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Abstract In this article we study a long memory stochastic volatility model (LSV) firstly proposed by Intarasit and
Sattayatham (2011). Under the model, stock prices follow a jump-diffusion stochastic process and its stochastic volatility
is driven by a continuous-time fractional process that attains a long memory. LSV model should take into account
most of the observed market aspects described by Cont (2001). Unlike many other approaches, the volatility clustering
phenomenon is captured explicitly by the long memory parameter. Moreover, this property has been reported in realized
volatility time-series across different asset classes and time periods (Bollerslev and Mikkelsen, 1996; Breidt et al., 1998;
Martens et al., 2004). In the first part of the article, we derive an alternative formula for pricing European securities.
The formula enables us to effectively price European options and to calibrate the model to a given option market. In
the second part of the article, we provide an empirical review of the model calibration. For this purpose, a set of traded
FTSE 100 index call options is used and the long memory volatility model is compared to a popular pricing approach -
the Heston model (Heston, 1993). To test stability of calibrated parameters and to verify calibration results from previous
data set, we utilize multiple data sets from NYSE option market on Apple Inc. stock.
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1. Introduction

The purpose of this article is to revisit a jump-diffusion and fractional stochastic volatility
approach proposed by Intarasit and Sattayatham (2011). Using our alternative formula
for pricing European options, we present empirical calibration results and we comment on
suitability of this approach.

First of all, we define a long-range dependence (LRD or equivalently a long memory) prop-
erty. Let (Ω,F , P ) be a generic probability space that is used for all stochastic processes in
this article unless explicitly stated otherwise. Let (Xt)t∈R+ be a stationary stochastic pro-
cess defined on the probability space. Then its auto-covariance function for arbitrary real
s, t : 0 ≤ s < t depends only on the lag k := t− s and is denoted by γX(k),

γX(k) = E [(Xs − EXs)(Xs+k − EXs+k)] .

A stochastic process Xt is said to have a long-range dependence if

lim
k→+∞

γX(k)

Ck−α
= 1, (1)
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where both C and α are constants and α ∈ (0, 1). Also the sum of auto-covariances for different
lags diverges,

+∞∑
k=1

γX(k) = +∞. (2)

One can understand the LRD phenomenon quite intuitively. For increasing lag, the
dependence might be small, but its cumulative effect is not negligible [due to (2)].

One of the first evidences of long-range dependence in market volatility come from Taylor
(1986) and Ding et al. (1993). In both studies, a strong evidence of autocorrelation of
absolute returns is presented (even for longer lags). Authors also noticed that correlation
estimates decay significantly slower for absolute returns than for the returns themselves.
Breidt et al. (1998) used spectral tests and R/S analysis to estimate a long memory
parameter for volatility of market indexes’ daily returns from 1962 to 1989. To incorporate
the long memory phenomenon into volatility modelling, Bollerslev and Mikkelsen (1996)
suggested a modification of a well known GARCH (Generalized Auto-Regressive Conditional
Heteroskedasticity) model - fractionally integrated GARCH. The authors compare several
models in terms of forecasting realized volatility and they also compare model prices of
(synthetic) options. Further improvement of the ARCH-type approach to option pricing is
suggested by Zumbach and Fernández (2013) and Zumbach and Fernández (2014). They
provide an insight into construction of the risk-neutral measure and explain how to estimate
the parameters, reproduce the volatility smile and the term structure of the surfaces without
any calibration of the observed option prices.

Another discrete-time modelling approach that captures LRD is ARFIMA model (frac-
tionally integrated ARMA) (Granger and Joyeux, 1980). Martens et al. (2004) have shown,
using their own study alongside similar works by various authors, that ARFIMA models can
provide more satisfactory results than GARCH-type approaches. The estimates of a fractional
differencing parameter for market volatility typically lie in [0.2, 0.4] which is equivalent to
the Hurst exponent ranging in [0.7, 0.9]. Koopman et al. (2005) also empirically confirmed
that long memory ARFIMA models seem to provide the most accurate forecasts of realized
volatility. Lately Asai et al. (2012) introduced a new correction term for the ARFIMA model
with respect to volatility modelling. For an empirical comparison of ARMA and ARFIMA
models see for example the thesis by Čekal (2012). Beran et al. (2013), Zumbach (2013) and
the references therein provide a comprehensive review of recent advances in discrete-time
long memory modelling.

Many practitioners prefer continuous-time models for calibration to the whole volatility
surface. Pioneering a long memory stochastic volatility, Comte and Renault (1998) intro-
duced a modification of the Hull-White model. The stochastic volatility process is driven by
a fractional Brownian motion (fBm), i.e. a centred Gaussian process, (Bt)t∈R+ , defined via its
covariance structure

E [BtBs] =
1

2

(
t2H + s2H − |t− s|2H

)
, (3)

where H is a constant in (0, 1), commonly known as the Hurst exponent. This process
possesses many interesting properties, most noticeably, for H ∈ (1/2, 1) fBm exhibits a
long-range dependence (Mandelbrot and Van Ness, 1968). Comte and Renault also comment
on a no-arbitrage condition which is satisfied by a market model with the suggested dynamics
alongside a standard class of admissible portfolios. This differs from a situation where market
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dynamics is due to the fractional Black-Scholes model (i.e. stock prices follow a geometric
fractional Brownian motion). In that case, one has to come up with a different integration
theory accompanied by a different class of admissible strategies (on that matter see e.g.
Øksendal, 2003). Comte et al. (2012) introduced a more refined model with more degrees
of freedom where stochastic volatility follows a fractional CIR process. Since fBm is not a
semimartingale for H 6= 0.5, we cannot use a well-developed Itô stochastic calculus on any of
the aforementioned fractional stochastic volatility models.

