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Abstract: In this paper three different mechanisms of nonlinear and chaotic oscillation occurrence are studied. The first model
comes from antisymmetric system structure and oscillations are caused by impossibility to reach the equilibrium state or to diverge
to infinity. The second case studies phenomena in Lorenz system of three differential equations. The third case comes from study of
the electronic circuit with comparator with hysteresis. It is shown that switching with hysteresis can cause chaotic oscillations as
well.
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INTRODUCTION

In mathematics and dynamical system s theory there
are a lot of systems that can show the nonlinear periodic
or chaotic oscillations. The first numerical experiments
related to the mathematical models of fluid flow, but now
we know that nonlinear resonance or chaotic oscillations
can occur in energetic systems as well as in electronic
circuits. Let us generally describe three different
possibilities how the chaotic oscillations can occur.

1 SYSTEM OF 4. ORDER WITH
ANTISYMMETRIC STRUCTURE

1.1 The system structure
The antisymmetric structure corresponds the energy

conservation law as defined in [1]. A stability of the
system is given by the sign of the dissipation parameter
α1. Let us consider a system whose representation is
given by

{ }
)2(
)1(:

xC
xAx

=
=

y
SR &

where matrices A and C are given by
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and the parameters are
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The system has the only one equilibrium state at the
beginning of the coordinate system
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The abstract signal energy and signal power are given
by
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The power can be decomposed into two separate parts
and it is obvious that there are four technically different
ways of the system behavior.

When both the constants k0 and k1 are positive, the
equilibrium state is stable and the system is dissipative.
Energy of the system decreases monotonously which



corresponds with the energy conservation law and the
system dissipativity (fig. 1).

When both the constants are negative, the equilibrium
state is unstable, the power is anti-dissipative and the
energy monotonously arises to infinity (fig. 2).

Fig. 1.: The system energy evolution, k0 = k1 = 1, α4 = 1,
x0 = [2, 0, 0, 2]T

Fig. 2.: The system energy evolution, k0 = k1 = –1,
α4 = 1, x0 = [2, 0, 0, 2]T

When k0 =1 and k1 = –1, the situation is different. The
equilibrium state is stable but stability of the system
depends on the actual position of the state vector in the
state space, especially on the absolute value of the
component x2. When that component exceeds interval

1,1−  the system becomes unstable. When the state
vector comes near the equilibrium state the dissipative
mode prevails and the system becomes stable (fig. 3).

Fig. 3.: The system energy evolution, k0 = 1, k1 = –1,
α4 = 1, x0 = [2, 0, 0, 2]T

The fourth case brings most interesting situations.
When k0 = –1 and k1 = 1 the equilibrium state is unstable.
When the state vector comes near this point the system
becomes unstable and the state vector trajectory starts
diverging. But now the type of nonlinearity does not
allow the state vector trajectory diverge to infinity. When
the absolute value of the component x2 exceeds 1 the
system becomes stable, dissipative and starts converge to
zero again. It means that now there are some intervals of
stability and some intervals of instability. Their changing
can be periodic or aperiodic which depends on the control

parameter α4. Aperiodic changes of intervals of stability
and instability can be called chaotic.

Fig. 4.: The system energy evolution, the periodic case,
k0 = –1, k1 = 1, α4 = 1, x0 = [2, 0, 0, 2]T

Fig. 5.: The system energy evolution, the chaotic case,
k0 = –1, k1 = 1, α4 = 2, x0 = [2, 0, 0, 2]T

1.2 Types of nonlinearities and chaotic
oscillations

Considering the possibility of chaotic oscillations
occurrence, we can try to change the particular type of
nonlinearity. The type of nonlinearity in the dissipation
parameter α1  must satisfy the condition of instability the
equilibrium state and must prevent the state vector
trajectory to diverge to infinity.

These experiments were made with these types of
nonlinearities in the dissipation parameter:
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All these functions including (5) are depicted in the
fig. 6.

Fig. 6.: Four types of nonlinearities used in experiments



Fig. 7.: Trajectories of the state vector in the state space, 3D projection. Depicted in time t∈ 〈350,500〉
.

The results of these experiments are that considering
the possibility of chaotic oscillations occurrence the
particular of nonlinearity is not critical. Periodical
changes of intervals of stability and instability loose their
periodicity with increasing the control parameter α4 and
become chaotic for some value of that parameter in all
those cases which is documented in the figure (7).

2 SYSTEM WITH MORE EQUILIBRIUM STATES

There are some systems whose structure is not anti-
symmetrical and we are not supposed to say anything
about their stability or instability only by one parameter.
The nonlinearity is not present only in one parameter and
there are more than one equilibrium state. Methods of
investigating their stability are mire difficult. One of
those systems is well known Lorenz system, given by
these differential equations
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The model came from approximation of partial
differential equations describing incompressible fluid
flow.

