directing towards the model (it
may be the opposite surface normal at this point).

Results show that the proposed algorithm can handle queries
on rather complex-shaped models with hundreds of thousands of
triangles in a good time and thus it can be successfully used in hap-
tic visualization. The algorithm is suitable also for models changing
in time. Although it is not a primary task of the algorithm, it can
also handle queries when the model is composed of multiple com-
ponents. Moreover, the algorithm is easily and effectively parallel-
izable which can significantly speed up the search process.

The paper is organized as follows. ‘State of the art’ provides an
overview in the task of a collision detection regarding to haptic
visualization. ‘Proposed method’ describes the proposed walking

Fig. 1. Example of haptic device – Phantom Omni�.

starting triangle
target triangle

haptic position
(close to the surface)

haptic motion

path of walking algorithm

Fig. 2. Illustration of the collision detection on the surface of triangulated 3D model using the walking algorithm. The target triangle is intersected by a line, which is defined
by the position of the haptic probe and the haptic motion vector. For a better depiction the model is partially transparent which makes overlapping parts of the mesh a little
darker.
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algorithms for collision detection in haptic visualization. ‘Experi-
mental results’ presents our experiments performed on well-
known triangulated surface models and ‘Conclusion’ concludes
the paper.

State of the art

Collision detection and contact determination problems has
been extensively studied in [9,11–17].

The simplest algorithms for collision detection are based on
using bounding volumes and spatial, hierarchical decomposition
techniques. For such a decomposition, e.g., k–d trees and octrees
[11], cone trees, sphere trees [12,13], R-trees and their variants,
trees based on S-bounds [15], and oriented bounding boxes [9]
are used. Other spatial representations are based on BSP’s [16]
and its extensions to multi-space partitions [17].

As it is mentioned, e.g., in [2], it is very difficult to handle inter-
active rendering framerates for complex models due to a computa-
tion of collision detection. Sela et al. [2] propose a haptic surgical
simulator where the finite element method (FEM) is used for off-
line preprocessing of physical properties around the cut. Then
the discontinuous free-form deformation (DFFM) is created. Note
that only DFFM is used during a real-time cutting stage since a fast
solution is needed. A surface model of a skin or flash is represented
as a polygonal surface. To handle collision queries of a haptic cur-
sor in a sufficient rate, authors use a preprocessed uniform voxel
grid around the model.

Gregory et al. [10] present a hybrid collision detection frame-
work for haptic interaction which uses a hierarchical representa-
tion of uniform grids and trees of oriented bounding boxes. Their
framework utilizes the frame-to-frame coherence of a haptic
probe. However, like other techniques using search data structures,
modification for surface triangular meshes which are changing in
time is complicated and continuous updating of data structures
provides a significant decrease of the speed.

The approach proposed in this paper is based on the walking
principle which is usually used for point location in planar triangu-
lar meshes or in tetrahedral meshes. The surveys of walking algo-
rithms are presented in [18,19]. [20,21] used a walking algorithm
in spherical re-meshing problem for point location on the surface
of a triangulated sphere. Some algorithms (e.g. [22]) utilize the
walking algorithms for point location on the surface triangular
meshes in the local context (following the prior utilization of a
search data structure, such as the octree). However, as far as we
know, complex walking algorithms have not been applied to the
problem of point location or collision detection on the surface tri-
angular meshes.

There are several walking algorithms solving point location
problem, and according to the style how they determine the way
of the walk they can be divided into three groups: visibility,
straight and orthogonal walks. Visibility walks [18,23–25] use local
‘‘visibility’’ tests to determine the way of their walk. These tests
look for such an edge of a triangle that defines a line separating
the query point and the third vertex of the triangle. The walk then
moves across this edge to the neighborhood triangle. Straight walk
algorithms [18,26,27] use not only the local comparisons to deter-
mine the way of the walk, but also use a line connecting one point
of the starting triangle with the query point and traverse triangles
crossed by this line. Orthogonal walks [18,21] first navigate along
one coordinate axis and then along the other.

