

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Studijní program: B 2301 Strojní inženýrství Studijní zaměření: Materiálové inženýrství a strojírenská metalurgie

BAKALÁŘSKÁ PRÁCE

Vliv tepelného zpracování na terminálně balistické vlastnosti nízkolegované vysokopevné oceli

Autor:Vladislav COUFALVedoucí práce:Ing. Milan VNOUČEK, Ph.D.

Akademický rok 2015/2016

ZÁPADOČESKÁ UNIVERZITA V PLZNI

Fakulta strojní Akademický rok: 2015 / 2016

ZADÁNÍ BAKALÁŘSKÉ PRÁCE (PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Vladislav Coufal
Osobní číslo:	S15B0149K
Studijní program:	B2301 Strojní inženýrství
Studijní obor:	Materiálové inženýrství a strojírenská metalurgie
Název tématu:	Vliv tepelného zpracování na terminálně balistické
	vlastnosti nízkolegované vysokopevné oceli
Zadávající katedra:	Katedra materiálu a strojírenské metalurgie

Zásady pro vypracování:

- 1. Tepelné zpracování nízkolegovaných vysokopevných ocelí
- 2. Mechanické zkoušky, metalografie
- 3. Zkoušení terminálně balistických vlastností
- 4. Návrh a realizace experimentálního programu
- 5. Diskuze výsledků
- 6. Závěr

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Rozsah grafických prácí: Rozsah kvalifikační práce: Forma zpracování bakalářské práce: fotodokumentace, obrázky 50-60 stran tištěná / elektronická

Seznam odborné literatury:

- Skálová, Jana; Koutský, Jaroslav; Motyčka, Vladislav. Nauka o materiálech. 2. vyd. Plzeň: Západočeská univerzita, 2000.
- Skálová, Jana; Benedikt, Vladimír; Kovařík, Rudolf. Základní zkoušky kovových materiálů. 3. vyd. Plzeň: Západočeská univerzita, 2000.
- STANAG 4569 (Edition 1). Protection Levels for Occupants of Logistic and Light Armoured Vehicles. NATO : NSA, 2004.
- AEP-55, Volume 1 (Edition 1): Procedures for Evalulating the Protection Level of Logistic and Light Armoured Vehicles Mine Threat. NATO : NSA, 2006
- Český obecný standard, ČOS 343901: Svařování: Obloukové svařování homogenních ocelových pancířů. 3. vydání, Praha: Úřad pro obrannou standardizaci, katalogizaci a státní ověřování jakosti, 2011
- Buchar, Jaroslav a Voldřich, Josef. Terminální balistika. 1. vyd. Praha: Academia, 2003.
- Jech, Jaroslav. Tepelné Zpracování ocelí. 3. vydání, Praha SNTL, 1977

Vedoucí bakalářské práce:Ing. MilanKatedra matKonzultant bakalářské práce:Ing. Jan Kř

Ing. Milan VNOUČEK, Ph.D. Katedra materiálu a strojírenské metalurgie **Ing. Jan KŘESŤAN, Ph.D.** Vojenský výzkumný ústav, s. p.

Datum zadání bakalářské práce: Termín odevzdání bakalářské práce: 21. září 2015 20. května 2016

L. S.

doc. Ing. Milan EDL, Ph.D. děkan prof. Dr. Ing. Antonín KŘÍŽ vedoucí katedry

V Plzni dne 12. září 2015

Předkládám tímto k posouzení a obhajobě Bakalářskou práci, zpracovanou na závěr studia na Fakultě strojní Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto Bakalářskou práci vypracoval samostatně, s použitím odborné literatury a pramenů, uvedených v seznamu, který je součástí této Bakalářské práce.

V Plzni dne:

podpis autora

ANOTAČNÍ LIST DIPLOMOVÉ (BAKALÁŘSKÉ) PRÁCE

AUTOR	Příjmení COUFAL		Jméno Vladislav			
STUDIJNÍ OBOR	2301R016 Materiálové inženýrství a strojírenská metalurgie					
VEDOUCÍ PRÁCE	Příjmení (včetně titulů)JménoIng. VNOUČEK, Ph.D.Milan					
PRACOVIŠTĚ	ZČU - FST - KMM					
DRUH PRÁCE	DIPLOMOVÁ	4 0VÁ BAKALÁŘSKÁ Nehodící s škrtněte				
NÁZEV PRÁCE	Vliv tepelného zpracování na terminálně balistické vlastnosti nízkolegované vysokopevné oceli					

FAKULTA	strojní		KATEDRA	KMM		ROK ODEVZD.	2016
---------	---------	--	---------	-----	--	----------------	------

POČET STRAN (A4 a ekvivalentů A4)

CELKEM	61	TEXTOVÁ ČÁST	51	GRAFICKÁ ČÁST	9
--------	----	--------------	----	------------------	---

STRUČNÝ POPIS (MAX 10 ŘÁDEK) ZAMĚŘENÍ, TÉMA, CÍL POZNATKY A PŘÍNOSY	Bakalářská práce porovnává balistickou odolnost plechů z nízkolegované vysokopevné oceli daného chemického složení po tepelném zpracování a popouštění na určité teploty. Výsledky zkoušek budou mít velké přínosy při opravách vozidel.
KLÍČOVÁ SLOVA ZPRAVIDLA JEDNOSLOVNÉ POJMY, KTERÉ VYSTIHUJÍ PODSTATU PRÁCE	Popouštěcí teplota, metalografie, mechanické zkoušky, balistická zkouška, empirické vzorce, průstřel, neprůstřel

SUMMARY OF DIPLOMA (BACHELOR) SHEET

AUTHOR	Surname COUFAL	_{Name} Vladislav			
FIELD OF STUDY	2301R016 Materials Engineering and Engineering Metallur				
SUPERVISOR	Surname (Inclusive of Degrees)NameIng. VNOUČEK, Ph.D.Milan				
INSTITUTION	ZČU - FST - KMM				
TYPE OF WORK	DIPLOMABACHELORDelete when applicable				
TITLE OF THE WORK					

FACULTY	Mechanical Engineering		DEPARTMENT	KMM		SUBMITTED IN	2016
---------	---------------------------	--	------------	-----	--	-----------------	------

NUMBER OF PAGES (A4 and eq. A4)

TOTALLY61TEXT PART51GRAT IIICAL9PART9

BRIEF DESCRIPTION	Bachelor thesis compares ballistic resistant sheets of low-
TOPIC, GOAL,	alloy high-strength steel of the chemical composition after
RESULTS AND	heat treatment and tempering at a certain temperature. Test
CONTRIBUTIONS	results will have major benefits for vehicle repairs.
KEY WORDS	The tempering temperature, metallography, mechanical tests, ballistic test, empirical formula, bullet, bulletproof

Obsah

ÚVOD	7
I. TEORETICKÁ ČÁST	8
1. Nízkolegované vysokopevné oceli	9
2. Tepelné zpracování nízkolegovaných vysokopevných ocelí	9
2.1. Kalení	10
2.2. Popouštění	11
3. Metalografie	12
3.1. Odběr vzorku	12
3.2. Broušení	12
3.3. Leštění	13
3.4. Leptání vzorku	13
3.5. Světelná mikroskopie	13
4. Mechanické zkoušky	13
4.1. Zkouška tahem	14
4.2. Zkouška tvrdosti	15
4.2.1. Zkouška tvrdosti podle Rockwella	16
4.2.2. Zkouška tvrdosti podle Brinella	17
4.2.3. Zkouška tvrdosti podle Vickerse	18
4.3. Zkouška rázem v ohybu	19
5. Terminální balistika	20
5.1. Balistická mez v _{lim}	22
II. PRAKTICKÁ ČÁST	25
6. Experimentální část	26
6.1. Cíle práce	26
7. Popouštění nízkolegovaných vysokopevných ocelí	26
8. Metalografie	27
9. Mechanické zkoušky	28
9.1. Zkouška tahem	28
9.2. Zkouška tvrdosti	34
9.2.1. Zkouška tvrdosti podle Rockwella	34
9.2.2. Zkouška tvrdosti podle Brinella	35
9.2.3. Zkouška tvrdosti podle Vickerse	36
9.3. Zkouška rázem v ohybu	37
10. Balistická zkouška	39
10.1. Balistická mez v_{50}	40
10.2. Teoretické výpočty limitní rychlosti	42
11. Vyhodnocení experimentálního programu	44
Závěr	46
Seznam názvosloví a zkratek	49
Seznam obrázků	50
Seznam tabulek	51
Přílohy	

ÚVOD

V zónách válečných konfliktů jsou kladeny zvýšené požadavky na ochranu osob a materiálu v přepravních prostředcích. Požadavky ochrany jsou řešeny za pomoci ochranných materiálů, které jsou integrální součástí přepravních prostředků nebo jsou na tyto prostředky montovány dodatečně v podobě představného pancéřování, které je realizováno většinou pomocí homogenních pancéřových plechů. Obě možnosti ochrany je možno realizovat za použití nízkolegovaných vysokopevných ocelových plechů. Jedná se o materiál, který prochází rozsáhlým balistickým testováním za účelem splnění přísných mezinárodních kritérií v otázkách bezpečnosti ochrany. Je vyráběn v několika stupních pevnosti, proto má širokou oblast použití. Může být použit v mnoha aplikacích včetně vozidel a budov [1].

V současné době jsou tyto pancéřové materiály používány v armádách mnoha států, kde se objevují hlavně ve výstroji v podobě opancéřování vozidel. I když jsou tyto materiály k tomuto účelu vyvinuté, dochází v důsledku vysoké dopadové energie projektilu k jejich poškození. Při dosažení určité hloubky vniknutí projektilu do materiálu, dochází ke smykovému porušení zbývající vrstvy a k proniknutí zbytku projektilu do prostoru, který chrání osádku a moderní vybavení před způsobením škod na životech a materiálu.

Před průnikem projektilu může nemalou měrou pomoci konstrukční řešení, kdy mohou být pancéřové plechy umístěny na vozidlo pod úhlem. Tím se zvětší tloušťka materiálu a v případě nastřelení se zvýší balistická odolnost plechu a zároveň bezpečnost osádky a vozidla.

Pro řešení balistické ochrany bude v bakalářské práci použit nízkolegovaný vysokopevný ocelový plech, vyráběný v tloušťce od 4,0 mm do 7,9 mm s tolerancí -0,0 až +0,6 mm a deklarované tvrdosti 58 až 63 HRC. V tabulce 1 je uvedeno chemické složení plechu s max. obsahem hm. % jednotlivých prvků [1]:

C	Si	Mn	P	S	Cr	Ni	Mo	B
Max%	Max%	Max%	Max%	Max%	Max%	Max%	Max%	Max%
0,47	0,7	1,0	0,01	0,005	1,5	3,0	0,7	0,005

Tab. 1: Chemické složení nízkolegované vysokopevné oceli [Podniková data VVÚ Brno, s. p.]

TEORETICKÁ ČÁST I.

1. Nízkolegované vysokopevné oceli

Nízkolegované oceli disponují podobnými vlastnosti jako nelegované oceli, ale jsou vhodné pro tepelné zpracování, což se projevuje hlavně ovlivněním mechanických vlastností. Po odečtení obsahu uhlíku mají obsah legujících prvků většinou nižší než 5%.

Se stoupajícím obsahem uhlíku stoupá i tvrdost po kalení a to až do obsahu uhlíku 0,85 hm. %, s vyšším obsahem uhlíku se tvrdost kalením dále nezvyšuje. Samotný obsah uhlíku má však také vliv na pevnost, čím vyšší obsah, tím je ocel pevnější [2].

Ke zvýšení zejména pevnostních charakteristik vysokopevné oceli je důležitá přítomnost legujících prvků, kde zpevňující účinek legujících prvků úzce souvisí s precipitací jemných částic, které zpevňují matrici a tak během austenitizace účinně brání růstu zrna [3].

Vliv prospěšných legujících prvků z tabulky 1 na mechanické a fyzikální vlastnosti oceli:

Křemík (Si) - zvýšení pevnosti, meze pružnosti, prokalitelnosti,

Mangan (Mn) - zvýšení prokalitelnosti, mechanických vlastností,

Chrom (Cr) – zvýšení prokalitelnosti, mechanických vlastností, odolnosti proti opotřebení, zlepšení žáropevnosti,

Nikl (Ni) - zvýšení houževnatosti, prokalitelnosti,

Molybden (Mo) – zvýšení žáropevnosti, popouštěcích teplot, odstranění popouštěcí křehkosti [3].

2. Tepelné zpracování nízkolegovaných vysokopevných ocelí

Tepelné zpracování je proces, při kterém je materiál podroben jednomu nebo několika tepelným cyklům tak, aby se při daném chemickém složení materiálu dosáhlo požadované struktury a tím i vlastností. Na obrázku 1 je znázorněn cyklus tepelného zpracování, skládající se z ohřevu, výdrže na teplotě a chladnutí. Tento průběh je v podstatě stejný u všech způsobů tepelného zpracování a u všech kovových materiálů [4].

