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Abstrakt

Ve všech živých organismech se vyskytuje biologický šum projevuj́ıćı se náhodnými
výchylkami v úrovni genové exprese. Za určitých podmı́nek může zvýšená vari-
abilita genové exprese vést ke vzniku onemocněńı. Mezi takovéto rizikové faktory
patř́ı ztráta jedné funkčńı kopie genu. Tato práce se zabývá studiem vlivu tohoto
faktor̊u na stochastickou odezvu feromonové signálńı dráhy v kvasinkách. Dále
je studován vliv genetické modifikace kĺıčového komponentu feromonové signálńı
dráhy – nukleárńıho transkripčńıho faktoru – na stochastickou odezvu této dráhy.
Je ukázáno, že přirozený transkripčńı faktor dokáže potlačovat náhodné změny
signálu. Syntetický transkripčńı faktor tuto schopnost nemá.

Kĺıčová slova: šum v genové expresi, stochastická charakterizace, feromonová
signálńı dráha v kvasinek

Abstract

The biological noise is present in all living organisms. It manifests as the
stochasticity of gene expression. Increased gene expression noise can lead to
disease onset under certain circumstances including the loss of one functional
copy of the gene. This work study the effect of this factor on the stochastic
response of the yeast mating pheromone signal pathway. Further, the effect of
genetic modification of a key pathway component – nuclear transcriptional factor
– on the stochastic response of this pathway is studied. It is shown that the
wild-type transcriptional factor is able to suppress the stochastic fluctuations in
signal. The synthetic transcription factor do not perform this ability.

Keywords: gene expression noise, stochastic characterization, yeast pheromone
signal pathway
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Introduction

Proteins are the basic regulatory elements in a cell. They participate in the func-
tion of enzymes, hormones and they occur as functional elements of cell signal
pathways. The production of proteins in cells is influenced by many extrinsic
an intrinsic factors. It can lead to occurance of fluctuations in protein level.
These fluctuations usually stems from the variability in gene expression. This
phenomenon is called gene expression noise and is usual in all living forms. How-
ever, the phenomenon of noise can be harmful in the context of the proper signal
transmission through the regulatory circuits in the cell.

The presence of increased gene expression noise is sometimes associated with
the harmful effects on the fitness of an organism. These aspects are strong moti-
vation for research of gene expression noise. The first part of my thesis is trying
to find a context of gene expression noise and human diseases in the professional
literature.

Human diseases stem from physiological disorders. There is a simple unicel-
lular organism which is a quite a good model of human physiological mechanisms
– yeast. There are observed many signal pathways in yeast, the components of
which have homologues in human. In my thesis, the pheromone mating signal
pathway is studied. The aim of my thesis is to characterize the stochasticity in
the response of the yeast mating pheromone signal pathway to different doses of
pheromone input.

Currently, the biotechnology benefits from genetic modifications of biological
systems. Therefore, it is interesting to study, how the stochastic characterization
of the yeast mating pheromone pathway changes, when a crucial pathway com-
ponent - the nuclear transcription factor - is genetically modified. Therefore, the
characterization of the stochasticity in the response of the modified yeast mating
pheromone signal pathway to different doses of pheromone input was also the aim
of my work.
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Chapter 1

Biological background

1.1 The phenomenon of noise

All living cells receive signals from their environment and response to them [1].
The sequence of these events is called signal pathway. Single components of signal
pathway are connected into a circuit, where proteins represent nodes and protein
interactions links between them [2]. Actions in the cell are regulated by enzymes
either at the level of the total amount of enzyme or at the level of its activity. The
process of signal transmission is influenced by many stochastic factors resulting in
observed stochastic fluctuations in the level of gene expression and consequently
in the concentration of protein or enzyme. This phenomenon is what we called
biological noise.

The noise can be divided to an extrinsic and intrinsic noise. Extrinsic noise
can be caused by environment or the global pool of housekeeping genes, which
affect all parts of a cell system at once. Intrinsic noise stems from stochastic
fluctuations in gene expression, when there is a component in a network which is
present only in small amount [3],[4]. Further, the effect of noise on the cell can
be found both advantageous (e.g. for adaptation or cell to cell communication)
or deleterious [? ],[4].

The presence of increased gene expression noise is also associated with dis-
eases. Although, the evidence of a direct implication from noise to disease is quite
hard to find. The authors of the study [5] are dealing with the idea that noise
– in synergy with other factors – can be a switch-on mechanism in the onset of
autosomal dominant diseases. The idea of this study became the inspiration for
the formulation of the research problem solved in my thesis. Therefore in the
following chapter the main idea of the study [5] will be described and examples
of real autosomal dominant diseases will be given.

1.2 Autosomal dominant diseases

Autosomal dominant diseases (further ADD) are hereditary originated disorders
caused by a change in gene located on an autosomal chromosome (autosome).
There is either mutation or loss of function in one of two homologous gene loci.
The transmission of this sign is conditioned by a dominant allele, which means
the disease state occurs when mutated allele (A) is dominant over wild-type al-
lele (a). Phenotypically it means that ADD occurs in heterozygote (Aa) (and in
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homozygote (AA) of course). However, some variable characteristics in disease
transmission and manifestation were observed. For example the incomplete pen-
etrance (the state when the affected allele manifests in less than expected number
of carrying individuals) or variability in time of the disease onset. Currently there
are two theories trying to explain the cause of ADD outbreak.

The first one is based on the Knudson’s two-hit theory of hereditary cancers
and suggests ADD outbreak is a consequence of a wild-type copy damage, either
by loss of heterozygosity (and getting homozygote (AA) which is more severe
in the context of the disease course) or by somatic mutation in wild-type allele.
However, this theory describes rather conditions under which stable disease is
maintained while variable time of disease onset stays unexplained.

The second theory takes into account the phenomenon of haploinsufficiency,
which can stem from the heterozygosity. Dysfunction of one allele cause reduction
of wild-type gene copy number compared with the healthy individual. In the case
when copy number reduction causes the loss of sufficient gene function we are
talking about haploinsufficiency.

Three step mechanism of ADD onset

Haploinsufficiency often involves some additional mechanisms. Such a mechanism
is a noise in gene expression. Synergy of these phenomenon has a potential to be
the true cause of variable time ADD onset. When one gene copy is lost, there is
stronger possibility that gene expression noise causes a fall of an essential prod-
uct concentration below a critical level and it results the disease state. However,
as the noise is a stochastic variability in gene expression, sooner or later such a
deviation is compensated and the disease state disappears. It means the noise
explains variable but temporary onset of ADD, thus it seems to be just a primary
mechanism. There must be some other influence, which causes the switching and
maintaining a stable disease state.

At this point, the structure of key pathway which regulates cellular physiol-
ogy plays the important role. Global appearance of a network topology - loops,
feedbacks, cascades - and functional qualities of single elements – activators, in-
hibitors – are crucial for noise propagation. The effect of noise can be either
diminished or prolonged by certain structures of networks. Such a structure com-
mon in biological systems is a feedback loop. It has two functions at a time:
firstly, it allows rapid switch on of a process and secondly, it behaves like a noise
buffer in order to withstand long-termed noise.

Simulation of ADD onset

In silico experiments were done by authors of the study [5] in order to achieve
results of the theory made above. Simulations were made in order to explore the
hypothesis that three factors – haploinsufficiency of a gene, noise in its expression
and the network structure which the gene is part of – together in synergy explain
the onset of ADD.
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A model of a key pathway structure of ADD was simplified to a three ele-
ment network (examples of such networks are shown in the figure 1.1). The most
upstream element X represents the signaling protein at the top of the pathway.
Following downstream element Y represents an intermediate protein. Finally,
the element D at the bottom of the pathway represents the disease state marker
protein. Always one of elements X or Y was considered to be influenced by hap-
loinsufficiency. Simulating haploinsufficiency, the answering gene expression level
was reduced by 50% of a normal expression level. The normal (100%) level was
determined to be when both gene copies express at the critical level. The crit-
ical level was determined empirically and set to be the basal expression level of
a single gene copy. The presence of noise in gene expression was simulated by
the Gaussian noise. The random variable chosen from Gaussian distribution with
zero mean was added in each step to the basal production rate of haploinsufficient
gene.

