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Abstract: Observations made during the experiment with physical model of inductive dynamic drive showed, that in 
some extreme cases disc was deformed fundamentally, what was proved by its vibrations. For investigation of state of 
stress the mathematical model of the magneto-elastic vibrations for circulation plate was used. Results presented by the 
authors showing the distributions of stresses for the parameters of IDD employed in ultra rapid hybrid circuit breaker, 
can be useful for constructors. 
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INTRODUCTION 

Inductive dynamic drive (IDD) is fundamental 
element of hybrid circuit breaker. These drives must meet 
following requirements such as the achievement of the 
height speed in short time, the stability mechanical 
characteristics and long-lasting reliability[1],[4]. In order 
to receive large acceleration of IDD disc we must 
produce a strong impulsive magnetic field and at the 
same time we should minimize the mass of the disk. 
Therefore a large impulsive force acts on the disc. 
However if the distribution of force along the radius of 
the disk isn’t suitable (uniform enough) and its value is 
too large for dimensions of the disk used then the disk 
itself will deform. 

 

 
Fig.1 System of disc and coil and their discretization 

 
 
Therefore the mathematical model of IDD should allow 
for the obtaining of distributions of eddy currents in the 
disk and on this basic state of magneto elastic vibration 
and stresses in the disk. 

The IDD model consists of two parts: electro-
dynamical and mechanical. The electro-dynamical (EM) 
model is based on the solution of Poisson’s equation in 
the area disk (1) and Laplace’s equation outside it.  
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where A and J have only angular component. 
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For that purpose partition of the disc on filaments and the 
coil into sections was made. Because one can consider 
every filament of the disc and section of the coil as 
coaxial rings we can use analytical formula to determine 
vector potential, and hence inductance of every ring of 
coil and of disc and mutual inductance between them too. 
Then one can change the field approach to the circuit 
approach with large numbers of mutual inductance. 
However, it must be emphasized that this model assumed 
that disk is a rigid body. On the basic of EM one obtains 
the distribution of pressure and force in the whole volume 
at the disk. The EM model was exactly described in [2]. 
 

 
1  MATHEMATICAL MODEL OF MOVEMENT OF 

THIN PLATE  

For investigation of state of stress it was decided to 
built mathematical model of the magneto-elastic 
vibrations for circulation plate. Therefore theory of thin 
plate in method of continuum mechanics was used. Thin 
plate is such construction element (in comparison with 
membrane) where nonzero stiffness for bending is 
assumed. On the other hand radial dimensions must be 
much larger in comparison to thickness of disc. 
According to [5] we can use theory of thin plate if 
thickness of investigate element meet following 
condition: 

h a b≤ ÷( . . ) min( , )01 0 2  

where: a,b – dimensions of rectangular plate but for 
circular plate a=b=2(Rz-Rw) [5]. 

General equation of crosswise vibrations of the thin plate 
has formula: 
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In the case where thickness of the plate is constant and 
material is homogeneity (D(x,y)=const) equation (2) in 
cylindrical coordinate system can be written as: 
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where: ρ ρ= h  mass of plate respects to unit of surface, 

w w r t= ( , , )ϕ - displacement, 

D
Eh=

−

3

212 1( )υ
-cylindrical stiffness of plate on bending, 

E,h – respectively Young`s modulus and thickness of 
plate, 
υ - Poisson’s coefficient, 
p(r,ϕ,t)-space-timing distribution of pressure acting on 
surface of disc. 

 
Because of zero initial conditions (circular-symmetric) 
and also circular symmetry of space-timing electro-

dynamics force obtained from EM, equation (3) 
simplifies to form: 
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Because of free edge of the plate, boundary conditions on 
edge of plate determine values of bending moment and of 
sharing force. For solving thus presented initial-boundary 
problem, a method separation of variables (Fourier 
method) was used. It means that particular integrals in 
product functions form were found: 
 

wi(r,t)=Wi(r)Ti(t)   (5) 
 
By substituting (5) to (4) at zero pressure (homogenous 
equation) and separating variables we obtain system of 
equation: 
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Solution of equation (7) satisfying boundary conditions is 
solved of eigen problem, where functions Wi are 
eigenfunctions and values λi are eigenvalues. 