A clever selection of the starting triangle for walking may radi-
cally improve the speed of the algorithm, since it reduces the num-
ber of visited triangles during the walk. If any additional
information about the data is known, it can be used in the selec-
tion, e.g., the target triangle from the last location query can be

used as a starting triangle for the next query, if there is a coherency
between queries. Without any knowledge of the data, the initial
triangle can be chosen randomly. A better, yet still fast and simple
alternative without any additional memory use was proposed in
[28], where the initial triangle is selected as the nearest triangle
from a set A of randomly chosen triangles from the scanned trian-
gular mesh T. The total number of randomly selected triangles is
significantly lower than the total number of triangles in T
(kAk � kTk). For planar Delaunay triangulation of random points,
an analysis of the ideal size of such a random subset has been pro-
posed by [29], leading to the size of Oð

ffiffiffi
n3
p
Þ.

Proposed method

A keystone for the walking-based approach is the orientation
test of a point against a plane: let us have a plane given by three
points t, u, v and a tested point w. Eq. (1) computes whether w lies
above, on or below the given plane when seen from the side where
t, u, v points are CCW oriented. In other words, the test decides
whether the orientation of these points is positive, neutral or
negative.

orientation3Dðt;u;v;wÞ ¼
ux � tx vx � tx wx � tx

uy � ty vy � ty wy � ty

uz � tz vz � tz wz � tz

�
�
�
�
�
�
�

�
�
�
�
�
�
�

ð1Þ

The proposed walking algorithm supposes that the model does not
contain errors or holes, all the triangles have uniform orientation
and have information about their neighbors. Note that CCW orien-
tation of all the model triangles from the outside of the model is
expected in the following text. Let us denote the i-th triangle visited
by the proposed walking algorithm as si.

Recall that the goal is to find and return a triangle x from the
surface triangular mesh T (x 2 T), which is intersected by the line
k ¼ ½q;m� defined by the haptic probe position q and the haptic
motion vector m. Generally, the line may intersect the model T
in more intersection points, therefore, the intersection point
should be in the distance from q lower than or equal to a defined
maximal allowable distance distmax. Moreover, the haptic motion
vector m should direct towards the front face of x. If such a trian-
gle does not exist, null should be returned.

plane opq α
ω

q

p

m
o

walk

Fig. 3. Example of the walk on the surface model of the pawn.
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Let us define properly oriented triangle as a triangle that m direct
towards its front face. In the other words, if a triangle defined by
vertices t0t1t2 is a properly oriented triangle, the orientation test
orientation3Dðt0; t1; t2; t0 �mÞ provides a positive value (an auxil-
iary point t0 �m lies above that triangle). Thus, the target triangle
x is always a properly oriented triangle.

Let us present now the main idea of the proposed location algo-
rithm. It is based on the straight walk principle, however, it uses a
plane to guide the search instead a line. First, a proper starting tri-
angle a;a 2 T is chosen to start the search; a proper choice will be
described later. Let us have a plane opq given by the points
q;p ¼ q�m and the center of gravity o of the triangle a. The plane
opq cuts the model. The algorithm then walks from the starting tri-
angle through the neighboring triangles cut by opq and attempts
to find the target triangle x. Fig. 3 shows an example of the walk,
Fig. 4 shows the same situation in the projection to opq (only tri-
angles intersected by the plane opq are projected into the plane).

On one hand, the auxiliary plane opq guides the walk so that
the walking path is given; on the other hand, in the given path
starting in the triangle a, the triangle x may not exist. This behav-
ior complicates the location process since the walk following this
plane comes back to the starting triangle a without finding x.
See an example of an unsuccessful walk in Fig. 5, where the path
from the triangle a to the triangle x does not exist and the walk
comes back to a (it may also happen when a lies in another com-
ponent than x – not the case in Fig. 5). Then the walk is restarted
with a new choice of the starting triangle and with another cutting
plane opq. The more complicated shape of the model is, the more
such iterations may be needed, however, as will be shown in

‘Experimental results’, the number of required iterations can be
greatly reduced by a clever choice of the first triangle.

Walking iterations may be unsuccessful due to non-existence of
the target triangle x. If there is a possibility that x does not exist
(as it is in the collision detection), an upper number of the allowed
iterations should be set. Then the walk is repeated until the target
triangle x is found or the upper number of allowed iterations is
reached. As will be shown in ‘Experimental results’, even a low
upper number of allowed iterations ensures a negligible number
of false negative results (results where x exists but is not found).
Moreover, since a lot of location queries is performed in a very
short time, the distance between two positions q in the consecu-
tive location queries is very low, usually several times lower than
distmax. Therefore, the algorithm can afford to return several con-
secutive false negative results without consequences before the
haptic probe enters the model.

