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Abstract: The paper deals with mathematical modelling of two-stage frequency converter. There are used two special methods of 

investigation. The first one, method of complex conjugated amplitude, is used for steady-state investigation. The second one, 

orthogonal Park/Clarke transformation is suitable for investigation of three-phase electric circuits. The combination of both methods 

is very useful for analysis of three-phase electric motors in steady-state condition. 
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INTRODUCTION 

Method of complex conjugated magnitudes has been 
introduced by Takeuchi [1] for analysis of converter 
circuit supplying electric machines in steady-state. The 
principle is based on substitution of trigonometric 
function by exponential one with complex argument. 
After determination of investigated variable in complex 
form, the variable can be than transformed back into time 
domain. Regarding to non-sinusoidal time waveforms of 
converter quantities the Fourier analysis is used for 
variables as the first step.  

Method of orthogonal transformation for electrical 
quantities was introduced by Park [2] for three-phase 
electric machines. The method makes it possible to 
transform symmetrical 3-phase system into equivalent 
two-phase orthogonal system. This transformation 
decreases number of differential equations (from 3 to 2), 
and removes variable coefficients in the equations. 
Besides, trajectories of the quantities in complex Gauss 
plane denote themselves by six-side symmetry, thus the 
steady-state quantities can be calculated in only one sixth 
of time period. Clarke's multiplicative transformation 
constant (equal 2/3) provides the invariances of voltage 
and current quantities in the both coordinating systems. 

The combination of both methods is very useful for 
analysis of three-phase electric motors in steady-state 

condition: constant angular speed, and when operator d/dt 
in its dynamical model is substituted by operator j ν.ω.t. 
Then one can investigate the effect of individual 
harmonic components on motor properties. 

1 ELECTRICAL AND MATHEMATICAL MODEL 

OF 2-STAGE FREQUENCY CONVERTER 

Scheme of the 2-stage converter is shown in Fig. 1. It 
comprises of two semiconductor type converters: 

− single-phase voltage inverter as the first stage, 
− three-phase matrix converter or cycloconverter as the 

second stage. 
The first stage operates with constant voltage U0 and 

fixed frequency f0. The second one supplies passive R-L 
or active load (for example electric motor) with variable 
output frequency and which is much lesser then 
frequency of AC interlink between stages. 

 

 

Fig. 1: Overall schematic diagram of 2-stage 3phase 

DC/AC/AC converter 



 

1.1 Three-phase current inverter 

Considering rectangular form of the phase-current 
length of 2π/3 radians with I0 equal U0/R, the scheme can 
be reconfigured to the scheme of three-phase current 
inverter with R-L load [2], Fig. 2. 

 

 

Fig. 2: Transfigured scheme of three-phase current 

inverter with R-L load in delta connection 

 

The output phase current of three-phase current 
inverter in rectangular form (Fig.3) can be expressed by 
Fourier series: 
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Fig. 3: Rectangular pulse time-waveform of output phase 

current of the inverter (ia)  
 

Based on definition of complex-time vector by Park 
[2] the real- and imaginary parts of the vector can be 
obtained: 
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under considering sum of phase currents to be zero. Then 
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Current of a-phase of the inverter then will be more 
simply than that of (1): 
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Current of b-phase lags the current of a-phase, thus: 
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Imaginary part of the complex-time vector by Park can be 
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Next one can obtain voltages between phases using 

complex magnitudes method for R-L load.  
In practise applications of current inverter can be 

preferable used trapezoidal time-waveform of phase 
current, Fig.4. The main reason of it is small number of 
harmonic components (in special case less than 5%). It 
can be expressed similarly by Fourier series: 
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Fig. 4: Trapezoidal pulse time-waveform of output phase 

current of the inverter (ia)  
 

Current of b-phase and c-phase lags the current of a-
phase, thus: 
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The real- and imaginary parts of the complex-time 
vector by Park can be 
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Similarly the difference of phase-currents ia – ib will be: 
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Since 
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and 
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with 
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Line to line voltage uab then will be 
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and using Euler relations voltage can be expressed as 
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where: ( )12 += νn  

 N(2ν+1) = Nn - module of complex impedance 

numerator (= ( )( )22 12 LR ων ++ ), 
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This can also be written in complex conjugated form 
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1.2 Three-phase voltage inverter 

The scheme of three-phase voltage inverter with IM 
motor load [3] is in Fig. 5, whereas commutating 
capacitors could be omitted because of switches of 
inverter are switch-off capability. Control of such system 
is described in greater detail in [4]. 

