ZÁPADOČESKÁ UNIVERZITA V PLZNI **FAKULTA STROJNÍ**

Studijní program:N2301Strojní inženýrstvíStudijní obor:2302T013Stavba energetických strojů a zařízení

DIPLOMOVÁ PRÁCE

Návrh kondenzační parní turbíny 120 MW pro solární cyklus

Autor:Přemysl EPIKARIDISVedoucí práce:Ing. Petr MILČÁK, Ph.D.

Akademický rok 2011/2012

Prohlášení o autorství

Předkládám tímto k posouzení a obhajobě diplomovou práci, zpracovanou na závěr studia na Fakultě strojní Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce.

V Plzni dne:

.

podpis autora

Upozornění

Využití a společenské uplatnění diplomové práce včetně uváděných vědeckých a výrobně technických poznatků nebo jakékoliv nakládání s nimi je možné pouze na základě autorské smlouvy, souhlasu Fakulty strojní Západočeské univerzity v Plzni a firmy ŠKODA POWER A Doosan company.

ANOTAČNÍ LIST DIPLOMOVÉ PRÁCE

AUTOR	Příjmení J Epikaridis Pi			Jméno 'řemysl		
STUDIJNÍ OBOR	2302T013 "S	Stavba energet	energetických strojů a zařízení"			
VEDOUCÍ PRÁCE	PříjmeníJménoIng. Milčák, Ph.D.Petr			Jméno Petr		
PRACOVIŠTĚ		ZČU – FST	ZČU – FST – KKE			
DRUH PRÁCE	DIPLOMOVÁ	BAKALÁŘSKÁ		Nehodící se škrtněte		
NÁZEV PRÁCE	Návrh kondenzač	ční parní turbíny 120 MW pro solární cyklus				

FAKULTA	strojní		KATEDRA	KKE		ROK ODEVZD.	2012
---------	---------	--	---------	-----	--	-------------	------

POČET STRAN (A4 a ekvivalentů A4)						
CELKEM	166	TEXTOVÁ ČÁST	110	GRAFICKÁ ČÁST 49		
STRUČ ZAMĚŘEN POZNATKY	NÝ POPIS Í, TÉMA, CÍL Y A PŘÍNOSY	Diplomová práce se za solární cyklus. Je uve cyklem, dále specifika blok. V rámci návrhu dimenzování a pevnos otáčky rotoru, bilance schéma při sníženém 3 podélného řezu turbíno	bývá návrhem edeno porovná v porovnání s je řešen tep stní kontrola v výkonu, tepe 50% a 75% pr u.	turbíny o výkonu 120 MW pro ání klasického parního s ORC s turbínou pro uhelný (jaderný) pelný výpočet, průtočná část, zybraných komponent, kritické elná účinnost cyklu a bilanční rovozu. Práce obsahuje výkres		
KLÍČOV ZPRA JEDNOSLO KTERÉ V PODSTA	VÁ SLOVA AVIDLA OVNÉ POJMY, VYSTIHUJÍ TU PRÁCE	ORC, teplonosná lát generátor, kondenzáto hřídel, ucpávka	ka, parogenerá or, čerpadlo, oh 1, těleso, bilanč	itor, turbína, VT a ST-NT díl, iřívák, napájecí nádrž, lopatka, šní schéma, CATIA V5.		

SUMMARY OF DIPLOMA SHEET

AUTHOR	Surname Epikaridis	Name řemysl		
FIELD OF STUDY	2302T013 "Design of power machines and equipment"			
SUPERVISOR	SurnameNameIng. Milčák, Ph.D.Petr			
INSTITUTION		ZČU – FST – KKE		
TYPE OF WORK	DIPLOMA	BAC	HELOR	Delete when not applicable
TITLE OF THE WORK	Design of the condensing steam turbine 120 MW for solar cycle			

FACULTY	Mechanical Engineering		DEPARTMENT	KKE		SUBMITTED IN	2012
---------	---------------------------	--	------------	-----	--	--------------	------

NUMBER OF PAGES (A4 and eq. A4)

TOTALLY 166	TEXT PART	110	GRAPHICAL PART	49
-------------	-----------	-----	-------------------	----

BRIEF DESCRIPTION TOPIC, GOAL, RESULTS AND CONTRIBUTIONS	The thesis deals with a proposal turbine of output 120 MW for solar cycle. It is introduced comparison of classical steam with ORC cycle, further specifications as compared to turbine for coaly (nuclear) block. In the proposal is solved heat calculation, flow part, dimensioning and solidity control of the selected components, critical rotation speed of the shaft, heat efficiency of cycle and balance diagrams at decreased 50% and 75% operation. This work includes the drawing of an axial slice of the turbine.
KEY WORDS	ORC, heat transfer medium, steam generator, turbine, MP and LP part, generator, condenser, pump, heater, feeding tank, blade, shaft, padding, body, balance diagram, CATIA V5.

Poděkování

Rád bych poděkoval všem pedagogickým pracovníkům Západočeské univerzity v Plzni, kteří mě během studia vedli, předávali mi své znalosti a zkušenosti, měli se mnou v určitých chvílích dostatek trpělivosti.

Dále děkuji vedoucímu mé diplomové práce Ing. Petru Milčákovi, Ph.D., konzultantům Ing. Miroslavu Kapicovi, Ph.D., Ing. Josefu Peleškovi, Ing. Jiřímu Krauzovi a celému oddělení Vývoje turbín (ŠKODA POWER A Doosan company), kteří mi v průběhu řešení práce vyšli vždy ochotně vstříc a neváhali mi věnovat svůj čas.

Obsah

SEZNAM OBRÁZKŮ	11
SEZNAM TABULEK	
SEZNAM PŘÍLOH	
PŘEHLED POUŽITÝCH ZKRATEK A SYMBOLŮ	14
PŘEHLED ZÁKLADNÍCH VELIČIN A JEJICH JEDNOTEK	
ÚVOD	
1 – PARNÍ TURBÍNY V APLIKACI NA SOLÁRNÍ ZDROJE	
1.1 Solární energetická zařízení	
111 Solarmi ener gerena zarmen 111 Energetická zařízení s parabolickými žlaby	18
1.1.1.1 Tepelná kapacita zařízení	
1.1.1.2 Účinnost zařízení	
1.1.1.3 Využití technologie v praxi	
1.2 Specifikace turbín pro solární aplikaci	21
1.3 Srovnání parního a alternativního Rankinova organického cyklu	22
1.3.1 Zhodnocení pracovní látky alternativního ORC	22
1.3.2 Výsledek srovnání cyklů	24
2 NÁVRH TEPELNÉHO SCHÉMA OBĚHU T120 MW	25
2.1 Vstupní parametry pro výpočet	27
2.1.1 Zadané parametry	27
2.1.2 Zvolené parametry	
2.1.3 Volené tlakové ztráty	
2.2 Určení parametrů na vstupu a výstupu VT dílu	28
2.2.1 Parametry páry na vstupu do VT dílu	
2.2.2 Parametry páry na výstupu z VT dílu	
2.3 Výpočet parametrů na vstupu a výstupu ST-NT dílu	
2.3.1 Parametry páry na vstupu do ST-NT dílu	
2.3.2 Parametry páry na výstupu z ST-NT dílu	
2.4 Výpočet parametrů kondenzátoru	32
2.5 Výpočet základních parametrů odplyňováku	
2.6 Výpočet parametrů čerpadel	
2.6.1 Parametry napájecího čerpadla	
2.6.2 Parametry kondenzátního čerpadla	35
2.7 Návrh a výpočet ohříváků	35
2.7.1 Výpočet vysokotlakých ohříváků	
2.7.1.1 Parametry V102	
2.7.1.2 Parametry VIOI	
2.7.2 Výpočet nízkotlakých ohříváků	
2.7.2.1 Parametry NTO	
2.8 Výnočet průtokového množství párv	46
2.8 1 Bilanční rovnice	46
2.8.1.1 Množství páry pro VTO2	46
2.8.1.2 Množství páry pro VTO1	46
2.8.1.3 Množství páry pro odplyňovák	47
2.8.1.4 Množství páry pro NTO3	
2.8.1.5 Množství páry pro NTO2	
2.8.1.6 Množství páry pro NTO1	
2.8.2 Průtokové množství páry proudící oběhem	50
2.9 Výkon turbíny	52

Západočeská univerzita v Plzni, Fakulta strojní.	Diplomová práce, akad. rok 2011/12
Katedra energetických strojů a zařízení	Přemysl Epikaridis
3 PRŮTOČNÁ ČÁST TURBÍNY	54
3.1 Výpočtové vztahy – Turbina-Delphi	
3.2 Návrh průtočné části VT dílu	
3.2.1 Porovnání návrhových variant VT dílu	
3.2.2 Lopatkový plán VT dílu – varianta 3	
3.3 Návrh průtočné části ST-NT dílu	
3.3.1 Porovnání návrhových variant ST-NT dílu	
3.3.2 Lopatkový plán ST-NT dílu – varianta 1	
3.4 Volba profilů lopatek	
3.4.1 Rychlostní trojúhelníky lopatek	
3.4.1.2 Výpočet rychlostních trojúhelníků VT dílu	
3.4.1.3 Výpočet rychlostních trojúhelníků ST-NT dílu	
3.4.1.4 Přepočet lopatek zborceného typu	
3.4.2 Machova čísla	
3.4.2.1 Výpočet Machových čísel lopatek VT dílu	
3.4.2.2 Výpočet Machových čísel lopatek ST-NT dílu	
3.4.3 Ztráty v rozváděcích a oběžných lopatkách	
3.4.3.1 Výpočtové vztahy – ztráty v RL a OL	
3.4.3.2 Výpočet ztrát ve VT dílu	
3.4.3.3 Vypocet ztrat v S1-N1 dilu	
3.4.4 Délky lopatek	
3.4.4.2 Výpočet délek rozváděcích a oběžných lopatek ST-NT (70 dílu 70
4 ΡΕΥΝΟΣΤΝΙ ΥΥΡΟΔΕΤ ΡΒŮΤΟΔΝΕ ΔΑΣΤΙ ΤΗΡΒΙΝΥ	74
4 1 Namáhání oběžných lonatek	74
4.1.1 Ohvbové namáhání OL	75
4.1.1.1 Výpočtové vztahy	
4.1.2 Tahové namáhání OL	
4.1.2.1 Výpočtové vztahy	
4.1.3 Celkové namáhání OL	
4.1.4 Namáhání OL VT dílu	
4.1.5 Namáhání OL ST-NT dílu	
4.2 Namáhání závěsů oběžných lopatek	
4.2.1 Závěs typu T-nožka – výpočtové vzorce	
4.2.2 Závěs typu T–zazubená – výpočtové vzorce	
4.2.3 Závěs typu rozvidlený	
4.3 Namáhání rozváděcích lopatek a disků rozváděcích kol	
4.3.1 Namáhání RL VI dílu	
$422 \qquad \text{Nam} h an D ST NT 32.$	01
4.3.2 Ivamanani KL SI-IvI alla	
4.3.3.1 Výpočtové vzorce	
5 NÁVRH A VÝPOČET UCPÁVEK.	
51 Unělší ucnávky	

NÁVRH	A VÝPOČET UCPÁVEK	84
5.1 Vně	jší ucpávky	84
5.1.1	Vnější ucpávky přední	84
5.1.2	Vnitřní ucpávky mezitělesové	85
5.1.3	Vnější ucpávky zadní	85
5.1.4	Výpočtové vzorce	86
5.1.5	Vypočtené hodnoty	86

				, I
	5.2	Vı	iitřní ucpávky	88
	5.	2.1	Vnitřní ucpávky VT dílu	
	5.	2.2	Vnitřní ucpávky ST- NT dílu	
	5.3	V	zsunovací těsnění	
	.5.	3.1	Popis alternativního tvpu ucpávek	
6	K)NT	ROLNÍ VÝPOČET ROTORU A SPOJKY	
Ū	6.1	K	ontrola rotoru na namáhání krutem	
	6.	1.1	Výpočtové vztahv	
	6.2	Ko	ontrola spojky a návrh spojovacích šroubů	94
	6.	2.1	Výpočtové vztahy	94
	6.3	Uı	čení kritických otáček rotoru	95
	6.	3.1	Výpočtové vztahy	96
7	VY	(PO	CET A NAVRH LOZISEK	97
	7.1	Ra	diální ložiska	
	7.	1.1 71	Výpocet reakcí od vlastní hmotnosti	
	7	1 2	Návrh rozměrů ložiska a vyčíslaní ztrátového výkoru	۰۵ م
	/.	7.1.2	2.1 Výpočtové vztahy	
	7.2	A	tiální ložisko	
	7.	2.1	Výpočet axiální síly od změny hybnosti v lopatkové mříži	
	7.	2.2	Výpočet axiální síly působící na disky oběžných kol	
	7.	2.3	Výpočet axiální síly působící na výstupky vnitřních ucpávek	
	7.	2.4	Výpočet axiální síly působící na výstupky vnějších ucpávek	
	7.	2.5	Výpočet axiálních sil působících na osazení rotoru	
	7.	2.6	Výpočet celkové působící axiální síly na rotor	
	7.	2.7	Návrh axiálního ložiska	
		7.2.	/. I Výpočtové vztahy	
	7.3	v y	pocet mnozstvi mazaciho oleje a privodniho potrubi	
Q	/. NIÁ	J.I VD	V YPOCIOVE VZOTCE	
0	11A 8 1	N V N.	n a komikola ielesa iukoini	
	8.0	11	Výnočtové vzorce	105
	8.2 [.]	Ná	ívrh a kontrola horizontální příruby	
	8.	2.1	Výpočtové vzorce	
9	DI	ME	NZOVÁNÍ POTRUBNÍCH TRAS	
10	PŘ	EP()ČET TEPELNÉHO SCHÉMA A PRŮTOČNÉ ČÁSTI	110
11	VÝ	ŻPO	ČET CELKOVÉ BILANCE VÝKONU	
	11.1	Vy	počtové vzorce	
12	BI	LAN	IČNÍ SCHÉMA PŘI SNÍŽENÉM PROVOZU	
	12.1	Př	epočet veličin charakterizující snížené provozy	
13	ZÁ	VĚI	R	
SE	ZN	AM	POUŽITÝCH ZDROJŮ A LITERATURY	
SE	ZN	AM	VYUŽITÉHO PROGRAMOVÉHO VYBAVENÍ	
PÌ	RÍL(OHY	,	

Katedra energetických strojů a zařízení

SEZNAM OBRÁZKŮ

Obr. 1 Tepelný cyklus solárního zařízení s parabolickými žlaby	
Obr. 2 Využívané systémy koncentrace slunečních paprsků	
Obr. 3 Návrh tepelného schématu oběhu T120MW	
Obr. 4 Průběh expanze ve VT dílu	
Obr. 5 Průběh expanze v ST-NT dílu	
Obr. 6 Průběh kondenzace páry a ohřev CHV v kondenzátoru	
Obr. 7 Vstupní a výstupní veličiny v kondenzátoru	
Obr. 8 Průběh komprese v napájecím čerpadle	
Obr. 9 Schéma VTO (vstupy a výstupy) a průběhy teplot	
Obr. 10 Schéma NTO (vstupy a výstupy) a průběhy teplot	
Obr. 11 Schéma odplyňováku (NN) - vstupy a výstupy	41
Obr. 12 Schéma VTO2 pro tepelnou bilanci	46
Obr. 13 Schéma VTO1 pro tepelnou bilanci	46
Obr. 14 Schéma odplyňováku (NN) pro tepelnou bilanci	47
Obr. 15 Schéma NTO3 pro tepelnou bilanci	
Obr. 16 Schéma NTO2 pro tepelnou bilanci	
Obr. 17 Schéma NTO1 pro tepelnou bilanci	
Obr. 18 Graf závislosti účinnosti jednotlivých stupňů dle variant	58
Obr. 19 Graf celkové termodynamické účinnosti jednotlivých variant	58
Obr. 20 Graf závislosti účinnosti jednotlivých stupňů dle variant	59
Obr. 21 Graf celkové termodynamické účinnosti jednotlivých variant	60
Obr. 22 Rychlostní trojúhelníky turbínového stupně	61
Obr. 23 Rozdělení zborceného typu lopatky na jednotlivé průtočné kanály	63
Obr. 24 Expanze v turbínovém stupni	68
Obr. 25 Lopatkový plán oběžných lopatek VT dílu	71
Obr. 26 Lopatkový plán VT dílu	71
Obr. 27 Lopatkový plán oběžných lopatek ST-NT dílu	72
Obr. 28 Lopatkový plán ST-NT dílu	
Obr. 29 Závěs typu T-nožka	
Obr. 30 Závěs typu T-zazubený (šířka profilu OL = 40 mm)	79
Obr. 31 Rozvidlený závěs	79
Obr. 32 Namáhání rozváděcích lopatek VT dílu	80
Obr. 33 Tahové namáhání rozváděcích lopatek 1. stupně	81
Obr. 34 Namáhání rozváděcích lopatek ST-NT dílu	82
Obr. 35 Popis rozměrů a namáhání rozváděcích kol	
Obr. 36 Průběh procesu probíhající v labyrintové ucpávce	
Obr. 37 Schéma sekcí vnější ucpávky zadní	85
Obr. 38 Schéma umístění ucpávkových sekcí s uvedením průtokových množství	88
Obr. 39 Schéma rozložení tlaků v rámci stupně	
Obr. 40 Rozměry ucpávky	
Obr. 41 Koncept ucpávky firmy TurboCare – popis	
Obr. 42 Řez vysunovací hřídelovou ucpávkou od firmy TurboCare	
Obr. 43 Schéma typové konstrukce vnitřní ucpávky rozváděcího kola	
Obr. 44 Schéma typové konstrukce vnější ucpávky přední	
Obr. 45 Řez horizontální přírubou s popisem	

Katedra energetických strojů a zařízení

SEZNAM TABULEK

Tab. 1 Specifické vlastnosti turbín pro solární aplikaci	21
Tab. 2 Relativní stabilita vybraných látek vzhledem k toluenu při 750 °F	23
Tab. 3 Tepelná účinnost stupňovitých cyklů s a bez rekuperace	23
Tab. 1 Průběh teplot v úseku VTO2 - VTO1 - NČ – NN	36
Tab. 5 Souhrn vypočtených parametrů VTO	
Tab. 6 Průběh teplot v úseku O - NTO3 - NTO2 - NTO1 - KKP - K	40
Tab. 7 Souhrn vypočtených parametrů NTO	45
Tab. 8 Vypočtené entalpické spády	51
Tab. 9 Souhrn vypočtených jednotkových průtoků a jejich substituce	51
Tab. 10 Vypočtená průtočná množství v jednotlivých úsecích oběhu	
Tab. 11 Parametry koncových stupňů modulu 4	55
Tab. 12 Parametry rychlostních trojúhelníků VT dílu	62
Tab. 13 Přepočet parametrů lopatkování – 6. stupeň ST-NT dílu	64
Tab. 14 Přepočet parametrů lopatkování – 7. stupeň ST-NT dílu	64
Tab. 15 Přepočet parametrů lopatkování – 8. stupeň ST-NT dílu	64
Tab. 16 Přepočet parametrů lopatkování – 9. stupeň ST-NT dílu	65
Tab. 17 Parametry rychlostních trojúhelníků ST-NT dílu	65
Tab. 18 Rychlost proudění dle rozsahu Machova čísla	66
Tab. 19 Machova čísla lopatek VT dílu	66
Tab. 20 Délky RL a OL v rámci VT dílu	
Tab. 21 Délky RL a OL v rámci ST-NT dílu	
Tab. 22 Výpočet vnějších ucpávek předních a dílčích průtokových množství	86
Tab. 23 Výpočet vnitřních ucpávek mezitělesových těsnící vnitřní prostory	87
Tab. 24 Výpočet vnějších ucpávek zadních a dílčích průtokových množství	87
Tab. 25 Výpočet kontroly rotoru na krut	94
Tab. 26 Výpočet namáhání spojky mezi rotorem T a G, spojovacích šroubů	95
Tab. 27 Výpočet kritických otáček rotoru	96
Tab. 28 Návrh a výpočet ztrátového výkonu radiálních ložisek	
Tab. 29 Výpočet axiálních sil působících na výstupky vnějších ucpávek	
Tab. 30 Návrh axiálního ložiska a výpočet jeho ztrátového výkonu	
Tab. 31 Výpočet objemového průtoku mazacího oleje, návrh olejového potrubí	
Tab. 32 Výpočet celkové bilance výkonu a tepelné účinnosti	
Tab. 33 Výpočet přepočtených průtokových množství a tlaků páry pro 50% výkon	114
Tab. 34 Výpočet přepočtených průtokových množství a tlaků páry pro 75% výkon	114

Katedra energetických strojů a zařízení

SEZNAM PŘÍLOH

Příloha A – Tepelné schéma oběhu při nominálním výkonu (návrh)	
Příloha B - Tepelné schéma oběhu při nominálním výkonu (přepočet)	119
Příloha C - Shrnutí parametrů navrhovaných variant VT dílu	
Příloha D - Lopatkový plán VT dílu varianty 3	
Příloha E - Shrnutí parametrů navrhovaných variant ST-NT dílu	
Příloha F - Lopatkový plán ST-NT dílu varianty 4	
Příloha G – Profily lopatek	127
Příloha H - Machova čísla lopatek ST-NT dílu	
Příloha I - Vypočtené ztráty, parametry rozváděcích a oběžných lopatek VT dílu	
Příloha J - Vypočtené ztráty, parametry rozváděcích a oběžných lopatek ST-NT dílu	130
Příloha K – Seznam materiálů a jejich charakteristik	131
Příloha L - Namáhání oběžných lopatek VT dílu	
Příloha M - Namáhání oběžných lopatek ST-NT dílu	134
Příloha N - Namáhání závěsů oběžných lopatek VT dílu	136
Příloha O - Namáhání závěsů oběžných lopatek ST-NT dílu	137
Příloha P - Namáhání rozváděcích lopatek VT dílu	138
Příloha Q - Namáhání rozváděcích lopatek ST-NT dílu	139
Příloha R – Součinitel φ pro výpočet namáhání rozváděcích kol	140
Příloha S – Součinitel μ pro výpočet průhybu rozváděcích kol	141
Příloha T - Namáhání rozváděcích kol ST-NT dílu	142
Příloha U - Výpočet vnitřních ucpávek VT dílu	143
Příloha V – Průtokový součinitel v mezeře labyrintové ucpávky	144
Příloha W – Průtokový součinitel v odlehčovacích otvorech disku OK	145
Příloha X – Závislost průtokových součinitelů na součiniteli k a na reakci na D _p	146
Příloha Y - Výpočet vnitřních ucpávek ST-NT dílu	147
Příloha Z – Porovnání konvekční labyrintové hřídelové ucpávky a vylepšené vysouvací	149
Příloha AA - Model rotoru T120MW	150
Příloha BB - Schéma hřídele turbíny se síly a reakcemi k výpočtu ložisek	151
Příloha CC – Výpočet axiálních sil od změny hybnosti v LM, sil působících na OK	
Příloha DD – Výpočet axiálních sil působící na výstupky vnitřních ucpávek RK	
Příloha EE – Výpočet axiálních sil působících na osazení rotoru	
Příloha FF - Výpočet namáhání vnitřního a vnějšího tělesa ve zvolených řezech	
Příloha GG - Výpočet namáhání horizontální příruby vnitřního a vnějšího tělesa, šroubů	
Příloha HH – Výpočet potrubních tras	
Příloha II - Přepočet tepelného schéma a průtočné části	160
Příloha KK - Tepelné schéma oběhu při 50% výkonu	
Příloha LL - Tepelné schéma oběhu při 75% výkonu	

PŘEHLED POUŽITÝCH ZKRATEK A SYMBOLŮ

Zkratka / Symbol	Význam
VT díl	vysokotlaký díl
ST-NT díl	kombinovaný středotlaký a nízkotlaký díl
Р	parogenerátor
RZV	rychlozávěrný ventil
RV	regulační ventil
ZV	závěrný ventil
К	kondenzátor
G	generátor
KČ	kondenzátní čerpadlo
ККР	kondenzátor komínkových par
NTO	nízkotlaký ohřívák
0	odplyňovák
NN	napájecí nádrž
NV	napájecí voda
NČ	napájecí čerpadlo
VTO	vysokotlaký ohřívák
DV	dodatková voda
CHV	chladicí voda
PP	přívodní potrubí
РК	podchlazovač kondenzátu
M-4	modulový typ dvou koncových stupňů pod označením 4
RL	rozváděcí lopatka
RK	rozváděcí kolo
OL	oběžná lopatka
OK	oběžné kolo
LM	lopatková mříž
CSP	Concentrated Solar Power (koncentrovaná sluneční energie)
ORC	Rankinův Organický Cyklus
HTF	Heat Transfer Fluid (teplonosná tekutina)
T120MW	turbína o instalovaném výkonu 120 MW
Δ (δ)	rozdíl (koncový)
NT-regenerace	nízkotlaká část regenerace
VT-regenerace	vysokotlaká část regenerace
T-stupeň	turbínový stupeň
00	odlehčovací otvor
1, 2, 3, i	index označující pořadí

PŘEHLED ZÁKLADNÍCH VELIČIN A JEJICH JEDNOTEK

Označení	Jednotka	Název
Р	[kW]	výkon
р	[Pa], [bar]	tlak
t, (T)	[°C], [°F], ([K])	teplota (absolutní)
v	$[m^3/kg]$	měrný objem
ρ	$[kg/m^3]$	měrná hmotnost (hustota)
V	$[m^3]$	objem
m	[kg]	hmotnost
m _p	[kg/s]	průtokové množství
$Q_{\rm v}$	$[m^3/s]$	průtokový objem
i	[J/kg]	entalpie
h	[J/kg]	entalpický spád
S	[J/kg.K]	entropie
Х	[-]	suchost
n	[1/s], [1/min]	otáčky
У	[-]	poměrné množství
ς	[-]	ztrátový součinitel
η	[%]	účinnost
a	[kJ/kg]	měrná práce
A _t	[kW]	technická práce
F	$[m^2]$	plocha výstupního mezikruží koncového stupně
φ	[-]	ztrátový součinitel
ψ	[-]	ztrátový součinitel otočení proudu
Φ	[-]	průtokový součinitel
So	[-]	Sommerfoldovo číslo
Z	[ks]	označení počtu
Z	[kJ/kg], [-]	ztráta
3	[-]	parcielnost
$H_{u\check{z}}$	[kJ/kg]	užitečný entalpický spád
R	[-]	reakce
α	[°]	úhel absolutní rychlosti
β	[°]	úhel relativní rychlosti
С	[m/s]	absolutní rychlost
W	[m/s]	relativní rychlost
u	[m/s]	obvodová rychlost
a	[m/s]	rychlost zvuku
g	$[m/s^2]$	gravitační zrychlení
ad	$[m/s^2]$	dostředivé zrychlení

Ma	[-]	Machovo číslo
κ	[-]	izoentropický exponent
υ	[-]	Poissonova konstanta
r	[J/kg.K]	individuální plynová konstanta
δ_r	[mm]	radiální mezera
L _p	[mm]	délka lopatky
D	[mm]	průměr
DN	[mm]	nominální průměr
S	$[mm^2], [cm^2]$	plocha
b	[mm]	tětiva lopatky
В	[mm]	šířka profilu lopatky
W	$[mm^{3}], [cm^{3}]$	průřezový modul pružnosti v ohybu
J	$[mm^4]$	kvadratický moment
k	[-]	koeficient odlehčení
t	[mm]	rozteč lopatek
F _u	[N]	obvodová síla
M_K	[N.m]	krouticí moment
Mo	[N.m]	ohybový moment
σ, τ	[MPa]	napětí
R _{p0,2}	[MPa]	smluvní mez kluzu
E	[MPa]	modul pružnosti
β	[1/K]	součinitel délkové roztažnosti
f	[-]	součinitel tření
L	[mm]	ložisková vzdálenost
L _{lož}	[mm]	délka ložiska
X _T	[mm]	vzdálenost těžiště
$q_{p\check{r}}$	[kJ/kg]	přivedené teplo
c _q	[kJ/kWh]	měrná spotřeba tepla
c _p	[kJ/kWh]	měrná spotřeba páry

Úvod

Práce je věnována návrhu jednotělesové kondenzační parní turbíny rovnotlakého provedení o jmenovitém výkonu 120 MW s axiálním výstupem do kondenzátoru. Otáčky turbosoustrojí jsou zadány na hodnotu 3000 1/min. Typ regulace je dle zadání klouzavým tlakem. Využití turbíny je uvažováno v rámci solárního energetického zařízení.

Pro ohřev pracovního média je využita sluneční energie, což má za důsledek nejen práci turbíny při nižších provozních parametrech, ale i určitá z toho plynoucí specifika ve srovnání s klasickým uhelným blokem. Zadání vodní páry jako pracovní látky je podloženo porovnáním s ORC cyklem, s bloky, které jsou v současnosti již provozovány.

Princip tepelného oběhu je takový, že admisní pára o tlaku 90 bar a teplotě 383°C vstupuje přes rychlozávěrné a regulační ventily do VT dílu, respektive na lopatky regulačního stupně s totálním ostřikem. Pára dále expanduje přes zbylých šest stupňů bubnového provedení, přičemž za 4. stupněm VT dílu je vyveden neregulovaný odběr do VTO2. Část výstupní páry je vedena do VTO1 a její většina proudí skrz přihřívák do parogenerátoru, dále přes závěrné ventily a vstupuje o teplotě 383°C do ST-NT dílu. Po expanzi a předání své energie proudí pára axiálním výstupem do kondenzátoru, kde chladicí voda o teplotě 30°C způsobí její kondenzaci. Kondenzát dále teče do NT-části regenerace, která se skládá z kondenzátoru komínkových par (KKP), NTO1, NTO2, NTO3 a odplyňováku. Z napájecí nádrže je čerpán kondenzát pomocí napájecího čerpadla do VT-části regenerace. Napájecí voda vstupuje do parogenerátoru o teplotě 245°C. Schéma navrhovaného tepelného oběhu je uvedeno na obr. 3.

Při návrhu průtočné části je měněna velikost patního průměru a rozmístění odběrových míst a tlaků tak, aby bylo dosaženo vhodného počtu stupňů při zachování relativně vysoké termodynamické účinnosti, daných rozměrů koncových modulových stupňů turbíny (M-4).

VT i ST-NT díl jsou dvouplášťové. Rozváděcí lopatky jsou uchyceny pomocí T-závěsů (VT díl), nebo v rámci rozváděcích kol uloženy v nosičích (1. st. VT, stupně ST-NT dílu). Oběžné lopatky VT dílu jsou uchyceny promocí rozvidleného závěsu do rozváděcího kola (1. st.), ostatní přímo do vyfrézovaných drážek v hřídeli (T-nožka, T-závěs). K uchycení oběžných lopatek v rámci ST-NT dílu je využito jak T-nožek, tak rozvidleného a stromečkového závěsu. Ucpávky jsou navrhovány s pravým labyrintem s výjimkou vnitřních ucpávek rozváděcích kol 7. ÷ 9. stupně ST-NT dílu a vnějších zadních ucpávek, které jsou řešeny jako nepravý labyrint.

Předmětem práce je i konstrukční návrh rotoru. Ten je řešen jako celokovaný, včetně příruby a pevné spojky. Je uložen v axiálním a radiálním ložisku (přední stojan), v radiálním ložisku (zadní stojan). Natáčecí zařízení se nachází před pevnou spojkou.

Parní turbíny v aplikaci na solární zdroje 1

Solární energie jako zdroj tepla pro výrobu páry se využívá již od počátku 20. století (r. 1912 Frank Shuman, parabolické solární kolektory – Káhira).

Trendem ve výrobě elektrické energie je neustálé navyšování využití obnovitelných zdrojů (vize r. 2050 – až 60% celkové spotřeby). Mezi nejrychleji se rozvíjející oblasti patří větrná a sluneční energie, která v oblasti energetiky hraje stále větší roli.

Země s vyšší intenzitou slunečního záření s výhodou využívají těchto ekonomicky výhodnějších technologií pro výrobu elektrické energie. Tyto nové technologie využívající slunce jako zdroj jsou nazývány CSP (Concentrated Solar Power), koncentrovaná sluneční energie. Ve stručnosti se jedná o sluneční zařízení, které pomocí soustavy zrcadel koncentruje sluneční paprsky na skleněné potrubí s teplonosnou látkou (jedna z koncepcí viz. podkapitola 1.1.1). Ohřáté teplonosné médium se využívá k výrobě páry, která pohání parní turbínu.

1.1 Solární energetická zařízení

Většina technik výroby elektrické energie z tepla potřebuje vysoké teploty k dosažení rozumné účinnosti. Výstupní teploty média nesoustředných solárních kolektorů jsou limitovány hodnotou pod 200°C. Proto musejí být využívány systémy soustřeďující sluneční paprsky pro zajištění vyšší teploty média na výstupu.

Odrazové plochy, které koncentrují sluneční paprsky do ohniskové přímky nebo bodu, mají parabolický tvar, takový reflektor musí být vždy schopen nastavení dle polohy slunce. Všeobecně řečeno, rozdíl může být mezi jednoosým nebo dvouosým nastavením odrazových ploch. Jednoosý systém koncentruje sluneční paprsky na absorpční trubky umístěné v ohniskové přímce, na rozdíl od dvouosého systému, který soustřeďuje sluneční záření na relativně malý absorpční povrch blízko ohniska (viz obr. 2).

1.1.1 Energetická zařízení s parabolickými žlaby

Energetická zařízení s parabolickými žlaby jsou jediným typem solárně-tepelného zařízení s existujícími komerčně využívanými systémy a technologiemi (od roku 2008).

V tomto systému jsou sluneční paprsky koncentrovány na absorpční trubky umístěné v přímkovém ohnisku. Pracovní teplota dosahuje hodnot mezi 350°C a 550°C.

Žlaby jsou obvykle navrženy tak, že jsou nastaveny ke slunci podél jedné osy. Teplonosná látka (olej, směs roztavených solí) prochází absorpčními trubkami a přenáší tepelnou energii ke konvekčnímu parnímu turbínovému cyklu.

Pracovní látka je ohřátá přibližně na teplotu 400°C (použití běžné technologie) a dále čerpána skrz sérii výměníků nebo parogenerátor, ve kterých předává teplo pracovní látce cyklu, a tím dochází k produkci přehřáté páry.

Solární pole je konstruované jako zrcadlové panely, které koncentrují sluneční energii.

Absorpční trubky přijímající tuto koncentrovanou energii ji přeměňují na teplo, které může být předáváno dále cyklu nebo uschováno v absorpčních nádrží pro následné využití v časových úsecích, v kterých slunce nesvítí nebo je intenzita svitu malá.

Energie páry je přeměna pomocí turbosoustrojí na elektřinu. Využívá se klasického parního cyklu nebo kombinovaného s využitím parní a plynové turbíny, případně ORC.

Obr. 1 Tepelný cyklus solárního zařízení s parabolickými žlaby; zdroj [8]

1.1.1.1 Tepelná kapacita zařízení

V porovnání s fotovoltaickými systémy solárně-tepelná zařízení mohou zaručit tepelnou kapacitu. V průběhu období špatného počasí nebo v noci, paralelní fosilní kotel může produkovat páru (jeden z konceptů řešení). Tento zdroj může spalovat ekologicky vhodnější palivo jako biomasu nebo vodík, produkovaných z obnovitelných zdrojů. Se zásobou tepla může solárně-tepelné zařízení vyrábět elektrickou energii i v případě, že není k dispozici sluneční záření (časově omezené využití).

Alternativní a praxí osvědčená forma systému úschovy pracuje s dvěmi zásobními nádržemi. Zásobní médium pro vysokoteplotní úschovu tepla je tavená sůl. Přebytek tepla ze solárního kolektorového pole ohřívá tyto sole, které jsou čerpány ze "studené" do "teplé" zásobní nádrže.

Jestliže solární pole nemůže produkovat dostatek tepla k pohonu turbíny, tavené sole jsou přečerpávány zpět v opačném směru a zásobní teplo se využívá k dohřátí přenosového média (funkční schéma oběhu je vyobrazeno na obr. 1).

1.1.1.2 Účinnost zařízení

Účinnost tohoto typu solárně-tepelného zařízení je závislá na účinnosti kolektorů, odrazového "pole" a tepelného oběhu. Účinnost kolektorů závisí na úhlu dopadu slunečních paprsků a teplotě absorpčním trubek, může dosahovat hodnot nad 75%. Ztráty solárního pole se pohybují obvykle kolem 10%. Dohromady tato žlabová solárně-tepelná zařízení mohou dosáhnout účinnosti v průběhu roku kolem 15%. Účinnost tepelného oběhu je s hodnotou kolem 35% nejvlivnějším faktorem.

Obr. 2 Využívané systémy koncentrace slunečních paprsků; zdroj [8]

- (a) Koncentrace slunečních paprsků za využití parabolických kolektorů,
- (b) lineárních Fresnelových kolektorů,
- (c) centrálního přijímacího systému tvořeného talířovým kolektorem,
- (d) centrálního přijímacího systému s rozmístěnými odrazovými plochami soustřeďující paprsky do hlavního absorbéru.

Na základě již prověřeného komerčního využití a hodnot výstupních parametrů páry, které jsou v souladu se zadáním práce, tohoto konceptu solárně-tepelného zařízení s parabolickými žlaby, je zvolen tento typ jako zdroj energie pro ohřev pracovního média.

1.1.1.3 Využití technologie v praxi

NEVADA SOLAR ONE

- technické informace a parametry zařízení:

- *HTF* = *olej* (*ohřátý* na teplotu 390°C),
- 760 parabolických žlabů → 180 000 zrcadel (reflektorů),
- *typ parní turbíny = Siemens SST-700,*
- vstupní tlak páry = 90 bar / 1 305 psi,
- vstupní teplota páry = $371^{\circ}C / 670^{\circ}F$,
- $výkon \ soustroji = 64 \ MWe \rightarrow energie přibližně pro 40 000 \ domácnosti,$
- doba od položení základního kamene po spuštění bloku ≈ 17 let.

ANDASOL 1 + 2

- technické informace a parametry zařízení:

- HTF = olej,
- dva energetické bloky o celkové rozloze 1,95 km²,
- plocha odrazového pole = $510\ 000\ m^2$,
- Andasol 1 = první zařízení tohoto druhu pracující v Evropě,
- *typ parní turbíny = 2x Siemens SST-700,*
- vstupní tlak páry = 100 bar / 1 450 psi,
- vstupní teplota páry = $377^{\circ}C / 711^{\circ}F$,
- výkon každého soustrojí = 50 MWe.

1.2 Specifikace turbín pro solární aplikaci

V současnosti se v oblasti parních turbín pro solární aplikaci využívají stroje firmy Siemens řady SST-700 a SST-900, které splňují náročné požadavky provozu solárních elektráren (viz projekty - Nevada Solar, Eldorado Valley, USA; Ivanpah Solar Komplex, jižní Kalifornie, USA; Andasol, Španělsko; Hassi R'Mel, Alžír). Základním požadavkem technologie CSP je vysoká účinnost cyklu, proto se základní řady turbín SST upravují dle požadavků konkrétního solárního zařízení. V porovnání s klasickými cykly využívajících parních turbín je v oblasti CSP celá řada specifik, které shrnuje tab. 1.

Specifika	Popis vlastností		
vyšší pořizovací náklady	-		
omezené provozní hodiny	souvisí s intenzitou slunečního záření, použitým typem CSP technologie a množstvím zásobního tepla v akumulátorech		
každodenní start	velice rychlý průběh, nízké časy najetí turbíny		
lehký rotor	diskový typ		
modifikovaná skříň	pro snížení termálních napětí		
nižší minimální výkon	navýšení počtu hodin provozu bez čerpání tepla uschovaného v akumulátoru tepla (roztavené sole)		
vysokootáčkový VT díl	např. model SST - n = 8 960 1/min		
axiální výstupní tělesa	-		
výkon do 250 MW	-		
regulace klouzavým tlakem	umožňuje reagovat na změny vstupních parametrů páry; regulace T při zachování relativně vysoké účinnosti		

Tab. 1 Specifické vlastnosti turbín pro solární aplikaci

1.3 Srovnání parního a alternativního Rankinova organického cyklu

Pro srovnání parního a Rankinova organického cyklu (ORC) jsou zvoleny dvě teplotní hranice:

- 560 °F ($\approx 293,33$ °C) praktické maximum pro skladování tepla,
- $735^{\circ}F \approx 390,56^{\circ}C$) praktické maximum bez požadavku skladování tepla.

Je přijat předpoklad:

• teplotní diference mezi teplou a studenou HTF = $85^{\circ}F$ ($\approx 29,44^{\circ}C$).

Návrh vhodného typu technologie výraznou měrou ovlivňuje výkon. V podmínkách průměrných vysokých letních teplot poskytuje parní cyklus výstupní výkon o 15% ÷ 25% větší oproti Rankinovu organickému cyklu.

Nicméně jsou zde výhody ORC, které z něj dělají významnou alternativu vůči parnímu cyklu. Tyto výhody se zejména projeví ve specifických aplikacích:

- menší výkonové rozměry bloku,
- provoz na nižších vstupních parametrech,
- odolnost vůči zamrznutí v zimních měsících,
- možnost práce při nižších tlacích a s tím souvisejícími nižšími teplotami,
- přizpůsobivost k částečně bezobslužnému provozu nebo zcela bez obsluhy.

Potencionální využití páry jako pracovního média pro vyšší stupeň kaskádového cyklu bylo také uvažováno. V tomto směru může toluen "soutěžit". Ačkoli výroba a ohřev páry jako média zůstává měřítkem pro srovnání s většími solárními zařízeními. Inovační ORC současnosti můžou být hodnotnou alternativou při jednostranně specifických případech a může se přiblížit výkonu klasických parních cyklů.

Na základě argumentů zmíněných v této části je potvrzena volba klasického cyklu s vodní parou jako pracovním médiem pro turbínu o zadaných parametrech (viz 2.1.1).

1.3.1 Zhodnocení pracovní látky alternativního ORC

Rankinův cyklus využívá organických pracovních látek. Jsou jimi uhlovodíky i jiné ropné deriváty. Díky použití těchto látek můžeme dosahovat vyšších pracovních teplot, ale jejich teplotní stabilita je otázkou. Tímto pojmem je míněný jak fyzikální, tak chemický stav látky v pracovním prostředím, respektive za působení teplot a jejich vlivu na stabilitu látky, která může v průběhu času degradovat, měnit své vlastnosti a tím snižovat nebo zcela ztratit schopnost přenosu tepla. Proto by se při výběru správné média pro daný cyklus mělo dbát na teplotní rozsah, v kterém se bude daná látka pohybovat. Pracovní látky uvažovány pro aplikaci ORC jsou butan, heptan, cyklohexan, benzen, toluen, orthoxylen a ethylbenzen.

Ačkoliv publikovaná data teplotní stability mají značný rozptyl, zvláště v rozsahu teplot a tlaků užívaných v ORC, je stále možné předpovídat relativní stabilitu různorodých sloučenin založených na aktuálních pracovních datech a teoretických úvahách. Shrnutí analýzy (publikována ve zdroji [4]), která porovnává relativní tepelnou stabilitu vybraných pracovních látek vzhledem k toluenu při uvažování teploty prostředí 750°F, je zobrazeno v tab. 2 (zdroj [4]).

	Teplota pracovní látky [°F], ([°C])				
Pracovní látka	290 (143,33)	330 (165,56)	550 (287,78)	650 (343,33)	700 (371,11)
Isobutan	1.59E+05				
Butan		2.48E+04			
Heptan			1.90E-05	3.47E-07	6.08E-08
Cyklohexan			2.03E-02	1.59E-04	1.92E-05
Benzen			3.10E+12	5.05E+08	1.13E+07
Toluen			4.78E+05	3.84E+02	1.72E+01
Orthoxylen			1.19E+02	2.80E-01	2.02E-02
Ethylbenzen			4.19E-01	1.12E-03	8.51E-05

Tab. 2 Relativní stabilita vybraných látek vzhledem k toluenu při 750 F

přijatelné	
mezní	
nepřijatelné	

Tab. 2 ukazuje, že benzen je nejvíce teplotně stabilní a tím i vhodným kandidátem na pracovní látku. Po něm následuje díky svým vlastnostem toluen.

Pro "dvoufázový" cyklus, kde rozsah teploty média je předpokládaný mezi teplotami $300^{\circ}F (\approx 148,89^{\circ}C)$ a $350^{\circ}F (\approx 176,67^{\circ}C)$, je úspěšně používaný **isobutan**, zejména pro geotermální cyklus. Tato zkušenost s isobutanem je spojená se srovnatelnou tepelnou stabilitou n-butanu, který je volbou pro pracovní látku "dvoufázového" cyklu.

Výběr vhodné pracovní látky ORC výraznou měrou ovlivňuje účinnost cyklu, která je spojena s teplotou média na vstupu do turbíny. Teplota HTF je limitována buď hranicí 560°F (\approx 293,33°C), nebo 735°F (\approx 390,56°C). Dalším faktorem ovlivňující výslednou účinnost je využití vícestupňového cyklu s nebo bez rekuperace energie (viz tab. 3; zdroj [4]).

Tab. 3 Tepelná účinnost stupňovitých cyklů s a bez rekuperace

		Tepelná účinnost [%]			
_		stupňovitý		stupňovitý s rekuperací	
		brutto	netto	brutto	netto
	vodní pára / butan	27,1	22,4	29,2	24,1
	benzen / butan	27,3	21,6	30,1	23,9
560°F HTF	toluen / butan	26,4	21,3	29,2	23,6
	cyklohexan / butan	26,6	20,2	29,4	22,3
	cyklohexan / Maloney-Robertson	24,3	19,9	24,9	20,3

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení

735°F HTF	o-xylen / butan	29,0	24,3	36,0	30,5
	toluen / butan	29,3	24,4	36,5	30,4
	benzen / butan	29,9	24,4	36,8	30,0
	vodní pára / butan	31,5	27,1	33,1	28,4
	toluen / cyklohexan / butan	32,7	25,9	36,2	27,5
	vodní pára / cyklohexan / butan	28,7	22,8	31,2	24,6

1.3.2 Výsledek srovnání cyklů

Jako alternativní pracovní látku pro první stupeň ORC v rámci solární elektrárny je doporučeno využít aromatických uhlovodíků s adekvátní teplotní stabilitou (benzen). Lehké uhlovodíky (butan) lze s výhodou použít pro druhý stupeň.

Nejvíce účinný solární ORC je regenerační s pracovními látkami **orthoxylen / butan** ve stupňovitém uspořádání s čistou účinností 30,5% a hrubou 36,0%. Nicméně při zvážení teplotní stability, vhodnosti a praktických zkušeností je doporučena volba kombinace **toluen** / **butan** jako pracovních látek. Tento cyklus nabízí vysokou tepelnou účinnost přes celý rozsah teplot HTF.

Nicméně nejlepší ORC, dokonce s využitím regenerace, má nižší účinnost než původní klasický parní cyklus. Ale s výhodou se využívá pro aplikace s nižším instalovaným výkonem (rozsah 1 ÷ 10 MW).