Obr. 1: Cyklus tepelného zpracování [http://ebook.veda-hrou.cz/foto/1204dd795e6c08ca96d556102dee2d64 _v.png]

V podstatě rozlišuje podle rychlosti chladnutí dva postupy tepelného zpracování:

- *žíhání*, při němž v důsledku pomalé rychlosti ochlazování dochází ke vzniku struktur blízkých rovnovážnému stavu,

- *kalení*, kde v důsledku vysoké rychlosti ochlazování dochází ke vzniku nerovnovážných struktur a tím ke změnám mechanických a fyzikálních vlastností [3].

2.1. Kalení

Při ohřevu materiálu 30 °C až 50 °C nad teplotu A_{c3} (obrázek 2) dochází ke změně původní feritické a perlitické struktury na strukturu austenitickou. Podle účelu a druhu materiálu volíme teplotu ohřevu, a to pozvolně v pecích s regulovanou teplotou nebo rychlý ohřev např. plamenem [5].

Obr. 2: Kalící teploty oceli [ŠESTÁK, Josef. Základy tepelného zpracování. Dokument aplikace Microsoft Word. 2003]

Výdrž na kalící teplotě je dána rozměry materiálu a účelem zpracování. Ochlazování materiálu může probíhat v různých chladících médiích dvěma způsoby:

- <u>rovnovážné ochlazování materiálu</u> od teploty A_{c3} , kdy se začíná tvořit z austenitu nejdříve ferit a při poklesu teploty na A_{c1} se změní na perlit,

- <u>rychlé ochlazování materiálu</u> od teploty A_{c3} , kdy je rychlá změna teploty spojena s potlačením, někdy dokonce vyloučením rovnovážných přeměn a austenit může být v tomto případě zachován i pod teplotou A_{c1} . Tuto změnu nazýváme rozpadem austenitu a vzniklé nerovnovážné struktury mají zcela jiné vlastnosti než struktury rovnovážné [5].

Rozpad austenitu lze sledovat dvojím způsobem (obrázek 3). Při prvním způsobu je materiál rychle ochlazen pod teplotu A_{c1} a jeho teplota je po celou dobu přeměny udržována na konstantní hodnotě. Nazývá se izotermický rozpad austenitu (IRA). Při druhém způsobu je materiál ochlazován plynule, postup se nazývá anizotermický rozpad austenitu (ARA) [5].

Obr. 3: Rozpad austenitu pod teplotou A_{c1} [http://jhamernik.sweb.cz/tepelne_zpracovani_soubory/ image002.gif]

V IRA diagramu (obrázek 4 vlevo) a ARA diagramu (obrázek 4 vpravo) je v oblasti vlevo od křivek a nad M_s austenit. Jednotlivé křivky udávají, při jakých teplotách dochází k přeměnám austenitické struktury na feritickou (F_s), přeměně zbytkového austenitu na strukturu perlitickou (P_s). Pod nosem na křivce B_s začíná přeměna austenitické struktury na bainitickou, což je zvláštní forma perlitu [5].

Obr. 4: IRA diagram (vlevo) a ARA diagram (vpravo) podeutektoidní oceli [ŠESTÁK, Josef. Základy tepelného zpracování. Dokument aplikace Microsoft Word. 2003]

Na tvar a polohu křivek v IRA a ARA diagramech má vliv složení materiálu. Legující prvky ovlivňují diagramy dvojím způsobem:

- s výjimkou kobaltu a hliníku posouvají křivky diagramů vpravo, to znamená, že i při nižší teplotě ochlazování dojde k zakalení a tím legury ovlivňují schopnost nízkolegované vysokopevné oceli ke kalení do hloubky neboli její prokalitelnost,

- mění tvar diagramu tak, že se odděluje část bainitická od části perlitické [5].

2.2. Popouštění

Popouštění následuje ve většině případů v co nejkratší době po kalení. Cílem popouštění je snížení úrovně vnitřního pnutí a upravení mechanických vlastností na požadované hodnoty, přičemž dochází ve struktuře zakalené oceli k procesům, které ji přibližují k rovnovážným stavům [3].

Rozsah strukturních změn při popouštění a tím i změn mechanických vlastností závisí na teplotě a době popouštění. Podle popouštěcí teploty rozlišujeme nízkoteplotní a vysokoteplotní popouštění.

<u>Nizkoteplotní popouštění</u> se obvykle provádí při teplotách 100 °C až 300 °C, jehož účelem je při zachování tvrdosti snížení vnitřního pnutí, snížení křehkosti a zvýšení houževnatosti.

<u>Vysokoteplotní popouštění</u> se provádí při teplotách 400 °C až 650 °C, kdy se u materiálu požaduje vysoká pevnost při značné houževnatosti a plasticitě.

S rostoucí popouštěcí teplotou klesá tvrdost, křehkost, pevnost, mez kluzu a zvyšuje se houževnatost a plasticita materiálu. V určitých mezích popouštěcích teplot může u materiálu vzniknout tzv. *popouštěcí křehkost*, která je příčinou neodpovídajících hodnot poklesu pevnosti s hodnotami zvýšení houževnatosti. Při teplotách v rozmezí 250 °C až 400 °C se tato křehkost vyznačuje jako nízkoteplotní popouštěcí křehkost [3].

Popouštěcí křehkost může být potlačena přidáním legujících prvků, zejména Molybdenu.

3. Metalografie

Cílem metalografie je, pomocí optického mikroskopu, zviditelnění struktury materiálu a její následné studie. Porovnávají se struktury materiálu po různých způsobech zpracování a zjišťují se souvislosti mezi strukturou a jejími vlastnostmi. Aby bylo možno sledovat strukturu materiálu, je třeba připravit vzorek pro pozorování v mikroskopu, čehož se docílí přípravou metalografického výbrusu. Postup této přípravy spočívá v několika krocích a to [6]:

- odběr vzorku,
- broušení,
- leštění,
- leptání povrchu ke zviditelnění struktury.

3.1. Odběr vzorku

Odběr spočívá v oddělení vzorku od materiálu tak, aby u něj nedošlo k tepelnému ovlivnění povrchu a po zvážení, co bude sledováno v mikrostruktuře. Při dělení tvářeného materiálu, bývá zvolena rovina výbrusu tak, aby byl zřetelný tvar deformovaného zrna po mechanickém zpracování – což znamená rovnoběžný směr se směrem tváření. Po odběru lze, pro snadnější manipulaci, vzorek zalisovat do manipulačního pouzdra z PVC nebo zalít do pryskyřice. [6].

3.2. Broušení

K broušení se používají brusné metalografické papíry s odstupňovanou zrnitostí brusiva. Na brusném papíře stejné zrnitosti se u vzorku drží stále stejný směr broušení a broušení je ukončeno, pokud zmizí všechny rýhy z předchozího broušení. Při přechodu na jemnější brusný papír se mění směr broušení o 90°. Po celou dobu broušení je vzorek

k brusnému papíru přitlačován takovou silou, aby nedošlo k vyhřátí povrchové vrstvy vzorku [6].

3.3. Leštění

Na vybroušené vzorky z ocele se používá mechanické nebo elektrolytické leštění. Leštěním se zbavujeme rýh od brusiva na pozorované ploše vybroušených vzorků. <u>Mechanické leštění</u> se provádí na otáčejících se kotoučích se speciálními plátny, které obsahující smáčedlo a diamantová zrna o různých velikostech (v řádech mikrometrů). Nevýhodou tohoto způsobu leštění je vznik deformace povrchových nerovností působením tlaku na leštící kotouč. Tyto artefakty je možné odstranit pomocí elektrochemického leštění. Při <u>elektrolytickém leštění</u> dochází k anodovému rozpouštění povrchu vzorku v elektrolytu. Katodou je materiál, který se v elektrolytu nerozpouští. Samotné leštění trvá v řádu vteřin. Výhodou tohoto způsobu leštění jsou výbrusy bez rysek, nevýhodou je možnost vyvolání naleptání některé strukturní složky nebo vznik korozních důlků v okolí vměstků [6].

3.4. Leptání vzorku

Po vyleštění je nutné povrch vzorku naleptat, aby se zviditelnila struktura povrchu vzorku, bez naleptání povrchu by byla vidět ve světelném mikroskopu jen bílá plocha (případně ještě částice vměstků a podobných fází). Pro vyvolání struktury se nejčastěji používá chemického nebo elektrolytické leptání. Při <u>chemickém leptání</u> se struktura povrchu vzorku vyvolá ponořením do leptadla nebo potíráním povrchu vatovým tamponem namáčeným do leptadla tak dlouho, dokud nezmatní vyleštěný povrch. Při <u>elektrolytickém leptání</u> dochází k selektivnímu rozpouštění určitých strukturních složek, což závisí na použitém elektrolytu a proudových a napěťových podmínkách [6].

3.5. Světelná mikroskopie

Metalografické výbrusy není možné pozorovat při průchodu světla, musí být pozorovány světlem odraženým. K tomu účelu je zkonstruován světelný metalografický mikroskop, jehož světelný paprsek vysílaný zdrojem prochází soustavou čoček a clon. Po odrazu od polopropustného hranolu nebo planparalelního skla, prochází objektivem a dopadá v kolmém směru na naleptaný povrch vzorku. Objektivem se vrací odražený paprsek a do okuláru prochází část světla, kde se jako světlé jeví rovné plochy výbrusu a tmavší jsou nerovnosti, které světlo do objektivu neodrazí [6].

4. Mechanické zkoušky

Napěťové a deformační charakteristiky materiálu jsou představovány mechanickými vlastnostmi. Tyto vlastnosti nám slouží jednak ke kontrole a porovnání dodaného stavu s atesty a k porovnání vlastností námi zpracovaných desek materiálu. Jsou vyjádřeny těmito základními pojmy:

- pružnost, což je vrácení se do původního stavu po odstranění působení napětí,

FAKULTA

- <u>pevnost</u>, která je definována jako vnější napětí, které je třeba na rozdělení materiálu na dvě části,

- tvrdost, která značí odolnost povrchu materiálu proti vnikání cizích těles,

- <u>tvárnost</u>, což je schopnost materiálu měnit v tuhém stavu působením vnějších sil vzájemnou polohu částic bez porušení soudržnosti,

- <u>houževnatost</u>, která je vyjádřením velikosti práce, potřebné k rozdělení materiálu na dvě části [6].

Z mechanických zkoušek provedených podle předepsaných norem, jsou získané údaje podkladem pro pevnostní a balistické výpočty odolnosti materiálů. Prováděné mechanické zkoušky:

Statické zkoušky:

- zkouška tahem,

- zkouška tvrdosti podle Rockwella (HRC),
- zkouška tvrdosti podle Brinella (HBW),
- zkouška tvrdosti podle Vickerse (HV10).

Dynamické zkoušky:

- zkouška rázem v ohybu [6].

4.1. Zkouška tahem

Při zkoušce tahem jsou u zkušebních vzorků zjišťovány tyto napěťové a deformační charakteristiky:

- pevnost v tahu,
- mez kluzu, resp. smluvní mez kluzu,
- tažnost,
- kontrakce.

Zkušební vzorek se po zatížení silou F prodlouží z počáteční délky L_0 na konečnou délku L_K . Počáteční plocha příčného průřezu vzorku S_0 se mění na konečnou plochu S_K . O síle F lze hovořit jako o normálovém napětí, jelikož osové tahové napětí působí kolmo na plochu příčného průřezu. Toto normálové napětí se obecně označuje R a vypočte se jako podíl zatížení napětí F a počáteční plochy S_0

$$R = \frac{F}{S_0} \left[MPa \right] \tag{4.1}$$

Absolutní prodloužení vzorku po přetržení vyjádříme vztahem

$$\Delta L = L_K - L_O \left[mm \right] \tag{4.2}$$

kde L₀ je počáteční délka vzorku a L_K je konečná délka vzorku po přetržení.

Zaznamenávaná závislost (F – Δ L) se nazývá smluvní nebo pracovní diagram zkoušky tahem. [6].

Pevnost v tahu

Je označována $R_{\rm m}$ a vypočte se jako podíl maximálního zatížení před přetržením vzorku a počáteční plochy

$$R_m = \frac{F_{max}}{S_O} \ [MPa] \tag{4.3}$$

Po překročení této hodnoty se deformace ve vzorku soustřeďuje do jednoho místa, ve kterém se začne průřez vzorku rychle zmenšovat, objeví se tzv. krček. Vzorek se v místě nejmenšího průřezu přetrhne. Pevnost v tahu obecně závisí na struktuře materiálu a na jeho chemickém složení. Je ovlivněna procesy, které probíhají ve struktuře při plastické deformaci, kde se jedná zejména o deformační a strukturní zpevnění a odpevňovací procesy, které mohou probíhat v kovu v závislosti na teplotě, rychlosti a stupni deformace [6].