 

Fig. 5: Transfigured scheme of three-phase voltage 

inverter with IM motor load in delta connection 

 
The phase voltage of the three-phase voltage 

inverter (Fig.6) can be expressed by Fourier series and 
using complex magnitudes method the voltage will be: 
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Fig.6: Rectangular pulse time-waveform of single phase 

of three phase’s inverter voltage  

 
Based on definition of complex-time vector by Park 

[2] the real- and imaginary parts of the vector can be 
obtained (by eq. 2-3): 
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The difference of phase-voltages ua(t) – ub(t) then 

similarly will be: 
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Since 
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Load current iab then will be 
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After substituting ua(t) – ub(t) by (26) the current can be 
expressed as: 
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where n =2ν+1,   
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Based on above mentioned equation (22)-(29) the 

following simulations in Gauss plane and in time-domain 
have been programmed in Matlab programming 
environment. Parameters of the circuit:    R = 1 Ohm,      
L = 5 mH, U0 = 100 V, ui = f (ωr). 
 

 
Fig. 7: Time waveform of terminal voltage uab of the 

inverter 

 

 
Fig. 8: Phase current iab of the IM during run 

 
1.3 Single-phase voltage inverter with PWM 

In practise applications of voltage inverter three-phase 
connection consist of three single-phase half-bridge 
connection (see Fig. 9a). The classical unipolar pulse-
width modulation (PWM) cannot be used in this case, due 
to impossibility to create zero voltage intervals upon the 
load.  

So, only bipolar PWM can be implicated for right 
operation of the half-bridge converter, Fig. 9b. 

 



 

 

 
 

Fig. 9: Single-phase half-bridge inverter (a)  

with PWM (b) 

 

Switching-pulse-width can be determined based on 
equivalence of average values of reference waveform and 
resulting average value of positive and negative switching 
pulses during switching period, Fig. 10. 
 

.  
Fig. 10: Equivalence of average values of the reference- 

and switching functions (pulses) 

 

Considering the equivalence described above one can 
write following relation: 
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where : t1a is width of positive pulses,  t2a  is width of 
negative pulses, Uav+  is average value of positive 
impulse,  Uav-  is average value of negative impulse,  

Uavsin is average value of reference sinusoidal waveform 
and   Ts is switching period of PWM modulation. 

Harmonic content depend mostly on amplitude- (ma) 
and frequency modulation indexes (mf), Fig. 11: 
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Fig. 11: Part of typical amplitude harmonic spectrum 

 
Harmonic components can be compute using above 

methodology and work [2]. For modulation indexes ma = 
= 0,2 and 1 and mf = 39 resulting amplitudes are given in 
Tab. 1. 
 

    ma 

ν 
0,2 1,0 

1 0,2 1,0 

mf 

mf ±2 

mf ±4 

1,242 
0,016 

0,601 
0,318 
0,018 

2mf±1 

2mf ±3 

2mf ±5 

0,190 0,181 
0,212 
0,033 

3mf 
3mf±2 

3mf ±4 

3mf ±6 

0,335 
0,044 

0,113 
0,062 
0,157 
0,044 

4mf±1 
4mf±3 

4mf ±5 

4mf ±7 

0,163 
0,012 

0,068 
0,009 
0,119 
0,050 

Tab. 1: Calculated Fourier coefficients (cν) for ma = 0,2 

and 1 and mf =39 

 
Current time-waveforms for ν-harmonic components 

in steady-state are given [2] 
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The total current will be summarizing of single 
harmonics. Simulation experiments have been done for 
the parameters:  R = 10 Ohm,  L = 25 mH,  Ud = 300 V,    
f = 50 Hz  at  ma  = 1,  mf  = 39, time increment ∆t = 5 µs. 

Simulation results are given in Fig.12 and Fig.13.  
 

 
Fig. 12: Time waveform of voltage (1. harmonic 

component) and load current of IM – with various 

counter-voltage and modulation index of bipolar PWM 

ma=1 and mf=39 

 

 

Fig. 13: Time waveform of voltage (1. harmonic 

component) and load current of IM – with various 

counter-voltage and modulation index of bipolar PWM 

ma=0.2 and mf=39 

 
2 CONCLUSION 

The relation for resulting time-waveforms of line-to-
line voltages can be obtained also in compact closed form 
using classical analytical solution, Laplace transform and 
similar methods. 

Anyway, the solution given in the paper makes it 
possible to analyse more exactly effect of each harmonic 
component comprised in total waveform on induction 
motor quantities. 
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