Návrh tepelného schéma oběhu T120 MW 2

Návrh tepelného schéma oběhu slouží k určení průtokového množství páry, které proudí jednotlivými částmi turbíny. Pro samotný postup výpočtu bylo třeba zvolit a dopočítat celou řadu veličin. Volené parametry byly vyčísleny na základě zaběhnutých a praxí stanovených pravidel (ŠKODA POWER A Doosan company), všeobecných termodynamických zákonitostí, vstupních parametrů a hodnot udávaných výrobci příslušných zařízení (viz 2.1.2, 2.1.3). Potřebnými výpočty byly stanoveny veličiny, které v průběhu figurují v použitých vzorcích (viz 2.2, 2.3, 2.5, 2.6, 2.7).

Pro navýšení celkové účinnosti soustrojí je volen oběh s regenerací, která také přispívá ke snížení potřebného počtů stupňů a k relativnímu zmenšení průtočného kanálu. Regenerační ohřev je složen ze tří nízkotlakých ohříváků (NTO), jednoho odplyňováku (O), který je součástí napájecí nádrže (NN), a dvou vysokotlakých ohříváku (VTO). V návrhu regeneračních ohříváku je počítáno se zahrnutím podchlazovače výstupního kondenzátu. Srážeč přehřátí v důsledku nižších parametrů odběrové páry nebylo nutné uvažovat. Energie vzniklého kondenzátu z odběrové (topné) páry je dále využita jeho kaskádováním. Tento způsob je relativné levný v porovnání s přečerpáváním, ale dochází zde k vyšším ztrátám (v případě velké tlakové diference). Toto uspořádání bylo voleno z hlediska daného instalovaného výkonu, navýšení účinnosti, ale svoji roli zde hrálo i ekonomické hledisko. Součástí regeneračního ohřevu jsou také dvě čerpadla, napájecí (NČ) a kondenzátní (KČ), u obou těchto zařízení se uvažuje jejich přispění k ohřátí protékající vody vlivem jejich práce (viz 2.6).

Všechny energetické rovnice a bilance energií jsou uvedeny v poměrných množstvích, které jsou poté zpětně přepočteny. Využito bylo Zákona zachování energie. K určení parametrů vody a vodní páry byl využit doplněk IF97 (Elektronické tabulky vody a vodní páry – X-Steam) k programu Microsoft Excel.

Obr. 3 Návrh tepelného schématu oběhu T120MW

2.1 Vstupní parametry pro výpočet

2.1.1 Zadané parametry

Parametry admisní páry, sloužící jako vstupní hodnoty veličin do výpočtu tepelného schéma, jsou chápány jako hodnoty dané v místě příruby na vstupu do ventilů turbíny. Mezi přírubou a 1. stupněm VT dílu dochází ke ztrátám na hlavní uzavírací armatuře (RZV) a RV.

nominální elektrický výkon	$P_e = 120 \text{ MW}$
tlak admisní páry	$p_A = 90 \text{ bar}$
teplota admisní páry	$t_A = 383 \ ^\circ C$
teplota přihřáté páry	$t_r = 383 \ ^\circ C$
teplota odplynění	$t_o \approx 180 \ ^\circ C$
teplota napájecí vody	$t_{nv}\approx 245~^{\circ}C$
teplota chladící vody	$t_{v1}=30\ ^{\circ}C$
otáčky turbíny	n = 3000 1/min

2.1.2 Zvolené parametry

tlak za VT dílem	$p_2 = 21,86$ bar
ohřátí chladící vody v kondenzátoru (K)	$\Delta t_{\rm K} = 10 \ ^{\circ}{\rm C}$
koncový teplotní rozdíl v K	$\delta t_{\rm K} = 3 \ ^{\circ}{\rm C}$
absolutní rychlost páry v hrdle K	$c_{HK} = 50 \text{ m/s}$
ztrátový součinitel v hrdle K	$\varsigma = 0,05$
měrná tepelná kapacita vody	$c_p = 4,187 \text{ kJ/kg.K}$
koncový rozdíl teplot v NTO2 a NTO3	$\delta t_{NTO2,3} = 3 \ ^{\circ}C$
koncový rozdíl teplot v NTO1	$\delta t_{NTO1} = 5 \ ^{\circ}C$
koncový rozdíl teplot ve VTO	$\delta t_{VTO} = 2 \ ^{\circ}C$
ohřátí napájecí vody v KKP	$\Delta t_{KKP} = 0,5 \ ^{\circ}C$
koncový rozdíl teplot v podchlazovači kondenzátu	$\delta t_p = 10 \ ^{\circ}C$
množství dodatkové vody (DV)	$y_{\rm D} = 0,03$
teplota DV	$t_D = 30 \ ^\circ C$

Volené termodynamické účinnosti

účinnost VT dílu	$\eta_{VT}=85~\%$
účinnost ST-NT dílu	$\eta_{ST\text{-}NT}=88~\%$
účinnost napájecího čerpadla	$\eta_{N\check{C}}=75~\%$
účinnost kondenzátního čerpadla	$\eta_{K\check{C}}=75~\%$
účinnost generátoru	$\eta_{G} = 98,5 \%$
mechanická účinnost	$\eta_{mech} = 99,5 \%$
účinnost VTO	$\eta_{VTO}=98~\%$
účinnost NTO	$\eta_{NTO}=99~\%$
účinnost odplyňováku (NN)	$\eta_o=98~\%$

Volba velikostí jednotlivých termodynamických účinností byla provedena jednak dle hodnot udávaných výrobcem daného zařízení, ale také dle provozních zkušeností s použitím v praxi.

2.1.3 Volené tlakové ztráty

tlaková ztráta RZV a RV	$\varsigma_{RV} = 3 \%$
tlaková ztráta ZV	$\varsigma_{ZV} = 1,5$ %
tlaková ztráta přihřívání	$\zeta_{p\check{r}} = 10$ %
tlaková ztráta parogenerátoru	$\varsigma_p = 22$ %
tlaková ztráta ohříváků	$\varsigma_{oh} = 2$ %
tlaková ztráta přiváděcího potrubí do ohříváků	$\varsigma_{pp} = 4,5 \%$
tlaková ztráta přiváděcího potrubí do odplyňováku (NN)	$\varsigma_{pNN} = 10$ %
tlaková ztráta v hrdle kondenzátoru	$\zeta_{\rm HK} = 0.05$ %

Volba provedena na stejném principu jako v případě termodynamických účinností, jen tlaková ztráta parogenerátoru ζ_p byla dopočtena orientačním výpočtem, do kterého vstupují hodnoty, které byly převzaty z funkčních zařízení daného typu (viz 1.1).

2.2 Určení parametrů na vstupu a výstupu VT dílu

Obr. 4 Průběh expanze ve VT dílu; zdroj [17]

2.2.1 Parametry páry na vstupu do VT dílu

Při vstupu admisní páry do turbíny vzniká tlaková ztráta způsobená průchodem páry skrz rychlozávěrné (RZV) a regulační (RV) ventily, které se nacházejí mezi hlavní připojovací přírubou a tělesem VT dílu. Jev, který nastává v těchto ventilech, je označován jako škrcení, při kterém entalpie média i = konst.

$$p_{1} = p_{A} = 90 \text{ bar}$$

$$t_{1} = 383 \text{ °C}$$

$$i_{1}(p_{1}, t_{1}) = 3067, 42 \text{ kJ / kg}$$

$$s_{1}(p_{1}, t_{1}) = 6,21024 \text{ kJ / kg . Kg}$$

Kde

p₁... tlak admisní páry na výstupu z parogenerátoru (P) [bar],

 t_1 ... teplota admisní páry na výstupu z P [°C],

i₁ ... entalpie admisní páry na výstupu z P [kJ/kg],

s₁... entropie admisní páry na výstupu z P [kJ/kg.K].

Parametry na vstupu do VT dílu po škrcení v RZV a RV před vstupem do VT dílu jsou:

 $p_1' = p_1 \cdot 0.97$ $p_1' = 90.0,97 = 87,30 \text{ bar}$ $t_1'(p_1', i_1) = 380,92 \ ^{\circ}C$ $s_1(p_1', i_1) = 6,22223 \, kJ / kg \, K$

Kde

p₁[•] ... tlak admisní páry na vstupu do VT dílu [bar],

t₁' ... teplota admisní páry na vstupu do VT dílu [°C],

s₁[•] ... entropie admisní páry na vstupu do VT dílu [kJ/kg.K].

2.2.2 Parametry páry na výstupu z VT dílu

Po izoentropické expanzi platí:

$$p_{2} = 21,8589 \text{ bar}$$

$$i_{2iz} (p_{2}, s_{1}' = s_{2iz}) = 2758,87 \text{ kJ / kg}$$

$$t_{2iz} (p_{2}, i_{2iz}) = 216,92 \text{ kJ / kg}$$

$$h_{VT_{iz}} = i_{1} - i_{2iz}$$

$$h_{VT_{iz}} = 3067,42 - 2758,87 = 308,55 \text{ kJ / kg}$$

Kde

p2 ... tlak páry na výstupu z VT dílu při izoentropické expanzi [bar],

i_{2iz} ... entalpie páry na výstupu z VT dílu při izoentropické expanzi [kJ/kg],

t_{2iz} ... teplota páry na výstupu z VT dílu při izoentropické expanzi [°C],

h_{VT_iz} ... entalpický spád ve VT dílu při izoentropické expanzi [kJ/kg.K].

Tlak na výstupu z VT dílu p₂ byl přizpůsoben požadavku na ohřátí ve VTO1, které bylo stanoveno výpočtem (viz 2.7.1.2) na základě znalosti teploty napájecí vody (viz 2.1.1).

Pro skutečnou expanzi platí:

$$h_{VT_sk} = h_{VTiz} \cdot \eta_{VT}$$

$$h_{VT_sk} = 308,55 \cdot 0,85 = 262,27 \text{ kJ / kg}$$

$$i_{2} = i_{1} - h_{VT_{sk}}$$

$$i_{2} = 3067,42 - 262,27 = 2805,15 \text{ kJ / kg}$$

$$t_{2}(p_{2},i_{2}) = 218,49 \text{ °C}$$

$$s_{2}(p_{2},i_{2}) = 6,31665 \text{ kJ / kg . K}$$

Kde

h_{VT_sk} ... entalpický spád ve VT dílu při skutečné expanzi [kJ/kg],

i2 ... entalpie páry na výstupu z VT dílu při skutečné expanzi [kJ/kg],

t₂... teplota páry na výstupu z VT dílu při skutečné expanzi [°C],

s₂ ... entropie páry na výstupu z VT dílu při skutečné expanzi [kJ/kg.K].

Z důvodu rozhodnutí, zda je potřeba či ne, zařadit do oběhu separátor páry, který odvádí vzniklou vlhkost, se analyzuje suchost páry x na výstupu z VT dílu.

$$x = \frac{s_2 - s_2}{s_2 - s_2},\tag{2.1}$$

Kde

s₂[•] ... entropie syté kapaliny při parametrech na výstupu z VT dílu [kJ/kg.K], s₂" ... entropie syté páry na při parametrech na výstupu z VT dílu [kJ/kg.K]. $s'_{2}(p_{2}) = 2,48927 \, kJ / kg.K$ $s_{2}^{''}(p_{2}) = 6,30634 \, kJ / kg.K$ 6,31665-2,48927 _ 1.003 x

$$= \frac{1}{6,30634 - 2,48927} = 1$$

Výpočtem bylo stanoveno, že se nacházíme stále v oblasti přehřáté páry, proto není třeba začlenit do návrhu tepelného oběhu separátor páry, který by případnou vlhkost odseparoval.

2.3 Výpočet parametrů na vstupu a výstupu ST-NT dílu

Obr. 5 Průběh expanze v ST-NT dílu; zdroj [17]

2.3.1 Parametry páry na vstupu do ST-NT dílu

Pára po přihřátí v parogenerátoru na teplotu 383°C vstupuje do ST-NT dílu. V úvahu je brána tlaková ztráta v přihříváku ζ_{př}. Parametry jsou vypočteny na základě těchto vztahů:

$$p_{3} = p_{2} \cdot (1 - \varsigma_{p\bar{r}})$$

$$p_{3} = 21,8589 \cdot (1 - 0,1) = 19,6730 \text{ bar}$$

$$t_{3} = 383 \text{ °C}$$

$$i_{3}(p_{3},t_{3}) = 3211,36 \text{ kJ / kg}$$

$$s_{3}(p_{3},t_{3}) = 7,08089 \text{ kJ / kg . K}$$

Kde

p₃... tlak přihřáté páry na vstupu do ST-NT dílu před závěrným ventilem (ZV) [Pa],

t₃... teplota přihřáté páry na vstupu do ST-NT dílu před ZV [°C],

i₃ ... entalpie přihřáté páry na vstupu do ST-NT dílu před ZV [kJ/kg],

s₃ ... entropie přihřáté páry na vstupu do ST-NT dílu před ZV [kJ/kg.K].

Parametry na vstupu do ST-NT dílu po škrcení v závěrných ventilech jsou:

$$p_{3}' = p_{3} \cdot (1 - \varsigma_{ZV})$$

$$p_{3}' = 19,6730 \cdot (1 - 0,015) = 19,37791 \text{ bar}$$

$$t_{3}'(p_{3}',i_{3}) = 382,76 \ ^{\circ}C$$

$$s_{3}'(p_{3}',i_{3}) = 7,08767 \text{ kJ / kg . K}$$

Kde

p₃[•] ... tlak přihřáté páry na vstupu do ST-NT dílu za ZV [Pa],

t₃[•] ... teplota přihřáté páry na vstupu do ST-NT dílu za ZV [°C],

s₃[•] ... entropie přihřáté páry na vstupu do ST-NT dílu za ZV [kJ/kg.K].

2.3.2 Parametry páry na výstupu z ST-NT dílu

$$\Delta p = p_K \cdot \varsigma_{HK} \cdot \left(\frac{c_{HK}}{100}\right)^2, \qquad (2.2)$$

Kde

 $\Delta p \dots$ tlakový spád mezí výstupem z ST-NT dílu a tlakem v kondenzátoru [bar].

$$\Delta p = 0,0865 . 10^5 . 0,05 . \left(\frac{50}{100}\right)^2 = 108,125 \ Pa = 0,00108 \ bar$$

Pro izoentropickou expanzi platí:

$$p_{4} = p_{K}' = p_{K} + \Delta p_{K}$$

$$p_{4} = 0.08650 + 0.00108 = 0.0876 \text{ bar}$$

$$i_{4iz} (p_{4}, s_{3}') = 2228.81 \text{ kJ / kg}$$

$$h_{ST-NT_{iz}} = i_{3} - i_{4iz}$$

$$h_{ST-NT_{iz}} = 3211.36 - 2228.81 = 982.55 \text{ kJ / kg}$$

Kde

 $p_4 = p_K^{\circ} \dots$ tlak páry na výstupu z ST-NT dílu [Pa], $i_{4iz} \dots$ entalpie páry na výstupu z ST-NT dílu při izoentropické expanzi [kJ/kg], $h_{ST-NT iz} \dots$ entalpický spád na výstupu z ST-NT dílu při izoentrop. expanzi [kJ/kg].

Pro skutečnou expanzi platí:

$$\begin{split} h_{ST-NT_sk} &= h_{ST-NT_iz} \cdot \eta_{ST-NT} \\ h_{ST-NT_sk} &= 982,55 \cdot 0,88 = 864,64 \text{ kJ / kg} \\ i_4 &= i_{K}' = i_3 - h_{ST-NT_sk} \\ i_4 &= 3211,36 - 864,64 = 2346,72 \text{ kJ / kg} \\ t_4 (p_4, i_4) &= t_{K}' = 43,24 \text{ °C} \\ s_4 (p_4, i_4) &= 7,46033 \text{ kJ / kg} \cdot K \end{split}$$

Kde

 h_{ST-NT_sk} ... entalpický spád na výstupu z ST-NT dílu při skutečné expanzi [kJ/kg], $i_4 = i_K$... entalpie páry na výstupu z ST-NT dílu při skutečné expanzi [kJ/kg], $t_4 = t_K$... teplota páry na výstupu z ST-NT dílu při skutečné expanzi [°C], s_4 ... entropie páry na výstupu z ST-NT dílu při skutečné expanzi [kJ/kg.K].

2.4 Výpočet parametrů kondenzátoru

Pára vystupující z ST-NT dílu proudí do axiálně umístěného kondenzátoru, kde předá její zbytkové teplo chladicí vodě, která proudí v přímých trubkách tohoto zařízení. Kondenzace výstupní páry probíhá při konstantním tlaku p_K a teplotě t_K (viz obr. 6). Výpočet vychází z parametrů t_{v1} , Δt_K a δt_K .

Obr. 6 Průběh kondenzace páry a ohřev CHV v kondenzátoru; zdroj [15]

Obr. 7 Vstupní a výstupní veličiny v kondenzátoru

$$t_{K} = t_{vl} + \Delta t_{K} + \delta t_{K}$$

$$t_{K} = 30 + 10 + 3 = 43 °C$$

$$p_{K}(t_{K}) = 0,0865 \ bar$$

$$i_{K}(t_{K}, p_{K}) = 180,08 \ kJ / kg$$

$$s_{K}(t_{K}, p_{K}) = 0,61227 \ kJ / kg . K$$

Z důvodu netěsností, jak na parní, ale i vodní straně kondenzátoru, je zajištěn přívod dodatkové vody o poměrném množství y_D = 3 % z celkového množství napájecí vody o teplotě $t_{\rm D} = 30 \,^{\circ}\text{C}$.

$$i_D = c_p \cdot t_D$$

 $i_D = 4,187 \cdot 30 = 125,61 \text{ kJ} / \text{kg}$

Kde

 $t_{\rm K}$... teplota zkondenzované páry (kondenzátu) na výstupu z kondenzátoru (K) [°C],

p_K... tlak zkondenzované páry (kondenzátu) na výstupu z K [bar],

iK ... entalpie zkondenzované páry (kondenzátu) na výstupu z K [kJ/kg],

s_K ... entropie zkondenzované páry (kondenzátu) na výstupu z K [kJ/kg.K],

i_D... entalpie dodatkové vody – dopuštěna na vodní straně K [kJ/kg].

2.5 Výpočet základních parametrů odplyňováku

Odplyňovák je součástí napájecí nádrže. Jeho funkcí je odstranit vzduch obsažený v kondenzátu, jehož přítomnost je nežádoucí především z důvodu koroze jednotlivých komponent zařízení oběhu a navýšení práce napájecího čerpadla.

 $t_0 = 180 \ ^{\circ}C$ $p_{0}(t_{0}) = 10,0263 \text{ bar}$ $i_0'(p_0,t_0) = 763,19 \ kJ / kg$ $s_{0}'(p_{0},t_{0}) = 2,13954 \text{ kJ}/\text{kg}.\text{K}$

Kde

 $p_o \hdots$ tlak napájecí vody (NV) na výstupu z napájecí nádrže (NN) [bar],

i_o' ... entalpie NV na mezi sytosti na výstupu z NN [kJ/kg],

s_o[•] ... entropie NV na mezi sytosti na výstupu z NN [kJ/kg.K].

2.6 Výpočet parametrů čerpadel

2.6.1 Parametry napájecího čerpadla

Úkolem NČ je dopravit napájecí vodu přes vysokotlakou část regenerace až k parogenerátoru, navýšit tlak NV (doposud dán kondenzátním čerpadlem) až na hodnotu, která zajišťuje požadovaný tlak admisní páry na výstupu z parogenerátoru. Výstupní tlak musí být navýšen o ztráty, ke kterým dochází průchodem skrz teplosměnnou plochu parogenerátoru.

Tlaková ztráta všech ohříváků (NTO, VTO) je volena na hodnotu 2% a ztráta parogenerátoru na 22%.

Obr. 8 Průběh komprese v napájecím čerpadle; zdroj [17]

$$p_{NC} = p_A \cdot (1 + \zeta_{kotle} + 2 \zeta_{oh})$$

$$p_{NC} = 90 \cdot (1 + 0.22 + 2 \cdot 0.02) = 113,40 \text{ bar}$$

$$i_{NC_{-iz}} (p_{NC}, s_o) = 774,81 \text{ kJ / kg}$$

$$h_{NC_{-iz}} = i_{NC_{-iz}} - i_o'$$

$$h_{NC_{-iz}} = 774,81 - 763,19 = 11,62 \text{ kJ / kg}$$

$$h_{NC_{-sk}} = \frac{h_{NC_{-iz}}}{\eta_{NC}}$$

$$h_{NC_{-sk}} = \frac{11,62}{0.75} = 15,49 \text{ kJ / kg}$$

$$i_{NC} = i_o' + h_{NC_{-sk}}$$

$$i_{NC} = 763,19 + 15,49 = 778,68 \text{ kJ / kg}$$

$$t_{NC} (p_{NC}, i_{NC}) = 182,33 \circ C$$

$$\Delta t_{NC} = 182,33 - 180 = 2,33 \circ C$$

Kde

p_{NČ}... tlak napájecí vody (NV) vyvozen prací napájecího čerpadla (NČ) [bar], i_{NČ iz} ... entalpie NV za NČ při izoentropické kompresi [kJ/kg], $h_{N\check{C}_{_iz}}$... entalpický spád NV v NČ při izoentropické kompresi [kJ/kg], h_{NČ sk} ... entalpický spád NV v NČ při polytropické kompresi [kJ/kg], i_{NČ} ... skutečná entalpie NV za NČ [kJ/kg], t_{NČ} ... skutečná teplota NV za NČ [°C], $\Delta t_{N\check{C}}$... ohřátí NV při kompresi v NČ [°C].

2.6.2 Parametry kondenzátního čerpadla

Úkolem KČ je dopravit kondenzát napájecí vody od kondenzátoru přes KKP, NT-část regenerace až k odpyňováku, napájecí nádrži, navýšit tlak kondenzátu oproti tlaku v kondenzátoru (hluboké vakuum) na hodnotu přibližně 10 bar. Důvodem zvýšení je možné přisávání vzduchu netěsnostmi a snížení namáhání potrubních tras kondenzátu. Pro určení výstupního tlaku na výtlaku čerpadla je nutná znalost tlakových ztrát potrubí, které musí být pokryty. Kondenzátní čerpadlo také přispívá k nepatrnému ohřevu kondenzátu, tento ohřev je reprezentován veličinou Δt_{KC} . Odplyňovák je uvažován jako rovnocenný ohřívák, proto mu přísluší i volená hodnota tlakové ztráty ζ_{OH} .

$$p_{KC} = p_o \cdot (1 + 4 \varsigma_{oh})$$

$$p_{KC} = 10,0263 \cdot (1 + 4 \cdot 0,02) = 10,8285 \text{ bar}$$

$$i_{KC_{-iz}} (p_{KC}, s_K) = 181,16 \text{ kJ / kg}$$

$$h_{KC_{-iz}} = i_{KC_{-iz}} - i_K$$

$$h_{KC_{-iz}} = 181,16 - 180,08 = 1,08 \text{ kJ / kg}$$

$$h_{KC_{-sk}} = \frac{h_{KC_{-iz}}}{\eta_{NC}}$$

$$h_{KC_{-sk}} = \frac{1,08}{0,75} = 1,44 \text{ kJ / kg}$$

$$i_{KC} = i_K + h_{KC_{-sk}}$$

$$i_{KC} = 180,08 + 1,44 = 181,52 \text{ kJ / kg}$$

$$t_{KC} (p_{KC}, i_{KC}) = 43,12 \text{ °C}$$

$$\Delta t_{KC} = 43,12 - 43 = 0,12 \text{ °C}$$

Kde

 $p_{K\check{C}}$... tlak kondenzátu vyvozen prací kondenzátního čerpadla (KČ) [bar], $i_{K\check{C}_{iz}}$... entalpie kondenzátu za KČ při izoentropické kompresi [kJ/kg], $h_{K\check{C}_{iz}}$... entalpický spád kondenzátru v KČ při izoentropické kompresi [kJ/kg], $h_{K\check{C}_{sk}}$... entalpický spád kondenzátu v KČ při polytropické kompresi [kJ/kg], $i_{K\check{C}}$... skutečná entalpie kondenzátu za KČ [kJ/kg], $t_{K\check{C}}$... skutečná teplota kondenzátu za KČ [°C], $\Delta t_{K\check{C}}$... ohřátí kondenzátu při kompresi v KČ [°C].

2.7 Návrh a výpočet ohříváků

Funkcí ohříváku NT-regenerace je ohřátí kondenzátu proudícího z K na teplotu t_o, v části VT-regenerace na teplotu t_{NV}. Tímto regeneračním ohřevem je navýšena tepelná účinnost cyklu a tím i termodynamická účinnost T. Soustava ohříváků je rozdělena na dva úseky:

1. vysokotlaký úsek … VTO2 – VTO1 – O

2. nízkotlaký úsek ... O – NTO3 – NTO2 – NTO1 – KKP – K

Velikost ohřátí v jednotlivých ohřívácích je určen pomocí vztahu pro poměrné absolutní teploty před a za daným typem tohoto výměníku.

$$m = \sqrt[z]{\frac{T_{NV}}{T_{NC}}} , \qquad (2.3)$$

Kde

T_{NV} ... absolutní teplota napájecí vody (NV) – dána zadáním [K],

T_{NČ}... absolutní teplota NV za napájecím čerpadlem [K],

z ... počet ohříváků daného typu [-].

2.7.1 Výpočet vysokotlakých ohříváků

Obecnou funkcí VTO je předání kondenzačního tepla odběrové (topné) páry napájecí vodě (viz obr. 9). Zkondenzovaná pára proudí do podchlazovače kondenzátu, který je přítomný z důvodu navýšení účinnosti.

$$m_{VTO} = \sqrt[2]{\frac{T_{NV}}{T_{N\check{C}}}}$$

$$m_{VTO} = \sqrt[2]{\frac{245 + 273,15}{182,33 + 273,15}} = 1,06660$$

$$t_{VTOI_v\check{yst}} = m_{VTO}. T_{N\check{C}} - 273,15 , \qquad (2.4)$$

Kde

t_{VTO1 výst} ... teplota napájecí vody na výstupu z VTO1 [°C].

$$t_{VTOI_{vyst}} = 1,06660 \cdot (182,33 + 273,15) - 273,15 = 212,66 \circ C$$

Tab. 4 Průběh teplot v úseku VTO2 - VTO1 - NČ – NN

úsek	\leftarrow	VTO2	\leftarrow	VTO1	\leftarrow	NČ	NN
označení teploty	t _{NV}	$\Delta t_{\rm VTO2}$	t _{VTO1_výst}	$\Delta t_{\rm VTO1}$	t _{NČ}	$\Delta t_{N\check{C}}$	to
číselná hodnota [°C]	245	32,34	212,66	30,34	182,33	2,33	180

Západočeská univerzita v Plzni, Fakulta strojní.	Diplomová práce, akad. rok 2011/12
Katedra energetických strojů a zařízení	Přemysl Epikaridis

$$p_{VTOI_výst} = p_{N\check{C}} - p_A \cdot \varsigma_{oh} , \qquad (2.5)$$

$$p_{VTO2_výst} = p_{NC} - p_A \cdot 2 \cdot \zeta_{oh} ,$$
 (2.6)

Kde

p_{VTO1_výst} ... tlak napájecí vody (NV) na výstupu z VTO1 [bar],
p_{VTO2_výst} ... tlak NV na výstupu z VTO2 [bar],
p_{NČ} ... tlak NV na výstupu z napájecího čerpadla [bar].

 $p_{VTO1_vy_{st}} = 113,40 - 90.0,02 = 111,60 \text{ bar}$ $p_{VTO2_vy_{st}} = 113,40 - 90.2.0,02 = 109,80 \text{ bar}$

2.7.1.1 Parametry VTO2

Odběr pro VTO2 je vyveden jako neregulovaný za 4. stupněm VT dílu. Srážeč přehřátí není potřeba uvažovat z důvodu malého přehřátí páry v odběru, které nepřevyšuje hodnotu 120°C, která je limitní.

 $t_{VTO2s} = t_{VTO2_vyst} + \delta t_{VTO}$ $t_{VTO2s} = 245 + 2 = 247 °C$ $p_{VTO2s} (t_{VTO2s}) = 37,7838 bar$ $p_{VTO2_od} = p_{VTO2s} \cdot (1 + \varsigma_{pp})$ $p_{VTO2_od} = 37,7838 \cdot (1 + 0,045) = 39,4841 bar$ $i_{VTO2_id} (p_{VTO2_od}, s_1') = 2879,61 kJ / kg$ $h_{VTO2_iz} = i_1 - i_{VTO2_iz}$ $h_{VTO2_iz} = 3067,42 - 2879,61 = 187,81 kJ / kg$ $h_{VTO2_sk} = h_{VTO2_iz} \cdot \eta_{VT}$ $h_{VTO2_sk} = 187,81 \cdot 0,85 = 159,64 kJ / kg$ $i_{VTO2_od} = 3067,42 - 159,64 = 2907,78 kJ / kg$ $t_{VTO2_od} (p_{VTO2_od}, i_{VTO2_od}) = 280,90 °C$ $t_{VTO2_vst} (p_{VTO2s}, i_{VTO2_od}) = 278,59 °C$

$$t_{VTO2_p} = t_{VTO1_výstu} + \delta t_p$$

$$t_{VTO2_p} = 212,66 + 10 = 222,66 \ ^{\circ}C$$

$$i_{VTO2_p} = c_p \cdot t_{VTO2_p}$$

$$i_{VTO2_p} = 4,187 \cdot 222,66 = 932,30 \ kJ \ / \ kg$$

$$i_{VTO2_vst} = c_p \cdot t_{VTO1_vyst}$$

$$i_{VTO2_vst} = 4,187 \cdot 212,66 = 890,43 \text{ kJ / kg}$$

$$i_{VTO2_vyst} = c_p \cdot t_{NV}$$

$$i_{VTO2_vyst} = 4,187 \cdot 245 = 1025,82 \text{ kJ / kg}$$

Kde

t_{VTO2s} … teplota odběrové páry na mezi sytosti ve VTO2 [°C], p_{VTO2s} … tlak odběrové páry na mezi sytosti na vstupu do VTO2 [bar], p_{VTO2_od} … tlak odběrové páry pro VTO2 na výstupu z odběru [bar], i_{VTO2_iz} … entalpie odběrové páry pro VTO2 při izoentropické expanzi [kJ/kg], h_{VTO2_iz} … entalpický spád v odběru pro VTO2 při izoentropické expanzi [kJ/kg], h_{VTO2_sk} … skutečný entalpický spád v odběru pro VTO2 [kJ/kg], i_{VTO2_od} … entalpie odběrové páry pro VTO2 na výstupu z odběru [kJ/kg], t_{VTO2_od} … teplota odběrové páry pro VTO2 na výstupu z odběru [°C], t_{VTO2_vst} … teplota odběrové páry na vstupu do VTO2 [°C], t_{VTO2_p} … teplota kondenzátu odběrové páry za podchlazovačem VTO2 [°C], i_{VTO2_p} … entalpie kondenzátu odběrové páry za podchlazovačem VTO2 [kJ/kg], i_{VTO2_vst} … entalpie napájecí vody (NV) na vstupu do VTO2 [kJ/kg], i_{VTO2_vst} … entalpie NV na výstupu z VTO2 [kJ/kg].

2.7.1.2 Parametry VTO1

Odběr pro VTO1 je napojen na výstupní potrubí z VT dílu, proto parametry páry v místě odběru jsou shodné s parametry páry na vstupu do přihříváku umístěného v parogenerátoru. Srážeč přehřátí není uvažován tak jako u VTO2.

$$t_{VTO1s} = t_{VTO1_vyst} + \delta t_{VTO}$$

$$t_{VTO1s} = 212,66 + 2 = 214,66 °C$$

$$p_{VTO1s} (t_{VTO1s}) = 20,9176 bar$$

$$p_{VTO1_od} = p_{VTO1s} \cdot (1+\varsigma_{pp})$$

$$p_{VTO1_od} = 20,9176 \cdot (1+0,045) = 21,8589 bar$$

$$i_{VTO1_od} = i_2$$

$$i_{VTO1_od} = i_2$$

$$i_{VTO1_od} = t_2 = 218,49 °C$$

$$t_{VTO1_vst} (p_{VTO1s}, i_{VTO1_od}) = 216,50 °C$$

$$t_{VTOIp} = t_{NC} + \delta t_p$$

$$t_{VTOIp} = 182,33 + 10 = 192,33 \ ^{\circ}C$$

$$i_{VTOIp} = c_p \cdot t_{VTOIp}$$

$$i_{VTOIp} = 4,187 \cdot 192,33 = 805,28 \ kJ \ / \ kg$$
$$\begin{split} i_{VTOI_vst} &= c_p \cdot t_{NC} \\ i_{VTOI_vst} &= 4,187 \cdot 182,33 = 763,41 \text{ kJ / kg} \\ i_{VTOI_vst} &= c_p \cdot t_{VTOI_vst} \\ i_{VTOI_vst} &= 4,187 \cdot 212,66 = 890,43 \text{ kJ / kg} \end{split}$$

Popis jednotlivých veličiny je analogický k výpočtu parametrů VTO2.

	veličiny	VTO2	VTO1
	t [°C]	212,66	182,33
napájecí voda - vstup	p [bar]	111,60	113,40
	i [kJ/kg]	890,43	763,41
	t [°C]	245,00	212,66
napájecí voda - výstup	p [bar]	109,80	111,60
	i [kJ/kg]	1025,82	890,43
	t [°C]	278,59	216,50
pára - vstup	p [bar]	37,78	20,92
	i [kJ/kg]	2907,78	2805,15
	t [°C]	280,90	218,49
pára - odběr	p [bar]	39,48	21,86
	i [kJ/kg]	2907,78	2805,15
kondonzót wistun	t [°C]	222,66	192,33
Konuenzai - vystup	i [kJ/kg]	932,30	805,28

Tab. 5 Souhrn vypočtených parametrů VTO

2.7.2 Výpočet nízkotlakých ohříváků

Obr. 10 Schéma NTO (vstupy a výstupy) a průběhy teplot

$$t_{KKP} = t_{K\check{C}} + \Delta t_{KKP} , \qquad (2.7)$$

Kde

 t_{KKP} ... teplota kondenzátu na výstupu z kondezátoru komínkových par (KKP) [K], t_{KC} ... teplota na výstupu z kondenzátního čerpadla [K],

 Δt_{KKP} ... ohřátí kondenzátu v KKP - dáno zadáním [K].

 $t_{KKP} = 43,12 + 0,5 = 43,62 \ ^{\circ}C$

Ohřátí v jednotlivých ohřívácích NT-regenerace není voleno rovnoměrné, tak jako u VT (viz 2.7.1), jeho velikosti se odvíjí od počátečního "nástřelu" vyložení ST-NT dílu, z kterého vyplývá, že pří rovnoměrně zvoleném ohřevu vycházejí tlaky v odběrech neslučitelné s následným výpočtem průtočné částí turbíny (viz kapitola 3). Toto stanovisko je potvrzeno i postupem výpočtu v praxi.

Při vyčíslení hodnot ohřátí se vychází z počáteční volby:

 $\Delta t_{\rm NTO1} = 42,5^{\circ}{\rm C} ,$

na základě této hodnoty a zadané $t_0 = 180^{\circ}C$ byl zvolen trend ohřátí v poměru:

$$\Delta t_{NTO2} : \Delta t_{NTO3} : \Delta t_{odpl} \approx \frac{1}{4} \cdot \left(t_o - t_{NTO1_vyst} \right) : \frac{4}{25} \cdot \left(t_o - t_{NTO1_vyst} \right) : \frac{17}{50} \cdot \left(t_o - t_{NTO1_vyst} \right)$$

Jednotlivé velikosti teplot v úseku O – NTO3 – NTO2 – NTO1 – KKP – K jsou pro názornost uvedeny na myšlené ose (viz tab. 6), na které je patrný průběh ohřevu kondenzátu na trase NT-regenerace.

Tab. 6 Průběh teplot v úseku O - NTO3 - NTO2 - NTO1 - KKP - K

0	<i>←</i>	NTO3	<i>←</i>	NTO2	←	NTO1	←	KPP	←	KČ	K
Δt_{odpl}	t _{NTO3_výst}	$\Delta t_{\rm NTO3}$	t _{NTO2_výst}	$\Delta t_{\rm NTO2}$	t _{NTO1_výst}	$\Delta t_{\rm NTO1}$	t _{KPP}	Δt_{KKP}	t _{KČ}	$\Delta t_{K\check{C}}$	t _K
32,14	147,86	38,52	109,33	23,21	86,12	42,50	43,62	0,50	43,12	0,12	43

V důsledku vyššího ohřátí navrhovaného pro NTO1 byl navýšen koncový teplotní rozdíl $\delta t_{NTO1} = 5^{\circ}C$ (viz 2.1.2), který do výpočtu vstupuje (viz 2.7.2.2).

$$p_{K\check{C}} = p_{KPP_v\check{y}st} , \qquad (2.8)$$

Kde

 $p_{K\check{C}}$... tlak kondenzátu za kondenzátním čerpadlem [bar],

p_{KPP_výst} ... tlak kondenzátu na výstupu z KKP [bar].

Z uvedené rovnosti vyplývá, že tlaková ztráta způsobená průtokem kondenzátu skrz kondenzátor komínkových par není uvažována z důvodu její zanedbatelné velikosti a malého významu v rámci celkového výpočtu tepelného oběhu.

Tlaky kondenzátu v příslušných úsecích NT-regenerace jsou závislé na volené hodnotě tlakové ztráty v ohřívácích ζ_{oh} . K vyčíslení velikostí těchto tlaků jsou použity vztahy 2.9, 2.10 a 2.11.

$$p_{NTOI_výst} = p_{K\check{C}} \cdot \left(1 - \varsigma_{oh} \right), \tag{2.9}$$

$$p_{NTO2_y\acute{yst}} = p_{K\check{C}} \cdot \left(1 - 2 \cdot \varsigma_{oh} \right), \qquad (2.10)$$

$$p_{NTO3_výst} = p_{K\check{C}} \cdot \left(1 - 3 \cdot \zeta_{oh}\right), \qquad (2.11)$$

 $p_{\text{NTO1_výst}}$... tlak kondenzátu na výstupu z NTO1 [bar], $p_{\text{NTO2_výst}}$... tlak kondenzátu na výstupu z NTO2 [bar], $p_{\text{NTO3_výst}}$... tlak kondenzátu na výstupu z NTO3 [bar], $p_{\text{KČ}}$... tlak kondenzátu na výstupu z kondenzátního čerpadla [bar]. $p_{\text{NTO1_výst}} = 10,8285 \cdot (1 - 0,02) = 10,6119 \text{ bar}$ $p_{\text{NTO2_výst}} = 10,8285 \cdot (1 - 0,04) = 10,3953 \text{ bar}$ $p_{\text{NTO3_výst}} = 10,8285 \cdot (1 - 0,06) = 10,1787 \text{ bar}$

2.7.2.1 Parametry odplyňováku

Odplyňovák (O) je rovnocenným regeneračním ohřívákem, který pracuje na směšovacím principu, tzn. že koncový rozdíl teplot $\delta t_0 = 0$.

Veličiny, které do odplyňováku (NN) vstupují a vystupují jsou znázorněny na obr. 11.

Obr. 11 Schéma odplyňováku (NN) - vstupy a výstupy

```
\begin{split} i_{O\_vst} &= c_p \cdot t_{NTO3\_vyst} \\ i_{O\_vst} &= 4,187 \cdot 147,86 = 619,07 \, kJ \, / \, kg \\ p_{O\_od} &= p_o \cdot (1 + \zeta_{pNN}) \\ p_{O\_od} &= 10,026 \cdot (1 + 0,1) = 11,0289 \, bar \\ i_{O\_iz}(p_{ood}, s_3') &= 3055,72 \, kJ \, / \, kg \\ h_{O\_iz} &= i_3 - i_{O\_iz} \\ h_{O\_iz} &= 3211,36 - 3055,72 = 155,64 \, kJ \, / \, kg \\ h_{O\_sk} &= h_{O\_iz} \cdot \eta_{ST-NT} \\ h_{O\_sk} &= 155,64 \cdot 0,88 = 136,96 \, kJ \, / \, kg \\ i_{O\_od} &= i_3 - h_{O\_sk} \\ i_{O\_od} &= 3211,36 - 136,96 = 3074,40 \, kJ \, / \, kg \\ t_{O\_od}(p_{O\_od}, i_{O\_od}) &= 311,81 \, ^{\circ}C \\ t_{O\_vst}(p_{O}, i_{O\_od}) &= 310,65 \, ^{\circ}C \end{split}
```

 i_{o_vvst} ... entalpie kondenzátu na vstupu do odplyňováku (O) [kJ/kg], p_{o_od} ... tlak odběrové páry pro O na výstupu z odběru [bar], i_{o_iz} ... entalpie odběrové páry pro O při izoentropické expanzi [kJ/kg], h_{o_iz} ... entalpický spád v odběru do O při izoentropické expanzi [kJ/kg], h_{o_sk} ... skutečný entalpický spád v odběru do O [kJ/kg], i_{o_od} ... entalpie odběrové páry pro O na výstupu z odběru [kJ/kg], t_{o_od} ... teplota odběrové páry pro O na výstupu z odběru [°C],

 $t_{o_vst} \ldots$ teplota odběrové páry na vstupu do O [°C].

2.7.2.2 Parametry NTO

NTO jsou voleny s kaskádováním zkondenzované páry do níže položeného NT-ohříváku. Je využito podchlazovačů výstupního kondenzátu, srážeč přehřátí není zařazen u žádného z NTO, z důvodu nízkých parametrů páry v odběrech, nízkého přehřátí páry.

Na základě konzultace byl zvolen koncový rozdíl teploty v NTO δt_{NTO1} , $\delta t_{NTO2,3}$ a v podchlazovači δt_p , účinnost teplosměnné plochy nízkotlakých ohříváků η_{NTO} . Hodnoty těchto volených parametrů jsou uvedeny v podkapitole 2.1.2. Schéma NTO se vstupními, výstupními parametry a průběhy teplot je zobrazeno na obr. 10.

<u>NTO3:</u>

$$t_{NTO3_s} = t_{NTO3_vy_{st}} + \delta t_{NTO2,3}$$

$$t_{NTO3_s} = 147,86 + 3 = 150,86 °C$$

$$p_{NTO3_s}(t_{NTO3_s}) = 4,8713 bar$$

$$i_{NTO3_vy_{st}} = c_p \cdot t_{NTO2_vy_{st}}$$

$$i_{NTO3_vy_{st}} = 4,187 \cdot 109,34 = 457,78 kJ / kg$$

$$i_{NTO3_vy_{st}} = 4,187 \cdot 147,86 = 619,07 kJ / kg$$

$$p_{NTO3_od} = p_{NTO3_s} \cdot (1 + \varsigma_{pp})$$

$$p_{NTO3_od} = 4,8713 \cdot (1 + 0,045) = 5,0905 bar$$

$$i_{NTO3_iz}(p_{NTO3_od}, s_3') = 2746,94 kJ / kg$$

$$h_{NTO3_iz} = i_3 - i_{NTO3_iz}$$

$$h_{NTO3_iz} = 3211,36 - 2746,94 = 338,93 kJ / kg$$

$$h_{NTO3_sk} = h_{NTO3_iz} \cdot \eta_{ST-NT}$$

$$h_{NTO3_sk} = 338,93 \cdot 0,88 = 298,26 kJ / kg$$

$$i_{NTO3_od} = 3211,36 - 298,26 = 2913,10 kJ / kg$$

$$t_{NTO3_od} \left(p_{NTO3_od}, i_{NTO3_od} \right) = 227,17 \circ C$$

$$t_{NTO3_vst} \left(p_{NTO3s}, i_{NTO3_od} \right) = 226,74 \circ C$$

$$t_{NTO3p} = t_{NTO2_vyst} + \delta t_p$$

$$t_{NTO3p} = 109,34 + 10 = 119,34 \,^{\circ}C$$

$$i_{NTO3p} = c_p \cdot t_{NTO3p}$$

$$i_{NTO3p} = 4,187 \cdot 119,34 = 499,65 \, kJ \,/ \, kg$$

t_{NTO3s} ... teplota odběrové páry na mezi sytosti na vstupu do NTO3 [°C], p_{NTO3s} ... tlak odběrové páry na mezi sytosti na vstupu do NTO3 [bar], ivTO1 vst ... entalpie kondenzátu na vstupu do NTO3 [kJ/kg], ivto1 výst ... entalpie kondenzátu na výstupu z NTO3 [kJ/kg], p_{NTO3 od} ... tlak odběrové páry pro NTO3 na výstupu z odběru [bar], i_{NTO3 iz} ... entalpie odběrové páry pro NTO3 při izoentropické expanzi [kJ/kg], h_{NTO3 iz} ... entalpický spád v odběru NTO3 při izoentropické expanzi [kJ/kg], h_{NTO3} sk ... skutečný entalpický spád v odběru NTO3 [kJ/kg], i_{NTO3 od} ... entalpie odběrové páry pro NTO3 na výstupu z odběru [kJ/kg], t_{NTO3 od} ... teplota odběrové páry pro NTO3 na výstupu z odběru [°C], t_{NTO3 vst} ... teplota odběrové páry na vstupu do NTO3 [°C], t_{NTO3 p}... teplota kondenzátu odběrové páry za podchlazovačem NTO3 [°C], i_{NTO3 p}... entalpie kondenzátu odběrové páry za podchlazovačem NTO3 [kJ/kg].

Popis jednotlivých veličin vystupujících ve výpočtu parametrů NTO2 a NTO1 je analogický k výpočtu parametrů NTO3.

