
VII-5

Serialization of data structures
in the C++ programming language

using the reflection information
Radosław Sokół*

*Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10, Gliwice, Poland, e-mail: radoslaw.sokol@polsl.pl

Abstract In all cases a data structure (or an array of data structures) needs to be serialized or deserialized in the C++ program-
ming language, a developer needs to write his or her own code. If the serialization mechanism needs to accommodate further expan-
sion of the structure or the structure itself contains variable-length fields (especially strings), the required code can quickly grow
quite large and may not be reused in further cases. However, using the reflection mechanism described in [1], one can quickly seria-
lize and deserialize any data structure or container with few lines of code.

Keywords C++, reflection, serialization, deserialization, generic programming.

I. INTRODUCTION

As for the binary serialization and deserialization of
data structures, the C++ programming language provides
only the options of performing a straight binary copy of
a memory area containing a single data record to or from
a file stream, or overloading the stream operators and
open-coding one's self serialization mechanism. As the
C++ language lacks a reflection mechanism, one cannot
perform simple serialization and deserialization of data
containers (especially such as lists or deques). Even single
entities of a more complex structure (for instance,
containing variable-length strings) introduce difficulties
and require a developer to write custom-tailored, one-time
use subroutines serializing and deserializing data.

However, using an already implemented reflection me-
chanism [1] one can implement an automatic serialization
infrastructure. This paper describes such an implementa-
tion and presents ways to further extend its capabilities.

II. REFLECTION MECHANISM

The reflection mechanism described in [1] builds on
top of the features of the C++ language to provide the pro-
grammer with insight into structures he or she declares.
In contrast to the C# and Java languages, C++ has no such
feature built in. The reflection mechanism is crucial to
implementation of serialization and deserialization, as it
lets the programming library to enumerate a structure's
fields, query these fields' types and retrieve or set values
of these fields without actual compiler support.

III. SERIALIZATION INTERFACE

A class that is meant to be serializable and deseriali-
zable should implement – besides the Reflectible interface
described in [1] – the Serializable interface defined as
a following template [2, 3]:

class Externalizable
{
 public:
 virtual ~Externalizable() throw() {}
 virtual void WriteExternal(Stream &Output) const = 0;
 virtual void ReadExternal(Stream &Input) = 0;
};

template <typename StructType>
class Serializable : public Externalizable

{
 public:
 virtual void WriteExternal(Stream &Output) const;
 virtual void ReadExternal(Stream &Input);
 void SetFieldNamesSerialization(const bool s) throw();
 bool FieldNamesSerialization() const throw();
};

The interface's methods have the following meaning:
• WriteExternal() — serializes the object to the

output stream. The Externalizable interface defi-
nes only the prototype of the method so that its
implementations may serialize in any format.
The Serializable interface template provides
a concrete implementation based on the reflec-
tion mechanism;

• ReadExternal() — deserializes the object from
the input stream.

• SetFieldNamesSerialization() — enables or dis-
ables serialization of a structure's field names.
Disabling it saves space and/or throughput but
removes the possibility to deserialize structure
after it has been refactored.

• FieldNameSerialization() — encapsulates the
state of field name serialization toggle.

The Externalizable and Serializable interfaces have
been modelled after Java programming language. The lack
of the transient keyword may be made up by not defining
transient fields in the reflection information.

IV. USAGE

With the reflection information set up and stream open,
serializing a structure only requires using the WriteExter-
nal() method:

Structure.WriteExternal(Stream);

To deserialize a structure, a similar line is needed:

Structure.ReadExternal(Stream);

With field names serialization mode enabled, the Read-
External() method of the Serializable interface verifies
whether the serialized data matches the structure being
deserialized, as its field names and types can be retrieved
from a stream. With this mode disabled, however, there is
no such possibility and it is up to the programmer to

VII-6

ensure that an application does not try to deserialize mis-
matching structure.