Intarasit and Sattayatham (2011) came up with a new long memory stochastic volatility
model which would be subject to the main focus of this article. Authors applied theoretical
results by Thao (2006) and Zähle (1998) to overcome restrictions inherited from the usage of
fBm. They started with fBm in the Liouville form (Mandelbrot and Van Ness, 1968),

Bt =
1

Γ(H + 1/2)

Zt +

t∫
0

(t− s)H−1/2dWs

 ,
where Zt =

0∫
−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dWs and (Wt)t∈R+ , is a standard Wiener process.

The stochastic process Zt has continuous trajectories and thus, for the sake of long memory,
one can consider only the following part of Bt with the Hurst exponent H ∈ (1/2, 1).

B̂t =

t∫
0

(t− s)H−1/2dWs. (4)

Thao (2006) showed that one can approximate B̂t by

B̂ε
t =

t∫
0

(t− s+ ε)H−1/2dWs; B̂ε
t
L2(Ω)−−−→ B̂t, (5)

as ε → 0+. Also B̂ε
t is a semimartingale with respect to the filtration (Ft)t∈R+ generated by

the standard Wiener process Wt. Intarasit and Sattayatham (2011) proposed a jump-diffusion
model with approximative fractional volatility. Dynamics of the stock prices follow a system
of two stochastic differential equations which under a risk-neutral probability measure1 take
the following form,

dSt = rStdt+
√
vtStdW

(1)
t + YtSt−dNt, (6)

dvt = −κ(vt − v̄)dt+ ξvtdB̂
ε
t , (7)

where κ, v̄, ξ are model parameters, such that, κ is a mean-reversion rate, v̄ stands for an
average volatility level and finally, ξ is so-called volatility of volatility. Under the notation

St− we understand limτ→t− Sτ and (Nt)t∈R+ , (W
(1)
t )t∈R+ is a Poisson process and a standard

Wiener process respectively. Yt denotes an amplitude of a jump at t (conditional on occurrence

of the jump) and differential dB̂ε
t corresponds to the following integral which Thao and

Nguyen (2003) defined for arbitrary stochastic process with bounded variation (Ft)t∈R+ ,

1A risk-neutral probability measure for this model is not uniquely defined due to the incompleteness of the market,
purely for derivatives pricing we do not need to specify it. Comments on the equivalent martingale measures for classical
stochastic volatility models are available, for instance, in Sircar and Papanicolaou (1999) and references therein.
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It =

t∫
0

FsdB̂
ε
s := FtB̂

ε
t −

t∫
0

B̂ε
sdFs −

[
F, B̂ε

]
t
, (8)

provided the right-hand side integral exists in a Riemann-Stieltjes sense, while [F, B̂ε]t being

a mixed variation of Ft and B̂ε
t .

The use of approximation B̂ε
t instead of fBm provides several advantages. Most significantly,

we are able to derive a pricing PDE using Itô calculus and standard hedging arguments.
Moreover, using theoretical results of Thao and Nguyen (2003) we can transform volatility
process into standard settings as was shown by Intarasit and Sattayatham (2011),

dvt = [(aξϕt − κ)vt + θ] dt+ ξvtε
adW

(2)
t , (9)

where a := H − 1/2, θ := κv̄ is a constant and ϕt represents an Itô integral,

ϕt =

∫ t

0
(t− s+ ε)H−3/2dW (3)

s , (10)

(W
(2)
t )t∈R+ , (W

(3)
t )t∈R+ are standard Wiener processes. To have a more realistic model of

market dynamics, we also add an instantaneous correlation ρ : E[W
(1)
t W

(2)
t ] = ρ to mimic the

stock-volatility leverage effect. Also we assume W
(3)
t is stochastically independent on both

W
(1)
t W

(2)
t and the jump part YtSt−dNt which is yet to be defined.

2. An alternative semi-closed form solution

Up to now, we have introduced a theoretical background for the model mainly using the
original research by Intarasit and Sattayatham (2011). In this section, we consider a model
with dynamics (6)-(7) and we derive an alternative formula for pricing European contracts
and thereafter we show, employing empirical data sets, that this formula can be efficiently
used for applications in practise, such as a market calibration.

We utilize dynamics (6)-(7) with process Nt defined as:

Nt =

Pt∑
i=1

Yi, (11)

where (Yn) are i.i.d. random variables Yn = exp {αJ + γJψt} − 1, ψt ∼ N (0, 1) and Pt is a
Poisson process with hazard rate λ.

Unlike in case of Intarasit and Sattayatham (2011), we will assume2 that the jump part
is stochastically independent on diffusion processes in market dynamics (6)-(7) which will
significantly simplify the option pricing problem. Instead of solving partial integral differential
equations with respect to (6)-(7) we consider the following system of market dynamics without
jumps.

dSt = rStdt+
√
vtStdW

(1)
t , (12)

dvt = αdt+ β
√
vtdW

(2)
t , (13)

2This assumption is taken into consideration in many jump-diffusion stock models, e.g. Bates (1996)
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where the functions α and β take the following form α = α(St, vt, t) := (aξϕt − κ)vt + θ,
β = β(St, vt, t) := ξεa

√
vt. We will derive the valuation PDE which can be solved using

the Fourier method. The price of a European option is expressed in terms of characteristic
functions and to include jumps in the stock price process, it is sufficient to multiply these
characteristic functions with their jump counterparts3. A fair price of a vanilla option V is
expressed as a discounted expectation of the terminal pay-off. In case of a call option, this
reads

Vc(St, vt, t) = e−rτE
[
(ST −K)+

]
= StP1(xt, vt, τ)− e−rτKP2(xt, vt, τ)

= extP1(xt, vt, τ)− e−rτKP2(xt, vt, τ), (14)

where parameters of the contract K and τ := T − t represent a strike price and time to
maturity respectively. P1, P2 can be interpreted as the risk-neutral probabilities that option
expires in the money conditional on the value of xt = lnSt and finally r is assumed to be a
uniquely determined risk-free rate constant.

