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LYUSTERNIK–GRAVES THEOREMS FOR THE SUM
OF A LIPSCHITZ FUNCTION AND A SET-VALUED MAPPING∗

R. CIBULKA† , A. L. DONTCHEV‡ , AND V. M. VELIOV§

Abstract. In a paper of 1950 Graves proved that for a function f acting between Banach spaces
and an interior point x̄ in its domain, if there exists a continuous linear mapping A which is surjective
and the Lipschitz modulus of the difference f −A at x̄ is sufficiently small, then f is (linearly) open
at x̄. This is an extension of the Banach open mapping principle from continuous linear mappings to
Lipschitz functions. A closely related result was obtained earlier by Lyusternik for smooth functions.
In this paper, we obtain Lyusternik–Graves theorems for mappings of the form f + F , where f is a
Lipschitz continuous function around x̄ and F is a set-valued mapping. Roughly, we give conditions
under which the mapping f + F is linearly open at x̄ for ȳ provided that for each element A of a
certain set of continuous linear operators the mapping f(x̄) + A(· − x̄) + F is linearly open at x̄ for
ȳ. In the case when F is the zero mapping, as corollaries we obtain the theorem of Graves as well as
open mapping theorems by Pourciau and Páles, and a constrained open mapping theorem by Cibulka
and Fabian. From the general result we also obtain a nonsmooth inverse function theorem proved
recently by Cibulka and Dontchev. Application to Nemytskii operators and a feasibility mapping in
control are presented.
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1. Introduction. Given a bounded linear mapping A acting between Banach
spaces X and Y , the Banach open mapping principle says that the following three
conditions are equivalent:

(i) A is surjective;
(ii) A is open at any x ∈ X, meaning that for every neighborhood U of x, AU is

a neighborhood of Ax;
(iii) there exists a constant τ > 0 such that d(x,A−1(y)) ≤ τ‖y − Ax‖ for all

x ∈ X, y ∈ Y .
The conditions (ii) and (iii) remain the same if one sets x = 0 in them. The

condition (iii) can also be written as

(1) ‖A−1‖− <∞,

where ‖ · ‖− denotes the inner norm. Recall that for a positively homogeneous set-
valued mapping H : Y →→ X the inner norm is defined as
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‖H‖− := sup
‖y‖≤1

inf
x∈H(y)

‖x‖

(with the usual convention that inf ∅ =∞ and, as we work with nonnegative quanti-
ties, that sup ∅ = 0).

In the statements above and further in the paper we use following notations.
When we write f : X → Y we mean that f is a (single-valued) function acting from X
to Y , while F : X →→ Y is a mapping from X to Y which may be set-valued. We restrict
our attention to Banach spaces X and Y with norms ‖ ·‖ although some of the results
are valid for more general (metric) spaces. In any space the closed ball with center a

and radius r is denoted by Br(a), the corresponding open ball is
o

Br(a), the closed unit

ball is B, and the open one is
o

B. The graph of F : X →→ Y is the set gphF =
{

(x, y) ∈
X×Y

∣∣ y ∈ F (x)
}

, the domain of F is domF =
{
x ∈ X

∣∣F (x) 6= ∅
}

, and the inverse

of F is the mapping y 7→ F−1(y) =
{
x ∈ X

∣∣ y ∈ F (x)
}

. We denote by d(x,C) the

distance from a point x ∈ X to a set C ⊂ X, that is, d(x,C) := inf{‖x− v‖
∣∣ v ∈ C}.

The radius of a set C is defined as rad(C) = infx∈C supy∈C ‖x− y‖. The excess from
a set C to a set D is e(C,D) = supx∈C d(x,D). The space of all linear bounded
mappings acting from X to Y equipped with the standard operator norm is denoted
by L(X,Y ). The Lipschitz modulus of a function f : X → Y at x̄ ∈ int dom f is
defined as

lip(f ; x̄) := lim sup
x,x′→x̄
x 6=x′

‖f(x)− f(x′)‖
‖x− x′‖

.

The condition lip(f ; x̄) <∞ means that f is Lipschitz continuous in a neighborhood
of x̄; more precisely, for any ` > lip(f ; x̄) there exists a neighborhood U of x̄ such
that f is Lipschitz continuous on U with the constant `.

Graves published in [17] a theorem whose (slightly updated) statement is as
follows.

Theorem 1 (Graves (1950)). Consider a function f : X → Y along with a point
x̄ ∈ int dom f . Suppose that there exist positive constants κ and µ with κµ < 1 and a
bounded linear mapping A : X → Y such that

(2) lip(f −A; x̄) ≤ µ and ‖A−1‖− ≤ κ.

Then for any sufficiently small ε > 0 one has

(3) f(x̄+ εB) ⊃ f(x̄) + (κ−1 − µ)εB.

Note that the linear and bounded mapping A in Theorem 1 may be not unique
but if there are two such mappings they should be “not too far” from each other; we
will go further with this observation in Theorem 6 given later in this section. For
f = A Theorem 1 yields the Banach open mapping principle; indeed, in that case x̄
could be any point in X and µ could be any positive real less than 1/κ. Furthermore,
if µ could be arbitrarily small, then A is the (unique) strict derivative of f at x̄.
Dontchev observed in [11] (see also [12, section 5.4]) that the proof of Graves in [17]
can be easily adjusted to imply a property of the function f stronger than the one in
(3); here we employ this property in the following form: for f : X → Y and x̄ ∈ dom f
there are positive λ and δ such that for each x ∈ Bδ(x̄) ∩ dom f and each ε ∈ (0, δ)
we have

(4) f
(
(x+ εB) ∩ dom f

)
⊃ [f(x) + λεB] ∩ Bδ(f(x̄)).
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Property (4) is known as linear openness of f around the point x̄. The linear openness
of f around x̄ is stronger than the (usual) openness of f at x̄ (for any neighborhood
of U of x̄, f(U) is a neighborhood of f(x̄)); these properties become equivalent for
bounded linear mappings.