NTO2:

$$t_{NTO2s} = t_{NTO2_vyst} + \delta t_{NTO2,3}$$

$$t_{NTO2s} = 109,34 + 3 = 112,34 \,^{\circ}C$$

$$p_{NTO2s} (t_{NTO2s}) = 1,5499 \,bar$$

$$i_{NTO2_vst} = c_p \cdot t_{NTO1_vyst}$$

$$i_{NTO2_vst} = 4,187 \cdot 86,12 = 360,58 \,kJ \,/\,kg$$

$$i_{NTO2_vyst} = c_p \cdot t_{NTO2_vyst}$$

$$i_{NTO2_vyst} = 4,187 \cdot 109,34 = 457,78 \,kJ \,/\,kg$$

$$p_{NTO2_od} = p_{NTO2s} \cdot (1 + \varsigma_{pp})$$

$$p_{NTO2_od} = 1,5499 \cdot (1 + 0,045) = 1,6196 \,bar$$

 $i_{_{NTO2_iz}}(p_{_{NTO2_od}},s_3') = 2694,60 \, kJ \, / \, kg$ $h_{NTO2_iz} = i_3 - i_{NTO2_iz}$ $h_{_{NTO2_iz}} = 3211,36 - 2694,60 = 557,17 \, kJ / kg$ $h_{NTO2_sk} = h_{NTO2_iz} \cdot \eta_{ST-NT}$ $h_{NTO2_sk} = 557,17.0,88 = 490,31 \, kJ / kg$ $i_{NTO2_od} = i_3 - h_{NTO2_sk}$ $i_{NTO2_od} = 3211,36 - 490,31 = 2721,05 \, kJ / kg$ $t_{_{NTO2_od}} \left(p_{_{NTO2_od}} \text{, } i_{_{NTO2_od}} \right) = 125,25 \text{ }^{\circ}C$ $t_{_{NTO2_vst}}(p_{_{NTO2s}}, i_{_{NTO2_od}}) = 124,91 \ ^{\circ}C$

$$t_{NTO2p} = t_{NTO1_vyst} + \delta t_p$$

$$t_{NTO2p} = 86,12 + 10 = 96,12 \ ^{\circ}C$$

$$i_{NTO2p} = c_p \cdot t_{NTO2p}$$

$$i_{NTO2p} = 4,187 \cdot 96,12 = 402,45 \ kJ / kg$$

NTO1:

$$\begin{split} t_{NTO1s} &= t_{NTO1_vyst} + \delta t_{NTO1} \\ t_{NTO1s} &= 86,12 + 5 = 91,12 \ ^{\circ}C \\ p_{NTO1s} \left(t_{NTO1s} \right) &= 0,7322 \ bar \\ i_{NTO1_vst} &= c_p \cdot t_{KPP} \\ i_{NTO1_vst} &= 4,187 \cdot 43,62 = 182,64 \ kJ \ / \ kg \\ i_{NTO1_vyst} &= c_p \cdot t_{NTO1_vyst} \\ i_{NTO1_vyst} &= 4,187 \cdot 86,12 = 360,58 \ kJ \ / \ kg \\ p_{NTO1_od} &= p_{NTO1s} \cdot \left(1 + \zeta_{pp} \right) \\ p_{NTO1_od} &= 0,7322 \cdot \left(1 + 0,045 \right) = 0,7652 \ bar \\ i_{NTO1_iz} \left(p_{NTO1_od} \cdot s_3 \) = 2661,35 \ kJ \ / \ kg \\ h_{NTO1_iz} &= 3211,36 - 2661,35 = 680,13 \ kJ \ / \ kg \\ h_{NTO1_sk} &= h_{NTO1_iz} \cdot \eta_{ST-NT} \\ h_{NTO1_sk} &= 680,13 \cdot 0,88 = 598,51 \ kJ \ / \ kg \\ i_{NTO1_od} &= 3211,36 - 598,51 = 2612,85 \ kJ \ / \ kg \\ t_{NTO1_od} \left(p_{NTO1_od} \cdot i_{NTO1_od} \right) &= 92,29 \ ^{\circ}C \\ t_{NTO1_vst} \left(p_{NTO1_od} \cdot i_{NTO1_od} \right) &= 91,12 \ ^{\circ}C \end{split}$$

$$t_{NTOIp} = t_{KPP} + \delta t_p$$

$$t_{NTOIp} = 43,62 + 10 = 53,62 \ ^{\circ}C$$

$$i_{NTOIp} = c_p \cdot t_{NTOIp}$$

$$i_{NTOIp} = 4,187 \cdot 53,62 = 224,51 \ kJ \ / \ kg$$

Souhrn vypočtených parametrů jednotlivých NTO na trase NT-regenerace, které byly výše uvedeným výpočtem stanoveny, jsou uvedeny v tab. 7.

	veličiny	NTO3	NTO2	NTO1
	t [°C]	109,33	86,12	43,62
napájecí voda vstup	p [bar]	10,40	10,61	10,83
	i [kJ/kg]	457,78	360,58	182,64
	t [°C]	147,86	109,33	86,12
napájecí voda výstup	p [bar]	10,18	10,40	10,61
	i [kJ/kg]	619,07	457,78	360,58
	t [°C]	226,74	124,91	91,12
pára vstup	p [bar]	4,87	1,55	0,73
	i [kJ/kg]	2913,10	2721,05	2612,85
	t [°C]	227,17	125,25	92,29
pára odběr	p [bar]	5,09	1,62	0,77
	i [kJ/kg]	2913,10	2721,05	2612,85
1 1 4 4 4	t [°C]	119,33	96,12	53,62
Konuenzat vystup	i [kJ/kg]	499,65	402,45	224,51

Tab. 7 Souhrn vypočtených parametrů NTO

2.8 Výpočet průtokového množství páry

Výpočtu celkového průtokového množství páry potřebného pro dosažení zadaného výkonu předchází určení jednotlivých odběrových množství pro regeneraci. Při tomto výpočtu se vychází z rovnic tepelné rovnováhy pro jednotlivé ohříváky, z bilančních rovnic. Při sestavování tepelných bilancí je uvažováno s jednotkovým množstvím na vstupu do T.

2.8.1 Bilanční rovnice

2.8.1.1 Množství páry pro VTO2

Obr. 12 Schéma VTO2 pro tepelnou bilanci

$$y_{VTO2} \cdot (i_{VTO2_od} - i_{VTO2p}) \cdot \eta_{VTO} = (1 + y_D) \cdot (i_{NV} - i_{VTO1_vyst}), \qquad (2.12)$$

Kde

y_{VTO2} ... průtokové množství páry pro odběr do VTO2 [-].

$$y_{VTO2} = \frac{(1+y_D) \cdot (i_{NV} - i_{VTO1_vy_{st}})}{(i_{VTO2_od} - i_{VTO2_p}) \cdot \eta_{VTO}}$$
$$y_{VTO2} = \frac{(1+0.03) \cdot (1025.82 - 890.43)}{(2907.78 - 932.30) \cdot 0.98} = 0.07203$$

2.8.1.2 Množství páry pro VTO1

Obr. 13 Schéma VTO1 pro tepelnou bilanci

$$\eta_{VTO} \cdot \left[y_{VTOI} \cdot \left(i_{VTOI_od} - i_{VTOI_p} \right) + y_{VTO2} \cdot \left(i_{VTO2p} - i_{VTOI_p} \right) \right] = (1 + y_D) \cdot \left(i_{VTOI_v j s t} - i_{NC} \right),$$
(2.13)

y_{VTO1} ... průtokové množství páry pro odběr do VTO1 [-].

$$y_{VTOI} = \frac{\frac{1}{\eta_{VTO}} \cdot (1 + y_D) \cdot (i_{VTOI_vyst} - i_{NC}) - y_{VTO2} \cdot (i_{VTO2p} - i_{VTO1p})}{(i_{VTOI_od} - i_{VTO1p})}$$
$$y_{VTOI} = \frac{\frac{1}{0.98} \cdot (1 + 0.03) \cdot (890.43 - 778.68) - 0.07203 \cdot (932.30 - 805.58)}{(2805.15 - 805.58)} = 0.06218$$

2.8.1.3 Množství páry pro odplyňovák

Obr. 14 Schéma odplyňováku (NN) pro tepelnou bilanci

$$\eta_{o} \cdot \left[y_{o} \cdot \left(i_{O_{od}} - i_{o}' \right) + \left(y_{VTO2} + y_{VTO1} \right) \cdot \left(i_{VTO1p} - i_{o}' \right) \right] = \\ = \left[\left(1 - y_{VTO2} - y_{VTO1} - y_{o} \right) + y_{D} \right] \cdot \left(i_{o}' - i_{NTO3_{vyst}} \right),$$
(2.14)

Substituce:

$$A = (1 - y_{VTO2} - y_{VTO1} - y_o) + y_D$$

$$A = 0,84103$$

Kde

- yo ... průtokové množství páry pro odběr do odplyňováku [-],
- A ... člen vyjadřující množství kondenzátu proudící na trase K O (NN) [-].

$$y_{o} = \frac{A \cdot (i_{o}' - i_{NTO3_vyst}) - \eta_{o} \cdot (y_{VTO2} + y_{VTO1}) \cdot (i_{VTO1p} - i_{o}')}{\eta_{o} \cdot (i_{o_od} - i_{o}')}$$

$$y_o = \frac{0,84103. (763,19 - 605,98) - 0,98 \cdot 0,12700. (805,28 - 763,19)}{0,98. (3074,40 - 763,19)}$$
$$y_o = 0,05061$$

2.8.1.4 Množství páry pro NTO3

Obr. 15 Schéma NTO3 pro tepelnou bilanci

$$\eta_{NTO} \cdot y_{NTO3} \cdot (i_{NTO3_od} - i_{NTO3p}) = A \cdot (i_{NTO3_vyst} - i_{NTO2_vyst}) , \qquad (2.15)$$

Kde

y_{NTO3} ... průtokové množství páry pro odběr do NTO3 [-].

$$y_{_{NTO3}} = \frac{A \cdot \left(i_{_{NTO3_vyst}} - i_{_{NTO2_vyst}}\right)}{\eta_{_{NTO}} \cdot \left(i_{_{NTO3_od}} - i_{_{NTO3p}}\right)}$$

$$y_{NTO3} = \frac{0,84103 \cdot (592,28 - 443,32)}{0,98 \cdot (2913,10 - 485,19)} = 0,05629$$

2.8.1.5 Množství páry pro NTO2

Obr. 16 Schéma NTO2 pro tepelnou bilanci

$$\eta_{NTO} \cdot \left[y_{NTO2} \cdot \left(i_{NTO2_od} - i_{NTO2p} \right) + y_{NTO3} \cdot \left(i_{NTO3p} - i_{NTO2p} \right) \right] = A \cdot \left(i_{NTO2_vyst} - i_{NTO1_vyst} \right),$$

$$(2.16)$$

y_{NTO2} ... průtokové množství páry pro odběr do NTO2 [-].

$$y_{NTO2} = \frac{\frac{A \cdot (i_{NTO2_vyst} - i_{NTO1_vyst})}{\eta_{NTO}} - y_{NTO3} \cdot (i_{NTO3p} - i_{NTO2p})}{i_{NTO2_od} - i_{NTO2p}}$$

$$y_{NTO2} = \frac{\frac{0,84103 \cdot (443,32 - 307,13)}{0,98} - 0,05562 \cdot (485,19 - 349,00)}{2721,05 - 349,00}$$

 $y_{_{NTO2}} = 0,03333$

2.8.1.6 Množství páry pro NTO1

Obr. 17 Schéma NTO1 pro tepelnou bilanci

$$\eta_{NTO} \cdot \left[y_{NTOI} \cdot \left(i_{NTOI_od} - i_{NTOI_p} \right) + \left(y_{NTO3} + y_{NTO2} \right) \cdot \left(i_{NTO2p} - i_{NTOI_p} \right) \right] = = A \cdot \left(i_{NTOI_vyst} - i_{KKP} \right),$$
(2.17)

Kde

y_{NTO1} ... průtokové množství páry pro odběr do NTO1 [-].

$$y_{NTO1} = \frac{\frac{A \cdot (i_{NTO1_vyst} - i_{KKP})}{\eta_{NTO}} - (y_{NTO3} + y_{NTO2}) \cdot (i_{NTO2p} - i_{NTO1p})}{i_{NTO1_od} - i_{NTO1p}}$$

$$y_{\scriptscriptstyle NTOI} = \frac{\frac{0,84103 \cdot \left(307,13 - 182,64\right)}{0,98} - 0,10182 \cdot \left(349,00 - 224,51\right)}{2612,85 - 224,51}$$

$$y_{NTO1} = 0,05608$$

2.8.2 Průtokové množství páry proudící oběhem

Množství páry na vstupu do turbíny je dáno vztahem:

$$m_p = \frac{P_{el}}{a_{celk} \cdot \eta_{mech} \cdot \eta_G}, \qquad (2.18)$$

$$a_{celk} = a_{VT} + a_{ST-NT}$$
, (2.19)

Kde

m_p ... celkové průtokové množství páry proudící oběhem [kg/s],

acelk ... celková měrná práce [kJ/kg],

avT(ST-NT) ... měrná práce vykonaná VT (ST-NT) dílem [kJ/kg].

Pro výpočet měrných prací VT a ST-NT dílu je třeba vyčíslit jednotlivé entalpické spády mezi odběrovými místy na turbíně, jejich souhrn je uveden v tab. 8.

$$\begin{aligned} h_{1} &= i_{1} - i_{VTO2_od} \\ h_{1} &= 3067, 42 - 2907, 78 = 159, 64 \text{ kJ / kg} \\ h_{2} &= i_{VTO2_od} - i_{VTO1_od} \\ h_{2} &= 2907, 78 - 2805, 15 = 102, 63 \text{ kJ / kg} \\ h_{3} &= i_{3} - i_{O_od} \\ h_{3} &= 3211, 36 - 3074, 40 = 136, 96 \text{ kJ / kg} \\ h_{4} &= i_{o} - i_{NTO3_od} \\ h_{4} &= 3074, 40 - 2913, 10 = 161, 30 \text{ kJ / kg} \\ h_{5} &= i_{NTO3_od} - i_{NTO2_od} \\ h_{5} &= 2913, 10 - 2721, 05 = 192, 05 \text{ kJ / kg} \\ h_{6} &= i_{NTO2_od} - i_{NTO1_od} \\ h_{6} &= 2721, 05 - 2612, 85 = 108, 20 \text{ kJ / kg} \\ h_{7} &= i_{NTO1_od} - i_{4} \\ h_{7} &= 2612, 85 - 2346, 72 = 266, 13 \text{ kJ / kg} \end{aligned}$$

Kde

 $h_1 \dots$ entalpický spád mezi vstupem do VT dílu a odběrem pro VTO2 [kJ/kg],

h₂ ... entalpický spád mezi odběrem pro VTO2 a odběrem pro VTO1 [kJ/kg],

- h3 ... entalpický spád mezi vstupem do ST-NT dílu a odběrem pro odpyňovák [kJ/kg],
- h4 ... entalpický spád mezi odběrem pro odplyňovák a odběrem pro NTO3 [kJ/kg],
- h5 ... entalpický spád mezi odběrem pro NTO3 a odběrem pro NTO2 [kJ/kg],
- $h_{6}\ldots$ entalpický spád mezi odběrem pro NTO2 a odběrem pro NTO1 [kJ/kg],
- $h_7\ldots$ entalpický spád mezi odběrem pro NTO1 a výstupem z ST-NT dílu [kJ/kg].

Tab. 8 Vypočtené entalpické spády

h1 [kJ/kg]	159,64
h2 [kJ/kg]	102,63
h3 [kJ/kg]	136,96
h4 [kJ/kg]	161,30
h5 [kJ/kg]	192,05
h6 [kJ/kg]	108,20
h7 [kJ/kg]	266,13

Dále je potřeba určit množství proudící páry při průchodu jednotlivými díly turbíny, vliv odběrů pro regeneraci. Souhrn těchto hodnot s uvedením substituce je uveden v tab. 9.

Tab. 9 Souhrn vypočtených jednotkových průtoků a jejich substituce

	y [-]	substituce
1 - y _{VTO2} =	0,92797	Y _A
1 - y _{vto2} - y _{vto1} =	0,86579	Y _B
$1 - y_{VTO2} - y_{VTO1} - y_O =$	0,81518	Y _C
$1 - y_{VTO2} - y_{VTO1} - y_0 - y_{NTO3} =$	0,75889	YD
1 - y _{vto2} - y _{vto1} - y ₀ - y _{nto3} - y _{nto2} =	0,72557	Y _E
$1 - y_{VTO2} - y_{VTO1} - y_0 - y_{NTO3} - y_{NTO2} - y_{NTO1} =$	0,66949	Y _F

Měrná práce turbíny je dána součtem dilčích měrných prací vztažených k jednotlivým odběrům. Obecně platí vztah:

$$a = y \cdot h , \qquad (2.20)$$

Kde

a ... měrná práce [kJ/kg],

- y ... jednotkové průtočné množství [-],
- h ... entalpický spád [kJ/kg].

$$\begin{split} a_{VT} &= y_{celk} \cdot h_l + y_A \cdot h_2 \\ a_{VT} &= 1 \cdot 159,64 + 0,92797 \cdot 102,63 = 254,87 \ kJ \ / \ kg \\ a_{ST-NT} &= y_B \cdot h_3 + y_C \cdot h_4 + y_D \cdot h_5 + y_E \cdot h_6 + y_F \cdot h_7 \\ a_{ST-NT} &= 0,86579 \cdot 136,96 + 0,81518 \cdot 161,30 + \\ &+ 0,75889 \cdot 192,05 + 0,72557 \cdot 108,20 + 0,66949 \cdot 266,13 \\ a_{ST-NT} &= 652,37 \ kJ \ / \ kg \\ a_{celk} &= 254,87 + 652,49 = 907,37 \ kJ \ / \ kg \end{split}$$

$$m_p = \frac{120000}{907,37 \cdot 0,995 \cdot 0,985} = 134,940 \text{ kg/s} = 485,782 \text{ t/h}$$

Na základě znalosti celkového průtočného množství páry turbínou jsou dopočítány jednotlivá množství proudící jak díly, tak i regeneračním okruhem. Výsledné hodnoty jsou uvedeny v tab. 10.

Parní (vodní) úsek trasy	m_p [kg/s]
Množství do VT dílu	134,940
I. Odběr do VTO2	9,720
II. Odběr do VTO1	8,390
Množství do ST-NT dílu	116,829
III. Odběr do odplyňováku	6,829
IV. Odběr do NTO3	7,595
V. Odběr do NTO2	4,497
VI. Odběr do NTO1	7,567
Množství do kondenzátoru	90,341
Množství do KČ	114,048
Množství dodatkové vody	4,048
Množství kondenzátu za VTO1	18,110
Množství kondenzátu za NTO1	19,660

Tab. 10 Vypočtená průtočná množství v jednotlivých úsecích oběhu

2.9 Výkon turbíny

Výpočtem výkonu turbíny na základě znalosti celkového průtočného množství páry ověříme správnost algoritmu, který byl aplikován pro výpočet tepelného schéma díky zadanému výstupnímu výkonu na svorkách generátoru.

Pro výpočet je třeba určit technické práce VT a ST-NT dílu:

$$A_{t_{v_{T}}} = m_{p} \cdot (y_{celk} \cdot h_{l} + y_{A} \cdot h_{2}), \qquad (2.21)$$

Kde

At VT ... technická práce VT dílu [kW].

$$A_{t VT} = 134,940 \cdot (1 \cdot 159,64 + 0.92797 \cdot 102,63) = 34\,392,5\,kW \square 34,393\,MW$$

$$A_{t_{_ST-NT}} = m_p \cdot \left(y_B \cdot h_3 + y_C \cdot h_4 + y_D \cdot h_5 + y_E \cdot h_6 + y_F \cdot h_7 \right), \qquad (2.22)$$

Kde

At_ST-NT ... technická práce ST-NT dílu [kW].

$$A_{t_ST-NT} = 134,940 \ . \begin{pmatrix} 0,86579 \ . \ 136,96 + \ 0,81518 \ . \ 161,30 \\ + \ 0,75889 \ . \ 192,05 + \ 0,72557 \ . \ 108,20 + \ 0,66949 \ . \ 266,13 \end{pmatrix}$$

$$A_{t_{ST-NT}} = 88\ 047, 2\ kW \ \square \ 88,047\ MW$$

$$A_{t} = A_{t_{v}VT} + A_{t_{v}ST-NT} , \qquad (2.23)$$

At ... celkový výkon turbíny [MW].

$$A_t = 34,393 + 88,047 = 122,440 \ MW$$

Z výsledné hodnoty vypočteného celkového výkonu turbosoustrojí je ověřena správnost algoritmu výpočtu tepelného schéma oběhu, jelikož odchylka od zadané hodnoty výkonu TG120MW je zanedbatelná, způsobená především zaokrouhlováním výsledných hodnot, volbou konstant na základě praxí ověřených stavů a neznalostí množství páry uniklé ucpávkami (bude v další fázi výpočtu vyčísleno). Výsledná odchylka, navýšení výkonu je ale požadováno z důvodu ložiskových ztrát i dalšího snížení o ztrátový výkon spojený s únikem páry ucpávkami jednotlivých komponent turbíny. V průběhu dalšího výpočtu budou v rámci kapitol tyto ztráty vyčísleny, a tím dojde ke zpřesnění počátečního návrhu.

Tepelné schéma oběhu turbíny v navrhovaném stavu, s vyobrazením příslušných vypočtených hodnot pro dílčí úseky oběhu, je uvedeno v Příloze A.

3 Průtočná část turbíny

Hodnoty potřebné pro návrh průtočné části turbíny byly vypočteny v rámci kapitoly 2. K návrhu bylo využito výpočtových prostředků, programů Turbina-Delphi a ZLOP2. Základním programem pro výpočet průtočné části je Turbina-Delphi, který využívá celé řady výpočtových vztahů (viz 3.1) a předpokladu ideální rovnotlaké přeměny ve stupni.

Vstupní hodnoty zadávané do toho programu jsou:

- n ... otáčky turbíny [1/min],
- *p*₁ ... vstupní tlak média [MPa],
- *t*₁ ... vstupní teplota média [°C],
- návrhové hodnoty stupně $(u/c_0)_s$ [-], H_{iz} i [kJ/kg], p_2 [MPa],
- volba ostřiku parciální nebo totální,
- volba typu stupně klasický nebo Curtisův,
- *m_P* ... hmotnostní průtokové množství [kg/s],
- *D_S* ... střední průměr stupně [*m*],
- $(\alpha_1)_p \dots$ úhel absolutní výstupní rychlosti z příslušné rozváděcí mříže [°],
- $D_p \dots$ patní průměr stupně [m].

Stupně byly navrhovány především podle voleného poměru $\left(\frac{u}{c_0}\right)$, jelikož má být ale

při návrhu dodržován konstantní poměr $\left(\frac{u}{c_0}\right)_{r}$, musí být volený parametr přepočten:

$$\left(\frac{u}{c_0}\right)_p = \left(\frac{u}{c_0}\right)_s \cdot \frac{D_p}{D_s}, \quad (3.1)$$

Optimální poměr byl volen dle daného rozmezí:

$$\left(\frac{\mathrm{u}}{\mathrm{c}_{0}}\right)_{\mathrm{p_opt}} = 0,45 \div 0,5,$$

přičemž praxí ověřená hodnota je 0,475 (starší typ lopatkování), při které nabývá vnitřní termodynamická účinnost stupně svých maximálních hodnot.

Druhým důležitým návrhovým parametrem je výstupní tlak média ze stupně p₂, který vychází z příslušných výpočtů tlaků v odběrech pro regeneraci (viz 2.7) a z vypočteného koncového protitlaku.

Výstupem z programu je celá řada parametrů stupně (termodynamické veličiny, průměr stupně, délky rozváděcích lopatek, vnitřní termodynamická účinnost dílčích stupňů i celková, výkony jednotlivých stupňů, atd.).

Turbína byla volena jako rovnotlaká, s totálním ostřikem všech stupňů a s volbou optimálních délek lopatek z hlediska nejvyšší účinnosti. Omezujícími parametry byly nejmenší délka lopatky $L_P = 15 \text{ mm}$, rozumný počet stupňů z hlediska dodržení optimálních ložiskových vzdáleností daných konstrukcí turbíny a v neposlední řadě volba modulového typu posledních dvou stupňů ST-NT dílu. Dostupná modulová řada koncových lopatek poskytnuta firmou ŠKODA POWER A Doosan company nabývá hodnot od 1 do 8. Volba daného modulu je závislá na parametrech jak průtočné části, tak proudícího média. Základním vztahem pro orientaci v modulové řadě je:

$$c_{2ax} = \frac{Q_{v_nom}}{F}$$
, (3.2)

Kde

c2ax ... axiální složka absolutní výstupní rychlosti ze stupně [m/s],

 Q_{V_nom} ... nominální průtokový objem páry stupněm $[m^3/s]$,

F ... plocha výstupního mezikruží koncového stupně [m²].

Na základě konzultace byl zvolen modul **M-4**, který má pevně stanovené některé z návrhových veličin (viz tab. 11). Je cílem se těmto hodnotám v návrhu průtočné části co nejvíce přiblížit, a tak využít aplikace dvou posledních stupňů dle daného modulu.

Tab. 11 Parametry koncových stupňů modulu 4 (ŠKODA POWER)

Stupeň	D _p [mm]	L _{P_OL} [mm]	(u/c0) _p [-]	H _{iz} [kJ/kg]	$Q_{V_{nom}}[m^3/s]$	F [m^2]
NT _{n-1}	1600	460	$\approx 0,44$	163	-	-
NT _n	1600	840/852	≈ 0,437	165	1290	6,6

3.1 Výpočtové vztahy – Turbina-Delphi

<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
$u=\frac{\pi \cdot D_s \cdot n}{60},$	(3.3)
$c_{\scriptscriptstyle 0} = \sqrt{2000~.~H_{\scriptscriptstyle iz_i}}$,	(3.4)
$c_1 = \varphi \cdot c_0$,	(3.5)

$$i_{2iz} = i_1 - H_{iz_i}$$
, (3.6)

$$Z_{RL} = \left(1 - \varphi^2\right) \cdot H_{iz_i} , \qquad (3.7)$$

$$i_{RL_{-}i_{-}Z_{RL}} = i_{2iz} - Z_{RL} , \qquad (3.8)$$

$$L_{t} = \frac{m \cdot v_{RL}}{\pi \cdot D_{s} \cdot c_{l} \cdot \sin \alpha_{l} \cdot \varepsilon_{r}}, \qquad (3.9)$$

$$L_{opt} = \sqrt{\frac{\left(1 - \frac{u}{c_0}\right) \cdot D_s \cdot L_t}{1,26 \cdot n + 14,97 \cdot D_s \cdot \left(\frac{u}{c_0}\right)^2}},$$
(3.10)

Přemysl Epikaridis

$$\varepsilon = \frac{L_t}{L_{opt}} \cdot 100 , \qquad (3.11)$$

$$\frac{\left(1-\frac{u}{c_0}\right)\cdot\frac{u}{c_0}}{1.26\cdot n - u} \qquad (1-1)\left(u\right)^3, \qquad (3.12)$$

$$L_{red} = \frac{\left(\begin{array}{c} C_0 \right) \cdot C_0}{\left(1 - \frac{u}{c_0}\right) \cdot \frac{u}{c_0} \cdot \frac{L}{L_{opt}} + \frac{1,26 \cdot n}{D_s \cdot \varepsilon} \cdot \frac{u}{c_0} + 14,97 \cdot \left(\frac{1}{\varepsilon} - 1\right) \cdot \left(\frac{u}{c_0}\right)^3}, \quad (3.12)$$

$$D_p = D_s - L_p , \qquad (3.13)$$

$$D_{\check{s}} = D_s + L_p , \qquad (3.14)$$

$$\eta_{\infty} = 3,74 \cdot \left(1 - \frac{u}{c_0}\right) \cdot \frac{u}{c_0} , \qquad (3.15)$$

$$Z_{d} = 0.05 \cdot (1 - D_{s}) \cdot \frac{u}{c_{0}} , \qquad (3.16)$$

$$Z_L = \frac{0,0029}{L_p} \cdot \eta_{\infty} , \qquad (3.17)$$

$$Z_P = 0.0085 + \frac{0.0137}{D_s \cdot \varepsilon} \cdot \frac{u}{c_0} \cdot n , \qquad (3.18)$$

$$Z_{V} = \frac{0.0543}{\sin \alpha_{I}} \cdot \left(\frac{1}{\varepsilon} - I\right) \cdot \left(\frac{u}{c_{0}}\right)^{3}, \qquad (3.19)$$

$$Z_{t} = 2,595 \cdot \frac{D_{s}}{L_{t}} \cdot \left(\frac{u}{c_{0}}\right)^{3} \cdot \frac{1}{10^{3} \cdot \mu_{s} \cdot \pi \cdot \sin \alpha_{t}}, \qquad (3.20)$$

$$Z_{RZ} = 0,665 \cdot \left(\frac{1}{D_s}\right)^2 \,, \tag{3.21}$$

$$Z_x = (1 - x), \qquad (3.22)$$

$$Z_{vr} = 0.5 \cdot \frac{c_2^2}{2} , \qquad (3.23)$$

$$\eta_{TD_i} = \eta_{\infty} - \Sigma Z_i , \qquad (3.24)$$

$$H_{U\check{Z}_{i}} = H_{iz_{i}} \cdot \eta_{TD_{i}} , \qquad (3.25)$$

$$i_2 = i_1 - H_{U\check{Z}_{_i}}$$
, (3.26)

$$\eta_{TD} = \frac{\mathrm{H}_{\mathrm{U}\check{Z}}}{\mathrm{H}_{\mathrm{iz}}}, \quad \mathrm{H}_{\mathrm{U}\check{Z}} = \sum \mathrm{H}_{\mathrm{U}\check{Z}_{\mathrm{-}}\mathrm{i}}, \qquad (3.27)$$

$$A_{t} = \sum (m_{p_{-i}} \cdot H_{U\check{Z}_{-i}}), \qquad (3.28)$$

- u ... obvodová rychlost na středním průměru rozváděcího kola (RK) [m/s],
- c_0 ... absolutní rychlost na vstupu do RK [m/s],
- $c_1 \dots$ absolutní rychlost na výstupu z RK [m/s],
- ϕ ... ztrátový součinitel [-],
- Z_{RL} ... ztráta v rozváděcích lopatkách (RL) [kJ/kg],
- Lt ... totální délka RL [mm],
- $\epsilon_r \dots$ kontrakční součinitel zohledňující tloušťku výstupní hrany RL [-],
 - dané rozmezí pro volbu: $\varepsilon_r = 0.85 \div 0.88 \text{ (pro s} = 0.5 \text{ mm)}$,
- Lopt ... optimální délka RL [mm],
- ε ... parcielnost RL [%],
- L_{red} ... redukovaná délka RL [mm],
- η_{∞} ... účinnost nekonečně dlouhé lopatky [-],
- Z_d ... ztráta odlišným průměrem kola [-],
 - uvažuje se jen v případě, když platí $D_s < 1 \text{ m}$,
- Z_L ... ztráta konečnou délkou lopatky [-],
- Z_P ... ztráta parciálním ostřikem [-],
- Z_V ... ztráta ventilací neostříknutých RL [-],
- $Z_t \dots$ ztráta třením disku (bubnu) [-],
- Z_{RZ} ... ztráta rozvějířením [-],

- uvažuje se jen v případě, když platí $L/D \ge 0,1$,

Z_x ... ztráta vlhkostí páry [-],

- Zvr ... ztráta výstupní rychlostí [-],
- $\eta_{TD_i} \ldots$ vnitřní termodynamická účinnost stupně [-],

 $H_{U\check{Z}_{-}i}$... užitečný entalpický spád na stupeň [kJ/kg],

At ... celková technická práce [kW].

3.2 Návrh průtočné části VT dílu

Při návrhu byly navrženy tři možné varianty řešení, které se odlišují ve voleném poměru $(u/c_0)_p$ a patních průměrech jednotlivých stupňů D_{p_i} . V závislosti na těchto parametrech byl měněn i výstupní úhel absolutní rychlosti z RL α_1 , který nabývá hodnot z rozmezí $12^\circ \div 14^\circ$, ale lze volit i jinou hodnotu s vazbou na aktuální stupeň (dle konzultace).

3.2.1 Porovnání návrhových variant VT dílu

Vypočtené veličiny náležící k navrhovaným variantám jsou uvedeny v Příloze C.

Obr. 18 Graf závislosti účinnosti jednotlivých stupňů dle variant

Obr. 19 Graf celkové termodynamické účinnosti jednotlivých variant

Na základě konzultace a výsledků z jednotlivých vypočtených variant byla zvolena varianta číslo 3, které dosahuje nejvyšší vnitřní termodynamické účinnosti η_{TD} vr = 87,10%.

3.2.2 Lopatkový plán VT dílu – varianta 3

Varianta je tvořena 7 stupni s totálním ostřikem všech rozváděcích lopatek. Patní průměr prvního stupně byl zvolen na hodnotu $D_{p_1} = 1040 \text{ mm}$ a poměr $(u/c_0)_p = 0,470$. První stupeň je jako jediný diskového typu, zbývající stupně jsou typu bubnového s $D_{p_2-7} = 880 \text{ mm}$, poměrem $(u/c_0)_p$ v rozmezí $0,465 \div 0,481$.

Konstantní poměr u těchto stupňů nelze zachovat z důvodu dodržení tlaku v odběru pro VTO2 a výstupního tlaku z VT dílu (viz 2.2.2, 2.7.1.1). V první fázi návrhu lopatkového plánu se došlo k délce lopatky prvního stupně $L_{p_1} = 20,7$ mm a posledního stupně $L_{p_{2}} = 64,3$ mm, všechny z použitých lopatek jsou válcového typu (výpočetní list uveden v Příloze D).

3.3 Návrh průtočné části ST-NT dílu

Při návrhu se vycházelo ze vstupních parametrů vypočtených (viz 2.3, 2.7.2), dále také z faktu, že vyvedení odběrů páry pro regeneraci lze provést nejméně po dvou stupních, výjimkou je odběr páry pro NTO1, který je proveden po jednom stupni (7. stupeň). Důvodem návrhu tohoto konstrukčního řešení jsou poslední dva stupně dílu, které jsou řešeny jako modulové a nelze mezi nimi odběr z konstrukčního hlediska vyvést.

Při návrhu byly postupně navrženy tři možné varianty řešení, které se odlišují ve voleném poměru $(u/c_0)_p$ a patních průměrech jednotlivých stupňů D_{p_i} , které zachovávají postupný kuželový tvar průtočné plochy. V závislosti na těchto volených parametrech byl měněn i výstupní úhel absolutní rychlosti z RL α₁, který nabývá obvyklých hodnot z rozmezí $12^{\circ} \div 14^{\circ}$, ale lze volit i jinou hodnotu s vazbou na aktuální stupeň (dle konzultace).

3.3.1 Porovnání návrhových variant ST-NT dílu

Vypočtené veličiny náležící k navrhovaným variantám jsou uvedeny v Příloze E.

Obr. 20 Graf závislosti účinnosti jednotlivých stupňů dle variant

Obr. 21 Graf celkové termodynamické účinnosti jednotlivých variant

Na základě konzultace a dosažených výsledků byla zvolena varianta číslo 1, která dosahuje druhé nejvyšší vnitřní termodynamické účinnosti $\eta_{TD_ST-NT} = 86,81\%$, ale ve srovnání s návrhovou variantou číslo 3 vychází vhodnější vyložení průtočné části.

3.3.2 Lopatkový plán ST-NT dílu – varianta 1

Varianta je tvořena 9 stupni s totálním ostřikem všech rozváděcích lopatek. Patní průměr 1. stupně volen $\mathbf{D}_{\mathbf{p}_{-1}} = \mathbf{1160}$ mm, který se v následujících stupních navyšuje o hodnotu $\Delta \mathbf{D}_{\mathbf{p}} = \mathbf{60}$ mm, přičemž koncové stupně mají patní průměr přizpůsobený tak, aby vyhovovaly parametrům odběrových míst pro regeneraci a rozměrům modulové řady. Poměr $(\mathbf{u}/c_0)_p$ byl udržován v rozmezí 0,476 ÷ 0,478, u koncových dvou stupňů, kde z důvodu dodržení výstupního tlaku (viz 2.3.2) je tento parametr roven 0,462 u 8. stupně a 0,419 u posledního 9. stupně. V první fázi návrhu lopatkového plánu se došlo k délce lopatky prvního stupně $\mathbf{L}_{\mathbf{p}_{-1}} = \mathbf{73,6}$ mm a posledního stupně $\mathbf{L}_{\mathbf{p}_{-10}} = \mathbf{780}$ mm. Lopatky stupňů 1 ÷ 5 jsou válcového typu a zbylé zborceného typu (výpočetní list uveden v Příloze F), ty musely být následně přepočteny příslušným nadstavbovým programem, ZLOP2, pro tento typ lopatkové mříže.

3.4 Volba profilů lopatek

Pro návrh správného profilu rozváděcích (RL) a oběžných (OL) lopatek je nutná znalost rychlostních trojúhelníků a Machových čísel. Po zjištění těchto parametrů lze zvolit vhodný profil z katalogů (viz Příloha G), tento profil nám zajistí správný směr absolutní výstupní rychlosti z OL, tento úhel by měl mít hodnotu $\alpha_2 \approx 90^\circ$. Volba profilů je nezbytná z důvodu navazujícího výpočtu namáhání RL a OL (viz 4.1).

3.4.1 Rychlostní trojúhelníky lopatek

Výpočtem rychlostních trojúhelníku získáváme velikost relativních a absolutních rychlostí, jejich složek a příslušných úhlů. Je zachována zásada, že při výpočtů parametrů typu válcových lopatek jsou brány hodnoty na středním průměru, zatímco u typu zborceného na patním průměru. Volené veličiny, které jsou k výpočtu potřebné jsou:

- $R_p \dots$ reakce na patě lopatky $[-] \rightarrow R_p = 0,03$,
- φ ... průtokový ztrátový součinitel [-] $\rightarrow \varphi = 0.960 \div 0.980$.

Parametrem pro volbu profilů lopatek je vypočtený úhel β_1 (viz vzorec 3.36). Každý z profilů má zadané rozmezí pro volbu úhlu β_2 , ten volíme tak, aby úhel α_2 absolutní rychlosti na výstupu z OL se blížil hodnotě 90° (dovolené rozmezí rozsahu úhlů je $70^{\circ} \div 110^{\circ}$).

Obr. 22 Rychlostní trojúhelníky turbínového stupně; zdroj [18]

3.4.1.1 Výpočtové vztahy

$$R_{s} = 1 - \left(1 - R_{p}\right) \cdot \left(\frac{D_{p}}{D_{s}}\right)^{2 \cdot \varphi^{2} \cdot \cos^{2} \alpha_{l}} , \qquad (3.29)$$

$$u = \frac{\pi \cdot D_s \cdot n}{60} , \qquad (3.30)$$

$$c_1 = \varphi \cdot \sqrt{2000 \cdot (1 - R_s) \cdot h_0} , \qquad (3.31)$$

$$c_{Iax} = w_{Iax} = c_I \cdot \sin \alpha_I , \qquad (3.32)$$

$$c_{1u} = c_1 \cdot \cos \alpha_1 , \qquad (3.33)$$

$$w_{I} = \sqrt{w_{Iu}^{2} - w_{Iax}^{2}} , \qquad (3.34)$$

$$w_{1u} = c_{1u} - u , \qquad (3.35)$$

$$\beta_{I} = \arcsin \frac{w_{Iax}}{w_{I}}, \qquad (3.36)$$

$$\psi = -1,0714 \cdot 10^{-5} \cdot (\beta_1 + \beta_2)^2 + 0,002964 \cdot (\beta_1 + \beta_2) + 0,7507$$
(3.37)

$w_2 = \psi \cdot \sqrt{w_1^2 + R_s \cdot 2000 \cdot h_0} ,$	(3.38)
$w_{2ax} = w_2 \cdot \sin \beta_2 ,$	(3.39)
$w_{2u} = w_2 \cdot \cos\beta_2 ,$	(3.40)

$$c_{2ax} = w_{2ax}$$
, (3.41)

$$c_{2u} = w_{2u} - u , \qquad (3.42)$$

$$c_2 = \sqrt{c_{2ax}^2 + c_{2u}^2} , \qquad (3.43)$$

 $R_s \dots$ reakce na středním průměru [-],

 ϕ ... ztrátový součinitel [-],

 $\alpha_2 \dots$ úhel absolutní výstupní rychlosti ze stupně [°],

c1... absolutní rychlost na výstupu z rozváděcích lopatek (RL) [m/s],

c1ax ... axiální složka absolutní rychlosti na výstupu z RL [m/s],

 $c_{1u}\ldots$ obvodová složka absolutní rychlosti na výstupu z RL [m/s],

w1 ... relativní rychlost na výstupu z RL [m/s],

w1ax ... axiální složka relativní rychlosti na výstupu z RL [m/s],

w1u... obvodová složka relativní rychlosti na výstupu z RL [m/s],

 $\beta_1 \dots$ úhel relativní rychlosti na výstupu z RL [°],

 $\beta_2 \dots$ úhel relativní rychlosti na výstupu z oběžných lopatek (OL) [°],

 ψ ... ztrátový součinitel otočení proudu v OL [-] (dle Samoljoviče – viz [1]),

w2 ... relativní rychlost na výstupu z OL [m/s],

w2ax ... axiální složka relativní rychlosti na výstupu z OL [m/s],

w_{2u}... obvodová složka relativní rychlosti na výstupu z OL [m/s],

 $c_2 \dots$ absolutní rychlost na výstupu z OL [m/s],

c2ax ... axiální složka absolutní rychlosti na výstupu z OL [m/s],

 $c_{2u}\ldots$ obvodová složka absolutní rychlosti na výstupu z OL [m/s].

3.4.1.2 Výpočet rychlostních trojúhelníků VT dílu

Potřebné hodnoty veličin pro výpočet rychlostních trojúhelníků VT dílu a samotné parametry charakterizující tyto trojúhelníky jsou uvedeny v tab. 12.

_	Stupeň						
Veličina	1	2	3	4	5	6	7
α_1 [°]	13,3	13,4	13,4	13,4	13,3	13,4	13,4
φ[-]	0,975	0,96	0,97	0,975	0,97	0,975	0,985
R_p [-]	0,030	0,030	0,030	0,030	0,030	0,030	0,030
R_s [-]	0,064	0,090	0,100	0,111	0,119	0,132	0,148
(1 - R _s) [-]	0,936	0,910	0,900	0,889	0,881	0,868	0,852

Tab. 12 Parametry rychlostních trojúhelníků VT dílu

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

c_1 [m/s]	327,74	269,19	270,48	273,48	262,32	261,74	261,16
c_1ax = w_1ax [m/s]	75,40	62,38	62,68	63,38	60,35	60,66	60,52
c_1u [m/s]	318,95	261,86	263,11	266,03	255,29	254,61	254,05
u [m/s]	166,61	143,38	144,18	145,08	145,88	147,06	148,31
w_1u [m/s]	152,34	118,48	118,93	120,95	109,41	107,55	105,74
w_1 [m/s]	169,97	133,90	134,44	136,55	124,95	123,48	121,83
β_1 [°]	26,3	27,8	27,8	27,7	28,9	29,4	29,8
β_2 [°]	22,5	22,5	22,5	22,5	22,5	22,5	22,5
$(\beta 1 + \beta 2) [^{\circ}]$	48,8	50,3	50,3	50,2	51,4	51,9	52,3
ψ[-]	0,870	0,873	0,873	0,872	0,875	0,876	0,876
w_2 [m/s]	166,41	139,90	142,67	147,16	139,60	141,82	144,06
$w_2ax = c_2ax [m/s]$	63,68	53,54	54,60	56,31	53,42	54,27	55,13
c_2 [m/s]	64,97	55,37	55,98	57,05	56,03	56,59	57,19
w_2u [m/s]	153,74	129,25	131,81	135,95	128,97	131,03	133,10
c_2u [m/s]	12,88	14,13	12,37	9,12	16,91	16,03	15,22
α_2 [°]	101,4	104,8	102,8	99,2	107,6	106,5	105,4

3.4.1.3 Výpočet rychlostních trojúhelníků ST-NT dílu

Na základě výpočtu lopatkového plánu pomocí programu Turbina-Delphi (výsledky viz Příloha F) se došlo k závěru, že poslední čtyři stupně ST-NT dílu budou navrhnuty se zborceným typem lopatky. Pro tento typ je nezbytné přepočítat některé z parametrů, jedná se o L_{P_RL} , D_s , F_{ax} , α_p , D, R_p , α_1 , α_2 , β_1 a β_2 , pomocí programu ZLOP2.

3.4.1.4 Přepočet lopatek zborceného typu

Princip přepočtu je takový, že algoritmus programu zachovává konstantní průtok páry stupněm a vstupní úhel, rozděluje danou lopatku na pět průtočných kanálů (viz obr. 23), v těchto průřezech jsou vypočteny parametry příslušných rychlostních trojúhelníků. Typ korekce byl zvolen na α_1 = konst. při zachování vypočtené délky výstupní hrany RL.

Obr. 23 Rozdělení zborceného typu lopatky na jednotlivé průtočné kanály; zdroj [16]

Vstupní hodnoty zadávané do programu ZLOP2 jsou:

- *m_P* st ... hmotnostní průtok páry procházející daným stupněm [kg/s],
- *p*₁ ... vstupní tlak páry [MPa],
- *p*₂ ... výstupní tlak páry [MPa],
- *i*₁ ... entalpie páry na vstupu [kJ/kg],
- R_p ... reakce na patě [-],
- D_p ... patní průměr stupně [mm],
- *L_P* ... délka výstupní hrany *RL* [*mm*].

Přepočtené parametry náležící $6. \div 9$. stupni jsou uvedeny v tab. $13 \div$ tab. 16.

Tab. 13 Přepočet parametrů lopatkování – 6. stupeň ST-NT dílu

Délka výstupní hrany RL = 190 mm							
		$D_{s} = 16$	50 mm				
		$F_ax = 3,3I$	E-02 MN				
		$\alpha_p = 1$	4,05°				
D [mm]	R_p [-]	α_1 [°]	β_1 [°]	β_2 [°]	α_2 [°]		
1460,0	0,100	14,1	28,1	23,6	80,6		
1555,0	0,195	14,1	31,9	23,0	84,6		
1650,0	0,275	14,1	37,0	22,4	88,0		
1745,0	0,344	14,1	44,2	21,6	90,7		
1840,0	0,402	14,1	54,4	20,9	93,0		

Tab. 14 Přepočet parametrů lopatkování – 7. stupeň ST-NT dílu

Délka výstupní hrany RL = 302 mm									
		$D_s = 182$	22 mm						
		$F_ax = 4E$	-02 MN						
		$\alpha_p = 1$	4,0°						
D [mm]	D [mm] R _ p [-] α_1 [°] β_1 [°] β_2 [°] α_2 [°]								
1520,0	0,100	14,0	28,2	23,7	82,7				
1671,0	0,239	14,0	34,7	22,7	88,5				
1822,0	0,347	14,0	45,4	21,6	92,8				
1973,0	1973,0 0,433 14,0 63,6 20,4 95,9								
2124,0	0,502	14,0	91,6	19,3	98,2				

Tab. 1	15 Přepočet	parametrů	lopatkování –	8. stupeň	ST-NT	dílu
--------	-------------	-----------	---------------	-----------	-------	------

Délka výstupní hrany RL = 430 mm									
	$D_{s} = 2030 \text{ mm}$								
		$F_ax = 3,9I$	E-02 MN						
		α_p = 1	6,86°						
D [mm]	D [mm] R _ p [-] $\alpha_1[^\circ]$ $\beta_1[^\circ]$ $\beta_2[^\circ]$ $\alpha_2[^\circ]$								
1600,0	0,100	16,9	32,5	27,6	79,5				
1815,0	0,276	16,9	41,9	26,3	86,4				
2030,0	0,403	16,9	58,7	24,7	91,2				
2245,0	2245,0 0,498 16,9 87,0 23,1 94,5								
2460,0	0,571	16,9	118,8	21,5	96,8				

Katedra energetických strojů a zařízení

	Délka výstupní hrany RL = 780 mm										
	$D_{s} = 2380 \text{ mm}$										
		$F_ax = 5E$	-02 MN								
		α_p = 2	0,18°								
D [mm]	R_p [-]	α_1 [°]	β_1 [°]	β_2 [°]	α_2 [°]						
1600,0	0,100	20,2	35,5	30,8	70,5						
1990,0	0,373	20,2	53,0	29,1	81,1						
2380,0	0,534	20,2	90,5	26,5	87,6						
2770,0	2770,0 0,637 20,2 131,4 23,9 91,7										
3160,0	0,708	20,2	151,8	21,5	94,2						

Tab.	16 Přepočet	parametrů	lopatkování – s	9. stupeň	ST-NT dílu
		1			• • • • • • • • • •

Výsledné hodnoty zkoumaných veličiny jsou uvedeny v tab. 17, přičemž platí pravidlo, že vstupní i výstupní parametry válcových lopatek jsou uváděny na středním průměru stupně, zatímco u zborceného typu na patním průměru (viz hodnoty tab. 13 ÷ tab. 16).