Applying standard hedging arguments alongside constant risk-free rate paradigm, one ar-
rives at the initial value problem (Sobotka, 2014),

−∂Vc
∂τ

+
1

2
vt
∂2Vc
∂x2

t

+

(
r − 1

2
vt

)
∂Vc
∂xt

+ ρβvt
∂2Vc
∂vt∂xt

− rVc +
1

2
vtβ

2∂
2Vc
∂v2

t

+ α
∂Vc
∂vt

= 0; (15)

Vc(ST , vT , τ = 0) = (ST −K)+. (16)

As we would like to express probabilities P1, P2, we input (14) therein. The equation (15) has
to be satisfied for any combination of parameters K, r ∈ R, τ ∈ R+ and for any price St ≥ 0.
Thus, we are able to set K = 0, St = 1, to obtain a PDE with respect to P1 only.

−∂P1

∂τ
+

1

2
vt
∂2P1

∂x2
t

+

(
r +

1

2
vt

)
∂P1

∂xt
+ ρβvt

∂2P1

∂vt∂xt
+

1

2
vtβ

2∂
2P1

∂v2
t

+ (α+ ρβvt)
∂P1

∂vt
= 0.

(17)

Following similar arguments, we retrieve a PDE for P2 only by setting St = r = 0, K = −1.

−∂P2

∂τ
+

1

2
vt
∂2P2

∂x2
t

+

(
r − 1

2
vt

)
∂P2

∂xt
+ ρβvt

∂2P2

∂vt∂xt
+

1

2
vtβ

2∂
2P2

∂v2
t

+ α
∂P2

∂vt
= 0. (18)

Instead of solving the system of two PDEs (17)-(18) directly, we express characteristic
functions fj = fj(φ, τ), j = 1, 2. After analytical expressions for fj are known, we can easily
obtain Pj using the inverse Fourier transform,

Pj =
1

2
+

1

π

∫ ∞
0

Re

[
eiφ ln(K)fj

iφ

]
dφ, (19)

where Re(x) denotes a real part of a complex number x. As in the original paper by Heston
(1993), we are looking for characteristic functions fj in the form,

fj = exp {Cj(τ, φ) +Dj(τ, φ)vt + iφx} . (20)

As a direct consequence of the discounted version of Feynman-Kac theorem (as e.g. in Shreve
(2004)), fj follows PDE (17) and (18). Firstly, we substitute assumed expression (20) with

3This is possible due to the stochastic independence with diffusion processes and log-normal distribution of the jumps,
see (Gatheral, 2006)
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respect to f1.

−
(
∂C1

∂τ
+ vt

∂D1

∂τ

)
f1 + ρβvtiφD1f1 −

1

2
vtφ

2f1+
1

2
vtβ

2D2
1f1

+

(
r +

1

2
vt

)
iφf1 + (α+ ρβvt)f1D1 = 0, (21)

f1 cannot be identically equal to zero which enables us to get the following relation.

−∂C1

∂τ
+ vt
−∂D1

∂τ
+ ρβvtiφD1 −

1

2
vtφ

2+
1

2
vtβ

2D2
1

+

(
r +

1

2
vt

)
iφ+ (α+ ρβvt)D1 = 0. (22)

Now we are ready to substitute back for α. After rearranging terms with C1, D1 and factoring
out vt we obtain the upcoming PDE,

vt

[
−∂D1

∂τ
+ ρβiφD1 −

1

2
φ2 +

1

2
β2D2

1 +
1

2
iφ+ (aξϕ0 − κ+ ρβ)D1

]
−

−∂C1

∂τ
+ riφ+ θD1 = 0, (23)

where we recall that ϕt is a martingale and ϕ0 = E[ϕt] is used. None of the terms outside
brackets involve vt, hence we can split (23) into a system of two equations.

∂D1

∂τ
= ρβiφD1 −

1

2
φ2 +

1

2
β2D2

1 +
1

2
iφ+ (aξϕ0 − κ+ ρβ)D1; (24)

∂C1

∂τ
= riφ+ θD1, (25)

provided vt > 0 for t : 0 ≤ t ≤ T . Following the same steps, one can obtain a similar system
for f2 as well. As a result thereof, characteristic functions fj defined by (20) have to satisfy
the following system of four differential equations

∂D1

∂τ
= ρβiφD1 −

1

2
φ2 +

1

2
β2D2

1 +
1

2
iφ+ (aξϕ0 − κ+ ρβ)D1; (26)

∂D2

∂τ
= ρβiφD2 −

1

2
φ2 +

1

2
β2D2

2 −
1

2
iφ+ (aξϕ0 − κ)D2; (27)

∂Cj
∂τ

= riφ+ θDj ; (28)

with respect to the initial condition

Cj(0, φ) = Dj(0, φ) = 0, (29)

where j = 1, 2. The first two equations for Dj are known as the Riccati equations with
constant coefficients. Once Dj are obtained, one can solve the last two ODE’s by a direct
integration.

Firstly, we show how to express Dj from the Ricatti equations. For the sake of a simpler
notation, we will rewrite equations (26) and (27) using abbreviated form.