It was find out that there are structures, which performs the behavior of the
switch-like mechanism and can be switched by a noise. The probability of switch-
on the disease state is influenced by haploinsufficiency of appropriate gene in this
structure. In the figure 1.1 are presented structures together with the results of
simulations. It was find out that these sructures are involved in signal pathways of
real autosomal dominant diseases. Examples of such diseases - polycystic kidney
disease and the maturity onset diabetes of the young are disused above.

a) b) c)

d) e)
f)

g) h) i)

Figure 1.1: (a),(d),(g)- diagrams of simulated networks, (b),(e),(h) - crresponding
simulations results for heterozygosity of X positioned gene, (c),(f),(i) - crrespond-
ing simulations results for heterozygosity of Y positioned gene. Figures inherited
from [5]
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Autosomal Dominant Polycystic Kidney Disease (ADPKD)

ADPKD manifests by a cystic dilation of the kidney tubules and cyst forma-
tion. Progressive enlargement of cysts leads to kidney enlargement, deformation
and eventually failure, which occurs at a later age [6]. Patients have to undergo
hemodialysis or organ transplantation. ADPKD is caused by mutation in gene
PKD1 or PKD2. PKD1 gene is coding for PC1 (polycystine-1), the G-protein
coupled receptor. PKD2 gene is coding for PC2 (polycystine-2), the cation chan-
nel protein regulating the permeability of Ca2+. [7].

According to the prevalent theory, the ADPKD onset is the result of a sec-
ond–hit mutation inactivating the functional copy of mutated gene and conse-
quent expansion of affected cells. However, referring to in vivo experiments on
mice [8] the authors of a study [5] point out two insufficiences of this theory.
Firstly, in the most of cyst lining cells both PC1 and PC2 are expressed, which
means neither PKD1 nor PKD2 can be completely deactivated by the second-hit
mutation. Secondly, in the presence of PKD1 mutant cells, even wild-type cells
can contribute to cyst growth. There is an alternative hypothesis which suggests
somatic mutations are not the only mechanism of ADPKD onset. Non-genetic
factors such as topology of the ADPKD key pathway or stochastic noise in gene
expression or in surrounding environment may be possible alternative mecha-
nisms. Simulations dealing with this hypothesis were made.

In the figure 1.2a, there is a diagram of the ADPKD key pathway. In this
pathway the role of signaling protein plays the TNF-α (tumor necrosis factor α)
inflammatory cytokine, the level of which can increase as a result of renal injury,
infection or cystic conditions. TNF-α (through the induction of the FIP2 protein)
negatively regulates the function of PC2. PC2 in turn negatively regulates the
TNFR (tumor necrosis factor receptor). In simulations, PC1 and PC2 are mod-
eled as a functional unit, haploinsufficiency of which is considered to be crucial
for the disease onset. The ADPKD pathway contains two motives (in the figure
1.1a and d) both of which are able to switch on a stable disease state in the
case of Y-positioned haploinsufficient element (indeed, here it is PC1-PC2 unit).
Further, simulations consider two sources of a noise – firstly the stochastic fluc-
tuations in gene expression and secondly renal injury as the stochastic influence
of environment.

In simulations of heterozygous population (figure1.2b) the magnitude of stochas-
tic fluctuation in PC1-PC2 level is amplified. Therefore, although in heterozygous
population the PC1-PC2 level is generally sufficient to prevent cyst formation, it
can easily randomly fall under the threshold so that the feedback loop switches
the disease onset. Worthy to mention is that when the simulation considers TNF-
α feedback loop is blocked (figure1.2c), the disease onset is inhibited which would
not be possible considering the ADPKD onset is caused by the second-hit muta-
tion. This is also confirmed by in vivo experiments on mice [8] and suggests an
important consequence for treatment.
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Maturity onset diabetes of the young (MODY)

MODY [9] is heterogeneous group of disorders caused by insulin deficiency pre-
dominantly arising from defect in pancreatic β-cells function. The disease onset
is usual before 25 years of age. The dynamics of the onset varies as well as the
severity of symptoms. In all cases, untreated elevation of blood sugars can result
in a damage of many organs (e.g. neuropathy, retinopathy, renal or heart dis-
eases). At genetic level the MODY stems from the mutation in one gene (versus
diabetes of the type I and II which stems from polygenic abnormalities [9]) of the
key pathway (presented in the picture 1.2d). This pathway contains motive of
the type illustrated in the figure 1.1g which has not clearly switch on character
of a response (shown in the figures 1.1h and i). However, the MODY pathway
includes two embedded subnetworks of the same type and the extra feedback
loop, and therefore the results of simulations suggest the MODY key pathway is
able to switch on the disease state. Further, the discussed motive (fig. 1.1g) is
more sensitive to haploinsufficiency of X-positioned element. Therefore, it can
be expected, and simulations confirm it, that the deficiency in gene production
higher up the cascade has more severe effect on downstream insulin production.

The noise was simulated as stochastic expression level of involved genes. The
random variation in each allele is independent of the other. When a gene is
unaffected by haploinsufficiency the total production rate is relatively high and
random variation of each allele offsets the other. However, in haplodefficient
gene random fluctuations are higher and the positive feedback loop can be easily
switched on, which causes the disease onset.

The less severe form is MODY 2 caused by a loss of single allele of the gene
coding for glycokinase (glycolytic enzyme). The simulation results (fig. 1.2e) cor-
responds to the known disease characteristics – an early onset and mild, uniform
decrease of insulin level. The MODY 2 does not get worse with the time. It is
suggested this is caused by the absence of glycokinase in any feedback loop.

More severe forms are MODY 1 and MODY 3 caused by mutated hepatocyte
nuclear factors hnf-4α resp. hnf-1α positioned in the cascade upstream to glycok-
inase. Both forms have similar clinical manifestation (slightly milder symptoms
at MODY 1) at most consistently to simulations (fig. 1.2f and g). The only
difference observed in the age of onset (when for MODY 1 the onset is earlier and
less variable compared to MODY 3) is suggested to be a consequence of answer-
ing genes placement in a pathway structure, which is complicated with double
feedback loop from hnf-4α. Further, as in the case MODY1 so if MODY3 the
insulin level was found generally reduced in mean but stronger in fluctuations
compared to MODY 2 simulations.

The most severe and forms MODY 4 (slightly milder) and MODY 5 (very
severe form) are caused by deficiencies in transcriptional factors coding genes
pdx1 resp. hnf-1β. MODY 4 and MODY 5 simulations (fig. 1.2h and i) shows
switch-like behaviour. There are two stable states, either no disease or very high
disease level (corresponding to very low level of insulin). When the insulin level
falls low enough due to random fluctuation, the stable disease state occurs.

12



a) b)

c)

d)
e)

f) g)

h)
i)h)

Figure 1.2: (a)- key signal pathway of ADPKD (b) - simulation of haplodefi-
cient population (level of polycystin is lower and the fluctuations are higher) (c)
- simulation of the state, when TNF-α feedback loop is blocked (d) key signal
pathway of MODY (e),(f),(g),(h),(i) - simulations for haploinsufficiency of gly-
cokinase (MODY 2), hnf-4α (MODY 1), hnf-1α (MODY 3), Pdx1 (MODY 4)
and hnf-1β (MODY 5). Figures inherited from [5]
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1.3 The signal pathway in yeast

1.3.1 The life cycle of yeast

Baker’s yeast [10] (Saccharomyces cervisiae) is one of the most studied eukaryotic
organisms. It was the first eukaryotic organism whose genome was completely se-
quenced and many other primacy were made even when examining Saccharomyces
cervisiae. Yeast is strongly used in the research of the cell cycle, intracellular sig-
naling and protein-protein interactions. They are appreciated as a good model
organism also because they are simple unicellular organisms which can be easily
manipulated. At the same time there are great similarities in genes, proteins and
cellular processes in cells of yeasts and of higher organisms, consequently human.
This fact gives a potential to the research of yeasts, that gained results could be
generalized.