					Stupeň				
		Válco	vý typ lo	patek		Zb	orcený t	yp lopate	ek
Veličina	1	2	3	4	5	6	7	8	9
α_1 [°]	13,15	13,05	13,00	13,05	13,05	14,05	14,00	16,86	20,18
φ[-]	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97
R_p [-]	0,030	0,030	0,030	0,030	0,030	0,100	0,100	0,100	0,100
R_s [-]	0,131	0,139	0,148	0,168	0,191	0,275	0,347	0,403	0,534
(1 - R_s) [-]	0,869	0,861	0,852	0,832	0,809	0,725	0,653	0,597	0,466
c_1 [m/s]	346,31	366,60	379,55	390,60	406,10	399,93	391,15	390,84	380,88
c_1ax = w_1ax [m/s]	78,79	82,78	85,38	88,20	91,70	97,09	94,63	113,37	131,41
c_1u [m/s]	337,23	357,13	369,82	380,51	395,61	387,97	379,53	374,03	357,49
u [m/s]	193,77	204,88	216,17	229,41	243,47	259,18	238,76	251,33	251,33
w_1u [m/s]	143,46	152,25	153,65	151,10	152,14	110,03	107,42	134,39	161,50
w_1 [m/s]	163,67	173,30	175,78	174,95	177,64	146,74	143,15	175,82	226,06
β_1 [°]	28,8	28,5	29,1	30,3	31,1	28,1	28,2	32,5	35,5
β_2 [°]	22,5	22,5	22,5	22,5	22,5	23,6	23,7	27,6	30,8
$(\beta 1 + \beta 2) [^{\circ}]$	51,3	51,0	51,6	52,8	53,6	51,7	52,0	60,1	66,4
ψ[-]	0,875	0,874	0,875	0,877	0,879	0,875	0,876	0,890	0,900
w_2 [m/s]	187,51	201,43	209,74	220,92	237,42	256,70	286,34	333,64	429,66
$w_2ax = c_2ax [m/s]$	71,76	77,09	80,26	84,54	90,86	102,90	115,16	154,52	220,31
c_2 [m/s]	74,64	79,34	83,33	88,25	94,01	104,30	116,09	157,15	220,76
w_2u [m/s]	173,24	186,10	193,77	204,10	219,35	235,18	262,16	295,70	368,88
c_2u [m/s]	-20,53	-18,78	-22,40	-25,32	-24,13	17,02	14,66	28,64	73,61
α_2 [°]	106,0	103,7	105,6	106,7	104,9	80,6	82,7	79,5	70,5

Tab. 17 Parametry rychlostních trojúhelníků ST-NT dílu

3.4.2 Machova čísla

Hodnota Machova čísla je jednou z charakteristik použitého profilu lopatky, každý z nich má svoje rozmezí Machových čísel (viz Příloha G), podle kterého lze určit rychlost proudění média v lopatkové mříži (viz tab. 18).

Tab. 18 Rychlost proudění dle rozsahu Machova čísla

Machovo číslo [-]	Rychlost proudění	Typ lopatky
Ma < 0,7 - 0,9	podzvuková	А
0,9 < Ma < 1,15	transsonická	В
1,1 < Ma < 1,3	nadzvuková	С
Ma > 1,3 - 1,5	vysoce nadzvuková	D

$$a = \sqrt{\kappa. \ p. v} , \qquad (3.44)$$

$$Ma = \frac{c}{a} , \qquad (3.45)$$

Kde

a ... rychlost zvuku [m/s],

κ... izoentropický exponent [-],

p ... tlak média na vstupu do lopatkové mříže (LM) [Pa],

v ... měrný objem média na vstupu do LM [m³/kg],

Ma ... Machovo číslo [-],

c ... absolutní rychlost média na vstupu do LM [m/s].

Hodnoty těchto potřebných veličin pro výpočet Machova čísla příslušné lopatkové mříže (RL, OL) jsou zadávány z výpočtu lopatkového plánu VT a ST-NT dílu (viz Přílohy D, F).

3.4.2.1 Výpočet Machových čísel lopatek VT dílu

Vypočtené hodnoty příslušných Machových čísel VT dílu a potřebných veličin vztažených jak k rozváděcím, tak i oběžným lopatkám jsou uvedeny v tab. 19.

				Stupeň			
Veličiny	1	2	3	4	5	6	7
kappa [-]	1,28101	1,28129	1,28180	1,28251	1,28325	1,28347	1,28127
v_1 [m^3/kg]	0,02957	0,03607	0,04169	0,04836	0,05658	0,06586	0,07708
v_2 [m^3/kg]	0,03604	0,04166	0,04835	0,05658	0,06579	0,07662	0,09125
a_1 [m/s]	575,01	563,48	554,51	545,24	535,43	525,83	515,49
				RL			
c_1_RL [m/s]	327,74	269,19	270,48	273,48	262,32	261,74	261,16
Ma_RL [-]	0,570	0,478	0,488	0,502	0,490	0,498	0,507
α_0 [°]	100,0	100,0	100,0	100,0	100,0	100,0	100,0
α_1 [°]	13,3	13,4	13,4	13,4	13,3	13,4	13,4
Typ profilu	S-90-15A						

Tab. 19 Machova čísla lopatek VT dílu

		OL								
w_1_OL [m/s]	169,97	133,90	134,44	136,55	124,95	123,48	121,83			
Ma_OL [-]	0,296	0,238	0,242	0,250	0,233	0,235	0,236			
β_1 [°]	26,3	27,8	27,8	27,7	28,9	29,4	29,8			
β2 [°]	22,5	22,5	22,5	22,5	22,5	22,5	22,5			
Typ profilu	R-30-21A									

3.4.2.2 Výpočet Machových čísel lopatek ST-NT dílu

Vypočtené hodnoty příslušných Machových čísel ST-NT dílu a potřebných veličin vztažených jak k rozváděcím, tak i oběžným lopatkám jsou uvedeny v Příloze H.

3.4.3 Ztráty v rozváděcích a oběžných lopatkách

Nejen znalost celkových ztrát stupně (viz Přílohy D, F), je důležitá, ale nezbytnou součástí při návrhu průtočné části turbíny je výpočet rozložení ztrát v rámci stupně jak v RL, tak i v OL. Pro výpočet využijeme vypočtených parametrů v rámci podkapitoly 3.4.1.

3.4.3.1 Výpočtové vztahy – ztráty v RL a OL

$$h_{iz_RL_i} = (I - R_{s_i}) \cdot h_{iz_i} , \qquad (3.46)$$

$$i_{2iz_RL_i} = i_{I_i} - h_{iz_RL_i} , \qquad (3.47)$$

$$z_{RL_{i}} = (1 - \varphi^{2}) \cdot h_{iz_{RL_{i}}}, \qquad (3.48)$$

$$i_{2_{RL_{i}}} = i_{2iz_{RL_{i}}} + z_{RL_{i}} , \qquad (3.49)$$

$$p_{2_{RL_{i}}}(i_{2_{i}},s_{1_{i}}), \qquad (3.50)$$

$$t_{2_{RL_{i}}}(i_{2_{i}}, p_{2_{i}}), \qquad (3.51)$$

$$v_{2_{RL_{i}}}(i_{2_{i}}, p_{2_{i}}),$$
 (3.52)

$$s_{2_{RL_{i}}}(i_{2_{i}}, p_{2_{i}}),$$
 (3.53)

$$h_{iz_{OL_{i}}} = R_{s_{i}} \cdot h_{iz_{i}}$$
, (3.54)

$$i_{3i_{z}OL_{i}} = i_{2_{RL_{i}}} - h_{i_{z}OL_{i}}, \qquad (3.55)$$

$$z_{OL_i} = \frac{(1 - \psi^2) \cdot w_{I_i}^2}{2000}, \qquad (3.56)$$

 $h_{iz_RL_i}$... izoentropický entalpický spád na RL i-tého stupně [kJ/kg], $i_{2iz_RL_i}$... izoentropická entalpie na výstupu z RL i-tého stupně [kJ/kg], z_{RL_i} ... ztráta v RL i-tého stupně [kJ/kg], $i_{2_RL_i}$... skutečná entalpie na výstupu z RL i-tého stupně [kJ/kg], $p_{2_RL_i}$... tlak média na výstupu z RL i-tého stupně [bar], $t_{2_RL_i}$... teplota média na výstupu z RL i-tého stupně [°C], $v_{2_RL_i}$... měrný objem média na výstupu z RL i-tého stupně [m³/kg], $s_{2_RL_i}$... skutečná entropie na výstupu z RL i-tého stupně [kJ/kg.K], $h_{iz_OL_i}$... izoentropický entalpický spád na OL i-tého stupně [kJ/kg], $i_{3iz_OL_i}$... izoentropická entalpie na výstupu z OL i-tého stupně [kJ/kg], z_{OL_i} ... ztráta v OL i-tého stupně [kJ/kg].

Vyčíslení zbylých parametrů v oběžných lopatkách jednotlivých stupňů je analogické s výpočtem v lopatkách rozváděcích.

Obr. 24 Expanze v turbínovém stupni; zdroj [17]

3.4.3.2 Výpočet ztrát ve VT dílu

Hodnoty veličin potřebné pro výpočet ztrát v rozváděcích a oběžných lopatkách ve VT dílu i jejich samotné velikosti jsou uvedeny v Příloze I.

3.4.3.3 Výpočet ztrát v ST-NT dílu

Hodnoty veličin potřebné pro výpočet ztrát v rozváděcích a oběžných lopatkách v ST-NT dílu i jejich samotné velikosti jsou uvedeny v Příloze J.

3.4.4 Délky lopatek

Na základě výpočtu pomocí programu Turbina-Delphi byla vyčíslena jen teoretická délka výstupní hrany rozváděcí lopatky (RL). Je třeba nejprve určit délku vstupní hrany oběžné lopatky (OL), která je vypočtena na základě vztahu 3.58. Při návrhu RL je dodržováno pravidlo, že délka vstupní hrany OL má být o 2,5 mm větší než délka výstupní hrany RL, výjimkou jsou poslední stupně ST-NT dílu, kde tento rozdíl nabývá vyšších hodnot. Tento délkový přídavek se rozděluje v poměru 1/3 na patu OL : 2/3 na špičku OL. Vstupní délku rozváděcí lopatky dostaneme díky zvolenému přídavku (zajištění pozvolného rozšiřování průtočného kužele). Rozdělení zvoleného přídavku je volen v poměru 1/3 : 2/3 (přídavek na vstupní hranu : přídavek na výstupní hranu RL). Tento postup je aplikován u válcového typu lopatky, v případě zborceného typu se při určení výstupní hrany RL (pomocí programu ZLOP2) vychází z vyčíslené velikosti výstupní hrany rozváděcí lopatky (viz 3.4.1.4) a volby rozdílu délek L_{RL} vstup a L_{RL} výstup dle praxe.

$$S_{\alpha 3_{-i}} = \frac{m_{p_{-i}} \cdot v_{3_{-}OL_{-i}}}{w_{3}}, \qquad (3.57)$$

$$L_{P_{-}OL} = \frac{\sqrt{D_{p}^{2} + 4 \cdot \frac{S_{\alpha 3}}{\pi \cdot \sin \beta_{3}}} - D_{p}}{2} \cdot 1000 , \qquad (3.58)$$

Kde

 $S_{\alpha3_i}$... plocha průtočného kanálu oběžné lopatky (OL) i-tého stupně [m²], m_{p i} ... hmotnostní množství protékající i-tým stupněm [kg/s], $v_3 \dots$ měrný objem média na výstupu z OL [m³/kg], L_{P OL} ... délka OL [mm],

Délka vstupní a výstupní hrany oběžné lopatky je shodná (1. ÷ 7. stupeň), jen u modulových lopatek (8. ÷ 9. stupně) je přídavek několik milimetrů.

V koncových stupních ST-NT dílu, v 8. a 9. stupni, platí vztah:

$$\frac{2}{5} \cdot \left(L_{RL_v j stup} - L_{RL_v stup} \right) = L_{OL_v stup} - L_{RL_v j stup}$$
(3.59)

Kde

L_{RL vstup} ... délka vstupní hrany rozváděcí lopatky (RL) [mm],

L_{RL_výstup} ... délka výstupní hrany RL [mm],

L_{OL vstup} ... délka vstupní hrany oběžné lopatky [mm].

Délky lopatek RL a OL, navrhnuté pro VT a ST-NT díl, jsou uvedeny i s příslušnými přídavky v tab. 20 a tab. 21.

3.4.4.1 Výpočet délek rozváděcích a oběžných lopatek VT dílu

_				Stupeň						
Veličiny	1 2 3 4 5 6 7									
		RL								
ΔL [mm]	2,0	3,0	4,0	5,0	6,0	7,0	8,0			
L_p_RL [mm]	20,73	32,83	37,91	43,59	48,75	56,20	64,25			
L_RL_vstup [mm]	17,5	29,3	32,8	36,8	41,7	47,8	55,5			
L_RL_výstup [mm]	18,8	31,6	36,1	41,1	47,0	54,1	62,8			
				OL						
ΔL [mm]	0	0	0	0	0	0	0			
L_p_OL [mm]	21,25	34,11	38,65	43,64	49,47	56,64	65,27			
L_OL_vstup [mm]	21,3	34,1	38,6	43,6	49,5	56,6	65,3			
L_OL_výstup [mm]	21,3	34,1	38,6	43,6	49,5	56,6	65,3			

Tab. 20 Délky RL a OL v rámci VT dílu

Výsledkem výpočtu je koncový návrh průtočné části VT dílu, který je vyobrazen na obr. 25 a obr. 26.

3.4.4.2 Výpočet délek rozváděcích a oběžných lopatek ST-NT dílu

					Stupeň				
Veličiny	1	2	3	4	5	6	7	8	9
					RL				
ΔL [mm]	9,0	10,0	11,0	12,0	13,0	0	0	0	0
L_p_RL [mm]	73,62	84,26	96,17	120,55	150,00	190,00	302,00	430,00	780,00
L_RL_vstup [mm]	64,4	72,8	83,5	105,7	131,0	177,5	279,5	384,9	642,5
L_RL_výstup [mm]	70,4	79,5	90,8	113,7	139,7	190,0	302,0	430,0	780,0
					OL				
ΔL [mm]	0	0	0	0	0	0	0	13	6
L_p_OL [mm]	72,92	82,02	93,25	116,16	142,23	192,50	304,50	460,00	840,00
L_OL_vstup [mm]	72,9	82,0	93,3	116,2	142,2	192,5	304,5	447,0	834,0
L_OL_výstup [mm]	72,9	82,0	93,3	116,2	142,2	192,5	304,5	460,0	840,0

Tab. 21 Délky RL a OL v rámci ST-NT dílu

Výsledkem výpočtu je koncový návrh průtočné části ST-NT dílu, který je uveden na obr. 27 a obr. 28.

Obr. 25 Lopatkový plán oběžných lopatek VT dílu

Obr. 26 Lopatkový plán VT dílu

Přemysl Epikaridis

Obr. 27 Lopatkový plán oběžných lopatek ST-NT dílu

Patní poloměr Délka lopatek na radiále

Obr. 28 Lopatkový plán ST-NT dílu

4 Pevnostní výpočet průtočné části turbíny

V rámci pevnostního výpočtu je provedena kontrola oběžných lopatek a jejich závěsů, rozváděcích lopatek a jejich disků. Materiály jednotlivých komponent a jejich příslušná dovolená namáhání jsou volena s ohledem na teplotu prostředí, v němž pracují (viz Příloha K) a v neposlední řadě také na fakt, že turbína je navrhována pro solární cyklus, který má svá specifika (viz 1.2).

4.1 Namáhání oběžných lopatek

Při výpočtu OL je uvažováno s namáháním:

- ohybem od obvodové síly odpovídající výkonu daného stupně – namáhány všechny lopatky bez ohledu na jejich délku,
- tahem v patním průřezu profilu lopatky od odstředivé síly všech hmot nad tímto průřezem.

Při návrhu oběžných lopatek jsou k dispozici jen normalizované profily lopatek z katalogu, které byly poskytnuty katedrou KKE (viz Příloha G). V tabulkách jsou uvedeny normalizované rozměry lopatek pouze pro šířku profilu $B_0 = 25$ mm. Při pevnostní kontrole jsou na základě výpočtu namáhání navrženy skutečné šířky profilů lopatek B' pro jednotlivé stupně. Se změnou šířky lopatek se mění i další charakteristické rozměry profilu. Přepočet probíhá na základě uvedených vztahů:

$$b' = b_0 \cdot \frac{B'}{B_0},$$
 (4.1)

$$S' = S_0 \cdot \left(\frac{B'}{B_0}\right)^2 , \qquad (4.2)$$

$$W' = W_0 \cdot \left(\frac{B'}{B_0}\right)^3, \qquad (4.3)$$

Kde

b' ... přepočtená tětiva lopatky [cm],

 $b_0 \dots$ tětiva profilu lopatky pro šířku profilu $B_0 = 25 \text{ mm} [\text{cm}],$

B' ... přepočtená šířka profilu lopatky [cm],

S' ... přepočtená plocha profilu lopatky $[cm^2]$,

- $S_0 \dots$ plocha profilu lopatky pro šířku profilu $B_0 = 25 \text{ mm [cm}^2$],
- W' ... přepočtený průřezový modul pružnosti v ohybu [cm³],
- $W_0 \dots$ průřezový modul pružnosti v ohybu pro šířku profilu $B_0 = 25 \text{ mm [cm}^3]$.
4.1.1 Ohybové namáhání OL

V rámci pevnostní kontroly byla dodržována zásada, že maximální dovolené ohybové namáhání pro lopatky v totálním ostřiku $\sigma_{o D} = 20$ MPa. Tato hodnota je ale snížena na 16 MPa pro stupně, za kterými se nachází odběr páry pro regeneraci a také na koncovém stupni příslušného dílu. Důvodem této změny je možný tlakový pokles v odběru nebo v potrubí za koncovým stupněm, v důsledku něhož by mohlo dojít k navýšení tlakového spádu na stupeň, a tím i ke zvýšení ohybového namáhání na nepřípustnou hodnotu.

Poslední dva stupně ST-NT dílu jsou složeny z tzv. modulových lopatek, jejichž geometrické a materiálové charakteristiky jsou pevně stanoveny (firma ŠKODA POWER A Doosan company). Profily těchto lopatek jsou navrženy tak, aby odolaly jak ohybovému i tahovém namáhání, tak i z hlediska kmitání, jenž je způsobeno délkou lopatek, díky kterému by mohlo dojít k jejich rezonanci, což je nežádoucí. Vyšetřování chvění lopatek ale není z důvodu časové a odborné náročnosti v rámci práce řešeno.

Pro vyčíslení velikost ohybového namáhání je potřeba znalosti výkonu na jednotlivé stupně, vycházíme z hodnot uvedených v Přílohách D, F.

4.1.1.1 Výpočtové vztahy

$t_{opt} =$	$\frac{t}{b}$,	(4.4)
opi	b	. ,

$$t' = t_{opt} \cdot b' , \qquad (4.5)$$

$$z_i = \frac{\pi \cdot D_{s_i}}{t'} , \qquad (4.6)$$

$$t_{sk} = \frac{\pi \cdot D_{s_i}}{z_i} , \qquad (4.7)$$

$$M_{K_lop} = \frac{P_i}{2 \cdot \pi \cdot n \cdot z_i}, \qquad (4.8)$$

$$F_{u_lop} = \frac{2 \cdot M_{K_lop}}{D_{s_i}},$$
 (4.9)

$$M_{o_lop} = F_{u_lop} \cdot \frac{L_{p_OL}}{2} , \qquad (4.10)$$

$$\sigma_o = \frac{M_{o_lop}}{W'}, \qquad (4.11)$$

Kde

t_{opt} ... optimální poměrná rozteč lopatek [-] – volba z rozmezí viz Příloha G.

4.1.2 Tahové namáhání OL

Oběžné lopatky jsou namáhány odstředivou silou od všech hmot, které jsou nad místem výpočtu. Při výpočtu se stanoví jak hmotnost OL, části závěsu, tak i hmotnost bandáže připadající na jednu lopatku.

Vychází se z pravidla, že na 1. stupni VT dílu se bandáž OL zesiluje, pro ostatní OL se volí bandáž dle dovoleného namáhání. V případě splnění pevnostní podmínky se může bandáž aplikovat i na zborcené lopatky, je s výhodou využita pro snížení okrajových ztrát únikem páry kolem špiček lopatek.

Výpočet je proveden při zvýšených otáček $\mathbf{n}^{\prime} = \mathbf{1}, \mathbf{1} \cdot \mathbf{n} \approx \mathbf{3} \mathbf{300} \mathbf{1}/\mathbf{min}$. Toto navýšení je aplikováno z důvodu náhlého odlehčení turbíny při odfázování generátoru od elektrické sítě. Při této situaci dochází k rychlému navýšení otáček v časovém rozmezí několika sekund. Právě hranice 3 300 1/min je maximální dovolená hodnota, která se i přes rychlou reakci regulace může dosáhnout, poté by měli otáčky opět klesnout a ustálit se na hodnotě n_{jm}, popřípadě daným trendem klesat k nižším hodnotám (v případě úplného odstavení turbíny).

U OL zborceného typu se musí zohlednit tzv. zeštíhlení lopatky směrem ke špičce, které mění i její průřez. Do výpočtu se tato skutečnost zanáší pomocí koeficientu odlehčení.

4.1.2.1 Výpočtové vztahy

$$V_{OL} = S' \cdot L_{p_{-}OL}$$
, (4.12)

$$m_{OL} = \rho \cdot V_{OL} , \qquad (4.13)$$

$$D_b = D_{s_i} + L_{p_o} + b_b , \qquad (4.14)$$

$$V_{b} = \pi \cdot (D_{s_{-i}} + b + L_{p_{-}OL}) \cdot s_{b} \cdot b_{b} , \qquad (4.15)$$

$$m'_{b} = \frac{V_{b} \cdot \rho}{z_{i}},$$
 (4.16)

$$m'_{c} = m_{OL} \cdot m'_{b}$$
, (4.17)

$$m_{OL_{-}i} = m'_{c} \cdot z_{i}$$
, (4.18)

$$m_{OL_{celk}} = \sum_{i=1}^{n} m_{OL_{i}} , \qquad (4.19)$$

$$a_{d} = \frac{D_{s_{-}i} \cdot b_{b}}{2} \cdot \left(2 \cdot \pi \cdot n'\right)^{2}, \qquad (4.20)$$

$$F_{od} = m'_{c} \cdot a_{d}$$
, (4.21)

$$\frac{S_{\breve{s}}}{S_p} = e^{\frac{\rho \cdot \omega^2}{2 \cdot \sigma} \cdot (D_{s_{_i} \cdot L_{p_OL}})}, \qquad (4.22)$$

$$k = \sqrt{\frac{S_p}{S_x}} , \qquad (4.23)$$

$$\sigma_{tah} = \frac{F_{od}}{S'} , \qquad (4.24)$$

Kde

$\label{eq:rho} \begin{array}{l} \rho \ ... \ \text{mern} \acute{a} \ \text{hmotnost ocele} \ [kg/m^3] \ \rightarrow \ \rho = 7 \ 850 \ kg/m^3, \\ S_{\$}/S_p \ ... \ \text{exponenciáln} \ \text{odlehčen} \acute{i} \ \text{oběžn} \acute{e} \ \text{lopatky} \ [-], \end{array}$

k ... koeficient odlehčení zborcené lopatky [-].

4.1.3 Celkové namáhání OL

Pro kontrolu zda celkové namáhání nepřesáhne povolenou mez, tedy dovolené namáhání daného materiálu, které dostaneme interpolací z dat poskytnutých k daným materiálům (viz Příloha K). Pro vybrání správného teplotního rozmezí a následné vyčíslení dovolených namáhání je třeba znalost teploty před oběžnými lopatkami daného stupně, tato hodnota byla již vypočtena (viz 3.4.3).

Pro výpočet celkového namáhání OL daného stupně je použit vztah:

$$\sigma_{celk_OL} = 2 \cdot \sigma_o + \frac{\sigma_{tah}}{k} , \qquad (4.25)$$

přičemž musí být splněna podmínka, že:

 $\sigma_{\rm celk OL} < \sigma_{\rm D}$

V případě, že oběžné lopatky daného stupně tuto podmínku splňují, je potvrzeno, že zvolená šířka profilu a materiál OL jsou pro dané podmínky a zatížení vyhovující.

4.1.4 Namáhání OL VT dílu

Jednotlivé veličiny, které byly voleny nebo počítány na základě vzorců (viz 4.1.1.1, 4.1.2.1), potřebné ke stanovení celkového namáhání oběžných lopatek VT dílu a následné pevnostní kontrole, jsou uvedeny v Příloze L.

4.1.5 Namáhání OL ST-NT dílu

Jednotlivé veličiny, které byly voleny nebo počítány na základě vzorců (viz 4.1.1.1, 4.1.2.1), potřebné ke stanovení celkového namáhání oběžných lopatek ST-NT dílu a následné pevnostní kontrole, jsou uvedeny v Příloze M.

4.2 Namáhání závěsů oběžných lopatek

Při návrhu závěsů oběžných lopatek se vychází z výpočtu lopatkového plánu (viz Přílohy D, F). Pro 1. stupeň VT dílu je navržen rozvidlený typ závěsu z důvodu vyššího namáhání, pro 2. ÷ 7. stupeň VT dílu závěs typu T-nožka (T-zazubená). Oběžné lopatky budou zasazeny do vyfrézovaných drážek v hřídeli (bubnu). Naopak ST-NT díl má diskové upořádání jednotlivých stupňů, proto je na 2. ÷ 7. stupni navržen závěs T-zazubený (výjimkou je 1. stupeň. – rozvidlený závěs). Pro poslední modulové stupně 8. ÷ 9. jsou použity stromečkové závěsy oblého typu. Z důvodu složitosti kontroly takového typu závěsu není v rámci práce pevnostně kontrolován. Jelikož jsou ale tyto modulové lopatky stejných rozměru využívány v praxi, je přijat předpoklad, že z pevnostního hlediska vyhovují.

Závěsy OL jsou kontrolovány na:

- tah od odstředivé síly v nejužším průřezu závěsu,
- střih v místě osazení do disku oběžného kola,
- otlačení v místě závěsu,
- otlačení v místě plochy kola (pouze u rozvidleného závěsu).

Všechny potřebné rozměry použitých závěsů byly vzaty z poskytnutého katalogu (ŠKODA POWER A Doosan company). Pro potřeby výpočtu musely být údaje k jednotlivým typům doplněny o souřadnice středů hmotnosti a plochy závěsů. Tyto hodnoty byly vyčísleny za pomocí programu CATIA V5.

Pro určení dovoleného namáhání závěsu se vycházelo z teploty za rozváděcími lopatkami, tedy na vstupu do lopatek oběžných (viz 3.4.3), a dat náležících ke zvolenému typu materiálu (viz Příloha K). Materiál závěsu byl volen stejný jako u příslušné OL daného stupně, materiál kolíku tak, aby vyhověl pevnostním požadavkům. Volené parametry a počítané veličiny k jednotlivým závěsům jsou uvedeny v Přílohách N, O.

4.2.1 Závěs typu T-nožka – výpočtové vzorce

Obr. 29 Závěs typu T-nožka; zdroj [17]

$$D_T = D_p - 2 \cdot T_t , \qquad (4.26)$$

$$t_T = \frac{\pi \cdot D_T}{z_{OL}} , \qquad (4.27)$$

$$m_z = S_z \cdot t_T \cdot \rho , \qquad (4.28)$$

$$F_{od_z} = m_z \cdot \frac{D_T}{2} \cdot \omega^2 = m_z \cdot \frac{D_T}{2} \cdot \left(2 \cdot \pi \cdot n'\right)^2, \qquad (4.29)$$

$$S_{tah} = Y \cdot t_T , \qquad (4.30)$$

$$S_{smyk} = 2 \cdot X \cdot t_T , \qquad (4.31)$$

$$S_{otlak} = C \cdot t_T , \qquad (4.32)$$

$$\sigma_{tah} = \frac{F_{od_z} + F_{od_L}}{S_{tah}}, \qquad (4.33)$$

$$\sigma_{otlak} = \frac{F_{od_z} + F_{od_L}}{S_{otlak}}, \qquad (4.34)$$

$$\sigma_{smyk} = \frac{F_{od_z} + F_{od_z}}{2 \cdot S_{smyk}}, \qquad (4.35)$$

Kde

 S_z ... plocha závěsu příslušné oběžné lopatky [mm²],

musí být splněny tyto pevnostní podmínky:

 $\sigma_{\rm tah} < \sigma_{\rm D}$, $\sigma_{\rm smyk} < 0.7 \cdot \sigma_{\rm D}$, $\sigma_{\rm otlak} < 220$ MPa .

4.2.2 Závěs typu T-zazubená - výpočtové vzorce

Obr. 30 Závěs typu T-zazubený (šířka profilu OL = 40 mm); zdroj [19]

Potřebné výpočtové vzorce jsou totožné s výpočtem závěsu typu T-nožka.

4.2.3 Závěs typu rozvidlený

Obr. 31 Rozvidlený závěs; zdroj [17]

Pro spojení rozvidleného závěsu s oběžnou lopatkou je potřeba kolíku, jeho materiál je volen na základě výpočtu příslušného namáhání (viz Přílohy N, O) a dle dostupných materiálů. Postup výpočtu je analogický k závěsu typu T-nožka (T-zazubený) s rozdílem vyjádření namáhaných průřezů a dovoleného namáhání na otlak.

$$S_{tah} = (t_T - d) \cdot (n_a \cdot a + n_b \cdot b + n_c \cdot c), \qquad (4.36)$$

$$S_{smyk} = 2 \cdot n_c \cdot \frac{\pi \cdot d^2}{4} , \qquad (4.37)$$

$$S_{otlak} = 2 \cdot d \cdot (n_a \cdot a + n_b \cdot b + n_c \cdot c), \qquad (4.38)$$

$$S_{K_{otlak}} = d \cdot \left(2 \cdot B - n_a \cdot a + n_b \cdot b + n_c \cdot c\right), \qquad (4.39)$$

přičemž musí být splněna doplňující pevnostní podmínka:

$$\sigma_{\text{otlak}} < 0,6 \cdot \sigma_{\text{D_kolik}}$$

Výpočet namáhání jednotlivých závěsů i pevnostní kontrola jsou uvedeny v Příloze N, O.

4.3 Namáhání rozváděcích lopatek a disků rozváděcích kol

4.3.1 Namáhání RL VT dílu

Rozváděcí lopatky VT dílu nejsou zasazeny do disku, na rozdíl od ST-NT dílu, ale do vyfrézovaných drážek ve vnitřním tělese pomocí T-závěsů. Tato varianta vyplývá z uchycení oběžných lopatek, proto odpadá využití jak disků oběžných, tak rozváděcích kol. Výjimkou v rámci VT dílu je uchycení RL 1. stupně do disku. Disk je na jeho horní straně zasazen do vyfrézované drážky ve vnitřním tělese a na dolní straně je k tělesu přišroubován. RL 1. stupně jsou řešeny jako dýzový segment, ten je kontrolován jen na tah (viz obr. 33).

Při pevnostním výpočtu RL je uvažováno pouze s ohybovým namáháním od přetlaku působícího na plochu lopatky. Nejvíce namáhaným místem je pata lopatky. Schématický popis působících sil a momentů je znázorněn na obr. 32. Dovolené namáhání RL je vyčísleno pomocí interpolace na základě pracovní teploty (viz 3.4.3) a zvoleného materiálu.

Obr. 32 Namáhání rozváděcích lopatek VT dílu; zdroj [17]

4.3.1.1 Výpočtové vzorce

Volené profily rozváděcích lopatek jsou přepočteny stejným způsobem tak jako lopatky oběžné (viz 4.1). Další potřebné vztahy jsou:

$$S_{pred} = \frac{\pi \cdot \left(D_H^2 - D_S^2\right)}{4}, \qquad (4.40)$$

$$\Delta p = p_1 - p_{2_{RL}} , \qquad (4.41)$$

$$F_{o_{-L_s}} = \Delta p \cdot S_{pred} , \qquad (4.42)$$

$$F_{I_{_L}} = \frac{F_{o_L_s}}{z_{RL}} , \qquad (4.43)$$

$$f_o = \frac{D_H - D_p}{2} \,, \tag{4.44}$$

$$M'_{o_{-}l} = F_{l_{-}L} \cdot \cos \gamma \cdot f_o , \qquad (4.45)$$

$$\sigma_{o} = \frac{M'_{o_{-}l}}{W'}, \qquad (4.46)$$

Západočeská univerzita v Plzni, Fakulta strojní.	Diplomová práce, akad. rok 2011/12
Katedra energetických strojů a zařízení	Přemysl Epikaridis

$$S_{tah} = H \cdot t_{sk} \quad , \tag{4.47}$$

$$F_{tah} = \Delta p \cdot S_{tah} , \qquad (4.48)$$

$$\sigma_{tah} = \frac{F_{tah}}{S'}, \qquad (4.49)$$

Kde

z_{RL} ... počet rozváděcích lopatek (RL) i-tého stupně [-],

S_{tah} ... plocha, na kterou působí přetlak [mm²],

H ... šířka vstupní komory dýzového segmentu [mm²],

t_{sk} ... skutečná rozteč RL [mm],

F_{tah} ... tahová síla na jednu RL [N].

Celkové namáhání rozváděcích lopatek je rovno buď ohybovému namáhání RL $(2. \div 7. \text{ stupeň})$, nebo tahovému namáhání dýzového segmentu RL (1. stupeň).

Jednotlivé veličiny, které byly voleny nebo počítány na základě vzorců (viz výše uvedené), potřebné ke stanovení celkového namáhání rozváděcích lopatek VT dílu a následné pevnostní kontrole, jsou uvedeny v Příloze P.

Obr. 33 Tahové namáhání rozváděcích lopatek 1. stupně

4.3.2 Namáhání RL ST-NT dílu

Pro rozváděcí lopatky 1. stupně ST-NT dílu je použit závěs stejného typu jako u 1. st. VT dílu, ale u dalších stupňů jsou RL zasazeny do disků, které jsou pomocí nosičů rozváděcích kol upevněny ve vnitřním tělese dílu.

V rámci pevnostního výpočtu je uvažováno pouze tahové namáhání RL 1. stupně od rozevírání vstupní komory dýzového segmentu vlivem přetlaku a rozváděcích lopatek 2. ÷ 9. stupně ohybovým namáháním. Jednotlivé veličiny, které byly voleny nebo počítány na základě vzorců (viz 4.3.1.1), potřebné ke stanovení celkového namáhání rozváděcích lopatek a následné pevnostní kontrole, jsou uvedeny v Příloze Q.

Schéma rozložení ohybového momentu a sil působících na RL jsou zobrazeny na obr. 34. Pro výpočet plochy namáhané přetlakem je využit vztah:

$$S_{pretl} = \frac{\pi \cdot \left[\left(D_p^2 - D_l^2 \right) - \left(D_2^2 - D_s^2 \right) \right]}{4}, \qquad (4.50)$$

Kde

D_š ... špičkový průměr i-tého stupně [m].

Obr. 34 Namáhání rozváděcích lopatek ST-NT dílu; zdroj [17]

4.3.3 Namáhání disků rozváděcích kol ST-NT dílu

Disky rozváděcích kol (RK) jsou namáhány silou, která vzniká díky rozdílu tlaků před a za rozváděcí mříží. Pro výpočet průhybu a namáhání RK se předpokládá, že rozváděcí kolo je plné mezikruží dělené na dvě poloviny (vycházeno z experimentu dle Taylora pro půlenou desku). Po délce disku se mění jeho šířka, proto musí být určena tzv. ekvivalentní šířka pomocí kvadratických momentů jednotlivých částí RK tak, aby byl průhyb desky i kola stejný. Na základě vypočteného průhybu kola se volí vůle mezi břity labyrintového těsnění rozváděcích kol a hřídelí turbíny.

Jednotlivé části rozváděcích kol s příslušným popisem potřebných rozměrů pro výpočet a znázornění maximálního průhybu jsou zobrazeny na obr. 35.

Obr. 35 Popis rozměrů a namáhání rozváděcích kol; zdroje [17] a [18]

4.3.3.1 Výpočtové vzorce

Volené profily rozváděcích lopatek (viz Příloha G) jsou přepočteny stejným způsobem tak jako lopatky oběžné (viz 4.1). Další potřebné vztahy jsou:

$$J_{i} = \frac{a_{i} \cdot h_{i}^{3}}{12}, \qquad (4.51)$$

$$J_{celk} = \sum_{i=1}^{4} J_i , \qquad (4.52)$$

$$h_{o} = \sqrt[3]{\frac{12 \cdot J_{celk}}{R_{2} - R_{1}}}, \qquad (4.53)$$

$$\sigma_{max} = \varphi \cdot \Delta p \cdot \frac{R_2^2}{h_o^2} = \varphi \cdot \left(p_1 - p_{2_RL} \right) \cdot \frac{R_2^2}{h_o^2} , \qquad (4.54)$$

$$y_{max} = \mu \cdot \Delta p \cdot \frac{R_2^4}{E \cdot h_o^4}, \qquad (4.55)$$

$$y_D = 0,002 \cdot R_2$$
, (4.56)

Kde

J_i ... kvadratický moment i-té části rozváděcího kola (RK) [mm⁴],

ai ... výška i-té části RK [mm],

h_i ... šířka i-té části RK [mm],

J_{celk} ... celkový kvadratický moment RK i-tého stupně [mm⁴],

 φ, μ ... součinitelé [-] – velikosti odečteny ze závislostí (viz Přílohy R, S) na základě dopočtených poměrů:

$$\left(\frac{\mathbf{R}_1}{\mathbf{R}_2}\right)$$
, $\left(\frac{\mathbf{h}_0}{\mathbf{R}_2 - \mathbf{R}_1}\right)$

Pro vyčíslení dovoleného namáhání a průhybu se vychází z teploty média před RL (viz 3.4.3.3) a z materiálových charakteristik použitého materiálu.

Jednotlivé veličiny, které byly voleny nebo počítány na základě vzorců (viz výše uvedené), potřebné ke stanovení celkového namáhání rozváděcích kol ST-NT dílu turbíny a následné pevnostní kontrole, jsou uvedeny v Příloze T.

5 Návrh a výpočet ucpávek

Ucpávky slouží k omezení úniku páry jak z turbíny do vnějšího prostředí, strojovny (vnější ucpávky), tak mezi rotujícími a statickými částmi (vnitřní ucpávky). Ztráty způsobené únikem páry z vnitřku turbíny hřídelovou ucpávkou (vlivem tlakového spádu) jsou označovány jako ztráty netěsností.

V rámci návrhu jsou využity labyrintové ucpávky. Unikající pára protéká radiální vůlí δ_r mezi břity ucpávky a pevnou částí, postupně expanduje z tlaku p₁ na tlak p₂. Průchodem skrz břity pára zvyšuje svoji rychlost vlivem rostoucího objemu při zachování stálého průtočného průřezu. Navyšování rychlosti je úměrné entalpickým spádům, expanzi páry při průchodu labyrintovou ucpávkou (viz obr. 36). Konce expanzí v jednotlivých "komůrkách" leží v i - s diagramu na tzv. **Fannově křivce**.

Obr. 36 Průběh procesu probíhající v labyrintové ucpávce; zdroje [1]

Výpočet úniků je důležitý nejen z hlediska vyčíslení ztrátového výkonu, ale také kvůli dimenzování ložisek, na které pára procházející ucpávkou vyvozuje silový účinek.

Na základě konzultace byl uvažován posuv 5 mm ve směru proudění v ST-NT dílu pro všechny navrhované ucpávky způsobený tepelnou roztažností materiálu.

5.1 Vnější ucpávky

Vnější ucpávky slouží k zamezení úniků páry z vnitřního prostoru turbíny do strojovny a k případnému přisávání atmosférického vzduchu z vnějšího prostředí (především u zadních ucpávek). Společně s vnějšími ucpávkami jsou počítány i vnitřní ucpávky těsnící prostor mezí vnitřními tělesy (VT, ST-NT dílů) a hřídelí turbíny.

5.1.1 Vnější ucpávky přední

Přední ucpávky turbíny jsou rozděleny do čtyřech sekcí. První sekce předních ucpávek, o třech ucpávkových segmentech, těsní vnitřní přetlak v turbíně (rovný výstupnímu tlaku z VT dílu) na tlak odpovídající 108% tlaku odběrové páry do odplyňováku.

Mezi druhou (dva segmenty) a třetí sekcí (jeden segment) návrhový tlak odpovídá hodnotě 108% tlaku odběrové páry z třetího odběru v ST-NT dílu do NTO2, kam je množství uniklé páry přiváděno, přičemž část průtočného množství je odváděno k zahlcení ST-NT dílu (prostor mezi pátou a šestou sekcí zadních ucpávek). Mezi třetí a čtvrtou poslední sekcí (jeden segment) je vyvozován podtlak 0,98 bar. Z tohoto prostoru je množství parovzdušné směsi prošlé skrz ucpávkové segmenty odváděno do KKP.

Pro všechny čtyři sekce byly zvoleny pravé labyrinty. Výsledné vypočtené hodnoty charakterizující tyto typy ucpávek v rámci turbíny jsou uvedeny v tab. 22.

5.1.2 Vnitřní ucpávky mezitělesové

Takto označované vnitřní ucpávky těsní prostor mezi vnitřními tělesy a hřídelí turbíny. Ucpávky těsnící vnitřní těleso VT dílu jsou tvořeny čtyřmi segmenty, které jsou zasazeny do tělesa. Pro utěsnění vnitřního tělesa ST-NT dílu jsou použity tři segmenty, které jsou umístěné v nosiči těchto segmentů zasazeného do tělesa. Ucpávky ve VT části těsní rozdíl tlaků páry mezi prvními rozváděcími lopatkami VT dílu a odběrem do VTO2, v ST-NT části tlakový rozdíl mezi výstupem z VT dílu a tlakem páry za prvními RL ST-NT dílu.

Pro obě sekce bylo zvoleno pravé labyrintové těsnění. Výsledné vypočtené hodnoty charakterizující tyto typy ucpávek v rámci turbíny jsou uvedeny v tab. 23.

5.1.3 Vnější ucpávky zadní

Zadní ucpávky jsou slouženy ze třech sekcí. Pátá sekce, o třech ucpávkových segmentech, zamezuje přisávání atmosférického vzduchu to vnitřního prostoru turbíny, jelikož tlak za posledním stupněm ST-NT dílu je nižší než tlak atmosférický. K udržení dostatečného podtlaku v turbíně je přiváděno množství ucpávkové páry m_{IV} z prostoru mezi druhou a třetí sekcí předních ucpávek k zahlcení dílu. Mezi šestou a sedmou sekcí, které jsou o jednom segmentu, je vyvozován opět podtlak 0,98 bar a množství parovzdušné směsi vznikající mezí sekcemi je odváděno do KKP.

Na rozdíl od předchozích ucpávek je z důvodu nižších tlaků volen nepravý labyrint. Schéma uspořádání ucpávek je zobrazeno na obr. 37. Výsledné vypočtené hodnoty charakterizující tyto typy ucpávek v rámci turbíny jsou uvedeny v tab. 24.

Obr. 37 Schéma sekcí vnější ucpávky zadní

5.1.4 Výpočtové vzorce

$S_u = \pi \cdot D_{s_u} \cdot \delta_r$,	(5.1)
$m_{\mu} = \Phi_{\mu} \cdot S_{\mu} \cdot \sqrt{\frac{p_{1}^{2} - p_{2}^{2}}{p_{1}^{2} - p_{2}^{2}}},$	(5.2)

$$m_u = \Psi_u \cdot S_u \cdot \sqrt{z_u \cdot p_1 \cdot v_1}$$

$$m_{I} = m_{u_{1}I} - m_{u_{2}I}, \qquad (5.3)$$

$$m_{T} = m_{u_{1}I} - m_{u_{2}I}, \qquad (5.4)$$

$$m_{11} m_{u_{-2}} m_{u_{-3}}$$
, (5.4)

$$m_{III} = m_{u_{-3}} + m_{u_{-4}} , \qquad (5.5)$$

$$m_{IV} = m_{u_{5}}$$
, (5.6)

$$m_V = m_{u_0} + m_{u_0}, \qquad (5.7)$$

$$m_{NTO2_in} = m_{II} - m_{IV}$$
, (5.8)

$$m_{KKP_{in}} = m_{III} + m_V$$
, (5.9)

$$v_{vz} = \frac{r \cdot T_{vz}}{p_b} , \qquad (5.10)$$

Kde

 v_{vz} ... měrný objem vzduchu na vnějším vstupu do 7. sekce [m³/kg],

- r ... individuální plynová konstanta pro vzduch $[J/kg.K] \rightarrow r = 287,139 J/kg.K$,
- T_{vz} ... teplota vzduchu ve strojovně [K] $\rightarrow T_{vz} = 40 + 273,15 = 313,15 \text{ K}$,

p_b ... atmosférický (barometrický) tlak vnějšího prostředí [Pa],

 $\rightarrow p_b = 101 \ 325 \ Pa$.