Mez kluzu

Je nejmenší napětí, při němž dochází k deformaci, která někdy dočasně pokračuje, aniž se současně zvyšuje napětí. Toto napětí se nemusí na pracovním diagramu vůbec objevit, jelikož je vázáno na určitý strukturní stav. Nezjistí-li se přímo z pracovního diagramu, určí se z určité přesné hodnoty deformace jako smluvní mez kluzu R_p . Stanoví se z trvalé deformace vzorku pod zatížením jako napětí, při němž trvalá deformace dosáhne předepsané hodnoty vyjádřené v procentech počáteční měřené délky vzorku. Hodnota trvalé deformace se značí např. R_p 0,2, což je napětí, které způsobí trvalou deformaci 0,2 % původní délky L_0 [6].

Tažnost

Je měřítkem tvárnosti, vypočítá se z poměrného prodloužení po přetržení vzorku [6]

$$A = \frac{L_K - L_O}{L_O} \ [\%] \tag{4.4}$$

Kontrakce

Je také charakteristikou tvárnosti, vypočítá se ze změny počátečního a koncového průřezu vzorku [6]

$$Z = \frac{S_O - S_K}{S_O} \, [\%] \tag{4.5}$$

4.2. Zkouška tvrdosti

Tvrdost je definována jako odolnost povrchu materiálu proti místní deformaci. Závisí na celé řadě vlivů a to např.:

- pružné vlastnosti, zejména modul pružnosti v tahu a smyku,

- plastické vlastnosti, zejména mez kluzu a schopnost a rychlost deformačního zpevňování,

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

- velikost síly působící na vnikací těleso,
- tvar, rozměry, tvrdost a modul pružnosti materiálu vnikacího tělesa,
- tření mezi vnikacím tělesem a zkoušeným materiálem,
- zkušební teplota,
- tloušťka zkoušeného materiálu,
- poloha vtisku u zkoušeného materiálu,
- doba působení zatížení a rychlost zatěžování [6].

Odolnost proti vnikání vnikacího tělesa do zkoušeného materiálu je dána velikostí sil, jimiž jsou atomy v materiálu navzájem vázány. Závisí to např. na těchto činitelích:

- velikosti zrna,

- teplotě,

- cizí příměsi,

- vnitřním pnutí [6].

Při provádění zkoušek tvrdosti musí být povrch zkoušeného materiálu bez okujené vrstvy, hladký a rovný. Při jeho úpravě je třeba postupovat tak, aby nedošlo ke změnám vlastností materiálu ohřevem nebo deformací za studena. Na opačné straně zkoušeného materiálu nesmí být po zkoušce patrné stopy deformace. Napětí je po vtisku rozděleno nerovnoměrně, počítá se střední napětí, a proto výpočet nemá reálný význam. Zjištěná tvrdost je pouze číslo srovnávací, nemá jednotky napětí [6].

4.2.1. Zkouška tvrdosti podle Rockwella

Tvrdost zkoušeného materiálu vyjádříme hloubkou trvalého vtisku, ke kterému dojde při vtlačování vnikacího tělesa s diamantovým kuželem o vrcholovém úhlu $120^{\circ} \pm 0.5^{\circ}$ se zaoblením poloměrem 0,2 mm. Následně proběhne změření hloubky vniknutí vnikacího tělesa [6].

Označení	Tyor indeptory	Zatížení [N]				
Oznacem	i vai indentoru	F ₀	F ₁	$F_0 + F_1$		
HRC	kužel	98	1373	1471		

Tab. 2: Velikost zatížení silami u HRC [SKÁLOVÁ, Jana, KOVAŘÍK, Rudolf a BENEDIKT, Vladimír. Základní zkoušky kovových materiálů. 4. vyd. V Plzni: Západočeská univerzita, 2005. 175 s. ISBN 80-7043-417-1.]

Postup měření:

Zkoušený materiál položíme kolmo k vnikacímu tělesu, které se zatíží silou F_0 (tabulka 2). Stupnici hloubkoměru nastavíme do počáteční polohy (pro kužel je to hodnota 100) a plynule zatížíme na 2 až 8 s silou F_1 (tabulka 2). Po prudkém zpomalení pohybu ručičky hloubkoměru sílu F_1 odlehčíme a na stupnici, aniž odstraníme zatížení F_0 , odečteme výsledek měření tvrdosti (obrázek 5) [6].

Obr. 5: Vtlačování vnikacího tělesa do zkoušeného materiálu [SKÁLOVÁ, Jana, KOVAŘÍK, Rudolf a BENEDIKT, Vladimír. Základní zkoušky kovových materiálů. 4. vyd. V Plzni: Západočeská univerzita, 2005. 175 s. ISBN 80-7043-417-1.]

Postavení stupnice vůči vtisku je uspořádáno tak, že při minimální hloubce vtisku ukazuje hodnotu 100 a při maximální hloubce vtisku hodnotu 0 (obrázek 6) [6].

Obr. 6: Stupnice hloubkoměru [SKÁLOVÁ, Jana, KOVAŘÍK, Rudolf a BENEDIKT, Vladimír. Základní zkoušky kovových materiálů. 4. vyd. V Plzni: Západočeská univerzita, 2005. 175 s. ISBN 80-7043-417-1.]

Tloušťka zkoušeného materiálu musí být nejméně osmkrát větší než trvalá hloubka vtisku kuželového vnikacího tělesa. Mezi středy dvou sousedních vtisků nebo od středu vtisku ke kraji materiálu se doporučuje vzdálenost minimálně 3 mm. Pro ověření tvrdosti HRC se doporučuje stanovit průměr z pěti měření [6].

4.2.2. Zkouška tvrdosti podle Brinella

Tvrdost je vyjádřena jako poměr působícího zatížení síly F k ploše povrchu A kulovitého vtisku, kdy dochází (dle tvrdosti materiálu) ke vtlačování ocelové kuličky nebo kuličky ze slinutých karbidů o daném průměru kolmo do povrchu zkušebního tělesa po stanovenou dobu. Tvrdost se určí ze vztahu

$$HB = \frac{0,102.2.F}{\pi.D.(D - \sqrt{D^2 - d^2})}$$
(4.6)

Na obrázku 7 je znázorněn princip zkoušky tvrdosti podle Brinella [6].

Obr. 7: Princip zkoušky tvrdosti podle Brinella [SKÁLOVÁ, Jana, KOVAŘÍK, Rudolf a BENEDIKT, Vladimír. Základní zkoušky kovových materiálů. 4. vyd. V Plzni: Západočeská univerzita, 2005. 175 s. ISBN 80-7043-417-1.]

Pro zkoušky se používají kuličky o průměru D: 10; 5; 2,5; 2 a 1 mm. Nejmenší tloušťka zkušebního tělesa musí být nejméně desetinásobkem hloubky vtisku, průměr kuličky a zatížení, které stanovuje norma, je nutné volit tak, aby průměr d vtisku byl v rozmezí 0,25 až 0,6 mm. Vzdálenost mezi středem vtisku a okrajem zkušebního tělesa musí být minimálně 2,5 d, vzdálenost mezi středy dvou vtisků musí být minimálně 4 d.

Přesnost odečítání průměru vtisku může být ovlivněna vznikem valu u zpevněného materiálu nebo naopak vtažením okraje vtisku u nezpevněného materiálu [6].

4.2.3. Zkouška tvrdosti podle Vickerse

Tvrdost je vyjádřena jako poměr působícího zatížení síly F k povrchu vtisku, kterým je čtvercová základna pravidelného čtyřbokého jehlanu. Při měření tvrdosti dochází ke vtlačování diamantového pravidelného čtyřbokého jehlanu s vrcholovým úhlem mezi protilehlými stěnami 136° \pm 0,5° kolmo do povrchu zkušebního tělesa po stanovenou dobu. Tvrdost se určí ze vztahu

$$HV = \frac{0,189.F}{d^2}$$
(4.7)

kde d je aritmetický průměr změřených úhlopříček čtvercového vtisku d_1 a d_2 , jak je znázorněno na obrázku 8 [6].

Obr. 8: Princip zkoušky podle Vickerse [SKÁLOVÁ, Jana, KOVAŘÍK, Rudolf a BENEDIKT, Vladimír. Základní zkoušky kovových materiálů. 4. vyd. V Plzni: Západočeská univerzita, 2005. 175 s. ISBN 80-7043-417-1.]

Tloušťka zkušebního tělesa musí být minimálně 1,2 d. Vzdálenost středu vtisku od okraje zkušebního tělesa musí být minimálně 2,5 d. Zatěžovací síla je dána normou, doba zatížení musí být 10 až 15 sekund.

4.3. Zkouška rázem v ohybu

Patří mezi dynamické mechanické zkoušky, dochází při ní k plastické deformaci zkušebního vzorku.

Je důležitým doplňkem základních zkoušek materiálu a velmi dobrým ukazatelem plastických vlastností zkoušeného materiálu. Charakterizuje stav tepelného zpracování a náchylnost ke křehkému lomu.

Zkouška se provádí k určení houževnatosti materiálu při rázovém namáhání, jejímž měřítkem je práce (energie) spotřebovaná na porušení zkušebního vzorku. Spotřebovaná energie se určí vztahem

$$K = G \cdot (H - h) = G \cdot (h_1 + h_2)[J]$$
(4.8)

kde hodnoty H a h přečteme na stupnici kyvadlového kladiva (obrázek 9) [6].

Obr. 9: Pohyb kladiva [SKÁLOVÁ, Jana, KOVAŘÍK, Rudolf a BENEDIKT, Vladimír. Základní zkoušky kovových materiálů. 4. vyd. V Plzni: Západočeská univerzita, 2005. 175 s. ISBN 80-7043-417-1.]

Nárazová práce, vrubová houževnatost

Nárazová práce je práce, která se spotřebuje na přeražení zkušebního vzorku. Zjišťuje se na stupnici kyvadlového kladiva a značí se K [J]. Následující písmeno za K značí tvar vrubu ve zkušebním vzorku (V nebo U), dále se značí číslicemi, které znamenají největší energii kladiva, hloubku vrubu a šířku zkušebního vzorku (např. KU 100/3/7,5) [6].

Vrubová houževnatost je podílem nárazové práce K a počátečního příčného průřezu zkušebního vzorku S_0 v místě vrubu. Značí se KC [J.cm⁻²]. Stejně jako u nárazové práce, následující písmeno za KC značí tvar vrubu, dále se značí číslicemi, které znamenají největší energii kladiva, hloubku vrubu a šířku zkušebního tělesa (např. KCU 150/2/7,5). Vypočítá se podle vzorce

$$KC = \frac{K}{S_0} \left[J . cm^{-2} \right]$$
(4.9)

Na hodnotu vrubové houževnatosti má vliv zejména struktura materiálu, teplota, rychlost deformace, tvar a hloubka vrubu, šířka a orientace zkušebního vzorku a podélné osy vrubu vzhledem ke směru vláken v materiálu.

Při rázovém namáhání jsou nebezpečná pro lom místa s vruby, neboť vrub působí jako koncentrátor napětí. Čím více je vrub ostrohranný bez zaoblení, tím při zkoušce rázem v ohybu dostáváme nižší hodnoty vrubové houževnatosti. Příčinou je to, že při jiném tvaru vrubu je napětí rozděleno jinak a jsou jiné plasticky deformované objemy v okolí vrubu. Šířka zkušebního vzorku má vliv na příčné tahové napětí ve směru osy vrubu. Od určité kritické šířky zkušebního vzorku, která je různá podle druhu materiálu, se překročí mezní příčné napětí a předčasně vzniká křehký lom. Nejvyšších hodnot vrubové houževnatosti se dosahuje v případě, že podélná osa vrubu zkušebního vzorku je kolmá ve směru tváření. Naopak nejnižších hodnot vrubové houževnatosti se dosahuje, pokud podélná osa vrubu zkušebního vzorku je rovnoběžná se směrem tváření [6].

5. Terminální balistika

Terminální balistika je odvětví vědního oboru balistiky, zabývající se chováním střely v okamžiku zásahu cíle, a to projektily od malých ráží (ruční zbraně) až po projektily velkých ráží (dělostřelectvo) [7].

Při hodnocení vzájemného působení projektilů s terči je nutné vymezit základní pojmy a rozdělení:

Podle rychlosti dopadajícího projektilu na překážku:

- nízká dopadová rychlost (v $< 500 \text{ m.s}^{-1}$),

- běžná dopadová rychlost $(500 < v < 1500 \text{ m.s}^{-1})$,

- vysoká dopadová rychlost $(1500 < v < 3000 \text{ m.s}^{-1})$,

- extrémně vysoká dopadová rychlost (v > 3000 m.s^{-1}) [7].

