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Katedra mechaniky

Numerické simulace prouděńı
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Abstract

This work describes the numerical solution of the mathematical model of the Shallow Water Equations.

As the source terms the bed slope source term and the bed friction term are included.

At the beginning the mathematical model and the boundary conditions are described. Mathematical

model is solved by the finite volume and discontinuous Galerkin method. Unstructured mesh was used

for the discretization of the computational area. The numerical flux is solved by the HLL and Roe

approximative Riemann solver. Validation of described methods is at the end of this thesis.

This work is focused on the schemes providing ’C-property’ condition, higher order of accuracy and

schemes which can cope with wet/dry interface.

The work brings novel scheme for computing wet/dry interface within finite volume method and

novel limiting process used for limiting of discontinuous Galerkin method.

Key words: bed slope source term, bed friction term, C-property condition, HLL scheme, finite

volume method, discontinuous Galerkin method, limiting process, artificial viscosity, minmod lim-

iter, linear reconstruction, Roe solver of Riemann problem, Saint-Venant equations, time integration,

unstructured mesh
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Abstrakt

Tato práce pojednává o numerickém řešeńı matematického modelu mělkých vod s uvažováńım zdro-

jového členu od nerovnosti dna a zdrojového členu třeńı o dno.

Práci uvád́ı popis matematického modelu prouděńı mělkých vod a okrajových podmı́nek. Matem-

atický model je řešen metodou konečných objemů a nespojitou Galerkinovou metodou. Výpočetńı

oblast byla diskretizována za pomoci nestrukturovných śıt́ı. Numerický tok je simulován pomoćı HLL

a Roe schématu. V závěru práce je validován numerický řešič, který byl vyvinut na základě poznatk̊u

zde shrnutých.

Speciálńı pozornost je věnována schémat̊um, která maj́ı vyvážený numerickým tok a zdrojový člen

dna, dále pak schémat̊um s vyšš́ım řádem přesnosti a simulaćım na rozhrańı zatopené a nezatopené

oblasti.

Hlavńı př́ınos práce je v nové metodě výpočtu zdrojového členu dna na rozhrańı zatopené a

nezatopené oblasti v rámci metody konečných objemů a nového limitovaćıho procesu applikovatelného

v rámci nespojité galerkinovy metody.

Kĺıčová slova: Saint-Venantovy rovnice, třeńı o dno, vyvážený zdrojový člen dna, HLL schéma,

metoda konečných objemů, nespojitá Galerkinova metoda, limitovaćı proces, umělá viskozita, minmod

limiter, lineárńı rekonstrukce, časová integrace, nestrukturované śıtě
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Nomenclature

The overview of the most frequent variables and constants.

a±
i+ 1

2

. . . local wave propagation speed

A . . . Roe’s approximate matrix

B . . . function of the bottom topography

B̃ . . . the function approximating bottom topography B

c . . . wave velocity

Cf . . . Manning’s bed friction coefficient

Cs . . . Chezy bed friction coefficient

d . . . water surface level distance from arbitrarily chosen constant level

F . . . vector function of flux in x-axis direction

Fi . . . value of F within finite volume Ωi

Fr . . . Froude number

g . . . gravity

G . . . vector function of flux in Y-axis direction

Gi . . . value of G within finite volume Ωi

h . . . water level depth

I . . . identity matrix

J . . . Jacobi matrix

Ks . . . effective bed roughness height

|lk| . . . length of kth edge

n . . . Manning’s bed roughness factor

nb . . . number of basis functions describing the solution

nb,B . . . number of basis functions describing bed function

~nk . . . normal vector perpendicular to n-th edge of a finite volume

nt . . . number of finite elements/volumes

ne . . . number of edges

P . . . rotation matrix

R±
i± 1

2

. . . summand in bed slope source term, cell centered approach

SB . . . bed slope source term caused by the bottom irregularities

SBi
. . . approximation of the bed slope source term in the finite volume Ωi

Sf . . . bottom-friction source term

Sfi . . . approximation of the bed friction source term in the finite volume Ωi

t . . . time

tn . . . n-th time level

u . . . Cartesian component of velocity in x-axis direction

v . . . Cartesian component of velocity in y-axis direction

wji . . . time dependent coefficient of the linear combination

W . . . vector of conservative variables

W0 . . . initial conditions of W

x . . . eigenvector of matrix J

X . . . modal matrix assembled by eigenvectors of Jacobi matrix J
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α . . . attack angle at the inlet.

Γi . . . numerical approximation of inviscid flux in y-axis direction at the i -th edge

∆t . . . time step

∆x . . . cell width in x-axis direction

∆y . . . cell width in y-axis direction

εv . . . small coefficient used for computations of velocity

ε . . . limit used for decision whether a finite volume is flooded or not

ι1/2 . . . special rectangular domains in time-space plane

λ . . . eigenvalue of the matrix J

Λ+ . . . diagonal matrix containing all positive eigenvalues of matrix J, zeros respectively

Λ− . . . diagonal matrix containing all negative eigenvalues of matrix J, zeros respectively

µε . . . coefficient of entropy correction of Roe’s scheme

τ if . . . bed shear stress

φ . . . coefficient of the linear reconstruction used for control of the numerical viscosity

Φi . . . numerical approximation of inviscid flux in x-axis direction at the i -th edge

ϕji . . . the basis function of the linear approximation

Ψ . . . coefficient of the minmod limiter used for control of the numerical viscosity

Ω . . . computational domain

Ωi . . . i -th finite volume

∂Ω . . . boundary of the computational domain

∂Ωi . . . boundary of the finite volume Ωi

|Ωi| . . . measure of i -th finite volume

ωn+1
i . . . integral average of W at n+1 -th time level over special sub-domains ι1/2



Introduction

This work summarises recent findings in the numerical solutions of Shallow Water Equations. This

mathematical model is also called Saint-Venant’s Equations. The work contains the description of the

mathematical model, numerical methods solving this model and novel findings in numerical schemes.

Motivation

The usage of the Shallow Water Equations has many practical applications. This mathematical model

can be used for simulating floods caused by heavy torrential rains, transport of sediments or pollutant

transport. The mathematical model is suitable to solve the river currents and can be used for design

of the anti-flood barriers or river catchment restoration. Shallow Water Equations are also suitable for

solving ocean currents or for design of the seaport anti-wave systems. Another application of Saint-

Venant’s Equation is connected to big shock waves like tsunami waves (e.g. Indonesian tsunami in

2004) or dam breaks caused by military actions, for example, the destruction of the Dnieprostroy Dam

(140 feet high) near Kichkas on the Dnieper River in 1941 by Russian engineers, or the occasional

mechanical failures, for example, the St. Francis Dam (205 feet high) in California, which collapsed

in 1928 because of the defective geologic foundations (partial damming of the canyon was created

by collapsed soil and not by rock). Another dam disaster was caused by hurricane Katrina, which

damaged protection levees in New Orleans in 2005.

State of the Art

The first attempts of solving Shallow Water Equations were made in nineteenth century by B. Saint-

Venant (1872) [1] who described the mathematical model and A. Riter in 1892 who propounded some

analytical solutions, for example the front wave velocity propagation of the dam break. This solution

describes the propagation of the front wave with neglected resistances of the flume (friction, turbulence,

etc.). The details of the analytical solution for rectangular dam break were summarized by Dressler

in [2]. The same author has made precise experiments with different bed friction and outlined analytical

solution in [3]. Another analytical solutions can be found in [4]. The most common analytical solutions

of Shallow Water Equations are summarised in [5]. This article is also supplemented by free solver

generating analytic and semi-analytic solutions of described solutions.

Opening chapter of present work describes the mathematical model of the Shallow Water Equations,

some of it’s mathematical features and boundary conditions. Used mathematical model includes the

bed slope source term which represents the irregularities of the bed. The description of the bed slope

source can be found in [6]. Another source term considered in this work is the bed friction source term.

This source term is well described in [7].
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Within this work, the mathematical model is solved by the finite volume and discontinuous Galerkin

method. Both methods are based on mesh which will be considered unvarying in this work. The

numerical solutions are based on computation of the numerical flux between the mesh cells. The

exact solution of the flux gives Riemann solver. Details of Riemann solver can be found in [8, 9].

The disadvantages of the exact Riemann solver are high computational demands and the fact that

the usage of the Riemann solver is clear only if no source term is included. Another way of solving

the numerical flux is usage of some approximate numerical scheme. In Chapter 2, dealing with finite

volume method, two approximating schemes of the numerical flux are described. The first scheme is

Roe scheme proposed by P. L. Roe in [10] and the second scheme is HLL scheme proposed in [11].

Both are based on up-wind principle. Description of another solver can be found for example in [6,12]

or [113].

Roe’s approximating solver for 2D computations on orthogonal tetragonal meshes is described

in [13] and the numerical scheme for unstructured triangular meshes can be found in [14–17]. HLL

approximating solver for conservation laws on orthogonal tetragonal meshes can be found in [18],

extension of this work for the unstructured meshes is described in [19]. In recent years there were also

published articles dealing with bed slope source term for non-orthogonal meshes [14, 15, 20]. Audusse

and al. described distribution of the bed source term to the cell interfaces [20]. After appropriate

rotation this distribution can be used for 2D simulation on non-orthogonal meshes. Description of a

suitable rotation is described for example in [21]. The approximation of the bed slope source term

within finite volume method is described in Section 2.3. Section 3.2.3 describes the approximation of

the bed source term within discontinuous Galerkin method. The discontinuous Galerkin method allows

the polynomial description of the bed function but this function must be continuous at the edges of

the mesh cells and smooth within the finite element. The finite volume method allows discontinuity at

the edge of the finite volumes but the bed function can be approximated only by the linear functions.

The nodes of this piecewise linear function can be evaluated either at the edge of the finite volume (for

example [18, 22, 23]) or in the middle of the finite volume (for example [13, 24]). Combination of both

methods is described in [21,25]. Kesserwani [26] published investigative study for five different standard

topography discretization methods that consist of the upwind scheme, the surface gradient method, the

mathematically balanced set of the Shallow Water Equations, the hydrostatic reconstruction technique

and the discontinuous Galerkin discretization. Another included source term is the bed friction source

term representing river bed roughness. Description of this source term can be found in [16, 27–30].

Approximation of the bed friction needs special treatment when the water depth is approaching small

values. This cases emerges for example during the wetting and drying processes in the computational

domain and friction term can cause instability of the numerical scheme. Special limiting method for

the finite volume method which handles these situations is approach described by Q. Liang and F.

Marche in [31]. Another source term can be caused by the porosity of the computational are. Porosity

flow is not discussed in this work, but we refer the reader to [32] for HLL solver details and to [17] to

see the details on Roe scheme.

Wetting and drying processes of the cells occur in majority of the practical applications, e.g. part

of the computational domain may fall dry or the domain may start initially dry and get flooded during

the simulation. The interface between a wet and a dry computational area is usually referred to as the

wet/dry front or wet/dry interface [33,34]. Especially wet/dry interfaces over complex topography are

known to cause numerical errors such as spurious oscillations in the flow velocity and negative water

depths [20, 26, 34–40]. A positivity preserving correction of the water depth has been proposed by
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Kurganov and Petrova [41]. This correction is positivity preserving, mass conservative and modifies

the reconstructed velocities to avoid non-physically large velocities caused by the numerical inaccuracy

of the computer. However, the C-property at the wet/dry interface, i.e. quiescent steady state, is

not satisfied [33, 34]. Several other approaches for the wet/dry interface can be found in literature,

such as the primitive variable reconstruction [42], which is not suitable for calculating a discontinuous

solution [38] or the non-negative hydrostatic reconstruction method [20], which may fail at certain

combinations of slope, water depth and mesh cell size [43]. Another approach is to limit the time step

such that the cell does not ’dry out to the negative values’ [35], however this approach degenerates

the time step and increases computational effort. Bollermann et al. [33] modified the correction of

Kurganov and Petrova [41] to obtain a C-property satisfying scheme. The scheme restricts the time

step as in [35] to preserve positivity of water depth and adds water into the cell in special cases to

satisfy the C-property. But, in author’s opinion, this might result in loss of the mass conservation

property of this scheme.

In the history many higher order schemes were developed. One of the method is linear reconstruction

of the conservative variables which is second-order accurate. This method is described in Section 2.5.

One of the first work with approximation higher than linear is parabolic approximation proposed in [44].

Higher order of approximation can be achieved by essentially non-oscillatory (ENO) schemes introduced

in [45]. Better results can give the weighted essentially non-oscillatory schemes (WENO) [46–48] In

Chapter 3 the discontinuous Galerkin method is described. This method has experienced a vigorous

development since it’s introduction in 1973 [49]. Although, the computational demands are higher

than the computational demands of finite volume method, discontinuous Galerkin method provides

formally arbitrarily high order of accuracy. Unfortunately this order of accuracy decreases around the

shocks and discontinuities. In [50] there is suggested to use the eigenvalues correction and first-order

scheme for time integration around the shocks. Even if the higher order schemes need higher order time

integration, the rationale for a first-order time-stepping method is smaller spatial accuracy mentioned

before. Shocks and discontinuities needs special treatment and limiting in general. Meanwhile in frame

of the finite volume method each finite volume cell is limited (this process is referred as a global limiting

process), in frame of discontinuous Galerkin method first the ’troubled’ cells are located and these are

limited (this process is referred as a local limiting process). There are various methods of defining

’troubled’ cells like [51] where the criterion of the ’troubled’ cell is connected by the magnitude of

the solution discontinuity at the edges of the finite elements. In addition to discontinuity, Kesserwani

added the criterion of solution monotonicity [52]. Limiting processes for 2D orthogonal basis functions

are described in [53]. The limiting process for non-orthogonal Taylor basis can be found in [54].

The wetting and drying processes for the second order discontinuous Galerkin method are described

in [55]. Another work dealing with second-order of accuracy and wet/dry interface is [36]. In [56] there

are the wetting and drying processes described and the ’C-property’ condition is ensured by least square

projection of the bed function in to the polynomial space of basis functions. ’C-property’ condition is

also discussed in [57]. The numerical scheme satisfying the ’C-property’ condition for the discontinuous

bed function is described by Xing and Shu [58]. The same authors describe positivity-preserving limiter

and the wetting and drying schemes in [59].

The time integration methods are described in Chapter 4. The time integration was done by Euler

method and second and fourth order Runge-Kutta method. The discontinuous Galerkin method for

the time integration wasn’t chosen because of it’s computational demands and no significant accuracy

improvement [60].
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The implemented solver was based on unstructured meshes. Even if unstructured meshes are

clumsy to use, the advantages in space discretization makes unstructured meshes very useful. There

are several ways of unstructured meshes implementation, one of them is described in Chapter 5. The

computational performance of the numerical solver can be enhanced by the parallelisation of the code.

The basics of code parallelisation are described in Chapter 6. The OpenMP library was chosen to

perform the parallel computations.

At the end of this work the numerical results and validation against experiments and analytic

solutions are shown. Chapter 7 is divided into two parts. In the first part, the numerical solver is

validated against the analytical solutions and compared with the numerical schemes published in the

literature. In the second part, the numerical results are compared with the experimental data. A

lot of the experiments have been published in the literature since 1950’s. One of the first published

experiments was experiment conducted by R.F. Dressler [3] to validate his theoretical solution of the

dam break on horizontal plane. Another dam break with flat bottom is experiment conducted by

Martin and Moyce [61] where the collapse of liquid column was studied. The initial behaviour of the

flow near the dam break site was investigated in [62]. Here the flow, in the flume with dimensions

15.24× 0.4× 0.4 m, was recorded on a CCD video camera giving a field of view of about 0.83 m height

and 1.0 m length. The flow was captured at different positions with the frame rate 25 FPS. In the

experiment, there can bee seen the ’mushroom like’ flow patterns which occurs near the dam site at the

beginning of the experiment and which cannot be captured by the Shallow Water Equations model.

L.S. Nańıa studied the flow division in steep street crossings [63]. In this work there was a set-up

of the ’crossroad’ of four flumes with angle of 90◦ between two adjacent canals. Steady inflows were

set in two flumes and another two flumes were used as the outlets. Under the steady conditions the

hydraulic jumps, discharges and the water depths in the flumes were captured. One of the experiments

with the irregular bed was the experiment conducted by S. Soares-Frazão [64]. Here, the dynamics

of the dam break wave over a triangular bottom sill was studied. The same author conducted an

experiment of the dam break flow against an isolated obstacle [65]. Here the effects of a single building

on a dam-break flow are presented. The building wasn’t set neither in the centre of the channel, nor

aligned with the flow direction. Measurements were done at five different locations. The water level

evolution was measured by means of water level gauges and the velocity was measured by means of an

acoustic Doppler velocimeter. The experiment of the dam break against an isolated obstacle was also

measured by Maritime Research Institute Netherlands [66]. Except for the water depths, the impact

pressure was measured. Another experiment, where the impact pressure was measured, is for example

experiment of V. Bukreev and V. Zykov [67], here the force of the bore impacting a narrow vertical

plate was investigated. In [68] authors conducted experimental measurements of a dam break wave

impacting the downstream vertical wall. During the experiment, the pressure loads on the wall were

measured. For the experiment, a prismatic tank with inner dimensions of 1610 × 600 × 150 mm was

used. Soares-Frazão and Zech [69] made experiment of the dam break in the 36 m long and 3.6 m wide

flume. The initial water depth in the dam, which is 6.75 m long, is 0.4 m and the initial water depth in

the rest of the flume is 0.011 m. In the front of the water gate, there were fixed square tubes simulating

porous area. Except for the water depth, the velocity of the flow was measured. This velocity was

measured by the particles in the water which were recorded by the camera with the recording rate 40

FPS. But as the authors say, the measured velocity does not give a good agreement with the numerical

prediction where the velocity is depth averaged. In study of Alcrudo et al. [70], the flood in Toce river

was simulated. The model was made in the scale 1:100 and in the flood area, the isolated buildings
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were set. The length of the model is 50 m. The set-up of the buildings, simulated by the concrete

cuboids, was aligned and staggered. In aligned set-up the buildings were placed in rows approximately

parallel to the main axis of the valley. In staggered case, the buildings are placed in a checker board

configuration.

Main Objectives of the Work

The aim of this work is description of the mathematical model and creation of the software which can

be used for the simulation of floods and river flows. The main attention was given to the interface

between flooded and dry area (wet/dry interface). Special bench mark for the numerical simulation

of the Shallow Water Equations is ’C-property’ condition. This condition was tested in fully flooded

domain, but there is a lack of research made at this interface. There is also lack of the numerical

schemes for discontinuous Galerkin method which can handle the higher orders of accuracy and wet/dry

interface in the computational domain. So description of the discontinuous Galerkin method will also

contain this topic. In the limiting processes, described by other authors, various constants are used to

find the ’troubled cells’. But there is big uncertainty in magnitude of these constants (compare [51]

and [52]). Thus another aim of this work is invention of the ’constantless’ limiting process.



Chapter 1

Mathematical Model

Mathematical model of the shallow water was described by Saint-Venant [1]. This model is known as

Saint-Venant’s Equations or Shallow Water Equations (SWE). The model is based on basic physical

laws, namely the law of mass conservation and the law of momentum conservation, for details see [9]

or [71]. The mathematical model is suitable for the free surface flows if the horizontal scales of water

mass are much bigger than the vertical scale and the flow in vertical direction is negligible. The water

density in our model is considered to be constant and Coriolis force is neglected. As the source terms

the bed slope term and bed friction term are considered. Written as a compact vector equation, The

differential conservation law form of two-dimensional SWE can be expressed as

∂W

∂t
+
∂F

∂x
+
∂G

∂y
= SB + Sf , (1.1)

where W is the vector of conservative variables

W =

 hhu
hv

 , (1.2)

F is vector function of inviscid flux in x-direction

F =

 hu

hu2 + 1
2gh2

huv

 , (1.3)

G is vector function of inviscid flux in y-direction

G =

 hv

huv

hv2 + 1
2gh2

 , (1.4)

SB is the source term caused by bottom irregularities

SB =

 0

−gh∂B(x,y)
∂x

−gh∂B(x,y)
∂y

 (1.5)

and Sf is term caused by bottom-friction during the flow

Sf =

 0

−τxf
−τyf

 . (1.6)

14
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In this equations, h is the water depth, g is gravity, u, v respectively, is the velocity of the flow in

x-direction, y-direction respectively. τxf and τyf are the bed shear stress and function B(x,y) is the

function describing the bottom topography which is considered to be constant in time within this

work.

Figure 1.1: 1D shallow water flow over the bed function.

In 1D case the system (1.1) is simplified to

∂W

∂t
+
∂F

∂x
= SB + Sf (1.7)

where

W =

[
h

hu

]
,F =

[
hu

hu2 + 1
2gh2

]
,SB =

[
0

−gh∂B(x)
∂x

]
,Sf =

[
0

−τf

]
. (1.8)

1.1 Mathematical Features

The eigenvalues of the system of SWE play a fundamental role in understanding the mathematical

character of this system and free-surface waves spreading. Equation (1.7) without the source terms

can be written in quasi-linear form [6]

∂

∂t
W + J

∂

∂x
W = 0, (1.9)

where the Jacobi matrix J of inviscid flux F = [F1, F2]T is defined as

J =
∂F

∂W
=

[
∂F1

∂W1

∂F1

∂W2

∂F2

∂W1

∂F2

∂W2

]
=

[
0 1

c2 − u2 2u

]
, (1.10)

where [W1,W2]T = W and c is wave velocity equal to

c =
√

gh. (1.11)



1.1. Mathematical Features 16

The eigenvalues of the Jacobi matrix (1.10) can be computed as

J− λI = 0, (1.12)

where I is identity matrix. Equation (1.12) has two non-singular solutions, thus Jacobi matrix (1.10)

has two eigenvalues

λ1 = u− c, λ2 = u+ c. (1.13)

The equations

Jx1 = λ1x1, Jx2 = λ2x2 (1.14)

yields corresponding right eigenvectors

x1 =

[
1

λ1

]
, x2 =

[
1

λ2

]
. (1.15)

Definition 1. (Hyperbolic system) A system ∂
∂tW + J ∂

∂xW + B = 0 is said to be hyperbolic at a

point (x, t) if J has m real eigenvalues λ1, . . . , λm and a corresponding set of m linearly independent

right eigenvectors x1, . . . ,xm. The system is said to be strictly hyperbolic if the eigenvalues λi are all

distinct [12].

When this system is strictly hyperbolic, i.e. when h > 0, the matrix J is diagonalizable in the

following way

X−1JX = Λ =

[
λ1 0

0 λ2

]
, (1.16)

where Λ is spectral matrix and X is modal matrix. The columns of the modal matrix are created by

the eigenvectors i.e.

X = [x1,x2] =

[
1 1

λ1 λ2

]
. (1.17)

In 2D case the system (1.1) without the bed slope source term and the friction term can be also

rewritten into the quasi-linear form:

∂W

∂t
+ JF

∂W

∂x
+ JG

∂W

∂y
= 0. (1.18)

There are two Jacobi matrices, connected to the system of Saint-Venant equations, in 2D space:

JF =
∂F

∂W
=

 0 1 0

c2 − u2 2u 0

−uv v u

 , JG =
∂G

∂W
=

 0 0 1

−uv v u

c2 − v2 0 2v

 . (1.19)

Their eigenvalues are

λF1 = u− c, λF2 = u, λF3 = u+ c, (1.20)

and

λG1 = v − c, λG2 = v, λG3 = v + c. (1.21)

Corresponding eigenvectors are

xF1 =

 1

u− c
v

 , xF2 =

0

0

c

 , xF3 =

 1

u+ c

v

 , (1.22)
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xG1 =

 1

u

v − c

 , xG2 =

 0

−c
0

 , xG3 =

 1

u

v + c

 . (1.23)

And modal matrices corresponding to the Jacobi matrices are:

XF =

 1 0 1

u− c 0 u+ c

v c v

 and XG =

 1 0 1

u −c u

v − c 0 v + c

 . (1.24)

1.2 Boundary Conditions

Boundary value problem is set of partial differential equations together with boundary conditions. The

solution must satisfy the system of differential equations but also meet the boundary conditions at the

boundary of the computational domain Ω. This boundary will be referred to as ∂Ω.