∂Dj(τ, φ)

∂τ
= AjD

2
j +BjDj +Kj , (30)

where Aj , Bj and Kj ∈ C. Let us also denote:

∆j =
√
B2
j − 4AjKj ; Yj =

−Bj + ∆j

2Aj
; gj =

Bj −∆j

Bj + ∆j
.
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Proposition 2.1: Assuming Aj 6= 0 for j = 1, 2, Ricatti equations (30) attain an analytical
solution with respect to the initial condition Dj(0, φ) = 0,

Dj(τ, φ) =
Yj
(
1− e∆jτ

)
1− gje∆jτ

.

Proof : Without loss of generality, we will solve the equation for a fixed index j and for
y := Dj , while A := Aj , B := Bj ,K := Kj

y′ = Ay2 +By +K, (31)

Ay′ = (Ay)2 +ABy +AK, (32)

Since A, B and K are constant in time (or with respect to τ), we are able to substitute
v = Ay; v′ = Ay′ +A′y = Ay′.

v′ = v2 +Bv +AK, (33)

−u
′′

u
= −Bu

′

u
+AK, (34)

where v = −u′/u; v′ = −[u′′u− (u′)2]/u2 = v2 − u′′/u′. The equation can be rewritten in the
following form

0 = u′′ −Bu′ +AKu. (35)

We are able to solve (35) explicitly.

u(τ) = I1 exp

{
B −

√
B2 − 4AK

2
τ

}
+ I2 exp

{
B +

√
B2 − 4AK

2
τ

}
= I1e

B−∆

2
τ + I2e

B+∆

2
τ ,

where I1, I2 ∈ R are both constants can be expressed due to the initial condition:

u′(0) = I1

(
B −∆

2

)
+ I2

(
B + ∆

2

)
= 0,

u(0) = I1 + I2 = γ; γ ∈ R− {0}.

Solving the system of two linear equations we retrieve I1, I2,

I1 = γ
B + ∆

2∆
,

I2 = −γB −∆

2∆
,

and the solution u(τ),

u(τ) = γ

[(
B + ∆

2∆

)
e

B−∆

2
τ −

(
B −∆

2∆

)
e

B+∆

2
τ

]
. (36)

To obtain y(τ) we go through steps (31)-(35) backwards. The first derivative of u takes the
form

u′ = γ

[
AK

∆
e

B−∆

2
τ − AK

∆
e

B+∆

2
τ

]
(37)

and since v = −u′/u, v reads

v =
2AK

(
e

B−∆

2
τ − e

B+∆

2
τ
)

(B + ∆)e
B−∆

2
τ − (B −∆)e

B+∆

2
τ
.

Using y = v/A, one can obtain the solution,
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y =
2K
(
e

B−∆

2
τ − e

B+∆

2
τ
)

(B + ∆)e
B−∆

2
τ − (B −∆)e

B+∆

2
τ

=
2K
(
e

B−∆

2
τ − e

B+∆

2
τ
)

(B + ∆)e
B−∆

2
τ
(

1− B−∆
B+∆e

∆τ
)

=
2K
B+∆

(
1− e∆τ

)
1− B−∆

B+∆e
∆τ

. (38)

Hence we have arrived at the expression in Proposition 2.1. �

In the next step, we integrate the right-hand side of (28) for t ∈ [0, τ ] to express Cj .

Cj(τ, φ) = riφτ + θ

∫ τ

0
Dj(t, φ)dt

= riφτ + θ

∫ τ

0

Yj
(
1− e∆jt

)
1− gje∆jt

dt

= riφτ + θYj

[
τ +

∫ τ

0

(gj − 1)e∆jt

1− gje∆jt
dt

]
= riφτ + θYjτ − θYj

gj − 1

∆jgj
ln

(
1− gje∆jτ

1− gj

)
= riφτ + θYjτ −

θ

A
ln

(
1− gje∆jτ

1− gj

)
. (39)

Characteristic functions fj , under the original notation, take the following form

fj(τ, φ) = exp {Cj(τ, φ) +Dj(τ, φ)v0 + iφ ln(St) + ψ(φ)τ} ,

with

Cj(τ, φ) = rφiτ + θYjτ −
2θ

β2
ln

(
1− gjedjτ

1− gj

)
,

Dj(τ, φ) = Yj

(
1− edjτ

1− gjedjτ

)
,

ψ = −λJ iφ
(
eαJ+γ2

J/2 − 1
)

+ λJ

(
eiφαJ−φ2γ2

J/2 − 1
)

Yj =
bj − ρβφi+ dj

β2

gj =
bj − ρβφi+ dj
bj − ρβφi− dj

,

dj =
√

(ρβφi− bj)2 − β2(2ujφi− φ2),

β = ξεH−1/2√vt
u1 = 1/2, u2 = −1/2, θ = κv̄, b1 = κ− (H − 1/2)ξϕ0 − ρβ, b2 = κ− (H − 1/2)ξϕ0.

To obtain the price of a European call, one numerically computes the integral in equation
(19). The result thereof goes into the first part of the formula, expression (14). The main
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Table 1. Price differences for various choices of the upper integration limit in integral (19) across various parameter setsa.

Computation using upper limit u = 1000 is considered as the reference price.