As we mentioned, the number of performed iterations can be
significantly lowered by a clever choice of the first triangle a. Gen-
erally, the closer the a to x, the lower the average number of per-
formed iterations is. When the haptic probe is moving, the search
problem is solved repeatedly, with two following q positions being
mutually close since the probe movement is continuous. Therefore,
it is useful to employ coherence in the choice of the starting trian-
gle – the triangle x from the last location query is used as the start-
ing triangle a for the first iteration of the next location query.

Now let us explain the selection of the starting triangle a where
coherence cannot be employed or if it has not been successful in
the first iteration, see Algorithm 1 for a detailed description. The
goal of this part is to find a triangle which is ‘close enough’ to q
and properly oriented. The check of the proper orientation helps
to minimize the probability of a choice of a triangle which is close
to the target triangle x in the Euclidean distance but far in the
topological distance (measured on the model surface). The algo-
rithm utilizes a random sampling [28] – a subset of the triangles
from T is checked on the Euclidean distance from the point q and
the properly oriented triangle nearest to q is chosen as a. The qua-
dratic distance from the first of triangle vertices is measured for
simplicity and efficiency. The size of the random sample is given
by a user parameter k. A bigger k causes more computation but a

o

p

q

si
ri

li

α

ω

τi-1

τi+1

τi

walk

plane opq

m

Fig. 6. Example of the step of the straight walk algorithm on the surface model of
the pawn; si�1 is the previous triangle, si is the current, and siþ1 is the next triangle
on the walk.

αω o
p

q

m

plane opq

walk

Fig. 4. Situation from Fig. 3 projected into the plane opq (only triangles intersected
by the plane are shown). Dashed line is intersection of T and the plane opq.

m p

o

q

plane opq

walk

α

Fig. 5. Example of an unsuccessful iteration of the walk on the surface model of
triceratops.
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better choice of the starting triangle and vice versa. If no properly
oriented triangle is found in k steps, the search continues until a
properly oriented triangle is found. A proper value of k is highly

dependent on the specific model, however, k ¼ 2 �
ffiffiffi
n3
p

(where n is
the number of vertices in T) worked as a good compromise for all
the tested models in our experiments.

Fig. 7. Example of datasets visualizations, (a) pawn, (b) triceratops, (c) cow, (d) fandisk, (e) blob, (f) gargoyle, (g) venusbody, (h) dinosaur, (i) horse, (j) Headus skull, (k)
Stanford bunny and (l) brain.
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Now the whole of the location algorithm will be described. First,
a proper starting triangle a is chosen. Then its center of gravity o
and p ¼ q�m are computed and the cutting plane opq is defined.
Note that the edge intersected by the plane is such an edge which
is crossed by the plane between both vertices of the edge (vertices
included). Thus, if the plane passes through the triangle vertex,
both edges of the triangle defined by this vertex are considered
as the edges intersected by the plane. Although it is not com-
mented in the following text, if there are two possibilities how to
choose the intersected output edge, an arbitrary one of them can
be chosen for the proper continuation of the walk.

There are two tasks on each visited triangle si in the walk: to
find the output edge of si intersected by the plane opq which will
be used to go to the next triangle and to decide whether the cur-
rent triangle si is intersected by pq

!
in the distance from q lower

than or equal to distmax or whether the walk will continue.
For the first triangle a, there are usually two edges intersected

by the plane opq, but due to the proper orientation of a, we can
choose the output edge using orientation tests so that the path
over this edge will be probably shorter (points opq are viewed in
the CW order from the first vertex of the output edge and in the
CCW order from the second vertex of the output edge, where the
order of the edge vertices is given by the orientation of the trian-
gle). For each successive triangle si ¼ ðli; ri; siÞ, the vertices li; ri

are determined by the input edge �liri
(the edge used to enter the

triangle si) and the vertex si is opposite to �liri
. The algorithm deter-

mines the output edge by comparing the vertex si to the plane opq
using the 3D orientation test. See Fig. 6 for an example of the walk.
Note that li is always above the plane opq (points o;p;q are in the

CCW order when seen from li) and ri is always bellow or on
the plane. If si is above opq (on the left side of opq in Fig. 6), the
output edge is �risi

, otherwise, the output edge is �si li . Note that
the back side of opq is seen in Fig. 6 (points o;p;q are in the CW
order).