Condition (iii) in the Banach open mapping principle means that the mapping A
is metrically regular. In general, a mapping F : X →→ Y is said to be metrically regular
at x̄ for ȳ when ȳ ∈ F (x̄), gphF is locally closed at (x̄, ȳ), meaning that there exists
a neighborhood W of (x̄, ȳ) such that the set gphF ∩W is closed in W , and there is
a constant τ ≥ 0 together with neighborhoods U of x̄ and V of ȳ such that

(5) d
(
x, F−1(y)

)
≤ τd

(
y, F (x)

)
for every (x, y) ∈ U × V.

The infimum of all constants τ ≥ 0 such that (5) holds for some neighborhoods U and
V is said to be the regularity modulus of F at x̄ for ȳ and is denoted by reg(F ; x̄ | ȳ).
In short, metric regularity of F at x̄ for ȳ is signaled by reg(F ; x̄ | ȳ) < ∞. In case
of a single-valued function f : X → Y we use the shorter notation reg(f ; x̄) instead
of reg(f ; x̄ |f(x̄)). In terms of metric regularity, the Banach open mapping principle
says that a mapping A ∈ L(X,Y ) is metrically regular at any point if and only if it
is surjective, or open at any point, in which case reg(A; 0) = ‖A−1‖−.

The property of linear openness of a function f defined in (4) can be extended to
a general set-valued mapping F : X →→ Y in the following way, with a slight abuse of
notation. A mapping F : X →→ Y is said to be linearly open at x̄ for ȳ when ȳ ∈ F (x̄),
gphF is locally closed at (x̄, ȳ), and there exist neighborhoods U of x̄ and V of ȳ and
a constant τ ≥ 0 such that

(6) F (x+ τεB) ⊃ [F (x) + εB] ∩ V for all x ∈ U and all ε > 0.

There is a third property, introduced in 1981 by Aubin and named after him,
which is equivalent to linear openness of the inverse. A mapping S : Y →→ X is said to
have the Aubin property at ȳ for x̄ whenever x̄ ∈ S(ȳ), gphS is locally closed at (ȳ, x̄),
and there exist a constant τ ≥ 0 and neighborhoods U of x̄ and V of ȳ such that for
every y, y′ ∈ V and every x′ ∈ S(y′) ∩ U there exists x ∈ S(y) with the property
‖x− x′‖ ≤ τ‖y − y′‖. In terms of the excess, this property becomes

(7) e(S(y′) ∩ U, S(y)) ≤ τ‖y − y′‖ for all y′, y ∈ V.

Starting with the groundbreaking works by Borwein and Zhuang [2] and Penot [24], it
is well documented in the literature that metric regularity of a mapping F at x̄ for ȳ
is equivalent to the Aubin property of F−1 at ȳ for x̄ as well as to the linear openness
of F at x̄ for ȳ; moreover, the infimum of all constants τ ≥ 0 such that either (6) or
(7) holds for some neighborhoods U and V equals reg(F ; x̄ | ȳ). Later in the paper
we use the known fact that if f : X → Y and x̄ ∈ dom f , then 1/ reg(f ; x̄) is equal
to the supremum of all constants λ ≥ 0 for which there is δ > 0 such that for each
x ∈ Bδ(x̄) ∩ dom f and each ε ∈ (0, δ) the inclusion (4) is satisfied. In this paper we
state the results in terms of metric regularity; clearly, they could be reformulated in
terms of the linear openness or the Aubin property.

We present next the following generalization of Theorem 1 for set-valued mappings
in Banach spaces, which is a particular case of [12, Theorem 5E.1].

Theorem 2 (extended Graves theorem). Consider a function f : X → Y , a
set-valued mapping F : X →→ Y , and a point (x̄, ȳ) ∈ gph(f + F ), along with positive
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constants κ and µ such that κµ < 1. Suppose that there exists a bounded linear
mapping A : X → Y such that

(8) lip(f −A; x̄) ≤ µ and reg(f(x̄) +A(· − x̄) + F (·); x̄ | ȳ) ≤ κ.

Then

reg(f + F ; x̄ | ȳ) ≤ (κ−1 − µ)−1.

Note that by (8) we have x̄ ∈ int dom f . If f is strictly Fréchet differentiable at
x̄ with derivative Df(x̄), then we can choose A = Df(x̄) in both Theorems 1 and 2
and then µ in (2) or (8) is just zero while κ could be any real number greater than or
equal to ‖[Df(x̄)]−1‖−. In the case of a function, that is, for F the zero mapping, we
obtain that f is metrically regular at x̄ if and only if the derivative Df(x̄) is surjective.
This corollary of Theorem 1 was linked in Dmitruk, Milyutin, and Osmolovskĭı [13] to
a theorem proved earlier by Lyusternik in [22], which involves differentiability in an
essential way. Metric regularity, linear openness, and the Aubin property, as well as
the theorems of Lyusternik and Graves and their role in modern analysis, have been
broadly covered in the monographs [3], [9], [12], and [25]. A recent survey on this
topic together with a rich bibliography can be found in [20].