There are three classical boundary conditions in theory of mathematics. The condition setting the

normal derivative of a variable is called Neumann boundary condition. The condition setting a

value to a variable is called Dirichlet boundary condition. Cauchy boundary condition is a set

of conditions which determine the value and derivative of a variable simultaneously.

The number of variables, which have to be extrapolated to the boundary from the computational

domain is equal to the number of characteristic curves which intersect the boundary ∂Ω. The rest

of values must be set as a boundary condition. Let x0 be a chosen point in computational domain

sufficiently close to the boundary. The characteristic curves of system (1.7) are

x = x0 + λ1t and x = x0 + λ2t, (1.25)

where λ1, λ2 are eigenvalues (1.13). Both characteristic curves intersecting ∂Ω are depicted in Figure

Figure 1.2: Two characteristics curves inter-

secting the boundary of the computational

domain.

Figure 1.3: One characteristics curve inter-

secting the boundary of the computational

domain.

1.2. This means that no boundary condition is set and both variables (water depth h and velocity u)

are extrapolated from the computational domain Ω. In Figures 1.3 and 1.4 only one characteristic curve

is intersecting ∂Ω so one arbitrary variable will be extrapolated and second will be set by boundary

condition. And situation in Figure 1.5 needs both variables to be set by boundary condition.
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Figure 1.4: One characteristics curve inter-

secting the boundary of the computational

domain.

Figure 1.5: No characteristics curve intersect-

ing the boundary of the computational do-

main.



Chapter 2

Finite Volume Method

In this chapter, the spatial discreteness will be implemented by the Finite Volume Method (FVM).

The finite volume method is suitable for solving non-linear hyperbolic partial differential equations and

can be implemented on both structured and unstructured meshes. These meshes can be created by

arbitrary polygons. Another advantage of FVM is the capability to deal with discontinuous solutions.

The most common polygons for meshing are triangles and quadrilaterals.

At the beginning the computational domain Ω is divided into discrete mesh of finite volumes

Ωi, i = 1, 2, . . . nt. An example of a mesh can be seen in Figure 2.1.

Figure 2.1: Computational domain Ω divided into the finite volumes Ωi.

2.1 Derivation of the FVM

Derivation of the FVM can be described for the system of equations (1.1), i.e.

∂W

∂t
+
∂F

∂x
+
∂G

∂y
= Sb + Sf ,

19
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as follows. The system of equations (1.1) are integrated over the finite volume Ωi∫∫
Ωi

∂W

∂t
dxdy +

∫∫
Ωi

[
∂F

∂x
+
∂G

∂y

]
dxdy =

∫∫
Ωi

[Sb + Sf ] dxdy. (2.1)

With the assumption of constant boundary of the finite volume Ωi, the order of integration and

derivation in the integral
∫∫
Ωi

∂W
∂t dxdy can be changed. The integral is approximated by the integral

average Wi

Wi(t) =

∫∫
Ωi

W(t) dxdy

|Ωi|
⇒
∫∫
Ωi

W(t) dxdy = Wi(t)|Ωi|, (2.2)

where |Ωi| is the measure of the finite volume. Similar treatment can be done with the right hand side

of the equation (2.1)

Sb/f i(t) =

∫∫
Ωi

Sb/f (t) dxdy

|Ωi|
⇒
∫∫
Ωi

Sb/f (t) dxdy = Sb/f i(t)|Ωi|. (2.3)

In the next approach the Green’s theorem is used.

Definition 2. Green’s theorem is the relationship between a line integral around a simple closed

curve and a double integral over the plane region bounded by the curve, which may be stated as [72]∫
Ωi

(
∂f(x, y)

∂x
+
∂g(x, y)

∂y

)
dxdy =

∮
∂Ωi

f(x, y)dx+ g(x, y)dy. (2.4)

Second integral in (2.1) can be modified using (2.4)∫∫
Ωi

[
∂F

∂x
+
∂G

∂y

]
dxdy =

∮
∂Ωi

(Fnx + Gny)dl, (2.5)

where nx, ny are the components of the outer normal vector of the finite volume boundary ∂Ωi. Sub-

stitution of (2.2), (2.3) and (2.5) into (2.1) yields

∂

∂t
Wi|Ωi|+

∮
∂Ωi

(Fnx + Gny)dl = Sbi|Ωi|+ Sf i|Ωi|. (2.6)

With the assumption of the triangular shape of the finite volumes, the components of the inviscid

fluxes F and G can be replaced by summation of the numerical fluxes through all edges∮
∂Ωi

(Fnx + Gny)dl =

3∑
k=1

(Φknxk + Γknyk)|lk|, (2.7)

where Φk (respectively Γk) is the value of the numerical flux at the edge k of the finite volume Ωi in

the x (respectively y) direction and |lk| is length of the corresponding edge of the Ωi. Approximation

of the numerical fluxes Φk/Γk and source terms Sbi/Sf i is described in the following chapters.

The substitution into (2.6) yealds the semi-discrete scheme of the finite volume method

d

dt
Wi = − 1

|Ωi|

3∑
k=1

(Φknxk + Γknyk)|lk|+ Sbi + Sf i. (2.8)
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In 1D case, scheme (2.8) is simplified to

d

dt
Wi = − 1

|Ωi|

2∑
k=1

(Φknxk)|lk|+ Sbi + Sf i. (2.9)

Both schemes (2.8) and (2.9) can be written in compact form

d

dt
Wi = RHSi + Sf i. (2.10)

The time integration of
d

dt
Wi = RHSi (2.11)

is described in Section 4. The time integration of the bed friction source term Sf i needs a special

treatment which is described in Section 2.4.

2.2 Numerical Approximation of Inviscid Flux

This chapter is focused on numerical approximation of the inviscid flux F from (1.7). Roe and HLL

approximative schemes are described.

2.2.1 HLL Scheme

HLL scheme belongs to the group of Godunov-type schemes. The approach published in [18] is followed

in this section.

Considering Saint-Venant equations in 1D case (1.7) without the source terms, i.e.

∂W(x, t)

∂t
+
∂F(x, t)

∂x
= 0, (2.12)

integrating this system over i-th control volume and a single time step yields the following identity∫ x
i+1

2

x
i− 1

2

∫ tn+1

tn

(
∂W(x, t)

∂t
+
∂F(x, t)

∂x

)
dt dx = 0. (2.13)

The integrals are separated∫ x
i+1

2

x
i− 1

2

∫ tn+1

tn

∂W(x, t)

∂t
dt dx = −

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

∂F(x, t)

∂x
dx dt (2.14)

and left-hand side is integrated over the time step and right-hand side is integrated over the finite

volume ∫ x
i+1

2

x
i− 1

2

(
W(x, tn+1)−W(x, tn)

)
dx = −

∫ tn+1

tn

(
F(xi+ 1

2
, t)− F(xi− 1

2
, t)
)
dt. (2.15)

Integral on the left-hand side can be also separated∫ x
i+1

2

x
i− 1

2

W(x, tn+1)dx−
∫ x

i+1
2

x
i− 1

2

W(x, tn)dx = −
∫ tn+1

tn

(
F(xi+ 1

2
, t)− F(xi− 1

2
, t)
)
dt. (2.16)

Substitution of
∫ x

i+1
2

x
i− 1

2

W(x, tn+1)dx for the integral average Wi(t
n+1) = 1

∆x

∫ x
i+1

2
x
i− 1

2

W(x, tn+1)dx,

where ∆x = xi+ 1
2
− xi− 1

2
, and implementation of the nomenclature Wi(t

n+1) = Wn+1
i , respectively

W(x, tn) = Wn(x), yields the solution in ith finite volume in (n+ 1)th time level

Wn+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

Wn(x)dx− 1

∆x

∫ tn+1

tn

(
F(xi+ 1

2
, t)− F(xi− 1

2
, t)
)
dt. (2.17)
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In general case vector W in nth time level is described by piecewise polynomial reconstruction

Wn
i (x, t) = pni (x), xi− 1

2
< x < xi+ 1

2
∀ i. (2.18)

Vector pn is assembled by arbitrary polynomial functions. In general cases there are discontinuities

at the points xi− 1
2
, x+ 1

2
, see Figure 2.2. Values of the vector of the conservative variables in nth time

level on the left and right side of the finite volume edge will be represented by vectors WW
i and WE

i .

These vectors are defined as

WW
i = pni (xi− 1

2
) and WE

i = pni (xi+ 1
2
). (2.19)

Discontinuities at point xi+ 1
2

propagate with right and left-sided local speeds which can be estimated

by eigenvalues of the system (2.12)

a−
i+ 1

2

= min
{
λ1

(
WW

i+1

)
, λ1

(
WE

i

)
, 0
}
,

a+
i+ 1

2

= max
{
λ2

(
WW

i+1

)
, λ2

(
WE

i

)
, 0
}
.

(2.20)

In the following non-equal rectangular domains in time-space plane are considered:

ι1 = [xni− 1
2 ,r
, xni+ 1

2 ,l
]× [tn, tn+1] and ι2 = [xni+ 1

2 ,l
, xni+ 1

2 ,r
]× [tn, tn+1], (2.21)

where xn
i+ 1

2 ,l
= xi+ 1

2
+ ∆ta−

i+ 1
2

and xn
i+ 1

2 ,r
= xi+ 1

2
+ ∆ta+

i+ 1
2

. The vector of conservative variables W

is continuous within the domain ι1. On the contrary this vector is discontinuous within domain ι2, see

figure 2.2. Integral average of W in time level (n+1) over domain ι1, ι2 respectively, is referred to be

ωn+1
i , ωn+1

i+ 1
2

respectively. Considering (2.17) this averages can be computed as

ωn+1
i =

1

xn
i+ 1

2 ,l
− xn

i− 1
2 ,r

∫ xn

i+1
2
,l

xn

i− 1
2
,r

pni (x)dx−
∫ tn+1

tn

(
F(Wn(xni+ 1

2 ,l
, t))− F(Wn(xni− 1

2 ,r
, t))
)
dt

 ,
(2.22)

and

ωn+1

i+ 1
2
=

1

xn
i+ 1

2
,r
− xn

i+ 1
2
,l

∫ x
i+1

2

xn

i+1
2
,l

pn
i (x)dx+

∫ xn

i+1
2
,r

x
i+1

2

pn
i+1(x)dx−

∫ tn+1

tn

(
F(Wn(xni+ 1

2
,r, t))− F(Wn(xni+ 1

2
,l, t))

)
dt

 ,
(2.23)

The integral average of the vector Wi in time level (n+ 1) over the finite volume Ωi is obtained as

Wn+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

ωn+1(x)dx. (2.24)

Aforesaid method describes the basic principle of the HLL scheme. The semi-discrete HLL scheme is

derived in the following.

Time derivation of the vector Wi along with (2.24) yields

d

dt
Wi(t) = lim

∆t→0

Wn+1
i −Wn

i

∆t
= lim

∆t→0

1

∆t

 1

∆x

∫ x
i+1

2

x
i− 1

2

ωn+1(x)dx−Wn
i

 , (2.25)

where ∆t is the time step. Integral (2.24) can be replaced by following sums

Wn+1
i =

∆ta+
i− 1

2

∆x
ωn+1
i− 1

2

+
xi+ 1

2 ,l
− xi− 1

2 ,r

∆x
ωn+1
i −

∆ta−
i+ 1

2

∆x
ωn+1
i+ 1

2

. (2.26)
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Figure 2.2: Principle of HLL scheme.

Substitution into (2.25) yields

d

dt
Wi(t) =

a+
i− 1

2

∆x
lim

∆t→0
ωn+1
i− 1

2

+ lim
∆t→0

1

∆t

(
xi+ 1

2 ,l
− xi− 1

2 ,r

∆x
ωn+1
i −Wn

i

)
−
a−
i+ 1

2

∆x
lim

∆t→0
ωn+1
i+ 1

2

. (2.27)

This three limits are computed separately. Second limit can be computed with aid of (2.22) as

lim
∆t→0

(
x
i+1

2
,l
−x

i− 1
2
,r

∆x ωn+1
i −Wn

i

)
=

lim
∆t→0

{
1

∆x

x
i+1

2
,l
−x

i− 1
2
,r

x
i+1

2
,l
−x

i− 1
2
,r

[∫ x
i+1

2
,l

x
i− 1

2
,r

pi(x)dx−
∫ tn+1

tn

(
F(W(xn

i+ 1
2 ,l
, t))− F(W(xn

i− 1
2 ,r
, t))
)
dt

]
−Wn

i

}
=

lim
∆t→0

 ∫ x
i+1

2
,l

x
i− 1

2
,r

pi(x)dx

∆x −Wn
i −

∫ tn+1

tn

(
F(W(xn

i+1
2
,l
,t))−F(W(xn

i− 1
2
,r
,t))

)
dt

∆x

 .
(2.28)

It should be noticed that lim
∆t→0

xi+ 1
2 ,l

= xi+ 1
2
− δ and lim

∆t→0
xi+ 1

2 ,r
= xi+ 1

2
+ δ for δ → 0+. Then

lim
∆t→0

(
xi+ 1

2 ,l
− xi− 1

2 ,r

∆x
ωn+1
i −Wn

i

)
=
a−
i+ 1

2

WE
i − a

+
i− 1

2

WW
i

∆x
− F(WE

i )− F(WW
i )

∆x
. (2.29)

Equation 2.23 results in

lim
∆t→0

ωn+1
i+ 1

2

=
a+
i+ 1

2

WW
i+1 − a

−
i+ 1

2

WE
i

a+
i+ 1

2

− a−
i+ 1

2

−
F(WW

i+1)− F(WE
i )

a+
i+ 1

2

− a−
i+ 1

2

. (2.30)
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Substituting these limits into (2.27) leads to the final semi-discrete HLL scheme

d

dt
Wi(t) = −

Φi+ 1
2
(t)−Φi− 1

2
(t)

∆x
, (2.31)

where the numerical flux across the edge of finite volume Φi+ 1
2

is expressed as follows [18]

Φi+ 1
2

=
a+
i+ 1

2

F
(
WE

i

)
− a−

i+ 1
2

F
(
WW

i+1

)
a+
i+ 1

2

− a−
i+ 1

2

+
a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

[
WW

i+1 −WE
i

]
. (2.32)

2.2.1.1 2D Extension

In the following section, HLL scheme is applied to the 2D problem of the Shallow Water Equations.

Let us consider an edge with the normal vector ~n = [nx, ny]T which connects the finite volumes ΩL

and ΩR (see Figure 2.3) and |~n| = 1. In the first step the Riemann’s problem is transformed form the

Figure 2.3: An edge connecting the finite volumes ΩL and ΩR with the normal vector ~n.

global coordinate system (x, y) to the local coordinate system (ξ, ψ) where ξ is the direction of the

normal vector and ψ is the transverse direction. The rotation from the global coordinate system to

the local system can be expressed by matrix P. The rotation affects the discharges but does not affect

water depth, thus the rotational matrix has the form

P =

1 0 0

0 nx −ny
0 ny nx

 . (2.33)

Numerical flux Φ is computed using the following procedure. Firstly, the Riemann problem in the

global coordinate system (x, y) is transformed to the local coordinate system (ξ, ψ) via a left-hand

multiplication by P−1. Secondly, the local Riemann problem is solved using HLL Riemann solver

described previously, this yields the numerical flux Φ∗. Finally, the flux is transformed back to the

(x, y) coordinate system by

Φ = PΦ∗. (2.34)
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The system of equations (2.12) can be now solved in directional way and have the form

∂W

∂t
+
∂F∗

∂ξ
= 0 (2.35)

with

W =

 h

hun

hut

 , F∗ =

 hun

hu2
n + 1

2gh2

hunut

 (2.36)

where un, ut are velocities in the normal and tangent direction.

Mass discharge and normal momentum flux computations. The continuity equation, nor-

mal momentum flux respectively, is solved directly by the scheme (2.32). First, second respectively,

component of the vector of the conservative variables and flux defined in (2.36) are used for the com-

putations in (2.32). It can be noticed that

un = u · nx + v · ny,
ut = −u · ny + v · nx.

(2.37)

Tangent momentum flux computations. The tangent momentum flux is computed by the third

components of (2.36). Within the finite volume, there is no solution discontinuity and no need to use

the approximative Riemann solver. Thus only upwind scheme is used. If the velocity normal velocity

is positive then for the computation ut,L is used, otherwise ut,R is used. Following formulae accounts

for both situations [32]

hunut =
hLun,L + |hLun,L|

2
ut,L +

hRun,R − |hRun,R|
2

ut,R. (2.38)

2.2.2 Roe’s Scheme

The Roe solver of the Riemann’s problem was published in [10] and [73]. Since then this solver has been

improved and used in wide range of physical problems. It’s fundamental idea is based on replacement

of original non-linear system of differential equations by new linearised system of differential equations

with constant coefficients. The solver for inviscid flux is well described for both structured [13] and

unstructured meshes [14, 15]. The Roe scheme is of first-order accuracy only. The accuracy of the

numerical method can be increased by the combination of Roe scheme with Lax-Wendroff scheme as

described in [13]. Another way how to achieve higher accuracy is linear reconstruction of the vector of

conservative variables described in Section 2.5. Influence of min-mod, superbeee and beta limiter on

the solution, when linear reconstruction is implemented, is described in [14].

2.2.2.1 Linearisation of Riemann’s problem

Riemann’s problem, is based on finding solution of the set of differential equations

∂W

∂t
+
∂F

∂x
= 0, (2.39)

with initial condition

W(x, 0) =

WL, ∀ x < 0,

WR, ∀ x > 0.
(2.40)

Using the Jacobi matrix J(W) = ∂F
∂W , see equation (1.10), this system can be rewritten into the form

∂W

∂t
+
∂F

∂x
=
∂W

∂t
+

∂F

∂W

∂W

∂x
=
∂W

∂t
+ J(W)

∂W

∂x
= 0. (2.41)
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Roe, in his work, replaced non-linear matrix J(W) by the matrix A with constant coefficients. This new

matrix is a function of the vector of conservative variables on the left and right side of the discontinuity,

A = A(WL,WR). Thus it simplifies the original system (2.39) to system of differential equations with

constant coefficients. Riemann’s problem (2.39) is now replaced by approximate Riemann’s problem

for the system of partial differential equations

∂W
∂t + A∂W

∂x = 0, with initial condition

W(x, 0) =

WL, ∀ x < 0,

WR, ∀ x > 0,

(2.42)

which can be solved exactly.

The matrix A given above has to satisfy special requirements [12]:

1. Eigenvalues of A must be real with the set of linearly independent eigenvectors

2. Equality J(W) = A(WL,WR) for WL = WR

3. F(WL)− F(WR) = A(WL,WR)× (WL −WR)

It is obvious that the first requirement has to be kept to preserve the hyperbolic character of the original

set of non-linear differential equations. Second requirement ensures consistency with conservation laws.

And the last requirement ensures conservation and exact recognition of isolated discontinuities. It

means that if the data WL , WR are connected by a single, isolated discontinuity, then the approximate

Riemann solver solves (2.42) exactly [12].

First two requirements can be easily satisfied for example by taking A = 1
2 (J(WL) + J(WR)) or

A = J(WL+WR

2 ). But these matrices do not fulfil the third requirement, i.e. do not provide exact

solution of (2.42).

Matrix A can be found as follows. Considering the parameter Θ ∈ 〈0, 1〉 along the curve connecting

WL a WR so that

W(Θ) = WL + Θ(WR −WL), dW = (WR −WL)dΘ, (2.43)

then

F(WR)− F(WL) =

∫ 1

0

dF

dΘ
dΘ =

∫ 1

0

dF

dW
dΘ

dW

dΘ
=

∫ 1

0

J(Θ)dΘ
dW

dΘ
=

∫ 1

0

J(Θ)dΘ (WR −WL).

(2.44)

This implies

A =

∫ 1

0

J(Θ)dΘ. (2.45)

Unfortunately this integral cannot be evaluated directly. Therefore construction of matrix A must be

done in another way. In the following let ∆ mean ∆(.) = (.)R − (.)L. For the system of Saint-Venant

equations the parametric vector z [10]

z =

[ √
h√
hu

]
(2.46)

can be considered and the third requirement, i.e. ∆F = A∆W, can be expressed as

C∆z︸ ︷︷ ︸
∆F

= A B∆z︸ ︷︷ ︸
∆W

⇓
A = CB−1

(2.47)



2.2. Numerical Approximation of Inviscid Flux 27

The following identity will be used in process of finding matrices B and C [12]

∆(pq) = p∆q + q∆p, (2.48)

where p (respectively q) denotes arithmetic mean of a quantity. Considering this identity and supposing

non-negative h, ∆W can be expressed as

∆W =

[
∆h

∆(hu)

]
=

[
∆(
√
h
√
h)

∆(
√
h ·
√
hu)

]
=

[
2∆
√
h ·
√
h

√
h∆(
√
hu) +

√
hu∆
√
h

]
, (2.49)

and matrix B for Shallow Water Equations can be derived[
∆h

∆(hu)

]
︸ ︷︷ ︸

∆W

=

[
2
√
h 0

√
hu

√
h

]
︸ ︷︷ ︸

B

[
∆
√
h

∆(
√
hu)

]
︸ ︷︷ ︸

∆z

(2.50)

Matrix C can be computed similarly[
∆(hu)

∆(hu2 + 1
2gh

2)

]
︸ ︷︷ ︸

∆F

=

 √
hu

√
h

2g
√
h
√
h

2
2
√
hu


︸ ︷︷ ︸

C

[
∆
√
h

∆(
√
hu)

]
︸ ︷︷ ︸

∆z

. (2.51)

Then accordingly to (2.47)

A =

 0 1

g hL+hR

2 −
(
uL

√
hL+uR

√
hR√

hL+
√
hR

)2

2uL

√
hL+uR

√
hR√

hL+
√
hR

 . (2.52)

By introducing Roe’s averaged variables of flux celerity u 1
2

and celerity of information spreading c 1
2

u 1
2

= uL

√
hL+uR

√
hR√

hL+
√
hR

,

c 1
2

=
√
g hL+hR

2 ,

(2.53)

matrix A can be written as

A =

[
0 1

c21
2

− u2
1
2

2u 1
2

]
. (2.54)

It’s eigenvalues are

λ1 = u 1
2
− c 1

2
, λ2 = u 1

2
+ c 1

2
(2.55)

and corresponding eigenvectors are

x1 =

[
1

λ1

]
, x2 =

[
1

λ2

]
. (2.56)

2.2.2.2 Numerical Approximation of the Flux

As described in Section 1.1, Jacobi matrix J can be diagonalised and expressed as J = XΛX−1, where

X = [x1,x2, . . . ,xn] is the modal matrix, it’s columns contain corresponding eigenvectors x1, . . . ,xn,

and Λ = diag[λ1, λ2, . . . , λn] is the spectral matrix containing eigenvalues. New matrices J+ and J−

are defined as

J+ = XΛ+X−1, J− = XΛ−X−1. (2.57)
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In these relations
Λ+ = diag(λ+

1 , λ
+
2 , ..., λ

+
n ), where λ+

i = max(λi, 0),

Λ− = diag(λ−1 , λ
−
2 , ..., λ

−
n ), where λ−i = min(λi, 0).

(2.58)

The flux of the system of linear differential equations in the finite volume is expressed as F = AU.

Accordingly to the theory of up-wind schemes, applied to the systems of differential equations with

constant coefficients, the numerical flux through the edge of the finite volume can be computed as [74]

F1/2 = F+ + F−, (2.59)

where F+ and F− can be expressed as

F+ = J+WL, F− = J−WR. (2.60)

Instead of the original Jocobi matrix J, matrix A is used in approximate Roe solver of Riemann’s

problem (2.42). Thus the numerical flux Φi− 1
2

through edge of finite volume is computed as

Φi− 1
2

= Φ+
i−1 + Φ−i = A+Wi−1 + A−Wi. (2.61)

Matrices A+ and A− were derived from A in the same way as J+/− in (2.57), i.e.

A+ = XaΛ
+
a X−1

a ,A− = XaΛ
−
a X−1

a , (2.62)

where index a means that the spectral and modal matrices belongs to the matrix A. For the sake of

simplicity, this index will be omitted in the following.

Hereafter |A| is defined as

|A| = X |Λ| X−1 where |Λ| = diag(|λ1|, |λ2|, ..., |λn|). (2.63)

It can be easily proofed that

A = A+ + A−,

|A| = A+ −A−,

A+ = A+|A|
2 , A− = A−|A|

2 .

