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Abstract: The paper deals with mathematical modelling of two-stage frequency converter. There are used two special methods of
investigation. The first one, method of complex conjugated amplitude, is used for steady-state investigation. The second one,
orthogonal Park/Clarke transformation is suitable for investigation of three-phase electric circuits. The combination of both methods
is very useful for analysis of three-phase electric motors in steady-state condition.
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INTRODUCTION

Method of complex conjugated magnitudes has been
introduced by Takeuchi [1] for analysis of converter
circuit supplying electric machines in steady-state. The
principle is based on substitution of trigonometric
function by exponential one with complex argument.
After determination of investigated variable in complex
form, the variable can be than transformed back into time
domain. Regarding to non-sinusoidal time waveforms of
converter quantities the Fourier analysis is used for
variables as the first step.

Method of orthogonal transformation for electrical
quantities was introduced by Park [2] for three-phase
electric machines. The method makes it possible to
transform symmetrical 3-phase system into equivalent
two-phase orthogonal system. This transformation
decreases number of differential equations (from 3 to 2),
and removes variable coefficients in the equations.
Besides, trajectories of the quantities in complex Gauss
plane denote themselves by six-side symmetry, thus the
steady-state quantities can be calculated in only one sixth
of time period. Clarke's multiplicative transformation
constant (equal 2/3) provides the invariances of voltage
and current quantities in the both coordinating systems.

The combination of both methods is very useful for
analysis of three-phase electric motors in steady-state

condition: constant angular speed, and when operator d/dt
in its dynamical model is substituted by operator j v.c.t.
Then one can investigate the effect of individual
harmonic components on motor properties.

1 ELECTRICAL AND MATHEMATICAL MODEL
OF 2-STAGE FREQUENCY CONVERTER

Scheme of the 2-stage converter is shown in Fig. 1. It
comprises of two semiconductor type converters:
—  single-phase voltage inverter as the first stage,
—  three-phase matrix converter or cycloconverter as the
second stage.

The first stage operates with constant voltage U, and
fixed frequency fy. The second one supplies passive R-L
or active load (for example electric motor) with variable
output frequency and which is much lesser then
frequency of AC interlink between stages.
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Fig. 1: Overall schematic diagram of 2-stage 3phase
DC/AC/AC converter
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1.1 Three-phase current inverter

Considering rectangular form of the phase-current
length of 2n/3 radians with I, equal Uy/R, the scheme can
be reconfigured to the scheme of three-phase current
inverter with R-L load [2], Fig. 2.
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Fig. 2: Transfigured scheme of three-phase current
inverter with R-L load in delta connection

The output phase current of three-phase current
inverter in rectangular form (Fig.3) can be expressed by
Fourier series:
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Fig. 3: Rectangular pulse time-waveform of output phase
current of the inverter (i,)

Based on definition of complex-time vector by Park
[2] the real- and imaginary parts of the vector can be
obtained:
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under considering sum of phase currents to be zero. Then
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Current of a-phase of the inverter then will be more
simply than that of (1):
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Current of b-phase lags the current of a-phase, thus:
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Imaginary part of the complex-time vector by Park can be
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Next one can obtain voltages between phases using
complex magnitudes method for R-L load.

In practise applications of current inverter can be
preferable used trapezoidal time-waveform of phase
current, Fig.4. The main reason of it is small number of
harmonic components (in special case less than 5%). It
can be expressed similarly by Fourier series:
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Fig. 4: Trapezoidal pulse time-waveform of output phase
current of the inverter (i,)
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Current of b-phase and c-phase lags the current of a-
phase, thus:
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The real- and imaginary parts of the complex-time
vector by Park can be

g sin((2v+1)n]
WO O="32 2T

ﬁiﬁ(t)= i,(t)—i.(t)=
_ sin 2((21/ - l)nj

241, 6) . 3n
= E -sin(2v +1)| ax + — 11
= (v+1)? ( )( ZJ o

sin(2v + Dax (10)

Similarly the difference of phase-currents i, — i, will be:
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and using Euler relations voltage can be expressed as
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where: n= (2V + 1)

N@yi1y = N, - module of complex impedance
numerator (= \/ R*+(2v+1)aL) ),

D@41y = D, - module of complex impedance
denominator (= \/ (1 —(2v+1) a)ch)2 +((2v+1DarC)®),
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This can also be written in complex conjugated form
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1.2 Three-phase voltage inverter