5.1.5 Vypočtené hodnoty

Tab. 22 Výpočet vnějších ucpávek předních a dílčích průtokových množství

Přední ucpávky	Sekce	1	2	3	4
Počet ucpávkových segmentů	počet_s [ks]	3	2	1	1
Tlak před ucpávkou	p_1 [bar]	21,8589	11,9113	1,7492	1,0133
Tlak za ucpávkou	p_2 [bar]	11,9113	1,7492	0,9800	0,9800
Entalpie na vstupu	i_1 [kJ/kg]	2805,15	2805,15	2805,15	-
Měrný objem na vstupu	v_1 [m^3/kg]	0,09178	0,16850	1,14639	0,88742
Počet břitů ucpávky	z_u [ks]	24	16	8	8
Střední průměr ucpávky	D_su [mm]	626,6	626,6	626,6	626,6
Radiální mezera	δ_r [mm]	0,6	0,6	0,6	0,6
Průtočná plocha ucpávky	S_u [m^2]	0,001181	0,001181	0,001181	0,001181
Šířka břitu ucpávky	b [mm]	0,3	0,3	0,3	0,3
Poměr rad.mezera/šířce	δ_r/b [-]	2	2	2	2
Průtokový součinitel ucpávkou	Φ_u [-]	0,7660	0,7660	0,7660	0,7660
Průtočné množství ucpávkou	m_u_i [kg/s]	0,756	0,595	0,104	0,027
Průtočné množství mezi sekcí 1-2	m_I [kg/s]	0,161			
Průtočné množství mezi sekcí 2-3	m_II [kg/s]	0,491			
Průtočné množství mezi sekcí 3-4	m_III [kg/s]	0,131			

		Těsněný prostor		
Popis veličiny	Označení veličiny	Těleso VT dílu - rotor	Těleso ST-NT dílu - rotor	
Tlak před ucpávkou	p_1 [bar]	7,0555	2,1859	
Tlak za ucpávkou	p_2 [bar]	3,9484	1,5738	
Entalpie na vstupu	i_1 [kJ/kg]	3014,67	2805,15	
Měrný objem na vstupu	v_1 [m^3/kg]	0,03491	0,09178	
Počet břitů ucpávky	z_u [ks]	48	36	
Střední průměr ucpávky	D_su [mm]	801,6	801,6	
Radiální mezera	δ_r [mm]	0,6	0,6	
Průtočná plocha ucpávky	S_u [m^2]	0,001511	0,001511	
Šířka břitu ucpávky	b [mm]	0,3	0,3	
Poměr rad.mezera/šířce	δ_r/b [-]	2	2	
Průtokový součinitel ucpávkou	Ф_u [-]	0,7009	0,7009	
Průtočné množství ucpávkou	m_u_i [kg/s]	1,801	0,598	

Tab. 23 Výpočet vnitřních ucpávek mezitělesových těsnící vnitřní prostory

Tab. 24 Výpočet vnějších ucpávek zadních a dílčích průtokových množství

Zadní ucpávky	Sekce	5	6	7
Počet segmentů	počet_s [ks]	3	1	1
Tlak před ucpávkou	p_1 [bar]	1,7492	1,7492	1,0133
Tlak za ucpávkou	p_2 [bar]	0,0876	0,9800	0,9800
Entalpie na vstupu	i_1 [kJ/kg]	2805,15	2805,15	-
Měrný objem na vstupu	v_1 [m^3/kg]	1,14639	1,14639	0,88742
Počet břitů ucpávky	z_u [ks]	24	8	8
Střední průměr ucpávky	D_su [mm]	624,5	624,5	624,5
Radiální mezera	δ_r [mm]	0,6	0,6	0,6
Průtočná plocha ucpávky	S_u [m^2]	0,001177	0,001177	0,001177
Šířka břitu ucpávky	b [mm]	0,3	0,3	0,3
Poměr rad.mezera/šířce	δ_r/b [-]	2	2	2
Průtokový součinitel ucpávkou	Φ_u [-]	0,7009	0,7009	0,7009
Průtočné množství ucpávkou	m_u_i [kg/s]	0,066	0,094	0,025

Průtočné množství k zahlcení sekce 5	m_IV [kg/s]	0,066
Průtočné množství mezi sekcí 6-7	m_V [kg/s]	0,119
Průtočné množství přiváděné do NTO2	m_NTO2_in [kg/s]	0,426
Průtočné množství přiváděné do KKP	m_KPP_in [kg/s]	0,250

Obr. 38 Schéma umístění ucpávkových sekcí s uvedením průtokových množství

5.2 Vnitřní ucpávky

Funkce vnitřních ucpávek mezi rozváděcím kolem a hřídelí turbíny je zamezit, respektive minimalizovat průtok páry skrz tuto oblast tak, aby ztrátový výkon, který tyto úniky způsobují, byl co nejnižší. Pro většinu rozváděcích kol (RK) jak VT, tak ST-NT dílu jsou voleny ucpávky s pravým labyrintem, výjimku tvoří RK 7. ÷ 9. stupně, kde z důvodu nižších tlaků páry postačují ucpávky s nepravým labyrintem.

V rámci výpočtu vnitřních ucpávek jsou navrhnuty i odlehčovací otvory (OO), které musí splňovat požadavky na vyrobitelnost a také skutečnost, jestli jsou stupně bubnového nebo kolového uspořádání. Odlehčovací otvory přísluší jen oběžným kolům 1. \div 6. stupně ST-NT dílu, u koncových stupňů nejsou otvory navrženy z důvodu pevnostního dimenzování. Při výpočtu musí být určen tlak p_m v mezeře mezi rozváděcím a oběžným kolem (viz obr. 39), ten ovlivňuje množství nasávané páry z hlavního proudu do prostoru mezery, tímto "obtokem" poté pára proudí k OO a dále do dalšího stupně, uniklé množství představuje ztrátu výkonu, protože pára v tomto prostoru nevykoná žádnou práci.

Vychází se z předpokladu, že:

- průtočné množství odlehčovacím otvorem je rovno součtu množství tekoucí mezerou a vnitřní ucpávkou mezi rozváděcím kolem a hřídelí turbíny
 → návrh počtu odlehčovacích otvorů a jejich rozměrů,
- měrný objem páry v mezeře mezi koly je roven měrnému objemu za stupněm (vzhledem k malému tlakovému spádu – vyplývá z rovnotlaké koncepce stupňů)

Obr. 39 Schéma rozložení tlaků v rámci stupně; zdroj [18]

Obr. 40 Rozměry ucpávky

5.2.1 Vnitřní ucpávky VT dílu

Konstrukce vnitřních ucpávek VT dílu je odlišná vzhledem k vnitřním ucpávkám ST-NT dílu. Ucpávka je řešena jako břity zasazené jak do těla rozváděcí lopatky, tak do hřídele (bubnu) turbíny. Břity jsou umístěný proti sobě s přesazením, tak aby mezi nimi vznikly "komůrky" charakteristické pro ucpávky s pravým labyrintem. Díky této koncepci lze pro jejich výpočet aplikovat stejný postup jako pro výpočet vnějších ucpávek, jen pro vyčíslení ztrátového výkonu jsou výpočtové vzorce (viz 5.1.4) rozšířeny o vztahy:

$$P_{\zeta} = m_{u_{-i}} \cdot H_{u_{z_{-i}}} , \qquad (5.11)$$

$$P_{\zeta_{-VT}} = \sum_{i=1}^{7} P_{\zeta} , \qquad (5.12)$$

Kde

 m_{u_i} ... průtočné množství páry uniklé ucpávkou i-té rozváděcí lopatky [kg/s], $H_{u\check{z}_i}$... užitečný spád i-tého stupně (viz Přílohy D, F) [kJ/kg], P_{ζ_VT} ... celkový ztrátový výkon VT dílu [kW].

Tento algoritmus výpočtu je aplikován pro 2. ÷ 7. stupeň. Výjimku v rámci VT dílu tvoří 1. stupeň, který se skládá s rozváděcích lopatek jako dýzového segmentu, který není uložen letmo, tedy ztráta únikem páry ucpávkou se nevyskytuje, i přesto ztrátový výkon není nulový z důvodu přisávání páry do mezery mezi rozváděcím a oběžným kolem, a jejím následným prouděním k vnitřní ucpávce těsnící prostor vnitřního tělesa VT dílu a hřídele turbíny. Odlehčovací otvor nelze z konstrukčního hlediska v tomto případě aplikovat. Vypočtené hodnoty vypovídající o ztrátovém výkonu vlivem úniků uvedeny v Příloze U.

5.2.2 Vnitřní ucpávky ST- NT dílu

Vnitřní ucpávky rozváděcích kol u 2. ÷ 6. stupně jsou voleny s pravým labyrintem, pro 7. \div 9. stupeň s nepravým labyrintem. Důvody pro tuto změnu jsou takovéto:

- těsnění menšího tlakového rozdílu,
- *měrné objemy páry se ve směru expanze zvětšují.*

V případě 1. stupně je situace i řešení stejné jako u VT dílu (viz 5.2.1).

5.2.2.1 Výpočtové vzorce

$$m_{u} = \Phi_{u} \cdot S_{u} \cdot \sqrt{\frac{p_{1}^{2} - p_{2}^{2}}{z \cdot p_{1} \cdot v_{1}}}, \qquad (5.13)$$

$$m_p = \Phi_p \cdot S_p \cdot \sqrt{\frac{2 \cdot p_m - p_o}{v_o}} , \qquad (5.14)$$

$$m_{oo} = \Phi_{oo} \cdot S_{oo} \cdot \sqrt{\frac{2 \cdot (p_o - p_2)}{v_2}}, \qquad (5.15)$$

$$S_{u} = \pi \cdot D_{s_u} \cdot \delta_{r} , \qquad (5.16)$$

$$S_p = \pi \cdot D_p \cdot \delta_p , \qquad (5.17)$$

$$S_{oo} = \sum_{i=1}^{n} \frac{\pi \cdot d_o^2}{4} , \qquad (5.18)$$

$$\delta_r = B \cdot \frac{D_{s_u}}{1000} + 0.25 , \qquad (5.19)$$

$$p_m = R_p \cdot (p_1 - p_2) + p_2 ,$$
 (5.20)

$$p_o = p_m - 0.05 \cdot (p_m - p_2),$$
 (5.21)

$$u_o = \frac{\pi \cdot D_o \cdot n}{60} , \qquad (5.22)$$

$$c_o = \sqrt{2 \cdot H_{u\tilde{z}_i} \cdot (1 - R_p)} , \qquad (5.23)$$

$$c_p = \sqrt{2 \cdot \left(p_m - p_o\right) \cdot v_o} , \qquad (5.24)$$

$$c_{oo} = \sqrt{2 \cdot (p_o - p_2) \cdot v_2}$$
, (5.25)

Kde

B ... materiálová konstanta pro feritický materiál břitů ucpávky [-].

Pro výpočet ucpávky s nepravým labyrintem je nutné teoretické průtokové množství uniklé páry zkorigovat pomocí vztahů:

$$q = 1 - \frac{1}{\left(1 + 16, 6 \cdot \frac{\delta_r}{t}\right)^2},$$
(5.26)

$$k = \sqrt{\frac{z_u}{(1-q) \cdot z_u + q}}, \qquad (5.27)$$

$$m_{u_{n}i} = m_{u_{i}i} \cdot k$$
, (5.28)

Kde

t ... rozteč břitů nepravé labyrintové ucpávky [mm],

q, k ... koeficienty pro výpočet nepravé labyrintové ucpávky [mm],

m_{u_n_i}... průtočné množství uniklé i-tou nepravou labyrintovou ucpávkou [kg/s].

Potřebné průtokové součinitele byly odečteny z grafů, závislostí (viz Přílohy V, W, X) a charakterizují je tyto funkční závislosti:

$$\boldsymbol{\Phi}_{u} = f\left(\frac{\boldsymbol{\delta}_{r}}{b}\right),\tag{5.29}$$

$$\boldsymbol{\Phi}_{p} = f\left(\frac{u_{o}}{c_{p}}\right),\tag{5.30}$$

$$\boldsymbol{\Phi}_{oo} = f\left(\frac{u_o}{c_{oo}}\right),\tag{5.31}$$

Kde

 $\Phi_u \dots$ průtokový součinitel labyrintovou ucpávkou [-],

 $\Phi_p \dots$ průtokový součinitel v mezeře mezi rozváděcím a oběžným kolem [-],

 Φ_{oo} ... průtokový součinitel v odlehčovacím otvoru [-].

Na základě výše uvedených vztahů byly vypočteny parametry navrhovaných ucpávek ST-NT dílu, hodnoty sledovaných veličin jsou uvedeny v Příloze Y.

Výsledný ztrátový výkon náležící vnitřním ucpávkám jak VT, tak ST-NT dílu dosahuje v součtu hodnoty **1 060,5 kW**.

5.3 Vysunovací těsnění

Nová koncepce tzv. "vysouvacího" kartáčového těsnění (firma TurboCare) je možnou alternativou při návrhu ucpávek turbíny. Z důvodu malých zkušeností v praxi s tímto novým systémem bylo pro účely výpočtu využito stávajících typů labyrintových ucpávek a vztahů jim příslušejících. Možnost využít tuto novou koncepci ucpávek stojí za zvážení, především z důvodu navýšení termodynamické účinnosti turbíny.

5.3.1 Popis alternativního typu ucpávek

Stávající labyrintové těsnění má svoji nevýhodu v jeho opotřebení, které je způsobeno jak prouděním páry, tak především rozběhem turbíny. Při roztáčení rotoru nelze nastavit ucpávkovým segmentům větší radiální vůli, což má za příčinu škrtání, a tím opotřebení břitů při chvění rotorové soustavy (rozběh a překonání kritických otáček). Důsledkem opotřebení ucpávek je větší únik páry, tím narůstá ztrátový výkon. Ve výsledku to znamená nižší termodynamickou účinnost turbíny. Opotřebení těsnících ploch, a tím navýšení radiálních vůlí je hlavní příčinou výrazného poklesu účinnosti. Vzniklý únik představuje **44% poklesu** η_{TD} , z celkových faktorů ovlivňující její velikost.

Firma TurbaCare vyvinula nový koncept ucpávek, respektive segmentů, které jsou při najíždění turbíny schopny se odsunout ze stávající pozice, tím navýšit radiální vůli mezi hřídelí turbíny. Tento děj zajišťují pružiny uvnitř segmentů (viz obr. 41). Po navýšení otáček a překonáních prvních několika kritických míst, v kterých se rotor rozkmitává vlivem vlastních frekvencí soustavy, se ucpávky přisouvají k hřídeli, snižuje se radiální vzdálenost, což má za výsledek menší úniky páry, menší ztráty. Navíc součástí ucpávky je i kartáčové těsnění, které snižuje průtok páry skrz ucpávky na minimum. Využití kartáčů ale klade vyšší důraz na vyvážení rotorové soustavy jako celku, tak aby nedocházelo k jejich nadměrnému opotřebení. Nový koncept řešení ucpávek přispívá k navýšení termodynamické účinnosti turbíny, což je cílem každého výrobce a požadavkem zákazníka.

Obr. 41 Koncept ucpávky firmy TurboCare – popis

Porovnání konvekční a vysunovací hřídelové ucpávky je uvedeno v Příloze Z.

Obr. 42 Řez vysunovací hřídelovou ucpávkou od firmy TurboCare

6 Kontrolní výpočet rotoru a spojky

Zadaná turbína je navrhována jako jednotělesová, rotor turbíny bude tedy tvořen jedním tělesem, které je vykováno ze zvoleného materiálu (**16 537.6** – viz Příloha K). Výhodou kovaných oběžných kol je snížení namáhání oproti kolům natahovaným, ale vzrůstají požadavky kladené na samotné metalurgické zpracování výkovku, jeho následné opracování a finální operace.

6.1 Kontrola rotoru na namáhání krutem

Rotor turbíny je kontrolován na namáhání krutem v jeho nejužším místě, kterým je čep rotoru pod radiálním ložiskem, ten se nachází v předním ložiskovém stojanu. Místo největšího namáhání souvisí s přenosem krouticího momentu z turbíny na generátor elektrického proudu. Spojení této rotorové soustavy je provedeno pomocí pevné třecí spojky, jejíž návrh a kontrola je uvedena v podkapitole 6.2.

Výpočet je proveden při tzv. **zkratovém krouticím momentu**. K tomuto stavu dochází v důsledku odepnutí generátoru od elektrické sítě, tím turbína ztratí ve zlomcích sekundy zátěž. Regulace, využívající tzv. klouzavého tlaku, má za úkol v několika sekundách zareagovat, uzavřít přívod páry do turbíny, a tím zabránit extrémnímu navýšení otáček, které i přesto narůstají a mohou dosáhnout při provozu maximálně 115% n_{jm}. Při navýšení na 117% n_{jm} už může dojít k poruchám celistvosti materiálu rotoru a oběžných lopatek (vznik mikrotrhlin). 120% n_{jm} je hranice, které může rotor dosáhnout jen jedenkrát za jeho život a to při odstřeďování ve zkušebním vyvažovacím tunelu. Zkratem je tedy uvažován stav, kdy dochází k nadměrnému navýšení otáček. Úkolem zavedení zkratového součinitele je předimenzovat rotor tak, aby i při tomto prudkému navýšení krouticího momentu odolal vzniklému namáhání, protože porušení takto velkého a objemného rotujícího tělesa by mělo fatální následky.

6.1.1 Výpočtové vztahy

$$M_{k_{jm}} = \frac{60 \cdot P_{celk}}{2 \cdot \pi \cdot n_{jm} \cdot \eta_G}, \qquad (6.1)$$

$$M_{zk} = M_k \cdot k, \tag{6.2}$$

$$W_{k} = \frac{\pi \cdot d_{R_{-}lo\tilde{z}}^{3}}{16} , \qquad (6.3)$$

$$\tau_k = \frac{M_{zk}}{W_k} , \qquad (6.4)$$

$$\tau_{k_{-D}} = \frac{R_{p0.2}}{2} , \qquad (6.5)$$

Kde musí být splněna podmínka:

 $\tau_{\rm k} < \tau_{\rm k_{-D}}$

Hodnoty vystupující ve výše uvedených výpočtových vztazích a výsledné hodnoty shrnující namáhání rotoru, jeho kontrolu jsou uvedeny v tab. 25.

Veličina			
Popis	Hodnota		
Materiál rotoru	typ [-]	16 537.6	
Smluvní mez kluzu	R_p 0,2 [MPa]	686	
Dovolené napětí v krutu	τ_K_D [MPa]	343	
Průměr rotoru pod ložisky	d_R_loz [mm]	380,0	
Modul průřezu v krutu	W_k [mm^3]	10774092	
Zkratový součinitel	k_zk [-]	8	
Jmenovitý krouticí moment	M_k_jm [N.m]	400404,835	
Zkratový krouticí moment	M_zk [N.m]	3203238,678	
Namáhání rotoru na krut	τ_K [MPa]	297,309	

Tab. 25 Výpočet kontroly rotoru na krut

6.2 Kontrola spojky a návrh spojovacích šroubů

Spojka mezi hřídelí turbíny a rotorem generátoru je volena jako pevná třecí. Tento typ je konstrukčně nejjednodušší, splňující požadavky na něj kladené. Spojovací příruba na rotoru turbíny je vykována spolu s celým tělesem.

Výhodou pevné spojky je schopnost přenést jak moment krouticí, tak ohybový. Nevýhodou je využití pouze třecích účinků při přenosu momentů, což má za následek vyšší nároky na spojovací materiál a jeho množství. Jako spojovací části jsou voleny speciálně upravené šrouby, které jsou zalícovány a jejich hlavy i matice jsou zapuštěny do přírub, aby neventilovaly ani nerozprašovaly olej. Počet a průměr přítlačných šroubů musí být nadimenzován tak, aby spojení bylo schopné přenést počítaný zkratový moment. Jako materiál šroubů byl zvolen typ pod označením 15 320.9. Dovolená namáhání materiálu byla odvozena na základě předpokladu, že je známá teplota rotoru pod ložisky, která souvisí s teplotou chladicího oleje, který vstupuje do ložisek o teplotě přibližně 40°C a vystupuje o teplotě kolem 60°C, právě na tuto teplotu je počítáno ohřátí materiálu rotoru, které ovlivňuje materiálové charakteristiky použitého materiálu.

6.2.1 Výpočtové vztahy

$$d_{\underline{s}_{min}} = \sqrt{\frac{8 \cdot k \cdot M_{\underline{z}k}}{\pi \cdot \sigma_{t_{\underline{D}}} \cdot D_{\underline{s}} \cdot f \cdot n_{\underline{s}}}}, \qquad (6.6)$$

$$M_{t} = \sigma_{t_{D}} \cdot \frac{\pi \cdot d_{\tilde{s}}^{2}}{4} \cdot n_{\tilde{s}} \cdot f \cdot \frac{D_{\tilde{s}}}{2}, \qquad (6.7)$$

$$\tau_{smyk_\breve{s}} = \frac{8 \cdot M_{zk}}{\pi \cdot D_{\breve{s}} \cdot d_{\breve{s}}^{2} \cdot n_{\breve{s}}}, \qquad (6.8)$$

Kde musí být splněna podmínka:

 $\tau_{\rm smyk_{\check{s}}} < \tau_{\rm smyk_{D}}$

Hodnoty vystupující ve výše uvedených výpočtových vztazích, výsledné hodnoty shrnující namáhání spojky a výpočet přítlačných šroubů, jsou uvedeny v tab. 26.

Veličina					
Popis Označení Hodnota					
Materiál spojovacích šroubů	typ [-]	15 320.9			
Mez kluzu	Re [MPa]	490			
Dovolené tahové napětí	σ_t_D [MPa]	235			
Dovolené smykové napětí	τ_smyk_D [MPa]	245			
Roztečný průměr šroubů	D_š [mm]	538,0			
Jmenovitý krouticí moment	M_k_jm [N.m]	400 404,835			
Součinitel bezpečnosti proti prokluzu	k [-]	1,5			
Součinitel tření	f [-]	0,18			
Volený počet šroubů	n_š [ks]	18			
Minimální průměr šroubu	d_š_min [mm]	60,1			
Volený průměr šroubu	d_š [mm]	60			
Třecí moment	M_t [N.m]	378266,649			
Maximální smykové napětí	τ_smyk_š [MPa]	233,976			

Tab. 26 Výpočet namáhání spojky mezi rotorem T a G, spojovacích šroubů

6.3 Určení kritických otáček rotoru

Kritické otáčky rotoru jsou důležitým aspektem pro vyhodnocení zda turbína bude pracovat při jmenovitých parametrech v klidném chodu, a pro zařazení rotoru buď mezi tuhé, nebo elastické. Hodnota kritických otáček by měla být o 20 ÷ 35% nižší než jsou jmenovité otáčky, to zaručuje klidný chod, který je požadován. Zároveň ale nesmí být jejich hodnota moc nízká, v důsledku najížděcího trendu, který nedovoluje při nízkých parametrech přejet oblast kritik zvýšenou rychlostí za menší časový úsek.

Určení kritických otáček je poměrně složité, k přesnému vyčíslení je potřeba řady vztahů a charakteristik rotoru na jednotlivých jeho průměrech (rozložení tuhosti a hmotnosti), dále tuhost a útlum ložisek, olejového filmu a v neposlední řadě základu turbíny. Pro orientační výpočet ale postačuje jednodušší vzorec (6.9), který je pro vymezení kritik v rámci rozsahu práce zcela postačující (jen pro případ koncepce jednotělesové turbíny).

Pro potřeby výpočtu byl rotor vymodelován pomocí programu CATIA V5. Pomocí tohoto modelu byly vyčísleny všechny potřebné veličiny vstupující do výpočtu (viz tab. 27). Pro představu vzhledu napočteného rotoru turbíny je vyobrazen v Příloze AA.

6.3.1 Výpočtové vztahy

$$n_{kr} = 7.5 \cdot \frac{\left(\frac{D_0}{L}\right)^2}{\sqrt{\frac{m_{R_celk}}{L}}},$$
(6.9)

$$n_{pomer} = \frac{n_{kr}}{n_{jm}} \cdot 100 , \qquad (6.10)$$

Kde z vypočteného poměru kritických a jmenovitých otáček n_{poměr} vyplývá i jejich odchylka Δn , která ukazuje zda vypočtené kritické otáčky jsou v rozumném intervalu od n_{im} .

Veličina							
Popis	Popis Označení Hodnota						
Celková plocha otvorů	S_0 [m^2]	0,636000					
Celkový objem otvorů	V_0 [m^3]	0,038852					
Celkový objem rotoru	V_celk [m^3]	3,894000					
Celková hmotnost závěsu OL	m_z_OL [kg]	442,384					
Celková hmotnost OL	m_OL [kg]	8699,707					
Celková hmotnost bandáže OL	m_b_OL [kg]	169,559					
Hmotnost rotoru	m_R [kg]	29084,784					
Celková hmotnost rotoru	$m_R_celk [kg] = G$	37152,263					
Ložisková vzdálenost	L [mm]	5960,0					
Maximální průměr hřídele	D_0 [mm]	875,0					
Kritické otáčky rotoru	n_kr [1/min]	2047,46					
Poměr n_kr / n_jm	n_poměr [%]	68,25					

Tab. 27 Výpočet kritických otáček rotoru

Z vypočtené hodnoty kritických otáček rotoru, které jsou nižší než jmenovité otáčky, vyplývá fakt, že rotor je elastický, tedy vhodný pro rovnotlakou koncepci turbíny, a odchylka $\Delta n = 1 - n_{poměr} = 31,75$ %, její velikost tedy splňuje již zmíněnou podmínku.

7 Výpočet a návrh ložisek

Návrh zahrnuje dvojici ložisek (axiální a radiální) umístěnou v předním ložiskovém stojanu a čistě radiální ložisko, které se nachází ve vnějším tělese axiálního výstupu do kondenzátoru. Axiální síly vznikají vlivem přetlaku páry na disky oběžných kol, změnou hybnosti v lopatkování, tlaku páry působící na jednotlivé plochy ucpávek jak vnitřních, tak vnějších i na různá osazení hřídele. Z důvodu těchto sil je přední axiální ložisko voleno s naklápěcími segmenty.

Pro zajištění kluzných vlastností je potřeba mazání ložisek úměrného jejich velikosti, což klade nároky na zajištění dostatečného průtokového množství mazacího oleje, který zároveň plní funkci chladiva materiálů ložiska, která jsou tepelně namáhána. Olejové hospodářství k ložiskům je řešeno v rámci podkapitoly 7.3.

7.1 Radiální ložiska

Radiální ložiska jsou navrhovány na základě znalosti reakcí jak od vlastní hmotnosti rotoru, tak od parciálního ostřiku. Jelikož nebyl v rámci výpočtu průtočné části nutný parciální ostřik, bude návrh vycházet pouze z reakcí od hmotnosti jednotlivých částí rotoru.

Pro výpočet vznikajících reakcí bylo potřeba určit hmotnosti:

- předního "převisu" = přední část hřídele sahající až k ose předního radiální ložiska,
- části rotoru mezi ložisky (s uvažováním hmotnosti závěsů, OL i bandáže),
- zadního "převisu" = zadní část hřídele sahající od osy zadního radiální ložiska až po samotný konec hřídele turbíny.

Dále je potřeba určit středy hmotnosti těchto částí. Všechny hodnoty byly odečteny z 3-D modelu hřídele, který byl vypracován v programu CATIA V5. Pro vizuální představu o tvaru rotoru je zobrazen v Příloze AA.

Schéma působících sil, reakcí v ložiscích, znázornění jednotlivých vzdáleností středů hmotnosti a umístění podpor, které v rámci výpočtu figurují, je uvedeno v Příloze BB.

7.1.1 Výpočet reakcí od vlastní hmotnosti

K určení velikosti reakcí v ložiscích je využito momentové podmínky vztažené k přední podpoře, díky ní dostáváme reakci vzniklou na zadní podpoře. Následně je aplikována silová podmínka, z které vyčíslíme velikost vzniklé reakce v přední podpoře.

7.1.1.1 Výpočtové vztahy

$$F_1 = m_1 \cdot g$$
, (7.1)

$$F_2 = m_2 \cdot g$$
, (7.2)

$$F_3 = m_3 \cdot g$$
, (7.3)

$$\sum \left(M_{i} \right)_{p} = 0 : \quad F_{2} \cdot x_{2} - F_{1} \cdot x_{1} - R_{m_{z}} \cdot L + F_{3} \cdot \left(L + x_{3} \right) = 0 , \qquad (7.4)$$

$$\sum y_i = 0: \quad F_1 - R_{m_p} + F_2 - R_{m_z} + F_3 = 0 , \qquad (7.5)$$

Kde

g ... gravitační zrychlení
$$[m/s^2] \rightarrow g \approx 9.81 \text{ m/s}^2$$
.

7.1.2 Návrh rozměrů ložiska a vyčíslení ztrátového výkonu

Úkolem radiálních ložisek je zachycení síly vznikající od tíhy osazeného rotoru turbíny. Hlavními rozměry pro návrh ložisek jsou:

- L_{lož} ... délka ložiska,
- D ... průměr hřídele turbíny,
- poměr $L_{lož}/D \rightarrow podmínka \dots L_{lož}/D = 0.5 \div 0.8$.

7.1.2.1 Výpočtové vztahy

$$p_{lo\tilde{z}} = \frac{R_{m_{-}i}}{L_{lo\tilde{z}} \cdot D}, \qquad (7.6)$$

$$\Delta r = \frac{D}{1000} , \qquad (7.7)$$

$$\psi = \frac{\Delta r}{R} \,, \tag{7.8}$$

$$S_o = \frac{p \cdot \psi^2}{\eta \cdot \frac{2 \cdot \pi \cdot n}{60}},\tag{7.9}$$

$$P_{\zeta_{-i}} = 0.45 \cdot 10^{-5} \cdot D^2 \cdot n^{1.5} \cdot \sqrt{R \cdot \left(4 + \frac{L_{lo\xi}}{D}\right)}, \qquad (7.10)$$

Kde

 η ... dynamická viskozita oleje při teplotě 50°C [Pa/s],

- musí platit tyto dvě podmínky:

- $p_D \dots$ dovolený specifický tlak [MPa] $\rightarrow p_D \in \langle 0, 8; 2 \rangle \rightarrow$ stabilita a životnost,
- dovolené rozmezí Sommerfeldova čísla ... $S_0 \in \langle 1; 10 \rangle$.

Popis názvů a jednotek veličin vyskytujících se v použitých výpočtových vztazích je uveden spolu s výslednými hodnotami v tab. 28.

Katedra energetických strojů a zařízení

Veličina			
Popis	Hodnota		
Hmotnost předního ''převisu''	m_1 [kg]	1185,358	
Hmotnost těla rotoru mezi ložisky	m_2 [kg]	35666,556	
Hmotnost zadního ''převisu''	m_3 [kg]	300,349	
Působící síla na přední ''převis''	F_1 [N]	11628,36	
Působící síla na tělo mezi ložisky	F_2 [N]	349888,91	
Působící síla na zadní ''převis''	F_3 [N]	2946,42	
Ložisková vzdálenost	L [mm]	5960,0	
Vzdálenost těžiště předního "převisu"	x_1 [mm]	570,8	
Vzdálenost těžiště těla mezi ložisky	x_2 [mm]	3555,0	
Vzdálenost těžiště zadního ''převisu''	x_3 [mm]	168,0	
		Radiáln	ú ložisko
		Pření	Zadní
Reakce v ložisku	R_m_i [N]	153848,85	210614,84
Otáčky rotoru	n [ot/min]	3000	3000
Dynamická viskozita mazacího oleje	η [Pa/s]	0,003	0,003
Hustota mazacího oleje ložisek	ρ [kg/m^3]	900	900
Dovolené ohřáží mazacího oleje	Δ t_D [°C]	10	10
Průměr hřídele pod ložisky	D [mm]	380	380
Délka ložiska	L_lož [mm]	300	300
Poměr L_lož / D	L_lož/D [-]	0,789	0,789
Tlak působící na ložisko	p_lož [MPa]	1,3496	1,8475
Radiální vůle v ložisku	Δr [mm]	0,380	0,380
Poměrná radiální vůle v ložisku	Ψ[-]	0,002	0,002
Sommerfeldovo číslo	S_0 [-]	5,728	7,841
Ztrátový výkon ložiska	P_ζ_i [kW]	91,7	107,2

Tab.	28 Návrh a	výpočet	ztrátového	výkonu	radiálních	ložisek
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

7.2 Axiální ložisko

Funkcí axiálního ložiska je zachycení všech axiálních sil vznikajících od přetlaku pracovního média na dílčí plochy průtočné části.

Výsledná síla se skládá z těchto pěti složek:

- *F*_{1ax} ... axiální síla od změny hybnosti v lopatkové mříži,
- F_{2ax} ... axiální síla působící na disky oběžných kol,
- *F_{3ax} ... axiální síla působící na výstupky vnitřních ucpávek,*
- *F*_{4ax} ... axiální síla působící na výstupky vnějších ucpávek,
- *F*_{5ax} ... axiální síla působící na plochy osazení rotoru.

Pro výpočet je třeba určit kladný směr působení axiálních sil, ten je zvolen ve směru proudění páry v ST-NT dílu.

7.2.1 Výpočet axiální síly od změny hybnosti v lopatkové mříži

Síla od změny hybnosti v lopatkové mříži je důsledkem rozdílů tlaků před a za oběžnými lopatkami (OL), rozdíly nejsou velké, ale i přes rovnotlakou přeměnu se ve stupni vyskytují a je třeba s nimi počítat. Síla se skládá ze dvou složek, od působení tlaku média na OL a z impulsní síly, která vzniká od hmotnostního průtoku páry. Ve výpočtu figurují jen lopatky válcového typu, jelikož axiální síly vznikající při průchodu média zborcenými lopatkami již byly vyčísleny v rámci výpočtu průtočné části (viz 3.4.1.4).

Výpočtový vztah, který byl aplikován, je ve tvaru:

$$F_{lax} = \left[\pi \cdot D_{s_{oll}} \cdot L_{p_{oll}} \cdot (p_s - p_2) + (m_s - m_o) \cdot (w_{lax} - w_{2ax}) \right] \cdot \varepsilon , \qquad (7.11)$$

7.2.2 Výpočet axiální síly působící na disky oběžných kol

Síla vzniká působením tlaku média na disky OK 1.stupně VT dílu a u všech stupňů ST-NT dílu. Plocha disku, na kterou jen tlak vyvozován, je brána od patního průměru k hřídeli turbíny.

Výpočtové vztahy, který byl aplikovány, jsou ve tvaru:

$$F_{2ax} = (p_m - p_2) \cdot (D_p - D_h) - pro \ disk \ bez \ odlehčovacích \ otvorů , \qquad (7.12)$$

$$F_{2ax} = (p_m - p_2) \cdot (S_{OK} - S_{OO}) - pro \ disk \ s \ odlehčovacími \ otvory \ , \tag{7.13}$$

Popis názvů a jednotek veličin vyskytujících se ve výše uvedených vzorcích je uveden spolu s vypočtenými hodnotami jak pro VT díl, tak pro ST-NT díl v Příloze CC.

7.2.3 Výpočet axiální síly působící na výstupky vnitřních ucpávek

V případě vnitřních ucpávek jsou použity břity, které jsou uloženy v ucpávkových tělesech zasazených do rozváděcích kol (ST-NT díl), nebo přímo zatemované břity (VT díl), ty zapadají do výstupků na hřídeli (ST-NT díl), nebo mezi opačně orientované břity zatemované v hřídeli, právě na tyto plošky působí tlakový rozdíl před a za ucpávkou, který vyvozuje počítanou axiální sílu. Schéma typové ucpávky s označením příslušných rozměrů potřebných k výpočtu je zobrazeno na obr. 43. Výjimku tvoří ucpávky 7. ÷ 9. stupně ST-NT dílu, kde je využito nepravého labyrintu, v tomto případě žádná axiální síla na rotor turbíny nepůsobí.

V rámci výpočtu sil u ucpávek RK jsou vyčísleny i axiální síly působící na výstupky ucpávek těsnící prostor mezi vnitřními tělesy jak VT dílu, tak i ST-NT dílu a hřídele.

Obr. 43 Schéma typové konstrukce vnitřní ucpávky rozváděcího kola; zdroj [17]

Výpočtový vztah, který byl aplikován, je ve tvaru:

$$F_{3ax} = \frac{1}{2} \cdot \frac{\pi}{4} \cdot \frac{z+1}{z} \cdot \left(D_{1_u}^2 - D_{h_u}^2\right) \cdot \left(p_1 - p_2\right),$$
Kde
(7.14)

z ... počet břitů ucpávky [-].

Vypočtené působící axiální síly jsou uvedeny v Příloze DD.

7.2.4 Výpočet axiální síly působící na výstupky vnějších ucpávek

Vnější ucpávky přední jsou konstruované jako břity zatemované v hřídeli proti ucpávkovým tělesům, která jsou uchycená v tělese turbíny. Jednoduché schéma konstrukce i s rozměry vstupujícími do výpočtu je zobrazeno na obr. 44. Vnější ucpávky zadní jsou řešeny jako nepravý labyrint, kde ucpávkové břity jsou umístěné v segmentech proti hladkému povrchu hřídele. Tímto se na hřídeli nevyskytují plošky, na které by mohl působit přetlak média, proto zadní ucpávky ve výpočtu nefigurují. Výsledné působící axiální síly jsou uvedeny spolu s popisem veličin v tab. 29.

Výpočtový vztah, který byl aplikován, je ve tvaru:

$$F_{4ax} = \frac{1}{2} \cdot \frac{\pi}{4} \cdot \left(D_{1_u}^2 + D_{2_u}^2 - D_{h_u}^2 \right) \cdot \left(p_1 - p_2 \right), \tag{7.15}$$

Obr. 44 Schéma typové konstrukce vnější ucpávky přední; zdroj [17]

Tab. 29 Výpočet axiálních sil působících na výstupky vnějších ucpávek

Veličina		Sekce vnějších ucpávek předních			
Popis	Označení	1	2	3	4
Tlak páry na vstupu do ucpávky	p_1 [MPa]	21,8589	11,9113	1,7492	1,0133
Tlak páry na výstupu z ucpávky	p_2 [MPa]	11,9113	1,7492	0,9800	0,9800
Průměr hřídele	D_h_u [mm]	620,0	620,0	620,0	620,0
Dolní průměr ucpávky	D_1_u [mm]	627,8	627,8	627,8	627,8
Horní průměr ucpávky	D_2_u [mm]	633,8	633,8	633,8	633,8
Axiální síla od vnějších ucpávek i-té sekce	F_4ax_i [N]	-10561,10	-10788,82	-816,64	35,30
Celková axiální síla od vnějších ucpávek	F_4ax_celk [N]	-22131,26			

7.2.5 Výpočet axiálních sil působících na osazení rotoru

Tato síla je vyvozena tlakem média na osazení rotoru, která se vyskytují po celé jeho délce, její velikost závisí především na velikosti hrany osazení. Výsledné působící axiální síly jsou uvedeny spolu s popisem veličiny v Příloze EE.

Výpočtový vztah, který byl aplikován, je ve tvaru:

$$F_{5ax} = p \cdot \frac{\pi}{4} \cdot \left(D_1^2 - D_2^2 \right), \tag{7.16}$$

7.2.6 Výpočet celkové působící axiální síly na rotor

Celková působící axiální síla na rotor turbíny se vyčíslí jako součet všech dílčích vypočtených axiálních sil s respektováním jejich směru. Výpočet shrnuje vztah:

$$F_{ax_celk} = F_{Iax} + F_{2ax} + F_{3ax} + F_{3'ax} + F_{4ax} + F_{5ax} , \qquad (7.17)$$

Výsledná hodnota figuruje v návrhu axiálního ložiska, proto je uvedena společně s dalšími potřebnými veličinami a celkovou velikostí ztrátového výkonu v tab. 30.

7.2.7 Návrh axiálního ložiska

Axiální ložisko je navrženo jako segmentové. Při návrhu se vychází z faktu, že pro jmenovité otáčky turbíny $n_{jm} = 3000 \ 1/min$ je poměr rozměrů ložiska $\frac{a}{r} = 1$. Počet segmentů ložiska je vhodným způsobem zvolen, tak aby vyhovoval hodnotám vstupujících do výpočtu. Vyplnění plochy ložiska je 60%, což se promítá do příslušného vzorce (7.20).

7.2.7.1 Výpočtové vztahy

$$a = b = \frac{D_h - D_p}{2}, \qquad (7.18)$$

$$D_{s} = \frac{D_{h} + D_{p}}{2}, \qquad (7.19)$$

$$S_{s_{max}} = 0.6 \cdot \frac{\pi \cdot \left(D_h^2 - D_p^2\right)}{4}, \qquad (7.20)$$

$$z_{s_max} = \frac{S_{s_max}}{a \cdot b}, \qquad (7.21)$$

$$S_s = z_s \cdot a \cdot b , \qquad (7.22)$$

$$p_s = \frac{F_{ax_celk}}{S_s} , \qquad (7.23)$$

$$P_{\zeta_{as}} = 1,07 \cdot 10^{-5} \cdot \sqrt{\left(D_s \cdot n\right)^3} \cdot \sqrt{F_{as_{celk}}} \cdot \sqrt{S_s \cdot \frac{1 + \left(\frac{a}{b}\right)^2}{\sqrt{\frac{a}{b}}}} , \qquad (7.24)$$

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

$$P_{\zeta_{-}ps} = 2776, 5 \cdot S_{s} \cdot \left(\frac{n_{jm}}{3000}\right)^{2} \cdot D_{s}^{2} , \qquad (7.25)$$

$$P_{\zeta_{-}celk} = A_{t_{-}\zeta_{-}as} + A_{t_{-}\zeta_{-}ps} , \qquad (7.26)$$

Veličina						
Popis	Označení	Hodnota				
Hlavový průměr axiálního ložiska	D_h [mm]	603,5				
Patní průměr axiálního ložiska	D_p [mm]	408,5				
Střední průměr axiálního ložiska	D_s [mm]	506,0				
Výška segmentu ložiska	b [mm]	97,5				
Šířka segmentu ložiska	a [mm]	97,5				
Maximální počet segmentů	z_s_max [ks]	9,78				
Skutečný počet segmentů	z_s [ks]	8				
Skutečná plocha segmentů	S_s [m^2]	0,076050				
Maximální plocha segmentů	S_s_max [m^2]	0,092994				
Celková axiální síla	F_ax_celk [N]	336527,79				
Specifický tlak na segmenty	p_s [MPa]	0,0421				
Ztrátový výkon na aktivní straně ložiska	P_ζ_as [kW]	229,3				
Ztrátový výkon na pasivní straně ložiska	P_ζ_ps [kW]	54,1				
Celkový ztrátový výkon v axiálním ložisku	P_ζ_celk [kW]	283,3				

Tab. 30 Návrh axiálního ložiska a výpočet jeho ztrátového výkonu

Výpočtem byla stanovena hodnota celkového ztrátového výkonu v axiálním ložisku na **281,9 kW**.

7.3 Výpočet množství mazacího oleje a přívodního potrubí

Funkcí mazacího oleje ložisek je mazaní stykových ploch pro zajištění kluzných účinků, chlazení ložisek i hřídele turbíny. Teplota oleje je důležitá i z hlediska regulace, několik z ochran je právě touto veličinou řízeno proto, aby při navýšení teploty nedošlo k havárii.

Mazací olej musí být přiváděn k ložiskům v dostatečném množství (viz vzorec 7.27), na základě tohoto údaje je dimenzováno přívodní i odpadní olejové potrubí. Návrhové rychlosti proudícího oleje v potrubí jsou, z důvodu možnosti pěnění oleje, nižší (viz tab. 31).

7.3.1 Výpočtové vzorce

$$\dot{V}_o = \frac{A_{t_{-\zeta_{-}i}}}{\rho_o \cdot c_{p_o} \cdot \Delta t}, \qquad (7.27)$$

$$D_{p\bar{r}} = \sqrt{\frac{4 \cdot \dot{V_o}}{\pi \cdot w_{p\bar{r}}}} , \qquad (7.28)$$

$$D_{od} = \sqrt{\frac{4 \cdot \dot{V_o}}{\pi \cdot w_{od}}}, \qquad (7.29)$$

$$w_{sk_p\check{r}} = \frac{4 \cdot \dot{V_o}}{\pi \cdot DN_{p\check{r}}^2}, \qquad (7.30)$$

$$w_{sk_od} = \frac{4 \cdot \dot{V_o}}{\pi \cdot DN_{od}^2}, \qquad (7.31)$$

Tab. 31 Výpočet objemového průtoku mazacího oleje, návrh olejového potrubí

Veličina		Axiální ložisko Radiá		lní ložisko	
Popis	Označení	Přední	Přední	Zadní	
Celkový ztrátový výkon v i-tém ložisku	Ρ_ζ_i [kW]	283,3	91,7	107,2	
Měrná hmotnost mazacího oleje	ρ_0 [kg/m^3]	900			
Měrná tepelná kapacita mazacího oleje	c_p_o [J/kg.K]	1,680			
Dovolené ohřátí mazacího oleje	Δt [°C]	15 10		10	
Teoretická rychlost oleje v přívodním potrubí	w_př [m/s]	1,50			
Teoretická rychlost oleje v odpadním potrubí	w_od [m/s]	0,25			
Objemové množství mazacího oleje	V_0 [m^3/s]	0,0125	0,0061	0,0071	
Průměr přívodního potrubí k ložisku	D_př [mm]	103,0	71,7	77,6	
Průměr odpadního potrubí z ložiska	D_od [mm]	247,3	175,7	190,1	
Volený nominální průměr přívodního potrubí	DN_př [mm]	125	80	80	
Volený nominální průměr odpadního potrubí	DN_od [mm]	250	178	200	
Skutečná rychlost oleje v přívodním potrubí	w_sk_př [m/s]	1,02	1,21	1,41	
Skutečná rychlost oleje v odpadním potrubí	w_sk_od [m/s]	0,25	0,24	0,23	

8 Návrh a kontrola tělesa turbíny

Tělesa turbíny (vnitřní a vnější) jsou navrženy s horizontálními přírubami, které je dělí v jejich polovinách, tím je zajištěn snadný přístup do útrob T (\rightarrow výhodnější pro montáž).

Pro výpočet je nutné navrhnout tloušťku jak vnitřního, tak vnějšího tělesa. Tyto rozměry vycházejí z maximálního průměru rozváděcího kola, použitého materiálu, působících tlaků a teplot. Při kontrole namáhání jsou využity výpočtové vztahy pro tlustostěnné válcové nádoby o vnějším poloměru r_2 a vnitřním poloměru r_1 , namáhané vnitřním přetlakem Δp a napětím vzniklém tepelným pnutím.

8.1 Namáhání vnitřního a vnějšího tělesa

Návrh a kontrola těles je provedena v místech největšího namáhání (volba dle konzultace). U vnitřního tělesa je kontrola provedena v řezu:

- před 1. stupněm VT dílu (řez. 1.),
- za 1. stupněm VT dílu (řez 2.).

Vnější těleso je kontrolováno v řezu:

- za 4. stupněm VT dílu (řez 3.),
- za 3. stupněm ST-NT dílu (řez 4.).

Je přijat předpoklad, že pokud tělesa vyhoví ve výše uvedených místech největšího namáhání, v další místech bude pevnostní podmínka také splněna z důvodu snižujících se tlaků a teplot proudícího média.

Materiál pro výrobu jak vnitřní, tak vnější skříně turbíny byl zvolen typ 42 2713.5.