Podle tloušťky terče H a průměru projektilu D:

- tenké terče (H/D < 1),

středně silné terče (1 < H/D < 10),

- polonekonečné terče (H/D > 10) [7].

Podle vzájemné polohy terče a dopadajícího projektilu:

- Normální dopad projektilu, kdy je vektor rychlosti projektilu totožný s tečnou trajektorie projektilu,

- Šikmý dopad projektilu, který se ještě dělí na šikmý dopad bez a s vybočením [7].

Schéma základních úhlů dopadajícího projektilu (obrázek 10):

- úhel šikmosti β , což je úhel mezi kolmicí k rovině terče a vektorem rychlosti těžiště projektilu,

- úhel dráhy projektilu Θ , což je úhel mezi tečnou k trajektorii těžiště projektilu a normálou k rovině terče,

- úhel vybočení α , což je úhel mezi tečnou trajektorie projektilu v jeho těžišti a vektorem rychlosti těžiště projektilu [7].

Obr. 10: Schéma základních úhlů popisujících geometrii interakce projektilu s rovinným terčem [BUCHAR, Jaroslav a VOLDŘICH, Josef. Terminální balistika. Vyd. 1. Praha: Academia, 2003. ISBN 80-200-1222-2.]

Rozlišujeme dva případy při interakci projektilu s terčem:

- *penetrace*, kdy projektil pronikne do terče, ale zůstane uvnitř. Na vnitřní straně terče může vzniknout výstupek, což je vlastně materiál, který je tlačen před projektilem. Zavádíme pojem hloubka penetrace P (obrázek 11) [7],

Obr. 11: Schéma stanovení hloubky penetrace [BUCHAR, Jaroslav a VOLDŘICH, Josef. Terminální balistika. Vyd. 1. Praha: Academia, 2003. ISBN 80-200-1222-2.]

- *perforace* nebo též průraz, kdy projektil prorazí terč. Při pohybu projektilu v materiálu dochází k erozi projektilu, kdy se erodované částice pohybují zpět (obrázek 12) [7].

Obr. 12: Schéma perforace [BUCHAR, Jaroslav a VOLDŘICH, Josef. Terminální balistika. Vyd. 1. Praha: Academia, 2003. ISBN 80-200-1222-2.]

Při hodnocení účinků projektilů je třeba zavést vhodný kvantitativní údaj, tzv. balistickou mez, označovanou jako v_L nebo v_{lim} . Jde o takovou dopadovou rychlost, při níž ještě nedojde k proražení terče, ale při větší rychlosti by již k proražení došlo [7].

Chování střely při zásahu a v průběhu jejího průniku terčem, je složitý dynamický proces. U terčů omezené tloušťky, kdy se dá očekávat průnik střely s přebytkem kinetické energie, je důležitá predikce stavu střely a jejího chování za terčem. Je velmi pravděpodobné, že střela po průniku terčem se vedle ztráty podstatné části kinetické energie bude vyznačovat určitým stupněm deformace svého těla, ztrátou hmotnosti a nestabilitou pohybu [8].

Schopnost střely prorazit terč určité tloušťky závisí do značné míry na její dopadové kinetické energii

$$E_d = \frac{1}{2} . m. v_d^2 [J]$$
 (5.1)

kde v_d je dopadová rychlost střely (m.s⁻¹) a m je hmotnost střely (kg) [8].

5.1. Balistická mez v_{lim}

Při určování průbojného účinku je velmi důležitý pojem limitní dopadové rychlosti střely v_{lim} , kterou lze chápat jako dopadovou rychlost střely, jež je nezbytná k tomu, aby střela dané ráže a hmotnosti právě pronikla terčem určité tloušťky a mechanických vlastností (na konci průniku bude rychlost postupující střely nulová) [8].

Pro její stanovení dnes existuje řada analyticky odvozených i empiricky sestavených vztahů, které vycházejí z následujících předpokladů:

- střela se při průchodu terčem nedeformuje,

- energie spotřebovaná na rozrušení povrchových vrstev terče a na přeskupení jeho částic se neuvažuje,

- ztráta kinetické energie přeměněné na teplo se neuvažuje [8].

Tloušťku terče, který odolá projektilu o hmotnosti m (kg) dopadajícímu rychlostí v_d (m.s⁻¹), vypočteme

$$B = \frac{1}{2} \cdot \frac{v_d \cdot \sqrt{m}}{K \cdot \sqrt{D}} [dm]$$
(5.2)

kde D je kalibr projektilu (dm) a K je parametr popisující vlastnosti terče. Hodnota K se před II. světovou válkou pohybovala v rozmezí od 1900 do 2300. V dnešní době lze za K dosazovat stejné hodnoty, popřípadě se musí vypočítat z experimentu [8].

Pro výpočty dopadové kinetické energie, limitních rychlostí, tloušťky terčů bylo navržen mnoho rovnic. Základní rovnice vycházejí z de Marreho rovnic, které jsou postupně upravovány právě kvůli modernizaci zbraní.

de Marreho rovnice

Při odvození svého modelu de Marre vycházel z předpokladu, že střela ve tvaru válce dopadá kolmo na nekonečně velký terč, který je vyroben z dokonale pružné hmoty, a že nedochází ke stranové deformaci ani u střely, ani u terče, kdy střela proniká bez tření.

Za předpokladu, že se celá dopadová kinetická energie střely E_d , vypočtená z rovnice (5.1), spotřebuje na probití terče, je možné dopadovou rychlost považovat za rychlost limitní ($v_d = v_{lim}$). Pro skutečnou protipancéřovou střelu a skutečné podmínky probíjení terče byly odvozeny empirické vztahy pro:

- výpočet limitní rychlosti pro kolmý dopad střely

$$v_{lim} = K. \frac{d^{\alpha}}{m^{\beta}} \cdot s^{\gamma} [m. s^{-1}]$$
(5.3)

- výpočet limitní rychlosti pro dopad střely pod určitým úhlem

$$v_{lim} = K \cdot \frac{d^{\alpha}}{m^{\beta} \cdot n \cdot \cos \varphi} \cdot s^{\gamma} [m \cdot s^{-1}]$$
(5.4)

v_{lim} – limitní dopadová rychlost střely [m.s⁻¹]

d – ráže střely [dm]

m – hmotnost střely [kg]

K – konstanta průbojnosti [-]

s – tloušťka terče [dm]

 ϕ – úhel dopadu střely na pancíř [°]

n – opravný koeficient [-]

 α , β , γ – koeficienty (tabulka 3)

koeficient	α	β	γ
Euler	1,0	0,5	0,5
Noble	0,5	0,5	1,0
Kruppova laboratoř	5/6	0,5	1/3
de-Marre	0,75	0,5	0,7

Tab. 3: Koeficienty [JUŘÍČEK, Ludvík, NOVOTNÝ, Pavel. Modelování průstřelu ocelové desky malorážovou průbojnou střelou. Vojenské zdravotnické listy, ročník LXXIII, 2004, č. 3.]

Konstanta K z rovnic 5.3 a 5.4 vyjadřuje svou hodnotou vlastnosti probíjeného terče a střely. Např. v případě terče z vysokopevné legované ocele a střely s tupou hlavou se dosahuje hodnot v rozmezí 2350 až 2450. Opravný koeficient n vyjadřuje skutečnost, že při dopadovém úhlu cca 60° prakticky všechny typy protipancéřových střel zaznamenají odraz, pro úhel dopadu $\leq 30^{\circ}$ je n=1, pro úhel > 30° je n=1,5 [7].

Z dalších rovnic můžeme připomenout Gabeaudovu rovnici, kde jsou podmínky probíjení dány zkouškou tvrdosti probíjeného materiálu podle Brinella a tvarovým součinitelem střely, který je dán výškou hlavové části těla střely [8]

$$v_{lim} = 125.\sqrt{\Delta}.\sqrt{\frac{d_p^2.s^2}{m.(s+h_H) - 3.d_p^2.s^2}} [m.s^{-1}]$$
(5.5),

kde v_{lim} (m.s⁻¹) je limitní rychlost střely, pokud se celá kinetická dopadová energie E_d spotřebuje k proražení plechu o tloušťce s (dm), který odolá kalibru projektilu d_p (dm) o hmotnosti m (kg) s výškou hlavové části těla střely h_H (dm). Podmínky probití jsou dány kvalitou probíjeného plechu Δ , do kterého se zadají změřené hodnoty tvrdosti podle Brinella pro jednotlivé zkušební plechy [8].

II. PRAKTICKÁ ČÁST

6. Experimentální část

6.1. Cíle práce

Cílem bakalářské práce bylo posouzení balistické odolnosti plechu z nízkolegované vysokopevné jemnozrnné oceli o tloušťce 5,0 mm s tolerancí – 0,0 mm až + 0,6 mm a výrobcem deklarovanou tvrdostí 58 až 63 HRC. Dodaný plech byl rozřezán na čtyři rozměrově stejné plechy, které byly následně popouštěny na předem určené popouštěcí teploty (více v kapitole 7). Po tepelném zpracování byly plechy rozřezány na zkušební vzorky a označeny čísly a písmeny (viz. příloha č. 1), aby nedošlo k záměně zkušebních vzorků a tím i chybným výsledkům při mechanických a balistických zkouškách. Veškeré dělení bylo, z důvodu velké tvrdosti materiálu a nutnosti neovlivnění vlastností materiálu, prováděno vodním paprskem.

Tabulka 4 udává atest chemického složení materiálu plechu dodaného výrobcem [1]:

C %	Si %	Mn %	Р%	S %	Cr %	Ni %	Mo %	B %
0,46	0,16	0,70	0,007	0,001	0,50	2,09	0,341	0,001

 Tab. 4: Atest chemického složení materiálu plechu [Podniková data VVÚ Brno, s. p.]

Konečných předepsaných rozměrů, drsností ploch zkušebních vzorků a odstranění nežádoucích vrypů vzniklých při dělení materiálu, bylo docíleno broušením materiálu na brusce s upnutím na magnetu. Vzhledem k velké tvrdosti broušeného materiálu byl použit brusný kotouč měkké tvrdosti.

Veškeré prováděné zkoušky na zkušebních vzorcích probíhaly za pokojových teplot.

7. Popouštění nízkolegovaných vysokopevných ocelí

Rozřezané a označené plechy byly, z důvodu dosažení rozdílné struktury materiálu od plechu v dodaném stavu (plech č. 1) a tím i rozdílných mechanických vlastností, popouštěny při teplotách 180 °C (plech č. 2), 240 °C (plech č. 3) a 300 °C (plech č. 4). Plechy byly vkládány do popouštěcí pece při pokojové teplotě a ohřívány při plynule vzrůstající teplotě až na danou popouštěcí teplotu. Po 2 hodinové výdrži na dané teplotě následovalo ochlazení na klidném vzduchu.

	Popouštěcí teplota	Mechanické vlastnosti
plech č. 1	dodaný stav	velká tvrdost, ale zároveň i výrazná křehkost
plech č. 2	180 °C	nepatrný pokles tvrdosti, snížení křehkosti
plech č. 3	240 °C	vyšší pokles tvrdosti i křehkosti
plech č. 4	300 °C	podstatné snížení tvrdosti i křehkosti, nárůst houževnatosti

Mechanické vlastnosti jednotlivých popouštěných plechů popisuje tabulka 5 [3]:

Tab. 5: Struktura a vlastnosti materiálu po popouštění

8. Metalografie

Metalografie má pouze informační charakter, kdy se sledovaly změny struktury materiálu po nízkoteplotním popouštění.

Z plechů označených 1M až 4M (viz. příloha č. 1) byly odříznuty vzorky materiálu pro zkoušku. Vzorky byly označeny čísly 1 až 4, čísla vzorků odpovídají číslům plechů, ze kterých byly odříznuty.

Mikrostruktura povrchu byla pro pozorování mikroskopem zviditelněna chemickým leptáním povrchu 2% Nitalem.

K pozorování a fotodokumentaci byl použit metalografický mikroskop Neophot 32 a digitální fotoaparát Olympus C-5050. Při zvětšení 500x byly sledovány mikrostrukturní změny vzhledu původních martenzitických zrn při daných popouštěcích teplotách, při zvětšení 100x byl pozorovatelný směr válcování plechu.

Obr. 13: Mikrostruktura povrchu vzorku 1 (dodaný stav), zvětšeno 100x (vlevo) a 500x (vpravo) [*Podniková data VVÚ Brno, s. p.*]

Obr. 14: Mikrostruktura povrchu vzorku 2 (popouštěno na 180 °C), zvětšeno 100x (vlevo) a 500x (vpravo) [*Podniková data VVÚ Brno, s. p.*]

Obr. 15: Mikrostruktura povrchu vzorku 3 (popouštěno na 240 °C), zvětšeno 100x (vlevo) a 500x (vpravo) [*Podniková data VVÚ Brno, s. p.*]

Obr. 16: Mikrostruktura povrchu vzorku 4 (popouštěno na 300 °C), zvětšeno 100x (vlevo) a 500x (vpravo) [Podniková data VVÚ Brno, s. p.]