(2.64)

With this formulas the numerical flux (2.61) can be expressed as

Φi− 1
2
=

A + |A|
2

Wi−1 +
A− |A|

2
Wi =

AWi−1 + AWi

2
−

1

2
|A| (Wi −Wi−1) =

Fi−1 + Fi

2
−

1

2
|A| (Wi −Wi−1) .

(2.65)

Taking in account the requirement of linear independence of eigenvectors, the difference Wi −Wi−1

can be computed as linear combination

Wi −Wi−1 =

2∑
i=1

αpxp. (2.66)

Coefficients of this linear combination are [13]

(α1,2)i− 1
2

=
(hiui − hi−1ui−1) + (−ui− 1

2
∓ ci− 1

2
)(hi − hi−1)

∓2ci− 1
2

. (2.67)

The relation between matrix A, it’s eigenvalue λp and corresponding eigenvector xp is

Axp = λpxp. (2.68)
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Similar relation can be also derived for the matrix |A|:

|A| = X|Λ|X−1

⇓
|A|X = X|Λ|.

(2.69)

This relation yields matrices[
|A| x1 |A| x2 · · · |A| xn

]
=
[
x1|λ1| x2|λ2| · · · xn|λn|

]
(2.70)

By comparison of the columns we get

|A|xp = |λp|xp. (2.71)

And the final form of the numerical flux of the Roe’s scheme is

Φi− 1
2

=
(Fi−1 + Fi)

2
− 1

2

2∑
p=1

[|λp|αpxp]i− 1
2
. (2.72)

2.2.2.3 2D Extension

In the previous section, the Roe’s approximating solver of the Riemann’s problem for 1D conservation

laws was derived. In this section the Roe’s scheme for 2D problem of the Shallow Water Equations

is described. Let us consider an edge with the normal vector ~n = [nx, ny]T which connects the finite

volumes ΩL and ΩR (see Figure 2.3) and length of the normal vector |~n| = 1. The numerical flux is

computed as [75]

ΦL,R = 1
2 (f(WL) + f(WR))− |A| (WR −WL) ,

|A| = R|Λ|L
(2.73)

where

f(W) = F(W)nx + G(W)ny =

 hvn

huvn + 1
2gh2nx

hvvn + 1
2gh2ny

 ,
vn = unx + vny

(2.74)

and Roe matrix

A =
∂(f · ~n)

∂W
=

 0 nx ny

(c2 − u2)nx − uvny 2unx + vny uny

−uvnx + (c2 − v2)ny vnx unx + 2vny

 . (2.75)

The eigenvalues of (2.75) are

λ1 = unx + vny, λ2 = unx + vny − c, λ3 = unx + vny + c, (2.76)

the right eigenvector matrix is given by

R =

 0 1 1

ny u− cnx u+ cnx

−nx v − cny v + cny

 (2.77)

and the left eigenvector matrix is given by

L =

 −(uny − vnx) ny −nx
(unx + vny)/(2c) + 1

2 −nx/(2c) −ny/(2c)
−(unx + vny)/(2c) nx/(2c) ny/(2c)

 . (2.78)
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The matrix |Λ| is computed as

|Λ| =

|λ1| 0 0

0 |λ2| 0

0 0 |λ3|

 (2.79)

and for the computation the Roe’s averaged variables are used

c =
√

ghL+hR

2 ,

u =
√
hLuL+

√
hRuR√

hL+
√
hR

,

v =
√
hLvL+

√
hRvR√

hL+
√
hR

.

(2.80)

2.2.3 Entropy Correction

Schemes based on up-wind principle suffer from lack of the numerical viscosity and give non-physical

solution when Froude number takes on specific value. In the case of SWE, for flux-difference schemes

such critical values are the sonic ones corresponding to Fr = 1, while for flux-spliting schemes the

critical points correspond to Fr = 1/
√

2 [24]. For these critical values one of the eigenvalues of Jacobi

matrix vanishes, thus producing a lack of the numerical viscosity. There are several techniques used

to add artificial viscosity to the scheme in these cases [76]. One of the most used technique is the

regularization of the eigenvalues proposed by Harten [11].

Definition 3. Froude number is a dimensionless number defined by William Froude and is expressed

as

Fr =
u√
gl
, (2.81)

where u is velocity of the fluid flow, g is gravity and l is characteristics length. The term
√

gl means

wave velocity. For the equations of shallow water, this velocity is expressed by (1.11) i.e.
√
gh.

Aforesaid schemes do not simulate the flux correctly when one of eigenvalues is vanishing, i.e. when

Froude number in computational domain is equal to one. This numerical error causes non-physical

shock wave. Figure 2.4 displays the numerical results of dam-break problem computed by Roe scheme

at time 0.1 s for the computational domain of 3 m length with the initial conditions

h(x, 0) =

8 m, for x ≤ 1.5 m,

0.5 m, for x > 1.5 m
(2.82)

and ∆x = 0.03 m. There can be seen non-physical behaviour of numerical solver in the domain where

Fr = 1 .

To avoid this phenomena we need to ensure non-zero size of eigenvalues, thus correct the entropy.

The size of eigenvalues can be modified as follows [24]

|λi|ε = |λi|+
1

2
(1 + sgn(ε− |λi|))

(
λ2
i + ε2

2ε
− |λi|

)
, i = 1, 2, (2.83)

where ε = µε
√
gh and µε is small positive parameter smaller than one which has to be set for each

particular case. Simplified way of the eigenvalue correction is [24]

|λi|ε = max(|λi|, ε). (2.84)
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Figure 2.4: Numerical results of dam-break problem computed by Roe solver when Fr = 1.

Previous relations from the sections 2.2.1 and 2.2.2 have to be computed with these new eigenvalues.

The simulation of the dam-break described by initial conditions (2.82) with µε = 0.2 is shown in Figure

2.5.

Figure 2.5: Simulation of dam-break computed by Roe solver with entropy correction.

The HLL scheme does not suffer from this phenomena so much, but the correction can improve the

numerical solution around the point with Fr = 1 as shown in Figure 2.6.

2.2.4 Wet/Dry Interface Treatment

Computations of the numerical flux near the wet/dry interface needs special attention. Basic problem

is computation of velocity when water depth h approaches zero value. The velocity is computed from

the vector of conservative variables W = [h, hu]T as u = (hu)
h . Numerical inaccuracy of the computers

are causing that the velocity can reach non-physically large values when h→ 0.
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Figure 2.6: Numerical results of dam-break problem computed by HLL solver with and without the

entropy correction when Fr = 1.

The simplest method dealing with this problem is to set some limit ε which is small but larger

than the numerical accuracy of the computer. This tolerance defines whether a finite volume is flooded

or not. All values of the vector of conservative variables are considered to be zero when water depth

is smaller than this constant. According to [16] small changes of this value do not affect numerical

results a lot, when computing frictionless cases. But the model becomes more sensitive to changes in ε

for problems with bed friction parametrized by the Manning expression (see chapter 2.4 for details on

Manning expression). This is because the Manning formula requires division by h, which can result in

an unrealistically large prediction of the shear stress in shallow regions near wet/dry boundaries [16].

Another way how to cope with this phenomena is to set the celerity of the flow to zero in the finite

volume which abuts wet/dry interface [22]. But this can hypothetically cause problems when there

is no wet/dry interface in the computational domain and this domain is covered by the tiny layer of

water.

The last way mentioned in this study is to use following relation [41]

u =
h(hu)

h2 + εv
, (2.85)

where εv is small positive constant. This relation is simple and computationally undemanding, but

for computations when h > εv the velocity is computed with error depending on ratio of h2 and εv.

Another similar modification of velocity computation can be [77]

u =

√
2h(hu)√

h4 +max(h4, εv)
, (2.86)

which computes the velocity precisely for h4 ≥ εv and in case of small water depth the velocity is

altered to

u =
hu

h
·
√

2√
1 + εv

h4

. (2.87)

When h is small, the entire algorithm remains consistent only if we recompute the discharge (hu)

using

(hu) = h · u, (2.88)
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where u on the right-hand side of the equation (2.88) is computed with the aid of the relation (2.85)

or (2.86). It was proved by numerical experiments of A. Kurganova et al. [41] that otherwise the water

depth can attain negative values.

Comparison of aforesaid modifications is shown and discussed in Section 7.1.1.3.

Note 1. When none of the mentioned modifications is used the time step will degenerate because of

too large local velocity at the wet/dry interface.

2.3 Bed Slope Source Term Approximation

In this section different approaches of the bed slope source term approximation are described. Only

constant cell width ∆x is considered.

Function describing bed topography B(x) can be approximated by piece-wise linear function. There

are two possibilities where this approximate function can be evaluated. Either in the center (Figure

2.7) or at the edge (Figure 2.8) of the finite volume.

Figure 2.7: The approximation of the bed

function B(x) evaluated in the centre of the

finite volume.

Figure 2.8: The approximation of the bed

function B(x) evaluated at the edges of the

finite volume.

Definition 4. (’C-property’ condition) In the case when there are no other source terms, except

of the bed slope source term, and for initial conditions

h(x, 0) + B(x) = d, x ∈ Ω, d ∈ R>0

u(x, 0) = 0, x ∈ Ω,
(2.89)

a scheme satisfies the ’C-property’ condition when

u(x, t) = 0 ∀t ∈ 〈0,∞), ∀x ∈ Ω. (2.90)

2.3.1 Cell-Centred Approximation

In this section the cell-centred approximation is taken under the consideration. Function B(x), de-

scribing the bed, is approximated by the piecewise linear function B̃(x) defined as

B̃(x) = Bi +
Bi+1 − Bi

∆x
(x− xi), ∀ x : xi ≤ x ≤ xi+1. (2.91)



2.3. Bed Slope Source Term Approximation 34

Function B̃(x) is from the space of C0 functions and point Bi which is located in the centre of the

finite volume is computed in the following way

Bi =

∫ x
i+1

2
x
i− 1

2

B(x)dx

∆x
. (2.92)

2.3.1.1 Cell Centered Approximation for Roe Scheme

The bed slope source term at the finite volume edge can be computed in sense of (1.5) and spatial

derivative of the bed function is approximated by differential formula using values from Ωi and Ωi−1.

The bed slope source term at the edge is expressed as

Ri− 1
2

=

[
0

−(ci− 1
2
)2 (Bi−Bi−1)

∆x

]
. (2.93)

Total bed slope source term Sbi in (2.9) is computed as [78]

Sbi = R−
i+ 1

2

+ R+
i− 1

2

. (2.94)

Using relations from Section 2.2.2.2, the summands in this relation can be expressed as [13]

R+
i− 1

2

=
(
A+A−1R

)
i− 1

2

= 1
2

(
X
(
I + Λ−1 |Λ|

)
X−1R

)
i− 1

2

,

R−
i+ 1

2

=
(
A−A−1R

)
i+ 1

2

= 1
2

(
X
(
I−Λ−1 |Λ|

)
X−1R

)
i+ 1

2

.
(2.95)

Then (2.95) can be computed using βi− 1
2

= X−1
i− 1

2

Ri− 1
2

=
[
DOPOCITAT

] [ 0

−(ci− 1
2
)2 (Bi−Bi−1)

∆x

]
=[

c
i− 1

2
(Bi−Bi−1)

2∆x ,−
c
i− 1

2
(Bi−Bi−1)

2∆x

]T
and eigenvalues (2.55) with corresponding eigenvectors (2.56) as [13]

R+
i− 1

2

= 1
2

∑2
p=1 [βpxp (1 + sgn(λp))]i− 1

2
,

R−
i+ 1

2

= 1
2

∑2
p=1 [βpxp (1− sgn(λp))]i+ 1

2
.

(2.96)

This approximation of the source term is well balanced with Roe scheme and meets ’C-property’

condition in the flooded domain. However the scheme has to be altered to satisfy ’C-property’ condition

also at the wet/dry interface.

Proof. The proof that Roe scheme satisfies ’C-property’ in flooded computational domain is following.

The condition which has to be satisfied is the equilibrium of components of numerical flux and bed

slope source term, i.e. zero time change of equation (2.9).

In case of zero velocity of the flow the component (2.67) is simplified to

(α1,2)i−1/2 =
hi − hi−1

2
(2.97)

and the eigenvalues (2.55) are simplified to

(λ1)i−1/2 = −ci−1/2, (λ2)i−1/2 = ci−1/2. (2.98)

Froude number Fr is equal to zero, in case of constant water depth with u = 0, thus the entropy

correction can be omitted. It must be proofed that

− 1

∆x

(
Φi+1/2 −Φi−1/2

)
+
(
R−i+1/2 + R+

i−1/2

)
=

[
0

0

]
. (2.99)
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The simplified relations (2.98), (2.97) and corresponding eigenvectors are substituted into the relations

(2.72) and (2.96). After division by ∆x, (2.99) yields[
1
2
ci+1/2 (hi+1 − hi)

− 1
4
g(h2

i+1 + h2
i )

]
+

[
− 1

2
ci−1/2 (hi − hi−1)
1
4
g(h2

i + h2
i−1)

]
+

+

[
1
2
ci−1/2 (hi − hi−1)

− 1
4
g(hi−1 + hi)(Bi − Bi−1)

]
+

[
1
2
ci+1/2 (hi − hi−1)

− 1
4
g(hi+1 + hi)(Bi+1 − Bi)

]
.

(2.100)

In Figure 2.9 it can be seen that

hi + Bi = D = hi−1 + Bi−1 ⇒ Bi − Bi−1 = hi−1 − hi. (2.101)

Now (2.100) can be rewritten into[
1
2
ci+1/2 (hi+1 − hi)

− 1
4
g(h2

i+1 + h2
i )

]
+

[
− 1

2
ci−1/2 (hi − hi−1)
1
4
g(h2

i + h2
i−1)

]
+

[
1
2
ci−1/2 (hi − hi−1)

− 1
4
g(h2

i−1 − h2
i )

]
+

[
1
2
ci+1/2 (hi − hi−1)
1
4
g(h2

i+1 − h2
i )

]
. (2.102)

And the summation yields the satisfaction of the equilibrium (2.99).

Figure 2.9: Steady state of water level with zero velocity.

2.3.1.1.1 Computations at the Wet and Dry Interface

Robust scheme has to keep the ’C-property’ condition not only at the computational domain which

is fully flooded but also at the wet/dry interface when only part of the finite volume is flooded.

Approximation of the bed slope source term described previously is not able to meet this demand. The

computation of the bed slope source term at this interface has to be modified to improve the scheme.

Let wet/dry interface to be set between a dry cell Ωi and a wet cell Ωi−1. Part of the numerical bed
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slope source term (2.94) will be then redefined in the following way [13]

Ri− 1
2

=



 0

−c2
i− 1

2

hi−1

∆x

 , when hi−1 < Bi − Bi−1,

 0

c2
i− 1

2

hi

∆x

 , when hi < Bi−1 − Bi,

 0

−c2
i− 1

2

Bi−Bi−1

∆x

 other cases.

(2.103)

All computations remain unchanged except the computation of β1,2. It is computed as

(β1,2)i− 1
2

= ±
ci− 1

2
∆B

2∆x
, (2.104)

where

∆B =



hi−1, when hi−1 < Bi − Bi−1

−hi, when hi < Bi−1 − Bi

Bi − Bi−1 other cases.

(2.105)

Physical meaning of this modification is sketched in Figures 2.10 and 2.11. This redefined bed slope

source term doesn’t produce any spurious oscillations at the wet/dry interface.

Figure 2.10: Wet/dry interface before the

correction when hi−1 < Bi − Bi−1.

Figure 2.11: Wet/dry interface after the cor-

rection: ∆B = hi−1.

The Roe solver works very well within flooded domains but in certain situations, when a finite

volume is getting dry, the solver can produce negative water depth. This was discussed in [22] or

in [114]. One way of dealing with this problem is to compute the exact Riemann solution. But this

is straightforward only for the homogeneous Shallow Water Equations when the bottom source is

neglected.
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Fraccarollo and Toro constructed special Riemann method for this case [79]. And Nicholas Dodd

modified Roe’s method to treat this deficiency correctly [80]. However, all these corrections were found

to have a minor influence on the resulting solution [16].

Another way of solution is to consider the zero velocity in the finite volume which is adjacent to

a dry finite volume i.e. Wi−1 = [hi−1, 0]T . Although this attempt is not physically correct, it can

guarantee that in computational domain will not show up negative water depth caused by numerical

inaccuracy [13].

2.3.1.2 Cell Centered Approximation for HLL Scheme

Aforesaid bed slope source approximation isn’t well balanced with HLL flux approximation and there-

fore doesn’t satisfy ’C-property’ condition. In this work a novel computation of local wave propagation

speeds (2.20) is suggested.

Instead of direct computation of eigenvalues

λ1,2i
= ui ∓

√
ghi, (2.106)

the eigenvalues are divided into dynamic and static part and then used within the computations of

local wave propagation speeds. Dynamic part λD containing velocity remains unchanged (λ1,2i
)D = ui

meanwhile static part λS is computed as (λ1,2i
)S = ∓

√
ghi+hi+1

2 . The modified eigenvalues

(λ1,2i
)m = (λ1,2i

)D + (λ1,2i
)S = ui ∓

√
g
hi + hi+1

2
(2.107)

are then used for the computation of local propagation speeds (2.20) in HLL scheme. This proposed

modification satisfies ’C-property’ condition in fully flooded domain as well as at the wet/dry interface

while the dynamics of the flow is resolved with the same precision as within the original scheme as

show in Table 7.1.

The usage of Roe’s averaged variables (2.53), for the computation of the eigenvalues, was also tested.

As a testing benchmark, 2D dam-break described in 7.1.1 was chosen. But it brought no improvement

and results were slightly worse in comparison with the method suggested in this work.

2.3.2 Bed Function Evaluated at the Edges

Following approach is valid for HLL scheme and wasn’t tested for Roe scheme. Bed function is approx-

imated by the piece-wise linear function B̃(x) as shown in Figure 2.8. This function is in Ωi defined

as

B̃(x) = Bi− 1
2

+
Bi+ 1

2
− Bi− 1

2

∆x
(x− xi− 1

2
), ∀ x : xi− 1

2
≤ x ≤ xi+ 1

2
. (2.108)

B̃(x) is also from the space of C0 functions. The point Bi+ 1
2

can be approximated as

Bi+ 1
2

=

∫ xi+1

xi
B(x)dx

∆x
. (2.109)

The bed slope source term Si in (2.9) is then computed in every finite volume by simple differencing

formula

Si =

[
0

−ghi
B

i+1
2
−B

i− 1
2

∆x

]
. (2.110)
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Proof. Proof that HLL scheme meets ’C-property’ condition is following. Again equilibrium between

numerical flux and bed slope source term, i.e. zero time change of equation (2.9), is to be proofed.

Zero velocity u and constant water level D is considering in Ω. Water level values at the finite volume

h
W/E

i± 1
2

are shown in Figure 2.12. In the following hEi−1 and hWi , which are identical, are denoted as hi− 1
2
,

similarly hEi = hWi+1 are denoted as hi+ 1
2
. It can be seen that hi+ 1

2
= D−Bi+ 1

2
and hi− 1

2
= D−Bi− 1

2
.

Components (2.20) are, in case of zero celerities, simplified to

Figure 2.12: Steady state of water level. Bed approximated at the edges of finite volume

a+
i+ 1

2

= max
{√

gh−
i+ 1

2

,
√

gh+
i− 1

2

, 0
}

=
√

ghi+ 1
2
,

a−
i+ 1

2

= min
{
−
√

gh−
i+ 1

2

,−
√

gh+
i− 1

2

, 0
}

= −
√

ghi+ 1
2
.

(2.111)

Flux function (1.3) at the edge of the finite volume is

Fi+ 1
2

=

[
0

1
2gh

2
i+ 1

2

]
. (2.112)

Substitution into (2.32) yields

Φi+ 1
2
=

√
ghi+ 1

2

[
0

1
2
gh2

i+ 1
2

]
+
√
gh1+ 1

2

[
0

1
2
gh2

i+ 1
2

]
2
√
ghi+ 1

2

+
−ghi+ 1

2

2
√
ghi+ 1

2

[
hi+ 1

2
− hi+ 1

2

0

]
=

[
0

1
2
gh2

i+ 1
2

]
, (2.113)

similarly

Φi− 1
2

=

[
0

1
2gh

2
i− 1

2

]
. (2.114)
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Evaluated bed slope source term (2.110) in i-th finite volume is

Si =

 0

−g

(
D−

B
i+1

2
+B

i− 1
2

2

)
B

i+1
2
−B

i− 1
2

∆x

 =

 0

−g

(
D−B

i+1
2

+D−B
i− 1

2

2

)
B

i+1
2
−B

i− 1
2

∆x

 =

 0

−g

(
h
i+1

2
+h

i− 1
2

2

)
B

i+1
2
−B

i− 1
2

∆x

 .
(2.115)

By substitution into (2.9) we get

∂

∂t
Wi = −

[
0

1
2gh2

i+ 1
2

]
−

[
0

1
2gh2

i− 1
2

]
∆x

+

 0

−g

(
h
i+1

2
+h

i− 1
2

2

)
B

i+1
2
−B

i− 1
2

∆x

 . (2.116)

Considering

Bi+ 1
2

+ hi+ 1
2

= D = Bi− 1
2

+ hi− 1
2
⇒ Bi+ 1

2
− Bi− 1

2
= hi− 1

2
− hi+ 1

2
, (2.117)

the time equation can be expressed as

∂

∂t
Wi =

1

2∆x
g

[
0

h2
i− 1

2

− h2
i+ 1

2

]
− 1

2∆x
g

[
0

h2
i− 1

2

− h2
i+ 1

2

]
=

[
0

0

]
(2.118)

which means that the derivation of the vector of conservative variables is zero and HLL scheme satisfies

the ’C-property’ condition in flooded computational domain.

2.3.2.1 Computations at the Wet and Dry Interface

Aforesaid approach 2.3.2 can lead to the negative water depth hWi at the finite volume edge as shown

in Figure 2.13. The value hWi is needed for computations of the numerical flux through the edge. To

deal with this problem Kurganov and Petrova [41] suggest replacing the constant water depth by linear

function at the wet/dry interface. This function is defined as follows

if hWi < 0⇒

hWi = 0

hEi = 2hi
,

or

if hEi < 0⇒

hWi = 2hi

hEi = 0
.

(2.119)

New corrected water level is shown in Figure 2.14. This scheme is not only positivity preserving but

also mass conservative. The proof of the positivity preserving property of the scheme is given in [41].

But the correction causes non-physical discontinuity at the point xi+ 1
2

and scheme doesn’t satisfy ’C-

property’ condition [115, 119], thus in frame of this work a novel modification of the bed slope source

term approximation, which will meet ’C-property’ condition, is proposed.
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Figure 2.13: Negative water depth hWi . Figure 2.14: Corrected water level with

hWi = 0.

The flux across the edge xi− 1
2

is considered to be zero which means that total flux in the finite

volume Ωi is flux across edge xi+ 1
2

which is, considering zero velocity and the constant water level (see

Figure 2.13), equal to

Φi+ 1
2

=

[
0

1
2∆xg(hEi )2

]
. (2.120)

Bed slope source term (2.110) is equal to

Si =

[
0

−ghi
∆B
∆x

]
. (2.121)

The component ∆B is chosen to be modified in this work. Following equation is solved considering

hi =
hW
i +hE

i

2 [
0

−ghi
∆B
∆x

]
=

[
0

1
2∆xg(hEi )2

]
⇒ ∆B = − (hEi )2

hWi + hEi
. (2.122)

With this modification the bed slope source term and the flux term are well balanced and negative

water depth hW doesn’t have to be changed and numerical flux Φi− 1
2

is considered to be zero. Similarly

for the case when numerical flux Φi+ 1
2

is considered to be zero and hE is negative the equation (2.122)

can be computed and conditions for ∆B can be summarised as

∆B =



− (hE
i )2

(hW
i +hE

i )
when hWi < 0,

(hW
i )2

(hW
i +hE

i )
when hEi < 0,

Bi+ 1
2
− Bi− 1

2
other cases.

(2.123)

Although the scheme (2.123) satisfies the ’C-property’ condition, the modification is not mass conser-

vative.