8.1.1 Výpočtové vzorce

$$\sigma_{t,p} = \frac{\Delta p}{y^2} \cdot \left(\frac{Y^2 + y^2}{Y^2 - I}\right),\tag{8.1}$$

$$\sigma_{r,p} = -\frac{\Delta p}{y^2} \cdot \left(\frac{Y^2 - y^2}{Y^2 - 1}\right),$$
(8.2)

$$\sigma_{ax,p} = \frac{\Delta p}{Y^2 - 1}, \qquad (8.3)$$

$$\sigma_{t,T} = -\frac{\beta \cdot E \cdot \Delta T}{2 \cdot (1 - \nu)} \cdot \left(\frac{\ln \frac{Y}{y} - 1}{\ln Y} + \frac{\left(\frac{Y}{y}\right)^2 + 1}{Y^2 - 1} \right), \qquad (8.4)$$

$$\sigma_{r,T} = -\frac{\beta \cdot E \cdot \Delta T}{2 \cdot (1 - \nu)} \cdot \left(\frac{\ln \frac{Y}{y}}{\ln Y} - \frac{\left(\frac{Y}{y}\right)^2 - 1}{Y^2 - 1} \right), \qquad (8.5)$$

$$\sigma_{ax,T} = -\frac{\beta \cdot E \cdot \Delta T}{2 \cdot (1 - \nu)} \cdot \left(\frac{2 \cdot \ln \frac{Y}{y} - 1}{\ln Y} + \frac{2}{Y^2 - 1}\right), \qquad (8.6)$$

$$\sigma_t = \sigma_{t,p} + \sigma_{t,T} , \qquad (8.7)$$

$$\sigma_r = \sigma_{r,p} + \sigma_{r,T} , \qquad (8.8)$$

$$\sigma_{ax} = \sigma_{ax,p} + \sigma_{ax,T} , \qquad (8.9)$$

$$\tau_{r_{-l}} = \frac{\left|\sigma_{ax}\right| - \left|\sigma_{r}\right|}{2}, \qquad (8.10)$$

$$\tau_r = \frac{\sigma_r - |\sigma_r|}{2}, \qquad (8.11)$$

$$\tau_{r_{-2}} = \frac{\sigma_{t}}{2} , \qquad (8.12)$$

Kde

Y, y ... poměr poloměrů [-] \rightarrow vyčíslení pomocí těchto vzorců:

$$Y = \frac{R_2}{R_1}$$
, $y = \frac{r}{R_1}$, $r = \frac{R_1 + R_2}{2}$.

V rámci pevnostní kontroly musí být splněna Questova pevnostní podmínka ve znění:

$$\tau_{max} = \frac{\sigma_D}{2} \tag{8.13}$$

Vypočtené hodnoty zkoumaných veličin, i s jejich popisem vysvětlující výpočtové vztahy a označením, jsou uvedeny v Příloze FF.

Velikost jednotlivých smykových napětí na poloměrech R1, R2, r ve všech zvolených řezech splňuje Questovu pevnostní podmínku. Tloušťka i rozměry těles jsou tedy v souladu s dovoleným namáháním použitého materiálu.

8.2 Návrh a kontrola horizontální příruby

Tělesa turbíny jsou horizontálně dělena, spojení je zajištěno přírubami a šrouby, které dvě protilehlé části spojují. K dostatečnému utěsnění dosedacích ploch jsou šrouby předpjaty. Horizontální příruba musí být dostatečně tuhá, aby zajistila požadovanou těsnost, což má ale za příčinu zvýšení objemu materiálu. Toto navýšení hmotnosti ale vede k horšímu prohřívání těles, může tak vznikat nežádoucí tepelné pnutí uvnitř materiálu.

Výpočet přírub jak vnitřního, tak vnějšího tělesa je proveden v místě největšího namáhání, kterým je místo vstupu páry do VT dílu před 1. stupněm ("ostré" parametry).

Základním ukazatelem zatížitelnosti příruby je poměrná síla vztažená na zvolenou rozteč

šroubů $\frac{F}{t}$ (viz výpočtový vzorec 8.18). Z důvodu splnění požadavku na těsnost musí být splněna podmínka, že tlak q₂ působící na vnější liště příruby nabývá kladné hodnoty. Volba konstrukce příruby se dvěmi lištami je navržena z důvodu jejího odlehčení.

Teplotní gradient je vhodně odhadnut na základě předpokladu, že teplota uvnitř a vně materiálu příruby postihuje pozvolné prohřívání turbíny při najíždění.

Řez takto navrženou přírubou je vyobrazen na obr. 45. Jednoduchý nákres zobrazuje potřebné veličiny (rozměry, působící síly, napětí a momenty) nutné k výpočtu.

Obr. 45 Řez horizontální přírubou s popisem; zdroj [18]

8.2.1 Výpočtové vzorce

$$F_{zp}(Y) = \frac{Y^2 \cdot \ln Y}{Y^2 - 1} - \frac{1}{2}, \qquad (8.14)$$

$$F_{zp}(Y) = \frac{1}{2 \cdot (1 - v)} \cdot \left(\frac{Y^2 \cdot \ln Y}{Y^2 - 1} - \frac{Y^2 - 1}{4 \cdot \ln Y}\right), \qquad (8.15)$$

$$q_1 = (2 \div 3) \cdot p_1 , \qquad (8.16)$$

$$q_2 = \frac{l}{b_2} \cdot \left(\frac{F}{t} - q_1 \cdot b_1 - \Delta p \cdot r_1\right), \qquad (8.17)$$

$$\frac{F}{t} = \frac{1}{(a_2 - a_s)} \cdot \begin{cases} q_1 \cdot (a_2 - a_1) \cdot b_1 + \Delta p \cdot r_1 \cdot a_2 + \\ -r_1^2 \cdot \left[\Delta p \cdot F_{zp}(Y) + \beta \cdot E \cdot \Delta T \cdot F_{zt}(Y)\right] \end{cases}, \quad (8.18)$$

$$F_{\breve{s}} = t \cdot \left(\frac{F}{t}\right), \tag{8.19}$$

$$\sigma_{o_{-}p} = \frac{q_2 \cdot b_2 \cdot a \cdot t}{\frac{1}{6} \cdot \left(t - d_s\right) \cdot H^2}, \qquad (8.20)$$

$$\sigma_{t_{\underline{s}}} = \frac{4 \cdot F_{\underline{s}}}{\pi \cdot d_{\underline{s}}^2}, \qquad (8.21)$$

Kde pro výpočet q_1 je zvolena z rozmezí definovaného v 8.16 dolní mez, které přísluší hodnota 2, ta je zahrnutá posléze do výpočtu. Výsledné velikosti zkoumaných veličin, i s jejich popisem vysvětlující výpočtové vztahy a označením, jsou uvedeny v Příloze GG.

Jako materiál šroubů byl zvolen typ **15 335.3** pro horizontální přírubu vnitřního tělesa a typ **15 320.5** pro přírubu vnějšího tělesa turbíny. Materiálové charakteristiky použitých materiálu jsou uvedeny v Příloze K.

Výpočtem bylo ověřeno, že navržené příruby i spojovací šrouby z pevnostního hlediska **vyhovují**, jsou tedy splněny podmínky:

$$\sigma_{t_{\underline{s}}} < \sigma_{t_{\underline{s},D}} , \qquad (8.22)$$

$$\sigma_{o_{-p}} < \sigma_{o_{-p}_{-D}} . \tag{8.23}$$

9 Dimenzování potrubních tras

Výpočet a návrh potrubních tras je nedílnou součástí komplexního návrhu turbíny. Mezi potrubí, která jsou v rámci výpočtu řešena patří:

- potrubí pro přívod (odvod) páry z průtočných částí,
- potrubí jednotlivých odběrů pro regenerační ohříváky,
- potrubí pro axiální výstup do kondenzátoru (K),
- potrubí vedoucí od sekcí vnějších ucpávek předních (zadních).

Rychlosti v dílčích potrubních trasách byly zvoleny na základě provozních zkušeností z hlediska "ideálního" proudění média, a to:

- $w \approx 50 \text{ m/s} \text{pro potrubí v rámci VT a ST-NT dílu (mimo výstupu do K),}$
- $w \approx 70 \text{ m/s} \text{pro potrubí axiálního výstupu do kondenzátoru,}$
- $w \approx 25 \text{ m/s} \text{pro potrubí sekcí vnějších ucpávek.}$

Volené a vypočtené parametry příslušných potrubních tras jsou uvedeny v Příloze HH.

Pro vyčíslení potřebných veličin byly využity tyto výpočtové vztahy:

$$m_{p_{-i}} = \frac{i \cdot w \cdot S_{min}}{v_i}, \qquad (9.1)$$

$$d_{teor} = \sqrt{\frac{4 \cdot S_{min}}{\pi}} , \qquad (9.2)$$

$$d_{sk} = \sqrt{4 \cdot \frac{m_{p_i} \cdot v_i}{\pi \cdot i \cdot w}}, \qquad (9.3)$$

$$v_s = \frac{v_1 \cdot m_1 + v_2 \cdot m_2}{m_1 + m_2}, \qquad (9.4)$$

Kde

 $v_s \dots$ měrný objem směsi dvou proudů páry (parovzdušné směsi) [m³/kg].

Uvedené vztahy vycházejí z rovnice kontinuity (Zákon zachování hmotnosti). Potřebné dílčí velikosti hmotnostních průtokových množství vystupujících ve výpočtu jsou převzata z výpočtu tepelného schéma oběhu (viz kapitola 2).

10 Přepočet tepelného schéma a průtočné části

Výpočet jak tepelného schéma, tak na něj navazující průtočné části, byl proveden jako počáteční návrh, kde byly některé ze vstupních veličin vhodně voleny dle praxí ověřených hodnot. Jedná se zejména o volené termodynamické účinnosti lopatkování VT a ST-NT dílu a výpočet odběrových tlaků pro jednotlivé regenerační ohříváky, při kterém se vycházelo z teploty, na jejímž základě byl určen tlak na mezi sytosti v odběru, poté byl dopočten tlak média v příslušném odběru díky znalosti ztrát v potrubí. Tyto hodnoty jsou již známé, byly v rámci komplexního výpočtu celého návrhu turbíny vyčísleny.

Prvním krokem pro zpřesnění je přepočet návrhu průtočné části při znalosti přesných hodnot odběrových tlaků, které jsou již k dispozici. Tímto krokem dostaneme zpřesněné termodynamické účinnosti VT i ST-NT dílu, které jsou vstupními hodnotami pro přepočet kompletního návrhu turbíny. Postup výpočtu je obdobný, ale s tím rozdílem, že vycházíme ze znalosti zpřesněných hodnot tlaků v jednotlivých odběrech. Tato úprava zanáší do algoritmu změny, které ovlivní celkový výpočet tepelného schéma oběhu, z kterého se v dalších krocích vychází. Přepočtené hodnoty parametrů jak VTO, tak NTO jsou uvedeny v Příloze II. Změna tepelného schéma také ovlivňuje průtočné množství páry v jednotlivých částech oběhu, velikosti takto přepočtených množství jsou zaznamenány v Příloze II. Schéma přepočteného tepelného oběhu T120MW je uvedeno v Příloze B.

Na závěr přepočtu se počítá finální podoba průtočné části, respektive jejích parametrů, které jsou důležité pro finální bilanci výkonu (viz kapitola 11). Tento výpočet vychází z již přepočtené průtočné části s tou výjimkou, že jednotlivá průtočná množství vstupující do stupňů jsou zpřesněna díky výpočtu ucpávek turbíny. Výsledné parametry průtočné části VT i ST-NT dílu jsou uvedeny v Příloze II. K dílčím krokům výpočtu byl využit program Turbina-Delphi.

V rámci přepočtu není bráno v úvahu ohřátí kondenzátu napájecí vody v kondenzátoru komínkových par, díky průtočnému množství páry proudící z ucpávek. Toto zjednodušení bylo aplikováno z důvodu malého množství páry, které přispívá jen nepatrnou měrou k ohřátí, a v rámci celku je proto zanedbatelné.

Cílem přepočtu je co nejvýrazněji se přiblížit parametrům výpočtu reálného stroje, a tak dostat v rámci praxe využitelné informace o této navrhované turbíně se všemi specifiky plynoucími ze zadání práce.
11 Výpočet celkové bilance výkonu

Bilance výkonu je provedena pouze pro nominální provozní stav. Na základě přepočtu návrhu turbíny (viz kapitola 10) byly získány skutečné velikosti výkonů obou dílů, které postihují i vnitřní ztráty spojené s úniky ucpávkami. K vyčíslení celkového skutečného výkonu je ale zapotřebí využít přepočtených ztrátových výkonů na ložiskách, které byly také v rámci přepočtu vypočteny (dle algoritmu návrhu). K určení bilance výkonu a dalších veličin charakterizující navrhované turbosoustrojí jako celek byly využity hodnoty jak zadaných účinností dílčích komponent (viz 2.1.1), tak hodnot dopočtených v průběhu návrhu, respektive přepočtu.

Celková bilance výkonu s vyčíslením jak termodynamické, tak tepelné účinnosti cyklu je uvedena v tab. 32.

11.1 Výpočtové vzorce

$$P_{sp} = P_{celk} \cdot \eta_{mech} , \qquad (11.1)$$

$$P_G = P_{sp} \cdot \eta_G , \qquad (11.2)$$

$$P_{ztr.} = P_{jm} - P_G , \qquad (11.3)$$

$$m_{p_{ztr.}} = \frac{P_{ztr.}}{i_1 - i_4} , \qquad (11.4)$$

$$m_{p_{-}celk} = m_{p} + m_{p_{-}ztr.} , \qquad (11.5)$$

$$\eta_{TD} = \sum \frac{m_{p_i} \cdot H_{u\check{z_i}}}{m_{p_i} \cdot H_{iz_i}}, \qquad (11.6)$$

$$q_{p\bar{r}_{-}l} = i_l - i_{NV} , \qquad (11.7)$$

$$q_{p\check{r}_{2}} = \dot{i}_{3} - \dot{i}_{2} , \qquad (11.8)$$

$$q_{p\check{r}_{c}celk} = m_{p_{v}VT} \cdot q_{p\check{r}_{l}} + m_{p_{s}ST+NT} \cdot q_{p\check{r}_{2}}, \qquad (11.9)$$

$$\eta_t = \frac{P_G}{q_{p\check{r}_celk}} \cdot 100 , \qquad (11.10)$$

$$c_q = \frac{3600}{\eta_c} \,, \tag{11.11}$$

$$c_p = \frac{3600 \cdot m_p}{P_G}$$
, (11.12)

Kde

 $\eta_{mech} \ldots$ mechanická účinnost na spojce mezi turbínou a generátorem [-],

- $\eta_G \dots$ účinnost generátoru turbosoustrojí [-],
- $P_{jm} = N_e \dots jmenovitý výkon turbosoustrojí [kW],$
- i1 ... přepočtená entalpie páry na vstupu do VT dílu [kJ/kg],
- $i_3 \dots$ přepočtená entalpie páry na vstupu do ST-NT dílu [kJ/kg],
- i4 ... přepočtená entalpie páry na výstupu z ST-NT dílu [kJ/kg],
- η_{TD} ... termodynamická účinnost turbíny [%],
- $\eta_t \ldots$ tepelná účinnost cyklu [%].

Veličina		
Popis	Označení	Hodnota
Výkon VT dílu	P_VT [kW]	34123,3
Výkon ST-NT dílu	P_ST-NT [kW]	88131,8
Ztrátový výkon na předním axiálním ložisku	P_ζ_pax [kW]	283,7
Ztrátový výkon na předním radiálním ložisku	P_ζ_pra [kW]	91,6
Ztrátový výkon na zadním radiálním ložisku	P_ζ_zra [kW]	107,2
Celkový výkon VT a ST-NT dílu	P_celk [kW]	121772,7
Výkon na spojce	P_sp [kW]	121163,8
Výkon na generátoru turbosoustrojí	P_G [kW]	119346,4
Ztracený výkon vůči jmenovitému výkonu	P_ztr. [kW]	653,6
Ztracené hmotnostní průtokové množství	m_p_ztr. [kg/s]	1,126
Celkové průtokové množství pro dosažení jmenovitých parametrů	m_p_celk [kg/s]	137,108
Termodynamická účinnost turbíny	η_TD [%]	85,41
Teplo přivedené v parogenerátoru pro přehřátí páry	q_př_1 [kJ/kg]	2042,57
Teplo přivedené v parogenerátoru pro přihřátí páry	q_př_2 [kJ/kg]	264,39
Celkové přivedené teplo v parogenerátoru	q_př_celk [kJ/kg]	303214,02
Tepelná účinnost turbínové cyklu	η_t [%]	39,36
Měrná spotřeba tepla	c_q [kJ/kWh]	9146,2409
Měrná spotřeba páry	c_p [kJ/kWh]	4,0314

Poměr $\frac{P_G}{P_{jm}}$ = 99,46 % vypovídá o schopnosti navrhované turbíny T120MW splnit

požadovaný výkon. Tento prezentovaný deficit výkonu (0,54% P_{jm}) je možné regulovat navýšením průtokového množství páry do turbíny, které je v tab. 32 zastoupeno veličinou $m_{p_{ztr.}}$. Výsledná tepelná účinnost cyklu reprezentující kvalitu navrhovaného turbínového oběhu je **39,36 %**, která je v souladu s hodnotami současných provozovaných turbín.

12 Bilanční schéma při sníženém provozu

Při výpočtu bilančních schémat při snížených provozech turbíny je vycházeno z použitého typu regulace, ta je dle zadání volena klouzavým tlakem. Princip této regulace spočívá v tom, že tlak není regulován škrcením před turbínou pomocí ventilů, ale změnou stlačení, a tím i příkonu napájecího čerpadla.

Z důvodu poněkud zdlouhavějšího regulačního pochodu a současně nízké účinnosti této regulace je v návrhu uvažována kombinace s regulací škrticí.

Charakteristické znaky zvolené regulace:

- teplota admisní páry na vstupu do turbíny stejná,
- *změna průtočného množství s úměrnou změnou tlaku admisní páry.*

V rámci přepočtu uvažovány tyto předpoklady:

- tlak admisní páry se mění se změnou výkonu T lineárně \rightarrow výrazná nepřesnost, ale tato hodnota využita jako počáteční pro iterační postup přepočtu,
- totální ostřik lopatkování 1. stupně VT dílu,
- zachování stejné délky lopatek jako u 100% výkonu turbíny.

Postup přepočtu bilančních schémat:

- 1) zadávaný jmenovitý výkon turbíny snížen na hodnotu 0,50(0,75). P_{im}
- 2) zadávaný tlak admisní páry snížen na hodnotu 0,50 (0,75) . $p_A \rightarrow nová$ průtočná množství tekoucí jednotlivými částmi oběhu,
- 3) "nástřel" počátečních vstupních parametrů admisní páry vstupují do VT dílu zadán do programu Turbina-Delphi → výpočet počáteční výstupní délky RL,
- 4) iterace výpočtu pomocí změny tlaku admisní páry konec přepočtu podmíněn shodnou délkou výstupní hrany RL při sníženém provozu jako u 100% výkonu T.

Veličiny, průtočná množství náležící jednotlivým částem oběhu, tlak páry ve vstupních místech a odběrech turbíny, charakterizující přepočtené bilanční schéma při sníženém výkonu jsou uvedeny v tab. 33 a tab. 34.

Tepelné schéma oběhu náležící 50% a 75% výkonu jsou zobrazeny v Přílohách JJ, KK.

12.1 Přepočet veličin charakterizující snížené provozy

Parní (vodní) úsek trasy	m_p (m_k) [kg/s]	p_p (p_k) [bar]
Vstup do VT dílu	73,583	54,8255
I. Odběr do VTO2	4,979	39,4841
II. Odběr do VTO1	4,357	21,6438
Vstup do ST-NT dílu	64,247	19,1872
III. Odběr do odplyňováku	3,777	11,0290
IV. Odběr do NTO3	4,169	5,0905
V. Odběr do NTO2	2,474	6,1996
VI. Odběr do NTO1	4,149	0,7652
Vstup do kondenzátoru	49,677	0,0891
Vstup do KČ	62,677	0,0865
Množství dodatkové vody	2,207	-
Množství kondenzátu za VTO1	9,336	-
Množství kondenzátu za NTO1	10,792	-

Tab. 33 Výpočet přepočtených průtokových množství a tlaků páry pro 50% výkon

Tab. 34 Výpočet přepočtených průtokových množství a tlaků páry pro 75% výkon

Parní (vodní) úsek trasy	m_p (m_k) [kg/s]	p_p (p_k) [bar]
Vstup do VT dílu	104,618	75,3380
I. Odběr do VTO2	7,387	39,4841
II. Odběr do VTO1	6,407	21,7797
Vstup do ST-NT dílu	90,825	19,3077
III. Odběr do odplyňováku	5,318	11,0290
IV. Odběr do NTO3	5,895	5,0905
V. Odběr do NTO2	3,497	6,1996
VI. Odběr do NTO1	5,866	0,7652
Vstup do kondenzátoru	70,248	0,0891
Vstup do KČ	88,645	0,0865
Množství dodatkové vody	3,139	-
Množství kondenzátu za VTO1	13,794	-
Množství kondenzátu za NTO1	15,258	-

Z vypočtených hodnot (viz tab. 33 a tab. 34) je patrná výrazná změna průtočných množství, která klesají se snižujícím se výkonem. Tento jev nemá dle tohoto základního přepočtu takový vliv na změnu tlaků, z důvodu malého ohřátí napájecí vody od práce NČ při snížených výkonech. Pro odběry do odplyňováku a NTO se tlaky odběrové páry nemění, což je důsledkem základního algoritmu výpočtu, který tlak dopočítává z teploty sytosti, která se ale při daném ohřátí v jednotlivých ohřívácích nemění. Ke zpřesnění by bylo třeba přepočítat celou průtočnou část tak, jak bylo provedeno v případě přepočtu návrhu (viz kapitola 10), což není v rámci práce řešeno.

13 Závěr

V rámci diplomové práce byla navržena jednotělesová kondenzační turbína pro solární cyklus s jmenovitým výkonem 120 MW, otáčkami 3000 1/min a axiálním výstupem do kondenzátoru. Při výpočtu byly přijaty zjednodušující předpoklady a experimentálně ověřené koeficienty. Detailnější návrh by proto vyžadoval zpřesnění některých výpočtových vztahů a bližší rozpracování dílčí problematiky řešení. Koncepce výpočtu a tvorba výkresové dokumentace vycházejí z dlouholetých zkušeností, ověřených metod, know-how firmy ŠKODA POWER A Doosan company.

Návrhu turbíny předchází porovnání klasického parního s ORC cyklem, v rámci kterého bylo řešeno použití alternativní organické pracovní látky. Vzhledem k využití turbíny pro solární energetické zařízení byl shledán dvoustupňový ORC možnou alternativou pro zadání práce. Pracovní látkou prvního stupně tohoto cyklu byl navržen aromatický uhlovodík (benzen) s adekvátní teplotní stabilitou a pro druhý stupeň lehký uhlovodík (butan). Z porovnání nicméně vyplynul fakt, že ani nejlepší ORC s využitím regenerace se při takto zadaných vstupních parametrech nevyrovná účinnosti klasického parního cyklu.

V první fází výpočtu je návrh tepelného schéma oběhu, na něj navazuje výpočet průtočné části, který je dále doplněn o pevnostní výpočet (dimenzování lopatek, závěsů, kol, hřídele a skříně turbíny). Na vyjádření dílčích ztrát (výpočet ucpávek a ložisek) navazuje přepočet tepelného schéma oběhu a průtočné části. Ověření správnosti algoritmu výpočtu shrnuje bilance výkonu, z které vyplývá, že navrhovaná turbína splňuje požadovaný výkon a to na 99,46% s výslednou tepelnou účinností cyklu 39,36%. Na závěr jsou řešeny snížené 50% a 75% provozy turbíny, které jsou typickým specifikem v rámci solární aplikace.

Tato práce může posloužit jako základní návrh pro detailnější rozpracování jednotlivých kroků výpočtu a v neposlední řadě pro tvorbu výkresové dokumentace.

SEZNAM POUŽITÝCH ZDROJŮ A LITERATURY

- ŠKOPEK, J. Parní turbína tepelný a pevnostní výpočet. Plzeň: Západočeská [1] Univerzita v Plzni - KKE, 2003. ISBN 80-7043-256-X
- [2] KADRNOŽKA, J. Lopatkové stroje. Vyd. 1. Brno, 2003. ISBN 80-7204-297-1
- [3] DIXON, S.L. Fluid Mechanics and Thermodynamics of Turbomachinery. 5th edition. Amsterdam, 2005. ISBN 0-7506-7870-4
- [4] PRABHU, E. Solar Trough Organic Rankine Electricity System (STORES) Stage 1: Power Plant Optimization and Economics. Reflective Energies. California, March 2006.
- [5] Archimede Solar Energy (ASE), Technology: Parabolic trough. (říjen 2011). http://www.archimedesolarenergy.it/parabolic_trough_archimede.htm
- [6] Archimede Solar Energy (ASE), Receiver Tube. (10.11. 2011). http://www.archimedesolarenergy.it/download.htm
- KUCHTOVÁ, L., KOŘISTA, M. Parní turbiny pro solární aplikace. (říjen 2011). [7] http://www.allforpower.cz/clanek/parni-turbiny-pro-solarni-aplikace/
- Solar thermal power plants. *Renewable Energy World*. 06/2003, s. 109 ÷ 113. [8]
- SIEMENS, Steam turbines for CSP plants. In Industrial steam turbines. (listopad 2011). [9] www.siemens.com/energy
- [10] SIEMENS, Steam turbines. (21.2.2012). http://www.energy.siemens.com/hq/en/power-generation/steam-turbines/sst-700.htm
- [11] TurboCare, *Steam turbines products*. (21.2.2012). http://www.turbocare.com/steam_turbine_products.html http://www.turbocare.com/labyrinth_seal_upgrades.html
- [12] BEČVÁŘ, J. a kol. *Tepelné turbíny*. Praha: SNTL, 1968.
- [13] ŠČEGLJAJEV, A. Parní turbíny. 1. svazek. Praha: SNTL, 1983.
- [14] ŠČEGLJAJEV, A. Parní turbíny. 2. svazek. Praha: SNTL, 1983.
- [15] BOHÁČ, J., BRODSKÝ, J. Kondenzační turbína pro solární elektrárnu. Plzeň: ZČU - KKE, 2011.
- [16] KANTOROVÁ, P. Jednotělesová kondenzační turbína na sytou páru pro sluneční elektrárnu. Plzeň: ZČU – KKE, 2004.
- [17] KLIK, J. Jednotělesová kondenzační parní turbína 50 MW. Plzeň: ZČU KKE, 2009.
- [18] NOVOTNÝ, V. Jednotělesová kondenzační parní turbína 50 MW. Plzeň: ZČU KKE, 2009.
- [19] ŠKODA POWER A Doosan company, PARNÍ TURBÍNY Tp-R II. Plzeň, 2002.

Katedra energetických strojů a zařízení

Přemysl Epikaridis

SEZNAM VYUŽITÉHO PROGRAMOVÉHO VYBAVENÍ

- Microsoft Office 2003,
- X Steam jako doplněk IF97,
- Turbina-Delphi,
- ZLOP2,
- CATIA V5R19,
- CorelDRAW X5.

PŘÍLOHY

Příloha A – Tepelné schéma oběhu při nominálním výkonu (návrh)

114,9421 181,5235 10,82845 43,11994 M [kg/s] i [kJ/kg] p [bar] t [°C] Š ¥Р 4 114,9421 180,0785 0,086503 43 POPIS UDAJU: 7,594387 2623,128 0,764593 92,27167 19,75527 224,5067 53,61994 114,9421 182,6367 10,82845 43,61994 ¥ 庈 125,61 30 4,079443 4,5292 2730,52 1,618182 129,7924 12,16088 402,4542/ 96,11994 91,10739 2356,154 0,089056 43,55877 114,9421 360,5842 10,61188 73,2663 NT01 6,867731 3079,142 11,368 314,4011 7,594387 2623,128 0,799 93,45169 1,691 130,1275 7,631684 2920,119 5,275 230,862 4,5292 2730,52 歺 NT02 7,631684 499,655/ 119,3348 7,631684 2920,119 5,047847 230,43 114,9421 457,785 10,39532 105,6873 12 117,7304 3210,869 19,9521 383 117,7304 3210,869 19,65282 382,7589 NT03 ST + NT 6,867731 3079,142 10,33455 313,2245 114,9421 619,0743 10,17875 141,1425 Ð Z -D < 5 \triangleright

Příloha B - Tepelné schéma oběhu při nominálním výkonu (přepočet)

1

Císlo	Voličiny	Stupeň										
varianty	venciny	1	2	3	4	5	6	7				
	m_p [kg/s]	134,940	134,940	134,940	134,940	125,220	125,220	125,220				
	D_s [m]	1,0619	0,9612	0,9663	0,9719	0,9784	0,9858	0,9937				
	D_p [m]	1,0400	0,9300	0,9300	0,9300	0,9300	0,9300	0,9300				
	(α_1)p [°]	12,90	13,00	13,00	13,00	12,70	12,80	12,90				
	OSTŘIK	Т	Т	Т	Т	Т	Т					
	L_p [mm]	21,87	31,23	36,26	41,91	48,36	55,80	63,69				
	Typ_lop	V	V	V	V	V	V	V				
	Z_d [%]	0	0,098	0,086	0,071	0,058	0,038	0,017				
1.	Z_L [%]	12,399	8,680	7,476	6,469	5,583	4,834	4,222				
ta	Z_p [%]	0	0	0	0	0	0	0				
an	Z_V [%]	0	0	0	0	0	0	0				
ari	Z_t [%]	1,571	0,805	0,708	0,603	1,953	1,002	0,660				
V.	Z_RZ [%]	0	0	0	0	0	0	0				
	Z_x [%]	0	0	0	0	0	0	0				
	η_TD_i [%]	79,529	83,907	85,207	86,350	85,514	87,136	87,809				
	H_už_i [kJ/kg]	44,376	37,459	38,047	39,572	35,627	36,336	35,878				
	A_t_i [kW]	5988,1	5054,8	5134,0	5339,8	4461,2	4549,9	4492,6				
	(u/c_0)s [-]	0,499	0,505	0,508	0,504	0,532	0,536	0,546				
	(u/c_0)p [-]	0,489	0,489	0,489	0,483	0,506	0,506	0,511				
	η_TD_VT [%]				86,370							

Příloha C - Shrnutí	parametrů navrhov	aných variant	VT d	ílu (viz 3.2)
I mona C Sminan	pulumentu nu incor	any chi vai lant		

	D_s [m]	1,0597	0,8647	0,8698	0,8747	0,8848	0,8968	0,9085
	D_p [m]	1,0400	0,8300	0,8300	0,8300	0,8350	0,8400	0,8450
	(α_1)p [°]	13,70	13,90	13,80	13,90	13,80	13,80	13,90
	OSTŘIK	Т	Т	Т	Т	Т	Т	Т
	L_p [mm]	19,70	34,74	39,78	44,74	49,83	56,84	63,51
	Typ_lop	V	V	V	V	V	V	V
	Z_d [%]	0	0,322	0,309	0,291	0,282	0,252	0,224
5.	Z_L [%]	13,678	7,786	6,798	6,032	5,439	4,768	4,268
ta	Z_p [%]	0	0	0	0	0	0	0
an	Z_V [%]	0	0	0	0	0	0	0
iri	Z_t [%]	0,495	0,235	0,211	0,172	0,187	0,167	0,147
5V	Z_RZ [%]	0	0	0	0	0	0	0
	Z_x [%]	0	0	0	0	0	0	0
	η_TD_i [%]	78,758	84,941	85,937	86,549	87,544	88,270	88,822
	H_už_i [kJ/kg]	51,341	34,585	35,639	37,770	35,405	36,570	37,715
	A_t_i [kW]	6928,0	4666,9	4809,1	5096,6	4433,4	4579,3	4722,6
	(u/c_0)s [-]	0,461	0,476	0,474	0,465	0,489	0,489	0,490
	(u/c_0)p [-]	0,452	0,457	0,453	0,441	0,461	0,458	0,455
	η_TD_VT [%]				86,931			

Číslo	Voližiny	Stupeň									
varianty	venciny	1	2	3	4	5	6	7			
	D_s [m]	1,0607	0,9128	0,9179	0,9236	0,9287	0,9362	0,9442			
	D_p [m]	1,0400	0,8800	0,8800	0,8800	0,8800	0,8800	0,8800			
	(a_1) p [°]	13,30	13,40	13,40	13,40	13,30	13,40	13,40			
	OSTŘIK	Т	Т	Т	Т	Т	Т	Т			
	L_p [mm]	20,73	32,83	37,91	43,59	48,75	56,20	64,25			
	Typ_lop	V	V	V	V	V	V	V			
	Z_d [%]	0	0,213	0,201	0,186	0,180	0,163	0,144			
સં	Z_L [%]	13,056	8,255	7,151	6,217	5,562	4,823	4,216			
ta	Z_p [%]	0	0	0	0	0	0	0			
an	Z_V [%]	0	0	0	0	0	0	0			
ari	Z_t [%]	0,719	0,371	0,329	0,283	0,315	0,255	0,233			
Ň	Z_RZ [%]	0	0	0	0	0	0	0			
	Z_x [%]	0	0	0	0	0	0	0			
	η_TD_i [%]	79,569	84,605	85,786	86,758	87,428	88,220	88,805			
	H_už_i [kJ/kg]	48,018	36,551	37,063	38,382	36,280	36,631	36,622			
	A_t_i [kW]	6479,6	4932,2	5001,2	5179,2	4543,0	4587,0	4585,8			
	(u/c_0)s [-]	0,480	0,488	0,491	0,488	0,506	0,510	0,517			
	(u/c_0)p [-]	0,470	0,470	0,470	0,465	0,480	0,480	0,481			
	η_TD_VT [%]				87,101						

Příloha D - Lopatkový plán VT dílu varianty 3 (výstup z programu Turbina-Delphi)

				Stupeň			
Veličiny	1	2	3	4	5	6	7
m_p [kg/s]	134,940	134,940	134,940	134,940	125,220	125,220	125,220
i_1 [kJ/kg]	3068,38	3020,74	2984,32	2947,34	2909,01	2872,76	2836,20
s_1 [kJ/kg.K]	6,22370	6,24410	6,25520	6,26590	6,27650	6,28630	6,29580
t_1 [°C]	380,92	349,76	327,07	304,48	281,33	259,31	236,31
p_1 [MPa]	8,7300	6,8693	5,7544	4,7930	3,9484	3,2711	2,6905
x_1 [-]	-	-	-	-	-	-	-
D_s [mm]	1060,70	912,80	917,90	923,60	928,70	936,20	944,20
D_p [mm]	1040,00	880,00	880,00	880,00	880,00	880,00	880,00
H_iz_i [kJ/kg]	60,35	43,20	43,20	44,24	41,50	41,52	41,24
u [m/s]	166,62	143,39	144,18	145,08	145,89	147,06	148,32
c_0 [m/s]	347,41	293,94	293,95	297,46	288,09	288,18	287,19
(u/c_0)s [-]	0,480	0,488	0,491	0,488	0,506	0,510	0,517
v_RL [m^3/kg]	0,03570	0,04150	0,04820	0,05640	0,06570	0,07700	0,09110
(α_1)p [°]	13,3	13,4	13,4	13,4	13,3	13,4	13,4
L_t [mm]	20,73	32,83	37,91	43,59	48,75	56,20	64,25
L_red[mm]	0	0	0	0	0	0	0
OSTŘIK	Т	Т	Т	Т	Т	Т	Т
[-] 3	1	1	1	1	1	1	1
L_opt [mm]	-	-	-	-	-	-	-
L_p [mm]	20,73	32,83	37,91	43,59	48,75	56,20	64,25
(Lp/Ds) [-]	0,020	0,036	0,041	0,047	0,053	0,060	0,068
Typ_lop	V	V	V	V	V	V	V
η_nekon [%]	93,34	93,44	93,47	93,44	93,48	93,46	93,40
Z_d [%]	0,0000	0,2126	0,2013	0,1863	0,1804	0,1628	0,1440
Z_L [%]	13,0559	8,2554	7,1507	6,2167	5,5615	4,8226	4,2157
Z_p [%]	0	0	0	0	0	0	0
Z_V [%]	0	0	0	0	0	0	0
$Z_t[\%]$	0,7195	0,3708	0,3286	0,2827	0,3146	0,2547	0,2331
$Z_RZ[\%]$	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
η_{1}	/9,57	84,61	85,79	86,76	87,43	88,22	88,81
$H_uz_1[KJ/Kg]$	48,02	36,55	37,06	38,38	36,28	30,03	36,62
$\frac{A_t_1[KW]}{2}$	04/9,0	4932,2	2041.11	5179,2 2002 10	4545,0	4587,0	4385,8
1_21Z [KJ/Kg]	3008,03	2977,34	2941,11	2903,10	2807,31	2031,24	2794,90
1_4 [KJ/Kg] c 2 [lz]/lz a [K]	6 24420	2704,19 6 25540	6 26610	6 27680	6 28650	6 20610	6 30780
5_4 [KJ/Kg.K] t 2 [°C]	3/9 76	327.07	304.48	281.33	259 31	236 31	211 50
ι_4[U] n 2[MPa]	6 8693	5 7544	4 7930	3 9484	3 2711	2 6905	211,50
$p_2[1011 a]$	0,0075			5,5404		2,0705	2,1057
<u>^_</u> [-] (u/c_0)n [-]	0.470	0 470	0 470	0 465	0 480	0 480	0 481
$\Delta + \mathbf{VT} [\mathbf{kW}]$	35308.0	5,170	0,170	0,100	0,100	0,100	0,101
	268 75						
	215.25						
	313,23						
H_IZ [KJ/Kg]	308,55						
η_TD_VT [%]	87,10						
r_f [-]	0,0217						
Z_vr [kJ/kg]	0,8006						

I

Vor	Voličiny	Stupeň									
v ai	venciny	1	2	3	4	5	6	7	8	9	
	m_p [kg/s]	116,829	116,829	110,000	110,000	102,405	102,405	97,908	90,341	90,341	
	D_s [m]	1,2336	1,3043	1,3762	1,4605	1,5500	1,6601	1,8417	2,0300	2,3800	
	D_p [m]	1,1600	1,2200	1,2800	1,3400	1,4000	1,4600	1,5200	1,6000	1,6000	
	(α_1)p [°]	13,15	13,05	13	13,05	13,05	14,05	14	15,50	17,80	
	OSTŘIK	Т	Т	Т	Т	Т	Т	Т	Т	Т	
	L_p [mm]	73,62	84,26	96,17	120,55	150,00	200,15	321,67	430,00	780,00	
	Typ_lop	V	V	V	V	V	Z	Z	Z	Z	
•	Z_d [%]	0	0	0	0	0	0	0	0	0	
a 1	Z_L [%]	3,683	3,218	2,818	2,246	1,804	1,347	0,822	0,612	0,327	
nt	Z_p [%]	0	0	0	0	0	0	0	0	0	
ria	Z_V [%]	0	0	0	0	0	0	0	0	0	
vai	Z_t [%]	0,335	0,361	0,385	0,311	0,271	0,111	0,096	0,387	0,300	
F	Z_RZ [%]	0	0	0	0	0	0,967	2,030	2,984	7,143	
	Z_x [%]	0	0	0	0	0	0	0	3,309	3,193	
	η_TD_i [%]	89,469	89,918	90,260	90,799	91,228	90,520	88,176	83,399	76,870	
	H_už_i [kJ/kg]	65,605	74,593	81,079	88,508	98,854	106,123	109,787	113,397	127,165	
	A_t_i [kW]	7664,6	8714,6	8918,7	9735,9	10123,1	10867,5	10749,0	10244,4	11488,2	
	(u/c_0)s [-]	0,506	0,503	0,510	0,520	0,523	0,539	0,580	0,587	0,623	
	(u/c_0)p [-]	0,476	0,470	0,474	0,477	0,472	0,474	0,478	0,462	0,419	
	η_TD_VT [%]				8	86,81					

Příloha E - Shrnutí parametrů navrhovaných variant ST-NT dílu (viz 3.3)

	m_p [kg/s]	116,829	116,829	110,000	110,000	102,405	102,405	97,908	90,341	90,341
	D_s [m]	1,2394	1,3103	1,3821	1,4668	1,5551	1,6770	1,8460	2,0300	2,3800
	D_p [m]	1,1650	1,2250	1,2850	1,3450	1,4050	1,4650	1,5250	1,6000	1,6000
	(α_1)p [°]	12,9	12,9	12,8	12,9	13	13,1	14	15,5	17,8
	OSTŘIK	Т	Т	Т	Т	Т	Т	Т	Т	Т
	L_p [mm]	74,40	85,31	97,10	121,80	150,14	211,98	320,96	430,00	780,00
	Typ_lop	V	V	V	V	V	Z	Z	Z	Z
	Z_d [%]	0	0	0	0	0	0	0	0	0
a 7	Z_L [%]	3,644	3,177	2,791	2,221	1,801	1,270	0,823	0,612	0,327
nt:	Z_p [%]	0	0	0	0	0	0	0	0	0
ria	Z_V [%]	0	0	0	0	0	0	0	0	0
val	Z_t [%]	0,559	0,524	0,697	0,449	0,305	0,212	0,097	0,387	0,300
	Z_RZ [%]	0	0	0	0	0	1,062	2,011	2,984	7,143
	Z_x [%]	0	0	0	0	0	0	0	3,309	3,193
	η_TD_i [%]	89,287	89,774	89,970	90,623	91,151	90,254	88,114	83,399	76,870
	H_už_i [kJ/kg]	66,298	73,642	81,325	87,785	98,484	106,080	109,723	113,397	127,165
	A_t_i [kW]	7745,5	8603,5	8945,8	9656,4	10085,3	10863,1	10742,7	10244,4	11488,2
	(u/c_0)s [-]	0,505	0,508	0,511	0,524	0,526	0,543	0,581	0,587	0,623
	(u/c_0)p [-]	0,475	0,475	0,475	0,480	0,475	0,475	0,480	0,462	0,419
	η_TD_VT [%]				8	86,68				

Vor	Voličiny	Stupeň								
var	venciny	1	2	3	4	5	6	7	8	9
	m_p [kg/s]	116,829	116,829	110,000	110,000	102,405	102,405	97,908	90,341	90,341
	D_s [m]	1,2689	1,2886	1,3918	1,4191	1,5466	1,6233	1,8255	2,0300	2,3800
	D_p [m]	1,2000	1,2000	1,3000	1,3000	1,4000	1,4000	1,5000	1,6000	1,6000
	(α_1)p [°]	13,4	13	13,4	13,8	13,4	12,8	14	15,5	17,8
	OSTŘIK	Т	Т	Т	Т	Т	Т	Т	Т	Т
	L_p [mm]	68,864	88,562	91,753	119,118	146,607	223,250	325,545	430	780
	Typ_lop	V	V	V	V	V	Z	Z	Z	Z
	Z_d [%]	0	0	0	0	0	0	0	0	0
a G	Z_L [%]	3,937	3,059	2,954	2,275	1,845	1,212	0,815	0,612	0,327
nt	Z_p [%]	0	0	0	0	0	0	0	0	0
ria	Z_V [%]	0	0	0	0	0	0	0	0	0
vai	Z_t [%]	0,268	0,400	0,229	0,144	0,175	0,385	0,091	0,387	0,300
	Z_RZ [%]	0	0	0	0	0	1,257	2,114	2,984	7,143
	Z_x [%]	0	0	0	0	0	0	0	3,309	3,193
	η_TD_i [%]	89,292	89,969	90,291	91,028	91,255	90,429	88,467	83,399	76,870
	H_už_i [kJ/kg]	70,294	69,803	83,510	86,330	97,889	107,038	110,638	113,397	127,165
	A_t_i [kW]	8212,5	8155,0	9186,1	9496,3	10024,3	10961,2	10832,3	10244,4	11488,2
	(u/c_0)s [-]	0,502	0,514	0,508	0,512	0,525	0,524	0,573	0,587	0,623
	(u/c_0)p [-]	0,475	0,478	0,475	0,469	0,475	0,452	0,471	0,462	0,419
	η_TD_VT [%]				1	86,90				

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení

Diplomová práce, akad. rok 2011/12

Přemysl Epikaridis

Příloha F - Lopatkový plán ST-NT dílu varianty 4 (výstup z programu Turbina-Delphi)

	Stupeň										
Veličiny	1	2	3	4	5	6	7	8	9		
m_p [kg/s]	116,829	116,829	110,000	110,000	102,405	102,405	97,908	90,341	90,341		
i_1 [kJ/kg]	3211,26	3145,83	3071,50	2990,76	2902,72	2804,45	2697,69	2663,25	2624,56		
s_1 [kJ/kg.K]	7,08720	7,09980	7,11470	7,13140	7,15050	7,17310	7,20300	7,44900	7,76901		
t_1 [°C]	382,76	348,92	310,02	267,27	220,19	167,21	109,20	92,28	69,09		
p_1 [MPa]	1,9378	1,4995	1,1029	0,7731	0,5091	0,3050	0,1620	0,0765	0,0299		
x_1 [-]	-	-	-	-	-	-	-	0,9668	0,9681		
D_s [mm]	1,23	1,30	1,38	1,46	1,55	1,65	1,82	2,03	2,38		
D_p [mm]	1,16	1,22	1,28	1,34	1,40	1,46	1,52	1,60	1,60		
H_iz_i [kJ/kg]	73,33	82,96	89,83	97,48	108,36	117,24	124,51	135,97	165,43		
u [m/s]	193,78	204,87	216,17	229,42	243,47	259,18	286,20	318,87	373,85		
c_0 [m/s]	382,96	407,32	423,86	441,54	465,53	481,30	493,70	543,53	599,97		
(u/c_0)s [-]	0,506	0,503	0,510	0,520	0,523	0,539	0,580	0,587	0,623		
v_RL [m^3/kg]	0,18570	0,23730	0,31460	0,43770	0,65460	1,07830	2,10020	3,55776	8,71841		
(α_1)p [°]	13,15	13,05	13	13,05	13,05	14,05	14	16,85	20,20		
L_t [mm]	73,62	84,26	96,17	120,55	150,00	190,00	302,00	430,00	780,00		
L_red [mm]	0	0	0	0	0	0	0	0	0		
OSTŘIK	Т	Т	Т	Т	Т	Т	Т	Т	Т		
ε[-] 3	1	1	1	1	1	1	1	1	1		
L_opt [mm]	-	-	-	-	-	-	-	-	-		
L_p [mm]	73,62	84,26	96,17	120,55	150,00	190,00	302,00	430,00	780,00		
(Lp/Ds) [-]	0,060	0,065	0,070	0,083	0,097	0,115	0,166	0,212	0,328		