9. Mechanické zkoušky

Pro zjištění pevnosti, tvrdosti a houževnatosti materiálu byly na zkušebních vzorcích provedeny tyto mechanické zkoušky [6]:

- statické zkoušky:
 - zkouška tahem,
 - zkouška tvrdosti podle Rockwella,
 - zkouška tvrdosti podle Brinella,
 - zkouška tvrdosti podle Vickerse,

- dynamické zkoušky:

- zkouška rázem v ohybu.

9.1. Zkouška tahem

K získání základních informací o mechanických vlastnostech zkoumaného materiálu byla provedena zkouška tahem dle ČSN EN ISO 6892-1: Kovové materiály – Zkoušení tahem.

Z plechu číslo 1 bylo vyříznuto 5 zkušebních vzorků v podélném (L) a 5 zkušebních vzorků příčném (P) směru ke směru válcování a označeno 1L a 1P. Z plechů číslo 2 až 4 bylo vyříznuto 5 zkušebních vzorků ve směru podélném (L) ke směru válcování a označeno 2L, 3L a 4L (viz. příloha č. 1).

Zkouška tahem se sestávala z těchto kroků:

- přesné změření rozměrů hran mikrometrem v místě zúžení a vypočtení počáteční plochy $S_{\rm O}$ potřebné k určení kontrakce,

 označení plochy barvou v zúžené části zkušebního vzorku, vyznačení rysek po 5 mm v celé délce (obrázek 17) pro výpočet tažnosti po přetržení zkušebního vzorku,

Obr. 17: Označení zkušebních vzorků na zkoušku v tahu

- označení a kontrolní změření l₀ vzdálenosti 50 mm mikroskopickým měřidlem,

- upnutí zkušebního vzorku do držáků trhacího stroje (obrázek 18), upevnění závěsného extenzometru uprostřed zúžené části zkušebního vzorku,

Obr. 18: Trhací stroj s upnutým zkušebním vzorkem

- start testu, po překročení smluvní meze kluzu demontáž závěsného extenzometru, dokončení testu,

- změření mikroskopickým měřidlem vzdálenost l_u mezi dvěma označenými ryskami, výpočet tažnosti (obrázek 19),

Označení rysek pro výpočet tažnosti

Obr. 19: Vyznačení rysek na zkušebním vzorku

- výpočet plochy S_u přetrženého zkušebního vzorku v zúženém místě (krčku), výpočet kontrakce (obrázek 20).

Obr. 20: Zobrazení plochy pro výpočet kontrakce

Naměřené hodnoty meze pevnosti se zkušebními vzorky 1L a 1P pro podélný a příčný směr vykazovaly shodné výsledky, směr válcování nemá podstatný vliv na pevnost materiálu. Výsledky zkoušky meze pevnosti zkušebních vzorků T1 až T4 jsou zobrazeny v pracovních diagramech v příloze č. 2.

Mez kluzu nelze určit z důvodu křehké struktury materiálu plechu. Byla určena smluvní mez kluzu R_p 0,2, kdy byl k měření použit závěsný extenzometr připevněný na zkušebním vzorku. Vždy po přesažení smluvní meze kluzu byl závěsný extenzometr odstraněn a zkouška pokračovala až do dosažení meze pevnosti a přetržení zkušebního vzorku. Výsledky smluvní meze kluzu R_p 0,2 zkušebních vzorků T1 až T4 jsou zobrazeny v pracovních diagramech v příloze č. 3, kde lze pozorovat u zkušebního vzorku T4 počátek vzniku plastické deformace.

Tažnost a kontrakce je u zkušebních vzorků T1, vzhledem k velké křehkosti materiálu, minimální při porovnání se zkušebními vzorky T2 až T4. Hodnoty tažnosti a kontrakce zkušebních vzorků 2L až 4L rostou, jelikož se zvyšující se popouštěcí teplotou pevnost a křehkost materiálu klesá. Získané hodnoty napěťových a deformačních charakteristik jsou zaneseny v tabulce 6.

	Záznam o zkoušce tahem														
]	Rozměr	y zkuše	bní tyče	(mm)				Výsle	edné hodn	oty		
No.	Ozn. zkuš.		Před zko	ouškou			Po zkou	išce		(N)	(M	pa)	(%))	Poznámka
	tyče	L ₀ (mm)	S_0 (mm ²)	a ₀	b ₀	L _u (mm)	S _u (mm ²)	a _u	b _u	F _m	R _p 0,2	R _m	А	Z	
1	1P_01	51,577	35,279	5,467	6,453	54,931	27,773			84535		2396	6,50	21,28	bez průtahoměru
2	1P_02	51,66	35,468	5,487	6,464	53,09	33,337			83695	1487	2359	2,77	6,01	
3	1P_03	51,706	35,855	5,534	6,479	53,976	32,98			85488	1465	2384	4,39	8,1	
4	1P_04	51,746	35,698	5,503	6,487	55,466	28,615			84201	1444	2358	7,19	19,84	
5	1P_05	51,886	35,329	5,474	6,454	55,245	28,29			84420	1466	2389	6,47	19,92	
6	1L_01	50,036	36,349	5,48	6,633					74120		2039			předčasný lom ve vrubu v oblasti zúžení
7	1L_02	51,29	32,883	5,396	6,094	53,733	30,742			81483		2477	4,76	6,51	bez průtahoměru
8	1L_03	52,272	33,519	5,395	6,213	55,991	24,308			80596	1458	2404	7,11	27,48	
9	1L_04	51,172	32,631	5,367	6,08	54,167	29,733			80863	1505	2478	5,85	8,88	
10	1L_05	53,34	32,443	5,366	6,046	57,169	25,252			80930	1513	2494	7,18	22,17	
11	2L_01	50,227	30,775	5,542	5,553	54,371	20,562			62037		2015	8,25	33,19	bez průtahoměru

Pokračování na další stránce

Pokračování z předcházející stránky

]	Rozměr	y zkuše	bní tyče	(mm)				Výsle	edné hodn	oty		
No.	Ozn. zkuš.		Před zko	ouškou			Po zkou	išce		(N)	(M	pa)	(%)	Poznámka
	tyče	L ₀	S_0 (mm ²)	a ₀	b ₀	L _u	S_u (mm ²)	a _u	b _u	F_{m}	R _{p0.2}	R _m	А	Z	
12	2L_02	50,243	30,841	5,548	5,559	54,257	19,419			62056	1554	2012	7,99	37,04	
13	2L_03	50,219	31,14	5,533	5,628	54,439	19,001			61913	1533	1988	8,40	38,98	
14	2L_04	50,172	30,746	5,518	5,572	54,102	20,115			61923	1559	2014	7,83	34,58	
15	2L_05	50,194	30,652	5,511	5,562	54,26	18,792			61703	1560	2013	8,10	38,69	
16	3L_01	50,013	32,102	5,48	5,858	53,711	16,924			58709		1828	7,39	47,28	bez průtahoměru
17	3L_02	50	32,136	5,483	5,861	53,794	17,261			59100	1537	1839	7,59	46,29	
18	3L_03	49,959	32,153	5,484	5,863	53,807	16,879			58575	1522	1821	7,70	47,50	
19	3L_04	49,926	32,063	5,465	5,867	53,953	16,04			58604	1525	1827	8,07	49,97	
20	3L_05	49,949	32,409	5,507	5,885	53,905	16,152			58604	1510	1808	7,92	50,16	
21	4L_01	49,742	34,051	5,463	6,233	53,921	18,228			57106		1677	8,40	46,47	bez průtahoměru
22	4L_02	50,332	34,504	5,511	6,261	53,281	16,484			57030	1425	1652	5,86	52,23	

Pokračování na další stránce

Pokračování z předcházející stránky

AKULTA

]	Rozměr	y zkuše	bní tyče	(mm)				Výsle	edné hodn	oty		
No.	Ozn. zkuš.	Před zkouškou					Po zkou	išce		(N)	(Mpa)		(%)		Poznámka
	tyče	L ₀	$\frac{S_0}{(mm^2)}$	a ₀	b ₀	L _u	S _u (mm ²)	a _u	b _u	F _m	R _{p0.2}	R _m	А	Z	_
23	4L_03	50,369	34,274	5,475	6,26	54,55	18,88			57202	1440	1668	8,30	44,91	
24	4L_04	50,438	34,148	5,455	6,26	54,678	17,996			57126	1443	1672	8,41	47,3	
25	4L_05	50,396	34,298	5,458	6,284	54,592	17,954			57202	1442	1667	8,33	47,65	

Teplota 24 °C zkoušky:

Tab. 6: Výsledky měření zkoušky tahem

9.2. Zkouška tvrdosti

Ke zkouškám tvrdosti bylo přistoupeno z důvodu kontroly stavu materiálu, ale i z důvodu využití získaných hodnot tvrdosti pro balistické výpočty.

Zkouška tvrdosti podle Rockwella (HRC) byla provedena pro porovnání skutečné tvrdosti materiálu a tvrdosti deklarované výrobcem (58 – 63 HRC).

Zkouška tvrdosti podle Brinella (HBW) byla provedena pro porovnání empirické závislosti mezi tvrdostí podle Brinella a pevností v tahu podle vztahu $R_m = k * HB$, kde R_m je mez pevnosti materiálu, k je koeficient závislý na druhu materiálu (pro ocel se udává v rozmezí 3,1 až 4,1) a HB je naměřená hodnota tvrdosti podle Brinela.

Hodnoty tvrdosti podle Brinella lze použít v Gabeaudově rovnici při teoretických výpočtech limitní dopadové rychlosti při balistických zkouškách.

Zkouška tvrdosti podle Vickerse (HV10) byla provedena v ploše řezu, kde bylo zjišťováno, zda popouštění proběhlo v celé tloušťce materiálu.

Povrch zkušebních těles byl obroušen dle požadavků norem jednotlivých zkoušek tvrdosti.

Zkouška tvrdost HRC a HBW byla provedena na zkušebních vzorcích o rozměrech 55x50x5 mm (obrázek 23), zkouška tvrdosti HV10 byla provedena v ploše řezu zkušebních vzorků o rozměrech 10x20x5 mm (obrázek 25). Zkušební vzorky byly odříznuty z plechu s označením 1T až 4T (viz. příloha č. 1).

Na závěr jednotlivých zkoušek tvrdosti bylo provedeno měření na kalibračních deskách pro potvrzení správnosti měření.

9.2.1. Zkouška tvrdosti podle Rockwella

Na obrázku 23 je zkušební vzorek, na kterém byla provedena zkouška tvrdosti podle Rockwella (HRC) dle normy ČSN EN ISO 6508-1 - Kovové materiály. Zkouška tvrdosti podle Rockwella - Část 1: Zkušební metoda (stupnice A, B, C, D, E, F, G, H, K, N, T).

Vlastní měření bylo provedeno na tvrdoměru Wolpert Diatronic 2 (obrázek 21), skládající se z pěti měření na každém zkušebním vzorku. V tabulce 7 jsou hodnoty měření, které byly zobrazovány jak na displeji v přední části zkušebního stroje, tak zároveň byly ukládány na HDD počítače k dalšímu zpracování.

Obr. 21: Tvrdoměr Wolpert Diatronic 2

	Zkušební	Zkušební	Zkušební	Zkušební
	vzorek 1T	vzorek 2T	vzorek 3T	vzorek 4T
Měření č. 1	58,3	56,1	52,5	50,2
Měření č. 2	59,2	57,3	53,5	50,5
Měření č. 3	58,5	55,9	52,8	52,7
Měření č. 4	58,7	56,7	52,9	51,4
Měření č. 5	58,7	55,8	52,8	50,3
Tvrdost HRC	58,7 ± 0,3	56,4 ± 0,6	$52,9 \pm 0,4$	51,0±1,1

Tab. 7: Výsledky měření tvrdosti HRC

Kontrolní měření bylo provedeno podle normy ČSN EN ISO 6508-2 - Kovové materiály, při použití kalibrační desky 62,6 HRC. Kontrolním měřením byla naměřena hodnota 62 HRC, což je v toleranci \pm 1,5 HRC při tvrdosti kalibrační desky.

9.2.2. Zkouška tvrdosti podle Brinella

Na obrázku 23 je zkušební vzorek, na kterém byla provedena zkouška tvrdosti podle Brinella s kuličkou ze slinutých karbidů (HBW) dle normy ČSN EN ISO 6506-1 - Kovové materiály. Zkouška tvrdosti podle Brinella - Část 1: Zkušební metoda.