The aforementioned reconstruction methods (2.119) and (2.123) differ only in bed slope source

term computations and conservative variables, which are used in the computation of the numerical

flux. Herein, a novel reconstruction method is proposed, which is essentially switching between both

schemes, depending whether positivity or C-property needs to be preserved and therefore combines
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the advantages of both methods while overcoming their limitations. In this section a new predictor

is introduced. This predictor governs the numerical approximation and chooses suitable approach for

the computations at the wet/dry interface.

The predictor is based on the continuity equation which governs the mass flow. In the one-

dimensional case, the continuity equation is given by

hn+1
i = hni −

∆t

∆xi

(
Φi+ 1

2
− Φi− 1

2

)
(2.124)

where n is the time level and Φi± 1
2

are the first components of the numerical fluxes. At the wet/dry

interface one of the numerical fluxes is zero. For the conditions illustrated in Figure 2.13 and 2.14, the

flux Φi− 1
2

is zero and Equation 2.124 results in

hn+1
i = htn −

∆t

∆xi
Fi+ 1

2
. (2.125)

The water depth in the n+ 1th time level must be non-negative

hni −
∆t

∆xi
Φi+ 1

2
≥ 0 (2.126)

and Equation 2.126 results in the final predictor which defines whether the bed source term and

conservative variables are computed by the C-property or positivity preserving reconstruction:

Φi+ 1
2
,Sbi =

C-property approach (2.119) if hni ∆xi ≥ ∆tΦi+ 1
2
,

positivity preserving approach (2.123) in other cases.
(2.127)

The case, when hEi is negative, follows by symmetry. The resulting reconstruction is positivity pre-

serving and satisfies the C-property condition.

2.4 Bed Friction Source Term

Another source term which plays important role in the simulations of the real flows is the bed friction

source term. This term is caused by the roughness of the bed. The friction term is described by the

equation (1.6), i.e.

Sf =

 0

−τxf
−τyf


where τxf and τyf are the bed shear stresses. These stresses were firstly derived for the pipe and

open channel flows but also were implemented in Shallow Water Equations. The relations are rather

empirical than analytical and usually have to be obtained experimentally. It is assumed that the bed

shear stress can be expressed as a quadratic function of the depth-averaged velocity multiplied by bed

friction coefficient. In this study, the usage of the Manning’s and Chezy bed drag formulations are

investigated.

2.4.1 Chezy Formulation

Chezy formulation has origin in 1769 and was derived for steady, turbulent open channel flows when

velocity across the channel was assumed to be constant [27]. According to Chezy formulation the bed

shear stress is defined as [29]

τ if =
1

C2
s

ui
√
uiui, i = x, y (2.128)
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where Cs is Chezy bed friction coefficient which is related to the effective bed roughness height, Ks,

as follows [29]

Cs = 5.75 log

(
12

h

Ks

)
. (2.129)

2.4.2 Manning’s Formulation

This formulation was introduced by Robert Manning in 1889 as an alternative to the Chezy formulation.

He did a lot of experiments to determine the relationship between the various factors that effect water

as it runs down hill in a flume. Manning suggests to compute bed shear stress as follows [30]

τ if = Cfu
i
√
uiui, i = x, y (2.130)

where Cf is Manning’s bed friction coefficient. This coefficient is calculated using Manning’s equation

[28]

Cf = g
n2

3
√
h
, (2.131)

where n is the Manning’s bed roughness factor which varies over the computational domain.

There is considerable uncertainty in choosing effective bed roughness height Ks and Manning’s bed

roughness factor n. In case of the river flows, these coefficients vary not only by the reach of the

river but also depend on many other factors. Some of these factors can be sinuosity of the river (i.e.

fraction of the river and valley length), vegetation (thus season of the year) or speed of the flow. Some

description of these coefficients can be found in [27]. Within this work the bed friction coefficients are

considered to be the same in X and Y direction.

2.4.3 Bed Friction Source Term Discretization

Regardless of the chosen formulation the bed shear stress can be described as

τ if = Cui
√
uiui, (2.132)

where C is the the constant dependent on the used formulation

C =

 1
C2

s
, in case of Chezy formulation,

Cf , in case of Manning’s formulation.
(2.133)

When wetting and drying processes appear in the numerical simulation, the bed friction source

term dominates the stability of the numerical scheme due to the water height in the denominator.

In [31] the authors solve the bed friction source term by splitting method. The following derivation

of the friction source term for the 1D Shallow Water Equation (1.7) follows their approach. The time

change of the vector of the conservative variables must be in balance with bed friction source term, i.e.

dW

dt
= Sf (2.134)

The friction term doesn’t affect the continuity equation. So, with the substitution hu = q, the equation

(2.134) can be written as
qn+1 − qn

∆t
= −τn+1

f (2.135)

and the friction term τf can be approximated by the Taylor series

τn+1
f = τnf +

(
∂τf
∂q

)n
∆q +O(∆q2), (2.136)
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where ∆q = qn+1 − qn. Ignoring the higher-order terms in (2.136) and its substitution into (2.135)

leads to
qn+1 − qn

∆t
= −τnf −

(
∂τf
∂q

)n
(qn+1 − qn) (2.137)

And after some rearrangement

qn+1 = qn −∆t

(
τf

1 + ∆t
∂τf
∂q

)n
= qn −∆t

(
Cu|u|

1 + 2∆tC|q|h−2

)n
︸ ︷︷ ︸

Sn
c

= qn −∆tSnc . (2.138)

As mentioned earlier the bed friction source term needs special treatment in the cases when the water

depth approaches zero value during the wetting and drying processes. In these cases we have to use

following limiter [31]

Snc =
qn

∆t
if |∆tSnc | > |qn|. (2.139)

If the absolute value of Snc is bigger than the absolute value of (hu) then the flow is stopped. Without

the limiter the friction term should non-physically change the flow direction.

2.5 Linear Reconstruction

In the following section the linear reconstruction for FVM is described. The linear reconstruction

improves the order of accuracy by using linear functions for conservative variables description. Higher

accuracy order increases precision of results within the same mesh resolution. The reconstruction is

described only for bed function approximated at the edges of finite volumes but with small adaptations

works also in case of the cell-centred approximation.

Within the finite volume, the conservative variables are described by constant function (integral

average). In the following this constant values is approximated by linear function i.e. for approximating

polynomials (2.18) the polynomials of degree one are chosen. Conservative variables described by

piece-wise constant functions are shown in Figure 2.15. Piece-wise linear functions approximating the

variables are shown in Figure 2.16.

The Surface Gradient Method published in [81] is used to meet ’C-property’ condition. This

method replaces the conservative variables vector W = [h, hu]T by new vector W∗ = [d, hu]T where d

means water surface level defined as d = h + B. Approximation of the variables by piece-wise linear

function is based on W∗ and then the original variable W is recomputed.

This piece-wise linear function is computed as follows

W∗
i = W∗

i + (W∗
x)i(x− xi) ∀ x : xi− 1

2
< x < xi+ 1

2
(2.140)

where the spatial derivatives

(W∗
x)i = [dx, (hu)x]Ti (2.141)

are at least of first order of accuracy. Vectors of the conservative variables at the edges, W∗E and

W∗W , are then expressed as

W∗E
i+ 1

2
= W∗

i +
∆x

2
(W∗

x)i, (2.142)

W∗W
i− 1

2
= W∗

i −
∆x

2
(W∗

x)i. (2.143)

The reconstruction increases formal order of numerical schemes by one which means that the local

error of our scheme decays from O(∆x) to O(∆x2).
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Figure 2.15: Piece-wise constant approxima-

tion of the water depth.

Figure 2.16: Piece-wise linear approximation

of the water depth.

Note 2. The order of accuracy of used time integration must be at least of the same order as the order

of accuracy of the numerical scheme approximating the numerical flux. So Euler’s method, for the

time-integration, isn’t suitable any more.

Definition 5. Total variation diminishing A scheme is said to be TVD or Total Variation Di-

minishing if it does not increase the total variation of the solution, i.e.

(TV )(hn+1) ≤ (TV )(hn). (2.144)

The total variation of a grid function is defined as [82]

TV(u) =
∑
j

|uj+1 − uj |. (2.145)

The solution is more oscillatory because of this reconstruction [81]. Thus some limiter must be

used to satisfy TVD condition. One of possible limiters is ’minmod’ limiter. Derivatives (2.141) are

computed with the aid of this limiter [83]

(W∗
x)i = minmod

(
Ψ

W∗
i −W∗

i−1

∆x
,
W∗

i+1 −W∗
i−1

2∆x
,Ψ

W∗
i+1 −W∗

i

∆x

)
, 1 < Ψ < 2. (2.146)

Minmod function is defined as

minmod(z1, z2, z3) =


min (z1, z2, z3) , if zi > 0 for i = 1, 2, 3 ,

max (z1, z2, z3) , if zi < 0 for i = 1, 2, 3 ,

0, otherwise.

(2.147)

Sometimes the derivatives are computed only by down-wind and up-wind derivatives

(W∗
x)i = minmod

(
Ψ

W∗
i −W∗

i−1

∆x
,Ψ

W∗
i+1 −W∗

i

∆x

)
, 1 < Ψ < 2. (2.148)

with the minmod limiter defined as [84]

minmod(z1, z2) =
1

2
[sgn(z1) + sgn(z2)] ·min(|z1|, |z2|). (2.149)

Parameter Ψ can be used to control the numerical viscosity [41]. Another way of numerical viscosity

controlling is the usage of the parameter φ in (2.140): W∗
i = W∗

i + φ · (W∗
x)i(x − xi). Viscosity is

smaller with larger Ψ/φ but the solution is more oscillating.
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Before the computations of the numerical fluxes the water level h = d− B is recomputed. In case

of bed function approximated at the edges of finite volume, the values WW
i ,W

E
i are obtained as

WW
i = [dWi − Bi− 1

2
, (hu)Wi ]T = [hWi , (hu)Wi ]T ,

WE
i = [dEi − Bi+ 1

2
, (hu)Ei ]T = [hEi , (hu)Ei ]T .

(2.150)

Reconstruction with d instead of h guaranties ’C-property’ condition in flooded part of Ω, because

derivatives (2.141) remain zero, in case of constant water level, and the reconstruction has no influence.



Chapter 3

Discontinuous Galerkin Method

In this chapter, the spatial discreteness will be implemented by the discontinuous Galerkin method.

This method is also suitable for solving non-linear hyperbolic partial differential equations and can be

implemented on both structured and unstructured meshes.

3.1 Derivation of the Method

In the following the discontinuous Galerkin method is derived. Let us consider a 1D computational

area Ω = [a, b] ⊂ R and let t ∈ [0, T ]. Let T = {Ωi}ni=1 be the discretization of the computational area

where Ωi = [xi− 1
2
, xi+ 1

2
] satisfies Ωn ∩ Ωm = ∅ for m 6= n and ∪iΩi = Ω.

The solution of (1.7) is from the space Sh = Sh ⊕ Sh such that

Sh = {q ∈ L2([a, b]) : q|Ωi
∈ P p(Ωi), i = 1, 2, . . . nt}, (3.1)

here nt means the number of the finite elements, P p(Ωi) is the space of polynomials with degree less

than or equal to p in Ωi. The set {ϕji}
nb
j=1 is a basis of the space P p(Ωi). 2D shallow water equations

can be multiplied by the testing function v(x) (1.1), i.e.

∂W

∂t
v + (∇ · F)v = SBv + Sfv. (3.2)

The Equation 3.2 is integrated over the subinterval Ωi∫
Ωi

∂W

∂t
v dΩ +

∫
Ωi

(∇ · F)v dΩ =

∫
Ωi

SBv dΩ +

∫
Ωi

Sfv dΩ. (3.3)

The second integral in (3.3) is altered in aid of integration-by-parts∫
Ωi

∂W

∂t
v dΩ +

∮
∂Ωi

F v nds−
∫
Ωi

F∇v dΩ =

∫
Ωi

SBv dΩ +

∫
Ωi

Sfv dΩ. (3.4)

The solution of (1.7) is the union of the (3.4) over all finite elements

nt∑
i=1

∫
Ωi

∂W

∂t
v dΩ +

∮
∂Ωi

F v nds−
∫
Ω

F∇v dΩ

 =

nt∑
i=1

∫
Ωi

SBv dΩ +

∫
Ωi

Sfv dΩ

 . (3.5)

Note 3. In case of continuous solution at the elements’ boundary, the term
∑nt

i=1

∮
∂Ωi

F v nds is equal

to zero thus discontinuous Galerkin method is equal to the finite element method and the method is

congruent with finite volume method in the case when the function v(x, t) is a constant.

46
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3.2 Numerical Scheme of Discontinuous Galerkin Method in

1D

In this section 1D numerical scheme of DG method is derived and the following system of indexes

is kept. Index i is iterator over the finite elements. Index k is iterator over the equations in the

mathematical model (i.e., k varies from 1 to 2 in case of 1D and from 1 to 3 in case of 2D Shallow

Water Equations). Index p iterates over the Gaussian points. Finally, indexes j and l iterate over the

basis functions.

In 1D case the Equation 3.5 is simplified to

nt∑
i=1

∫
Ii

∂W

∂t
v dx+ [F · v]

x
i+1

2
x
i− 1

2

−
∫
Ii

F
∂v

∂x
dx

 =

nt∑
i=1

∫
Ii

SBv dx+

∫
Ii

Sfv dx

 , (3.6)

where Ii is the interval [xi− 1
2
, xi+ 1

2
].

The components Wi,k of the solution Wi = [Wi,1,Wi,2]T = [hi, (hu)i]
T are expressed as a linear

combination of some basis functions ϕl(x)

Wi,k(x, t) =

nb∑
l=1

wli,k(t)ϕli(x), k = 1, 2 (3.7)

where nb means the number of the basis functions and wli,k are time dependent coefficients of the linear

combination. In the following the parameters t and x are omitted. Let us take the testing function

v(x) = vi,k(x), k = 1, 2, where

vi,1 =

[
ϕji (x)

0

]
(3.8)

and

vi,2 =

[
0

ϕji (x)

]
(3.9)

then substitution of (3.7) in (3.6) yields

nt∑
i=1

∫
Ii

nb∑
l=1

dwli,k
dt

ϕliϕ
j
i dx+

[
Fk · ϕji

]x
i+1

2

x
i− 1

2

−
∫
Ii

Fk
∂v

∂x
dx

 =

nt∑
i=1

∫
Ii

SB,kϕ
j
i dx+

∫
Ii

Sf,kϕ
j
i dx

 ,

(3.10)

here index k means the kth component of the flux F or the source terms SB ,Sf . The partial derivative

was replaced by normal derivative, because wli,k is only time dependent.

The basis functions ϕli(x) are chosen so that they are non-zero only at the interval Ii, thus the linear

combination of the solution is also non-zero only in the interval Ii as shown in Figure 3.1. Thanks to

this feature, the summation
∑nt

i=1 in (3.10) vanishes.
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Figure 3.1: The basis function ϕji (x) of the finite element Ii ⊂ I = [a, b].

Equation (3.10) yields the system of nb independent differential equations∫
Ii

∑nb

l=1

dwl
i,k

dt ϕliϕ
1
i dx+

[
Fk · ϕ1

i

]x
i+1

2
x
i− 1

2

−
∫
Ii

Fk
∂ϕ1

i

∂x dx =
∫
Ii

SB,kϕ
1
i dx+

∫
Ii

Sf,kϕ
1
i dx,

∫
Ii

∑nb

l=1

dwl
i,k

dt ϕliϕ
2
i dx+

[
Fk · ϕ2

i

]x
i+1

2
x
i− 1

2

−
∫
Ii

Fk
∂ϕ2

i

∂x dx =
∫
Ii

SB,kϕ
2
i dx+

∫
Ii

Sf,kϕ
2
i dx,

...

∫
Ii

∑nb

l=1

dwl
i,k

dt ϕliϕ
nb
i dx+ [Fk · ϕnb

i ]
x
i+1

2
x
i− 1

2

−
∫
Ii

Fk
∂ϕ

nb
i

∂x dx =
∫
Ii

SB,kϕ
nb
i dx+

∫
Ii

Sf,kϕ
nb
i dx.

(3.11)

The first summands of Equation 3.11 can be expressed as∫
Ii

∑nb

l=1

dwl
i,k

dt ϕliϕ
1
i dx,∫

Ii

∑nb

l=1

dwl
i,k

dt ϕliϕ
2
i dx,

...∫
Ii

∑nb

l=1

dwl
i,k

dt ϕliϕ
nb
i dx

= Mi
d

dt
wi,k (3.12)

where wi,k = [w1
i,k, w

2
i,k, . . . , w

nb

i,k]T and components Mil,j of the mass matrix Mi are computed using
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Gaussian quadrature, described in Section 3.2.1,

Mil,j =
∫
Ii

ϕliϕ
j
idx =

∫ x
i+1

2
x
i− 1

2

ϕliϕ
j
idx = . . .

x = xi+ 1
2
· ξ+1

2 − xi− 1
2
· ξ−1

2 , ξ ∈ [−1, 1]

dx =
x
i+1

2
−x

i− 1
2

2 dξ = |Ii|
2 · dξ

ϕ∗i (ξ) = ϕi(x(ξ))

. . . =
∫ 1

−1
ϕ∗li ϕ

∗j
i
|Ii|
2 dξ = |Ii|

2

∑n
p=1$pϕ

∗l
i (ξp)ϕ

∗j
i (ξp).

(3.13)

here $p and ξp means weights and points of the Gaussian quadrature and functions ϕ∗j/l are the

mapping of the functions ϕj/l from the interval Ii to the interval [−1, 1]. The third summand in (3.11)

is also computed in aid of Gaussian quadrature∫
Ii

Fk(w(x, t))
dϕj

dx
dx =

∫ 1

−1

Fk(w(x(ξ), t))
dϕ∗j

dξ

dξ

dx︸︷︷︸
2
|Ii|

|Ii|
2
dξ ≈

n∑
p=1

$pFk(w(x(ξp), t))
dϕ∗j

dξ
. (3.14)

Similar approach is for the bed source terms∫
Ii

SB/f,k(x)ϕj(x)dx ≈
n∑
p=1

$pSB/f,k(ξp)ϕ
∗j(ξp). (3.15)

The flux Fk in the second summands is computed by a Riemann solver such that

Fk(xi+ 1
2
) ≈ Φk(Wi,Wi+1),

Fk(xi− 1
2
) ≈ Φk(Wi−1,Wi).

(3.16)

Previously described schemes (2.32) or (2.72) are appropriate for approximation (3.16).

Now (3.11) can be written as

Mi
d

dt
wi,k +



[
Φk · ϕ1

i

]x
i+1

2
x
i− 1

2

−
∫
Ii

Fk
∂ϕ1

i

∂x dx[
Φk · ϕ2

i

]x
i+1

2
x
i− 1

2

−
∫
Ii

Fk
∂ϕ2

i

∂x dx

...

[Φk · ϕnb
i ]

x
i+1

2
x
i− 1

2

−
∫
Ii

Fk
∂ϕ

nb
i

∂x dx


=



∫
Ii

SB,kϕ
1
i dx∫

Ii

SB,kϕ
2
i dx

...

∫
Ii

SB,kϕ
nb
i dx


+



∫
Ii

Sf,kϕ
1
i dx∫

Ii

Sf,kϕ
2
i dx

...

∫
Ii

Sf,kϕ
nb
i dx


︸ ︷︷ ︸

RHSf
i,k

(3.17)

or after some rearrangement

Mi
d

dt
wi,k = RHSi,k(wi,k) + RHSfi,k(wi,k). (3.18)

The time integration of the semi discrete scheme

d

dt
wi,k = M−1

i RHSi,k(wi,k) (3.19)
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is analogical to the time integration of the finite volume method described in Chapter 4. The time

integration of the bed friction source term needs special treatment which is described in Section 3.2.4.

3.2.1 Gaussian Quadrature for Curve Integrals

Numerical integration of the polynomials over an interval I = [−1, 1] can be done in aid of Legendre-

Gauss quadrature integral approximation

1∫
−1

f(x)dx =

∞∑
p=1

$pf(xp) ≈
np∑
p=1

$pf(xp) (3.20)

where $p are weights, xp ∈ [−1, 1] and np is the number of integration points. The integral is

approximated exactly if the number np satisfies

np ≤ 2M − 1 (3.21)

where M means the order of polynomial function f(x). The integration rule (3.20) can be converted

to arbitrary interval [a, b]

b∫
a

f(x)dx =
b− a

2

1∫
−1

f

(
b− a

2
xi +

b+ a

2

)
dx ≈ b− a

2

np∑
p=1

$pf

(
b− a

2
xi +

b+ a

2

)
dx. (3.22)

The table of some weights and integrating points can be seen in Table 3.1.

3.2.2 Limiting Process

The solution of the DGFEM is, in case of higher order of accuracy, oscillating around the shocks and

has to be limited. First way of the solution limiting is adding artificial viscosity into the mathematical

model. Second method is usage of the classical limiters adopted from the FVM. Both methods need

some criterion of defining ’troubled’ cells as described later on.

Scientific literature describes two types of limiting processes. The process when the limiter is

applied to all finite volume cells is called the global limiting process. This is natural for the FVM

when all the variables are described by the piecewice linear functions. Accordingly to [85], in case

of the higher order of accuracy the global limiting strategy may decrease the formal accuracy of a

numerical scheme not only around the shocks and local extremes (which is accepted) but also within

the smooth differentiable regions of the solution (which is unwelcome). This was also confirmed by the

simulations of the homogeneous Euler equations by Krivodonova at al. [51]. In case of local limiting

process the solution is limited only in the problematic cells also called as ’troubled’ cells.

3.2.2.1 Artificial Viscosity

The ides of adding artificial viscosity in to the mathematical model was adopted from the finite element

method. The artificial viscosity ε is increased in the finite volume cell Ωi if this cell meets the criteria

of being troubled. The solution in the cells where the artificial viscosity is added is less oscillating.

3.2.2.1.1 Defining Troubled Cells

The ’troubled’ cell is located by the residuum Rk defined as [86]

Rk(Wi,k) =

∫
Ωi

(Wi,k −W i,k)2dΩ∫
Ωi

(Wi,k)2dΩ
, W i,k =

∫
Ωi

Wi,k dΩ (3.23)
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When the residuum R(ρ) is larger than some small positive value then the artificial viscosity ε is

increased in Ωi.

3.2.2.1.2 Adding Artificial Viscosity into the Mathematical Model

To add artificial viscosity, the Equations 1.7 have to be transformed into the parabolic form. The

Shallow Water Equations including artificial viscosity without the source terms are

∂W(x, t)

∂t
+∇F(W(x, t)) = ε

∂2W(x, t)

∂x2
,x ∈ Ω, (3.24)

here ε is a small constant governing the viscosity.

3.2.2.1.3 The Numerical Solution of the Artificial Viscosity

As in (3.2) the right hand side of the equation (3.24) is multiplied by the testing function ϕ. Integration

over the finite element and integration-by-parts yields∫
Ωi

ε
∂2W(x, t)

∂x2
ϕ dΩ =

∮
∂Ωi

ε
∂W

∂x
ϕ ds−

∫
Ωi

ε
∂W

∂x

∂ϕ

∂x
dΩ (3.25)

Derivative ∂W
∂x in the curve integral from (3.25) is approximated using the average

∂W

∂x
=

1

2

((
∂W

∂x

)
R

+

(
∂W

∂x

)
L

)
, (3.26)

where indexes L,R means the derivatives in the adjacent finite elements. And the spatial derivative of

kth conservative variable in Ωi (denoted as Wi,k) is computed as

∂Wi,k(x, t)

∂x
=

nb∑
j=1

wji,k(t)
∂ϕji (x)

∂x
. (3.27)

3.2.2.2 Slope Limiters

The classical FVM slope limiters can be adopted also by by DGFEM as described in the following

section. One of the local limiting method is ’local limiting for the second-order moments’ published by

Yang and Wang [87]. The cell is called non-problematic if the local solution is locally-monotonic and

bounded by means. Yang and Wang employed the TVD-minmod limiter as a monotonicity indicator.

Kesserwani and Liang [52] used the local approximate solution and its derivative evaluations at the

local Gaussian-points. Their approach is followed hereafter.