The scheme of three-phase voltage inverter with IM
motor load [3] is in Fig. 5, whereas commutating
capacitors could be omitted because of switches of
inverter are switch-off capability. Control of such system
is described in greater detail in [4].
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Fig. 5: Transfigured scheme of three-phase voltage

inverter with IM motor load in delta connection

The phase voltage of the three-phase voltage
inverter (Fig.6) can be expressed by Fourier series and
using complex magnitudes method the voltage will be:
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Fig.6: Rectangular pulse time-waveform of single phase
of three phase’s inverter voltage

Based on definition of complex-time vector by Park

[2] the real- and imaginary parts of the vector can be
obtained (by eq. 2-3):
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The difference of phase-voltages u,(f) — uy(#) then
similarly will be:
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After substituting u,(f) — uy(f) by (26) the current can be
expressed as:
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Based on above mentioned equation (22)-(29) the
following simulations in Gauss plane and in time-domain
have been programmed in Matlab programming
environment. Parameters of the circuit: R =1 Ohm,
L=5mH, Uy=100 V, u; =f (w,).
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Fig. 7: Time waveform of terminal voltage u,, of the
inverter
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Fig. 8: Phase current i, of the IM during run
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1.3 Single-phase voltage inverter with PWM

In practise applications of voltage inverter three-phase
connection consist of three single-phase half-bridge
connection (see Fig. 9a). The classical unipolar pulse-
width modulation (PWM) cannot be used in this case, due
to impossibility to create zero voltage intervals upon the
load.

So, only bipolar PWM can be implicated for right
operation of the half-bridge converter, Fig. 9b.
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Fig. 9: Single-phase half-bridge inverter (a)
with PWM (b)

Switching-pulse-width can be determined based on
equivalence of average values of reference waveform and
resulting average value of positive and negative switching
pulses during switching period, Fig. 10.
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Fig. 10: Equivalence of average values of the reference-
and switching functions (pulses)

Considering the equivalence described above one can
write following relation:
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where : t), is width of positive pulses, £, is width of

negative pulses, U,
impulse, U,,.

is average value of positive
is average value of negative impulse,

U.sin 18 average value of reference sinusoidal waveform
and T, is switching period of PWM modulation.

Harmonic content depend mostly on amplitude- (m,)
and frequency modulation indexes (my), Fig. 11:
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Fig. 11: Part of typical amplitude harmonic spectrum

Harmonic components can be compute using above
methodology and work [2]. For modulation indexes m, =

=0,2 and 1 and m; = 39 resulting amplitudes are given in
Tab. 1.

my 0,2 1,0
A%
1 0,2 1,0
me 1,242 0,601
mp+2 0,016 0,318
my +4 0,018
2m] 0,190 0,181
2m;+3 0,212
2my +5 0,033
3myg 0,335 0,113
3mk2 0,044 0,062
3my+4 0,157
3m; £6 0,044
4m+1 0,163 0,068
4m+3 0,012 0,009
Ame %5 0,119
Amy +7 0,050

Tab. 1: Calculated Fourier coefficients (c,) for m, = 0,2
and 1 and my =39

Current time-waveforms for v-harmonic components
in steady-state are given [2]

iuv(t):%ﬁin(wwt—(p‘,), (32)
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where: A, = A, - ¢, - amplitude of v-harmonic component,

A =m,-U,;/2 - amplitude of 1. harmonic component,

1z,|=VR*+(v-@-L) and ¢, =arctan(v- @ L/R)



The total current will be summarizing of single
harmonics. Simulation experiments have been done for
the parameters: R = 10 Ohm, L =25 mH, U;=300V,
f=50Hz at m, =1, my =39, time increment A7 =15 ps.

Simulation results are given in Fig.12 and Fig.13.
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Fig. 12: Time waveform of voltage (1. harmonic
component) and load current of IM — with various
counter-voltage and modulation index of bipolar PWM
mg=1 and m=39
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Fig. 13: Time waveform of voltage (1. harmonic
component) and load current of IM — with various
counter-voltage and modulation index of bipolar PWM
m,=0.2 and m=39

2 CONCLUSION

The relation for resulting time-waveforms of line-to-
line voltages can be obtained also in compact closed form
using classical analytical solution, Laplace transform and
similar methods.

Anyway, the solution given in the paper makes it
possible to analyse more exactly effect of each harmonic
component comprised in total waveform on induction
motor quantities.
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