Výsledky měření tvrdosti zkušebního vzorku zanesené v tabulce 8 byly určeny z tabulek tvrdosti Brinella (ČSN EN ISO 6506-4). Vlastní měření probíhalo na tvrdoměru (obrázek 22) na pěti místech každého zkušebního vzorku.

Obr. 22: Tvrdoměr pro měření tvrdosti podle Brinella

	Zkušební	Zkušební	Zkušební	Zkušební
	vzorek 1T	vzorek 2T	vzorek 3T	vzorek 4T
Měření č. 1	634	587	538	499
Měření č. 2	632	584	538	499
Měření č. 3	632	584	538	499
Měření č. 4	637	584	538	497
Měření č. 5	634	584	538	499
Tvrdost HBW	$634 \pm 2,0$	585 ± 1,3	$538 \pm 0,0$	$498 \pm 0,9$

Tab. 8: Výsledky měření HBW

Potvrzení měření bylo provedeno podle normy ČSN EN ISO 6506-2 - Kovové materiály, za použití kalibračních desek tvrdosti 435 HBW a 649 HBW. Kontrolním měřením byla naměřena hodnota 437 HBW a 656 HBW, což je v toleranci \pm 2% při tvrdosti kalibračních desek.

Obr. 23: Vtisky po zkoušce tvrdosti HRC a HBW

9.2.3. Zkouška tvrdosti podle Vickerse

Na obrázku 25 je zkušební vzorek, na kterém byla provedena zkouška tvrdosti podle Vickerse (HV10) dle normy ČSN EN ISO 6507-1 - Kovové materiály. Zkouška tvrdosti podle Vickerse - Část 1: Zkušební metoda.

Výsledky měření tvrdosti zanesené v tabulce 9 byly z důvodu velikostí použitých zkušebních vzorků a možnosti vzájemného ovlivnění vtisků měřeny metodou HV10. Vlastní měření se skládalo z osmi vtisků od hrany zkušebního vzorku s posunutím po 0,5 mm (obrázek 25).

Na obrázku 24 je tvrdoměr s počítačem, na monitoru počítače byly zobrazovány výsledky měření a ukládány na HDD počítače pro další zpracování.

Obr. 24: Tvrdoměr s počítačem

	Zkušební	Zkušební	Zkušební	Zkušební
	vzorek 1T	vzorek 2T	vzorek 3T	vzorek 4T
Měření č. 1	665	623	581	543
Měření č. 2	708	643	583	542
Měření č. 3	712	628	583	531
Měření č. 4	682	626	586	535
Měření č. 5	694	629	567	534
Měření č. 6	701	628	568	528
Měření č. 7	689	632	579	551
Měření č. 8	684	637	585	534
Tvrdost HV10	691 ± 14	630 ± 6	579 ± 6	537 ± 7

Tab. 9: Výsledky měření tvrdosti HV10

Kontrolní měření bylo provedeno podle normy ČSN EN ISO 6507-2 - Kovové materiály, za použití kalibrační desky 463 HV10 \pm 3 HV10. Kontrolní měření ukázalo hodnotu 463 HV10, což je v toleranci \pm 3% při tvrdosti kalibrační desky.

Směr měření

ní tvrdosti HV10

9.3. Zkouška rázem v ohybu

Zkouškou rázem v ohybu budeme hodnotit práci potřebnou k přeražení vzorku. Zkouškou vrubové houževnatosti hodnotíme houževnatost materiálu zkušebních vzorků.

Zkouška rázem v ohybu byla provedena dle normy ČSN ISO 148-1 (MPSZ02-03). Z každého plechu č. 1 až 4 bylo odříznuto 5 kusů zkušebních vzorků v podélném (L) směru ke směru válcování a označeno 1L až 4L a 5 kusů v příčném (P) směru ke směru válcování a označeno 1P až 4P (viz. příloha č. 1). Čísla vzorků odpovídají číslům jednotlivých plechů.

Zkouška byla provedena na zkušebním zařízení Wolpert PW 30/15 s typem břitu Charpy/DIN dle ČSN ISO 148-1 [6]. Značení zkoušky je KV 300/2/5.

Tabulka 10 zobrazuje výsledky zkoušky v podélném směru ke směru válcování, tabulka 11 zobrazuje výsledky zkoušky v příčném směru ke směru válcování.

Podélný	Zkuš	sební v	vzorek	7kuš	ební vz	vorek 21	Zku	šební v	zorek	Zkušební vzorek		
směr		1L		ZKUS		LOICK 2L		3L				
válcování	KV	V_2	KCV	K	V_2	KCV	K	KV_2		KV	V_2	KCV
Měření č. 1	11,9	±2	29,5	15,0	± 2	37,1	11,3	± 2	28,1	12,0	±2	29,7
Měření č. 2	13,5	± 2	33,4	15,8	±2	39,1	11,5	± 2	28,4	12,1	± 2	29,9
Měření č. 3	13,0	±2	32,2	14,5	± 2	35,9	11,5	± 2	28,4	11,9	± 2	29,4
Měření č. 4	11,0	± 2	27,2	14,4	± 2	35,6	11,2	± 2	27,7	11,8	± 2	29,2
				Pokr	ačovár	ní na další	stránc	е				

	Pokračování z předcházející stránky														
Měření č. 5	Měření č. 5 7,0 ± 2 17,3 15,3 ± 2 57,8 12,4 ± 2 30,6 12,8 ± 2 31,7														
Aritm. průměr	11	,3	27,9	15	,0	37,1	11	,6	28,6	12	,1	30,0			

Tab. 10: Hodnoty KV₂ a KCV pro zkušební vzorky podelném směru válcování

Dříčný směr	Zku	šební v	zorek	Zku	šební v	zorek	Zku	šební v	vzorek	Zkušební vzorek		
		1P			2P			3P		4P		
valcovalli	KV ₂		KCV	KV ₂		KCV	KV_2		KCV	KV ₂		KCV
Měření č. 1	12,6	± 2	31,3	16,3	± 2	40,3	11,7	±2	28,9	11,5	± 2	28,4
Měření č. 2	13,3	± 2	33,0	15,3	± 2	37,8	10,8	± 2	26,6	11,3	± 2	28,0
Měření č. 3	11,7	± 2	29,0	15,8	± 2	39,0	11,0	±2	27,1	11,0	± 2	27,2
Měření č. 4	13,3	± 2	33,0	14,2	± 2	35,1	10,8	±2	26,7	11,7	± 2	28,9
Měření č. 5	12,7	± 2	31,5	15,3	± 2	37,8	11,4	±2	28,1	11,9	± 2	29,4
Aritm.	tm. 127 315		21.5	15 /		28.0	11	1	27.5	11	5	201
průměr	12	.,/	51,5	15	,4	38,0	11,1		11,1 27,3		11,5	

Tab. 11: Hodnoty KV₂ a KCV pro zkušební vzorky v příčnem směru válcování

Z výsledků je patrné, že největších hodnot vrubové houževnatosti dosahuje vzorek č. 2 (popouštěno při 180 °C), ale vrubová houževnatost podélné osy vrubu zkušebního vzorku má vyšší hodnotu pro rovnoběžný směr tváření (hodnoty v červeném kruhu z tabulek 10 a 11).

Obr. 26: Vliv teploty na vrubovou houževnatost zkušebních vzorků

Obrázek 26 znázorňuje přechod (přibližně 210 °C), kdy hodnoty podélné osy vrubu zkušebního vzorku na kolmý směr tváření nabývají vyšší hodnoty než hodnoty podélné osy vrubu zkušebního vzorku na podélný směr tváření. Od teploty 240 °C dochází ke zvyšování hodnot absorbované energie a vrubové houževnatosti. U zkušebního vzorku č. 4, kdy lze u zkoušky tahem pozorovat počátek plasticity, se již začíná objevovat houževnatost.

10. Balistická zkouška

Zkouška má dokázat balistickou odolnost plechů při nastřelení municí 7,62 x 39 API BZ. Tento typ munice je nařízen ke zkouškám odolnosti ochranných prostředků nařízen předpisem STANAG 4569, level 2. Také je nejpoužívanějším střelivem (rozumějme rozměry munice) v mnoha zemích.

Střelba se uskutečnila ve spolupráci s firmou Prototypa-ZM, s.r.o. v tunelové zkušebně v Brně v souladu s předpisem STANAG 4569, level 2 (tabulka 12) [9]:

Level (Úroveň)	Zbraně, munice a podmínky	Konkrétní typy munice
2	Útočné pušky Průbojná munice s ocelovým jádrem Vzdálenost 30 m, úhel dopadu 0°	7,62 mm × 39 API BZ (695 m.s ⁻¹ \pm 20 m.s ⁻¹)

Tab. 12: STANAG 4569, level 2 [STANAG 4569 (Edition 1). Protection Levels for Occupants of Logistic and Light Armoured Vehicles. NATO : NSA, 2004.]

Munice 7,62 mm \times 39 API BZ je malorážová AP (Armour Piercing), nábojnice je vyráběna z oceli plátované tombakem, z oceli fosfátované a lakované nebo z mosazi. Průbojná střela má ocelové kalené jádro (max. 62 HRC), olověnou košilku a plášť z oceli plátované tombakem [8]. Řez nábojnicí a střelou s popisem ocelového jádra je v příloze č. 4. Technicko-taktická data střely s kaleným ocelovým jádrem uvádí tabulka 13 [7]:

Střela	Průměr (mm)	7,62
	Délka (mm)	27,4
	Hmotnost (g)	7,7
Jádro	Průměr (mm)	6,0
	Délka (mm)	22,7
	Hmotnost (g)	4,0
	Výška hlavové části jádra (mm)	9,0
	Materiál	Ocel
	Tvrdost (HV)	630-910
	Hustota (kg.m ⁻³)	7850

Tab. 13: Technicko-taktická data munice [BUCHAR, Jaroslav a VOLDŘICH, Josef. Terminální balistika. Vyd. 1. Praha: Academia, 2003. ISBN 80-200-1222-2.]

Na obrázku 27 je sestava plechů pro zkoušku balistické odolnosti. Za zkušebním plechem, na který byla vedena střelba, je pět plechů z oceli ČSN 11373 o tloušťce 2 mm, které mají za úkol zastavit jádro střely. Celá sestava je v rozích plechů smontována čtyřmi šrouby s maticemi, jednotlivé plechy jsou odděleny distančními kroužky s výškou 10 mm.

Obr. 27: Sestava plechů na zkoušku balistické meze $v_{\rm 50}$

Na obrázku 28 vlevo je tunelová střelnice, kde probíhaly balistické zkoušky. V přední části je mobilní střelecká stolice s lafetovanou hlavní ráže 7,62 mm a délky 1000 mm, v zadní části jsou inteligentní hradla před terčem.

Na obrázku 28 vpravo je zobrazené upnutí sestavy plechů ve střeleckém rámu.

Obr. 28: Tunelová střelnice (vlevo) a upnutí sestavy plechů (vpravo)

10.1. Balistická mez v₅₀

Zkouška balistické meze v_{50} byla provedena ke zjištění dopadové rychlosti, která leží v polovině přechodové oblasti. Přechodovou oblastí rozumíme oblast, která zahrnuje případy, kdy dojde i nedojde k průstřelu zkušebních plechů, které jsou nastřelovány šesti až deseti projektily o různé dopadové rychlosti. Pro prvý případ, kdy dojde k průstřelu, se přiřadí pravděpodobnost 100% a pro druhý případ, kdy k průstřelu nedojde, se přiřadí pravděpodobnost 0%. Rozdíl rychlostí při v_{50} nesmí být větší než 40 m.s⁻¹ [7].

Při zjišťování balistické meze v_{50} vznikl problém již u zkušebního plechu 1S (viz. příloha č. 1), kdy byl zaznamenán průstřel při rychlosti střely, kdy byla již velká pravděpodobnost, že se po výstřelu stane dráha střely nestabilní a mohlo by dojít k poničení inteligentních hradel pro měření rychlosti střel, nebo by dopad střely na zkušební plech nebyl

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

v kolmém směru. To by mělo za následek chybu ve výpočtech. Tabulka 14 zobrazuje výsledky zkoušky po nastřelení zkušebního plechu 1S, který byl nastřelován jedenácti střelami (obrázek 29), zkušebního plechu 2S po nastřelení dvěma střelami (obrázek 30) a zkušebního plechu 4S, který byl nastřelen jednou střelou (obrázek 31). Poté byla zkouška po dohodě s obsluhou střeleckého trenažéru ukončena. U zkušebního plechu 3S byla zkouška zrušena s ohledem na výsledky předchozích vzorků.