More than two decades before his paper [17], Graves, together with Hildebrand,
published in [18, Theorem 3] a nonsmooth inverse function theorem, the following
slightly updated version of which is strikingly similar to Theorem 1.

Theorem 3 (Hildebrand and Graves (1927)). Consider a function f : X → X
along with a point x̄ ∈ int dom f . Suppose that there exist positive constants κ and µ
with κµ < 1 and a bounded linear mapping A : X → Y such that

(9) lip(f −A; x̄) ≤ µ and ‖A−1‖ ≤ κ.

Then for every ` > (κ−1 − µ)−1 there exist neighborhoods U of x̄ and V of f(x̄) such
that the mapping V 3 y 7→ f−1(y) ∩ U is a Lipschitz continuous function on V with
a Lipschitz constant `.

The property of the inverse f−1 displayed in Theorem 3 means that f−1 has
a Lipschitz continuous single-valued graphical localization. In general, a mapping
T : Y →→ X with (ȳ, x̄) ∈ gphT is said to have a single-valued graphical localization
around ȳ for x̄ when there are neighborhoods U of ȳ and V of x̄ such that the
mapping U 3 y 7→ T (x) ∩ V is single-valued on U . The property of existence of a
Lipschitz single-valued graphical localization of the inverse implies metric regularity
but is stronger than that and is called strong metric regularity. Generally, a mapping
F : X →→ Y is said to be strongly metrically regular at x̄ for ȳ if (x̄, ȳ) ∈ gphF and the
inverse F−1 has a Lipschitz continuous single-valued graphical localization around ȳ
for x̄. It turns out that a mapping F is strongly metrically regular at x̄ for ȳ if and only
if it is metrically regular at x̄ for ȳ and the inverse F−1 has a graphical localization
around ȳ for x̄ which is nowhere multivalued (see [12, Proposition 3G.1]); moreover, for
every single-valued localization s of F−1 around ȳ for x̄ one has lip(s; ȳ) = reg(F ; x̄ | ȳ).
We will utilize the latter result later in the paper.

The property of strong metric regularity was coined by Robinson in his seminal
paper [28], where he extended the paradigm of the inverse/implicit function theorem
to “generalized equations” defined as inclusions of the form

(10) f(x) + F (x) 3 0,
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where f is a function and F is possibly a set-valued mapping. The inclusion (10)
covers a large territory including systems of equations and inequalities, variational
inequalities, and equilibrium problems, as well as necessary optimality conditions in
nonlinear programming and optimal control. Robinson’s inverse function theorem is
discussed in detail in [12, Chapter 2]. We only mention here the following version of it
which is in the spirit of the Hildebrand–Graves theorem, Theorem 3, and is analogous
to the extended Graves theorem, Theorem 2.

Theorem 4 (extended Hildebrand–Graves theorem). Consider a function f :
X → Y and a set-valued mapping F : X →→ Y along with positive constants κ and µ
such that κµ < 1. Suppose that there exists a bounded linear mapping A : X → Y such
that lip(f − A; x̄) ≤ µ and the mapping f(x̄) + A(· − x̄) + F (·) is strongly metrically
regular at x̄ for ȳ with reg(f(x̄) +A(· − x̄) +F (·); x̄ | ȳ) ≤ κ. Then the mapping f +F
is strongly metrically regular at x̄ for ȳ; moreover,

reg(f + F ; x̄ | ȳ) ≤ (κ−1 − µ)−1.

The Hildebrand–Graves theorem, Theorem 3, is in sharp contrast with the clas-
sical (Dini) inverse function theorem in which differentiability plays a central role.
In fact, the Hildebrand–Graves theorem is about nonsmooth functions, an area of
analysis which emerged only in the 1970s. Among these developments is the inverse
function theorem of Clarke [7], based on the generalized Jacobian introduced by him
as a set-valued derivative-type approximation of a Lipschitz function. Recall that,
according to a theorem by Rademacher, any function f : Rn → Rd which is Lipschitz
continuous on an open set O is differentiable almost everywhere in O. Clarke’s gen-
eralized Jacobian of f at x̄ ∈ O, denoted in this paper by ∂̄f(x̄), is the convex hull of
all matrices obtained as limits of the usual Jacobians ∇f(xk) for sequences xk → x̄
such that f is differentiable at xk. Clarke’s inverse function theorem says that for a
function f : Rn → Rn, which is Lipschitz continuous around x̄ and such that every
matrix in ∂̄f(x̄) is nonsingular, the inverse f−1 has a Lipschitz continuous graphical
localization around f(x̄) for x̄.

A Graves-type theorem utilizing Clarke’s generalized Jacobian was obtained by
Pourciau [26], who proved that a function f : Rn → Rd, with d ≤ n, which is Lipschitz
continuous around x̄, is metrically regular at x̄ if every element of ∂̄f(x̄) has full rank.
Note that Clarke’s theorem provides only a sufficient condition for Lipschitz invert-
ibility, and in the same way Pourciau’s theorem gives a sufficient condition for metric
regularity. Recently, Izmailov extended Clarke’s theorem in [21, Theorem 1.3] to the
framework of the inclusion (10) covering a finite-dimensional version of Robinson’s
theorem. A generalization of Izmailov’s theorem to Banach spaces with a new proof
is presented in the recent paper [4]; in section 4 of this paper we give a new proof of
that generalization.