As with all eukaryotes, yeast has genetic information saved in the form of
nuclear DNA in chromosomes. There is also extranuclear DNA, namely mito-
chondrial and plasmid which usually do not carry genes coding for essential life
functions. Worth mention plasmids are very important for research, because they
are used like basic vectors for genetic modifications. Yeast cells occur in two life
forms – haploid and diploid [11]. Haploid cells contain in its nucleus just one set
of chromosomes, while nucleus of diploid cells contains two sets of chromosomes.
Both haploid and diploid cells undergo classical vegetative cycle which consists
of growth period and period of asexual reproduction (mitotic division) which we
call “budding” in case of yeast. However, yeast is also capable of sexual reproduc-
tion. In the period of stress diploid cells enter the process of sporulation (meiotic
division) which results in formetion of spores. A spore contains four haploid cells
always two and two of opposite mating types. When the period of stress is over,
the spore lapses and haploid cells are released into the environment. Haploid
cells of opposite mating type can undergo the process of mating, which results in
fusion into one diploid cell.The life cycle of yeast is illustrated in the figure 1.3

Figure 1.3: The illustration of the yeast life cycle aviable in [12]
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1.3.2 The yeast mating pheromone signal pathway

The process of mating [2],[13] is quite complex and begins relatively long time
before the event of two haploid opposite mating type cells fuse. All starts in the
moment when one cell recognizes the presence of a mating partner in its proxim-
ity. Capturing this information starts a complex process of signal transmission
and transduction at the intracellular level. At the end of this cascade, the sig-
nal gets into the cell nucleus and triggers the cell fusion. The most important of
these changes is the pheromone induced expression of more than 200 genes. Other
pheromone induced changes are the cell cycle arrest and the cell polarization to-
wards its mating partner (change of the shape into so called “shmoo”). Actually,
the process of fusion is the last step and result of a long cascade of biochemical
processes which we call “the yeast mating pheromone signal pathway” (further
YMP). The whole signal transmission system including this pathway will be de-
scribed below and schema of the YMP is illustrated in the figure 1.4 At this place
I would like to emphasize, that I will focus primarily on those elements of YMP
which are part of a mathematical model used in next work, so that description
will be quite simplified compared to natural biological systems.

Figure 1.4: The diagram of the yeast mating pheromone signal pathway
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Before I will talk about the signal transmission I would firstly introduce how
the signal arises. Generally in biological systems signal molecule is secreted into
environment by the cell [1]. Such a signal molecule is pheromone in case of
YMP. Under normal conditions, each mating type produces and secretes into
environment the specific amount of its own characteristic pheromone. Each type
has its own specific receptor which is sensitive to pheromone of the opposite
mating type. In the case of Saccharomyces cervisiae mating types are MATa and
Matα, so that cells of the type MATa secrets the a-factor and its receptor (Ste2)
is sensitive to α-factor. In the case of MATα the situation is opposite (and the
receptor is Ste3). The receptor is the only part of the YMP and in which mating
types differ; the rest of the pathway is identical.

GPCR (G-protein coupled receptors)

The first step of YMP is the binding of pheromone molecule to the receptor
(GPCR) on cell surface. Function of the receptor is the regulation of intracellular
protein activity so that signal is transmitted through the cell membrane. Achiev-
ing this, GPCR are cooperating with G-proteins (guanine nucleotide binding
proteins). After the receptor binds a ligand, there are retrieved conformational
changes of receptors itself and consequentl binding of G-protein.

In the idle state, G-protein is the heterotrimer consisting of subunits Gα
(Gpa1), Gβ (Ste4), Gγ (Ste18). The Gα is responsible for regulation of the
G-protein own activity. In the idle state Gα also binds GDP (guanosine diphos-
phate). After pheromone induced activation Gα is stimulated to release the
heterotrimer and to exchange of GDP for GTP (guanosine triphosphate). In the
active state, Gβ and Gγ subunits form a heterodimer and participate in signal
transduction further along the pathway by binding to three effectors: Ste5 scaf-
fold protein, Ste20 protein kinas and Far1 protein.

The activated state can be terminated by hydrolysis of GTP to GDP on Gα,
which consequently re-associate with the Gβγ heterodimer (the protein Sst2 reg-
ulates the termination).

Scaffold protein

Scaffold protein is quite large and multifunctional but catalytically inactive pro-
tein. Its main function is the interaction with members of a signal pathway and
their co-localization. Scaffold protein Ste5 (the first discovered signal scaffold pro-
tein) organizes and co-localizes single members of MAPK cascade (Ste11, Ste7,
Fus3 and Kss1 kinases),and enables signal transmission.Ste5 forms a complex
with the first member of the MAPK, Ste11.

The fact that Ste5 binds to Gβγ heterodimer close to the site, where Ste20
protein kinase binds and is activated (Ste20 is activated by phosphorylation after
it binds to the inner side of the membrane), is not just a coincidence. Activated
Ste20 is responsible for activation of Ste11. Overall it means that Ste5 plays a
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role of the MAPK member’s holder and Ste20 is the finger which sets in motion
the first domino of the MAPK cascade.

The MAPK cascade (Mitogen activated protein kinase cascade)

The MAPK cascades occurs in all eukaryotes and they generally plays a role in
regulation of hormonal activity, cell differentiation and stress responses.

MAPK present in yeast mating pathway belongs to the group of ERK (ex-
tracellular signal regulated kinases) and through the MAPK cascade the signal is
transmitted from receptor to the nuclear transcription factors. The signal prop-
agation is a gradual change in the activity of the individual components which
through covalently modification – phosphorylation, when the phosphate group
PO4 is transferred from one element of the cascade to another. MAPK cascade
consists of three components: the component nearest to the nucleus is MAPK
(Fus3, Kss1) which is phosphorylated by upstream MAPKK (Ste7) which is in
turn phosphorylated by its upstream MAPKKK (Ste11).

The Ste11 protein does not seem to have especially high affinity to its down-
stream substrate Ste7. There is usual a transient enzyme-substrate interaction
and the key component of signal transmission from Ste11 to Ste7 is a scaffold
protein Ste5, which put them stabilizes the bond between Ste11 and Ste7.

In contrast, the Ste7 protein has quite high affinity to its downstream sub-
strates Fus3 and Kss1. The significantly stronger interaction than normal enzyme-
substrate is due to the D-site (docking site) motif of Ste7 (D-site motif was firstly
discovered in Ste7). D-site motif is the mediator of the bond between Ste7 and
its substrates. Moreover Ste7 and its substrates bind to specific regions of Ste5
scaffold protein. These mechanisms – docking and scaffolding - are mutually rein-
forcing. Their functional overlap serves as a safety factor in order to accomplish
effective signal transmission.

Nuclear transcription factors

Through the MAPK cascade the signal gets into the nucleus. Substrates of
MAPKs Fus3 and Kss1 are nuclear transcription factor complex Ste12/ Dig1/
Dig2, the Far1 protein (its function lies primarily in the stimulation of the cell
polarized growth and the mediation of the pheromone induced arrest of a cell
cycle in G1 phase) and other substrates.

Ste12 is a DNA binding transcriptional factor, which binds with its DNA-
binding site to the “pheromone response element” (the DNA motif in A/TGAAACA)
in the promoter of answering genes. The pheromone stimulation induces tran-
scription of genes. The strains without Ste12 are defective in this pheromone
induced gene expression.