Upper integration limit 50 100 150 200 250 300

ITM Average absolute differences 2.1× 10−8 2.8× 10−8 2.4× 10−8 2.5× 10−8 2.1× 10−8 2.0× 10−8

ITM 99-percentile differences 1.5× 10−7 1.6× 10−7 1.4× 10−7 1.4× 10−7 1.4× 10−7 1.5× 10−7

ITM Maximal absolute differences 1.1× 10−3 1.1× 10−3 1.1× 10−3 1.1× 10−3 1.1× 10−3 1.1× 10−3

ATM Average absolute differences 2.6× 10−8 3.3× 10−8 2.7× 10−8 2.7× 10−8 2.4× 10−8 2.3× 10−8

ATM 99-percentile differences 1.9× 10−7 2.0× 10−7 1.8× 10−7 1.9× 10−7 1.9× 10−7 1.9× 10−7

ATM Maximal absolute differences 1.1× 10−3 1.1× 10−3 1.1× 10−3 1.1× 10−3 1.0× 10−2 1.1× 10−3

OTM Average absolute differences 3.0× 10−8 3.9× 10−8 3.2× 10−8 3.2× 10−8 2.9× 10−8 2.0× 10−8

OTM 99-percentile differences 2.5× 10−7 2.6× 10−7 2.3× 10−7 2.4× 10−7 2.4× 10−7 2.5× 10−7

OTM Maximal absolute differences 1.5× 10−3 1.5× 10−3 1.5× 10−3 1.0× 10−3 1.0× 10−3 1.0× 10−3

a 792000 distinct parameter sets for each trial. The first experiment deals with in-the-money call option (ITM, moneyness
90%), second with at-the-money call (ATM) and the final one is with respect to out-of-the-money call option (OTM,
moneyness 110%) .

advantage of this approach lies in its tractability. In fact, only the aforementioned Fourier
integral has to be dealt with by numerical procedures. Moreover, its integrand is well behaved
for a wide range of model parameters (see Table 1 and Figure 1).

For numerical evaluation, one also might set a finite upper integration limit u in the
integral (or apply a suitable transformation). In case of the Heston model, it has been shown
that when using the alternative option pricing formula as in Gatheral (2006), even a basic
choice of the upper limit, u = 100, can be justified. For the presented long memory model,
an illustration of the price sensitivity with respect to finite values of the integration bounds
is provided by Figure 1 and by Table 1. In the latter, we display average, 99% quantile and
maximal absolute differences between the reference price and convenient choices of the upper
limits across various model parameter sets.

The choice of the upper integration limit plays a crucial role in the task of market calibra-
tion, especially when using heuristic optimization procedures. Since all values in the previous
experiment provided a sufficient level of precision, we focus on computational efficiency when
choosing integration bounds.

[Figure 1 about here.]

3. Market calibration

In this section we employ the previously derived formula to retrieve risk-neutral market pa-
rameters with respect to a given set of traded call options. This procedure is known as a
market calibration. Another way of looking at the task can be obtained via mathematical
programming. One tries to find a set of model parameters Θ? such that the criterion (40) is
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minimized4.

G(Θ) =

N∑
i=1

wi

∣∣∣C(S0,Ki, Ti, r)− Cmodel(S0,Ki, Ti, r,Θ)
∣∣∣p ; (40)

Θ? = arg inf
Θ∈A

G(Θ), (41)

for a market that consists of N traded call contracts. We set the value of p, p ≥ 1, and
we choose appropriate weight sequence (wi)i=1,...,N . An intuitive setting, wi = 1/N for all
i = 1, ..., N and p = 2, brings us to the classic least square minimization problem. Using
distinct weights for each contract we can emphasize more liquid options over the less traded
contracts. For the first empirical study we calibrate models using three choices of weights
which are defined,

w
(1)
i =

1

|C(ask)
i − C(bid)

i |
, (42)

w
(2)
i =

1√
|C(ask)
i − C(bid)

i |
, (43)

w
(3)
i =

1

(C
(ask)
i − C(bid)

i )2
, (44)

for i = 1, ..., N . C
(bid)
i , C

(ask)
i stands for a bid price of the ith market option and ask price

respectively. Also we assume that the price-spread is strictly positive for all quoted contracts.
The minimization is with respect to simple bounds which are introduced to ensure that all
parameters stay in their domains (e.g. we consider H ∈ [0.5, 1)).

Table 2. Parameter bounds for optimization problem.

κ v0 v̄ ξ ρ λJ αJ γJ H

lower bound 0 0 0 0 −1 0 −10 0 0.5

upper bound 50 1 1 4 1 100 5 4 0.9999

As several authors pointed out [e.g. Mikhailov and Nögel (2003)], the minimization problem
(41) is typically non-convex and without a very good initial guess it might be hard to solve
using local optimization techniques only. Hence, for the task of model comparison we utilize
global procedures, a genetic algorithm (GA) and simulated annealing (SA), as well as a local
approach (trust-region method, LSQ).

Results obtained by a global heuristic optimizer may vary significantly depending on how
the routine is set. Most important criteria with respect to the global optimization are of two
types: evolution and stopping rules. For both genetic algorithm and simulated annealing we
altered stopping rule defaults used in the Matlab’s Global Optimization Toolbox. First and
foremost, we did not want the solver to stop prematurely - algorithms should terminate on a
Function tolerance criterion, i.e. if the value of utility function (40) declines over the successive
iteration by less than a given tolerance (1e-8). For comparison purposes, we also employed the
same settings for both less complex Heston model and LSV approach. The complete evolution
and stopping rules used in the upcoming experiments are listed in Table 3.

4In case of the presented approach Θ? takes form: Θ? :=
{
κ?, v?0 , v̄

?, ξ?, ρ?, λ?J , α
?
J , γ

?
J , H

?
}
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Table 3. Optimizer settings for market calibration.