Furthermore it is assumed that solution of non-
homogenous equation (4) and pressure function it can be 
presented as expansion in a series according to 
eigenfunctions.: 
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By substituting (8),(9) to (4) once again and separating 
variables we obtain two equations. Once of them is 
equation for eigenvalues and the other has form: 
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Fig.2 Functions of pressures acting on filaments of disc  
 



 

To determine coefficients of series (9) we take advantage 
of orthogonality of eigenfunctions:  
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and because: 
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Then Φi functions for following eigenvalues are 

determined by: 
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Observing pressure and force functions obtained from 
EM (fig.2,5) one can note, that every impulse of force 
cosinusoidal function approximates very well. Therefore 
curve of pressure acting on k-filament is determined by 
following analytic function: 
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For a force  acting on single filament, p(r,t) is described 
by (see fig.2): 
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Therefore for single filament Φi function has form: 
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Then equation of movement (10) gets form: 
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and:   i =  0,1,2....lf – index of mode of vibrations, 
j =  0,1,2....l

t
 – index of load period, 

k = 0,1,2....l
p
 – index of disc filament. 

Solution of problem for a completely load of disc one 
treats as superposition of solutions for each filament. 
Solution of movement of vibrating disc and it’s computer 
realisation were based on ideal elasticity and its 
homogeneity and isotropy. 

To identify the conditions in which dangerous state of 
stresses appears hypothesis of Huber-Misess-Henecky 
was used. Therefore in order to determine effort of 
materials reduced stress was taken and has got following 
form: 
 

σ σ σ σ σϕ ϕred r r= + −2 2    (18) 

Where: ϕσσ ,r -normal stresses as on fig.3 
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Fig.3 Normal stresses and bending moment in circular 
sector  
 
The above mechanical model (MM) was implemented in 
Delphi language. In the first stage eigenvalues are 
counted and orthogonality of eigenfunctions are checked. 
The screen with established modes is presented in fig.4  
 

 
Fig.4 First screen of programm MM with finding eigen 
functions 
 
 
2  RESULTS OF INVESTIGATIONS 

 
Results of the investigations presented in the paper 

were obtained for two objects. Parameters of one of them 
in table1 are presented: 

 
Tab. 1 Parameters of IDD (full disc) 
 

Initial energy of capacitor: 
E=450J  

Capacitance of capacitor: 
C=100µF 

Outer radius of disc: Rz=8 cm Outer radius of coil:   rz=6 cm 

Inner radius of disc: Rw=0 cm Inner radius of coil: rw=2.4 cm 

Add mass: 0 kg Winding of coil zw=12 

Material of disc: duralumin 
h of disc 4,6,8,10,12,14mm 

Thickness of coil: hc=0.3 cm  



 

As a result of simulation in EM program (for parameters 
from tab.1) time-functions of force acting on chosen 
filaments were obtained (fig.5). As one can see character 
of every curves is similar (attenuation, periods of 
following pulses), which justifies approximations of these 
numerical forces by analytic cosinusoidal functions.  

 
Fig.5 Curves of force in time function acting on filaments 
 
Distribution of maximal values of force and pressure in 
radius function is presented on fig.6. These maximal 
values of force for program MM are loaded as amplitude 
analytic cosinusoidal function acting on the following 
filaments. That process in second real screen of MM 
program is shown on fig.7. 
 

 
Fig.6 Distribution of pressure and force for dates from 
tab.1 
 

 
 
Fig.7 Second screen of program MM for full disc 

The figure 8 presents a screen of the program realizing 
the model MM, where in the top screen one can see the 
traces of the middle surface of the vibrating disc (half of 
the diameter) and the state of stresses for the parameters 
from tab.1 for h=6mm. In the right bottom hand corner of 
the fig.8 one can optionally display sub-screen which 
presents maximal reduced stress in the distance function 
from centre of the disc. As one can expect the extreme 
value of stress is produced in centre of the disc. The 
result obtained for h=6mm (σzr=1192.5MPa) shows that 
disc can deform. 
 