Observe that the Hildebrand–Graves theorem, Theorem 3, is quite different from
Clarke’s inverse function theorem, and the same is valid for the Graves theorem, The-
orem 1, versus Pourciau’s theorem. In Clarke’s theorem the role of a derivative-type
approximation is played by a set of matrices, which satisfies a certain condition. Páles
[23] generalized both Pourciau’s and Clarke’s theorems to Banach spaces by utilizing
Ioffe’s strict prederivative [19]. Given a function f : X → Y and a point x̄ ∈ int dom f ,
the strict prederivative of f at x̄ is defined as a positively homogeneous mapping
A : X →→ Y with the following property: for every ε > 0 there exists δ > 0 such that

(11) f(x′)∈f(x) +A(x′ − x) + ε‖x− x′‖B for every x′, x ∈ Bδ(x̄).
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For our purposes it is more convenient to work with a subset A of L(X,Y ) for which
condition (11) holds. In finite dimensions Clarke’s generalized Jacobian is an ex-
ample of such a set. Further, to state his theorem, Páles also used the measure of
non-compactness of A, defined by

χ(A) = inf

{
r > 0

∣∣ A ⊂⋃{
Br(A)

∣∣ A ∈ B}, B ⊂ A finite

}
.

When A is represented by Clarke’s generalized Jacobian this quantity is zero.
In his proof of the generalization of Pourciau’s theorem in [23, Theorem 2] Páles

used Michael’s selection theorem, Ekeland’s variational principle, and Kakutani’s fixed
point theorem. With minor updates in notation, Páles’ theorem is as follows (with
the convention that 0 · ∞ =∞).

Theorem 5 (Páles (1997)). Let f : X → Y have a strict prederivative A at x̄
which satisfies

χ(A) · sup
A∈A
‖A−1‖− < 1.

Then

reg(f ; x̄) ≤ (( sup
A∈A
‖A−1‖−)−1 − χ(A))−1.

A generalization of Theorem 5 for the case when f is defined only on a proper
closed convex subset of X rather than on the whole of X is given in [6].

At the end of this introductory section we present a generalization of Theorem 2,
a proof of which is given in section 2. Then we state our main result in Theorem 7,
whose proof is given in section 3. Throughout, for given x̄ ∈ X, ȳ ∈ Y , a set
T ⊂ L(X,Y ), and mappings A ∈ T , f : X → Y and F : X →→ Y , we utilize the
mapping

(12) GA : x 7→ f(x̄) +A(x− x̄) + F (x)

and denote

(13) ß := sup
A∈T

reg(GA; x̄ | ȳ).

Theorem 6. Consider a function f : X → Y , a set-valued mapping F : X →→ Y ,
and a point (x̄, ȳ) ∈ gph(f +F ) with x̄ ∈ int dom f . Consider also a set T in L(X,Y )
and a constant µ ≥ 0, and assume that the following conditions hold:

(A) there exists r > 0 such that for each u and v in Br(x̄) one can find A ∈ T
with the following property:

(14) ‖f(v)− f(u)−A(v − u)‖ ≤ µ‖v − u‖;

(D) there exist neighborhoods U of x̄, V of ȳ, and a positive real κ such that
for every A ∈ T the mapping G−1

A , where GA is defined in (12), has the
Aubin property at ȳ for x̄ with neighborhoods U and V , and a constant κ.
Furthermore, suppose that κ, µ, and T satisfy

(15) κ(µ+ rad T ) < 1.
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Then the mapping f + F is metrically regular at x̄ for ȳ; moreover,

reg(f + F ; x̄ | ȳ) ≤ (κ−1 − (µ+ rad T ))−1.

Theorem 2 is a special case of Theorem 6 when T consists of one element only.
A proof of this theorem is given in the next section.

Note that condition (D) requires the radii of the neighborhoods and the constant
of the Aubin property of G−1

A be the same for all A ∈ T , that is, the Aubin property
is supposed to be uniform with respect to A ∈ T . Another issue is the bound (15)
involving the radius of the set T which may be hard to satisfy. Both these difficulties
are taken care of in the following theorem, which is the main result of this paper.

Theorem 7. Consider a function f : X → Y , a set-valued mapping F : X →→ Y ,
and a point (x̄, ȳ) ∈ gph(f + F ) with x̄ ∈ int dom f . Consider also a convex subset T
of L(X,Y ) and a constant µ ≥ 0, and assume that condition (A) stated in Theorem 6
as well as the following two conditions hold:

(B) for every A ∈ T the mapping GA defined in (12) is metrically regular at x̄
for ȳ and, in addition, for ß defined in (13),

(16) ß
(
µ+ χ(T )

)
< 1;

(C) there are neighborhoods U of x̄ and V of ȳ such that the set G−1
A (v) ∩ U is

convex whenever v ∈ V and A ∈ T .
Then the mapping f + F is metrically regular at x̄ for ȳ; moreover,

(17) reg(f + F ; x̄ | ȳ) ≤ (ß−1 − (µ+ χ(T ))−1.

Note the similarity in (15) and (16) but also the difference between these con-
ditions when the set T is very large but compact. When F is the zero mapping,
Theorem 7 reduces to Páles’ theorem, Theorem 5, if T is identified with the strict
prederivative of f at x̄.

Both the Hildebrand–Graves theorem, Theorem 3, and the Graves theorem, The-
orem 1, as well as, as a matter of fact, the Lyusternik theorem [22], were proved
originally by using iterative procedures resembling the contraction mapping iteration.
Theorem 2 is a special case of [12, Theorem 5E.1] for which several proofs are pre-
sented in Chapter 5 of that book. In a recent paper [5] Cibulka and Fabian obtained
a result related to Theorem 7 but under different assumptions and with a different
proof using Ioffe’s criterion for regularity of mappings.