Before the algorithm continues through the output edge to the
next triangle, it computes the orientation test for the point q with
respect to the plane defined by the output edge and the point p. If
the point q lies on the same side as the third vertex of si (vertex not
defining output edge), a triangle intersected by pq

!
has been found.

Then it is checked, if the triangle is properly oriented. If so, the
intersection point of the triangle with pq

!
is computed. If that inter-

section point is in a distance from q lower than or equal to distmax,
the target triangle x was found. In all other cases, the algorithm
continues through the output edge to the next triangle. See
pseudo-code of the algorithm in Algorithm 2.

Note that two orientation tests per each visited triangle si are
needed. One test to determine which edge is the output edge and
one test to determine whether the current triangle si is intersected
by pq

!
(by control on which side of the plane defined by the output

edge and by the point p the query point q lies). For each found
intersected triangle, the controlled side of the plane is changed
to the opposite of the previous one, since the algorithm is
approaching the next intersected triangle from the opposite side.
In order to determine on which side of the plane the query point
q should be, an auxiliary variable is used (the variable mark in
Algorithm 2). Additionally, one orientation test and sometimes also
one intersection point computation are performed, if this triangle
is intersected by pq

!
.

Algorithm 1. First triangle selection

Input:
the triangular mesh T , the haptic probe information (the query point q, the motion vector m),
the number of choices of the first triangle k

Output :
the chosen starting triangle ∈ T

/* initialization */
double dist min = maximal double value;
triangle = null;
int i = 0;

/* looking for a proper nearby triangle */
repeat

i = i + 1;
triangle τ = random triangle from T;

/* triangle τ = t0 t1 t2 (τ is defined by vertices t0 , t1, t2 /*)
double dist = t0 − q ;

/* check if τ is closer to q than the current */
if dist < distmin then

point t = t0 − m;

/ * check if τ is properly oriented (m direct towards the front face of the τ) */
if orientation3D (t0 , t1 , t2 , t) > 0 then

= τ ;
dist min = dist;

end

end

until i ≥ k and is not null ;

;return
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The described algorithm may need more iterations to find
the target triangle (it happens especially when x does not
exist, then the upper number of iterations is always per-
formed). As these particular iterations are independent, location
process can be parallelized, i.e., more threads may run sepa-
rated walks with different starting triangles at the same time.
The thread which first finds the target triangle stops the whole
location.

Experimental results

For the test purposes, we have implemented our algorithm in
C++ with adaptive floating point arithmetic [30] to avoid numerical
problems. The solutions have been tested on Intel Q6600 2.40 GHz
in the single thread mode. The SSE2 random generator was used for
randomization, since it is declared as up to five times faster then
the standard C random generator [31].

Algorithm 2. Walking algorithm for surface location

Input:
the triangular mesh T, the information about haptic probe (query point q, motion vector m),
the triangle which was found in the last location, the number of choices of the first triangle k,
the maximal allowable distance distmax , the maximal number of iterations iter max

Output :
the triangle ω intersected by the line λ = [ q, m] in distance from q lower than or equal distmax

/* initialization */
triangle ,τ ;
point o, r, l, s;
point p = q − m;
boolean f ound = f alse;
int iter = 0;
if is null then = f irst triangle selection (q, m ,T, k); else =   ;
repeat

iter = iter + 1;
int mark = 1;
τ = ;
/* triangle τ = t0 t1 t2 (τ is defined by vertices t0 , t1 , t2 /*)
o = ( t0 + t1 + t2 )/ 3;
/* now plane opq , which is cutting T, is defined by points o, p, q */

foreach edge ∈ τ do
r = first vertex of ;
l = second vertex of ;
if orientation3D (o, p, q, r) ≤ 0 and orientation3D (o, p, q, l) ≥ 0 then break;

end
/* now r and l are on the opposite sides of the plane opq */
/* from the r side points o, p, q are in the CW order and from the l side are in the CCW order   */
repeat

if mark . orientation3D (r, l, p, q) ≤ 0 then
/* now τ = t0 t1 t2 is intersected by