GA criterion Value SA criterion Value

Evolution rules

Population size 60 Annealing fun. Uniform direction,

temp. step-length

Elite count 20% Initial temperature 100

Selection distribution Uniform Temperature fun. Exponential

Mutation distribution Gaussian Reannealing interval 100

Crossover fun. Random binary scatter Acceptance fun. Exp. decaya

Stopping rules

No of generations 500 Maximum iterations -

Time limit - Time limit -

Fitness limit - Fitness limit -

Stall generations 60 Maximum fun. evaluations 100000

Fun. tolerance 1e-8 Fun. tolerance 1e-8

Constraint tolerance 1e-6

Stall time limit -

Stall test average change

a Exponentially decaying acceptance function (acceptancesa) is defined in Matlab documentation, see also
www.mathworks.com/help/gads/simulated-annealing-options.html .

Error measures

In order to compare the presented long memory volatility approach with the Heston model,
we evaluate these market fit criteria,

AAE(Θ) =
1

N

N∑
i=1

∣∣∣Ci − Cmodeli (Θ)
∣∣∣ ; (45)

AARE(Θ) =
1

N

N∑
i=1

∣∣Ci − Cmodeli (Θ)
∣∣

Ci
; (46)

MAE(Θ) = max
i=1,2,...,N

∣∣∣Ci − Cmodeli (Θ)
∣∣∣ . (47)

Due to varying price levels, the most interesting error measure is represented by AARE(Θ)
which reflects the average absolute values of relative errors. ARE(Θ), on the other hand,
represents the average absolute errors. We also might want to fit the calibrated surface with a
pre-set error bound. The minimal bound that will suffice for each calibration trial is denoted
by the maximal absolute error measure, MAE(Θ).

Empirical study - FTSE 100 vanilla call market

The main data set was obtained on 8th January 2014 and consists of 82 traded call options.
The underlying is FTSE 100 index, quoted at 6, 721.80 points. The considered prices range
from £17.5 to £514.5 and the data sample includes both in-the-money (ITM), at-the-money
(ATM) and out-of-the-money (OTM) calls5.

Using combined optimization approaches, that firstly utilize global (heuristic) methods
and then the solution is improved by a local search method, we were able to retrieve superior

5Data set obtained from OMON Screen, Bloomberg L.P. 2014.
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results for both models. For these routines the long memory stochastic volatility model
achieved a better market fit compared to the Heston model. The lowest value of the absolute
relative error was obtained for the LSV model using a genetic algorithm combined with a
trust region method alongside weights w(3). However, the results for weights w(1), w(2) and
also for a combined simulated annealing (SA + LSQ) are almost indifferent with respect to
the selected error measures.

Option premia surface, created by the Heston model with calibrated parameters, is not
consistent with market prices especially for OTM calls. This is partly because of the pre-set
weights and partly it might be caused by a low degree of freedom of the model.

When calibrating the LSV model by using combined approaches, we retrieved values of the
Hurst parameter H ∈ [0.5935, 0.6654]. This result is in line with several statistical studies
on long memory estimation for realized volatility time-series [e.g. Breidt et al. (1998)] and
implied values are only slightly lower than their time-series estimates [Sobotka (2014), FTSE
100 realized volatilities, 2004-2014]. All calibration errors are displayed in Table 4 and the
corresponding price surfaces are depicted in Figure 2 for a combined Genetic Algorithm and
in Figure 3 for a combined Simulated Annealing method respectively. We also illustrate errors
retrieved only by heuristic optimization methods in Figure 4. Unlike previous calibration
trials, the quality of market fit for the latter calibration is far from perfect.

Table 4. Calibration errors for weights w(1), w(2) and w(3).

Weights Model Error measure GA GA + LSQ SA SA + LSQ

w(1)

LSV model

AARE [%] 4.29 2.34 3.79 2.34

AAE [£] 7.33 3.27 5.52 3.27

MAE [£] 49.34 17.13 24.17 17.13

Heston model

AARE [%] 3.72 3.36 3.67 4.43

AAE [£] 6.54 5.85 7.83 6.22

MAE [£] 30.65 30.69 32.25 29.30

w(2)

LSV model

AARE [%] 4.61 2.34 3.01 2.34

AAE [£] 7.57 3.27 5.04 3.27

MAE [£] 35.74 17.13 25.84 17.13

Heston model

AARE [%] 3.10 3.35 3.78 3.52

AAE [£] 6.05 5.85 6.68 5.90

MAE [£] 30.84 30.69 31.09 30.68

w(3)

LSV model

AARE [%] 5.95 2.33 4.33 2.34

AAE [£] 12.34 3.27 9.02 3.27

MAE [£] 81.79 17.14 45.71 17.13

Heston model

AARE [%] 5.56 5.07 6.59 4.15

AAE [£] 7.16 6.42 9.89 8.20

MAE [£] 31.07 30.83 32.49 32.30

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]
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Empirical study - stability of parameters in time - AAPL call options

We also compared the models on Apple Inc. European call options traded on NYSE MKT
LLC. This time, however, we considered 21 data sets, i.e. close quotes from Apple Inc. option
market for all trading days in April 2015. Each data set included at least 113 options (at
most 212) and as in our previous experiment we considered ITM, ATM and OTM contracts
with moneyness ranging from 64.18% to 250.30% (at 30th April)6.

Following results from previous study, we calibrated models using only GA + LSQ
optimizers alongside weights w(3). As a main measure for model comparison we considered
weighted square errors. Namely, we compared both approaches with respect to the value
of utility function G(Θ?) (40) where Θ? denotes the calibrated parameter set for a specific
model7. Unlike in previous experiment, some data sets contained options with very low prices
where both models were prone to big relative errors. Therefore we utilized the weighted
error measure rather than AARE. However, one should not compare values of G(Θ?) across
different trading days - the total number of options might vary for each data set. To measure
stability of the calibrated parameters over time we employed two criteria - average absolute
difference and standard deviation of parameter values.