3.2.2.2.1 Defining Troubled Cells

One of the criteria of ’troubled’ cell is met when the solution isn’t ’bounded by means’. This

means that the solution values must be bounded in the interval [Wmin
i,k ,Wmax

i,k ] where Wmin
i,k =

min(Wi−1,k,Wi,k,Wi+1,k) and Wmax
i,k = max(Wi−1,k,Wi,k,Wi+1,k) are maximal and minimal values

in the centres of adjacent cells. Of course it is not numerically possible to check whole solution and we

can do so only in finite number of points. In [52], the Gaussian points (xp) and points at the edges of

the cell (xi± 1
2
) are chosen to be checked. It means that the cell is untroubled if

Wmin
i,k < Wi,k(xp) < Wmax

i,k (3.28)
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Figure 3.2: Local solutions of Wk(x, t).

and

Wmin
i,k < Wi,k(xi± 1

2
) < Wmax

i,k . (3.29)

But, for the strongly curved solution (see Figure 3.2), the solution extreme doesn’t have to be in the

Gaussian points or at the cell edge. To deal with this problem Kesserwani proposed criterion of the

monotonicity [52]. This criterion defines the cell as untroubled if all derivatives of the local solution in

the Gaussian points and at the cell edges have the same sign.

Another criterion of defining troubled cell is for example criterion of ’discontinuity-detection indica-

tor ’. As discontinuous Galerkin method (DGFEM) solutions across inter-cells boundaries always show

strong superconvergence phenomena [88], Krivodonova et al. [51] introduced discontinuity-detector

defined as

DSi+ 1
2

=
|Wi,k(xi+ 1

2
)−Wi+1,k(xi+ 1

2
)|

|∆x/2|3/2 |Wi,k(xi)|
, (3.30)

andDSi− 1
2

follows by symmetry. Krivodonova suggests to limit the solution whenDSi± 1
2

exceeds unity.

But as Kesserwani claims, unity is not reliable and in [52] there is suggested to limit the solution when

DSi± 1
2

exceeds 100. And as the numerical results show [52, 87], this troubled cell indicator is reliable

only for solutions described by lower order of accuracy.

3.2.2.2.2 Slope Limiting Process

When the troubled cells are located, the limiting process has to be applied. In [89] Cockburn and

Shu made use of the Legendre polynomials. The coefficients of the first order polynomials wi,1 are

computed by the minmod limiter, the coefficients wi,0 are left unchanged and coefficients of the higher

order polynomials are set to zero. Thanks to the Legendre polynomials the method is still mass

conservative, because Legendre polynomials are orthogonal at the interval 〈−1, 1〉. Minmod limiter is

used for limiting of the solution also for WENO schemes in [90].

Biswas et al. in [91] suggested to use minmod limiter not only for the low-order coefficients but

also for the higher ones. The limiter they suggested is

wli,k =
1

2l + 1
minmod(wli,k, wl−1

i,k − w
l−1
i−1,k, wl−1

i+1,k − w
l−1
i,k ), (3.31)

minmod function is defined by (2.147). Firstly, higher-order coefficients are limited and then limiting

continue with lower-order coefficients. Once the lower-order coefficients are limited, the procedure is

repeated and the higher-order coefficients are re-limited using the updated low-order coefficients.
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3.2.2.3 Novel Limiting Method

In previous sections different criteria for defining troubled cells and limiting processes were described.

Advantages and weaknesses of these processes are discussed in the following section. In this section,

the novel limiting method is suggested. This method is unique in troubled cell definition and different

criteria for limiting the water depth and the discharge.

Artificial viscosity was used to limit the solution for example in [92,93]. In this work the problems

of aerodynamics were solved without appearance of the vacuum, so the situation when the air den-

sity approaches zero value was not discussed. However the situation when the water depth in SWE

approaches zero value is common and DGFEM brings the following problem. In picture 7.1 the ini-

tial conditions of the 1D dam break on dry bed are shown. The water depth h0 = 0.6 m and length

x0 = 0.6 m. As the basis functions were used first three Legendre polynomials. In Figure 3.3, first time

iteration of the numerical simulation for computational area of length l0 = 1 and ten finite volume cells

is shown. DGFEM is not monotone by nature and detail view in Figure 3.3 shows that the solution

contains the negative values of the water depth even if the values at the edges are positive and the

solution does not corresponds to the shape of the analytical solution obtained by (7.1). Because the

artificial viscosity cannot directly affect the slope of the solution, novel limiting method, proposed in

this work, is based on slope limiters.

Figure 3.3: Non-limited water depth after the

first time iteration.

Figure 3.4: Limited water depth after the

first time iteration.

Within this work the cell is considered to be troubled if some of the water depth value h(x, t) in

the middle of the cell is not bounded by the water depth values at the edges, i.e.

max
(
h(xi− 1

2
, t), h(xi+ 1

2
, t)
)
< h(xi, t) or min

(
h(xi− 1

2
, t), h(xi+ 1

2
, t)
)
> h(xi, t) (3.32)

It is also necessary to guarantee non-negative water depth around the wet/dry interface. Thus the cell

is also defined as troubled if water depth at an edge of the finite volume cell or in the Gaussian point

are negative.

When the cell is troubled, the minmod limiter (2.147) is used for coefficients of the first order

polynomials w2
i,k. The coefficients w1

i,k are left unchanged and other coefficients are set to zero

wli,k = 0, l = 3, 4, . . . , nb. (3.33)

The positivity of given reconstruction is guaranteed by modification (2.119). The Legendre polynomials
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are orthogonal to each other, including unity, thus the integral average of a conservative variable∫
Ωi

Wi,k(x, t)dΩi = w1
i,k

∫
Ωi

1dΩi + w2
i,k

∫
Ωi

1 · xdΩi︸ ︷︷ ︸
=0

+w3
i,k

∫
Ωi

1 · 1

2
(−1 + 3x2)dΩi︸ ︷︷ ︸

=0

+ . . .︸︷︷︸
=0

(3.34)

remains unchanged by (3.33) and limiting method is conservative. The discharge is limited in the same

way as the water depth, naturally without the corrections guaranteeing positivity of the water depth.

Limited solution can be see in Figure 3.4.

In some cases non-limited solution or solution limited only around wet/dry interface gives better

results than solution limited in all troubled cells (tested for 2D dam break 7.1.1 and planar surface in

parabolic bowl 7.1.3 benchmarks). The limiting impact of given scheme can be diminished if we allow

the midpoint value to exceed the edge value by some constant εe. Then the definition of the trouble

cell (3.32) gets the form

max
(
h(xi− 1

2
, t), h(xi+ 1

2
, t)
)

+ εe < h(xi, t) or min
(
h(xi− 1

2
, t), h(xi+ 1

2
, t)
)
− εe > h(xi, t) (3.35)

But the aim of this work is invention of some ’constantless’ limiter and the improvement is not remark-

able, this modification was not used during the computations. The comparison of the novel limiting

method with method published in [52] can be found in Section 7.1.1.2.

In case of the second order DGFEM, the solution is approximated by linear functions and thus the

middle value is bounded by the values at the edges and no cell is defined as ’troubled’. In this case

the solution can be limited by the global limiting process in every single cell as within the FVM. The

global limiting process decreases the orders of accuracy mainly in case of higher order approximations.

Numerical simulations also shown, that combination of slope limiters (for limiting water depth)

and artificial viscosity (for discharge limiting) brought worse results and convergence of the scheme.

3.2.3 Bed Slope Source Term

The bed function B in ith finite element is approximated by approximating function B̃ as

B̃i(x) =

nb,B∑
l=1

wlB,iϕ
l
i(x), x ∈ 〈xi− 1

2
, xi+ 1

2
〉 (3.36)

here nb,B means the number of basis functions describing the bed topography. The bed function

coefficients wlB,i are constant in time and different from the coefficients describing the water depth.

The bed slope source term from the Equation 3.17 is approximated as

∫
Ωi

−gh(x, t)∂B̃∂x ϕ
j
i dΩ =

∫
Ωi

−gh(x, t)

nb,B∑
l=1

wli0
∂ϕli
∂x︸ ︷︷ ︸

∂B
∂x

ϕji dΩ, j = 1, 2, . . . nb.
(3.37)

Some optimization method can be used for the setting of the coefficients wli0 , but the method must

guarantee the continuity of the bed functions at the cell edge, i.e.

B̃i(x1+ 1
2
) = B̃i+1(x1− 1

2
), ∀ i = 0, 1, 2, . . . nt. (3.38)

The integral in (3.37) is also computed by the Gaussian quadrature described in Section 3.2.1. The

initial conditions ’lake in rest’ of the water depth hi = Wi,1 =
∑nb

l=1 w
l
i,1ϕ

l
i, with the initial water level
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h0, can be set as

w1
i,1 = h0 − w1

B,i,

wli,1 = −wlB,i, for l = 2, 3, . . . , nb,B .

wli,1 = 0, for l = nb,B + 1, . . . , nb.

(3.39)

3.2.4 Bed Friction Source Term

The friction term is represented by the bed friction source term

Sf =

[
0

−τxf

]
(3.40)

where τxf is the bed shear stress. In Section 2.4, Manning’s and Chezy formulations were described.

Within this work Manning’s formulation is implemented. The bed sheer stress is computed by (2.130)

i.e.

τxf = Cfu|u|,

where Cf is Manning’s bed friction coefficient computed by Manning’s expression (2.131)

Cf = g
n2

3
√
h

here n is the Manning’s bed roughness factor which varies over the computational domain.

The bed friction source term∫
Ωi

−τxf ϕ
j
i dΩ = −

∫
Ωi

Cfu|u|ϕji dΩ, j = 1, 2, . . . nb. (3.41)

is computed in aid of Gaussian quadrature.

As discussed in Section 2.4, the bed friction source term needs special treatment when the bed

friction attains large values. Within this work, a limiter similar to (2.139) is introduced and the

solution is limited as

wn+1
i,k =

w∗i,k if sign
(
Wi,k

(
wn
i,k

))
= sign

(
Wi,k

(
w∗i,k

))
,

0 otherwise,
for k = 2 (3.42)

where w∗i,k = wn
i,k + ∆tM−1

i RHSfi,k. Equation 3.42 de facto means that the discharge Wi,2 = (hu)i is

set to zero in the case when the bed friction term changes the flow direction.

3.3 Numerical scheme of Discontinuous Galerkin Method in

2D

In the following section, discontinuous Galerkin method is applied to the 2D model of the Shallow

Water Equations. The numerical method is described for unstructured triangular meshes.

Within the finite element Ωi, the vector of conservative variables (1.2) is also described by the linear

combination of the time dependent coefficients wli,k(t) and space dependent basis functions ϕli(x, y)

Wi,k(x, y, t) =

nb∑
l=1

wli,k(t)ϕli(x, y), k = 1, 2, 3. (3.43)
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One of the possible systems of basis functions are the Taylor basis system

ϕ1(x, y) = 1,

ϕ2(x, y) = x− Cx,
ϕ3(x, y) = y − Cy,
ϕ4(x, y) = (x− Cx)2,

ϕ5(x, y) = (x− Cx)(y − Cy),

ϕ6(x, y) = (y − Cy)2,

ϕ7(x, y) = (x− Cx)3,

ϕ8(x, y) = (x− Cx)2(y − Cy),

ϕ9(x, y) = (x− Cx)(y − Cy)2,

ϕ10(x, y) = (y − Cy)3,
...

(3.44)

where Cx, Cy respectively, is X-coordinate, Y-coordinate respectively, of the element’s center. The

functions can be ordered in Pascal triangle

1

x− Cx y − Cy

(x− Cx)2 (x− Cx)(y − Cy) (y − Cy)2

(x− Cx)3 (x− Cx)2(y − Cy) (x− Cx)(y − Cy)2 (y − Cy)3

(3.45)

Figure 3.5 shows these functions. For the first order of accuracy, only first basis function ϕ1(x, y) is

used in (3.43), thus nb = 1. The usage of the first three basis functions (nb = 3) yields the second

order of accuracy. To increase the order of accuracy, next line of the ’basis functions triangle’ (3.45)

must be added.

If the basis functions, describing the solution in ith finite element Ωi, are chosen such that they are

non-zero only in Ωi (see Figure 3.6) the sum
∑nt

i=1 in Equation 3.5 can be omited. If the approximating

functions ϕk for k = 1, 2, . . . , nb are chosen for the testing function v, then (3.5) yields

Mi
d

dt
wi,k +



∮
∂Ωi

Φk · ϕ1
i dl −

∫
Ωi

Fk
∂ϕ1

i

∂x dΩ∮
∂Ωi

Φk · ϕ2
i dl −

∫
Ωi

Fk
∂ϕ2

i

∂x dΩ

...∮
∂Ωi

Φk · ϕnb
i dl −

∫
Ωi

Fk
∂ϕ

nb
i

∂x dΩ


=



∫
Ωi

SB,kϕ
1
i dΩ∫

Ωi

SB,kϕ
2
i dΩ

...

∫
Ωi

SB,kϕ
nb
i dΩ


+



∫
Ωi

Sf,kϕ
1
i dΩ∫

Ωi

Sf,kϕ
2
i dΩ

...

∫
Ωi

Sf,kϕ
nb
i dΩ


︸ ︷︷ ︸

RHSf
i,k

(3.46)

where Mi = [Ml,j ] and

Ml,j =

∫
Ωi

ϕliϕ
j
i dΩi. (3.47)

The volume integral is approximated by the Gaussian quadrature described in Section 3.3.1 and the

curve integral is computed by the numerical method described in previous section. Similarly to (3.18),
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Figure 3.5: The system of Taylor basis functions ϕk(x, y).

Equation 3.46 can be rewritten as

Mi
d

dt
wi,k = RHSi,k(wi,k) + RHSfi,k(wi,k). (3.48)

The time integration of the semi discrete scheme

d

dt
wi,k = M−1

i RHSi,k(wi,k) (3.49)

is also analogical to the time integration of the finite volume method described in Chapter 4. The time

integration of the bed friction source term needs special treatment which is described in Section 3.3.4.

3.3.1 Gaussian Quadrature for 2D Triangular Elements

There are two kinds of integrals in (3.5). The curve integral over the finite element edge was described

in Section 3.2.1.The volume integral is computed as follows.

3.3.1.1 Barycentric Coordinates

The location of a point in a triangle can be described by the barycentric coordinates. The barycentric

coordinates of a triangle are given by the triples of numbers (b1, b2, b3). The location of a point in
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Figure 3.6: The basis function ϕji (x, y) of the finite element Ωi ⊂ Ω = [−0.5× 0.5,−0.5× 0.5].

Cartesian coordinates are then expressed as

xb = b1x1 + b2x2 + b3x3

yb = b1y1 + b2y2 + b3y3

(3.50)

where xi and yi are Cartesian coordinates of the triangle vertices. The vertices of the triangle have the

coordinates (1,0,0), (0,1,0) and (0,0,1). The centre of mass of a triangle has the coordinates ( 1
3 ,

1
3 ,

1
3 ).

Some of other points in the triangle can bee seen in Figure 3.7.

Figure 3.7: Barycentric coordinates.

3.3.1.2 Gaussian Quadrature for Volume Integral

Similarly to the curve integral, the volume integral can be approximated by the summation of the

weights and functional values in the barycentric coordinates∫
Ωi

f(x, y) dΩi ≈
np∑
p=1

$pf(xbp , ybp). (3.51)
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Some weights $p and corresponding barycentric coordinates can be seen in Table 3.2 where P means

the maximal degree of the polynomial which can be integrated exactly by the rule (3.51). xbp , ybp

means the x and y coordinates created by pth barycentric coordinates.

3.3.2 Limiting Process

Within this work 2D solution is limited in the similar way as 1D solution in Section 3.2.2.3. The

cell is defined as troubled if the value in the middle of the finite element, defined by the barycentric

coordinates ( 1
3 ,

1
3 ,

1
3 ), is not bounded by the values in the vertices i.e.

max(Wi,k(1, 0, 0),Wi,k(0, 1, 0),Wi,k(0, 0, 1)) < Wi,k( 1
3 ,

1
3 ,

1
3 )

or

min(Wi,k(1, 0, 0),Wi,k(0, 1, 0),Wi,k(0, 0, 1)) > Wi,k( 1
3 ,

1
3 ,

1
3 ).

(3.52)

In troubled cells the order of approximating polynomials is reduced to the second order and coef-

ficients of higher degree polynomials are set to zero. This limiting process needs a special treatment

to keep the integral averages of the conservative variables in the finite elements. In this work, three of

possibilities are discussed.

First possibility is to add a constant Ci,l to the basis functions (3.44), so that the integral average

of a basis function, with higher polynomial degree than one, is zero. New basis functions ϕ∗l (x, y) have

the form
ϕ∗l (x, y) = ϕl(x, y), for l = 1,

ϕ∗l (x, y) = ϕl(x, y)− Ci,l, ∀ l > 1,
(3.53)

where

Ci,l =

∫
Ωi

ϕl(x, y)dΩi∫
Ωi

1dΩi
. (3.54)

Now the integral of the basis function with l > 1 over the finite element is zero and limiting process is

conservative, even if higher polynomials of the solution are set to zero.

Second possibility is orthogonalising process for the basis function system in each finite element.

The functions ϕi(x, y) must be orthogonal i.e.

∫
Ωi

ϕi(x, y)ϕj(x, y)dΩi

 6= 0, i = j,

= 0, i 6= j.
(3.55)

Orthogonalising process is not discussed in this work, but the orthogonalisation can be done for example

by the Gram-Schmitt orthogonalising method.

The last possibility mentioned in this work is mapping of the basis functions in to the system of

the orthogonal functions which are defined at the reference triangle. The advantage of this method is

that there is no need to do the orthogonalising process in each triangle. In this work the orthogonal

functions are defined in the ξ − η space on reference triangle shown in Figure 3.8. This polynomials

are defined as [86]

ϕi,j(ξ, η) = p0
i

(
2ξ

1− η

)
p2i+1
j (η)

(
1− η

2

)i
(3.56)

where

pαn(a) =
1

2nn!(1− a)α
dn

dan
(
(1− a)α(x2 − 1)n

)
(3.57)
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is nth Jacobi polynomial. In (3.58) there are first ten basis functions written in ’basis functions triangle’

and in Figure 3.9 the basis are visualised.

1

ξ 1
2
(1 + 3η)

1
8
(12ξ2 − (η − 1)2) 1

2
ξ(3 + 5η) 5

2
η2 + η − 1

2

1
8
ξ(20ξ2 − 3(η − 1)2) − 1

16
(−12ξ2 + (η − 1)2)(5 + 7η)) 1

4
ξ(1 + 18η + 21η2) 1

8
(−3− 15η + 15η2 + 35η3)

(3.58)

The division of the orthogonal basis functions ϕl by its norm ||Ω(ξ, eta)|| =
∫
Ω

ϕidΩ yields orthonormal

system. The norms of the basis (3.58) are written in (3.59).

1

1
6

1
2

1
15

1
9

1
3

1
4

1
12

1
20

1
28

(3.59)

Figure 3.8: Reference triangle.

The transformation between the axes x = [x, y] and ξ = [ξ, η] can be expressed in the matrix form

x− x1 = Ti(ξ − ξ1) (3.60)
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Figure 3.9: The system of ortogonal basis functions ϕk(x, y).

or

x = x1 + Ti(ξ − ξ1) (3.61)

where x1 = [x1, y1] and ξ1 = [−1,−1] are the coordinates of the first vertices in the triangles. Jacobian

matrix T of rank 2× 2 can be found by solution of the following system of linear equations

x2 − x1 = Ti(ξ2 − ξ1)

x3 − x1 = Ti(ξ3 − ξ1)
(3.62)

here ξi,xi, i = 2, 3 are also the vertices of the corresponding triangle Ωi.

Derivatives of the Basis Functions and Volume Integral

Equation 3.5 contains the volume integral and also the derivatives of the basis functions. The com-

putations of the volume integral and the derivatives for the orthogonal basis functions defined on the

reference triangle is described in the following section.

The derivatives of the basis functions are

∂ϕ
∂x = ∂ϕ

∂ξ
∂ξ
∂x + ∂ϕ

∂η
∂η
∂x

∂ϕ
∂y = ∂ϕ

∂ξ
∂ξ
∂y + ∂ϕ

∂η
∂η
∂y

(3.63)
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Where the derivatives ∂
∂ξ ,

∂
∂η can be derived from ξ − ξ1 = T−1

i (x− x1) i.e.[
ξ

η

]
=

[
ξ1

η1

]
+

[
T−1

11 T−1
12

T−1
21 T−1

22

]([
x− x1

y − y1

])
. (3.64)

Equation 3.64 yields
∂ξ
∂x = T−1

11 ,
∂η
∂x = T−1

21 ,

∂ξ
∂y = T−1

12 ,
∂η
∂y = T−1

22 ,

(3.65)

and the substitution of (3.65) into (3.63) results in

∂ϕ
∂x = ∂ϕ

∂ξ T
−1
11 + ∂ϕ

∂η T
−1
21 ,

∂ϕ
∂y = ∂ϕ

∂ξ T
−1
12 + ∂ϕ

∂η T
−1
22 .

(3.66)

The volume integral over the reference triangle is transformed into∫
Ωi

f(x, y) dΩi =

∫
Ω4

f(x, y)J(Ti) dΩ4 ≈
np∑
p=1

$pf(xbp , ybp)|Ωi|, (3.67)

where J(Ti) is the Jacobian of the transformation x → η. This Jacobian is equal to the area of the

finite element |Ωi|.

3.3.3 Bed Slope Source Term

The bed slope source from (3.46) is easily computed by the Gaussian quadrature (3.51) as∫
Ωi

SB,k(x, y)ϕli(x, y) dΩ =

np∑
p=1

$pSB,k(xbp , ybp)ϕli(xbp , ybp). (3.68)

This work describes only bed function approximated by the linear functions within 2D solver. In

the following, there is described the setting of the bed function coefficients for Taylor and orthogonal

basis systems. The bed function is approximated by the linear combination (3.43) such that

Bi(x, y) =

nB∑
l=1

wlB,iϕl(x, y) (3.69)

nB = 3 because only linear functions are considered. Let the bed altitude (Z) to be defined in the

vertexes of the finite element Ωi (points 1,2,3 in Figure 3.10). Two arbitrary vectors (~u, ~v) creating

the element edges can be computed as

ux = X2 −X1

uy = Y2 − Y1

uz = Z2 − Z1

vx = X3 −X1

vy = Y3 − Y1

vz = Z3 − Z1

(3.70)
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Figure 3.10: Approximated bed function in a finite element.

The components of the normal vector ~n are

nx = uyvz − uzvy,
ny = uzvx − uxvz,
nz = uxvy − uyvx.

(3.71)

If the bed function is approximated in aid of the Taylor basis (3.45) then the coefficients of the linear

approximation (3.69) are

w1
B,i = Z1+Z2+Z3

3 ,

w2
B,i = −nx

nz
,

w3
B,i = −ny

nz
.

(3.72)

To set ’lake in rest’ initial condition of the water depth with initial water level h0, the coefficients of

the water depth Wi,1(x, y, t) =
∑nb

l=1 w
l
i,1(t)ϕli(x, y) are

w1
i,1 = h0 − w1

B,i,

w2
i,1 = −w2

B,i,

w3
i,1 = −w3

B,i,

wli,1 = 0, for l = 4, 5, . . . , nb.