Dig1 and Dig2 are protein repressors that in the idle state bind and repress
Ste12 transcription factor. Genes, which have pheromone induced expression are
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upregulated in strains without Dig1, Dig2.

Inactive Kss1 regulates the Ste12 by specific mechanism - repression of tran-
scription by inactivated MAPK. When unphosphorylated, Kss1 binds directly to
Ste12 and represses its transcription. (In contrast, the second MAPK - Fus3 is a
weaker repressor of Ste12.) When Kss1 is phosphorylated, it releases the bond to
Ste12. Further, active Kss1 and Fus3 directly phosphorylate the Ste12/Dig1/Dig2
complex. Consequently, Dig1 and Dig2 repression of Ste12 is inhibited and the
pheromone induced gene expression is activated.

Between genes whose transcription is activated by Ste12, there are components
of mating pathway (STE2, FUS3, FAR1 ), negative feedback regulators of the
pathway (SST2, MSG5, GPA1 ), genes associated with the fusion process (e.g.
FUS1 ). Ste12 also binds its own promoter and it stimulates its own expression
(positive autoregulation).

1.4 Pheromone activated factor

Numerous hybrid proteins were created in the study [14] by fusion of different
regions of transcription factors Ste12 and Gal4.

The Ste12 transcription factor consists of 688 amino acids. At the N-terminus
Ste12 has a DNA-binding domain (residues 1 - 215). At the C-terminal end,
there is a transcription activation domain (residues 384 - 688) which is neces-
sary for activation of the basal transcription in the absence of pheromone as well
as pheromone induced transcription in the presence of pheromone. The region
between these two domains (residues 216 – 383) forms a pheromone induction
domain it is capable for response to pheromone stimulation.

In the study [14] was defined the region of pheromone induction domain suffi-
cient to confer pheromone induction to hybrid protein. It was found, this minimal
induction domain is a region bound by residues 301 and 335. Further foundation
was that pheromone induction domain alone activates the transcriptional activity
weakly in the presence of pheromone. To achieve a significant pheromone induced
transcriptional activity, the pheromone induction domain cooperates with the ad-
jacent transcriptional activation domain.

The fusion protein H30 from the study [14] was constructed and internally
named PAF (pheromone activated factor) by my colleague Anna Sosnová [15].
This fusion protein contains the minimal induction domain and activation do-
main of the Ste12 transcription factor (residues 301-688) and the DNA-binding
domain (GBD) of the Gal4 transcription factor. Gal4 is a DNA-binding tran-
scription factor which serves as a positive regulator for the gene expression of
galactose induced genes (e.g.GAL1, GAL2 ) by binding to the upstream activat-
ing sequence of these genes [16].

Taken together, Ste12 and PAF differ primarily in their DNA-binding domain.
Ste12 binds to pheromone response element of pheromone induced mating genes
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(e.g. FUS1, FAR1 ). Among them there are genes encoding proteins placed up-
stream of Ste12 in the yeast pheromone mating pathway. Hence, the feedback
mechanism is mediated by Ste12.

PAF binds to the upstream activating sequence of these galactose induced
genes (e.g. GAL1, GAL2 ). By this hybrid transcription factor the pheromone
induced transcription of any gene, having the upstream activating sequence of
galactose induced genes, can be achieved. In contrast to Ste12, PAF does not
activate the pheromone induced transcription of genes coding for proteins placed
upstream to Ste12 in the yeast pheromone mating pathway. It means using PAF,
the feedback mechanism can be inactivated.
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Chapter 2

Research

The interaction of such effects as a topology of a signal pathway, a deficiency
of gene copy number in some key component of a pathway and a presence of
stochasticity (noise) in gene expression which was examined with respect to the
autosomal dominant disease onset in the study [5], raises the question how some
other signal pathway would behave under similar conditions. In the case of my
research problem it is the yeast pheromone mating pathway. Many components
of YMP have human homologues. Therefore the study of this pathway is interest-
ing from the perspective of an examinination of the function of human physiology.

2.1 Formulation of the problem

The key component of YMP is considered to be the nuclear transcription factor.
As mentioned in chapter 1.4, it is possible to replace the wild-type Ste12 tran-
scfription factor with the hybrid PAF, so that the synthetic signal pathway with
a different topology is created. Both these pathways are examined in following
research. In the figures 2.1a resp. 2.1b there are simplified block diagrams of a
wild-type resp. synthetic pathway, where the pheromone is an input and green
fluorescent protein (GFP) is an output.

Figure 2.1: Block diagrams of a wild-type (a) and synthetic (b) pathway
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The wild-type pathway contains a feedback loop, as the Ste12 transcriptional
factor binds to promoters of genes placed upstream in the YMP. Induction of
gene expression of mating genes is not considered, because there was used sterile
strain in expreriments in vivo. Autoregulatory feedback loop is not considered,
because for experimental purpose, constitutive promoters were placed upstream
to STE12 gene instead of its own promoter. It means this pathway is not truly
wild-type at all, however it is used as a model of wild-type pathway and it is
termed by this way in the following text. As the reporter it is used GFP. The
synthetic pathway does not contain the feedback loop and as the reporter gene
it is used GFP again.

The aim of my work is to analyze the stochastic characterization of wild-
type resp. synthetic signal pheromone pathway response to different doses of
pheromone input and to compare the responses of both pathways. Another aim
is to analyze how the response of both pathways changes, when gene coding for
the key pathway component - transcriptional factor Ste12 resp. PAF - is present
in the cell in full(2) resp. half(1)copy number resp. What is the difference be-
tween responses of pathway with haplodeficient gene and the pathway with gene
present in full number of copies?

In order to achieve these aims, in silico and in vivo experiments were per-
formed.

2.2 In silico performance

The Yeast Pheromone Signalling Model [17] was used for the purpose of the ex-
periment in silico. This model is written in the BioNetgen rule-based modeling
language (BNGL). Modifications of the former model are made using RuleBender
[18],[19], free tool for work with rule-based models in the BioNetGen Language,
which enables simple definition of intermolecular reactions. RuleBender is able to
communicate with MATLAB software, which is useful when there is a need to run
simulations repeatedly and to change their parameters continuously. Stochastic
simulations are performed using the NFSim algorithm.[20].

2.2.1 Computational model

To model pathways defined above it is necessary to modify some single parts of
the complex Yeast Pheromone Signaling Model. The original Yeast Pheromone
Signaling Model contains the rule representing the process of Ste12 binding to
its own promoter. In my work, this process of the Ste12 autoregulation is not
considered. Therefore, corresponding interaction iss deleted. In the model of
a synthetic pathway all interactions of transcriptional factor PAF with promot-
ers of upstream pathway genes are deleted. Last modification is adding of rules
representing the interaction of particular transcription factor with the particular
promoter of reporter gene GFP and its expression. Equations of chemical reac-
tions responding to this process are given bellow, together with their RuleBender
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notations and contact maps acquired from the RuleBender tool. In figure 2.2)is
shown a contact map of the wild-type pathway and in the figure 2.3)is shown a
contact map of the synthetic pathway.

In order to simulate haplodeficiency state of a gene coding for tha particu-
lar transcription factor, corresponding initial conditions of the Yeast Pheromone
Signaling Model are modified. To simulate the full(2) resp. half(1) gene copy
number, the initial level of particular transcription factor is set to the value 3000
molecules (30nM) resp. 1500 molecules (15nM). The model considers the interac-
tion of transcription factor (either Ste12 or PAF) with the Dig1 and Dig2 protein
repressors. The most important: the complex Ste12−Dig1∗ is present from the
start of simulation. The total amount of Dig1 in the original model is set to 4799
molecules. As Ste12 and Dig1 form a complex, the amount of free Dig1 (and of
course also Ste12) molecules decreases. Therefore, the initial conditions has to be
modified for three components of the model - Ste12−Dig1∗ complex, freeDig1
and freeSte12. Under the above conditions, the amount of the transcription
factor is always lower than the amount of Dig1 - in both cases simulating full or
half gene copy number. Consequently, all molecules of the transcription factor
are consumed to form a complex with Dig1 and there are initially no free tran-
scription factor molecules. Specific values of initial conditions are summarized in
the table 2.1. Simulations of Ste12 resp. PAF considering the full resp. half gene
copy number are termed Ste12(2), Ste12(1), PAF (2), PAF (1).