→
pq */

mark = − mark;
s = t0 − m;
/* check if τ is properly oriented (m direct towards the front face of the τ) */
if orientation3D (t0 , t1 , t2 , s) > 0 then

s = intersection point of with triangle τ;
/* check if q is close enough to τ */
if q − s distmax then

f ound = true;
break;

end

end

end
τ = neighbor of τ over rl;
s = vertex of τ where s /∈ r l;
if orientation3D (o, p, q, s) < 0 then r = s; else l = s;

until τ equals α;
if not f ound then α = f irst triangle selection(q, m, T , k );

until f ound or iter ≥ iter max;

if f ound then return τ ; else return null ;

→
pq
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The tests are presented on the following well-known 3D mod-
els: pawn (304 triangles), triceratops (5660 triangles), cow (5804
triangles), fandisk (12,946 triangles), blob (16,068 triangles), gar-
goyle (20,000 triangles), venusbody (22,720 triangles), dinosaur
(28,136 triangles), horse (39,698 triangles), Headus skull (40,000
triangles), Stanford bunny (71,888 triangles), and brain (588,032
triangles) – see models visualization example in Fig. 7.

For each dataset, we have tested three different variants of
input data with the following positions to the surface model:

1. points generated on a surface – motion vectors of these points
correspond to the opposite normal vectors of triangles of the
model,

2. points generated near a surface – oriented lines k defined by
these points and their motion vectors intersect triangles on
the surface of 3D model in distance lower than or equal to the
defined maximal allowable distance distmax, input motion
vectors are randomly deviated from the opposite surface nor-
mals which correspond to the intersected triangles of the
model; the maximal deviation is lower than 90�,

3. points generated further from a surface – oriented lines k inter-
sect triangles on the surface of 3D model in a little greater dis-
tance than distmax, input motion vectors are generated in the
same way as in the second variant.

For each tested variant and each dataset, we performed 106

location queries on a randomly generated input corresponding to
the above variants (input data coherence has not been utilized in
tests).

As it is described in ‘Proposed method’, the first triangle is
selected as the closest properly oriented triangle to q from a set
of k randomly chosen triangles from T. The determination of proper
k depends on the specific dataset, however, we set k ¼ 2 �

ffiffiffi
n3
p

as a
good compromise through the datasets, where n is the number
of vertices in the mesh.

For each dataset, the following parameters were measured:

� k is the size of the set of randomly chosen triangles from T
which was used to choose the starting triangle,
� Visited D is the number of visited triangles, where / shows the

average and max shows the maximum number of visited
triangles,
� Tests is the number of performed orientation tests, where /

shows the average and max shows the maximum number of ori-
entation tests,
� Intersect. dist. / shows the average number of computations for

the intersection point of k with a surface triangle and of the cor-
responding distance computation,
� Iterations is the number of performed iterations, where / shows

the average and max shows the maximum number of iterations,
� t (ls) shows the average location time.

All the quantities reflect values for one location query while
max values show specific location queries where the appropriate
value was maximal.

Table 1 corresponds to the point location on the surface. Such a
situation is useful especially for applications where the target tri-
angle x always exists and we need to find it. Thus the algorithm

Table 2
The comparison of the algorithm parameters on the second variant of input (points generated near the surface in the distance lower than or equal to the maximal allowable
distance distmax , where input vectors are randomly deviated from the corresponding inverted surface normals, i.e. the maximal deviation is lower than 90�). The upper number of
allowed iterations is restricted to 10.

Dataset Found Visited D Tests Intersect. dist. / Iterations Time

Name # of D k # of D / Max / Max / Max t (ls)

Pawn 304 10 999782 16.91 517 41.49 1063 1.21 1.30 10 2.4
Triceratops 5660 28 999002 44.74 2476 99.44 4962 1.14 1.32 10 9.2
Cow 5804 28 996583 62.34 2771 136.39 5595 1.26 1.55 10 11.2
Fandisk 12946 36 999996 33.66 3777 75.51 7585 1.07 1.02 10 8.9
Blob 16068 40 999934 80.70 4022 171.51 8072 1.28 1.20 10 15.0
Gargoyle 20000 42 999941 69.45 4557 148.64 9145 1.21 1.15 10 14.1
Venusbody 22720 44 999994 34.76 4797 77.75 9621 1.05 1.04 10 10.8
Dinosaur 28136 48 999601 80.82 6605 172.65 13239 1.24 1.27 10 17.6
Horse 39698 54 999930 62.24 5187 134.29 10412 1.08 1.13 10 16.5
Skull 40000 54 999735 83.57 6093 176.87 12219 1.21 1.13 10 18.9
Bunny 71888 66 999993 73.48 6084 156.43 12200 1.11 1.08 10 20.2
Brain 588032 132 992373 766.14 24591 1549.98 49235 1.74 1.63 10 139.8

Table 1
The test results measured with the first variant of input data (points generated on the surface, where the corresponding inverted surface normals are used as input vectors). The
upper number of allowed iterations is not restricted.