In section 2 we present first a proof of Theorem 6 and then some preparatory
material for the proof of Theorem 7—that proof is given in section 3. In section 4, we
show that the main results in [4] and [6] can be obtained as corollaries of Theorem 7.
In section 5 we consider the case when the function f is represented by a Nemytskii
operator and apply the abstract results obtained to derive a sufficient condition for
metric regularity of a feasibility mapping in control.

2. A proof of Theorem 6 and preparation for proving Theorem 7. We
start this section with the following proof.

Proof of Theorem 6. Let a and b be positive reals such that Ba(x̄) ⊂ U and
Bb(ȳ) ⊂ V . Without loss of generality, suppose that the set gphGA ∩ (Ba(x̄)×Bb(ȳ))
is closed for every A ∈ T . Denote µ′ = µ+ rad T and let κ′ > (κ−1 − µ′)−1. Choose
δ > 0 such that

κ(µ′ + δ) < 1 and κ′ > (κ−1 − (µ′ + δ))−1,
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and then find positive α and β such that

(18) 2κ′β + α < min{a, r} and β + (µ′ + δ)(2κ′β + α) < b.

Pick A ∈ T such that supB∈T ‖A − B‖ < rad T + δ. We will show that for every
(u, y) ∈ B2κ′β+α(x̄)× Bβ(ȳ) one has

(19) y − f(u) + f(x̄) +A(u− x̄) ∈ Bb(ȳ).

Let A′ ∈ T be such that (14) holds with v := x̄. Then

‖y − f(u) + f(x̄) +A(u− x̄)− ȳ‖ ≤ ‖y − ȳ‖+ ‖f(x̄)− f(u)−A(x̄− u)‖
≤ β + ‖f(x̄)− f(u)−A′(x̄− u)‖

+ ‖(A′ −A)(x̄− u)‖
≤ β + µ‖x̄− u‖+ (rad T + δ)‖x̄− u‖
≤ β + (µ′ + δ)(2κ′β + α) < b,

where we use the second inequality in (18).
Fix any two distinct y, y′ ∈ Bβ(ȳ) and any x′ ∈ (f + F )−1(y′) ∩ Bα(x̄). Put

ε := κ′‖y − y′‖. Then ε ≤ 2κ′β and hence, from the first inequality in (18), we have

Bε(x′) ⊂ B2κ′β+α(x̄) ⊂ Br(x̄) ∩ Ba(x̄).

Define the mapping

x 7→ ΦA(x) := G−1
A (y − f(x) + f(x̄) +A(x− x̄)).

By (19) both w := y−f(x′)+f(x̄)+A(x′− x̄) and w′ := y′−f(x′)+f(x̄)+A(x′− x̄)
are in Bb(ȳ). Utilizing condition (D) and noting that x′ ∈ G−1

A (w′) ∩ Ba(x̄), we get

d(x′,ΦA(x′)) = d
(
x′, G−1

A (w)
)
≤ e
(
G−1
A (w′) ∩ Ba(x̄), G−1

A (w)
)
≤ κ‖w − w′‖

= κ‖y − y′‖ < κ′‖y − y′‖(1− κ(µ′ + δ)) = ε(1− κ(µ′ + δ)).

Let u, v ∈ Bε(x′). By (19) both wu := y − f(u) + f(x̄) + A(u − x̄) and wv :=
y − f(v) + f(x̄) + A(v − x̄) are in Bb(ȳ). Now, let Ā be associated with u and v
according to condition (A). Then condition (D) gives us

e(ΦA(u) ∩ Bε(x′),ΦA(v)) = e
(
G−1
A (wu) ∩ Bε(x′), G−1

A (wv)
)

≤ e
(
G−1
A (wu) ∩ Ba(x̄), G−1

A (wv)
)
≤ κ‖wu − wv‖

≤ κ(‖f(v)− f(u)− Ā(v − u)‖+ ‖(Ā−A)(v − u)‖)
≤ κ(µ+ rad T + δ)‖v − u‖ = κ(µ′ + δ)‖u− v‖.

We need to also show that the set F := gph ΦA∩(Bε(x′)×Bε(x′)) is closed. Let (xn, zn)
be a sequence in F which converges to (x̃, z̃). Then clearly (x̃, z̃) ∈ Bε(x′) × Bε(x′).
Furthermore, by (19) we have

(zn, y − f(xn) + f(x̄) +A(xn − x̄)) ∈ gphGA ∩ (Bε(x′)× Bb(ȳ))

⊂ gphGA ∩ (Ba(x̄)× Bb(ȳ)) for each n.

Passing to the limit we get that (z̃, y − f(x̃) + f(x̄) + A(x̃ − x̄)) ∈ gphGA, that is,
(x̃, z̃) ∈ gph ΦA, which completes the proof of the closedness of F .
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We can now apply the contraction mapping theorem proved in [10] (see also [12,
Theorem 5E.2]) to obtain that there exists a fixed point x ∈ ΦA(x) ∩ Bε(x′), that is,
x ∈ (f + F )−1(y) with ‖x − x′‖ ≤ κ′‖y − y′‖. This means that (f + F )−1 has the
Aubin property at ȳ for x̄ with constant κ′, hence f +F is metrically regular at x̄ for
ȳ with constant κ′.