Simulations are performed for varying pheromone input(from 0.1nM to 10 nM
of pheromone). The time of simulations is 2000s. It is considered that the steady
state is reached after 2000s. In order to study the stochasticity of the simulated
process, the sufficient number of simulations has to be performed. The Monte
Carlo method is used for determination of aproppriate number of simulation
(subsection 2.2). The concrete calculated numbers of simulations for Ste12(2),
Ste12(1), PAF (2), PAF (1) and for all pheromone inputs are summarized in the
table 2.2.

Table 2.1: The table of simulations sets and corresponding initial conditions
(values are given in absolute number of molecules).

Simulation Initial conditions

Ste12(2) Ste12_Dig1^* = 3000 Dig1_free = 1799 Ste12_free = 0
Ste12(1) Ste12_Dig1^* = 1500 Dig1_free = 3299 Ste12_free = 0
PAF (2) PAF_Dig1^* = 3000 Dig1_free = 1799 PAF_free = 0
PAF (1) PAF_Dig1^* = 1500 Dig1_free = 3299 PAF_free = 0
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Figure 2.2: The contact map of wild-type pathway model from RuleBender

Chemical equations of reporter gene expression

Ste12 + FUS1
kF−−⇀↽−−
kB

Ste12−FUS1∗ (2.1)

Ste12−FUS1∗ kT−−→ Ste12−FUS1∗ + Gfp (2.2)

Gfp
kD−−→ Ø (2.3)

RuleBender notation

Ste12(dna) + GFP_gene(FUS1_promoter) ->

-> Ste12(dna!1).GFP_gene(FUS1_promoter!1) 2.145e-05

Ste12(dna!1).GFP_gene(FUS1_promoter!1) ->

->Ste12(dna) + GFP_gene(FUS1_promoter) 0.03

Ste12(dig1,dig2,mapk,dna!1).GFP_gene(FUS1_promoter!1) ->

-> Ste12(dig1,dig2,mapk,dna!1).GFP_gene(FUS1_promoter!1) + GFP() 15

GFP() -> Trash() 6.9e-5 DeleteMolecules
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Figure 2.3: The contact map of synthetic pathway model from RuleBender

Chemical equations of reporter gene expression

Ste12 +GAL1
kF−−⇀↽−−
kB

Ste12−GAL1∗ (2.4)

Ste12−GAL1∗ kT−−→ Ste12−GAL1∗ + Gfp (2.5)

Gfp
kD−−→ Ø (2.6)

RuleBender notation

PAF(dna) + GFP_gene(GAL1_promoter) ->

-> PAF(dna!1).GFP_gene(GAL1_promoter!1) 2.145e-05

PAF(dna!1).GFP_gene(GAL1_promoter!1) ->

-> PAF(dna) + GFP_gene(GAL1_promoter) 0.03

PAF(dig1,dig2,mapk,dna!1).GFP_gene(GAL1_promoter!1) ->

-> PAF(dig1,dig2,mapk,dna!1).GFP_gene(GAL1_promoter!1) + GFP() 15

GFP() -> Trash() 6.9e-5 DeleteMolecules
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2.2.2 Monte Carlo convergence

The Monte Carlo methods [21] are numerical methods of solving mathematical
problems, which uses modeling of random variables and statistical estimation of
their characteristics. The most frequent approach of the Monte Carlo method
is to model such a random variable X that mean value E(X) equals searched
value a. It means, in order to calculate the value a, firstly, random variable
X is searched, which E(X) = a. As independent realization X1, X2, ..., XN are
found, the value a can be calculate as 2.7. There is an infinite number of random
variables X which are subject to E(X) = a.

a =
1

N
(X1 +X2 + · · ·+XN) (2.7)

The Monte Carlo method is also associated with the problem of estimation of
parameters of normal distribution. The estimation of a mean value E(X) gives
the searched value a and the estimation of variance D(X) gives the estimation of
error of Monte Carlo method. The error of Monte Carlo method can be estimated
according to the following perscription[22].

Let the random variable X represents the number of GFP molecules synthe-
sized as a result of gene expression at time t. The stochasticity in gene expression
(noise) can be defined by the random variable Y (expression 2.8 responds to one
realization of random variable Y ). Let say in following expressions Xi resp. Yi
represent realization of random variables X resp. Y . EN(X) resp. EN(Y ) repre-
sent the estimated mean value of random variable X resp. Y calculated from N
realizations.

Yi = |Xi − EN(X)| (2.8)

Let the error of the estiomation of the E(Y ) value is given by residue 2.10. The
value E(Y ) is unknown and the value of EN(Y ) is estimated using the known
formula for sample standard deviation 2.10.

r = E(Y )− EN(Y ) (2.9)

EN(Y ) =

√√√√ 1

N − 1

N∑
i=1

(Xi − EN(Xi))) (2.10)

The required error is wanted to satisfy the expression 2.11, where I set the
option of accuracy ε = 100 molecules and the level of significance α = 0.05.

P (|r| < ε) = 1− α (2.11)

According to the central limit theorem [21],[22] for the sequence A1, A2, ..., AN
of independent random variables with the same distribution F , mean E(Ai) = µ
and non-zero variation D(Ai), the probability given by left side of the expression
2.12 goes with N →∞ to the normal distribution N(0,1). (The value σ(A) is the
standard deviation given by σ(A) =

√
D(A).)

P

(
E(A)− EN(A))

σ(A)/
√
N

< ε

)
≈ N(0, 1) (2.12)
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Applied on the above problem, with N →∞ it is:

P (|E(Y )− EN(Y )| < ε) ≈ N

(
0,
σ(Y )√
N

)
(2.13)

Expressions 2.11 and 2.13 together suggest, the value ε responds to the quan-
tile of normal distribution and its numerical value can be calculated using the
expression 2.14, where z1−α

2
is the 100(1− α

2
)% quantile of normal distribution.

ε = z1−α
2

σ(Y )√
N

(2.14)

The expression 2.14 was used for calculation of appropriate number of sim-
ulation (expression 2.15) in order to satisfy the condition given by expression
2.11.

N =
z21−α

2
σ2(Y )

ε2
(2.15)

For the calculation of the number of simulations (2.11), the value of standard
deviation σ(Y ) is required. As the real value of this characteristic is unknown, it
can be estimated with the help of the σN(Y ) value, calculated by formula 2.16.
This formula represents the deviation of the deviation. The value of σN(Y ) is
calculated from results of N pilot simulations. I set the N = 5 because of length
of simulations course (one simulation run takes about 20 minutes).

σN(Y ) =

√√√√ 1

N − 2

N∑
i=1

(Xi − EN(Xi)) (2.16)

Table 2.2: The simulations numbers satisfying the condition 2.11
Pheromone dose [nM] 0.1 1 10 20 100 1000

Ste12(2) 0 0 1 202 219 229
Ste12(1) 0 0 0 23 31 51
PAF (2) 0 0 0 157 97 411
PAF (1) 0 0 0 21 27 34
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2.3 In vivo performance

Experiments performed in silico using computer simulations were also transferred
to the laboratory and performed in vivo. For this experimental purpose was used
the sterile yeast strain, which is specifically defective in pheromone response.
Cells of this sterile strain have the ability to activate transcription in response
to pheromone stimulation. However, they do not arrest the cell cycle and do not
change the shape towards the potential mating partner after pheromone induc-
tion which took advantage of.