(3.73)

In case of orthogonal basis functions (3.58) the bed function coefficients wlB,i have to be set in

different way. Within this work, it is suggested to set the these coefficients in the following way. The

multiplying of the bed approximation by the basis function ϕj and integrating over the finite element

yields ∫
Ωi

BiϕldΩi =

nB∑
l=1

wlB,i

∫
Ωi

ϕlϕjdΩi (3.74)

Bi(x, y) was replaced by Bi for the sake of simplicity. The orthogonality of the basis functions yields

∫
Ωi

BiϕldΩi =


0, l 6= j

wlB,i
∫
Ωi

ϕlϕjdΩi, l = j.
(3.75)

and (3.75) results in

wlB,i =

∫
Ωi

BiϕldΩi∫
Ωi

ϕlϕldΩi
. (3.76)

The initial condition ’lake in rest’ of the water depth can be set in the same way as in (3.73).
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3.3.4 Bed Friction Source Term

The bed friction in 2D is similar to 1D case. The bed friction source term (1.6) contains two non-zero

components

Sf =

 0

−τxf
−τyf

 .
I.e. the friction term is non-zero for k = 2, 3 and numerical approximation is computed in aid of

Gaussian quadrature for volume integral∫
Ωi

−τxf ϕ
j
i dΩ = −

∫
Ωi

Cfu|u|ϕji dΩ, j = 1, 2, . . . nb; k = 2.∫
Ωi

−τyf ϕ
j
i dΩ = −

∫
Ωi

Cfv|v|ϕji dΩ, j = 1, 2, . . . nb; k = 3.
(3.77)

As mentioned before, the bed sheer stress coefficient Cf is the same for the X and Y direction. The

Equation 3.77 cannot be directly added to the Equation 3.46. To implement this source term, the

same limiter as in 3.42 has to be used.

wn+1
i,k =

w∗i,k if sign
(
Wi,k

(
wn
i,k

))
= sign

(
Wi,k

(
w∗i,k

))
,

0 otherwise,
for k = 2, 3 (3.78)

where w∗i,k = wn
i,k + ∆tM−1

i RHSfi,k. The Equation 3.78 also means that the discharge Wi,2 = (hu)i,

Wi,3 = (hv)i respectively, is set to zero in the case when the bed friction term changes the flow direction.
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Table 3.1: Weights and points of the Gaussian quadrature

np Weights $p Integration points xp

1 2.0000000000000000 0.0000000000000000

2 1.0000000000000000 -0.5773502691896257

1.0000000000000000 0.5773502691896257

3 0.8888888888888888 0.0000000000000000

0.5555555555555556 -0.7745966692414834

0.5555555555555556 0.7745966692414834

4 0.6521451548625461 -0.3399810435848563

0.6521451548625461 0.3399810435848563

0.3478548451374538 -0.8611363115940526

0.3478548451374538 0.8611363115940526

5 0.5688888888888889 0.0000000000000000

0.4786286704993665 -0.5384693101056831

0.4786286704993665 0.5384693101056831

0.2369268850561891 -0.9061798459386640

0.2369268850561891 0.9061798459386640

6 0.3607615730481386 0.6612093864662645

0.3607615730481386 -0.6612093864662645

0.4679139345726910 -0.2386191860831969

0.4679139345726910 0.2386191860831969

0.1713244923791704 -0.9324695142031521

0.1713244923791704 0.9324695142031521

7 0.4179591836734694 0.0000000000000000

0.3818300505051189 0.4058451513773972

0.3818300505051189 -0.4058451513773972

0.2797053914892766 -0.7415311855993945

0.2797053914892766 0.7415311855993945

0.1294849661688697 -0.9491079123427585

0.1294849661688697 0.9491079123427585

8 0.3626837833783620 -0.1834346424956498

0.3626837833783620 0.1834346424956498

0.3137066458778873 -0.5255324099163290

0.3137066458778873 0.5255324099163290

0.2223810344533745 -0.7966664774136267

0.2223810344533745 0.7966664774136267

0.1012285362903763 -0.9602898564975363

0.1012285362903763 0.9602898564975363

9 0.3302393550012598 0.0000000000000000

0.1806481606948574 -0.8360311073266358

0.1806481606948574 0.8360311073266358

0.0812743883615744 -0.9681602395076261

0.0812743883615744 0.9681602395076261

0.3123470770400029 -0.3242534234038089

0.3123470770400029 0.3242534234038089

0.2606106964029354 -0.6133714327005904

0.2606106964029354 0.6133714327005904
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Table 3.2: Weights and barycentric coordinates of the Gaussian quadrature

P Weights $p Barycentric coordinates (b1, b2, b3)

1 1.000000000000000 (0.333333333333333, 0.333333333333333, 0.333333333333333)

2 0.333333333333334 (0.166666666666666, 0.666666666666667, 0.166666666666667)

0.333333333333334 (0.666666666666667, 0.166666666666667, 0.166666666666666)

0.333333333333334 (0.166666666666667, 0.166666666666666, 0.666666666666667)

3 -0.562500000000000 (0.333333333333333, 0.333333333333333, 0.333333333333334)

0.520833333333334 (0.200000000000000, 0.600000000000000, 0.200000000000000)

0.520833333333334 (0.600000000000000, 0.200000000000000, 0.200000000000000)

0.520833333333334 (0.200000000000000, 0.200000000000000, 0.600000000000000)

4 0.223381589678012 (0.445948490915965, 0.108103018168070, 0.445948490915965)

0.109951743655322 (0.091576213509770, 0.816847572980459, 0.091576213509771)

0.223381589678012 (0.108103018168070, 0.445948490915965, 0.445948490915965)

0.109951743655322 (0.816847572980459, 0.091576213509771, 0.091576213509770)

0.223381589678012 (0.445948490915965, 0.445948490915965, 0.108103018168070)

0.109951743655322 (0.091576213509771, 0.091576213509770, 0.816847572980459)

5 0.225000000000000 (0.333333333333333, 0.333333333333333, 0.333333333333334)

0.132394152788506 (0.470142064105115, 0.059715871789770, 0.470142064105115)

0.125939180544827 (0.101286507323457, 0.797426985353087, 0.101286507323456)

0.132394152788506 (0.059715871789770, 0.470142064105115, 0.470142064105115)

0.125939180544827 (0.797426985353087, 0.101286507323456, 0.101286507323457)

0.132394152788506 (0.470142064105115, 0.470142064105115, 0.059715871789770)

0.125939180544827 (0.101286507323456, 0.101286507323457, 0.797426985353087)

6 0.116786275726379 (0.249286745170911, 0.501426509658179, 0.249286745170910)

0.050844906370207 (0.063089014491502, 0.873821971016996, 0.063089014491502)

0.116786275726379 (0.501426509658179, 0.249286745170910, 0.249286745170911)

0.050844906370207 (0.873821971016996, 0.063089014491502, 0.063089014491502)

0.116786275726379 (0.249286745170910, 0.249286745170911, 0.501426509658179)

0.050844906370207 (0.063089014491502, 0.063089014491502, 0.873821971016996)

0.082851075618374 (0.636502499121399, 0.053145049844817, 0.310352451033784)

0.082851075618374 (0.310352451033784, 0.053145049844817, 0.636502499121399)

0.082851075618374 (0.053145049844817, 0.310352451033784, 0.636502499121399)

0.082851075618374 (0.053145049844817, 0.636502499121399, 0.310352451033784)

0.082851075618374 (0.310352451033784, 0.636502499121399, 0.053145049844817)

0.082851075618374 (0.636502499121399, 0.310352451033784, 0.053145049844817)

7 -0.149570044467682 (0.333333333333333, 0.333333333333333, 0.333333333333334)

0.175615257433208 (0.260345966079040, 0.479308067841920, 0.260345966079040)

0.053347235608838 (0.065130102902216, 0.869739794195568, 0.065130102902216)

0.175615257433208 (0.479308067841920, 0.260345966079040, 0.260345966079040)

0.053347235608838 (0.869739794195568, 0.065130102902216, 0.065130102902216)

0.175615257433208 (0.260345966079040, 0.260345966079040, 0.479308067841920)

0.053347235608838 (0.065130102902216, 0.065130102902216, 0.869739794195568)

0.077113760890257 (0.638444188569810, 0.048690315425316, 0.312865496004874)

0.077113760890257 (0.312865496004874, 0.048690315425316, 0.638444188569810)

0.077113760890257 (0.048690315425316, 0.312865496004874, 0.638444188569810)

0.077113760890257 (0.048690315425316, 0.638444188569810, 0.312865496004874)

0.077113760890257 (0.312865496004874, 0.638444188569810, 0.048690315425316)

0.077113760890257 (0.638444188569810, 0.312865496004874, 0.048690315425316)



Chapter 4

Time Integration

In this chapter, the principle of the time integration of the system of partial differential equations (2.11)

is described. The time integration is solved by the discrete methods, i.e. methods which approximate

the solution in the finite set of the points. Equation 2.11 can be also written as

dWn
i

dt
= RHSi(W

n), (4.1)

where n means the time level.

The Euler’s method, second and fourth order Runge-Kutta methods were chosen and are described

within this work. This methods, unlike the methods of Tylor’s type, do not have the solution condi-

tioned by differentiation of the right hand side. Only RHSi(W
n) has to be enumerated in order to

obtain the solution in the next time step Wn+1. The initial conditions are W(0) = W0.

4.1 Euler’s Method

This method is only 1st order accurate, but its advantage is small computational demands. It suffices

to enumerate the value of RHSi(W
n) only once in each time step.

4.1.1 The Principle of Euler’s Method

The principle of the Euler method can be explained at some general first order differential equation

y′(x) = f(x, y(x)). (4.2)

The boundary conditions are

y(x0) = y0, y, x ∈ R. (4.3)

The solution of the equation is to be solved in the computational domain I = 〈x0, x0 + a〉 where a is

the length of the interval I. This interval will be divided by dividing points into disjunct intervals of

length hi. Dividing points are

x1 = x0 + h1,

x2 = x0 + h1 + h2 = x1 + h2

x3 = x2 + h3

...

(4.4)
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Once the derivative y′0 = f(x0, y0) is calculated, the approximate solution Yn of this differential equation

at the subintervals is solved as [94]

Y1 = y0 + h1y
′
0 = y0 + h1f(x0, y0),

Y2 = Y1 + h2f(x1, y1),

Y3 = · · ·
(4.5)

4.1.2 Application of the Euler’s Method

Using relations (4.5), the solution of (4.1) in next time level is

Wn+1
i = Wn

i + ∆t ·RHSi(W
n). (4.6)

4.2 Second-Order Runge-Kutta Method

For higher precision of the time integration, second-order Runge-Kutta method can be used. This

method is also known as Euler’s modified method [94]. The error of the method is O(∆t2). Necessary

derivatives f(xn, yn) are computed by improved differential method with the aid of another auxiliary

points between xi and xi+1. In each time step the value of RHSi(W) has to be enumerated twice.

4.2.1 Principle of the Second-Order Runge-Kutta Method

The equation (4.2) is integrated over one subinterval∫ xk+1

xk

y′(x)dx =

∫ xk+1

xk

f(x, y(x))dx. (4.7)

The integral on the left hand side is enumerated

y(xk+1)− y(xk) =

∫ xk+1

xk

f (x, y(x))dx, (4.8)

and on the right hand side is used the trapezoidal rule

y(xk+1)− y(xk) =
h

2
[f(xk, y(xk) + f(xk+1, y

∗(xk+1)] +O(h3), (4.9)

where O(h3) is the error of the trapezoidal rule and y∗(xk+1) is approximated by aforementioned

Euler’s method

y∗(xk+1) = y(xk) + h · f(xk, y(xk)) +O(h2). (4.10)

The final form of the approximate solution Yk+1 is

Yk+1 = Yk + h
2 [f(xk, yk(xk)) + f(xk+1, y

∗
k+1(xk))],

Y ∗k+1 = Yk + h · f(xk, y(xk)).
(4.11)

4.2.2 Application of the Second-Order Runge-Kutta Method

The solution Wn+1
i at the n+ 1th time level is computed as

Wn+1
i = Wn

i + ∆t
2 (RHSi(W

n) + RHSi(W
n+1∗)),

Wn+1∗

i = Wn
i + ∆t ·RHSi(W

n).
(4.12)
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4.3 Fourth-Order Runge-Kutta Method

Higher order schemes of time integration are needed when the numerical flux is approximated by higher

order schemes. One of the higher order schemes is fourth-order Runge-Kutta method (RK4). The RK4

method has the fourth-order of accuracy. It means that the error per step is of the order O(∆t5) while

the total accumulated error has order O(∆t4) [95]. The higher accuracy of RK4 is redeemed by high

computational demands. Computational demands increase twice in comparison with the second-order

Runge-Kutta method and four-times in comparison with Euler’s method. Approximate solution of the

(4.2) is

Yn+1 = Yn + h
6 (k1 + 2k2 + 2k3 + k4),

k1 = f(xn, yn),

k2 = f(xn + h
2 , yn + h

2k1),

k3 = f(xn + h
2 , yn + h

2k2),

k4 = f(xn + h, yn + h · k3).

(4.13)

4.3.1 Application of the Fourth-Order Runge-Kutta Method

The solution Wn+1
i of (4.1) at the n+ 1th time level is accordingly to the (4.13)

Wn+1
i = Wn

i + ∆t
6 (k1 + 2k2 + 2k3 + k4) ,

k1 = RHSi (Wn) ,

k2 = RHSi
(
Wn+1∗

)
Wn+1∗

i = Wn
i + ∆t

2 k1,

k3 = RHSi
(
Wn+1∗∗

)
Wn+1∗∗

i = Wn
i + ∆t

2 k2,

k4 = RHSi
(
Wn+1∗∗∗

)
Wn+1∗∗∗

i = Wn
i + ∆tk3.

(4.14)

4.4 Necessary Condition of Convergence

Special condition for the time-step size is needed for explicit temporal quadratures in contrast to

implicit ones. More detailed analysis of the stability of both implicit and explicit quadratures can be

found in [96].

In this work the Courant-Friedrichs-Lewy condition (CFL condition) for aforementioned explicit

temporal quadratures is described. The condition is named after Richard Courant, Kurt Friedrichs,

and Hans Lewy who described it in [97].

Definition 6. (Convergent numerical method) Numerical method is called convergent when the

numerical solution converges to the exact solution as the grid is refined (as ∆x→ 0, ∆t→ 0) [98].

CFL condition says that the method can be convergent only if its numerical domain of dependence

contains the true domain of dependence of the partial differential equation, at least in the limit as ∆t
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and ∆x go to zero [98]. Principle of CFL condition is based on evaluation of maximal possible time-step

∆ti for each finite volume/element and choosing the smallest one. In case of the mesh created by the

quadrangles the local time-step can be computed as

∆ti =
CFL

λAi

∆x +
λBi

∆y

, (4.15)

where

λAi
= |ui|+

√
ghi, λBi

= |vi|+
√

ghi, (4.16)

CFL is chosen constant and ∆x, ∆y are lengths of quadrangle in X and Y directions.

In case of the mesh created by triangles should be ∆ti computed as

∆ti =
CFL

λAi
+λBi

∆i

, (4.17)

here ∆i denotes the root of the volume of finite volume Ωi. CFL constant can be larger for the methods

of higher time integrating accuracy.

In case of the DGFEM, the CFL condition has to be stricter. It is recommended to compute the

maximal possible time step as

∆ti =
CFL

(2P + 1)
λAi

+λBi

∆i

, (4.18)

where P means the highest polynomial degree of the basis functions.



Chapter 5

Unstructured Meshes

Albeit unstructured meshes are clumsy to use, the benefit of its flexibility in meshing the irregular

complex domains, makes unstructured meshes very useful. In the following only triangular meshes are

described and the approach from [99] is followed.

5.1 Input data

Input data are matrices P and TP which are defined by some meshing program. In the matrix P, the

coordinates of particular points are stored. The numbers of points creating particular finite volume

are stored in the matrix TP. The size of TP, P respectively, is [nt × 3], [np × 2] respectively, where

nt is the number of the finite volumes and np is the number of the points. Points in the finite volumes

are numbered contra-clockwise. For the mesh shown in Figure 5.1 the matrix P looks like

P =



0.0 0.0

1.0 0.0

2.0 0.0

3.0 0.0

3.0 1.0

3.0 2.0

1.5 2.0

1.5 1.0

0.0 1.0

0.0 2.0



(5.1)

and one of the possible matrices TP is

TP =



0 1 8

7 2 3

8 1 7

8 7 9

7 3 4

6 9 7

7 5 6

5 7 4


. (5.2)
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Figure 5.1: Division of the computational domain Ω into triangles

5.2 EP Matrix

In matrix EP the numbers of points of particular edge are stored. The size of matrix EP is [ne×2] where

ne is the total number of the edges. This matrix is assembled using auxiliary matrices TP1,2,TP2,3

and TP3,1. These matrices are made ofs columns (1st-2nd, 2nd-3rd, 3rd-1st) of the matrix TP:

TP1,2 =



0 1

7 2

8 1

8 7

7 3

6 9

7 5

5 7


,TP2,3 =



1 8

2 3

1 7

7 9

3 4

9 7

5 6

7 4


,TP3,1 =



8 0

3 7

7 8

9 8

4 7

7 6

6 7

4 5


. (5.3)
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Each row of this matrices represents an edge. But some duplicities like [7-8, 8-7] or [8-1, 1-8] occur

and these have to be removed. After that the final matrix EP should look like

EP =



0 1

1 8

8 0

7 2

2 3

3 7

1 7

7 8

7 9

9 8

6 7

7 5

5 6

6 9

7 4

4 5

3 4



edge number 0

edge number 1

edge number 2

edge number 3

edge number 4

edge number 5

edge number 6

edge number 7

edge number 8

edge number 9

edge number 10

edge number 11

edge number 12

edge number 13

edge number 14

edge number 15

edge number 16

. (5.4)

Total number of the edges ne is equal to the size of the matrix EP.

5.3 TE, ET and ETyp Matrices

In matrix TE the numbers of edges creating given finite volume are stored, i.e.

TE =



0 1 8

7 2 3

8 1 7

8 7 9

7 3 4

6 9 7

7 5 6

5 7 4


(5.5)

In the matrix ET the numbers of triangles which are adjacent to an edge are stored. The size

of this matrix is [ne × 2]. Simultaneously the type of the edge can be find and saved in the matrix

Etyp[ne × 1]. Inner edges are numbered by 0 and the edges generating the boundary are numbered
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by 1. The final matrices ET and ETyp should be

ET =



0 −1

1 3

0 −1

1 −1

1 −1

2 8

2 −1

3 4

4 6

3 −1

5 6

5 7

4 −1

5 −1

7 8

6 −1

7 −1



, ETyp =



1

0

1

1

1

0

1

0

0

1

0

0

1

1

0

1

1



. (5.6)

Number -1 means that the edge creates only one finite volume, thus it is a wall edge.

5.4 Enx, Eny, Edl and Tzn Matrices

Matrix Edl is the matrix where the lengths of the edges are stored. The x (y respectively) component

of the normal vector is stored in matrix Enx (Eny respectively). In the matrix Tzn the information

whether the normal vector is pointing inside (-1) or outside (1) of the finite volume is stored.

Tzn =



1 1 1

1 1 1

−1 1 1

−1 1 1

−1 1 1

−1 1 1

−1 1 1

−1 −1 1


(5.7)

The whole computational mesh with numbers of points, edges finite volumes and normal vectors is

shown in Figure 5.2.

5.5 Implementation of the Unstructured-Mesh Algorithm

A simple algorithm, computing the right hand side from (2.11), is shown in this section. Provided that

the numerical fluxes Phi across the edges and the bed slope source terms Sb are already computed,

the right hand side can be, in C language, implemented as

for(i=0;i<nt;i++){
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for(k=0;k<3;k++){

RHS[i+k*nt] =-1/To[i]*(Tzn[i+0*nt] * Phi[TE[i+0*nt]+ne*k] * Edl[TE[i+0*nt]] +

Tzn[i+1*nt] * Phi[TE[i+1*nt]+ne*k] * Edl[TE[i+1*nt]] +

Tzn[i+2*nt] * Phi[TE[i+2*nt]+ne*k] * Edl[TE[i+2*nt]] )+

Sb[i+k*nt];

}

}

in the code ne means total number of the edges ne and nt means number of the finite volumes nt.

Figure 5.2: Computaional mesh with normal vectors, numbers of edges, volumes and points. Inner

edges are blue, wall edges are black.



Chapter 6

Parallelisation of the Code

The following chapter describes an introduction into the parallel computing, i.e. the converting se-

quential code into multi-threaded. The thread is a small sequence of program which can be executed.

For example computing of the numerical flux across several edges or computing bed source term in

several finite elements/volumes. There are described only basics of the parallel computing in this work

and we refer the reader to [100–103] to know more about the parallel computing-especially the creation

of the pools which is not described here.

The solver was written in C language and for the parallelisation openMP library was used.

OpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-

platform shared memory multiprocessing programming. The most time consuming operations in solvers

are the for loops. This for loops can be easily divided in to the threads within openMP library. One

thread contains specific amount of iterations. If in the code is imported omp library by the command

#include <omp.h>

then the loop can be easily parallelised by command

#pragma omp parallel for

written before the initialisation of the loop. This command automatically sets the number of threads

which perform the for loop. The number of the threads can be also set manually by the command

#pragma omp parallel for num_threads(n_thread)

for(int i=0;i<n_interation;i++){

...

}

where n_thread means the number of the threads and n_interation number of iterations. The

amount of performed work (iterations) is assigned to every thread automatically. We can assign how

much of the work the thread performs by specifying the parallel regions in the code. This parallel

region (...) is bounded by curly brackets and initialised by the command

#pragma omp parallel{

...

}

and command num_threads(n_thread) sets the number of the threads
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#pragma omp parallel num_threads(n_thread){

...

}

The parallel regions can be run by different threads, but they share the variables. To make a copy of

variables we can use command private

#pragma omp parallel num_threads(n_thread) private(vaiable1,variable2,variable3){

...

}

The last command, we need to use, is omp_get_thread_num(). This command returns the ID of

currently running thread.

It is reasonable to divide the iterations among the threads uniformly, to do so we can proceed as

follows. Let us consider a test case with 25 iterations and 10 threads. First way can be to divide the

number of iterations by number of the threads, round it down and distribute as follows

Thread

Iterations 0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14, 15 16, 17

18, 19, 20

21, 22, 23

24

Number of

iterations
2 2 2 2 2 2 2 2 2 7

It is obvious that the last thread number 9 is over loaded. The rounding up yields the following division

Thread

Iterations
0, 1

2

3, 4

5

6, 7

8

9, 10

11

12, 13

14

15, 16

17

18,19

20

21, 22

23
24 -

Number of

iterations
3 3 3 3 3 3 3 3 1 0

Now the thread number 9 is idle. Thus within this work we use the following division of the

iterations. Each thread computes the iteration with the same ID plus n-times number of the threads

if it does not exceeds the number of the iterations. The parallelisation can be done as

int ID;

#pragma omp parallel num_threads(n_thread) private(ID){

ID = omp_get_thread_num();

for(int i=ID;i < n_iteration; i=i+n_thread){

...

}

}
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Thread

Iterations
0, 10

20

1, 11

21

2, 12

22

3, 13

23

4, 14

24
5, 15 6, 16 7, 17 8, 18 9, 19

Number of

iterations
3 3 3 3 3 2 2 2 2 2

Now the iterations are relatively equally distributed among the threads but the number of

threads shouldn’t be larger than the number of the cores. The creation of excessive threads slows

down the computations.

When computing with more threads, we need to avoid a writing to the same variable by more

threads. To achieve this, we can use the lock of the variable or use the ’critical block’ syntax. The

critical block (...) is bounded by curly brackets and initialised by the command

#pragma omp critical{

...

}

The code inside the critical block can be performed only by one thread and others wait until the code

is performed by the thread which entered this block first. This can be helpful for computing of the

maximal possible time step dt

if(dt_new < dt){

#pragma omp critical{

if(dt_new < dt){

dt = dt_new;

}

}

}

To lock a variable we need to use omp_lock_t variable. The lock can be written either in the class

of the finite element or we can have the field of the locks. To explain the principle of the locks, the

second possibility was chosen. First of all we need to initialize the array of locks

omp_lock_t lock[nt];

nt means the number of variables (right hand sides). Updating of the variables can be achieved by

omp_lock_t lock[nt]; // array of locks

double RHS[nt];// some array of variables, for example right hand sides of the elements

#pragma omp parallel{

ID = omp_get_thread_num();

for(int i=ID;i < nt; i=i+n_thread){

omp_set_lock(&(lock[i]));

RHS[i] = do_something(); // only one thread here at a time; others blocked

omp_unset_lock(&(lock[i]));

}

}
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This syntax is useful for computing of the numerical fluxes across the edges. Because one edge is shared

by two finite elements, it may happen that one right hand side is updated by two different threads

simultaneously. The computation of the numerical fluxes can be computed as follows

omp_lock_t lock[ne]; // array of locks

double RHS[nt];// right hand sides of the elements

double num_flux;

int l,r,ID;

#pragma omp parallel private(ID,l,r,num_flux){

ID = omp_get_thread_num();

for(int e=ID;e < ne; e=e+n_thread){ // loop throught the edges

l=ET[e];

r=ET[e+ne];

num_flux=compute_numerical_fluxes();

omp_set_lock(&(lock[j]));

omp_set_lock(&(lock[l]));

RHS[l] = RHS[l]+ 1*num_flux*Edl[e];//only one thread here at a time

if(r!=-1){// if the edge is not at the boundary of the computational area

RHS[r] = RHS[r]+ -1*num_flux*Edl[e];

}

omp_unset_lock(&(lock[j]));

omp_unset_lock(&(lock[l]));

}

}

here ne means the number of the edges, Edl[e] is length of the edge and matrix ET is described in

Section 5.3. Above written scheme is valid only for FVM. Within the DGFEM, for loop through the

integrating points, weights and basis functions must be added. Adding of the numerical flux value

differs only by the sign, it is because of the normal vector of the edge which is pointing from the left

finite element to the right one. This method of computing numerical flux can be used within DGFEM

only if the same number of integrating points for the curve integral in each finite element is used

(it means the same degree of basis functions). If we would like to avoid the usage of the locks, we

can iterate over the finite elements/volumes and computed the numerical fluxes. However the same

numerical flux over an edge must be computed twice or the right hand side must be computed with

excessive for loop and matrix Tzn as described in Section 5.5.