Číslo	Zkušebr	ní plech 1S	Zkušební plech 2S		Zkušební plech 3S		Zkušební plech 4S	
střelby	Rychlost (m.s ⁻¹)	Hodnocení	Rychlost (m.s ⁻¹)	Hodnocení	Rychlost (m.s ⁻¹)	Hodnocení	Rychlost (m.s ⁻¹)	Hodnocení
1	704,1	Р	417,8	Р			381,7	P*
2	656,3	Р	367,2	Р				
3	638,7	Ν						
4	653,9	Р						
5	630,4	Р						
6	618,6	Р						
7	575,6	Р						
8	528,8	Р						
9	468,7	Р						
10	412,8	N						
11	451,7	Р						
V50	432,3		Nehod noceno		Nehod noceno		Nehodn oceno	

Tab. 14: Výsledky balistické meze v50, P-průstřel, N-neprůstřel, P*-částečný průstřel

Neprůstřel zkušebního plechu 1S při dopadové rychlosti 638,7 m.s⁻¹ (střelba č. 3 na obrázku 29) byl očekávaným výsledkem a se snižováním dopadové rychlosti byly očekávány další neprůstřely, ale docházelo k nepředpokládaným průstřelům zkušebního plechu. V pořadí druhý neprůstřel byl až při dopadové rychlosti o 225,9 m.s⁻¹ nižší než byl první neprůstřel.

Při střelbě na zkušební plech 2S došlo při rychlosti 367,2 m.s⁻¹ k plnému průstřelu plechu, při střelbě na zkušební plech 4S, došlo při rychlosti 381,7 m.s⁻¹ k částečnému průstřelu, kdy plechem prošla hlavová část ocelového jádra střely, tělo jádra střely zkušebním plechem neprošlo.

Obr. 29: Balistická zkouška plechu 1S

Obr. 30: Balistická zkouška plechu 2S

Obr. 31: Balistická zkouška plechu 4S

10.2. Teoretické výpočty limitní rychlosti

Jelikož se rychlost střely při zkoušce balistické meze v_{50} blížila k nestabilitě střely, byly použity rovnice de Marreho (10.1) a Gebeaudova (10.2) pro teoretické výpočty limitní rychlosti potřebné ke zjištění průstřelu plechu [8].

Rovnice de Marre

Pro výpočet limitní rychlosti při kolmém nástřelu je rovnice

$$v_{lim} = K. \frac{\sqrt{d_p}.s}{\sqrt{m}} \tag{10.1},$$

kde v_{lim} (m.s⁻¹) je limitní rychlost střely, pokud se celá kinetická dopadová energie E_d spotřebuje k proražení plechu o tloušťce s (dm), který odolá kalibru projektilu d_p (dm) o hmotnosti m (kg). V této rovnici se vyskytuje neznámý parametr K, který popisuje vlastnosti pancíře a určí se z experimentu [7]. Pokud budeme uvažovat u zkušebního plechu 1S rychlost střely $v_{50} = v_{lim}$, po dosazení do rovnice vypočteme parametr K = 2232,4. Tento parametr má přibližně hodnotu meze pevnosti zkušebního vzorku 1L, naměřené při zkoušce tahem. Po tomto výsledku bychom mohli uvažovat meze pevnosti zkušebních vzorků z jednotlivých plechů za parametr K, kterým bychom po dosazení do rovnic mohli teoreticky vypočítat limitní rychlosti střel, které bychom mohli považovat za balistické meze v₅₀.

Gabeaudova rovnice

Pro výpočet limitní rychlosti je rovnice

$$v_{lim} = 125.\sqrt{\Delta}.\sqrt{\frac{d_p^2.s^2}{m.(s+h_H) - 3.d_p^2.s^2}}$$
 (10.2),

kde v_{lim} (m.s⁻¹) je limitní rychlost střely, pokud se celá kinetická dopadová energie E_d spotřebuje k proražení plechu o tloušťce s (dm), který odolá kalibru projektilu d_p (dm) o hmotnosti m (kg) s výškou hlavové části těla střely h_H (dm). Podmínky probití jsou dány kvalitou probíjeného plechu Δ , do kterého se zadají změřené hodnoty tvrdosti podle Brinella pro jednotlivé zkušební plechy [8].

Tabulka 15 udává limitní rychlost potřebnou k proražení zkušebních plechů po dosazení hodnot do rovnic 10.1 a 10.2.

	tloušťka	kalibr	hmotnost	výška hlavové		limitní
	plechu	projektilu	jádra	části těla střely	K [MPa]/ Δ	rychlost
	(dm)	(dm)	(kg)	(dm)		$(m.s^{-1})$
Zkušební						
plech 1S					2377	460 5
(Vzorec de					2311	400,5
Marre)	0.05	0.06	0.004			
Zkušební	0,05	0,00	0,004			
plech 1S				0.00	633	408.7
(Vzorec				0,09	033	408,7
Gabeaudův)						
Zkušební						
plech 2S					2008	380
(Vzorec de					2008	309
Marre)	0.05	0.06	0.004			
Zkušební	0,05	0,00	0,004			
plech 2S				0.00	581	302.6
(Vzorec				0,09	304	392,0
Gabeaudův)						
Zkušební						
plech 3S					1825	353 5
(Vzorec de					1625	555,5
Marre)	0.05	0.06	0.004			
Zkušební	0,05	0,00	0,004			
plech 3S				0.09	538	376.8
(Vzorec				0,09	550	570,0
Gabeaudův)						
Pokračování na další stránce						

Pokračování z předcházející stránky						
Zkušební						
plech 4S					1667	373
(Vzorec de					1007	525
Marre)	0.05	0.06	0.004			
Zkušební	0,03	0,00	0,004			
plech 4S				0.00	409	262 5
(Vzorec				0,09	498	302,5
Gabeaudův)						

Tab. 15: Teoretické výpočty limitní rychlosti a kinetické dopadové energie

11. Vyhodnocení experimentálního programu

Při metalografických zkouškách byly mikroskopem pozorovány u vzorků, které byly odebrány z plechů popouštěných na dané teploty, výrazné změny struktury materiálu. Mikrostruktura materiálu dodaného výrobcem, tj. vzorku 1 (obrázek 13), je tvořena jemným, nízkopopuštěným martenzitem. K mírným změnám mikrostruktury, ve srovnání s výchozím stavem, dochází po popouštění vzorku 2 (obrázek 14) na teplotu 180°C. Ve výchozím stavu je tedy materiál patrně popuštěn na nižší teplotu než 180 °C. K dobře rozlišitelným mikrostrukturním změnám, ve srovnání s výchozím stavem či teplotou 180 °C, dochází při popouštění vzorku 3 (obrázek 15) na teplotu 240 °C a vzorku 4 (obrázek 16) na teplotu 300 °C. Při těchto teplotách dochází k precipitaci karbidů, která se navenek projevuje změnou vzhledu původních martenzitických jehlic.

Při mechanických zkouškách byla provedena u zkušebních vzorků zkouška tahem, při níž bylo nutné docílit požadované kvality povrchu zkušebního vzorku. V jednom případě došlo při zkoušce, z důvodu neobroušeného vrubu po odříznutí, k přetržení zkušebního vzorku 1L před dosažením meze pevnosti.

U zkušebních vzorků vyříznutých z plechu číslo 1 se zjistila nižší mez pevnosti zkušebního vzorku 1P než je mez pevnosti zkušebního vzorku 1L. S rostoucí popouštěcí teplotou se hodnoty meze pevnosti snižovaly.

Z důvodu křehkosti materiálu zkušebních vzorků 1L až 4L byla určena smluvní mez kluzu R_{p02} . První zkušební vzorek z každé série byl přetržen bez zjišťování smluvní meze kluzu, jelikož bylo nutné, z důvodu bezpečnosti, zjistit přibližnou hodnotu smluvní meze kluzu, tedy hodnotu, kdy se demontuje závěsný extenzometr, který by mohl být poškozen v případě setrvání na zkušebním tělese v době dosažení meze pevnosti a následném přetržení. U zkušebních vzorků 4L lze již pozorovat vznikající plastickou deformaci při jmenovitém napětí 1417 - 1418 MPa.

Hodnoty smluvní meze kluzu se snižovaly s rostoucí popouštěcí teplotou.

Tažnost zkušebních vzorků se z pokojové teploty do teploty 180 °C zvyšovala, od teploty 180 °C do teploty 240 °C se snižovala a poté se od teploty 240 °C do teploty 300 opětovně zvyšovala.

Kontrakce zkušebních vzorků se z pokojové teploty do teploty 240 °C zvyšovala, od teploty 240 °C do teploty 300 °C snižovala.

Od dodavatele je tvrdost materiálu deklarována zkouškou tvrdosti podle Rockwella, proto byla pro ověření tvrdosti zkoušeného materiálu provedena na zkušebních vzorcích zkouška podle Rockwella. Zkouška tvrdosti podle Brinella, kdy byla použita kulička ze slinutých karbidů, byla na zkušebních vzorcích provedena z důvodu porovnání naměřených hodnot. Výsledky zkoušky tvrdosti podle Brinella byly také použity při výpočtech závislosti

mezi tvrdostí podle Brinella a pevností v tahu a při výpočtech limitní rychlosti v Gebeaudově rovnici. Zkouškou tvrdosti podle Vickerse (obrázek 32) se zjišťovala tvrdost materiálu v tloušťce stěny, což má význam při určování tvrdosti např. při svařování v teplem ovlivněné oblasti, dále pak tímto způsobem byla zkontrolována homogenita materiálu a provedených tepelných zpracování.

Obr. 32: Vliv teploty na tvrdost materiálu

Při zkouškách rázem v ohybu bylo zjištěno, že nárazová práce u zkušebních vzorků se z pokojové teploty do teploty 180 °C zvyšovala, od teploty 180 °C do teploty 240 °C se snižovala a poté se od teploty 240 °C do teploty 300 opětovně zvyšovala. Křivka kolísání teploty nárazové práce je totožná s křivkou kolísání teploty kontrakce při zkoušce pevnosti v tahu. Od pokojové teploty do teploty 180°C vykazují zkušební vzorky 1P a 2P vyříznuté z plechů v příčném (P) směru ke směru válcování vyšší hodnotu nárazové práce, než zkušební vzorky 1L a 2L vyříznuté z plechů v podélném (L) směru ke směru válcování, než zkušební vzorky 3L a 4L vyříznuté z plechů v podélném (L) směru ke směru válcování, než zkušební vzorky 3P a 4P vyříznuté z plechů v příčném (P) směru ke směru válcování.

Za stejných teplot je tvar křivky vrubové houževnatosti totožný s tvarem křivky nárazové práce.

Ke zjištění přechodové teploty, tedy teploty, při níž dochází u zkoumaných vzorků k přechodu z křehkého lomu na houževnatý lom, není k dispozici dostatečný rozdíl teplot, v tomto případě má zkouška pouze informační charakter.

Balistické zkoušky byly prováděny pro stanovení balistické meze v₅₀, ale výsledky při střelbě na střeleckém trenažéru vytváří mnoho otázek k zamyšlení nad vlastnostmi plechu, jelikož balistické zkoušky, které byly na vzorcích ze shodného plechu prováděny za stejných podmínek, ale pro jiné účely, vykazovaly jiné výsledky, než které byly zaznamenány při našich zkouškách. Neočekávané výsledky balistické meze v₅₀ se objevily již u zkušebního plechu S1, kdy byla dopadová rychlost na hranici 400 m.s⁻¹ a hrozila nestabilita letících střel. Na zkušební plechy 2S a 4S po dopadových rychlostech střel pod 400 m.s⁻¹ bylo ze strany zkoušejícího ze zkoušek upuštěno. U zkušebního plechu 4S došlo při dopadové rychlosti střely 381,7 m.s⁻¹ k neúplnému průstřelu na rozdíl od čistého průstřelu zkušebního plechu 2S při menší dopadové rychlosti.

Proto byly k výpočtům ke zjištění rychlosti střely, při které by ještě nedošlo k průstřelu plechu, použity základní empirické rovnice de Marreho a Gabeaudova. Výpočet de Marreho rovnice a rychlost balistické zkoušky v₅₀ u plechu 1S vykazují rozdílné hodnoty, výpočet Gebeaudovy rovnice a druhého neprůstřelu (střelba č. 10 na obrázku 29) jsou shodné.

Dalším podobným výsledkem se vyznačuje plech 4S, který má při přibližně stejné hodnoty při částečném průstřelu a výpočtem Gebeaudovy rovnice. Plech 4S jeví známky plastické deformace, což je důvod částečného průstřelu plechu při dopadové rychlosti, při které plechem 2S, vyznačujícím se vyšší pevností, střela proletí s plným průstřelem.

Výsledky průstřelů plechu 2S jsou nižší, než výpočty z rovnic de Marreho a Gebeauda, tudíž nemůžeme tyto výsledky brát do úvahy. Při výpočtu kinetické dopadové energie, byla dosazena rychlost střely vypočtená z empirických rovnic.