The proof of Theorem 7 presented in the next section uses extended versions of the
theorem of Graves stated in [12, Theorem 5G.3] and [12, Theorem 5E.5]. Specifically,
in Lemma 12 we prove that the mapping G−1

A has the Aubin property with the same
constant and neighborhoods for all A ∈ B, where B is a compact convex subset of
A. Then in Lemma 13 we apply Michael’s selection theorem to a mapping H defined
as the composition of G−1

A and the “nonlinear part” of f . By applying Gliksberg’s
extension of Kakutani’s fixed point theorem, in Lemma 14 we show that a composition
of certain mapping with this selection has a fixed point. Then in the last part of the
proof we show that the mapping (f + F )−1 has the Aubin property, by constructing
a sequence of points xn and operators An ∈ B that converge to a limit which gives us
the desired property.

We present next some auxiliary results used in the proof of Theorem 7. In that
proof we utilize the property of metric regularity on a set. Given nonempty sets
U ⊂ X and V ⊂ Y and a constant κ ≥ 0, a set-valued mapping Φ : X →→ Y is said
to be metrically regular on U for V with constant κ when the set gphΦ ∩ (U × V ) is
closed and

(20) d
(
x, Φ−1(y)

)
≤ κd

(
y, Φ(x) ∩ V

)
for all (x, y) ∈ U × V.

The link between the properties of metric regularity on sets and at points is given
by the following proposition.

Proposition 8 (see [12, Proposition 5H.1]). For positive scalars a, b, and κ
and a point (x̄, ȳ) ∈ X × Y consider a mapping Φ : X →→ Y with ȳ ∈ Φ(x̄) which is
metrically regular on Ba(x̄) for Bb(ȳ) with constant κ. Then Φ is metrically regular
at x̄ for ȳ with constant κ.

The following theorem is a part of [12, Theorem 5G.3] and concerns perturbed
metric regularity.

Theorem 9. Let a, b, and κ be positive scalars such that F is metrically regular
at x̄ for ȳ with neighborhoods Ba(x̄) and Bb(ȳ) and constant κ. Let L > 0 be such that
κL < 1 and let κ′ > κ/(1− κL). Then for every positive α and β such that

(21) α ≤ a/2, 2Lα+ 2β ≤ b and 2κ′β ≤ α

and for every function g : X → Y satisfying

(22) ‖g(x̄)‖ ≤ β and ‖g(x)− g(x′)‖ ≤ L‖x− x′‖ for every x, x′ ∈ B2α(x̄),

the mapping g + F has the following property: for every y, y′ ∈ Bβ(ȳ) and every
x ∈ (g + F )−1(y) ∩ Bα(x̄) there exists x′ ∈ (g + F )−1(y′) such that

‖x− x′‖ ≤ κ′‖y − y′‖.

In the original statement of [12, Theorem 5G.3] it is assumed that in (21) one
has Lα + 2β ≤ b and that the Lipschitz estimate in (22) holds for all x, x′ ∈ Bα(x̄).
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It turns out that there is a glitch in the proof1 which can be easily fixed: α should
be replaced by 2α and then in the proof one has Br(x) ⊂ B2α(x̄) ⊂ Ba(x̄), where
r := κ′‖y − y′‖.

In the proof of Theorem 7 we will also employ the following corollary of [12,
Theorem 5E.5].

Theorem 10. Let X, Y , and P be Banach spaces, and let g : P ×X → Y be a
function defined on a neighborhood of a point (p̄, x̄) ∈ P×X such that g(p̄, x̄) = 0. For
a mapping Φ : X →→ Y with Φ(x̄) 3 0 consider the generalized equation g(p, x)+Φ(x) 3
0 with the associated solution mapping

P 3 p 7→ S(p) = {x ∈ X
∣∣ g(p, x) + Φ(x) 3 0}.

Suppose that
(i) there is a constant ν > 0 along with neighborhoods Q of p̄ and U of x̄ such

that

‖g(p, x)− g(p, x′)‖ ≤ ν‖x− x′‖ whenever (p, x), (p, x′) ∈ Q× U ;

(ii) there is a constant γ > 0 along with neighborhoods Q′ of p̄ and U ′ of x̄ such
that

‖g(p, x)− g(p′, x)‖ ≤ γ‖p− p′‖ whenever (p, x), (p′, x) ∈ Q′ × U ′;

(iii) Φ is metrically regular at x̄ for 0 with reg(Φ; x̄ |0) < κ < 1/ν.
Then there are neighborhoods Q′′ of p̄ and U ′′ of x̄ such that

S(p) ∩ U ′′ ⊂ S(p′) +
κγ

1− κν
‖p− p′‖B for every p, p′ ∈ Q′′.

Finally, in the proof of Theorem 7 we utilize the following observation which we
state as a lemma.

Lemma 11. Let T : X →→ Y , v ∈ Y , and r > 0 be such that the mapping Φ1 :

x 7→ T (x) ∩
o

Br(v) is inner semicontinuous in its domain and the mapping Φ2 : x 7→
T (x) ∩ Br(v) is convex-valued. Then Φ2 is inner semicontinuous on domΦ1.

Proof. Let x0 ∈ domΦ1 and y0 ∈ Φ2(x0), and let V be an open neighborhood of
y0 in Y . First, let ‖y0 − v‖ < r. The inner semicontinuity of Φ1 yields the existence

of an open neighborhood U of x0 such that ∅ 6= T (x) ∩
o

Br(v) ∩ V ⊂ Φ2(x) ∩ V for all

x ∈ U . Now, let ‖y0−v‖ = r. Pick any ŷ ∈ T (x0)∩
o

Br(v). Since the set T (x0)∩Br(v)

is convex and contains both ŷ and y0 there exists ỹ ∈ T (x0) ∩
o

Br(v)∩V . Hence again

there exists an open neighborhood U of x0 such that ∅ 6= T (x)∩
o

Br(v)∩V ⊂ Φ2(x)∩V
for all x ∈ U and we are done.