Dataset Visited D Tests Intersect. Iterations Time

Name # of D k / Max / Max Dist. / / Max t (ls)

Pawn 304 10 13.51 429 34.09 904 1.12 1.20 14 2.3
Triceratops 5660 28 29.77 8674 68.19 17463 1.03 1.20 77 7.0
Cow 5804 28 48.42 3671 107.28 7419 1.10 1.44 47 9.4
Fandisk 12946 36 19.77 1819 47.37 3647 1.00 1.00 7 7.4
Blob 16068 40 27.28 2395 62.46 4803 1.02 1.05 9 9.0
Gargoyle 20000 42 31.41 2625 71.14 5262 1.02 1.05 16 9.9
Venusbody 22720 44 18.98 1611 45.18 3250 1.00 1.00 6 8.9
Dinosaur 28136 48 42.79 11146 94.98 22576 1.03 1.14 95 13.1
Horse 39698 54 37.88 5980 84.56 12027 1.01 1.06 16 13.6
Skull 40000 54 26.09 4231 59.58 8495 1.01 1.01 22 11.8
Bunny 71888 66 35.61 2894 79.29 5805 1.01 1.02 6 15.9
Brain 588032 132 435.91 136768 885.72 273939 1.34 1.36 125 91.2
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is searching until the triangle is found. The upper number of
allowed iterations is irrelevant in this case and it is not restricted.
The search behaves well since the opposite surface normals were
used as input motion vectors which led to a suitable choice of
the starting triangle.

On the other hand, if there is a possibility that the searched tri-
angle x does not exist (as it is in the collision detection), the upper
number of allowed iterations should be defined. For the second and
the third variant of input data we limit the upper number of
allowed iterations to 10 since it is a good compromise between
performance and accuracy. See Table 2 for the tests of the second
variant of input data (points generated near the surface). Since
the number of iterations is restricted, triangle x may not be always
found, despite the fact that it exists. Therefore, the number of
located triangles x is also shown in Table 2 as Found # of D and
shows the efficiency of the collision detection.

Although the upper number of allowed iterations is restricted to
10, the average results are worse than in Table 1. It is caused by the
input motion vectors which are diverted from the opposite surface
normals and it results in the worse choice of the first triangle. Let
us denote that the haptic visualization is highly dependent on the
specific behavior of the user, thus it is very difficult to measure it.
Therefore, input data are generated randomly to provide more
objective results. However, in haptic visualization, during the
motion on the surface of the object, coherency can be used for
the choice of the first triangle, as described in ‘Proposed method’.
Moreover, the real motion vectors of the haptic probe are usually
less diverted from the opposite surface normals. Both factors cause
significantly better results in practical haptic visualization than is
shown in Table 2.

As is shown in the table, efficiency is rather high in spite of a
low number of iterations such as 10 (always more than 99% of x
triangles were found). Since the distance traveled by the haptic
probe between two consecutive location queries is usually several
times lower than distmax, we have several attempts to detect the
collision before the haptic probe enters the model. The probability
that the haptic probe enters the model is therefore very low and
we did not register it in practice.

The worst test results are on the brain model. It is caused mainly
by its size (588 k faces), complex shape (a lot of folds) and by the
fact that the model consists of more components (the path some-
times does not exist). Although the coherence was not used in
the tests and thus location queries are several times slower than
in practice, algorithm is still fast enough for haptic visualization,
even for big shaped-complicated models as is the brain model.
Average time per one location query for the brain model is less
than 0.14 ms which corresponds to the average number of visited

triangles (about 766) for this model and which is better than the
requirements. As we can see, the longest walk visits almost 25 k
triangles (location time less than 3 ms), but such cases are very
rare and in practice where the coherence is often used in the choice
of a, we have not registered them. Moreover, an occasional execu-
tion of a little slower location queries may not be a noticeable
problem in haptic visualization.