 
 
Fig. 8 Screen of program solving movement equation of 
vibration of the disk and state of stresses (dates on fig.7) 
Top screen: black lines- deformed central surfaces of disc in any 
moment,  
Red line: displacement of centre of mass,  
Blue line displacement of midpoint of disk, 
Green line: vibration of midpoint of disc in relation to midpoint of mass 
Bottom screen: maximal reduced stresses in time function  
Sub-screen: maximal reduced stress in the distance function from 
centre.  
 
Fig.9 presents result of simulation for h=12mm. For this 
case the maximal amplitude of the disc surface deflection 
was 0.59mm and the maximal reduced stress (520.3MPa) 
did not exceed the admissible value of the used duralumin 
alloy. However because of non uniform of horizontal and 
vertical scales it seems that surfaces of disc are 
impossibly deformed. 

 
Fig.9 Result for thickness of disc h=12mm 
 
On the basis of the IDD model (MM), we have conducted 
simulations determining distributions of stresses in the 



 

disc in the function of its thickness, for the unchanged 
parameters of IDD (fig.10). 

 
Fig.10 Trajectories of maximal reduced stress and 
deflection for full disc in the function of its thickness 
 

Then, research for parameters of IDD from tab.2 was 
conducted. In this case distribution of pressure in radius 
function was more uniform (fig.11) than previously 
(fig.6). At that moment for the same thickness (h=4mm) 
reduced stress σzr decreased a lot (from above 2000MPa 
(fig.6) to 250MPa (fig.14)). 
 

 
Tab. 2 Parameters of IDD (h=const) 
 

 
Fig.11 Distribution of pressure and force for dates from 
tab.2 
 
Because results of investigations of disc without a whole 
show that extreme σzr is in the centre of disc, so we 
decided to perform simulation for various inner radius 
(Rw). Fig.12.13 show the original screens of the program 
realizing the case Rw=Ro=10mm 

 
Fig.12. First screen of MM program for various inner 
radius 
 

 
Fig.13. Second screen of MM program for various inner 
radius. 
 
The results of simulations determining in distribution of 
stresses in disc (for various inner radiuses) with 
unchanged resultant force acting on the disc was also 
calculated (fig.14). 
 

 
Fig.14 Maximal reduced stress in the inner radius 
function 
 
Fig.14 shows that with rise of inner radius, maximal 
reduced stress rises although distribution of stresses along 
radius of the disc indicates, that maximal stress is located 
in the centre of the disc. 
 
 
 
 
 
 

Initial energy of capacitor: 
E=450J 

Capacitance of capacitor: 
C=100µF 

Outer radius of disc: Rz=8 cm Outer radius of coil:   rz=6 cm 

Inner radius of disc: Rw=0, 1, 
2, 3, 4, 5, 6 cm 

Inner radius of coil: rw=0.8 cm 

Add mass: 0 kg Winding of coil zw=24 

Material of disc: duralumin 
h=4mm 

Thickness of coil: hc=0.3 cm  



 

3  CONCLUSIONS 

 
Increase of reduced stress with increase Rw radius 

obtained in investigated case doesn’t rule out of the 
possibility of finding optimal disc with Rw=0. One ought 
to remember that the main purpose  is achievement of the 
largest dynamic of system which depend not only on 
force but also on mass. Therefore investigations with 
discs (R=variab) achieving assumed displacement at the 
same time will be found and then for thus determined 
disc and real forces acting on them, strength analysis will 
be performed. On the basis of investigations conducted 
one can say that state of stress mainly depend on three 
things: 

• distribution of pressure in radius function acting 
on disc, 

• dimensions of disc, 
• frequency of force acting on disc. 

Results of investigations of influence that the force 
frequency has over strength, were not presented in this 
article. 
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