3. Proof of Theorem 7. Without loss of generality, let ȳ = 0. Let r > 0 and
ß be as in the statement of the theorem. By assumption (B), one can choose positive
constants ε and ` such that

(23) ε > µ+ χ(T ), ` > ß and `ε < 1.

1Many thanks to Jakob Preininger from Technical University of Vienna who discovered this
mistake.



LYUSTERNIK–GRAVES THEOREMS 3283

By the definition of the measure of noncompactness χ(T ), there exists a finite set
A ⊂ L(X,Y ) such that

A ⊂ T ⊂ A+ (ε− µ)B.

Denote by B the convex hull of A. Since A is finite and T is convex, the set B is a
compact convex subset of T . Choose ß′ such that ` > ß′ > ß and let γ > 0 satisfy

(24) γß′ < 1 and
ß′

1− γß′
< `− γ.

Our first lemma shows that under the current assumptions, the Aubin property of
the mapping G−1

A is actually uniform in A ∈ B, a property we required in Theorem 6.

Lemma 12. There exists β > 0 such that for every A ∈ B the mapping GA
defined in (12) has the following property: for every v, v′ ∈ Bβ(0) and every u ∈
G−1
A (v) ∩ B2`β(x̄) there exists u′ ∈ G−1

A (v′) such that

‖u′ − u‖ ≤ (`− γ)‖v′ − v‖.

Proof. We show first that for each Ā ∈ B there is βĀ > 0 such that for each
A ∈ Bγ(Ā) one has that for every v, v′ ∈ BβĀ(0) and every u ∈ G−1

A (v) ∩ B2`βĀ(x̄)

there exists u′ ∈ G−1
A (v′) such that

‖u′ − u‖ ≤ (`− γ)‖v′ − v‖.

Choose any Ā ∈ B. By the assumed metric regularity of GĀ in (B), there exist
a > 0 and b > 0 (depending on Ā) such that GĀ is metrically regular at x̄ for 0 with
neighborhoods Ba(x̄) and Bb(0) and constant ß′. Pick any A ∈ Bγ(Ā) and define the
function

g(u) := (A− Ā)(u− x̄), u ∈ X.

We have GA = GĀ + g, g(x̄) = 0, and also

‖g(x)− g(x′)‖ = ‖(A− Ā)(x− x′)‖ ≤ γ‖x− x′‖ for any x, x′ ∈ X.

We apply Theorem 9 with F = GĀ, ȳ = 0, κ := ß′, κ′ := ` − γ, and L := γ. From
(24) we get

κL = ß′γ < 1 and κ′ = `− γ > ß′/(1− ß′γ) = κ/(1− κL).

Moreover, (22) is fulfilled for any α > 0 and β > 0. Hence, the inequalities in (21)
hold when one takes

β = βĀ := min

{
a

4`
,

b

2(2γ`+ 1)

}
, α = αĀ := 2`βĀ.

Then Theorem 9 implies the desired property of the mapping GA=GĀ + g.

Since B is compact, from the open covering
⋃
A∈B

o

Bγ(A) of B we can choose a

finite subcovering with open balls
o

Bγ(Āi) for some subset {Ā1, . . . , Āk} of B, say,
with cardinality k. Taking the corresponding βĀi > 0 for each i ∈ {1, . . . , k}, then
β := mini∈{1,...,k} βĀi is the desired quantity.
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Continuing with the proof, from condition (A) and the inclusion T ⊂ A+(ε− µ)B
we obtain

(25)
for every u, v ∈ Br(x̄) there is A ∈ B such that
‖f(v)− f(u)−A(v − u)‖ ≤ ε‖v − u‖.

Let c := supA∈B ‖A‖; then, from (25),

‖f(v)− f(u)‖ ≤ (c+ ε)‖v − u‖ for every u, v ∈ Br(x̄),

that is, f is Lipschitz continuous on Br(x̄) with a Lipschitz constant c+ ε. Clearly, in
Lemma 12 we can make β smaller without changing anything; let β > 0 be such that

(26) B2`β(x̄)× Bβ(0) ⊂ U × V,

where U and V are the neighborhoods in condition (C), and also

the set
(
B2`β(x̄)× Bβ(−f(x̄))

)
∩ gphF is closed.

That the latter is possible comes from the assumed metric regularity in (B) according
to which the graph of each GA is locally closed at (x̄, 0), hence gphF is locally closed
at (x̄,−f(x̄)). Pick δ ∈ (0, r/7) such that

(27) 6δ <
β

(1/`+ 3c)
.

Clearly, 4δ < `β. From (23),

(28) b := (1− ε`)δ < δ.

For any y ∈ B3εb(0), w ∈ B3δ(x̄), ũ ∈ B8δ(x̄), and A ∈ B the relations (27) and (28)
yield that

‖y − f(w) + f(x̄) +A(w − ũ)‖ ≤ ‖y‖+ ‖f(w)− f(x̄)‖+ ‖A(w − x̄)‖+ ‖A(ũ− x̄)‖
≤ 3εb+ (ε+ c)‖w − x̄‖+ c‖w − x̄‖+ c‖ũ− x̄‖
≤ 3εb+ (ε+ c)3δ + 11cδ < δ(6ε+ 14c) < 6δ(1/`+ 3c)

< β.