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Typ_lop	V	V	V	V	V	Z	Z	Z	Z
η_nekon [%]	93,49	93,50	93,46	93,36	93,30	92,95	91,12	90,69	87,83
Z_d [%]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Z_L [%]	3,6826	3,2177	2,8184	2,2458	1,8038	1,4186	0,8750	0,6116	0,3266
Z_p [%]	0	0	0	0	0	0	0	0	0
Z_V [%]	0	0	0	0	0	0	0	0	0
Z_t [%]	0,3353	0,3608	0,3846	0,3114	0,2706	0,1159	0,1010	0,0874	0,0637
Z_RZ [%]	0,0000	0,0000	0,0000	0,0000	0,0000	0,8818	1,8270	2,9838	7,1426
Z_x [%]	0	0	0	0	0	0	0	3,3172	3,1927
η_TD_i [%]	89,47	89,92	90,26	90,80	91,23	90,53	88,32	83,69	77,11
H_už_i [kJ/kg]	65,61	74,59	81,08	88,51	98,85	106,13	109,97	113,79	127,56
A_t_i [kW]	7664,6	8714,6	8918,7	9736,0	10123,1	10868,6	10766,7	10280,2	11523,5
i_2iz [kJ/kg]	3137,93	3062,88	2981,67	2893,28	2794,36	2687,21	2573,18	2527,28	2459,13
i_2 [kJ/kg]	3145,65	3071,24	2990,42	2902,25	2803,87	2698,31	2587,72	2549,46	2497,00
s_2 [kJ/kg.K]	7,09987	7,11443	7,13060	7,14872	7,17016	7,20165	7,24282	7,10011	7,10011
t_2 [°C]	348,90	310,34	268,22	222,01	170,23	114,48	92,29	69,02	43,33
p_2 [MPa]	1,4995	1,1029	0,7731	0,5091	0,3050	0,1620	0,0765	0,0299	0,0088
x_2 [-]	-	-	-	-	-	-	0,9668	0,9681	0,9658
(u/c_0)p [-]	0,476	0,470	0,474	0,477	0,472	0,476	0,484	0,462	0,419
A_t_ST-NT [kW]	88596,0								
H_už_ST-NT [kJ/kg]	853,91								
H_iz_ST-NT [kJ/kg]	995,10								
H_iz [kJ/kg]	982,55								
η_TD_ST-NT [%]	86,91								
r_f [-]	0,0128								
Z_vr [kJ/kg]	12,1837								

Příloha G – Profily lopatek (zdroj ZČU-FST/KKE)

Označení	α1	α ₀			bo	S ₀	Jomin	W _{0 min}
Profilu	(°)	(°)	topt	M _{1s} ^{opt} , M _{1s} ^{opt}	(cm)	(cm ²)	(cm⁴)	(cm ³)
S - 90 - 09A	8 až 11	70 až 120	0,72 až 0,85	do 0,90	6,06	3,45	0,416	0,471
S - 90 - 12A	10 až 14	70 až 120	0,72 až 0,87	do 0,85	6,25	4,09	0,591	0,575
S - 90 - 15A	13 až 14	70 až 120	0,70 až 0,85	do 0,85	5,15	3,3	0,36	0,45
S - 90 - 18A	16 až 20	70 až 120	0,70 až 0,80	do 0,90	4,71	2,72	0,243	0,333
S-90-22A	20 až 24	70 až 120	0,70 až 0,80	do 0,90	4,5	2,35	0,167	0,265
S-90-27A	24 až 30	70 až 120	0,65 až 0,75	do 0,90	4,5	2,03	0,116	0,195
S - 90 - 33A	30 až 36	70 až 120	0,62 až 0,75	do 0,90	4,5	1,84	0,09	0,163
S - 90 - 38A	35 až 42	70 až 120	0,60 až 0,73	do 0,90	4,5	1,75	0,081	0,141
S - 55 - 15A	12 až 18	45 až 75	0,72 až 0,87	do 0,90	4,5	4,41	1,195	0,912
S - 55 - 20A	17 až 23	45 až 75	0,70 až 0,85	do 0,90	4,15	2,15	0,273	0,275
S - 45 - 25A	21 až 28	35 až 65	0,60 až 0,75	do 0,90	4,58	3,3	0,703	0,536
S - 60 - 30A	27 až 34	45 až 85	0,52 až 0,70	do 0,90	3,46	1,49	0,118	0,154
S-65-20A	17 až 23	45 až 85	0,60 až 0,75	do 0,90	4,5	2,26	0,338	0,348
S - 70 - 25A	22 až 28	55 až 90	0,50 až 0,67	do 0,90	4,5	1,86	0,242	0,235
S - 90 - 12B	10 až 14	70 až 120	0,72 až 0,87	0,85 až 1,15	5,66	3,31	0,388	0,42
S - 90 - 15B	13 až 17	70 až 120	0,70 až 0,85	0,85 až 1,15	5,2	3,21	0,326	0,413
S - 90 - 12D	10 až 14	70 až 120	0,58 až 0,68	1,40 až 1,80	4,09	2,3'	0,237	0,324
S - 90 - 15D	13 až 17	70 až 120	0,55 až 0,65	1,40 až 1,70	4,2	2	0,153	0,238

NĚKTERÉ CHARAKTERISTIKY PROFILŮ - rozváděcí

α₀ vstupní úhel

NĚKTERÉ CHARAKTERISTIKY PROFILŮ - oběžné

Označení	β2	βι		19 J	bo	S ₀	Jomin	W _{0 min}
Profilu	° (°)	(°)	topt	M _{1s} ^{opt} , M _{1s} ^{opt}	(cm)	(cm²)	(cm⁴)	(cm ³)
R - 23 - 14A	12 až 16	20 až 30	0,60 až 0,75	do 0,95	2,59	2,44	0,43	0,39
R - 26 - 17A	15 až 19	23 až 35	0,60 až 0,70	do 0,95	2,57	2,07	0,215	0,225
R - 30 - 21A	19 až 24	25 až 40	0,58 až 0,68	do 0,90	2,56	1,85	0,205	0,234
R - 35 - 25A	22 až 28	30 až 50	0,55 až 0,65	do 0,85	2,54	1,62	0,131	0,168
R - 46 - 29A	25 až 32	44 až 60	0,45 až 0,58	do 0,85	2,56	1,22	0,71	0,112
R - 60 - 33A	30 až 36	47 až 65	0,43 až 0,55	do 0,85	2,56	1,02	0,044	0,079
R - 60 - 38A	35 až 42	55 až 75	0,41 až 0,51	do 0,85	2,61	0,76	0,018	0,035
R - 23 - 14A _k	12 až 16	20 až 30	0,60 až 0,75	do 0,95	2,59	2,35	0,387	0,331
R - 26 - 17Ak	15 až 19	23 až 45	0,60 až 0,70	do 0,95	2,57	1,81	0,152	0,165
R - 27 - 17B	15 až 19	23 až 45	0,57 až 0,65	0,80 až 1,15	2,54	2,06	0,296	0,296
R - 27 - 17B _k	15 až 19	23 až 45	0,57 až0,68	0,85 až 1,15	2,54	1,79	0,216	0,216
R - 30 - 21B	19 až 24	25 až 40	0,55 až 0,65	0,85 až 1,10	2,01	1,11	0,073	0,101
R - 35 - 25B	22 až 28	30 až 50	0,55 až 0,65	0,85 až 1,10	2,52	1,51	0,126	0,159
R - 21 - 18D	16 až 20	19 až 24	0,60 až 0,70	1,30 až 1,60	2	1,16	0,118	0,142
R - 25 - 22D	20 až 24	23 až 27	0,54 až 0,67	1,35 až 1,60	2	0,99	0,084	0,1

Platí pro profily o šířce $B_0 = 25 \text{ mm}$

(jen pro oběžné lopatky)

Typ A (podzvukové) pro M < 0.7 - 0.9

- B (transonické) 0,9 < M < 1,15
- C (nadzvukové) 1,1 < M <1,3

D (rozšiřující se, Lavalovy dýzy M > 1,3 - 1,5

Příloha H	- Machova	čísla lo	patek ST	-NT dílu	(viz 3.4.2.2)
-----------	-----------	----------	----------	----------	---------------

_		Stupeň												
Veličiny	1	2	3	4	5	6	7	8	9					
kappa [-]	1,29002	1,29401	1,29863	1,30373	1,30929	1,31535	1,32134	1,32329	1,32554					
v_1 [m^3/kg]	0,15175	0,18630	0,23800	0,31556	0,43904	0,65706	1,08038	2,17642	5,24608					
v_2 [m^3/kg]	0,18628	0,23795	0,31546	0,43882	0,65662	0,65662 1,08129		5,24495	15,97701					
a_1 [m/s]	615,91	601,25	583,85	563,97	540,96	513,42	480,90	469,39	455,98					
					RL									
c_1_RL [m/s]	346,31	366,60	379,55	390,60	406,10	399,93	391,15	390,84	380,88					
Ma_RL [-]	0,562	0,610	0,650	0,693	0,751	0,779	0,813	0,833	0,835					
α_0 [°]	100,0	100,0	100,0	100,0	100,0	100,0	100,0	75,0	75,0					
α_1 [°]	13,2	13,1	13,0	13,1	13,1	14,1	14,0	16,9	20,2					
Typ profilu	S-90-15A	S-90-15A	S-90-15A	S-90-15A	S-90-15A	S-90-15A	S-90-15A	S-55-20A	S-55-20A					
					OL									
w_1_OL [m/s]	163,67	173,30	175,78	174,95	177,64	146,74	143,15	175,82	226,06					
Ma_OL [-]	0,266	0,288	0,301	0,310	0,328	0,286	0,298	0,375	0,496					
β_1 [°]	28,8	28,5	29,1	30,3	31,1	28,1	28,2	32,5	35,5					
β2 - volba/výp [°]	[°] 22,5 22,5 22,5		22,5	22,5	23,6	23,7	27,6	30,8						
Typ profilu	22,5 22,5 R-30-21A R-30-21A		R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-35-25A	R-35-25A					

Západočeská univerzita v Plzni, Fakulta strojní.

Diplomová práce, akad. rok 2011/12

Katedra energetických strojů a zařízení

Přemysl Epikaridis

Příloha I - Vypočtené ztráty, parametry rozváděcích a oběžných lopatek VT dílu (viz 3.4.3.2)

	Stupeň										
Veličiny	1	2	3	4	5	6	7				
H_iz_i [kJ/kg]	60,35	43,20	43,20	44,24	41,50	41,52	41,24				
s_1_i [kJ/kg.K]	6,22370	6,24410	6,25520	6,26590	6,27650	6,28630	6,29580				
				RL							
i_1_i [kJ/kg]	3068,38	3020,74	2984,32	2947,34	2909,01	2872,76	2836,20				
φ[-]	0,98	0,96	0,97	0,98	0,97	0,98	0,99				
R_s_i [-]	0,064	0,090	0,100	0,111	0,119	0,132	0,148				
h_iz_RL_i [kJ/kg]	56,50	39,31	38,88	39,34	36,57	36,03	35,15				
z_RL_i [kJ/kg]	2,79	3,08	2,30	1,94	2,16	1,78	1,05				
i_2iz_RL_i [kJ/kg]	3011,88	2981,43	2945,44	2908,00	2872,44	2836,73	2801,05				
i_2_RL_i [kJ/kg]	3014,67	2984,51	2947,74	2909,95	2874,60	2838,51	2802,09				
p_2_RL_i [bar]	70,5545	59,1982	49,2624	40,6289	33,6919	27,7326	22,6595				
t_2_RL_i [°C]	349,80	329,07	306,24	283,15	261,73	240,31	219,21				
v_2_RL_i [m^3/kg]	0,03491	0,04052	0,04706	0,05503	0,06405	0,07496	0,08823				
s_2_RL_i [kJ/kg.K]	6,22370	6,24410	6,25520	6,26590	6,27650	6,28630	6,29580				
				OL							
ψ[-]	0,87	0,87	0,87	0,87	0,87	0,88	0,88				
w_1_i [m/s]	169,97	133,90	134,44	136,55	124,95	123,48	121,83				
h_iz_OL_i [kJ/kg]	3,85	3,89	4,33	4,90	4,93	5,49	6,09				
z_OL_i [kJ/kg]	3,51	2,14	2,15	2,23	1,83	1,78	1,72				
i_3iz_OL_i [kJ/kg]	3010,82	2980,62	2943,41	2905,04	2869,67	2833,02	2796,01				
i_3_OL_i [kJ/kg]	3014,34	2982,76	2945,57	2907,27	2871,51	2834,79	2797,73				
p_3_OL _i [bar]	70,4583	58,7681	48,8026	40,1451	33,2114	27,2407	22,1691				
t_3_OL_i [°C]	349,60	328,06	304,99	281,63	259,99	238,25	217,65				
v_3_OL_i [m^3/kg]	0,03495	0,04075	0,04741	0,05554	0,06478	0,07601	0,08989				
s_3_OL_i [kJ/kg.K]	6,22370	6,24410	6,25520	6,26590	6,27650	6,28630	6,29580				

Západočeská univerzita v Plzni, Fakulta strojní.

Diplomová práce, akad. rok 2011/12

Katedra energetických strojů a zařízení

Přemysl Epikaridis

Příloha J - Vypočtené ztráty, parametry rozváděcích a oběžných lopatek ST-NT dílu (viz 3.4.3.3)

	Stupeň											
Veličiny	1	2	3	4	5	6	7	8	9			
H_iz_i [kJ/kg]	73,33	82,96	89,83	97,48	108,36	117,24	124,51	135,97	165,43			
s_1_i [kJ/kg.K]	7,08720	7,09980	7,11470	7,13140	7,15050	7,17310	7,20300	7,44900	7,76901			
					RL							
i_1_i [kJ/kg]	3211,26	3145,83	3071,50	2990,76	2902,72	2804,45	2697,69	2663,25	2624,56			
φ[-]	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97			
R_s_i [-]	0,131	0,139	0,148	0,168	0,191	0,275	0,347	0,403	0,534			
h_iz_RL_i [kJ/kg]	63,73	71,42	76,55	81,08	87,64	85,00	81,30	81,17	77,09			
z_RL_i [kJ/kg]	3,77	4,22	4,52	4,79	5,18	5,02	4,81	4,80	4,56			
i_2iz_RL_i [kJ/kg]	3147,53	3074,42	2994,95	2909,68	2815,08	2719,45	2616,38	2582,08	2547,47			
i_2_RL_i [kJ/kg]	3151,29	3078,64	2999,47	2914,48	2820,26	2724,47	2621,19	2586,87	2552,03			
p_2_RL_i [bar]	15,7381	11,7185	8,3104	5,5859	3,4548	1,9983	1,0265	0,4774	0,1860			
t_2_RL_i [°C]	352,19	314,56	273,31	228,78	179,21	128,68	100,34	80,17	58,50			
v_2_RL_i [m^3/kg]	0,17828	0,22537	0,29596	0,40503	0,59090	0,90790	1,61291	3,30088	8,00055			
s_2_RL_i [kJ/kg.K]	7,08720	7,09980	7,11470	7,13140	7,15050	7,17310	7,20300	7,44900	7,76901			
					OL							
Ψ[-]	0,87	0,87	0,88	0,88	0,88	0,88	0,88	0,89	0,90			
w_1_i [m/s]	163,67	173,30	175,78	174,95	177,64	146,74	143,15	175,82	226,06			
h_iz_OL_i [kJ/kg]	9,59	11,54	13,28	16,40	20,72	32,24	43,20	54,80	88,34			
z_OL_i [kJ/kg]	3,15	3,54	3,62	3,53	3,59	2,52	2,39	3,21	4,84			
i_3iz_OL_i [kJ/kg]	3141,70	3067,10	2986,20	2898,07	2799,54	2692,23	2577,98	2532,08	2463,69			
i_3_OL_i [kJ/kg]	3144,85	3070,64	2989,82	2901,60	2803,14	2694,75	2580,37	2535,29	2468,53			
p_3_OL_i [bar]	15,3799	11,3678	7,9891	5,2749	3,1741	1,6909	0,7993	0,3420	0,1043			
t_3_OL_i [°C]	348,90	310,45	268,31	222,08	170,26	114,98	93,46	72,14	46,62			
v_3_OL_i [m^3/kg]	0,18148	0,23072	0,30507	0,42321	0,63041	1,03466	2,01117	4,43702	13,41765			
s_3_OL_i [kJ/kg.K]	7,08720	7,09980	7,11470	7,13140	7,15050	7,17310	7,20299	7,44900	7,76900			

Příloha K – Seznam materiálů a jejich charakteristik

																y rotor)				236.6)							
Poznámka	67 * material 13CrMo4-5 (plechy,vyk.)	27 * material 11523.5 (plechγ)	27 * material 13CrMo4-5 (plechy, vyk.)	 * material P355GH (plechy) 	27 * material 422747.6 (odlitek)	62 * material 422713.5 (odlitek)	 * material X22CrMoV12-1 (tyce) 	* material X10CrMoV9-1 (vyk.,tyce)- P91	* material X6NiCrTiMoVB25-15-2(tyce)	 material 15335.3 (tyce) 	* material 17021.2 (tyce)	 material 17020.2 (tyce) 	 * material 422903.6 (odlitek) 	* material Ekvivalent AK1	* material 16236.6	* material 23CrMoNiWV88 (kombinovan	 * material X12CrMoWVNbN10.1.1 (P91) 	* material 16537.6	 material 16431.6 	* material 28CrMoNiV4.9 (ekvivalent 162							
600	-	-	-		-																						
200	18	16	16		16	17																					
400	190	177	177	172	177	184																					
300	198	186	186	181	186	193																					
200	206	196	196	191	196	202																					
100	213	204	204	201	204	208		_		_					_		_					_		_			
E20	218	211	211	206	211	211																					
260	70	16	16				26	111	308						49	42	67			41			40	67	4	23	34
20	77	20	20		44		110	123	332	8					57	52	73			46			44	76	59	27	43
045	86	25	25		50		129	137	356	110					65	09	80			51			55	89	74	32	57
08	94	31	31		57		150	151	376	126					72	67	88			57			65	102	8	38	70
50	104	38	38		65		173	166	381	141					78	74	94			65			75	114	103	44	84
010	114	48	48		72		196	182	387	157					86	81	100			74			8	132	123	52	97
005	123	58	58	15	80		220	197	392	173					93	88	107	49	74	8			96	148	142	62	110
480	148	28	78	22	100		269	236	398	188					108	102	121	78	86	105		_	125	180	162	82	124
460	158	8	80	8	125		299	253	405	204					123	114	135	108	118	130	68	37	155	218	167	83	128
440	162	81	81	41	152	29	310	259	410	220					132	127	149	137	128	157	59	53	184	240	172	85	132
120	166	8	83	28	160	37	323	266	413	235					142	143	161	147	147	166	74	69	214	246	177	91	135
400	170	8	85	78	162	49	336	272	416	251	173	153	208	244	152	160	174	177	157	170	8	88	243	250	181	96	138
375	173	86	86	88	164	59	348	276	420	255	175	155	210	256	155	178	189	191	162	174	132	123	246	256	186	100	142
350	175	8	88	95	167	69	360	280	424	259	177	157	212	268	157	196	205	206	167	178	152	137	249	264	191	103	146
00	180	3 3	93	100	172	83	384	288	432	267	181	161	216	292	167	225	212	216	177	186	172	157	255	269	201	108	150
8	190	105	105	120	181	98	424	304	448	283	188	169	224	320	186	240	223	235	196	200	186	172	262	278	211	122	156
001	205	118	118	135	196	113	448	328	464	299	204	181	232	336	201	248	235	260	216	210	206	186	294	294	221	133	168
\$20	225	128	128	158	216	123	480	360	480	314	220	196	284	360	216	260	244	275	235	220	216	196	320	294	231	142	180
max	560	560	560	500	550	440	560	560	560	550	400	400	400	400	560	560	560	500	500	550	460	460	560	560	560	560	560
jkm T	450	255	255	315	440	245	600	450	009	392	275	245	360	450	540	650	610	700	590	550	540	490	800	735	590	590	780
riálu S _E	b 91						7	1	8							V88	NQN.			6-1			2	_			111
Název mate	X10CrMoVNI	11523.5	13CrMo4-5	P355GH	422747.6	422713.5	X22CrMoV12	X10CrMoV9	X6NICrTIMoV	15335.3	17021.2	17020.2	422903.6	X12Cr13	16236.6	23CrMoNIW	X12CrMoWV	16537.6	16431.6	28CrMoNiV4	R-M-AK1 vy	R-M-AK1	X12CrNIMo1.	R-M-AK2 NM	R-M-AK2MV	15320.5	X19CrMoVN
ldentifikační číslo	101	102	103	104	105	106	201	202	203	204	205	206	207	208	301	302	303	304	305	306	401	402	403	404	405	501	502

Západočeská univerzita v Plzni, Fakulta strojní.

Diplomová práce, akad. rok 2011/12

Katedra energetických strojů a zařízení

Přemysl Epikaridis

Příloha L - Namáhání oběžných lopatek VT dílu (viz 4.1)

		Válcové lopatky										
					Stupeň							
Popis veličiny	Označení veličiny	1	2	3	4	5	6	7				
Délka OL na výstupní hraně	L_p_OL_výst [mm]	21,3	34,1	38,6	43,6	49,5	56,6	65,3				
Střední průměr stupně	D_s_i [mm]	1061,3	914,1	918,6	923,6	929,5	936,6	945,3				
Výkon stupně	P_i [kW]	6479,6	4932,2	5001,2	5179,2	4543,0	4587,0	4585,8				
Otáčky rotoru	n [1/s]	50	50	50	50	50	50	50				
Profil OL	typ	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A				
Tětiva OL - základní	b_0 [mm]	25,6	25,6	25,6	25,6	25,6	25,6	25,6				
Šířka profilu OL - základní	B_0 [mm]	25,0	25,0	25,0	25,0	25,0	25,0	25,0				
Plocha profilu OL - základní	S_0 [mm]	185,0	185,0	185,0	185,0	185,0	185,0	185,0				
Modul pružnosti v ohybu – zákl.	W_0 [cm^3]	0,234	0,234	0,234	0,234	0,234	0,234	0,234				
Tětiva OL - přepočtená	b' [mm]	30,7	25,6	25,6	30,7	25,6	30,7	41,0				
Šířka profilu OL - přepočtená	B' [mm]	30,0	25,0	25,0	30,0	25,0	30,0	40,0				
Plocha profilu OL - přepočtená	S' [mm]	266,4	185,0	185,0	266,4	185,0	266,4	473,6				
Modul pružnosti v ohybu - přep.	W' [cm^3]	0,4044	0,2340	0,2340	0,4044	0,2340	0,4044	0,9585				
		Ohyb	ové namáhání	OL								
Optimální poměrná rozteč lop.	t_opt [-]	0,6	0,6	0,6	0,6	0,6	0,6	0,6				
Rozteč OL	t' [mm]	19,4	16,1	16,1	19,4	16,1	19,4	25,8				
Počet OL daného stupně	z_i [-]	174	180	180	150	182	154	116				
Skutečná rozteč lopatky	t_sk [mm]	19,2	16,0	16,0	19,3	16,0	19,1	25,6				
Kroutící moment na OL	M_K_lop [N.m]	118,535	87,220	88,441	109,907	79,455	94,811	125,836				
Obvodová síla na OL	F_u_lop [N]	223,4	190,8	192,6	238,0	171,0	202,5	266,2				
Ohybový moment na OL	M_o_lop [N.m]	2,379	3,254	3,716	5,188	4,231	5,730	8,693				
Namáhání v ohybu OL	σ_o [MPa]	5,883	13,905	15,882	12,831	18,083	14,170	9,069				

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Tahové namáhání													
Hustota materiálu OL	ρ [kg/m^3]	7850	7850	7850	7850	7850	7850	7850					
Objem OL bez bandáže	V_OL [m^3]	5,674E-06	6,309E-06	7,141E-06	1,162E-05	9,158E-06	1,508E-05	3,093E-05					
Objem bandáže	V_b [m^3]	5,742E-04	2,016E-04	2,035E-04	2,926E-04	2,081E-04	3,004E-04	6,700E-04					
Hmotnost jedné OL	m_OL [kg]	0,045	0,050	0,056	0,091	0,072	0,118	0,243					
Hmotnost bandáže na jednu OL	m'_b [kg]	0,026	0,009	0,009	0,015	0,009	0,015	0,045					
Hmotnost celková na jednu OL	m'_c [kg]	0,070	0,058	0,065	0,106	0,081	0,134	0,288					
Hmotnost OL v rámci stupně	m_OL_i [kg]	12,258	10,496	11,688	15,974	14,717	20,587	33,421					
Celková hmotnost OL_díl	m_OL_celk [kg]	119,140											
Výška bandáže lopatky	b [m]	0,00525 0,0025 0,0025 0,003 0,0025 0,003 0,005											
Zvýšené otáčky rotoru	n' [1/s]	55	55	55	55	55	55	55					
Dostředivé zrychlení	a_d [m.s^2]	63684,88	54731,20	54999,90	55328,31	55650,75	56104,56	56743,46					
Průměr bandáže lopatky	D_b [mm]	1,11	0,99	1,00	1,02	1,03	1,06	1,09					
Odstředivá síla na OL	F_od_L [N]	2836,7	2710,4	3083,1	5044,7	4000,5	6640,8	13775,6					
Odstředivá síla na bandáž	F_od_b [N]	1649,6	481,2	488,1	847,2	499,6	859,2	2572,9					
Odstředivá síla celková	F_od_celk [N]	4486,4	3191,6	3571,3	5892,0	4500,1	7500,0	16348,5					
Namáhání v tahu OL	σ_tah [MPa]	16,841	17,252	19,304	22,117	24,325	28,153	34,520					
		Cel	lkové namáhán	í									
Celkové namáhání OL	σ_celk_OL [MPa]	28,607	45,061	51,068	47,779	60,490	56,493	52,658					
Teplota média na vstupu do OL	T_2_RL_i [°C]	349,80	329,07	306,24	283,15	261,73	240,31	219,21					
Materiál oběžných lopatek	typ	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1					
Dovolené namáhání při T_2_RL	σ_D [MPa]	137,114	145,372	154,503	157,000	162,740	165,954	169,118					

Západočeská univerzita v Plzni, Fakulta strojní.

Diplomová práce, akad. rok 2011/12

Katedra energetických strojů a zařízení Příloha M - Namáhání oběžných lopatek ST-NT dílu (viz 4.1)

Přemysl Epikaridis

			Válc	ové lopatky				Zborcené l	opatky	
						Stupeň				
Popis veličiny	Označení veličiny	1	2	3	4	5	6	7	8	9
Délka OL na výstupní hraně	L_p_OL_výst [mm]	72,9	82	93,3	116,2	142,2	198,5	317	447	834
Střední průměr stupně	D_s_i [mm]	1232,9	1302	1373,3	1456,2	1542,2	1658,5	1837	2047	2434
Výkon stupně	P_i [kW]	7664,6	8714,6	8918,7	9736,0	10123,1	10868,6	10766,7	10280,2	11523,5
Otáčky rotoru	n [1/s]	50	50	50	50	50	50	50	50	50
Profil OL	typ	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-30-21A	R-35-25A	R-35-25A
Tětiva OL - základní	b_0 [mm]	25,6	25,6	25,6	25,6	25,6	25,6	25,6	25,4	25,4
Šířka profilu OL - základní	B_0 [mm]	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0
Plocha profilu OL - základní	S_0 [mm]	185,0	185,0	185,0	185,0	185,0	185,0	185,0	162,0	162,0
Modul pružnosti v ohybu – zákl.	W_0 [cm^3]	0,234	0,234	0,234	0,234	0,234	0,234	0,234	0,168	0,168
Tětiva OL - přepočtená	b' [mm]	30,7	41,0	41,0	41,0	41,0	51,2	61,4	120,9	300,7
Šířka profilu OL - přepočtená	B' [mm]	30,0	40,0	40,0	40,0	40,0	50,0	60,0	119,0	296,0
Plocha profilu OL - přepočtená	S' [mm]	266,4	473,6	473,6	473,6	473,6	740,0	1065,6	3670,5	22710,1
Modul pružnosti v ohybu - přep.	W' [cm^3]	0,4044	0,9585	0,9585	0,9585	0,9585	1,8720	3,2348	18,1188	278,8460
			Ohybové na	umáhání OI						
Optimální poměrná rozteč lop.	t_opt [-]	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Rozteč OL	t' [mm]	19,4	25,8	25,8	25,8	25,8	32,3	38,7	72,5	180,4
Počet OL daného stupně	z_i [-]	202	160	168	178	188	162	150	90	44
Skutečná rozteč lopatky	t_sk [mm]	19,2	25,6	25,7	25,7	25,8	32,2	38,5	71,5	173,8
Kroutící moment na OL	M_K_lop [N.m]	120,779	173,372	168,983	174,104	171,398	213,555	228,476	363,589	833,645
Obvodová síla na OL	F_u_lop [N]	195,9	266,3	246,1	239,1	222,3	257,5	248,7	355,2	685,0
Ohybový moment na OL	M_o_lop [N.m]	7,142	10,919	11,480	13,893	15,804	25,560	39,427	79,396	285,645
Namáhání v ohybu OL	σ_o [MPa]	17,662	11,392	11,978	14,495	16,489	13,654	12,188	4,382	1,024

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Tahové namáhání											
Hustota materiálu OL	ρ [kg/m^3]	7850	7850	7850	7850	785	0 78	350	7850	7850	7850
Objem OL bez bandáže	V_OL [m^3]	1,942E-05	3,884E-05	4,419E-05	5,503E-05	5 6,735E-0	5 1,469E-	-04 3,378	E-04	1,641E-03	3 1,894E-02
Objem bandáže	V_b [m^3]	3,947E-04	7,326E-04	7,762E-04	8,320E-04	4 8,911E-0	4 3,192E-	-04 4,751	E-04	1,853E-03	3 1,288E-02
Hmotnost jedné OL	m_OL [kg]	0,152	0,305	0,347	0,432	2 0,52	.9 1,1	.53 2	,652	12,880	148,681
Hmotnost bandáže na jednu	m'_b [kg]	0,015	0,036	0,036	0,03	7 0,03	0,0	015 0	,025	0,162	2,297
Hmotnost celková na jednu OL	m'_c [kg]	0,168	0,341	0,383	0,469	9 0,56	i6 1,1	.69 2	,677	13,041	150,978
Hmotnost OL v rámci stupně	m_OL_i [kg]	33,894	54,528	64,367	83,428	8 106,38	4 189,3	401	,483	1173,723	6643,013
Celková hmotnost OL_díl	m_OL_celk [kg]					8750,12	6				
Výška bandáže lopatky	b [m]	0,003	0,004	0,004	0,004	4 0,00	0,0	002 0	,003	0,005	6 0,011
Zvýšené otáčky rotoru	n' [1/s]	55	55	55	55	5 5	5	55	55	55	5 55
Dostředivé zrychlení	a_d [m.s^2]	73796,96	77982,71	82240,11	87190,10	5 92325,3	99164	,62 10984	1,57	122512,86	5 145998,43
Průměr bandáže lopatky	D_b [mm]	1,38	1,47	1,57	1,70) 1,8	3 2,	,06	2,48	2,95	5 4,12
Odstředivá síla na OL	F_od_L [N]	11250,4	23773,5	28526,4	37666,	5 48809	,2 11434	5,4 2912	66,0	1577930,2	2 21707125,6
Odstředivá síla na bandáž	F_od_b [N]	1132,0	2802,8	2982,6	3199,2	2 3435	,3 1534	4,0 27	31,0	19804,9	335363,6
Odstředivá síla celková	F_od_celk [N]	12382,5	26576,3	31509,0	40865,7	7 52244	5 11587	9,4 2939	97,1	1597735,0	22042489,2
Namáhání v tahu OL	σ_tah [MPa]	46,481	56,116	66,531	86,287	7 110,31	4 156,5	594 275	,898	435,287	970,604
			Celko	vé namáhár	ú						
Celkové namáhání OL	σ_celk_OL [MPa]	81,804	78,900	90,487	115,277	143,291	97,338	141,430)	182,879	365,216
Teplota média na vstupu do OL	T_2_RL_i [°C]	352,19	314,56	273,31	228,78	179,21	128,68	100,34	-	80,17	58,50
Materiál OL	typ	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	X12C	CrNiMo12	X12CrNiMo12
Dovolené namáhání při T_2_RL	σ_D [MPa]	135,772	151,174	161,003	167,683	174,910	181,984	185,953	5	300,445	307,489

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení **Příloha N - Namáhání závěsů oběžných lopatek VT dílu (viz 4.2)**

		Stupeň									
Popis veličiny	Označení veličiny	1	2	3	4	5	6	7			
Typ závěsu	-	vidlička	T-nožka	T-nožka	T-nožka	T-nožka	T-nožka	T-zazub			
Šířka profilu OL	B' [mm]	30	25	25	30	25	30	40			
Výška těžiště závěsu	T_t [mm]	22,7	11,2	11,2	12,6	11,2	12,6	15,8			
Těžištní průměr	D_T [mm]	994,6	857,7	857,7	854,7	857,7	854,7	848,4			
Počet OL	z_OL [-]	174	180	180	150	182	154	116			
Rozeč těžišť	t_T [mm]	18,0	15,0	15,0	17,9	14,8	17,4	23,0			
Plocha závěsu OK	S_z [mm^2]	1016,1	436,7	436,7	587,6	436,7	587,6	950,3			
Hmotnost závěsu	m_z [kg]	0,132	0,051	0,051	0,083	0,051	0,080	0,171			
Průměr kolíku	d [mm]	7	-	-	-	-	-	-			
Plocha na tah	S_tah [mm^2]	394,5	179,6	179,6	214,8	177,7	209,2	321,7			
Plocha na smyk	S_smyk [mm^2]	153,9	178,5	178,5	278,3	178,5	278,3	379,5			
Plocha na otlačení	S_otlak [mm^2]	504,0	89,8	89,8	107,4	88,8	104,6	248,1			
Plocha na otlačení v místě K	S_K_otlak [mm^2]	420,0	-	-	-	-	-	-			
Odstředivá síla závěsu	F_od_z [N]	7861,0	2628,1	2628,1	4214,0	2599,2	4104,5	8683,0			
Odstředivá síla lopatky	F_od_L [N]	4486,4	3191,6	3571,3	5892,0	4500,1	7500,0	16348,5			
Tahové napětí	σ_tah [MPa]	31,301	32,398	34,511	47,046	39,960	55,463	77,818			
Smykové napětí	σ_smyk [MPa]	40,105	16,304	17,367	18,158	19,888	20,851	32,980			
Napětí od otlačení	σ_otlak [MPa]	24,499	64,795	69,022	94,092	79,921	110,926	100,875			
Napětí od otlačení v místě K	σ_K_otlak [MPa]	29,399	-	-	-	-	-	-			
Dovolené tahové napětí	σ_tah_D [MPa]	137,114	145,372	154,503	157,000	162,740	165,954	169,118			
Dovolené smykové napětí	σ_smyk_D [MPa]	102,211	101,761	108,152	109,900	113,918	116,168	118,383			
Dovolené napětí od otlačení	σ_otlak_D [MPa]	87,610	220	220	220	220	220	220			
Materiál závěsu	typ	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1			
Materiál kolíku	typ	X19CrMoVNb11	-	-	-	-	-	-			
Teplota média na vstupu do OL	T_2_RL_i [°C]	349,80	329,07	306,24	283,15	261,73	240,31	219,21			
Dovolené smykové napětí	σ_smyk_D [MPa]	146,016	-	-	-	-	-	-			

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení Příloha O - Namáhání závěsů oběžných lopatek ST-NT dílu (viz 4.2)

		Stupeň										
Popis veličiny	Označení veličiny	1	2	3	4	5	6	7	8	9		
Typ závěsu	-	vidlička	T-zazub	T-zazub	vidlička	vidlička	vidlička	vidlička	stromeček	stromeček		
Šířka profilu OL	B' [mm]	30	40	40	40	40	50	60	119	296		
Výška těžiště závěsu	T_t [mm]	22,7	15,8	15,8	26,8	26,8	28,6	31,8	-	-		
Těžištní průměr	D_T [mm]	1114,6	1188,4	1248,4	1286,3	1346,3	1402,9	1456,4	-	-		
Počet OL	z_OL [-]	202	160	168	178	188	162	150	90	44		
Rozteč těžišť	t_T [mm]	17,3	23,3	23,3	22,7	22,5	27,2	30,5	-	-		
Plocha závěsu OK	S_z [mm^2]	1016,1	950,3	950,3	1696,8	1696,8	2199,5	2969,5	-	-		
Hmotnost závěsu	m_z [kg]	0,127	0,174	0,174	0,280	0,277	0,439	0,659	-	-		
Průměr kolíku	d [mm]	7	-	-	8,6	8,6	9,0	11,2	-	-		
Plocha na tah	S_tah [mm^2]	372,0	326,7	326,8	705,1	694,9	1128,7	1293,3	-	-		
Plocha na smyk	S_smyk [mm^2]	153,9	379,5	379,5	232,4	232,4	381,7	591,1	-	-		
Plocha na otlačení	S_otlak [mm^2]	504,0	252,0	252,1	860,0	860,0	1116,0	1500,8	-	-		
Plocha na otlačení v místě K	S_K_otlak [mm^2]	504,0	-	-	636,4	636,4	990,0	1601,6	-	-		
Odstředivá síla závěsu	F_od_z [N]	8478,8	12352,0	12981,7	21474,9	22257,2	36752,9	57325,2	-	-		
Odstředivá síla lopatky	F_od_L [N]	12365,9	26576,3	31509,0	40865,7	52244,5	51822,9	124732,4	639094,0	8247544,3		
Tahové napětí	σ_tah [MPa]	56,027	119,167	136,130	88,410	107,215	78,476	140,775	-	-		
Smykové napětí	σ_smyk [MPa]	67,705	51,290	58,618	134,151	160,321	116,027	153,993	-	-		
Napětí od otlačení	σ_otlak [MPa]	41,359	154,475	176,465	72,489	86,630	79,369	121,307	-	-		
Napětí od otlačení v místě K	σ_K_otlak [MPa]	49,630	-	-	97,958	117,067	89,471	113,672	-	-		
Dovolené tahové napětí	σ_tah_D [MPa]	135,632	151,174	161,003	167,683	174,910	181,984	185,953	300,445	307,489		
Dovolené smykové napětí	σ_smyk_D [MPa]	181,026	105,822	112,702	206,087	206,087	206,087	209,262	210,312	215,242		
Dovolené napětí od otlačení	σ_otlak_D [MPa]	155,165	220,000	220,000	167,037	171,796	176,646	179,368	-	-		
Materiál závěsu	typ	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	R-M-AK1	X12CrNiMo12	X12CrNiMo12		
Materiál kolíku	typ	15335.3	-	-	15335.3	15335.3	15335.3	15335.3		_		
Teplota média na vstupu do OL	T_2_RL_i [°C]	352,44	314,56	273,31	230,15	180,63	128,57	101,52	83,95	62,93		
Dovolené smykové napětí	σ_smyk_D [MPa]	258,609	-	-	278,176	286,100	294,429	298,757	-	-		

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení **Příloha P - Namáhání rozváděcích lopatek VT dílu (viz 4.3.1**)

		Stupeň										
Popis veličiny	Označení veličiny	1	2	3	4	5	6	7				
Profil rozváděcích lopatek	typ	S-90-15A										
Materiál rozváděcích lopatek	typ	17021.2	17021.2	17021.2	17021.2	17021.2	17021.2	17021.2				
Tětiva RL - základní	b_0 [mm]	51,5	51,5	51,5	51,5	51,5	51,5	51,5				
Šířka profilu RL - základní	B_0 [mm]	25	25	25	25	25	25	25				
Plocha profilu RL - základní	S_0 [mm]	330	330	330	330	330	330	330				
Modul pružnosti v ohybu - zákl.	W_0 [cm^3]	0,450	0,450	0,450	0,450	0,450	0,450	0,450				
Tětiva RL - přepočtená	b' [mm]	109,18	51,5	51,5	51,5	51,5	51,5	51,5				
Šířka profilu RL - přepočtená	B' [mm]	53	25	25	25	25	25	25				
Plocha profilu RL - přepočtená	S' [mm]	1483,152	330	330	330	330	330	330				
Modul pružnosti v ohybu – přepoč.	W' [cm^3]	4,288	0,450	0,450	0,450	0,450	0,450	0,450				
Optimální poměrná rozteč lopatky	t_opt [-]	0,7	0,7	0,7	0,7	0,7	0,7	0,7				
Rozteč RL	t' [mm]	76,4	36,1	36,1	36,1	36,1	36,1	36,1				
Počet RL	z_RL [-]	44	80	80	82	82	82	84				
Skutečná rozteč RL	t_sk [mm]	75,6	35,8	36,0	35,3	35,5	35,8	35,3				
Rozdíl tlaků média před a za RL	Δp [MPa]	1,6745	0,9495	0,8282	0,7301	0,5792	0,4978	0,4245				
Patní průměr	D_p [m]	1,0420	0,8820	0,8820	0,8820	0,8820	0,8820	0,8820				
Spodní průměr	D_S [m]	0,8700	0,8320	0,8370	0,8420	0,8470	0,8520	0,8570				
Horní průměr	D_H [m]	1,1288	0,9276	0,9321	0,9371	0,9430	0,9501	0,9588				
Plocha namáhaná přetlakem	S_přetl [m^2]	-	0,132118	0,132136	0,132883	0,134963	0,138847	0,145180				
Ohybová síla na středu lopatky	F_0_L_s [N]	-	125442,8	109430,2	97019,5	78171,9	69124,3	61635,6				
Ohybová síla na lopatku	F_1_L [N]	-	1568,0	1367,9	1183,2	953,3	843,0	733,8				
Úhel nastavení lopatky	γ [rad]	0,5069	0,5069	0,5069	0,5069	0,5069	0,5069	0,5069				
Rameno ohybového momentu	f_0 [m]	-	0,0228	0,02505	0,02755	0,0305	0,03405	0,0384				
Ohybový moment	M_0_1' [N.m]	-	31,256	29,957	28,498	25,420	25,095	24,634				
Ohybové namáhání RL	σ_o [MPa]	-	69,458	66,572	63,329	56,490	55,766	54,742				
Tahové namáhání RL	σ_tah [MPa]	11,950	-	-	-	-	-	-				

Západočeská univerzita v Plzni, Fakulta strojní.

Diplomová práce, akad. rok 2011/12

Přemysl Epikaridis

Katedra energetických strojů a zařízení Příloha Q - Namáhání rozváděcích lopatek ST-NT dílu (viz 4.3.2)

		Stupeň											
Popis veličiny	Označení	1	2	3	4	5	6	7	8	9			
Profil rozváděcích lopatek	typ	S-90-15A	S-90-15A	S-90-15A	S-90-15A	S-90-15A	S-90-15A	S-90-15A	S-55-20A	S-55-20A			
Materiál rozváděcích lopatek	typ	X22CrMoV12	X22CrMoV12	X22CrMoV12	X22CrMoV12	X22CrMoV12	X22CrMoV12	17021.2	17021.2	17021.2			
Tětiva RL - základní	b_0 [mm]	51,5	51,5	51,5	51,5	51,5	51,5	51,5	41,5	41,5			
Šířka profilu RL - základní	B_0 [mm]	25	25	25	25	25	25	25	25	25			
Plocha profilu RL - základní	S_0 [mm]	330	330	330	330	330	330	330	215	215			
Modul pružnosti v ohybu – z.	W_0 [cm^3]	0,450	0,450	0,450	0,450	0,450	0,450	0,450	0,275	0,275			
Tětiva RL - přepočtená	b' [mm]	82,4	92,7	92,7	92,7	92,7	82,4	133,9	184,26	292,16			
Šířka profilu RL – přepoč.	B' [mm]	40	45	45	45	45	40	65	111	176			
Plocha profilu RL – přepoč.	S' [mm]	844,8	1069,2	1069,2	1069,2	1069,2	844,8	2230,8	4238,4	10655,7			
Modul pružnosti v ohybu – p.	W' [cm^3]	1,843	2,624	2,624	2,624	2,624	1,843	7,909	24,070	95,951			
Optimální poměrná rozteč	t_opt [-]	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7			
Rozteč RL	t' [mm]	57,7	64,9	64,9	64,9	64,9	57,7	93,7	129,0	204,5			
Počet RL	z_RL [-]	68	64	68	72	76	90	62	50	38			
Skutečná rozteč RL	t_sk [mm]	56,8	63,8	63,3	63,4	63,6	57,6	92,3	127,5	196,8			
Tlak média před RL	p_1 [MPa]	1,9378	1,4995	1,1029	0,7731	0,5091	0,3050	0,1620	0,0765	0,0299			
Tlak média za RL	p_2_RL [MPa]	1,5738	1,1718	0,8310	0,5586	0,3455	0,1998	0,1026	0,0477	0,0186			
Rozdíl tlaků média před a za	Δp [MPa]	0,3640	0,3277	0,2719	0,2145	0,1636	0,1052	0,0594	0,0288	0,0113			
Patní průměr	D_p [m]	1,1620	1,2220	1,2820	1,3420	1,4020	1,4620	1,5220	1,6020	1,6020			
Spodní průměr	D_1 [m]	0,9900	0,8070	0,8070	0,8070	0,8070	0,8070	0,8080	0,8080	0,8080			
Horní průměr	D_2 [m]	1,3268	1,4050	1,4876	1,5894	1,7014	1,8620	2,1500	2,8570	3,6250			
Plocha namáhaná přetlakem	S_přetl [m^2]	-	1,853718	2,190906	2,620825	3,112486	3,838277	5,212260	5,898014	9,807865			
Ohybová síla na středu lop.	F_0_L_s [N]	-	607379,0	595612,1	562183,3	509267,5	403669,7	309365,0	169630,9	110855,6			
Ohybová síla na lopatku	F_1_L [N]	-	9490,3	8759,0	7808,1	6700,9	4485,2	4989,8	3392,6	2917,3			
Úhel nastavení lopatky	γ [rad]	0,5069	0,5069	0,5069	0,5069	0,5069	0,5069	0,5069	0,6465	0,6465			
Rameno ohybového momentu	f_0 [m]	-	0,0915	0,1028	0,1237	0,1497	0,2	0,314	0,628	1,012			
Ohybový moment	M_0_1' [N.m]	-	759, <mark>184</mark>	787,216	844,426	877,002	784,260	1369,795	1699,235	2355,292			
Ohybové namáhání RL	σ_o [MPa]	-	289,279	299,961	321,760	334,172	425,488	173,190	70,595	24,547			
Tahové namáhání RL	σ_tah [MPa]	68,552	-	-	-	-	-		-	-			

Katedra energetických strojů a zařízení

φ

Příloha S – Součinitel µ pro výpočet průhybu rozváděcích kol

Západočeská univerzita v Plzni, Fakulta strojní.