Závěr

Z výsledků zkoušek vyplývá, že popouštěcí teploty mají velký vliv na mechanické vlastnosti materiálu. Z požadavků na ochranné vlastnosti plechů je nejdůležitější balistická zkouška, u které jsme došli k těmto závěrům:

Odolnost plechu	Číslo plechu
Největší	1
Dobrá	4
Nedostatečná	2
Nehodoceno	3
	2

Tab. 16: Výsledky balistické odolnosti

Z tabulky 16 můžeme vyhodnotit, že z plechů, které byly dány ke zjištění nejlepší ochrany použitelné pro pancéřování vozidel, je ocelový plech nízkolegované vysokopevné oceli v dodaném stavu, který nejlépe obstál v balistických zkouškách a dosahoval nejvyšších hodnot meze pevnosti. Popouštěné ocelové plechy vykazovaly s rostoucí teplotou klesající hodnoty výsledků, tím bylo potvrzeno doporučení výrobce o nevystavování nízkolegovaných vysokopevných ocelových plechů vyšší teplotě než 150 °C po dobu více než 20 minut [1]. Toto doporučení bylo potvrzeno u plechu číslo 2 popouštěného při teplotě 180 °C, u kterého muselo být z balistických zkoušek upuštěno pro průstřely pod hranicí stability střel. Absencí balistické zkoušky u plechu číslo 3 popouštěného při teplotě 240 °C, nemůžeme s jistotou potvrdit použitelnost jeho pancéřové ochrany. Jelikož ale plech číslo 3 vykazuje podobné pevnostní parametry jako plech číslo 2, mohli bychom oběma plechům přiřadit přibližně stejné balistické vlastnosti. Jiné výsledky vykazuje plech číslo 4 popouštěný při teplotě 300 °C, kdy tento materiál začal při zkoušce tahem vykazovat počátek plasticity a v balistických zkouškách na hranici stability letící střely vykazoval lepší výsledek než plech číslo 2.

Tyto poznatky mají velký význam při výrobě a opravách pancéřových prostředků. Jedná se především o pracovní činnosti spojené se svařováním, kdy se nedodrží daný doporučený teplotní režim. Při svařování elektrickým obloukem dochází v místě svaru a jeho blízkém okolí k velkému nárůstu teploty, při které se mění struktura a vlastnosti materiálu. Tepelným zpracováním se do určité teploty snižují balistické a mechanické vlastnosti plechů, kdy se snižuje tvrdost a křehkost materiálu. Od určité teploty se začíná objevovat v materiálu plasticita, což má za následek zvyšování balistických vlastností a houževnatosti.

Má úvaha k neprůstřelu zkušebního plechu č. 1 při dopadové rychlosti 638,7 m.s⁻¹:

- tvrdost jádra střely se udává HV 630-910 (tabulka 13), což odpovídá HRC 56-62. Při střelbě rychlostí 638,7 m.s⁻¹ na plech 1S, který má tvrdost HRC 58, střelou s ocelovým jádrem o předpokládané tvrdosti HRC 56, došlo ke zdeformování jádra střely a neprůstřelu plechu 1S.

Jádro střely se nedohledalo pro potvrzení mé úvahy a možnosti změření tvrdosti.

Po balistických zkouškách dle STANAG 4569 level 2, jsme dospěli k závěru, že nejlépe vyhovující plech jmenovité tloušťky 5 mm nezaručuje dostatečnou balistickou ochranu. Je mnoho možností jak dosáhnout zvýšení balistické odolnosti plechů z nízkolegované vysokopevné oceli. Nejjednodušší a nejrychlejší možností je zvětšení tloušťky testovaného plechu (vyrábí se až do tloušťky 7,9 mm s tolerancí -0,0 až +0,6 mm [1]) nebo sendvičové provedení plechů, kdy bych v tomto případě použil plechy v pořadí: <u>plech číslo 1</u> na vnější straně a <u>plech číslo 4</u> na vnitřní straně. Zvětšení tloušťky plechů má za následek zvýšení hmotnosti, což má negativní vliv na operační schopnosti vozidel. Další možnost bych viděl v použití jiných způsobů tepelného zpracování oceli, v neposlední řadě použití jiných materiálů.

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Citace

[1] Podniková data VVÚ Brno, s.p.

[2] Ocel [online]. © 2015 [cit.2015-11-17]. Dostupný z: <u>https://cs.wikipedia.org/wiki/Ocel</u>
[3] SKÁLOVÁ, Jana, KOUTSKÝ, Jaroslav a MOTYČKA, Vladislav. *Nauka o materiálech*.

4. vyd. Plzeň: Západočeská univerzita, 2010. 232 s. ISBN 978-80-7043-244-0.

[4] Projekt Populár. Ocelový svět [online]. Dostupný z: <u>http://ebook.veda-hrou.cz/cms/15-kapitola-5-zkouseni-vlastnosti-oceli.html</u>

[5] Rozpad austenitu [online]. © 2006 [cit.2006-11-11]. Dostupný z: http://jhamernik.sweb.cz/tepelne_zpracovani.htm

[6] SKÁLOVÁ, Jana, KOVAŘÍK, Rudolf a BENEDIKT, Vladimír. Základní zkoušky kovových materiálů. 4. vyd. V Plzni: Západočeská univerzita, 2005. 175 s. ISBN 80-7043-417-1.

[7] BUCHAR, Jaroslav a VOLDŘICH, Josef. *Terminální balistika*. Vyd. 1. Praha: Academia, 2003. ISBN 80-200-1222-2.

[8] JUŘÍČEK, Ludvík, NOVOTNÝ, Pavel. *Modelování průstřelu ocelové desky malorážovou průbojnou střelou*. Vojenské zdravotnické listy, ročník LXXIII, 2004, č. 3.

[9] STANAG 4569 (Edition 1). Protection Levels for Occupants of Logistic and Light Armoured Vehicles. NATO : NSA, 2004.

Seznam názvosloví a zkratek

projektil – střela, která je vystřelena směrem k cíli,

terč – materiál určité struktury a rozměrů, na který je vedena střelba,

ráže – označení celého náboje pro danou nábojovou komoru a pro daný kalibr,

interakce – vzájemné působení,

penetrace - průnik střely do terče a uvíznutí v něm,

perforace – průnik střely skrz terč na druhou stranu, kde má střela ještě nějakou kinetickou energii,

kalibr – průměr vrtání hlavně nebo průměr střely.

Seznam obrázků

Obr. 1: Cyklus tepelného zpracování	9
Obr. 2: Kalící teploty oceli	10
Obr. 3: Rozpad austenitu pod teplotou A _{c1}	11
Obr. 4: IRA diagram a ARA diagram podeutektoidní oceli	11
Obr. 5: Vtlačování vnikacího tělesa do zkoušeného materiálu	17
Obr. 6: Stupnice hloubkoměru	17
Obr. 7: Princip zkoušky tvrdosti podle Brinella	
Obr. 8: Princip zkoušky podle Vickerse	
Obr. 9: Pohyb kladiva	19
Obr. 10: Schéma základních úhlů popisujících geometrii interakce projektilu s ro	ovinným
terčem	21
Obr. 11: Schéma stanovení hloubky penetrace	21
Obr. 12: Schéma perforace	21
Obr. 13: Mikrostruktura povrchu vzorku 1	27
Obr. 14: Mikrostruktura povrchu vzorku 2	27
Obr. 15: Mikrostruktura povrchu vzorku 3	
Obr. 16: Mikrostruktura povrchu vzorku 4	
Obr. 17: Označení zkušebních vzorků na zkoušku v tahu	
Obr. 18: Trhací stroj s upnutým zkušebním vzorkem	
Obr. 19: Vyznačení rysek na zkušebním vzorku	30
Obr. 20: Zobrazení plochy pro výpočet kontrakce	30
Obr. 21: Tvrdoměr Wolpert Diatronic 2	34
Obr. 22: Tvrdoměr pro měření tvrdosti podle Brinella	35
Obr. 23: Vtisky po zkoušce tvrdosti HRC a HBW	
Obr. 24: Tvrdoměr s počítačem	
Obr. 25: Zkušební těleso po měření tvrdosti HV10	
Obr. 26: Vliv teploty na vrubovou houževnatost zkušebních vzorků	
Obr. 27: Sestava plechů na zkoušku balistické meze v ₅₀	40
Obr. 28: Tunelová střelnice a upnutí sestavy plechů	40
Obr. 29: Balistická zkouška plechu 1S	41
Obr. 30: Balistická zkouška plechu 2S	
Obr. 31: Balistická zkouška plechu 4S	
Obr. 32: Vliv teploty na tvrdost materiálu	

Seznam tabulek

Tab. 1: Chemické složení nízkolegované vysokopevné oceli	7
Tab. 2: Velikost zatížení silami u HRC	16
Tab. 3: Koeficienty	
Tab. 4: Atest chemického složení materiálu plechu	
Tab. 5: Struktura a vlastnosti materiálu po popouštění	
Tab. 6: Výsledky měření zkoušky tahem	
Tab. 7: Výsledky měření tvrdosti HRC	
Tab. 8: Výsledky měření HBW	
Tab. 9: Výsledky měření tvrdosti HV10	
Tab. 10: Hodnoty KV ₂ a KCV pro zkušební vzorky v podélném směru válcování	
Tab. 11: Hodnoty KV ₂ a KCV pro zkušební vzorky v příčném směru válcování	
Tab. 12: STANAG 4569, level 2	
Tab. 13: Technicko-taktická data munice	
Tab. 14: Výsledky balistické meze v50	41
Tab. 15: Teoretické výpočty limitní rychlosti a kinetické dopadové energie	
Tab. 16: Výsledky balistické odolnosti	

Přílohy

k Bakalářské práci

Příloha č. 1

Označení vzorků na jednotlivé zkoušky

Číslo plechu / popouštěcí teplota	Druh zkoušky	Označení vzorku	Poznámka	
-	7 koužiko tokom	1P-1 až 5	Řezáno v příčném směru na směr válcování	
Plech č. 1 /	Zkouska tanem	1L-1 až 5	Řezáno v podélném směru na směr válcování	
	Metalografická zkouška	1M	Odříznutý vzorek na metalografii	
	Zkouška tvrdosti	1T	Odříznutý vzorek na zkoušku tvrdosti HRC, HBW a HV	
1р1 4т 1р2 4т 1р5	Zkouška rázem	1P-1 až 5	Řezáno v příčném směru na směr válcování	
15 11-1 15	v ohybu	1L-1 až 5	Řezáno v podélném směru na směr válcování	
	Balistická zkouška	1 S		
Plech č. 2 /	Zkouška tahem	2L-1 až 5	Řezáno v podélném směru na směr válcování	
popouštěcí teplota 180 °C	Metalografická zkouška	2M	Odříznutý vzorek na metalografii	
25	Zkouška tvrdosti	2T	Odříznutý vzorek na zkoušku tvrdosti HRC, HBW a HV	
21-1 11-2 11-3 21-5 21-1 21-1 21-1 21-1 21-1 21-1 21-1	Zkouška rázem v ohybu	2P-1 až 5	Řezáno v příčném směru na směr válcování	
20-4 20-3 20-3 20-4 20-5 21-1 21-1		2L-1 až 5	Řezáno v podélném směru na směr válcování	
° 25 °	Balistická zkouška	2S		
Plech č. 3 /	Zkouška tahem	3L-1 až 5	Řezáno v podélném směru na směr válcování	
popouštěcí teplota 240 °C	Metalografická zkouška	3M	Odříznutý vzorek na metalografii	
35 31-2 31-3 31-3 31-4 31-4 31-4 31-4 31-4 31-4	Zkouška tvrdosti	3T	Odříznutý vzorek na zkoušku tvrdosti HRC, HBW a HV	
	Zkouška rázem	3P-1 až 5	Řezáno v příčném směru na směr válcování	
	v ohybu	3L-1 až 5	Řezáno v podélném směru na směr válcování	
35	Balistická zkouška	35		
Pokračování na další stránce				

Pokračování z předcházející stránky						
Číslo plechu / popouštěcí teplota	Druh zkoušky	Označení vzorku	Poznámka			
Plech č. 4 /	Zkouška tahem	4L-1 až 5	Řezáno v podélném směru na směr válcování			
popouštěcí teplota 300 °C	Metalografická zkouška	4M	Odříznutý vzorek na metalografii			
	Zkouška tvrdosti	4T	Odříznutý vzorek na zkoušku tvrdosti HRC, HBW a HV			
	Zkouška rázem v ohybu	4P-1 až 5	Řezáno v příčném směru na směr válcování			
		4L-1 až 5	Řezáno v podélném směru na směr válcování			
	Balistická zkouška	4S				

Příloha č. 2

Pracovní diagramy meze pevnosti R_m

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Pracovní diagramy smluvní meze kluzu R_{p02}

Příloha č. 4

Řez nábojnicí 7,62x39 PZ