Obtained values G(Θ?) ranged from 223.85 to 1711.37 and 346.61 to 1718.20 for LSV and
Heston model respectively. For 20 out of 21 data sets Heston model was outperformed with
respect to the weighted criteria - only on 29th April we did not obtained a superior fit by LSV
approach with our settings (479.51 vs 528.85, parameters in Table 5). The lowest average
absolute error (2.78%) was retrieved by LSV model on a data set from 4th April (Heston
AARE - 3.37%, parameters in Table 5) and conversely the worst value thereof was reached
by Heston model on 20th April (5.77%). All results are conveniently listed in Table 6.

Average absolute differences alongside standard deviations of calibrated parameters are
shown in Table 7. In our experiment we managed to get similar values of the aforementioned
measures for both models with respect to diffusion parameters. Evolution of v0 and v̄ over
time is depicted by Figure 5. Calibration of LSV jump parameters, especially αJ and γJ ,
provided us with more varying values compared to both diffusion parameters and the Hurst
exponent. This might be due to the calibration procedure (global heuristic GA) and due to
the fact that one can retrieve similar skew of the volatility smile for different combinations of
jump parameters. This shortfall can be partially improved by incorporating penalizing term
in the utility function G(Θ) or by using local-search algorithm only (e.g. with initial guess
from previous day calibration).

[Figure 5 about here.]

6Other data sets possessed slightly narrower moneyness range.
7In fact, G(Θ?) represents weighted least squares of the market fit.
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Table 5. Calibrated parameters for two trading days.

LSV model

Date κ v0 v̄ ξ ρ λJ αJ γJ H

04-10-2015 42.5642 0.1804 0.0598 3.8964 −0.1343 0.0088 0.2545 0.1922 0.5130

04-29-2015 17.3866 0.0496 0.0611 4.0000 0.0111 0.0058 −1.0000 4.0000 0.5000

Heston model

Date κ v0 v̄ ξ ρ

04-10-2015 49.9995 0.1829 0.0632 2.3976 −0.0602

04-29-2015 20.8354 0.0569 0.0688 2.5694 −0.1425

Table 6. Calibration errors for weights w(3), Apple Inc. stock options.

LSV model Heston model

Date G(Θ?) AARE [%] AAE [£] MAE [£] G(Θ?) AARE [%] AAE [£] MAE [£]

04-01-2015 223.85 4.16 0.32 1.42 346.61 5.49 0.34 1.50

04-02-2015 954.71 5.49 0.28 2.19 1368.39 4.58 0.26 1.77

04-06-2015 441.27 3.01 0.31 2.56 546.32 4.05 0.31 2.15

04-07-2015 501.13 3.42 0.31 1.28 665.78 4.33 0.35 1.81

04-08-2015 285.26 3.77 0.24 1.26 355.21 4.42 0.26 1.30

04-09-2015 697.95 3.67 0.37 1.58 715.79 4.07 0.37 1.55

04-10-2015 313.85 2.78 0.24 1.97 421.97 3.37 0.23 1.52

04-13-2015 588.05 3.15 0.24 1.25 704.98 3.31 0.26 1.27

04-14-2015 329.33 3.70 0.19 1.06 423.08 3.91 0.22 1.05

04-15-2015 408.80 3.44 0.27 1.72 542.65 3.80 0.25 1.29

04-16-2015 363.29 3.83 0.22 1.25 464.46 4.20 0.23 1.35

04-17-2015 453.36 3.06 0.20 1.14 544.60 3.20 0.21 1.08

04-20-2015 844.47 5.40 0.25 1.97 931.10 5.77 0.27 1.62

04-21-2015 686.47 5.46 0.22 1.80 856.57 4.32 0.25 1.50

04-22-2015 1711.37 5.03 0.42 3.15 1718.20 5.13 0.38 2.12

04-23-2015 693.37 3.97 0.24 1.22 700.66 3.83 0.22 1.15

04-24-2015 998.50 3.19 0.23 1.56 1062.61 3.21 0.22 1.37

04-27-2015 306.37 3.32 0.30 2.07 484.13 2.96 0.28 1.43

04-28-2015 1043.10 4.25 0.34 3.15 1093.86 3.76 0.35 3.60

04-29-2015 528.85 5.25 0.29 2.27 479.51 3.91 0.29 2.63

04-30-2015 517.68 3.92 0.20 1.33 527.31 3.88 0.20 1.28

Table 7. Stability of calibrated parameters.

Model Measure κ v0 v̄ ξ ρ λJ αJ γJ H

LSV
average abs. difference 5.671 0.024 0.003 0.963 0.232 0.006 1.017 1.434 0.0596

standard deviation 11.110 0.049 0.003 0.976 0.294 0.006 1.331 1.459 0.084

Heston
average abs. difference 8.744 0.0344 0.003 0.921 0.142

standard deviation 10.702 0.052 0.003 0.957 0.188

4. Summary

In the first part of the article, an alternative formula for pricing European options under
a long memory stochastic volatility model was derived. The formula is in a semi-closed
form - one has to numerically evaluate a Fourier transform integral (19). For most of the
observed market parameters, truncation of the upper integral bound alongside an appropriate
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numerical procedure leads to satisfactory results both in terms of precision (see Figure 1 and
Table 1) and computational efficiency8.

In practice, one is typically interested in a real-data performance of a particular model.
To illustrate the quality of market fit we introduced two empirical studies, both of them
included a comparison with a popular approach, the Heston model. In the fist study we
utilized traded European call options on FTSE 100 index. Also four different optimization
routines and three sets of calibration weights were applied. Heuristic algorithms provided a
solution that was suboptimal but (especially in case of GA) the solution represented a good
initial guess for a local-search method. Since the optimization problem is non-convex, local
routines, as the trust region or Levenberg - Marquardt method, need to be initialized in the
vicinity of a (global) minimum.