2.3.1 Design of experiments

As an initial strain was used MLY215∆STE12 Mata (yeast strain of a mating
type a with knocked-out gene STE12). The purpose of experiments was to ex-
amine both wild-type and synthetic yeast mating pathway. The only component,
which these pathways differ in, is the transcription factor. A plasmid carrying
the STE12 gene was transformed into strains used for examining the wild type
pathway. A plasmid carrying the coding sequence of the PAF gene construct
transformed into strains used for examining the synthetic pathway.

Further, to simulate the conditions of the full (2) and half (1) gene copy num-
ber (normal state and haplodeficient state) of the gene coding for the particular
transcription factor, their coding sequences were placed downstream of two differ-
ent promoters: pTET20 and pLAC13. The pLAC13 promoter is approximately
half as strong as pTET20. Therefore pLAC13 was used to simulate the state,
when downstream gene is haplodeficient. The pTET20 promoter was used to
simulate the full gene copy number of a downstream gene.

A plasmid carrying a reporter GFP gene placed downstream of either the
pFUS1 (in strains containing STE12 gene) or pGAL1 (in strains containing PAF
gene construct) promoter was transformed into each strain.

Using the initial strain, four other yeast strains were created. In the follow-
ing text these strains and cultures of these strains will be referred under names
Ste12(2), Ste12(1), PAF (2), PAF (1). The table 2.3 summarizes which DNA coding
sequences were added in particular strains by transformation.

Table 2.3: The table of strains and corresponding plasmid inserts

The strain name Plasmid inserts

Ste12(2) pTET20-STE12 pFUS1-tGFP
Ste12(1) pLAC13-STE12 pFUS1-tGFP
PAF (2) pTET20-PAF pGAL1-tGFP
PAF (1) pLAC13-PAF pGAL1-tGFP
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In cultures of each of strains Ste12(2), Ste12(1), PAF (2), PAF (1), the signal
pathway was induced by different dose of pheromone. The pheromone induction
was performed by adding variously diluted cultures of α-cells. A flow cytometer
was used for fluorescence assays. More detail description of used strains, plasmids
and laboratory protocols is specified in appendix A.

2.3.2 Cytometric data processing

Figures 2.4-2.7 show data obtained by the cytometric fluorescence assay of the
Ste12(2), Ste12(1), PAF (2), PAF (1) cultures. In each of figures are six graphs
corresponding to six samples induced by different pheromone dose. Graphs are
sorted by increasing dose of pheromone (by increasing concentration of added
α-cell culture respectively). In most of samples, we can see two clusters. The up-
per cluster represents cells with higher fluorescence (as the x axis represents the
level of fluorescence) and therefore I assume this cluster correspond to pheromone
induced a-cells which I am interested in. The lower cluster probably correspond
to a-cells, which are not induced, and α-cells (even these cells have a certain level
of basal fluorescence). As dose of pheromone increases, the upper cluster is more
distinctly separated from the lower one. It has to be noted that as the dose of
the pheromone increases the number of points in the upper cluster decreases. It
is caused by the fact that the sample induced by higher amount of pheromone
contains naturally higher number of α-cells. Consequently, the sample has to
contain lower number of a-cells because all assayed samples had the same volume
(as mentioned in appendix A).

In order to perform statistics, it is necessary to make pre-processing of raw
cytometric data. This pre-processing comprises separation of the points corre-
sponding to cells of interest from the other points. This process is called gating;
for this purpose simple empirical linear method was implemented in the software
MATLAB. Results of gating are also shown in figures 2.4-2.7. A diagonal line
separates the upper cluster from the lower one. The left vertical line separates
points corresponding to the cells, which are too small (as the y axis represents the
size of cells). The right vertical line separates the small and poorly recognizable
cluster, which probably corresponds to double events (when cytometer acciden-
tally takes two cells at once). Infigures 2.4-2.7, red points represents the cells of
interest, however, the number of points changes significantly between samples,
which can be misleading for consequent statistic calculations. Therefore, from
each sample, the same number of values has been chosen (these are represented
by black points). This data set was used for further calculations given in following
sections.
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Figure 2.4: The cytometric data of Ste12(2) assay. Red points - fluorescent a-
cells of interest, black points - cells used for statistics, red/black number - the
proportion of corresponding cells to all.
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Figure 2.5: The cytometric data of Ste12(1) assay. Red points - fluorescent a-
cells of interest, black points - cells used for statistics, red/black number - the
proportion of corresponding cells to all.
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Figure 2.6: The cytometric data of PAF (2) assay. Red points - fluorescent a-
cells of interest, black points - cells used for statistics, red/black number - the
proportion of corresponding cells to all.
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Figure 2.7: The cytometric data of PAF (1) assay. Red points - fluorescent a-
cells of interest, black points - cells used for statistics, red/black number - the
proportion of corresponding cells to all.
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Chapter 3

Data analysis and results

3.1 Explorative analysis

The purpose of explorative data analysis is to reveal their features and to vali-
date assumptions for subsequent statistical processing[23]. Data sets gained from
both in silico and in vivo experiments represent one-dimensional selections from
a certain distribution. To be able to correctly calculate proper characteristics of
tendency and variability, it is necessary to determine what is the distribution,
which the data comes from.

In silico experimental data

In the figure 3.1 there are shown histograms of the GFP molecules frequency.
These histograms corresponding to simulations of Ste12(2) (details about this sim-
ulations in chapter 2.2). The pathway is induced by varying dose of pheromone,
therefore, there are six histograms and each of them corresponds with different
pheromone dose (as labeled). Simulations stay deterministically at zero level
for the first two histograms, because used model does not assume the activation
of a pathway by too weak concentrations of pheromone. Other histograms are
considered to show normally distributed data sets. The data from the rest of
simulations (Ste12(1),PAF (2) and PAF (1)) has the similar character.

The set of suitable statistics is calculated from the normal distributed data
sets. These statistics are arithmetic mean 3.1, variation 3.2 and the confidence
interval for mean value 3.3 (where tα is a quantile of Student’s distribution).

E(X) =
1

N

N∑
i=1

(Xi) (3.1)

D(X) =
√
D(X) (3.2)(

E(X)− t1−α
2
(N − 1)

√
D(X)

N
;E(X) + t1−α

2
(N − 1)

√
D(X)

N

)
(3.3)
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Figure 3.1: The histogram of the GFP molecules for Ste12(2) simulation.
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In vivo experimental data

Histograms of GFP fluorescence values frequency, getting from Ste12(2) assay are
represented in the figure 3.2. The rest of data has the similar character. Again,
each of six histograms correspond to induction by different pheromone dose(as
labeled). Obviously, the data do not come from a normal distribution. For that
reason it is necessary to make a suitable data transformation, in order to convert
them to normal distribution.

The Box-Cox transformation 3.4is suitable for the approximation to the nor-
mal distribution in the view of the skewness and kurtosis. [23]. For the zero
value of the parameter λ the Box-Cox transformation responds to logarithmic
transformation.

Y = g(X) =

 Xλ − 1

λ
λ 6= 0

ln(X) λ = 0
(3.4)

The diagnostic tool for estimation of optimal parameter λ is Hines-Hines se-
lection graph [23]. It is based on the requirement of a symetrically distributed
quantiles around median. This requirement is given by expression 3.5, where xPi
is Pi% quantile of the data set’s empirical distribution.(

xPi
x0.5

)λ
+

(
x0.5
x1−Pi

)−λ

= 2 (3.5)

In order to compare the trend of experimental points [(x0.5/x1−Pi); (xPi/x0.5)]
with theoretical trend corresponding to particular value of λ parameter, the teo-
retical curves are ploted. These theoretical curves represent the solutions of the
equation 3.6.

yλ + x−λ = 2 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1 (3.6)

The suilable λ parameter can be estimated by location of experimantal points
on theoretical curves of Hines-Hines graph. The set of six Hines-Hines graphs
ploted for data sets from Ste12(2) simulations is presented in the figure 3.3. The
result of data transformation is presented in the figure 3.4. The correction of
the data distribution is clearly visible. The data from the rest of experiments
(Ste12(1),PAF (2) and PAF (1)) has similar character and were processed analog-
ically.