There are three equilibrium states (15) and their
stability depends on values of parameters σ, r and b.
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At the figure (8) there is the evolution of these
equilibrium states (x2 component) and their stability in
dependency of parameter r value. For experiments σ = 10,
s = 5 and r = var. were chosen.

Fig. 8.: Equilibrium states (blue line – stable, red –
unstable) in dependency on the r parameter.

In the figure (9) we can see how the stability of the
three equilibrium states affects the state vector trajectory.
For small values of the parameter r there is only one
steady state and the trajectory leads towards it very
quickly. As the parameter grows at the point of 1 the
bifurcation of the equilibrium states takes place. The first
equilibrium state becomes unstable and the trajectory is
attracted to one of the other stable states, the particular
point depends on initial conditions (trajectories at fig. 9).



Fig. 9.: Attractor of Lorenz system, 2D projection, blue/red points: stable/unstable equilibrium states

Another growing of the r parameter causes instability
of all the equilibrium states. Then the trajectory becomes
chaotic. It moves in diverging spiral with center in one of
the equilibrium states. But when the x1 component
changes its sign the state vector trajectory starts to be
affected by the second unstable equilibrium state. The
state vector moves in diverging spiral again but the center
of the spiral is the second equilibrium state. Both these
states symmetrically placed in the state space changed
their influence. This phenomenon repeats again and
again, aperiodically (chaotically) or periodically which
depends on the r parameter value.

The mechanism of chaotic oscillations occurrence is
different from the first case. Results for so called
geodynamo [2] are very similar. The system of three
differential equations can show the chaotic oscillations by
the similar mechanism – the state vector moves along two
unstable equilibrium states in diverging spirals.

3 SYSTEM WITH HYSTERESIS AND
SATURATION

The third mechanism leading to nonlinear and chaotic
oscillations is hysteresis in system of two technically
linear differential equations.
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The first nonlinearity is changing of constant E sign
depending on the first variable value (switching) and sign
of its derivation (the hysteresis of width ±R). Second
nonlinearity is present in the saturation of the first
variable. It can move only in given limits ±K. When the
x1 variable comes to its limits the equations (16), (17)
change into
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These nonlinearities are typical for magnetic circuits
and for circuits with comparators, operational amplifiers
and semiconductor components. The hysteresis is
depicted in the figure (10).

Fig. 10: Hysteresis of the constant E sign switching and
saturation of the x1 variable

This case is very interesting with its possibility to find
the analytical solution of equations (16) – (19) . The
resultant trajectory of the state vector arises as the
connection of partial analytical solutions valid for given
initial conditions that changes with the system evolution.

This system has only one equilibrium state given by

)20(
T

BCAD
AE

BCAD
BE







−
±

−
=*

1,2x



Fig. 11: Trajectory of the state vector in the state
space, periodic solution

Fig. 12: Trajectory of the state vector in the state
space, chaotic and periodic solutions

As the sign of E constant changes, the equilibrium
state changes its position in the state space. That is the
reason why there seem to be two equilibrium states.

In following experiments the width of the hysteresis
loop is chosen as the parameter. All the constants have
these values:
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and the parameter R changes from 0 to K:
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In the figure (11) we can see periodic solutions. As
the parameter R declines it is possible to observe changes
of the period. It suddenly becomes larger. The first
periodic attractor disappears and the second one arises at
that moment. The parameter changes are continuous but
the period changes are discrete. This process repeats
several times and then the attractor becomes chaotic as
we can see in the figure (12).

The mechanism of these chaotic oscillations
occurrence is little bit similar to the case studied at the
Lorenz system. The state vector moves around the only
one unstable equilibrium state in diverging spiral. At the
moment of changing the sign of the E constant the
equilibrium state changes its position in the state space.
The state vector continues its move in diverging spiral
that has different center now. The system is unstable and
it tends to divergence but switching in hysteresis holds
the trajectory of the state vector in finite area.

4 CONCLUSION

Three different mechanisms leading to nonlinear and
chaotic oscillations were studied. In the first case the
chaotic oscillations were consequence of changing
intervals of stability and instability of the system. It was
experimentally shown that considering the possibility of

the chaotic oscillations occurrence the type of the
nonlinearity in the dissipation parameter is important but
the particular form is not critical.

The second case is well known Lorenz system where
the state vector moves in diverging spirals around two
unstable equilibrium states. This mechanism can be found
in systems of two coupled disk dynamos as well [2].

The third case can be found in electronic circuits with
comparators or components with possibility of  saturation
[3]. Switching in hysteresis loop together with saturation
of state variables can cause periodic or aperiodic
oscillations as well.
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