The time iteration cannot be done before the right hand side is computed. To stop all threads

before the time integration and force them to wait till all of them reach this point we can use the

command

#pragma omp barrier

With the previously described commands we can sketch the diagram of the parallel processes. For

the sake of simplicity, only Euler time integration is shown in Figure 6.1.
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Figure 6.1: The scheme of the parallel processes in Euler time integration.



Chapter 7

Results

In the following chapter the numerical results and validations of the developed software and numerical

methods are shown. The chapter is divided into two parts. In the first part, the solver is validated

against analytical solutions. The comparison with experimental data is discussed in the second part.

Solver used for the numerical simulation is written in C++ language and visualised with help of Python

language and Mayavi library.

7.1 Comparisons with Analytical Solutions

In this section the comparison of the numerical results with the analytical solutions of the SWE is

described.

7.1.1 2D Dam-break

The dam-break problem has become de facto standard test in validation of Shallow Water Equations

solvers. The details of the analytical solution of rectangular dam break were summarized by Dressler

in [2]. This section was focused on the comparison of the numerical fluxes and different wet/dry

interface treatment during the flooding process.

Initial conditions are shown in Figure 7.1. The water depth h0 = 0.6 m and length x0 = 0.6 m.

In the time t = 0 s the barrier is instantaneously removed and mass of the fluid collapses under the

gravity. Analytical solution of this problem was firstly given by Ritter in 1892 [104] who used the

general formulae given by Saint-Venant [1].

7.1.1.1 Surge front velocity

Analytical solution of the position of the surge front-face (wet/dry interface) is x = x0+t
(

2c0 −At−
1
3

)
where A is a constant and c0 =

√
gh0 is the wave velocity [4]. It was proven by the experiments of A.

Schoklitsch [105] that the real celerity is lower because of the bed friction.

Many approaches of finding the front face numerical velocity can be used. In the following the

different approaches will be tested and compared with analytical solution to validate the numerical

solver. First, the numerical value from the vector of the conservative values W at the finite volume

containing the front-face can be directly computed as u = (hu)
h . Second, considering that xnf means

81
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Figure 7.1: Initial conditions of the dam-break.

the position of the wet/dry interface at nth time level, the front-face shift δx = xnf − x
n−1
f can be

tracked and velocity computed by division udt = δx
tn+1−tn . Maximum velocity um = max

i

(
(uh)i
hi

)
over

the computational domain Ω and velocity uf computed as whole front-face shift (xf − x0) divided by

the time t are also tracked.

Following results were computed by first-order Roe scheme for the µλ = 0.5. Time integration

was done by Euler’s scheme with CFL=0.5. The position of the front-face xf is considered to be the

position of the edge between wet and dry finite volume cell. The cell is considered to be wet if water

depth is higher than 1e-7 m. The plot of these velocities compared by the analytical solution with

A=0.18 is shown in Figure 7.2.

All approaches give similar results. Numerical velocity in the finite volumes corresponds to the

velocity of the fluid flow and the analytical velocity. The extreme peak of udt at the beginning of the

simulation is caused by the fact that water flows to the adjacent finite volume during the first iteration

independently on ∆t and ∆x. Surprisingly the maximum velocity isn’t at the front-face of the surge

but is located behind the front-face. This distance is increasing in time.

7.1.1.2 Analytical solution of the Water Level and Velocity

Following benchmark compares Roe and HLL solvers with and without linear approximation for the

finite volume method and also compares novel DGFEM limiting method with the reference scheme.

The water level of the fluid mass can be expressed analytically. For the frictionless surge in a horizontal

channel, the analytical solution was proposed by Barre de Saint-Venant in 1871 [1]. This analytical

solution is [106]

x

t
√

gh0

= 2− 3

√
h

h0
for − 1 ≤ x

t
√

gh0

≤ 2. (7.1)

The distance of the front face from the damp site is 2
√

gh0 · t and the distance of the back wave from

the damp site is
√

gh0 · t. The velocity of the flow is given by

u(x, t) =
2

3

(
x− x0

t
+
√

gh0

)
. (7.2)
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Figure 7.2: Front-face velocities computed by the solver.

The numerical results were computed for the dam break problem with length of computational

domain 2.6 m. The initial depth 0.6 m was set for the domain where x < 1 m. Fourt order Runge-

Kutta time integration with CFL=0.5 was used and µλ was set to 0.5. The simulation was stopped at

the time t = 1.5
2
√

gh0
≈ 0.309 s.

For the numerical results, plotted in Figure 7.3, the coarse mesh was used to highlight the difference

between basic schemes and schemes with implemented linear reconstruction described in Section 2.5.

It can be seen that the linear reconstruction decreases the numerical viscosity.

It should be noticed that the water depth at the dam site is constant in time and is equal to 4
9h0 [4].

In Figure 7.3, this point is shown by the black cross. Agreement between theoretical and numerical

solution is not very good at the point where the dam was set. This is caused by the problem mentioned

in Section 2.2.3. Velocity at the dam site is constant and equal to 2
3

√
gh0 [4] thus the Froude number

is Fr = 1. This problem can be fixed by the entropy correction (2.83). The results with this correction

can be seen in Figure 2.6.

Table 7.1 shows the L2 errors of Roe scheme, HLL scheme and HLL scheme with our proposed

modification (2.107) (denoted as HLL-m). L2 error is defined as

L2 error =

√√√√ nt∑
i=1

(ha(xi)− hn(xi))
2 |Ωi|∑nt

i=0 |Ωi|
, (7.3)

where nt is the number of finite volumes, ha(xi) means analytical and hn(xi) numerical solution of the

water depth at the position xi.

Dependency log(L2 error)/log(∆x) is shown in Figure 7.4. The order of accuracy of the schemes

can be deduced from the slopes of the lines. For comparison is in the graph drawn line with slope 1.0

and line with slope 0.7. Even if both HLL and Roe schemes are formally of first order of accuracy

the slope of L2 error shows that real order of accuracy is lower. This problem is caused because the
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Figure 7.3: Fifty finite volumes. ∆x=0.052m.

Figure 7.4: L2 error of first and second order schemes.
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initial conditions are described by the discontinuous function and the accuracy of the schemes decays

near the discontinuities. Proof of this claim can be found in [107]. The reader is referred to [108] to

see more details on discontinuous solutions. The order of accuracy is increased to one when the linear

reconstruction is used. It can be also noticed that the modification of the eigenvalues (2.107) doesn’t

decrease the accuracy of HLL scheme.

Table 7.1: L2 Error of the Water Level

∆x Roe HLL HLL-m Roe 2nd HLL 2nd HLL-m 2nd

2.6e-03 2.7956e-03 2.9551e-03 2.9491e-03 5.5957e-04 5.8809e-04 5.7214e-04

1.3e-03 1.7118e-03 1.7905e-03 1.7893e-03 3.1270e-04 3.2592e-04 3.1866e-04

8.6e-04 1.2738e-03 1.3255e-03 1.3252e-03 1.9491e-04 2.0438e-04 1.9920e-04

6.5e-04 1.0386e-03 1.0767e-03 1.0767e-03 1.5841e-04 1.6504e-04 1.6139e-04

5.2e-04 8.9628e-04 9.2638e-04 9.2640e-04 1.3326e-04 1.3843e-04 1.3558e-04

3.7e-04 7.0399e-04 7.2494e-04 7.2502e-04 9.4830e-05 9.8564e-05 9.6491e-05

3.2e-04 6.4529e-04 6.6345e-04 6.6352e-04 8.6085e-05 8.9280e-05 8.7505e-05

2.6e-04 5.4869e-04 5.6290e-04 5.6299e-04 6.8372e-05 7.0951e-05 6.9513e-05

1.7e-04 4.1286e-04 4.2195e-04 4.2202e-04 4.4968e-05 4.6740e-05 4.5752e-05

1.3e-04 3.3731e-04 3.4390e-04 3.4395e-04 3.6987e-05 3.8217e-05 3.7531e-05

1.0e-04 2.8660e-04 2.9169e-04 2.9174e-04 2.9787e-05 3.0768e-05 3.0222e-05

8.6e-05 2.5175e-04 2.5588e-04 2.5592e-04 2.4297e-05 2.5138e-05 2.4670e-05

After comparison of the numerical schemes, the comparison of the limiting methods used for

DGFEM was done. The new novel limiting method described in Section 3.2.2.3 was compared with

the global limiting method when the minmod limiter was used as a shock detector. In all schemes the

wet/dry interface described in Section 3.2.2.3 was used. This comparison can be seen in Table 7.2.

The numerical results confirm the quality of suggested limiting process.

Table 7.2: Comparison of Limiting Processes of 2D Dam Break, L2 Error of the Water Level

Number of ∆x Novel Global

finite elements limiting process limiting process

10 2.6000e-01 2.3535e-02 3.1655e-02

20 1.3000e-01 1.6970e-02 2.2354e-02

30 8.6667e-02 1.4752e-02 1.8720e-02

50 5.2000e-02 6.0418e-03 8.9157e-03

100 2.6000e-02 4.3580e-03 5.7021e-03

300 8.6667e-03 1.3922e-03 2.0639e-03

500 5.2000e-03 7.9793e-04 1.2696e-03

1000 2.6000e-03 4.8845e-04 7.4913e-04

7.1.1.3 Wet/Dry Interface

In Section 2.2.4, there were described different methods of the velocity treatment at the wet/dry

interface:
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Figure 7.5: Tip of the surge wave.

• Method of neglecting computations when the water depth is smaller than some constant ε

• Method of setting zero velocity at the wet/dry interface

• Computation of the velocity by u =
√

2h(hu)√
h4+max(h4,εv)

In previous cases the first method was used. The comparison of all these methods follows.

Figure 7.5 shows numerical results of all these methods. First two methods are giving approximately

the same results. But Figure 7.5 shows that the third method with the correction (2.86) causes non-

physical solution at the tip of the surge. This method gives better results with smaller εv. But detailed

view in Figure 7.6 shows that some non-physical behaviour remains. Thus it is recommended to use

the first method and neglect the computations if the water depth as smaller than some constant ε.

The magnitude of this constant is arbitrary and depends on the study case.

7.1.1.4 Comparison of the Time-Integration Methods

In this section the time integration methods from Chapter 4 are evaluated. HLL scheme with linear

reconstruction was used in this test. The simulation of the dam-break was stopped in the time t =
1

2
√

gh0
s. At the end of the simulation was computed L2 error of the results in the area x ≥ x0. The

constants used in simulation were CFL=0.5, φ = 0.35 and εv = 10−15.

In Table 7.3, it can be seen that the accuracy of Second-Order and Fourth-Order Runge-Kutta

methods does not differ a lot and usage of Second-Order Runge-Kutta is sufficient. The numerical

result also show, that this method is stable and relatively low computational demands make second

order Runge-Kutta method more favourable.

7.1.2 Flow over the Bump

This section is focused on comparison between FVM and DGFEM. The steady state flow over the

bump is computed in this testing case. The inlet is set on the left side of the computational domain



7.1. Comparisons with Analytical Solutions 87

Figure 7.6: Detail of the tip of the surge wave.

Table 7.3: L2 Error of the Time-Integration Methods

Finite Volumes ∆x Euler 2nd order Runge-Kutta 4th order Runge-Kutta

500 5.200000e-03 1.169065e-03 1.167722e-03 1.164827e-03

750 3.466667e-03 9.754459e-04 9.537336e-04 9.525770e-04

1000 2.600000e-03 7.763235e-04 7.664815e-04 7.651388e-04

2000 1.300000e-03 6.102051e-04 5.026562e-04 5.021041e-04

3000 8.666667e-04 1.057995e-03 3.770444e-04 3.762079e-04

4000 6.500000e-04 1.158979e-03 3.249432e-04 3.230943e-04

7500 3.466667e-04 1.261652e-03 5.456766e-04 5.279745e-04

10000 2.600000e-04 1.466307e-03 7.381620e-04 7.217265e-04

and the outlet is set on the right side of the computational domain. Analytical solutions of steady

state flows over the bump can be found for example in [5] or [109]. Besides the water level, the

volume discharge rate, defined as q = h · u, is also shown. Semi-analytic solutions were obtained by

SWASHES software which is free-ware software downloadable from the repository http://www.univ-

orleans.fr/mapmo/soft/SWASHES

The length of the computational domain is L=25 m with a topography given by

B(x) =

0.2− 0.05(x− 10)2 if 8 m < x < 12 m,

0 else.
(7.4)

In the following the subcritical flow, transcritical flow and transcritical flow with the shock are dis-

cussed. Initial conditions for all these three types of flow are

h(x) + B(x) = 2, x ∈ Ω,

u(x) = 0, x ∈ Ω.
(7.5)

The numerical solutions of finite volume method with linear reconstruction and discontinuous
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Galerkin method are compared. HLL scheme is used for the computation of the numerical flux.

In DGFEM, the Taylor basis functions were used for the approximation of the solution and artificial

viscosity was used to avoid spurious oscillations. The cell was defined as troubled if residuum Rk (3.23)

was larger than 0.008 and artificial viscosity in (3.24) was set to ε = 0.8. In case of FVM the solution

was limited by minmod limiter. The simulation is stopped when the steady state flow residuum Rh is

smaller than 1e-10. This residuum is defined as

Rh =

nt∑
i=1

|hni − h
n−1
i |

∆t
(7.6)

where hni is the numerical value of the water depth in ith finite volume cell in nth time level and ∆t is

the time step.

In the case of the subcritical flow, the water depth is given by the resolution of

h3(x) +

(
B(x)− q2

inlet

2gh2
outlet

− houtlet

)
h2(x) +

qinlet
2g

= 0, ∀x ∈ [0, L] (7.7)

where qinlet is fixed volume discharge rate at the inlet and houtlet is fixed water level at the outlet.

The boundary conditions are

qinlet = 4.42 m2/s,

houtlet = 2 m.
(7.8)

In Figures 7.7 and 7.8, the comparison of the numerical results of the subcritical steady state flow

Figure 7.7: Water depth of the subcritical

steady state flow computed by the FVM.

Figure 7.8: Water depth of the subcritical

steady state flow computed by the DGFEM.

are shown. The results were computed for coarse mesh created by 25 of finite volume cells. In case of

FVM the bed function can be described only by the linear functions (see Figure 7.7). DGFEM allows

to describe the bed function by polynomials, in our simulation the bed function was described by third

order polynomials (see Figure 7.8). The analytical and numerical solutions were compared by the L2

error. This error is defined as

L2 error =

√√√√ np∑
i=1

(hn(xi)− ha(xi))
2

np
(7.9)

where hn is the numerical and ha analytical solution in point xi, np means the number of these points.

The points xi and analytical solutions ha(xi) were generated automatically by SWASHES software.
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Table 7.4: L2 error of the subcritical flow

Number of finite FVM DGFEM-2 DGFEM-3 DGFEM-4 DGFEM-5 DGFEM-6

volume cells error error error error error error

25 5.4987e-03 2.5164e-03 5.6094e-05 4.1755e-06 1.4415e-06 1.3580e-06

50 1.8398e-03 6.3393e-04 7.0966e-06 1.3844e-06 1.3577e-06 1.3578e-06

100 5.8673e-04 1.5895e-04 1.6163e-06 1.3578e-06 1.3578e-06 1.3578e-06

In Table 7.4 the comparison for 250 000 of these points is shown. The abbreviation DGFEM-2 means

that the numerical solution was computed by the second order of accuracy, DGFEM-3 means the third

order of accuracy etc. The discharge rates of the subcritical flow are shown in Figures 7.9 and 7.10. Let

us highlight that in the case when there is no appearance of the shock in the computational area the

high order of accuracy can substitute high resolution. The sixth order of accuracy DGFEM is giving

the same error for 25, 50 and 100 of finite elements.

Figure 7.9: The discharge rate of the subcrit-

ical steady state flow computed by the FVM.

Figure 7.10: The discharge rate of the sub-

critical steady state flow computed by the

DGFEM.

The analytical solution of the water depth in case of transcritical flow without shock is given by

the resolution of [5]

h3(x) +

(
B(x)− q2

inlet

2gh2
M

− hM − BM

)
h2(x) +

q2
inlet

2g
= 0, ∀x ∈ [0, L] (7.10)

where BM = maxx∈[0,L]B(x) and hM is the corresponding water depth. Boundary conditions are

qinlet = 1.53 m2/s,

houtlet = 0.66 m.
(7.11)

The comparison of the analytical and numerical solution of the water depth is shown in Figures 7.11

and 7.12. The rate of discharge is shown in Figures 7.13 and 7.14.

The L2 error, defined by (7.9), is shown in Table 7.5. Again 250 000 of points were used to compute

this error.

The analytical solution of the water depth in case of transcritical flow with shock is given by the
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Figure 7.11: Water depth of the transcritical

steady state flow without shock computed by

the FVM.

Figure 7.12: Water depth of the transcritical

steady state flow without shock computed by

the DGFEM.

Figure 7.13: The discharge rate of the trans-

critical flow without shock computed by the

FVM.

Figure 7.14: The discharge rate of the trans-

critical flow without shock computed by the

DGFEM.

resolution of [5]

h3(xshock) +
(

B(xshock)− q2
inlet

2gh2
M
− hM − BM

)
h2(xshock) +

q2
inlet

2g = 0,

h3(xshock) +
(

B(xshock)− q2
inlet

2gh2
outlet

− houtlet

)
h2(xshock) +

q2
inlet

2g = 0,

q2
inlet

(
1
h1
− 1

h2

)
+ g

2 (h2
1 − h2

2) = 0

(7.12)

where h1 and h2 are the water depths upstream and downstream respectively. The position of the shock

xshock is located thanks to the third relation in system (7.12) which is known as Rankine-Hugoniot’s

relation. The reader is referred to [110] to see the details. Boundary conditions can be set as

qinlet = 0.18 m2/s,

houtlet = 0.33 m.
(7.13)

In Figures 7.15 and 7.16 the water level of transcritical flow with shock is shown. The discharge rate

can be seen in Figures 7.17 and 7.18. And L2 error is shown in Table 7.6.

As the numerical results show, the accuracy grows with the order of the basis functions, although

it is not feasible to use higher than fourth order of accuracy. Higher order of basis function doesn’t
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Table 7.5: L2 error of the transcritical flow without shock

Number of finite FVM DGFEM-2 DGFEM-3 DGFEM-4 DGFEM-5 DGFEM-6

volume cells error error error error error error

25 2.8854e-02 1.3794e-03 2.6663e-04 2.6554e-04 2.7573e-04 2.6760e-04

50 1.0923e-02 3.0813e-04 4.0530e-05 4.0391e-05 4.0960e-05 4.0588e-05

100 3.9630e-03 7.0970e-05 6.0961e-06 6.0824e-06 6.0993e-06 6.0925e-06

Figure 7.15: Water depth of the transcritical

steady state flow with shock computed by the

FVM.

Figure 7.16: Water depth of the transcritical

steady state flow with shock computed by the

DGFEM.

Figure 7.17: The discharge rate of the tran-

scritical flow with shock computed by the

FVM.

Figure 7.18: The discharge rate of the tran-

scritical flow with shock computed by the

DGFEM.

bring any significant improvement and method becomes computationally very demanding. DGFEM

gives better results than FVM mainly because of the bed function which in DGFEM case described

by the polynomial and thus resolved more accurately. But DGFEM surpasses FVM also in case when

both, the bed function and water depth, are described by the piece-wise linear functions. The L2 error

of this simulation is shown in Table 7.7.

The conclusion of this comparison is following. It is feasible to use discontinuous Galerkin method

in case when we are expecting no shocks or big discontinuities in the computational domain. Especially

when the bed function can be described by the polynomials. In this case, even very coarse mesh with
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Table 7.6: L2 error of the transcritical flow with shock

Number of finite FVM DGFEM-2 DGFEM-3 DGFEM-4 DGFEM-5 DGFEM-6

volume cells error error error error error error

25 1.8518e-02 1.2170e-02 8.5854e-03 8.6700e-03 7.1875e-03 6.5647e-03

50 1.1544e-02 6.6635e-03 5.8915e-03 5.4981e-03 6.5960e-03 6.0943e-03

100 7.5337e-03 5.2003e-03 5.1978e-03 4.8596e-03 5.2210e-03 9.8696e-03

Table 7.7: L2 error of the simulations with piece-wise linear approximation of the bed function

Number of finite Subcritical Transcritical flow Transcritical flow

volume cells flow without the shock with the shock

FVM DGFEM-2 FVM DGFEM-2 FVM DGFEM-2

25 5.4987e-03 4.7431e-03 2.8854e-02 6.5852e-03 1.8518e-02 1.2694e-02

50 1.8398e-03 1.1916e-03 1.0923e-02 2.0435e-03 1.1544e-02 7.0095e-03

100 5.8673e-04 2.9840e-04 3.9630e-03 6.6363e-04 7.5337e-03 5.2452e-03

high degree of basis functions can give very precise solution (see Table 7.4).In this case of subcritical

flows the computational demands were even smaller than the computational demands of FVM. More

than 2000 of finite volumes had to be used to gain error smaller than 1.3580e-06 by finite volume

method. The same error can achieve discontinuous Galerkin method only by 25 finite elements and

sixth order of accuracy. But in case when some shock is appearing in the computational domain,

DGFEM does not give so convincing results in comparison with FVM and computational demands are

much higher.

The accuracy also decreases for the subcritical flow when the bed function is not described by

higher degree the polynomials, but only by linear functions. Computational demands and L2 error of

the schemes is shown in Table 7.8.

Table 7.8: L2 error of the subcritical flow for 25 finite cells and linear bed function approximation

Method L2 error Time [s]

FVM 5.4987e-03 0.18

DGFEM-2 4.7431e-03 2.93

DGFEM-3 4.7594e-03 5.87

DGFEM-4 4.7595e-03 24.67

DGFEM-5 4.7595e-03 75.77

DGFEM-6 4.7595e-03 192.83

Note 4. The computational demands of DGFEM method are smaller than FVM when the bed function

is described by higher polynomials. To gain error smaller than 1.35e-06 by FVM, 2000 of finite volumes

had to be used and computation took longer that one hour to gain the steady state. DGFEM method

reached this result for 25 of finite elements in 192 seconds.
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7.1.3 Planar Surface in Parabolic Bowl without Friction

One of the classical benchmarks for testing bed slope and wetting and drying processes is the planar

water surface in a parabola without friction. The exact solution of the two-dimensional problem was

derived in [111]. Here, the one-dimensional benchmark presented in [5] is tested. The topography is a

parabolic shape given by

B(x) = h0

(
1

a2

(
x− L

2

)2

− 1

)
. (7.14)

where the length of the computational domain L = 4 m, h0 = 0.5 m and the constant a=1. Exact

solution is given by

h(x, t) =

−h0

((
1
a

(
x− L

2

)
+ C√

2gh0
cos
(√

2gh0

a t
))2

− 1

)
for x1(t) ≤ x ≤ x2(t),

0 otherwise,

(7.15)

with location of the wet/dry interfaces at time t being calculated as

x1(t) = − 1
2 cos

(√
2gh0

a t
)
− a + L

2 ,

x2(t) = − 1
2 cos

(√
2gh0

a t
)

+ a + L
2

(7.16)

and

C =

√
2gh0

2a
. (7.17)

The initial conditions of the water depth are given by (7.15) for t = 0 s.