By using transformed data, statistics 3.1-3.2 are calculated. However, in order
to get the correct values of statistics of original data sets, the reverse transfor-
mation has to be done. The reverse transformation process stems from Taylor
series expansion of a function Y = g(X) around the mean value E(Y ). Approxi-
mate formulas for calculation of retransformed statistics can be derived [23] and
are given by expressions 3.7 (retransformed arithmetic mean), 3.8(retransformed
variation).

ER(X) = g−1

[
E(Y )− 1

2

d2g(X)

dX2

(
dg(X)

dX

)2

D(Y )

]
(3.7)

DR(X) =

(
dg(X)

dX

)2

D(Y ) (3.8)
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The retransformed confidence interval can be calculated according to the for-
mula mentione d bellow, where ID resp. IH is the lower resp. upper limit of the
confidence interval and tα is a quantile of Student’s distribution).

ID = ER(X)− g−1

(
E(Y ) +−1

2

d2g(X)

dX2

(
dg(X)

dX

)2

D(Y )− t1−α
2
(N − 1)

√
D(Y )

N

)

IH = ER(X) + g−1

(
E(Y ) +−1

2

d2g(X)

dX2

(
dg(X)

dX

)2

D(Y ) + t1−α
2
(N − 1)

√
D(Y )

N

)
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Figure 3.2: Histograms of the GFP fluorescence values frequency for Ste12(2)

assays
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Figure 3.3: Hines-Hines selection plot for Ste12(2) assays.
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Figure 3.4: Histograms of the GFP fluorescence values frequency for Ste12(2)

assays after Box-Cox transformation
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3.2 Statistic analysis

Dose response curve is used to plot the change in the effect on an organism
caused by varying doses of a chemical after a certain exposure time.[24]. The
horizontal axis represents the input - concentration of a stressor (e.g. drug,
hormone). Usually, a logarithmic scale is used. The vertical axis represents a
response of an organism. It can be represented by any biological function (e.g.
enzyme activity, production of a protein). The dose response curve represents
the input-output characteristics or static characteristic (when the exposure time
is long enough to system reaches a steady state).

Coefficient of variation is represented by ratio of a standard deviation and
mean value 3.9. It gives a relative measure of variability. It is a realistic charac-
teristic of variability when comparing data sets with significantly different mean
values [25]. Its value is dimensionless and it can be given in percentage.

CV (X) =

√
D(X)

E(X)
(3.9)

Results of experiments performed in silico

Simulations of the wild-type (Ste12(2), Ste12(1)) and synthetic (PAF (2), PAF (1))
pathways were performed for pheromone doses varying from 10 to 100000 molecules
(resp. 0.1nM - 103nM). The output was considered to be the mean level of the
GFP production. Simulation time was 2000s.

The dose response curves obtained from simulations are shown in the fig-
ure 3.5.The activation of all examined systems starts significantly as the level of
pheromone stimulation reaches 10nM. The figure 3.5 shows that the half gene
copy number (simulations Ste12(1) resp. PAF (1)) causes approximately a half of
the amplification compared to simulations considering the full gene copy num-
ber (simulations Ste12(2) resp. PAF (2)). The amplification of a response of the
synthetic pathway (PAF (2),PAF (1)) is generally lower compared to the amplifi-
cation of a response of the swild-type pathway (Ste12(2), Ste12(1)). Comparing
Ste12(2) and Ste12(1), the reduction of amplification of the output resulting from
decrease of the gene copy number is less than 50% of Ste12(2) response. In the
case of PAF, the reduction of amplification resulting from the gene copy number
decrease is more than 50%. of PAF (2).

Error bars in the figure 3.5 represent the 95% confidence intervals for the
mean value of the GFP level. Decrease of a gene copy number (Ste12(1), PAF (1))
results in a wider range of confidence intervals. Consistently, the coefficient of
variation of both Ste12 and PAF responses increases as the gene copy number de-
creases (figure 3.6). It suggests the output of haplodeficient system shows greater
variability compared to the output of system with full gene copy number. The
figure 3.6 shows the higher variability in the response of a synthetic pathway com-
pared to wild-type. The PAF (2) (although having the full gene copy number)
response reaches the same variability as haplodeficient wild-type (Ste12(1)).
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Figure 3.5: Dose response curves obtained from experiments in silico
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Figure 3.6: Trend of the coefficient of variation obtained from in silico
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Results of experiments performed in vivo

Cultures Ste12(2), Ste12(1), PAF (2), PAF (1) (described in chapter 2.3) were as-
sayed after two hours of induction by α-cells of the OD varying from 10−4 to
1. A negative control without α cells induction was also assayed. In the fig-
ure 3.7, there are dose response curves obtained from assays. The vertical axis
represents the mean level of GFP fluorescence (given in relative fluorescent units).

Dose response curves of Ste12(2) and Ste12(1) have nearly the same trend and
amplification, except of the difference in the response to the highest dose of α-
cells. However, it can be caused by a measurement error and do not have to be
significant. Therefore, it is possible to say that the decrease of STE12 gene copy
number does not affect quantitatively the ability of the transcription factor Ste12
to activate the transcription of pheromone induced genes. This result does not
correspond to simulations.

Dose response curves of PAF (2) and PAF (1) obtained from assays have sig-
nificantly lower amplification compared to Ste12(2) and Ste12(1). Amplification
of PAF (2) is higher compared to amplification of PAF (1). The decrease in the
gene copy number of PAF gene leads to lower ability to activate the pheromone
induced transcription of reporter gene. In this aspect, in vivo experiments cor-
respond to the experiments performed in silico. However, there is one difference
between in vivo and in silico experiments. Concerning in vivo experiments, the
leaky expression of PAF (2) (the ability to induce gene expression without the
pheromone stimulation) is non-zero, significantly higher than the leaky expres-
sion of PAF (1) (which is lower, but non-zero as well). The leaky expression is not
considered by a computational model and it is the reason why results of experi-
ments in vivo and in silico differ. The higher leaky expression may indicate that
the transcription factor PAF is not repressed by Dig1, Dig2 as much as Ste12.
Therefore, the loss of repression due to pheromone induction does not have as
strong effect as in the case of Ste12 and the amplification of dose response is lower
compared to Ste12.

Significantly wide confidence intervals (which are represented by error bars in
the figure 3.7) are observed in all assays Ste12(2), Ste12(1), PAF (2), PAF (1).
Because error bars overlap, single dose responses are plotted separately and
presented in figures 3.9-3.12. The widest confidence intervals are observed in
PAF (2) assay. Also the coefficient of variation (figure 3.8) reaches highest value
for PAF (2) assay. PAF (1) confidence intervals are much narrow compared to
PAF (2) as well as coefficient of variation PAF (1) is lower compared to PAF (2) .
It suggests, as the copy number of PAF gene decrease, the variability of the re-
sponse of the synthetic pathway also decreases. This finding does not correspond
to simulations.