V. PERFORMANCE

While using the serialization infrastructure described in
the paper reduces programming time and improves soft-
ware robustness, it is expected not to reduce performance.
The C++ programming language is often being chosen be-
cause of performance reasons and wasting the lead in
performance over other languages would remove the need
to implement a new programming abstraction already pre-
sent in competing solutions.

A test was performed to verify performance of the
serialization mechanism. Three different methods of data
serialization were tested:

• simple binary write of a plain-old-data stucture,
• serialization using the method described in this

paper, including names of structure's fields,
• as above, but omitting field names.

Serialized data was redirected to three different data
sinks:

• null stream (discarding all data being written),
• local file stream,
• network file stream.

The results have been presented in Table I.

TABLE I
SERIALIZATION PERFORMANCE

(MICROSECONDS PER STRUCTURE)

Simple
binary
write

Serialization

including
field names

excluding
field names

Null stream 0.000 0.880 0.560

Local file 1.282 18.908 6.990

Buffered local file 0.482 2.182 1.140

Network file 180.000 6930.000 2462.000

Buffered network file 9.094 18.446 8.874

An additional test of file size was performed to verify
whether the serialization mechanism can be more econo-
mical than a simple binary write. The results have been
presented in Table II.

TABLE II
SERIALIZED DATA SIZE

Serialization method Average bytes per structure

Simple binary write 160

Serialization including field names 308

Serialization excluding field names 145

One can observe that:
1. In all non-buffered cases, serialization adds a no-

ticable overhead. It can be attributed to a greater
number of individual write operations per single
structure: while in case of a simple binary write
there is only one, serialization requires writing
each field of a structure separately;

2. In all buffered cases, serialization becomes com-
petitive with simple binary dump of a structure.

Omitting field names helps in reducing the
overhead. It is worth noticing that buffered seria-
lization without field names is faster than simple
unbuffered binary dump, while being more
economical.

3. Serialization including field names necesserily
increases file size, as every field must be
accompanied by several bytes of field name
string. In the test case, it nearly doubled the size
of a single structure. However, omitting field
names in the serialized stream reduces data size
by writing strings optimally instead of dumping
whole string buffers (along with unused data)
into a stream.

The need to omit field names in order to avoid perfor-
mance drop seems at first to reduce usefulness of the
serialization mechanism. However, in real-life applica-
tions such huge data amounts generally come from con-
tainers of identical structures. A specialized serialization
interface for a container may store field names once and
then serialize individual structure omitting field names,
thus avoiding the performance overhead and not reducing
the functionality of the serialization mechanism.

VI. CONCLUSION

The proposed serialization and deserialization infra-
structure reduces programming time and improves soft-
ware quality by allowing a programmer to concentrate on
problems instead of implementations. Thanks to concen-
tration of code dealing with stream input and output and
data integrity verification, an application may be more
robust, and further quality improvements in the seriali-
zation code are application-wide instead of being local.

In the same time, using the serialization mechanism—
as with many abstract language constructs—does incur
performance penalty. It is up to a programmer to decide
whether the performance reduction is justified by greater
flexibility and robustness of an application. However,
omitting field names from the serialized stream and using
stream buffering techniques actually improves performan-
ce and does not reduce the C++ programming language's
superiority in this area over other solutions [4].

However, the presented solution is not without flaws.
Its architecture, based on the Java language, is not enough
flexible. The Author is already considering removing the
need to implement the Externalizable or Serializable
interfaces in own structure or class. Instead, a solution
based on the one used in the C# language will be used,
with separate serialization classes using the reflection
interface and offering different serialization formats
(binary, XML, attribute-value and so on). In such case one
can choose format best matching the needs of an appli-
cation.

VII. REFERENCES

[1] Sokół, R.: ”A Reflection Mechanism in the C++ Programming
Language”, XXXIV International Conference SPETO, Ustroń,
Poland, 2011.

[2] Stroustrup, B.: “The C++ Programming Language”, Addison-
Wesley, 1997.

[3] ISO/IEC 14882:2003 Standard, 2003.
[4] Hundt, R.: “Loop Recognition in C++/Java/Go/Scala ”, Google,

2011.