The tests of the third type of input data (points generated fur-
ther from the surface in a little larger distance than distmax) are in
Table 3. The location is slower in comparison with other scenarios,
but we must realize that there is no contact of the haptic probe
with the surface in such a case. So there is no need of feedback
computation. Moreover, since the distance is only a little greater
than distmax from the surface, the collision detection is justified.
However, in practice, we can skip collision detection in the cases
where it is obviously useless, e.g., using several simple bounding
objects.

Experiments presented above show that the proposed algo-
rithm behaves well for haptic-related tasks as well as for more gen-
eral problems. Moreover, it can handle mesh models consisting of
several components (continuous path between components does
not exist). It is provided by a repetitive random choice of the start-
ing triangle.

The proposed location algorithm is very fast for cases where the
haptic cursor is close to the surface. On the other hand, for cases
where there is no collision, it is several times slower. But we must
realize that in such a case there is no force acting against the user,
thus the location query can be slower. Once the haptic probe is in
the proximity of the surface, detection becomes very fast and an
appropriate force feedback could be computed. This perfectly
meets usual requirements for the haptic visualization.

Note that our algorithm can be scaled to comply with various
criteria – at the first extreme case the location is very fast at a cost
of increasing number of location errors. The second extreme case is
perfect correctness of the location, but at a cost of computing time.

In our experiments we set the location parameters to meet hap-
tics requirements (location time less than 1 ms and negligible
wrong location rate where the target triangle exists and location
time less than 10 ms where the target triangle does not exist).

We have also performed a haptic visualization test. In cases,
where the target triangle does not exist, results were similar to
results in Table 3. In cases, where the target triangle exists, the
frame-to-frame coherence was utilized for the choice of the first
triangle in the most location queries. Therefore, the performance
indicators (No. of visited triangles, No. of performed tests, and
No. of performed iterations) were significantly better than in
Table 2. Average time for one location query was not measured,

Table 3
The comparison of the algorithm parameters on the set of input points generated farther from the surface in the distance larger than the defined maximal allowable distance
distmax . The number of iterations was restricted to 10.

Dataset Visited D Tests Intersect. dist. / Iterations //Max Time t (ls)

Name # of D k / Max / Max

Pawn 304 10 320.42 898 701.30 1861 10.05 10 27.5
Triceratops 5660 28 1132.21 2906 2341.48 5894 9.96 10 130.4
Cow 5804 28 1102.53 2943 2282.64 5932 9.58 10 128.1
Fandisk 12946 36 2531.65 5296 5145.98 10624 11.85 10 277.0
Blob 16068 40 2703.99 5015 5495.06 10088 12.74 10 305.3
Gargoyle 20000 42 2635.90 6650 5358.98 13384 12.10 10 309.3
Venusbody 22720 44 2802.73 5960 5684.90 11974 10.57 10 331.1
Dinosaur 28136 48 2133.49 9184 4356.47 18426 11.34 10 281.7
Horse 39698 54 2966.65 9812 6021.38 19695 10.56 10 382.5
Skull 40000 54 3875.68 7075 7838.21 14282 12.02 10 472.6
Bunny 71888 66 4905.23 10372 9899.73 20770 11.43 10 626.8
Brain 588032 132 11017.44 28211 22147.02 56472 13.42 10 1645.3
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since it may be inaccurate for individual queries. However, accord-
ing to other performance indicators, corresponding improvement
of average time can be also expected. As it was mentioned above,
all the practical haptic visualization tests may differ significantly,
since they depend on the used model and mainly on the behavior
of the user. Thus the specific measured values are not presented in
the text.

Conclusion

We have presented the walking algorithm for a triangle location
or collision detection problem on the surface (possibly changing) of
triangulated 3D models. Although we focus mainly on its applica-
tion in haptic visualization, the algorithm is also useful for general
use. As it is shown in experiments, even for the biggest tested
model which is complex-shaped and contains 588 k triangles, the
average location time is deeply under the required 1 ms which is
far better than other published methods. The main advantages of
the presented algorithm are its capability of handling time-chang-
ing models or models consisting of several components, easiness of
implementation and negligible memory requirements. The algo-
rithm is also suitable for parallelization.
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