This benchmark is very sensitive to the viscosity of the numerical scheme and also gives very good

test of the scheme behaviour at wet/dry interface. The water mass oscillates in the bowl and the

time of one oscillation is T=aπ
√

2gh0 ≈1.003 s. The comparison of novel limiting method described

in Section 3.2.2.3 and reference method described by Kesserwani in [52] is shown in Table 7.9. The

original Kesserwani’s paper does not cover the wet/dry interface computations, thus his scheme was

modified and for wet/dry computations the method described in Section 2.2.4 was used. The L2 error

in Table 7.9 was computed in time t=5T≈5.015 s. The numerical accuracy decays by the time because

Table 7.9: L2 error of the novel and reference scheme for different number of finite elements

Number of finite ∆x Novel solver Reference solver

elements

20 0.2000 9.55665e-03 1.56004e-02

30 0.1333 7.65887e-03 1.28066e-02

50 0.0800 4.31255e-03 2.03828e-02

100 0.0400 3.41727e-03 9.89428e-03

200 0.0200 2.01553e-03 3.51478e-03

300 0.0133 2.20309e-03 3.70284e-03

500 0.0080 1.66309e-03 2.75976e-03

750 0.0053 1.59126e-03 2.66527e-03

1000 0.0040 1.57110e-03 2.05729e-03

of the numerical viscosity of the scheme. The numerical dissipation can be seen in Figure 7.19 and

the L2 error for different number of oscillations is shown in Table 7.10. There can be noticed that
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Table 7.10: L2 error of the novel scheme for different number of oscillations

Number of periods DGFEM-3 DGFEM-2 FVM

1 1.96097e-03 5.96472e-03 1.89603e-02

10 4.58955e-03 3.01939e-02 1.04647e-01

100 2.70580e-02 1.23954e-01 1.76875e-01

1000 1.09285e-01 1.76527e-01 1.77150e-01

Figure 7.19: The third order DGFEM solu-

tion in different time periods.

Figure 7.20: The second order DGFEM solu-

tion in different time periods.

the second order discontinuous Galerkin solver and second order finite volume method are much more

viscous than the third order solver in Figures 7.19, 7.19 and in Table 7.10. This is caused not only by

the lower order of accuracy, but also by the velocity treatment (2.86) at the wet/dry interface.

The details of the wet/dry interface, highlighted in Figure 7.21, are shown in in Figures 7.22 and

7.23. It can be seen that meanwhile in second order the water depth takes very small values, the

curvature of the third order scheme causes that the water depth is much larger than zero. The results

were computed for the εv = 1e − 14. The modification (2.86) does not causes only the numerical

viscosity but for bad choice of the εv this modification can cause absolutely non-physical behaviour of

the scheme as shown in Figure 7.24 for εv =1e-10. Thus it is recommended not to use the modification

(2.86) but some threshold ε as described in Section 2.2.4. The numerical results also show that the

scheme brings better results with threshold ε=1e-10 than with the ’εv correction’.

Except of DGFEM methods, this testing case can be used also for validation of novel wet/dry

interface within FVM. The comparison with the original scheme described in [41] is shown in Figures

7.25 and 7.26. These numerical results clearly show that modification of the bed source term (2.123)

and numerical flux computation (2.127) at the wet/dry interface improve the numerical results of given

scheme.

7.2 Comparison with Experiments

In this section the numerical results will be validated against the experimental data. In the first testing

case novel mass conservative modification (2.127) is tested. The second experiment validates the final

volume software without the bed slope source term. In this benchmark the wet/dry interface flow and

2D numerical fluxes are tested. For the numerical flux HLL scheme with modification (2.107) was
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Figure 7.21: Wet/dry interface of the solution in time t=0.75T .

Figure 7.22: Detail of the second order DGFEM solution in the zoomed area.
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Figure 7.23: Detail of the third order DGFEM solution in the zoomed area.

Figure 7.24: Non-physical solution in time t=10T caused by the velocity modification.
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Figure 7.25: Solution at time t = 5.5T simulated for 100 finite volumes.

Figure 7.26: Solution at time t = 5T simulated for 100 finite volumes.
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used. The third experiment contains non-flat bed topography and the approximation of the bed slope

source term is tested for the discontinuous Galerkin method. In this experiment the wet/dry interface

and novel limiting process, described in Section 3.3.2, were tested.

7.2.1 Dam Break Over a Triangular Bottom Sill

The first experiment is compared with 1D finite volume software with novel mass conservative modi-

fication keeping the ’C-property’ condition (2.127).

In experiment published in [64], the wetting and drying processes were captured. The bed function

and the initial conditions are shown in Figure 7.27. The channel has a rectangular cross section. The

length of the channel is 5.6 m and the width is 0.5 m. The initial water depth h0 of the still water

in the reservoir is 0.111 m. The water gate of the reservoir is set at the position l0 = 2.39 m. The

symmetrical bump, located at position 4.45 m, is 0.065 m heigh and has a slope ±0.14. Behind the

bump there is a pool of still water with the initial water height 0.02 m. The Manning bed roughness

factor is measured experimentally in [64] to be 0.011 s m−1/3.

Figure 7.27: Initial conditions of the experiment.

Figure 7.28: Comparison of the simulation

and experimental data at time t = 1.8 s.

Figure 7.29: Comparison of the simulation

and experimental data at time t = 3.0 s.

In Figures 7.28, 7.29, 7.30 and 7.31 the simulation results and the experimental data are plotted

together. The computational area was discretized by 1000 finite volumes. It is seen that the proposed

scheme gives good predictions also for the experimental data with friction term. Moreover the scheme

is mass conservative.
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Figure 7.30: Comparison of the simulation

and experimental data at time t = 3.7 s.

Figure 7.31: Comparison of the simulation

and experimental data at time t = 8.4 s.

7.2.2 H-dam Experiment

In this section the comparison of the finite volume method with the experiment of L. Fraccarollo and

E. F. Toro [79] is shown. H-dam problem is 3D flow in the the experimental flume. This flume is

two metres wide and one meter long. In the middle of the front wall is 40 cm wide opening which is

closed by the water gate. The flume geometry can be seen in Figure 7.32. During the experiment the

water depth at four locations was captured. These points are drawn in Figure 7.33 and their positions

in meters are A(x=1.0, y=1.0), B(x=0.18, y=1.0), C(x=0.48, y=0.4) and D(x=1.802, y=1.45). The

initial water depth in the reservoir was 0.6 m and there was dry bottom everywhere except the flume.

Figure 7.32: Visualization of the H-dam. Figure 7.33: Geometry of the H-dam.

The flood-plain boundaries are simulated as all opened and boundary condition is set to outlet with

extrapolating all values (depth and celerity of the flux). The domain is discretised into rectangles with

∆x = ∆y = 0.01 m. The bed friction with Manning’s friction coefficient Cf = 0.0001 was involved in

the simulation, CFL constant was set to 0.5 and εv =1e-15.

In Figures 7.34, 7.35, 7.36 and 7.37 can be seen the comparison between simulated hydro-graphs and

experimental data. The numerical simulation was computed by HLL scheme with modification (2.107).

As expected, plain numerical scheme is more viscous than the scheme with the linear reconstruc-

tion (2.5).

The steep drop of the water level at the point A which is at the beginning of the simulation is
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Figure 7.34: Sensor A(x=1.0, y=1.0) Figure 7.35: Sensor B(x=0.18, y=1.0)

Figure 7.36: Sensor C(x=0.48, y=0.4) Figure 7.37: Sensor D(x=1.802, y=1.45)

caused by the fact that during the very early time period of the experiment and simulation, the water

flow has the character of 2D dam break. As mentioned in section 7.1.1 the water depth at the dam site

in 2D case is constant and equal to 4
9h0. In case of h0 = 0.6 m , this constant depth is 0.266 m. But

before the water level drops to this value the flow becomes 3D and perpendicular flows cause the surge

of the water level. There are some discrepancies between the numerical results and the experiment

after the surge of the water level. G. Gottardi and M. Venutelli in their work [112] believe that these

discrepancies occurring at the beginning of the simulation in Figure 7.34 are not due to numerical

approximation but due to the mathematical model of Shallow Water Equations which isn’t suitable to

solve the type of the fluid flow which occurs at the dam gate position immediately after it’s removing.

In other points B and C can be seen very good agreement between the simulation and the experiment.

The agreement is even better at the D point which is further from the water gate and simulated water

depth is more shallow here.

In Figures 7.38 and 7.39 the comparison of the computations with different finite volume cell width

is shown. From this plot, it can be seen that the solution is converging and with smaller cell width the

numerical viscosity of the scheme decreases.

Table 7.11 shows L1 error of the water depth. This error was computed as

L1error =
1

nt

nm∑
i=1

|hiex − hinum|
max(hiex, 1e− 10)

(7.18)

where hiex is the experimental, hinum is the numerical value of the water level in corresponding time
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and nm is the number of the measured times. In Figures 7.38, 7.39 and table 7.11 the comparison of

basic scheme without the linear reconstruction is shown.

The values in table 7.11 have monotonic character and in general the smaller cell width yields

better results. Higher mesh resolution is needed at the place of the dam site, where the water level

attains high gradients. To simulate the water level more precisely, the cell width should be smaller

than 0.01 m. On the other hand the computations give good agreement with the experimental data at

the point D even for lower mesh resolution and cell width of 0.05 m suffices.

Figure 7.38: Comparison of the computations

with different finite volume cell width at the

point A.

Figure 7.39: Comparison of the computations

with different finite volume cell width at the

point D.

Table 7.11: L1 Error of the Water Level

∆x=∆y A B C D

0.2 0.163457 0.132316 0.125966 0.340554

0.1 0.131234 0.130057 0.112161 0.142759

0.05 0.102865 0.098472 0.07931 0.073187

0.04 0.09319 0.0908 0.071626 0.070216

0.025 0.073526 0.078179 0.058245 0.068996

0.02 0.064471 0.073454 0.055909 0.066053

0.013 0.05122 0.070692 0.054282 0.070499

0.01 0.044427 0.039532 0.03719 0.082341

7.2.3 Obstacle Experiment

The last experiment validates the invented 2D discontinuous Galerkin solver. Kleefsman et al. [66]

conducted another dam break experiment. In contrast to the previous experiment, the bed slope

source term has to be considered in this case. For the experiment large tank with the size 3.22×1×1m

was used. At the position shown in Figure 7.40 and Figure 7.41, rectangular obstacle was placed. The

right part of the tank was closed by the water gate. The initial condition of the left part was a dry

bed and behind the gate, there was 0.55m of water. The gate was released by a weight which almost

instantaneously pulls the door up. The experiment was designed for the validation of the simulations
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conducted by volume of fluid method and fully 3D model of flows, but the capabilities of discontinuous

Galerkin method and Shallow Water Equations to solve this problem, are discussed in this section.

During the experiment the measurements of the water heights at four places were performed.The

positions of the sensors are shown in Figures 7.40 and 7.41. The Manning’s bed roughness factor was

set to 0.01 in whole computational domain, CFL was set to 0.5 and simulation was performed by first,

second and third order DGFEM scheme.

In Figures 7.42 and 7.43, there are shown the simulations with different meshes compared with

measurements in sensor H2. The first coarse mesh made of 640 finite elements is shown in Figure

7.42 and in Figure 7.43 the results of relatively fine mesh created by 256000 finite elements is plotted.

The comparison of the DGFEM with different accuracy on both meshes yields that the higher orders

DGFEM does not bring remarkable performance. This is because of the shock appearance. As discussed

in Section 7.1.1.2, the accuracy of the schemes is decreased in case of discontinuous solutions.

There are the plots of the measured water depth and water depth simulated by DGFEM-3 in Figures

7.44, 7.45, 7.46 and 7.47. Discrepancies between the numerical simulation and sensor H1 in Figure

7.44 are, accordingly to the author’s opinion, caused by the measuring method used in experiment and

used mathematical model. From the video record and Figure 18 in the original article [66], it can be

seen that in time 0.56s there is some splashing water over the position of the sensor H1. The sensor

probably wasn’t able to catch this water and the mathematical model of the Shallow Water Equations

is not able to solve a splashing liquid. Nevertheless, the numerical results have very good agreement

with the experiment.

Figure 7.40: The experimental setup.



7.2. Comparison with Experiments 103

Figure 7.41: Visualisation of the initial conditions.

Figure 7.42: Comparison of the experimental data measured by sensor H2 and the numerical simulation

simulated on the mesh created by 640 finite elements.
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Figure 7.43: Comparison of the experimental data measured by sensor H2 and the numerical simulation

simulated on the mesh created by 256000 finite elements.

Figure 7.44: Comparison of the numerical

simulation and the experimental data mea-

sured by sensor H1.

Figure 7.45: Comparison of the numerical

simulation and the experimental data mea-

sured by sensor H2.
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Figure 7.46: Comparison of the numerical

simulation and the experimental data mea-

sured by sensor H3.

Figure 7.47: Comparison of the numerical

simulation and the experimental data mea-

sured by sensor H4.



Conclusion

In this work the system of Shallow Water Equations also known as Saint-Venant’s equations is de-

scribed. In the mathematical model the bed slope source term and the bed friction source term were

involved. This mathematical model is suitable for simulations of water flows when the vertical fluxes

are negligible and horizontal scales of water mass are much bigger than vertical scales.

Basic mathematical features and eigenvalues of Saint-Venant’s equations were described in Section

1.1. This eigenvalues are important for understanding the principle of numerical schemes and for the

boundary conditions settings. Mathematical model was discretised by finite volume method (Chapter

2) and discontinous Galerkin method (Chapter 3).

In Chapter 2.2, there are two possible schemes for the numerical flux approximation described. First

scheme is Roe scheme which is based on replacement of the original non-linear system of differential

equations by new linearised system with constant coefficients. Second scheme is HLL scheme which is

based on integration over Riemann’s fans. Both schemes are based on up-wind principle which causes

problems within the simulations of the flows where Froude number is equal to one. This situation

causes that one of the eigenvalues is zero and scheme suffers from the lack of the numerical viscosity.

Meanwhile the error of HLL scheme is relatively small, the behaviour of the Roe scheme is non-physical

and needs the re-computation of the eigenvalues described in Section 2.2.3. Both schemes give relatively

the same results as shown in Figure 7.4, but for the numerical flux approximation, HLL scheme was

chosen because this scheme does not need any additional constant ε to correct the eigenvalues.

Numerical approximation of the bed source term for the FVM is described in Chapter 2.3. This

chapter was focused on the bed source approximations which provide ’C-property’ condition. The

proofs of ’C-property’ condition for Roe and HLL schemes in flooded domain are also described.

The cell-centred bed approximation, described in this work, keeps this condition also at the wet/dry

interface for the Roe scheme. To use this cell-centred bed approximation also within the HLL scheme,

novel computation of the eigenvalues (2.107) was introduced in this work. The approach with the

bed function approximated at the edges of finite volumes brings problems with negative water level

at the wet/dry interface as described in Section 2.3.2.1. Solution of this problem proposed Alexander

Kurganov in [41]. But this modification of water depth reconstruction is in conflict with ’C-property’

condition. So in frame of present work, a novel method of computation of the bed slope source

term (2.123) was invented. Computations do not crush because of the negative value and also ’C-

property’ condition is fully fulfilled. However this novel treatment is not mass conservative. The mass

conservative scheme was obtained by modification (2.127) which was also invented in frame of this

work.

Numerical simulations at the wet/dry interface needs special treatment. Not only because of the

satisfaction of the ’C-property’ condition but also because of the computations of the flow velocity.

This velocities can, due to the computer inaccuracy, take non-physically large values when water depth

106
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is approaching zero value. In Section 2.2.4 three methods of handling this problem were described. All

methods were investigated in Section 7.1.1.3 and numerical simulations show that the optimal choice

is to set a small constant ε and for practical problems water depth smaller than this constant consider

to be zero. This method also decreases the computational demands. Second suitable approach is

setting zero velocity at the wet/dry interface. This approach also prevents the occurrence of negative

water depth when computational domain is drying and the cell-centred bed approximation is used.

Unfortunately in case of edge based bed function approximation, this method cannot guarantee non-

negative water depth. Modification with εv distorts the front face of the surge wave. Distortion is

bigger with larger εv. The non-physical behaviour of the flow at the wet/dry interface was proved in

Section 7.1.1.3 and Section 7.1.3.

The bed friction source term is described in Section 2.4. The approach published in [31] was

used. This bed source term wasn’t tested independently, but the bed friction was implemented in all

simulations in Section 7.2.

The order of accuracy of the FVM can be improved by the linear reconstruction of variables as

described in Section 2.5. To keep total variation diminishing property of proposed schemes minmod

limiter was introduced.

Another way of achieving higher order of spatial accuracy is usage of the discontinuous Galerkin

method. This method is described in Chapter 3. The high order of approximation has to be limited

around the shocks to avoid a spurious oscillations. This can be done by artificial viscosity or by slope

limiters. Both methods were described and tested within this work. In case of appearance of the

wet/dry interface the slope limiters have to be used, as the artificial viscosity cannot directly affect

the solution of the water depth and avoid appearance of the negative water depth. The combination

of slope limiters, used for the limiting of the water depth, and artificial viscosity, used for dumping

of the discharge, was also tested, but gave bad results. So the combination of artificial viscosity and

slope limiters is not recommended.

As discussed in Section 3.2.2, it is not clear when the solution should be limited. Many authors

use some constants to define ’troubled’ cells. But there is uncertainty in the magnitude of this con-

stants as discussed in Section 3.2.2.2. Thus within this work novel ’constantless’ criterion (3.2.2.3) for

defining ’troubled’ cell was introduced. This criterion is focused on the shape of the solution in the

finite element, unlike the other schemes which are focused on the monotonicity or discontinuity of the

solution. The method was presented in author’s publication [118]. The novel limiting method of the

DGFEM was extended to 2D space (3.3.2). The usage of the orthogonal functions in the bed function

approximation needs special computation of the bed function coefficients. Within this work, the novel

evaluation of these coefficients (3.76) was introduced. This computations ensures the continuity of the

bed topography function.

The bed friction source term is handled in the similar way as within the finite volume method. The

bed friction for 1D solution is described in Section 3.2.4 and bed friction for the 2D solver is described

in Section 3.3.4.

DGFEM can improve formal order of accuracy. But in a fact the improvement of accuracy can be

seen only in computations without any shocks or discontinuities in the solution. In Table 7.4 it can be

noticed that DGFEM can substitute large number of finite elements by the high order basis functions.

The method gives the same accurate results for 25 of finite elements as well as for 100 of the finite

elements when high degree of basis polynomials is used. However, the accuracy of DGFEM method

decreases when the solution contains discontinuities or shocks. This can be seen in Tables 7.5 and
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7.6 or in comparison with the experiment described in Section 7.2.2. The advantage of the DGFEM

method is the fact that the bed function can be described by arbitrary polynomials, meanwhile within

the FVM the bed function can be described only by linear functions. That is why the second order

accurate DGFEM gives much better results than the second order accurate FVM in Tables 7.4, 7.5

and 7.6. But DGFEM brings some improvement of accuracy also when the bed function is described

by the linear function. This comparison of the second order DGFEM and the second order FVM for

bed function described by linear functions is shown in Table 7.7. If the bed function is not described

by polynomials, than DGFEM cannot achieve a high performance and computational demands are to

high as shown in Table 7.8.

Methods of the numerical time integration (Euler’s method, the second and the fourth order Runge-

Kutta methods) were described in Chapter 4. Euler method isn’t suitable for the numerical flux

approximation schemes of higher order accuracy. The comparison of the numerical and analytical

solutions yields that the second order Runge-Kutta suffices for numerical simulations and fourth order

Runge-Kutta doesn’t bring remarkable improvement for the Shallow Water Equation as shown in Table

7.3. Moreover, fourth order Runge-Kutta is computationally more expensive.

The work brings new findings in simulation of the shallow water flow. The main achievement was

made in the simulation at the wet/dry interface. Two new approximations of the bed source term,

providing C-property condition at the wet/dry interface, for the HLL scheme were introduced. In

Section 2.3.2 the approximation for the bed function evaluated at the edges of the finite volumes was

introduced and in Section 2.3.1.2 a scheme for the cell-centred approximation of the bed function

was described. For the bed approximation at the edges of the finite volumes, novel numerical scheme

(2.123) for computation of the wet/dry interface was invented. This scheme keeps the ’C-property’

condition not only at the fully flooded computational domain but also in the case when the finite

volume cell contains wet/dry interface. Moreover, the scheme was extended by novel predictor (2.127),

which ensures the mass conservativity of the scheme.

In Section 2.2.4, there were described different approaches of computations of the flow velocity.

After numerical simulations and tests the approach with ε was chosen. This method does not distort

the front face of the surge and computationally is undemanding. In case of using approach with εv,

the using of values smaller than 1e-10 was suggested. The comparison of all three methods is discussed

in Section 7.1.1.3.

Future work can be focused on improving, future validation and practical usage of the solver which

was written as a part of this work. One of practical usage can be defining flood areas or computations

of the impact of the anti-flood barriers or during river catchment restorations. Mathematical model

can be extended by porous flow source term. Porous flows are useful for flow simulations in urban

areas where the scale of the mesh or missing data do not allow to describe some conglomeration of the

buildings by the mesh.

Main Findings of the Work

Present work describes a numerical solution of the shallow water equations. The mathematical model

was solved by the finite volume method and by the discontinuous Galerkin method. For both methods,

the unstructured meshes were used. At the edges of the mesh cells the numerical flux is computed.

Roe and HLL approximate Riemann solvers for numerical flux computation were tested in Section

7.1.1.2. Both are giving approximately the same results which confirm the findings in [114]. HLL
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scheme is in author’s opinion preferable because Roe scheme needs Harten’s correction (2.2.3) when

Froude number takes on zero value. HLL scheme gives good results also without this correction,

however the correction brings better results as shown in Figure 2.6.

Special treatment is needed when the water depth approaches zero value. This can happen mainly

during flooding or drying processes. Three of these treatments are described in Section 2.2.4. All

methods are tested in Section 7.1.1.3. It is concluded that the best solution gives the treatment when

the water depth smaller than a chosen threshold is considered to be zero. This was also discussed in

author’s publication [116].

As stated in the introduction, the work is focused on the schemes which satisfy C-property condition.

The scheme published in [41] is ensuring non-negativity of the water depth, but does not keep the C-

property condition at the wet/dry interface. Within this work, a novel scheme for computation of

the wet/dry interface was suggested. The scheme is fully mass conservative thanks to the modification

(2.127) and the C-property condition at the wet/dry interface is kept thanks to the modification (2.123).

These modifications also improve the behaviour of the numerical scheme as shown in Figures 7.26 and

7.25. More test cases and detailed description can be found in author’s publication [119].

In Section 3.2.2.3 a novel limiting process for DGFEM was developed. This process is thoroughly

described in author’s publication [117]. The advantages of this limiting scheme were shown in Table 7.2

where the novel limiting scheme surpasses the global limiting scheme. More test cases and validations

can be seen in [117].

Let us sum up the applicability of FVM and DGFEM. Theoretically DGFEM gives arbitrarily high

order of accuracy. However, the order of accuracy decreases rapidly when some shock is present in

the computational domain. This was discussed in Section 7.1.2 (see Tables 7.5 and 7.6). Figures 7.42

and 7.43 also confirm the fact that there is no significant improvement of the accuracy with higher

order of DGFEM when the simulated problem contains a shock. Moreover DGFEM is computationally

very demanding method in comparison with FVM (see Table 7.8). From this point of view, FVM is

more favourable method. On the other hand, as discussed in Section 7.1.2, DGFEM method gives very

accurate solution and has low computational demands for coarse meshes if the bed function is described

by higher polynomials (see Table 7.4 and Note 4). Thus the suggestion for practical applications of

DGFEM are following: fine mesh should be replaced by the coarse one to decrease computational

demands and the bed function should be described by the piece-wise polynomial approximation to

sustain the quality of the numerical results.
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[9] K. Hadašová. Aplikace Riemannových řešič̊u na dynamiku tekutin. Bachelor thesis, Katedra
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