In the case of wild-type pathway, the variability in the response does not
depend on the STE12 gene copy number. As the pheromone dose increases, the
variability of both Ste12(2), Ste12(1) decreases and tends to the same level. The
coefficient of variation of Ste12(2), Ste12(1) at the level activated by pheromone
reaches the significantly lower value compared to PAF (2).
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Figure 3.7: Dose response curves obtained from experiments in vivo
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Figure 3.8: Trend of the coefficient of variation obtained from experiments in
vivo
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Figure 3.9: Dose respose for Ste12(2) obtained from experiments in vivo
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Figure 3.10: Dose respose for Ste12(1) obtained from experiments in vivo
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Figure 3.11: Dose respose for PAF (2) obtained from experiments in vivo
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Figure 3.12: Dose respose for PAF (1) obtained from experiments in vivo

45



3.3 Probabilistic analysis

The probabilistic analysis was performed studying how the decrease in gene copy
number affects the system. This probability is described by the expression 3.10.
It refers to the probability of the state, when the output of the system with
half gene copy number (designation X(1) refers to the output of Ste12(1) resp.
PAF (1)) decreases below the mean value of the output of the system with full
gene copy number (designation E(X(2)) refers to the the mean value of the output
of Ste12(2) resp. PAF (2)).

P
(
X(1) < E

(
X(2)

)
/2
)

(3.10)

Results of experiments performed in silico

It can be seen in the figure 3.13 that after pheromone activation, the probability
3.10 is stably high for the synthetic pathway (labeled PAF) and does not decrease
under the value 0.9. There is significantly high probability, that haplodeficiency
in PAF causes the system output decreases under the half of the mean level
of the output when full gene copy number of PAF is present in the system.
It is not surprising, as the comparison of PAF (2) and PAF (1) dose responses
(figure 3.5) suggests, the amplification of PAF (1) is more than half lower than
amplification PAF (1). The probability 3.10 for the wild-type pathway (label
Ste12) is generally lower compared to synthetic pathway. Again, it corresponds
with the amplification of the Ste12(1) response to the pheromone is less than half
lower than the amplification of the Ste12(2) response(figure 3.5).
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Figure 3.13: Results of probabilistic analysis obtained from experiments in silico
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Results of experiments performed in vivo

Results of the probabilistic analysis (figure 3.14) suggest that the probability 3.10
is significantly lower in the case of Ste12 compared to PAF. The probability 3.10
is stably above 75% in the case of PAF while in the case of Ste12 it decreases
even below 50%. It suggests the ability of Ste12 to suppress the fluctuations in
signal and to be resistant towards a decrease in gene copy number.
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Figure 3.14: Results of probabilistic analysis obtained from experiments in vivo

3.4 Summary

Taken together, the decrease of the copy number of a gene encoding PAF af-
fects the synthetic pathway by decrease of both mean value and variability of the
pathway response. Full gene copy number of PAF results in higher variability
of a pathway response. There is no regulation mechanism in PAF which is able
to suppress the stochastic fluctuations of gene expression. Exactly opposite, it
seems, PAF has an ability to amplify these fluctuations.

In the contrary, the wild-type pathway response is not significantly affected
by the change of a STE12 gene copy number. The mean value and the variability
of a pathway response are similar in both cases Ste12(2) and Ste12(1). Moreover,
the variability of a pathway response decreases at the level of high pheromone
induction. It is in direct contradiction with results of simulations. It suggests
the wild-type Ste12 transcription factor has some regulation mechanism which
suppresses the effect of stochastic fluctuations in the signal.

This mechanism is not considered by the model. The model considers the
Ste12 binds to the promoters of upstream genes in the yeast pheromone pathway
- the positive feedback from Ste12. However, the negative feedback must be car-
ried out by Ste12 as well. It would not be possible to correct the fluctuations of
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a system without the negative feedback [26]. It seems, the Ste12 transcription
factor behaves as the filter of stochastic fluctuations in the signal, especially at
the higher level of pheromone induction.

Results of data analysis confirms the thesis that crucial components of biolog-
ical circuits are noise resistant. The synthetic transcription factor PAF does not
have this noise-resistant mechanism. It suggests that any intervention in the nat-
ural cell environment can damage some important function of complex biological
system.
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Conclusion

The aim of my thesis was to characterize the stochasticity of the wild-type and
synthetic signal pheromone pathway response to different doses of pheromone
input. The difference of the wild-type and synthetic signal pheromone pathway
was in crucial component of the pathway – the nuclear transcription factor. The
wild-type signal pheromone pathway contained the wild-type transcription factor
Ste12 while the synthetic signal pheromone pathway contained the hybrid tran-
scription factor PAF. My aim was to analyze how the change of the transcription
factor affects the stochasticity of the pathway response to varying pheromone
input.

In the theoretical part of my thesis, I was trying to find a context of gene
expression noise and human diseases. The direct impication from noise to disease
state is quite hard to find. However, the possible role of noise in the process of
disease onset was found to be discussed in professional literature. This theory
suggests, that nois can play the role of switch-on mechanism of the disease state
under the specific conditions. One of these conditions is a loss of one functional
copy of the specific gene. This finding suggested one more aim of my thesis,
namely, to analyze how the response of the wild-type respective synthetic path-
way changes, when the gene encoding the responding transcriptional factor is
present in full (2) respective half (1) gene copy number.

Consequently, in order to achieve the aims of my thesis, in silico and in vivo
experiments were performed. There was found a significant difference between
results of in silico and in vivo experiments. It was found that the real wild-type
Ste12 transcription factor has the ability to suppress the effect of stochastic fluc-
tuations in the signal, especially at the higher level of pheromone induction. It
suggests the Ste12 transcriptional factor behaves as a filter of biological noise.
Moreover, this ability of the Ste12 transcriptional factor is independent on the
STE12 gene copy number. It means the Ste12 performs the robust behavior to-
wards to change of parameters of the pathway. This robust behavior is probably
due to negative feedback mediated by Ste12 itself. The computational model did
not consider the regulation mechanism involved in real wild-type pathway. The
synthetic transcription factor PAF does not have such a mechanism and therefore
it is unable to suppress the effect of stochastic fluctuations in the signal. Exactly
opposite, it seems, PAF has an ability to amplify these fluctuations when full
PAF gene copy number is present.

Results of my thesis support the assumption that crucial components of nat-
ural biological circuits carry out the robust and noise resistant behaviour. It
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may be advantageous for people to perform genetic modifications of natural sys-
tems. However, it should be remembered that any intervention in the natural cell
environment can damage some important function of complex biological system.
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Appendix A

Materials and methods

Yeast strains and plasmids Yeast strains used for experiments in vivo were:
6194 (FY 23::ura3-52leu2∆1 his3∆200 MATα) in case of α-cells used for induc-
tion. MLY215 ∆ pde2 :: G418∆ste12 :: leu2 :: hisG∆ leu2 :: hisG ura3-52
MATa) in case of a-cells used for all Ste12 and PAF assays. Plasmids with in-
serts carrying the gene encoding the particular transcription factor were: pRS416-
pLAC13-STE12, pRS416-pTET20-STE12 for Ste12 assays, pRS416-pLAC13-PAF,
pRS416-pTET20-PAF for PAF assays. Plasmids with inserts carrying the re-
porter gene tGFP were: pRS416-pFUS1-tGFP for Ste12 assays pRS416 - pGAL1-
tGFP for PAF assays. Transformations were made using the High efficient yeast
transformation protocol. Colonies after transformation were streaked on selection
plates with appropriate amino acids.

Cytometric assay Cultures of a-cells and α-cells in SD —ura —leu dropout
medium were prepared and grown for 24 hours. Cultures of a-cells resp. α-cells
were diluted to OD 0.2 resp. 0.4 and were grown for 4 hours before the induction.
After 2 hours of induction, samples were diluted to OD 0.1 and the fluorescence
assay was performed. A negative control, sample without α-cells induction was
also assayed. The flow cytometer BD Accuri C6 was used for the fluorescence
assay. The fluorescence of samples was assayed at wavelength 530 nm (FL1-A
data set obtained from CFlow software) corresponding to the wavelength of the
radiation of the tGFP protein used as a reporter.
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simulace 1.[online] 2014, cited[2016-08-10], Availble at
http://ccy.zcu.cz/files/MS2 2014/Lectures/Lecture8 2014.pdf,.
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