The second study involved 21 data sets, i.e. Apple Inc. call options for all trading days
in April 2015. This time we applied GA algorithm and refined the solution by LSQ. On 20
days LSV approach outperformed Heston model having superior (weighted) residual sum
of squares as highlighted in Table 6. The inferior result on the data set from 29th April
(parameters in Table 5) were obtained after GA procedure provided initial guess that for
three parameters reached parameter bounds. The solution can be improved by providing
better initial guess (preferably not very close to parameter bounds) or by increasing bounds.
We increased an upper bound for ξ to 10 for both models9, Heston solution for 29th April
remained the same, unlike under LSV where parameters changed to:

κ v0 v̄ ξ ρ λJ αJ γJ H

18.3005 0.0544 0.0649 8.3030 −0.0753 0.0046 −1.0010 0.1477 0.5000

which provided G(Θ) = 473.61 and 4.15% AARE.

We managed to calibrate the long memory stochastic volatility model using combined
optimization approaches mostly with better error measures compared to the Heston model.
This result was expected, since the proposed model utilize more parameters and thus has
more degrees of freedom to fit the market. However, this might not be the case of all stochastic
volatility models as was shown by Duffie et al. (2000). The authors compare market fits
of diffusion models with jumps in the underlying only to results obtained by models with
jumps both in the underlying and volatility process. Although the latter approaches typically
include more parameters, it is harder to fit an observed option price surface using these models.

The proposed long memory stochastic volatility model might provide better market fit
compared to Heston model, however an increased complexity of the calibration problem is
the price one has to pay. To improve this issue one might derive a pricing formula using the
complex Fourier transform as suggested by Lewis (2000) for Heston model. Since calibrated
parameters do change over time, one might also be interested in a time-dependent version of
the LSV approach, either with piece-wise constant (Mikhailov and Nögel, 2003) or functional
parameters (Osajima, 2007).

8One can calibrate the model using heuristic algorithms that evaluate model prices very frequently.
9Under Heston model ξ represents volatility of volatility and thus one would intuitively expect that the increased upper
bound would not affect the solution. Under the LSV approach, however, vol. of vol. takes the following form, ξεH−1/2

and thus ξ might take greater values.
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16 Tomáš Sobotka & Jan Posṕı̌sil

Another important aspect, which is out of scope of this paper, would be a comparison of
the empirical and model distribution for the underlying. We commented on realized volatility
time-series estimates of H which are only slightly greater than implied values obtained by
calibration of the LSV approach (w.r.t. FTSE 100 index).

Acknowledgement

This work was supported by the GACR Grant 14-11559S Analysis of Fractional Stochastic
Volatility Models and their Grid Implementaton. Computational resources were provided by
the MetaCentrum under the program LM2010005 and the CERIT-SC under the program
Centre CERIT Scientific Cloud, part of the Operational Program Research and Development
for Innovations, Reg. no. CZ.1.05/3.2.00/08.0144.



August 5, 2015 15:21 Applied Mathematical Finance paper

REFERENCES 17

References

Asai, M., McAleer, M. and Medeiros, M. C. (2012) Modelling and forecasting noisy realized volatility, Comput. Statist.
Data Anal., 56(1), pp. 217–230.

Bates, D. S. (1996) Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options, Review
of Financial Studies, 9(1), pp. 69–107.

Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013) Long-memory processes, (Springer, Heidelberg) Probabilistic prop-
erties and statistical methods.

Bollerslev, T. and Mikkelsen, O. H. (1996) Modeling and pricing long memory in stock market volatility, Journal of
Econometrics, 73(1), pp. 151–184.

Breidt, F. J., Crato, N. and de Lima, P. (1998) The detection and estimation of long memory in stochastic volatility,
Journal of Econometrics, 83(1-2), pp. 325–348.
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Figure 1. Numerical prices of a European call option and values of option delta using (19) with finite upper integration
limits. Values correspond to the parameters of the contract: S0 = 1, K = 0.9, T = 1, r = 0.009, model parameters
κ = 2, v0 = 0.15, v̄ = 0.15, ξ = 0.5, ρ = −0.7, λJ = 1, αJ = −0.5, γJ = 1, H = 0.7. The computation is performed
with approximating factor ε = 10−5.
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(a) Long memory SV model

    

0.12

0.20

0.28

0.45

0.70

0.98

    

    

6450

6600

6725

6850

7100

0

5

10

15

20

25

30

Maturity [yrs]Strike [b.p.]

A
b
so
lu
te

R
el
a
ti
v
e
E
rr
o
rs

[%
]

    6300 6500 6600 6800
100

150

200

250

300

350

400

450

Strike [b.p.]

O
p
ti
o
n
p
re
m
iu
m

[£
]

ca 8.45 months to maturity

Data
Model prices

(b) Heston model

Figure 2. Calibration from FTSE 100 call option market using Genetic Algorithm combined with a local search method.

Displayed average relative errors were obtained for weights w
(3)
i .
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(a) Long memory SV model
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(b) Heston model

Figure 3. Calibration from FTSE 100 call option market using Simulated Annealing combined with a local search

method. Displayed average relative errors were obtained for weights w
(1)
i .
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Figure 4. Calibration from FTSE 100 call option market using Simulated Annealing. Displayed average relative errors

were obtained for weights w
(2)
i .
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Figure 5. Evolution of calibrated parameters v0, v̄ for both models.