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Katedra energetických strojů a zařízení

Příloha T - Namáhání rozváděcích kol ST-NT dílu (viz 4.3.3)

		Stupeň								
Popis veličiny	Označení veličiny	1	2	3	4	5	6	7	8	9
	h_1 [mm]	-	103,0	103,0	93,0	93,0	104,0	125,0	130	130
Plocha ve skříni - 1.	a_1 [mm]	-	36,0	36,0	30,0	30,0	30,0	36,0	50	50
	J_1 [mm^4]	-	3278181	3278181	2010893	2010893	2812160	5859375	9154167	9154167
	h_2 [mm]	-	137,0	137,0	124,0	124,0	138,0	166,0	171	419
Plocha nad lopatkou - 2.	a_2 [mm]	-	72,0	72,0	60,0	60,0	60,0	72,0	93,3	210,0
	J_2 [mm^4]	-	15428118	15428118	9533120	9533120	13140360	27445776	38890530	1287301033
	h_3 [mm]	-	72,0	72,0	60,0	60,0	60,0	72,0	222	352
Plocha pod lopatkou - 3.	a_3 [mm]	-	60,0	90,0	120,0	150,0	50,0	80,3	171,5	211
	J_3 [mm^4]	-	1866240	2799360	2160000	2700000	900000	2497651	156365811	766883157
	h_4 [mm]	-	60,0	60,0	50,0	50,0	50,0	60,0	74,9	87,1
Plocha pod lopatkou - 4.	a_4 [mm]	-	162,2	162,2	162,2	162,2	292,2	292,2	412,5	412,5
	J_4 [mm^4]	-	2919600	2919600	1689583	1689583	3043750	5259600	14444023	22714186
Celk. kvadratický moment	J_celk [mm^4]	-	23492139	24425259	15393596	15933596	19896270	41062402	218854530	2086052542
R k dolnímu konci RK	R_1 [mm]	-	388,8	388,8	388,8	388,8	388,8	388,5	388,5	388,5
R k hornímu konci RK	R_2 [mm]	-	798,5	839,8	874,7	930,7	1011,0	1171,0	1428,5	1812,5
Ekvivalentní šířka	h_0 [mm]	-	88,3	86,6	72,4	70,7	72,7	85,7	136,2	260,0
Přetlak na RL	Δp [MPa]	0,3640	0,3277	0,2719	0,2145	0,1636	0,1052	0,0594	0,0288	0,0113
Poměr poloměrů	R1/R2 [-]	-	0,487	0,463	0,444	0,418	0,385	0,332	0,272	0,214
Ekvivalentní šířka/Poměr R	ho/(R2-R1)	-	0,215	0,192	0,149	0,130	0,117	0,110	0,131	0,183
Součinitel namáhání	φ[-]	-	1,440	1,495	1,515	1,570	1,615	1,685	1,750	1,805
Součinitel průhybu	μ[-]	-	0,825	0,863	0,883	0,906	0,938	0,967	0,992	1,006
Materiál disku RK	typ	13CrMo4-5	P355GH	P355GH						
Maximální napětí	σ_max [MPa]	-	38,598	38,204	47,379	44,563	32,876	18,667	5,539	0,991
Dovolené napětí	σ_D [MPa]	85,690	95,108	98,998	106,547	115,961	126,558	138,160	136,159	139,637
Maximální průhyb	y_max [mm]	-	0,904	0,997	1,583	1,668	1,382	0,857	0,233	0,034
Dovolený průhyb	y_D [mm]	-	1,597	1,680	1,749	1,861	2,022	2,342	2,857	3,625

Příloha U - Výpočet vnitřních ucpávek VT dílu (viz 5.2.1)

		Stupeň								
Popis veličiny	Označení veličiny	1	2	3	4	5	6	7		
Reakce na patě	R_p [-]	0,030	0,030	0,030	0,030	0,030	0,030	0,030		
Reakce na středním průměru	R_s [-]	0,064	0,090	0,100	0,111	0,119	0,132	0,148		
Patní průměr stupně	D_p [mm]	1042,0	882,0	882,0	882,0	882,0	882,0	882,0		
Průměr hřídele	D_h [mm]	785,0	825,0	830,0	835,0	840,0	845,0	850,0		
Tlak páry před RL	p_1 [bar]	87,300	68,693	57,544	47,930	39,484	32,711	26,905		
Tlak páry za RL	p_2_RL [bar]	70,555	59,198	49,262	40,629	33,692	27,733	22,660		
Tlak v mezeře mezi RK a OK	p_m_K [bar]	71,057	59,483	49,511	40,848	33,866	27,882	22,787		
Tlak páry na stř. průměru	p_s_K [bar]	71,623	60,053	50,092	41,438	34,380	28,391	23,286		
Entalpie páry před stupněm	i_1 [kJ/kg]	3068,4	3020,7	2984,3	2947,3	2909,0	2872,8	2836,2		
Entalpie páry za stupněm	i_2 [kJ/kg]	3020,4	2984,2	2947,3	2909,0	2872,7	2836,1	2799,6		
Měrný objem páry před st.	v_1 [m^3/kg]	0,0296	0,0361	0,0417	0,0484	0,0566	0,0659	0,0771		
Měrný objem páry za stupněm	v_2 [m^3/kg]	0,0351	0,0405	0,0470	0,0550	0,0639	0,0748	0,0880		
Měrný objem páry v mezeře	v_o [m^3/kg]	0,0351	0,0405	0,0470	0,0550	0,0639	0,0748	0,0880		
Rychlost v mezeře mezi K	c_p [m/s]	-	-	-	-	-	-	-		
Rychlost hlavního proudu	c_o [m/s]	305,21	266,29	268,15	272,88	265,30	266,58	266,55		
Poměr rychl. v mezeře/rychl. p.	c_p/c_o [-]	-	-	-	-	-	-	-		
Průtokový souč. v mezeře	Ф_р [-]	0,32	-	-	-	-	-	-		
Průtokový součinitel v OO	Φ_0 [-]	-	-	-	-	-	-	-		
Šířka břitu ucpávky	b [mm]	-	0,3	0,3	0,3	0,3	0,3	0,3		
Radiální mezera	δ_r [mm]	-	0,7	0,7	0,7	0,7	0,7	0,7		
Poměr rad.mezera/šířce	δ_r/b [-]	-	2,33	2,33	2,33	2,33	2,33	2,33		
Průtokový součinitel ucpávky	Ф_и [-]	-	0,6953	0,6953	0,6953	0,6953	0,6953	0,6953		
Střední průměr ucpávky	D_su [mm]	-	828,5	833,5	838,5	843,5	848,5	853,5		
Průtočná plocha ucpávky	S_u [mm^2]	_	1822,0	1833,0	1844,0	1855,0	1865,9	1876,9		
Počet břitů ucpávky	z_u [ks]	_	6,0	6,0	6,0	6,0	6,0	6,0		
Axiální mezera mezi RK a OK	δ_K [mm]	7,0	6,0	6,0	6,0	6,0	6,0	6,0		
Šířka mezery mezi K u paty	δ_p [mm]	5,0	4,5	4,5	4,5	4,5	4,5	4,5		
Plocha mezery mezi K u paty	S_p [mm^2]	12331	11663	11734	11805	11875	11946	12017		
Průtočné množství ucpávkou	m_u [kg/s]	0	3,620	3,159	2,764	2,293	1,979	1,697		
Průtočné množství mezerou	m_p [kg/s]	1,493	0	0	0	0	0	0		
Součet průtočných množství	Σm [kg/s]	1,493	3,620	3,159	2,764	2,293	1,979	1,697		
Užitečný spád na stupeň	H_uži [kJ/kg]	48,02	36,55	37,06	38,38	36,28	36,63	36,62		
Ztrátový výkon stupně	P_t_ ζ [kW]	71,7	132,3	117,1	106,1	83,2	72,5	62,1		
Celkový ztrátový výkon VT	P_t_ζ_d [kW]				645,1					

Příloha V – Průtokový součinitel v mezeře labyrintové ucpávky

Příloha W – Průtokový součinitel v odlehčovacích otvorech disku OK

Příloha X – Závislost průtokových součinitelů na součiniteli k a na reakci na D_p
Západočeská univerzita v Plzni, Fakulta strojní.

Diplomová práce, akad. rok 2011/12

Katedra energetických strojů a zařízení Příloha Y - Výpočet vnitřních ucpávek ST-NT dílu (viz 5.2.2)

Přemysl Epikaridis

Popis veličiny	Označení veličiny	1	2	3	4	5	6	7	8	9
Reakce na patě	R_p [-]	0,030	0,030	0,030	0,030	0,030	0,100	0,100	0,100	0,100
Reakce na středním průměru	R_s [-]	0,131	0,139	0,148	0,168	0,191	0,275	0,347	0,403	0,534
Patní průměr stupně	D_p [mm]	1162,0	1222,0	1282,0	1342,0	1402,0	1462,0	1522,0	1602,0	1602,0
Průměr hřídele	D_h [mm]	785,0	777,6	777,6	777,6	777,6	777,6	777,0	777,0	777,0
Roztečný průměr OO	D_0 [mm]	935,0	935,0	935,0	935,0	935,0	935,0	-	-	-
Tlak páry před RL	p_1 [bar]	19,3780	14,9950	11,0290	7,7310	5,0910	3,0500	1,6200	0,7650	0,2990
Tlak páry za RL	p_2_RL [bar]	15,7381	11,7185	8,3104	5,5859	3,4548	1,9983	1,0265	0,4774	0,1860
Tlak v mezeře mezi RK a OK	p_m_K [bar]	15,8473	11,8168	8,3920	5,6503	3,5039	2,1035	1,0858	0,5062	0,1973
Tlak páry na středním průměru mezi K	p_s_K [bar]	16,2143	12,1742	8,7122	5,9469	3,7677	2,2875	1,2324	0,5933	0,2463
Tlak v odlehčovacím otvoru	p_o [bar]	15,8418	11,8118	8,3879	5,6471	3,5014	2,0982	1,0829	0,5047	0,1967
Entalpie páry před stupněm	i_1 [kJ/kg]	3211,26	3145,83	3071,50	2990,76	2902,72	2804,45	2697,69	2663,25	2624,56
Entalpie páry za stupněm	i_2 [kJ/kg]	3145,65	3071,24	2990,42	2902,25	2803,87	2698,31	2587,72	2549,46	2497,00
Měrný objem páry před stupněm	v_1 [m^3/kg]	0,15175	0,18630	0,23800	0,31556	0,43904	0,65706	1,08038	2,17642	5,24608
Měrný objem páry za stupněm	v_2 [m^3/kg]	0,17745	0,22391	0,29342	0,39990	0,57972	0,88327	1,58840	3,24603	7,80977
Měrný objem páry v mezeře mezi K	v_o [m^3/kg]	0,17745	0,22391	0,29342	0,39990	0,57972	0,88327	1,58840	3,24603	7,80977
Rychlost v mezeře mezi K	c_p [m/s]	13,92	14,84	15,47	16,04	16,87	30,48	30,70	30,55	29,71
Rychlost hlavního proudu	c_o [m/s]	356,76	380,41	396,60	414,37	437,92	437,08	444,91	452,58	479,17
Poměr rychl. v mezeře/rychl. proudu	c_p/c_o [-]	0,04	0,04	0,04	0,04	0,04	0,07	0,07	0,07	0,06
Poměr charakterizující ucpávku	δ_p/H [-]	0,25	0,25	0,25	0,3	0,3	0,3	-	-	-
Průtokový součinitel v mezeře mezi K	Ф_р [-]	0,32	0,32	0,32	0,34	0,34	0,34	-	-	-
Obvod. rychl. na rozteči OO	u_o [m/s]	146,87	146,87	146,87	146,87	146,87	146,87	-	-	-
Rychlost v odlehčovacím otvoru	c_oo [m/s]	60,68	64,67	67,43	69,92	73,53	132,85	-	-	-
Poměr obvod. rychl./rychl. v OO	u_o/c_oo [m/s]	2,42	2,27	2,18	2,10	2,00	1,11	-	-	-
Průtokový součinitel v OO	Φ_0 [-]	0,238	0,242	0,252	0,253	0,264	0,453	-	-	-

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Šířka břitu ucpávky	b [mm]	-	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
Radiální mezera	δ_r [mm]	-	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
Poměr rad.mezera/šířce	δ_r/b [-]	-	2,33	2,33	2,33	2,33	2,33	2,33	2,33	2,33
Průtokový součinitel ucpávky	Ф_u [-]	-	0,7585	0,7585	0,7585	0,7585	0,7585	0,7585	0,7585	0,7585
Střední průměr ucpávky	D_su [mm]	-	784,3	784,3	784,3	784,3	784,3	784,3	784,3	784,3
Průtočná plocha ucpávky	S_u [mm^2]	-	1724,8	1724,8	1724,8	1724,8	1724,8	1724,8	1724,8	1724,8
Počet břitů ucpávky	z_u [ks]	-	16	16	16	16	16	20	20	20
Axiální mezera mezi RK a OK	δ_K [mm]	6,0	3,5	3,5	8,5	9,5	9,5	20,5	21,0	24,0
Šířka mezery mezi K u paty lopatek	δ_p [mm]	9,0	5,0	5,0	5,0	6,0	14,5	12,0	21,0	24,0
Plocha mezery mezi K u paty lopatek	S_p [mm^2]	32854,8	19195,1	20137,6	21080,1	26427,1	66598,6	57378,0	105689,5	120788,0
Průměr odlehčovacího otvoru (OO)	D_0 [mm]	40,0	40,0	40,0	40,0	40,0	40,0	-	-	-
Rádius zaoblení hrany OO	R_0 [mm]	6,0	6,0	6,0	6,0	6,0	6,0	-	-	-
Poměr rádiusu zaoblení/prům. OO	R_0/D_0 [-]	0,150	0,150	0,150	0,150	0,150	0,150	-	-	-
Plocha jednoho OO	S'_00 [mm^2]	1256,6	1256,6	1256,6	1256,6	1256,6	1256,6	-	-	-
Plocha všech odlehčovacích otovrů v OK	S_00 [mm^2]	10134,3	14001,4	13760,2	14402,1	15443,2	13841,0	-	-	-
Teoretický počet OO	z'_00 [ks]	8,06	8,06	8,06	8,06	8,06	8,06	0	0	0
Konečný počet OO	z_00 [ks]	8	8	8	8	8	8	0	0	0
Součinitel q pro nepravý labyrint	q [-]	-	-	-	-	-	-	0,9344	0,9344	0,9344
Součinitel k pro nepravý labyrint	k [-]	-	-	-	-	-	-	1,0004	1,0004	1,0004
Průtočné množství ucpávkou	m_u_i [kg/s]	0	0,572	0,457	0,350	0,256	0,162	0,084	0,041	0,017
Průtočné množství mezerou mezi koly	m_p _i [kg/s]	0,825	0,407	0,340	0,288	0,261	0,781	0	0	0
Součet průtočných množství	Σm [kg/s]	0,825	0,979	0,797	0,637	0,517	0,943	0,084	0,041	0,017
Průtočné množství OO	m_oo [kg/s]	0,825	0,979	0,797	0,637	0,517	0,943	0	0	0
Průtočné množství neprav. ucpávkou	m_u_n_i [kg/s]	0	0	0	0	0	0	0,084	0,041	0,017
Užitečný spád na stupeň	H_už_i [kJ/kg]	65,61	74,59	81,08	88,51	98,85	106,13	109,97	113,79	127,56
Ztrátový výkon stupně	P_t_ ζ [kW]	54,1	73,0	64,6	56,4	51,1	100,1	9,3	4,7	2,1
Celkový ztrátový výkon ST-NT dílu	P_t_ζ_dil [kW]					415,4				
Celkový ztrátový výkon v ucpávkách	P_t_ζ_celk [kW]					1064,9				

Příloha Z – Porovnání konvekční labyrintové hřídelové ucpávky (dolní obr.) a vylepšené

vysouvací od firmy TurboCare (horní obr.)

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Příloha AA - Model rotoru T120MW (CATIA V5)

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Příloha BB - Schéma hřídele turbíny se síly a reakcemi k výpočtu ložisek (viz 7)

Západočeská univerzita v Plzni, Fakulta strojní.

Diplomová práce, akad. rok 2011/12

Katedra energetických strojů a zařízení

Přemysl Epikaridis

Příloha CC – Výpočet axiálních sil od změny hybnosti v LM, sil působících na OK (viz 7.2.1, 7.2.2)

Výpočet axiálních sil od změny hybnosti v lopatkové mříži stupňů VT dílu

Veličina					Stupeň			
Popis	Označení	1	2	3	4	5	6	7
Množství páry prošlé skrz RL	m_s [kg/s]	134,940	134,940	134,940	134,940	125,220	125,220	125,220
Množství páry proudící odlehčovacími otvory	m_0 [kg/s]	1,586	0	0	0	0	0	0
Relat. rychl. v axiálním směru na vstupu do RL	w_1ax [m/s]	75,40	62,38	62,68	63,38	60,35	60,66	60,52
Relat. rychl. v axiálním směru na výstupu z RL	w_2ax [m/s]	63,68	53,54	54,60	56,31	53,42	54,27	55,13
Střední průměr oběžných lopatek	d_s_OL [mm]	1061,3	914,1	918,6	923,6	929,5	936,6	945,3
Délka oběžných lopatek	L_p_OL [mm]	21,3	34,1	38,6	43,6	49,5	56,6	65,3
Tlak před oběžným kolem	p_1 = p_s [MPa]	7,1623	6,0053	5,0092	4,1438	3,4380	2,8391	2,3286
Tlak za oběžným kolem	$p_2 = p_3_OL [MPa]$	7,0458	5,8768	4,8803	4,0145	3,3211	2,7241	2,2169
Parcielnost	ε[-]	1	1	1	1	1	1	1
Síla od změny hybnosti působící na i-tou OL	F_1ax_i [N]	-9834,99	-13772,36	-15453,55	-17309,92	-17757,35	-19954,96	-22342,35
Celková síla od změny hybnosti v rámci VT dílu	F_1ax_celk_VT [N]				-116425,49			

Výpočet axiálních sil od změny hybnosti v LM stupňů ST-NT dílu

Veličina					Stup	eň				
Popis	Označení	1	2	3	4	5	6	7	8	9
Množství páry prošlé skrz RL	m_s [kg/s]	113,606	113,452	106,805	106,964	99,489	99,063	95,424	87,901	87,925
Množství páry proudící odlehčovacími otvory	m_o [kg/s]	0,825	0,979	0,797	0,637	0,517	0,943	0	0	0
Relat. rychl. v axiálním směru na vstupu do RL	w_1ax [m/s]	78,79	82,78	85,38	88,20	91,70	97,09	94,63	113,37	131,41
Relat. rychl. v axiálním směru na výstupu z RL	w_2ax [m/s]	71,76	77,09	80,26	84,54	90,86	102,90	115,16	154,52	220,31
Střední průměr oběžných lopatek	d_s_OL [mm]	1232,9	1302,0	1373,3	1456,2	1542,2	1664,8	1843,3	2053,5	2437,0
Délka oběžných lopatek	L_p_OL [mm]	72,9	82,0	93,3	116,2	142,2	198,5	317,0	447,0	834,0
Tlak před oběžným kolem	p_1 = p_s [MPa]	16,2143	12,1742	8,7122	5,9469	3,7677	2,2875	1,2324	0,5933	0,2463
Tlak za oběžným kolem	$p_2 = p_3_OL [MPa]$	15,3799	11,3678	7,9891	5,2749	3,1741	1,6909	0,7993	0,3420	0,1043
Parcielnost	ε[-]	1	1	1	1	1	1	1	1	1
Síla od změny hybnosti působící na i-tou OL	F_1ax_i [N]	24354,20	27687,38	29650,64	36108,77	40975,83	33000	40000	39000	50000
Celková síla od změny hybnosti v rámci ST-NT	F_1ax_celk_ST_NT [N]				32077	6,83				

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Výpočet axiální síly působící na disk oběžná kola stupňů VT dílu

Veličina		Stupeň
Popis	Označení	1
Plocha oběžného kola	S_OK [m^2]	0,2780
Plocha odlehčovacího otvoru	S_OO [m^2]	-
Tlak páry v mezeře mezi rozváděcím a oběžným kolem	$p_1 = p_m [MPa]$	7,1057
Tlak páry za oběžným kolem	p_2 = p_3_OL [MPa]	7,0458
Axiální síla působící na disk i-tého stupně	F_2ax [N]	-10684,03
Celková axiální síla působící na disky v rámci dílu	F_2ax_celk_VT [N]	-10684,03

Výpočet axiální síly působící na disk oběžného kola stupňů ST-NT dílu

Veličina		Stupeň									
Popis	Označení	1	2	3	4	5	6	7	8	9	
Patní průměr oběžného kola	D_p [m]	1160,0	1220,0	1280,0	1340,0	1400,0	1460,0	1520,0	1600,0	1600,0	
Průměr hřídele	D_h [m]	785,0	777,6	777,6	777,6	777,6	777,6	777,0	777,0	777,0	
Plocha oběžného kola	S_OK [m^2]	0,5840	0,7050	0,7880	0,9470	1,0690	1,2100	1,3770	1,6110	1,5900	
Plocha odlehčovacích otvorů	S_OO [m^2]	0,0360	0,0360	0,0360	0,0360	0,0360	0,0360	-	-	-	
Tlak páry v mezeře mezi RK a OK	$p_1 = p_m [MPa]$	15,8473	11,8168	8,3920	5,6503	3,5039	2,1035	1,0858	0,5062	0,1973	
Tlak páry za oběžným kolem	p_2 = p_3_OL[MPa]	15,3799	11,3678	7,9891	5,2749	3,1741	1,6909	0,7993	0,3420	0,1043	
Axiální síla působící na disk i-tého stupně	F_2ax [N]	17929,07	21022,33	21208,94	23936,96	23844,61	33906,62	14904,37	9458,25	5359,12	
Celk. ax. síla působící na disky v rámci dílu	F_2ax_celk_ST_NT [N]				1	71570,26					

Západočeská univerzita v Plzni, Fakulta strojní.

Katedra energetických strojů a zařízení

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Příloha DD – Výpočet axiálních sil působící na výstupky vnitřních ucpávek RK (viz 7.2.3)

Pro stupně VT dílu

Veličina			Stupeň						
Popis	Označení	2	3	4	5	6	7		
Tlak páry na vstupu do oběžného kola	$p_1 = p_s [MPa]$	6,8693	5,7544	4,7930	3,9484	3,2711	2,6905		
Tlak páry na výstupu z oběžného kola	$p_2 = p_3_OL$ [MPa]	5,9198	4,9262	4,0629	3,3692	2,7733	2,2660		
Spodní průměr ucpávky	D_h_u [mm]	785,0	825,0	830,0	835,0	840,0	845,0		
Průměr ucpávky s výstupy na hřídeli	D_1_u [mm]	790,6	830,6	835,6	840,6	845,6	850,6		
Axiální síla od vnitřních ucpávek i-tého stupně	F_3ax_i [N]	-3838,17	-3517,75	-3119,99	-2490,01	-2152,99	-1846,90		
Celková axiální síla od vnitřních ucpávek v rámci dílu	F_3ax_celk_VT [N]			-1696	5,82				

Pro stupně ST-NT dílu

Veličina	Stupeň					
Popis	Označení	2	3	4	5	6
Tlak páry na vstupu do oběžného kola	$p_1 = p_s [MPa]$	14,9950	11,0290	7,7310	5,0910	3,0500
Tlak páry na výstupu z oběžného kola	$p_2 = p_3_OL$ [MPa]	11,7185	8,3104	5,5859	3,4548	1,9983
Spodní průměr ucpávky	D_h_u [mm]	777,6	777,6	777,6	777,6	777,6
Průměr ucpávky s výstupy na hřídeli	D_1_u [mm]	783,6	783,6	783,6	783,6	783,6
Axiální síla od vnitřních ucpávek i-tého stupně	F_3ax_i [N]	1205,27	1000,02	789,06	601,88	386,87
Celková axiální síla od vnitřních ucpávek v rámci dílu	F_3ax_celk_ST-NT [N]			3983,10		

Pro ucpávky těsnící vnitřní tělesa

Veličina		Vnitřní těleso		
Popis	Označení	VT dílu	ST-NT dílu	
Tlak páry na vstupu do ucpávky	p_1 [MPa]	7,0555	2,1859	
Tlak páry na výstupu z ucpávky	p_2 [MPa]	3,9484	1,5738	
Spodní průměr ucpávky	D_h_u [mm]	785,0	785,0	
Průměr ucpávky s výstupy na hřídeli	D_1_u [mm]	795,0	795,0	
Axiální síla od vnitřních ucpávek vnitřního tělesa	F_3ax'_dilu	22491,14	-4430,72	
Celková axiální síla od ucpávek vnitřního tělesa	F_3ax'_celk	180)60,42	

Příloha EE – Výpočet axiálních sil působících na osazení rotoru (viz 7.2.5)

V místě VT dílu

Veličina		Definování místa
Popis	Označení	3. ÷ 4. sekce ucpávek
Horní průměr osazení rotoru	D_1 [mm]	652,8
Dolní průměr osazení rotoru	D_2 [mm]	613,0
Tlak páry působící v místě osazení	p [MPa]	0,9800
Axiální síla od osazení rotoru v i-tém místě	F_5ax_i [N]	-38776,10
Celková axiální síla od osazení v rámci dílu	F_5ax_VT [N]	-38776,10

V místě ST-NT dílu

Veličina		Definování místa									
Popis	Označení	před 2.st.	před 3.st.	před 4.st.	před 5.st.	před 6.st.	před 7.st.	před 8.st.	před 9.st.	za 9.st.	
Horní průměr osazení rotoru	D_1 [mm]	770,0	770,0	770,0	770,0	770,0	770,0	770,0	770,0	770,0	
Dolní průměr osazení rotoru	D_2 [mm]	777,6	777,6	777,6	777,6	777,6	777,0	777,0	777,0	850,0	
Tlak páry působící v místě osazení	p [MPa]	14,9950	11,0290	7,7310	5,0910	3,0500	1,6200	0,7650	0,2990	0,1043	
Axiální síla od osazení rotoru v i-tém místě	F_5ax_i [N]	8950,55	6583,24	4614,65	3038,83	1820,55	890,64	420,58	164,38	655,03	
Celková axiální síla od osazení v rámci dílu	F_5ax_ST-NT [N]					27138,47					

Veličina		Vnitřní tě	leso - řez:	Vnější těl	eso - řez:
Popis	Označení	1.	2.	3.	4.
Vnitřní tlak	p_1 [MPa]	8,7300	7,0458	4,0145	0,7989
Vnější tlak	p_2 [MPa]	4,0145	4,0145	0,1013	0,1013
Rozdíl tlaků	Δp [MPa]	4,7155	3,0313	3,9132	0,6976
Vnitřní teplota	t_1 [°C]	380,92	349,60	281,63	268,31
Vnější teplota	t_2 [°C]	281,63	281,63	40,00	40,00
Rozdíl teplot	Δt [°C]	99,30	67,97	241,63	228,31
Vnitřní poloměr tělesa	R_1 [mm]	608,3	608,3	1053,2	1103,5
Střední poloměr tělesa	r [mm]	644,2	650,2	1088,2	1138,5
Vnější poloměr tělesa	R_2 [mm]	680,0	692,0	1123,2	1173,5
Tloušťka stěny tělesa	s [mm]	71,7	83,7	70,0	70,0
Poměr poloměrů r / r_1	y [-]	1,059	1,069	1,033	1,032
Poměr poloměrů r_2 / r_1	Y [-]	1,118	1,138	1,066	1,063
Modul pružnosti materiálu	E [MPa]	185717,0	188536,0	194653,7	195851,7
Dovolené napětí materiálu	σ_D [MPa]	56,631	69,112	85,756	87,753
Součinitel délkové roztažnosti	β [1/K]	1,2E-05	1,2E-05	1,2E-05	1,2E-05
Poissonova konstanta	v [-]	0,3	0,3	0,3	0,3
Questova pevnostní podmínka	τ_max [MPa]	28,316	34,556	42,878	43,876
	Namáhání	od přetlaku			
Tangenciální napětí od tlaku	σ_t,p [MPa]	39,941	21,982	58,845	10,992
Radiální napětí od tlaku	σ_r,p [MPa]	-2,161	-1,370	-1,862	-0,333
Axiální napětí od tlaku	σ_ax,p [MPa]	18,890	10,306	28,492	5,329
	Namáhání	od teploty			
Tangenciální napětí od teploty	σ_t,T [MPa]	2,926	2,350	4,319	3,925
Radiální napětí od teploty	σ_r,T [MPa]	-4,391	-3,527	-6,479	-5,888
Axiální napětí od teploty	σ_ax,T [MPa]	-1,465	-1,177	-2,161	-1,963
Celková namá	ihání ve směru tar	igenciálním, r	adiálním, axiá	álním	
Celkové tangenciální napětí	σ_t [MPa]	42,866	24,332	63,164	14,916
Celkové radiální napětí	σ_r [MPa]	-6,552	-4,896	-8,341	-6,221
Celkové axiální napětí	σ_ax [MPa]	17,425	9,129	26,331	3,366
	Výsledná smyl	ková namáhár	ní		
Smykové napětí na r_1	τ_R_1 [MPa]	5,436	2,116	8,995	-1,427
Smykové napětí na r	τ_r [MPa]	18,157	9,718	27,411	4,348
Smykové napětí na r_2	τ_R_2 [MPa]	21,433	12,166	31,582	7,458

Příloha FF - Výpočet namáhání vnitřního a vnějšího tělesa ve zvolených řezech (viz 8)

Veličina		Vnitřní těleso - řez	Vnější těleso - řez
Popis	Označení	VT díl - vstup	VT díl - vstup
	b_1 [mm]	143,0	120,0
	b_2 [mm]	222,0	190,0
	x [mm]	250,0	250,0
	a_s [mm]	186,0	245,0
	a_1 [mm]	71,5	60,0
Rozměry příruby	a_2 [mm]	340,0	465,0
	R_1 [mm]	608,3	1080,0
	R_2 [mm]	680,0	1167,5
	Y [-]	1,118	1,081
	a [mm]	154,0	220,0
	H [mm]	104,0	110,0
Vnitřní tlak	p_1 [MPa]	8,7300	4,0145
Vnější tlak	p_2 [MPa]	4,0145	0,1013
Rozdíl tlaků	Δp [MPa]	4,7155	3,9132
Součinitel délkové roztažnosti	β [1/K]	1,2E-05	1,2E-05
Modul pružnosti materiálu	E [MPa]	185716,975	194653,703
Tlak na vnitřní straně příruby	q_1 [MPa]	17,460	8,029
Tlak na vnější straně příruby	q_2 [MPa]	7,747	7,715
Teplotní gradient	ΔT [K]	333,15	333,15
Kooficienty	F_zp [-]	0,05778	0,03996
Koencienty	F_zt [-]	0,00165	0,00078
Poměrná síla na šroub	F/t [N/m]	7085054,563	6655568,366
Rozteč šroubů	t [mm]	125,0	135,0
Síla na jeden šroub	F_š [N]	885631,8	898501,7
Průměr šroubu	d_š [mm]	80	100
Namáhání šroubu v tahu	σ_t_š [MPa]	176,191	114,401
Dovolené namáhání šroubu v tahu	σ_t_š_D [MPa]	263,652	118,972
Namáhání příruby v ohybu	σ_0_p [MPa]	20,406	30,840
Dovolené namáhání příruby v ohybu	σ_o_p_D [MPa]	28,316	34,556

Příloha GG - Výpočet namáhání horizontální příruby vnitřního a vnějšího tělesa,šroubů

Příloha HH – Výpočet potrubních tras (viz 9)

Náležících VT dílu

Veličina		VT díl - místo odběru			
Popis	Označení	Vstup	VTO2	VTO1 = výstup	
Hmotnostní průtok páry v i-tém odběru	m_p_i [kg/s]	134,940	9,720	125,220	
Měrný objem páry v i-tém odběru	v_i [m^3/kg]	0,02954	0,05651	0,09178	
Rychlost proudění páry v potrubí	w [m/s]	50	50	50	
Zvolený počet proudů	i [ks]	2	1	2	
Minimální průřez potrubí	S_min [m^2]	0,039861	0,010985	0,114925	
Teoretický průměr potrubí	d_teor [mm]	225,3	118,3	382,5	
Skutečná rychlost proudu v potrubí	w_sk [m/s]	42,28	44,76	45,73	
Zvolený průměr potrubí	DN [mm]	245	125	400	

Náležících ST-NT dílu

Veličina	ST-NT díl - místo odběru						
Popis	Označení	Vstup	0	NTO3	NTO2	NTO1	K = výstup
Hmotnostní průtok páry v i-tém odběru	m_p_i [kg/s]	116,829	6,829	7,595	4,497	7,567	90,341
Měrný objem páry v i-tém odběru	v_i [m^3/kg]	0,15176	0,23861	0,44387	1,11467	2,12782	15,00821
Rychlost proudění páry v potrubí	w [m/s]	50	50	50	50	50	50
Zvolený počet proudů	i [ks]	2	1	1	2	2	1
Minimální průřez potrubí	S_min [m^2]	0,177302	0,032591	0,067426	0,050132	0,161009	27,117027
Teoretický průměr potrubí	d_teor [mm]	475,1	203,7	293,0	252,6	452,8	5875,9
Skutečná rychlost proudu v potrubí	w_sk [m/s]	50,03	51,87	47,69	51,06	50,62	76,84
Zvolený průměr potrubí	DN [mm]	475	200	300	250	450	4740

Náležících vnějším ucpávkám

Veličina		Vnější ucpávky - sekce (připojený ohřívák)							
Popis	Označení	Ι	II	III	IV	V	ККР	NTO2	
Hmotnostní průtok páry v i-tém odběru	m_p_i [kg/s]	0,161	0,491	0,131	0,066	0,119	0,250	0,426	
Měrný objem páry v i-tém odběru	v_i [m^3/kg]	0,16850	1,14639	0,88742	1,14639	0,88742	0,88742	1,50032	
Rychlost proudění páry v potrubí	w [m/s]	25	25	25	25	25	25	25	
Zvolený počet proudů	i [ks]	1	1	1	1	1	1	1	
Minimální průřez potrubí	S_min [m^2]	0,001084	0,022533	0,004649	0,003013	0,004240	0,008888	0,025546	
Teoretický průměr potrubí	d_teor [mm]	37,2	169,4	76,9	61,9	73,5	106,4	180,3	
Skutečná rychlost proudu v potrubí	w_sk [m/s]	21,57	22,64	23,12	22,70	23,36	24,26	21,61	
Zvolený průměr potrubí	DN [mm]	40	178	80	65	76	108	194	

Příloha II - Přepočet tepelného schéma a průtočné části (viz 10)

Přepočtené p	parametry	VTO
--------------	-----------	-----

	veličiny	VTO2	VTO1
	t [°C]	212,66	182,33
napájecí voda - vstup	p [bar]	111,60	113,40
	i [kJ/kg]	890,43	763,41
	t [°C]	245,00	212,66
napájecí voda - výstup	p [bar]	109,80	111,60
	i [kJ/kg]	1025,82	890,43
	t [°C]	279,75	216,74
pára - vstup	p [bar]	38,42	21,21
	i [kJ/kg]	2908,69	2803,91
	t [°C]	282,09	218,75
pára - odběr	p [bar]	40,15	22,17
	i [kJ/kg]	2908,69	2803,91
kondonzót výstun	t [°C]	222,66	192,33
Konuciizai - vystup	i [kJ/kg]	932,30	805,28

Přepočtené parametry NTO

	veličiny	NTO3	NTO2	NTO1
	t [°C]	109,33	86,12	43,62
napájecí voda vstup	p [bar]	10,40	10,61	10,83
	i [kJ/kg]	457,78	360,58	182,64
	t [°C]	147,86	109,33	86,12
napájecí voda výstup	p [bar]	10,18	10,40	10,61
	i [kJ/kg]	619,07	457,78	360,58
	t [°C]	230,43	129,79	92,27
pára vstup	p [bar]	5,05	1,62	0,76
	i [kJ/kg]	2920,12	2730,52	2623,13
	t [°C]	230,86	130,13	93,45
pára odběr	p [bar]	5,28	1,69	0,80
	i [kJ/kg]	2920,12	2730,52	2623,13
kondonzát výstup	t [°C]	119,33	96,12	53,62
Konuciizat vystup	i [kJ/kg]	499,65	402,45	224,51

Přepočtená průtočná množství v rámci oběhu

Parní (vodní) úsek trasy	m_p [kg/s]
Množství do VT dílu	135,981
I. Odběr do VTO2	9,790
II. Odběr do VTO1	8,461
Množství do ST-NT dílu	117,730
III. Odběr do odplyňováku	6,868
IV. Odběr do NTO3	7,632
V. Odběr do NTO2	4,529
VI. Odběr do NTO1	7,594
Množství do kondenzátoru	91,107
Množství do KČ	114,942
Množství dodatkové vody	4,079
Množství kondenzátu za VTO1	18,251
Množství kondenzátu za NTO1	19,755

Přepočtené parametry průtočné částí VT dílu

	Stupeň						
Veličinv	1	2	3	4	5	6	7
m_p [kg/s]	133,646	131,589	132,052	132,530	123,124	123,443	123,689
i_1 [kJ/kg]	3068,38	3021,75	2985,45	2948,56	2915,64	2879,50	2843,02
s_1 [kJ/kg.K]	6,22370	6,24360	6,25500	6,26580	6,27490	6,28480	6,29450
t_1 [°C]	380,92	350,41	327,76	305,19	285,30	263,39	240,64
p_1 [MPa]	8,7300	6,9048	5,7852	4,8197	4,0822	3,3861	2,7889
x_1 [-]	-	-	-	-	-	-	-
D_s [mm]	1060,7	911,9	917,0	924,9	926,7	934,0	941,9
D_p [mm]	1040,0	880,0	880,0	880,0	880,0	880,0	880,0
H_iz_i [kJ/kg]	59,10	43,19	43,20	38,05	41,50	41,52	43,97
u [m/s]	166,61	143,24	144,04	145,28	145,57	146,71	147,96
c_0 [m/s]	343,80	293,89	293,95	275,85	288,08	288,17	296,55
(u/c_0)s [-]	0,485	0,487	0,490	0,527	0,505	0,509	0,499
v_RL [m^3/kg]	0,03560	0,04130	0,04800	0,05490	0,06390	0,07480	0,08890
(a _1) p [°]	13,3	13,4	13,4	13,4	13,3	13,4	13,4
L_t [mm]	20,67	31,91	36,97	44,90	46,72	53,96	61,93
L_red [mm]	0	0	0	0	0	0	0
OSTŘIK	Т	Т	Т	Т	Т	Т	Т
L_p [mm]	20,67	31,91	36,97	44,90	46,72	53,96	61,93
(Lp/Ds) [-]	0,020	0,035	0,040	0,049	0,050	0,058	0,066
Typ_lop	V	V	V	V	V	V	V
η_nekon [%]	93,41	93,44	93,46	93,23	93,49	93,47	93,50
Z_d [%]	0	0,2147	0,2034	0,1978	0,1851	0,1681	0,1449
Z_L [%]	13,1076	8,4928	7,3323	6,0224	5,8035	5,0232	4,3784
Z_p [%]	0	0	0	0	0	0	0
Z_V [%]	0	0	0	0	0	0	0
Z_t [%]	0,7422	0,3805	0,3358	0,3465	0,3256	0,2626	0,2174
Z_RZ [%]	0	0	0	0	0	0	0
Z_x [%]	0	0	0	0	0	0	0
η_TD_i [%]	79,56	84,35	85,59	86,67	87,18	88,02	88,76
H_už_i [kJ/kg]	47,02	36,43	36,98	32,97	36,17	36,54	39,03
A_t_i [kW]	6284,2	4793,5	4883,2	4370,0	4453,9	4511,1	4827,4
i_2iz [kJ/kg]	3009,28	2978,56	2942,25	2910,51	2874,15	2837,98	2799,05
i_2 [kJ/kg]	3021,36	2985,32	2948,47	2915,59	2879,47	2842,96	2803,99
s_2 [kJ/kg.K]	6,24370	6,25510	6,26600	6,27520	6,28510	6,29470	6,30490
t_2 [°C]	350,41	327,76	305,19	285,30	263,39	240,64	214,80
p_2 [MPa]	6,9048	5,7852	4,8197	4,0822	3,3861	2,7889	2,2503
x_2 [-]	-	-	-	-	-	-	-
(u/c_0)p [-]	0,475	0,470	0,470	0,501	0,480	0,480	0,466
A_t_VT [kW]	34123,3						
H_už_VT [kJ/kg]	264,35						
H_iz_VT [kJ/kg]	310,52						
H_iz [kJ/kg]	305,80						
η_TD_VT [%]	86,45						
r_f[-]	0,0155						
Z vr [kJ/kg]	0,7969						

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Západočeská univerzita v Plzni, Fakulta strojní. Katedra energetických strojů a zařízení Přepočtené parametry průtočné částí ST-NT dílu

					Stupeň				
Veličiny	1	2	3	4	5	6	7	8	9
m_p [kg/s]	114,347	114,347	107,641	107,797	100,294	99,834	96,208	88,662	88,678
i_1 [kJ/kg]	3210,77	3145,99	3081,85	3002,41	2914,95	2819,02	2709,41	2673,80	2630,78
s_1 [kJ/kg.K]	7,08010	7,09280	7,10630	7,12300	7,14190	7,16410	7,19360	7,44120	7,76310
t_1 [°C]	382,76	349,23	315,65	273,61	226,87	175,17	115,64	94,67	70,48
p_1 [MPa]	1,9653	1,5240	1,1685	0,8259	0,5477	0,3343	0,1767	0,0836	0,0319
x_1 [-]	-	-	-	-	-	-	-	0,9685	0,9614
D_s [mm]	1231,1	1304,5	1370,1	1452,5	1538,4	1640,2	1815,4	2043,2	2404,7
D_p [mm]	1160,0	1220,0	1280,0	1340,0	1400,0	1460,0	1520,0	1600,0	1600,0
H_iz_i [kJ/kg]	72,71	72,11	88,58	96,99	105,97	120,13	125,40	152,05	186,50
u [m/s]	193,38	204,92	215,21	228,16	241,65	257,64	285,16	320,94	377,74
c_0 [m/s]	381,34	379,75	420,91	440,43	460,37	490,16	500,80	551,45	610,73
(u/c_0)s [-]	0,507	0,540	0,511	0,518	0,525	0,526	0,569	0,582	0,619
v_RL [m^3/kg]	0,18280	0,22600	0,29770	0,41200	0,60740	0,99760	1,93870	4,74540	15,57760
(α_1)p [°]	13,2	13	13	13	13,1	14,1	14	13,97	13,43
L_t [mm]	71,08	84,54	90,07	112,52	138,39	180,20	295,37	443,19	804,73
L_red [mm]	0	0	0	0	0	0	0	0	0
OSTŘIK	Т	Т	Т	Т	Т	Т	Т	Т	Т
ε[-]	1	1	1	1	1	1	1	1	1
n_1	-	-	-	-	-	-	-	-	-
L_opt [mm]	-	-	-	-	-	-	-	-	-
L_p [mm]	71,08	84,54	90,07	112,52	138,39	180,20	295,37	443,19	804,73
(Lp/Ds) [-]	0,058	0,065	0,066	0,078	0,090	0,110	0,163	0,217	0,335
Typ_lop	V	V	V	V	V	Z	Z	Z	Z

Diplomová práce, akad. rok 2011/12 Přemysl Epikaridis

Z_vr [kJ/kg]

12,1837

η_nekon [%]	93,48	92,91	93,45	93,38	93,27	93,25	91,70	90,99	88,25
Z_d [%]	0	0	0	0	0	0	0	0	0
Z_L [%]	3,8140	3,1871	3,0090	2,4066	1,9545	1,5008	0,9003	0,5954	0,3180
Z_p [%]	0	0	0	0	0	0	0	0	0
Z_V [%]	0	0	0	0	0	0	0	0	0
Z_t [%]	0,3250	0,4914	0,4123	0,3635	0,2690	0,1126	0,0975	0,0773	0,0780
Z_RZ [%]	0	0	0	0	0	0,8032	1,7603	3,1285	7,4452
Z_x [%]	0	0	0	0	0	0	0	3,15	3,86
η_TD_i [%]	89,34	89,23	90,03	90,61	91,04	90,84	88,94	84,03	76,55
H_už_i [kJ/kg]	64,96	64,34	79,75	87,88	96,48	109,12	111,53	127,77	142,76
A_t_i [kW]	7428,0	7357,5	8584,5	9473,1	9676,4	10894,1	10730,2	11328,4	12659,5
i_2iz [kJ/kg]	3138,06	3073,88	2993,27	2905,42	2808,97	2698,89	2584,01	2521,76	2444,28
i_2 [kJ/kg]	3145,81	3081,65	3002,10	2914,53	2818,46	2709,90	2597,88	2546,03	2488,02
s_2 [kJ/kg.K]	7,09300	7,10640	7,12290	7,14180	7,16400	7,19360	7,22730	7,48780	7,84540
t_2 [°C]	349,23	315,65	273,61	226,87	175,17	115,64	94,67	70,48	43,50
p_2 [MPa]	1,5240	1,1685	0,8259	0,5477	0,3343	0,1767	0,0836	0,0319	0,0089
x_2 [-]	-	-	-	-	-	-	0,9685	0,9614	0,9541
(u/c_0)p [-]	0,478	0,505	0,478	0,478	0,478	0,468	0,477	0,456	0,412
A_t_ST-NT [kW]	88131,8								
H_už_ST-NT [kJ/kg]	872,41								
H_iz_ST-NT [kJ/kg]	1020,43								
H_iz [kJ/kg]	982,22								
η_TD_ST-NT [%]	88,82								
r_f [-]	0,0389								

Voličiny				Stupeň						
venciny	1	2	3	4	5	6	7			
RL										
ΔL [mm]	2,0	3,0	4,0	5,0	6,0	7,0	8,0			
L_p_RL [mm]	21,02	32,93	38,03	44,60	48,45	55,84	63,36			
L_RL_vstup [mm]	17,9	29,5	33,0	38,7	41,5	47,6	53,4			
L_RL_výstup [mm]	19,2	31,8	36,3	43,0	46,8	53,9	60,7			
			OL							
ΔL [mm]	0	0	0	0	0	0	0			
L_p_OL [mm]	21,70	34,28	38,81	45,45	49,32	56,36	63,20			
L_OL_vstup [mm]	21,7	34,3	38,8	45,5	49,3	56,4	63,2			
L_OL_výstup [mm]	21,7	34,3	38,8	45,5	49,3	56,4	63,2			

Přepočtené velikosti rozváděcích a oběžných lopatek VT dílu

Přepočtené velikosti rozváděcích a oběžných lopatek ST-NT dílu

Veličiny	Stupeň								
	1	2	3	4	5	6	7	8	9
RL									
ΔL [mm]	9,0	10,0	11,0	12,0	13,0	0	0	0	0
L_p_RL [mm]	73,06	84,82	94,62	118,03	146,37	193,86	312,76	443,35	803,16
L_RL_vstup [mm]	64,3	74,1	82,5	103,0	128,7	177,5	279,5	384,9	642,5
L_RL_výstup [mm]	70,3	80,8	89,8	111,0	137,4	190,0	302,0	430,0	780,0
OL									
ΔL [mm]	0	0	0	0	0	0	0	13	6
L_p_OL [mm]	72,83	83,33	92,26	113,47	139,89	192,50	304,50	460,00	840,00
L_OL_vstup [mm]	72,8	83,3	92,3	113,5	139,9	192,5	304,5	447,0	834,0
L_OL_výstup [mm]	72,8	83,3	92,3	113,5	139,9	192,5	304,5	460,0	840,0

Příloha JJ - Tepelné schéma oběhu při 50% výkonu

Příloha KK - Tepelné schéma oběhu při 75% výkonu