Hence, for each (y, w, ũ, A) ∈ B3εb(0)× B3δ(x̄)× B8δ(x̄)× B we have

(29) y − f(w) + f(x̄) +A(w − ũ) ∈ Bβ(0).

The next step of the proof is the following lemma.

Lemma 13. For every x ∈ B3δ(x̄), every y ∈ Bεb(0), and every y′ ∈ B3εb(0) such
that x ∈ (f + F )−1(y′) the mapping

(30) B 3 A 7→ H(A) := G−1
A

(
y − f(x) + f(x̄) +A(x− x̄)

)
∩ B`‖y−y′‖(x)

has a continuous selection on B.

Proof. If y = y′, then the claim holds trivially since H(A) = {x} for any A ∈ B.
Assume that y 6= y′ and along with H consider the mapping

B 3 A 7→ H̃(A) := G−1
A

(
y − f(x) + f(x̄) +A(x− x̄)

)
∩

o

B`‖y−y′‖(x).
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We will show first that H has closed convex values and domH = dom H̃ = B. Choose
any A ∈ B. Let

v := y′ − f(x) + f(x̄) +A(x− x̄) and v′ := y − f(x) + f(x̄) +A(x− x̄).

Utilizing (29) we obtain v, v′ ∈ Bβ(0). Since

B ⊂ T and B`‖y−y′‖(x) ⊂ B4`εb+3δ(x̄) ⊂ B8δ(x̄) ⊂ B2β`(x̄),

condition (C) together with (26) implies that the set H(A) = G−1
A (v′)∩B`‖y−y′‖(x) is

convex. Note that, by (27), 3δ<`β; hence x ∈ G−1
A (v) ∩ B`β(x̄). Applying Lemma 12

with u := x, we obtain that there exists u ∈ G−1
A (v′) such that ‖u−x‖ ≤ (`−γ)‖y−y′‖,

that is,

u ∈ G−1
A

(
y − f(x) + f(x̄) +A(x− x̄)

)
∩

o

B`‖y−y′‖(x) = H̃(A) ⊂ H(A).

To prove that the set H(A) is closed, let {un} be any sequence in H(A) converging
to u ∈ X. Then, by (29), for each natural n we have(

un, y − f(x)−A(un − x)
)
∈
(
B`‖y−y′‖(x)× Bβ(−f(x̄))

)
∩ gphF

⊂
(
B2β`(x̄)× Bβ(−f(x̄))

)
∩ gphF.

Since in the last displayed formula the set on the right is closed, we conclude that(
u, y − f(x)−A(u− x)

)
∈
(
B`‖y−y′‖(x)× Bβ(−f(x̄))

)
∩ gphF.

Thus u ∈ H(A).
We show next that H is inner semicontinuous on B. In view of Lemma 11 it is

sufficient to show that the mapping H̃ is inner semicontinuous on B. Let Ā ∈ B, let
ū ∈ H̃(Ā), and define the mappings

Φ(u) := f(x)− y + Ā(u− x) + F (u), u ∈ X,

and

g(A, u) := (A− Ā)(u− x), (A, u) ∈ L(X,Y )×X.

Then

Φ(ū) 3 0 and g(Ā, ū) = 0.

Choose a positive ν such that ν` < 1. Then for every choice of A ∈ Bν(Ā) and u,
u′ ∈ X we have

‖g(A, u)− g(A, u′)‖ ≤ ‖A− Ā‖‖u− u′‖ ≤ ν‖u− u′‖.

Moreover, for every A, A′ ∈ L(X,Y ) and every u ∈ B3δ(x̄), we get

‖g(A, u)− g(A′, u)‖ ≤ ‖A−A′‖‖u− x‖ ≤ 6δ‖A−A′‖.

Let us now show that Φ is metrically regular at ū for 0 with constant `− γ. In view
of Proposition 8, it suffices to prove that

(31) d
(
u, Φ−1(w)

)
≤ (`− γ)d

(
w,Φ(u) ∩ Bεb(0)

)
for all (u,w) ∈ Bδ(ū)× Bεb(0)
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and that
(
Bδ(ū)×Bεb(0)

)
∩gphΦ is closed. Since ‖ū−x‖ < `‖y−y′‖ ≤ 4ε`b < 4b < 4δ,

we have ‖ū− x̄‖ < 4δ + 3δ = 7δ. Hence, taking into account that 4δ < β`, we get

(32) Bδ(ū)× Bεb(0) ⊂ B8δ(x̄)× Bδ/`(0) ⊂B2`β(x̄)× Bβ/4(0).

Note that (u,w) ∈ gphΦ if and only if
(
u,w+y−f(x)+Ā(x−u)

)
∈ gphF. Moreover,

if (u,w) ∈ Bδ(ū) × Bεb(0), then the combination of (32) and (29) with y := w + y,
w := x, ũ := u, and A = Ā implies that(

u,w + y − f(x) + Ā(x− u)
)
∈ B2`β(x̄)× Bβ(−f(x̄)).

Since the set
(
B2`β(x̄)×Bβ(−f(x̄))

)
∩ gphF is closed, so is

(
Bδ(ū)×Bεb(0)

)
∩ gphΦ.

Fix (u,w) ∈ Bδ(ū)× Bεb(0). If Φ(u) ∩ Bεb(0) = ∅, then (31) holds automatically.
If not, pick w′ ∈ Φ(u) ∩ Bεb(0). Let

v := w′ + y − f(x) + f(x̄) + Ā(x− x̄) and v′ := w + y − f(x) + f(x̄) + Ā(x− x̄).

By (29) with w := x, ũ := x̄, A := Ā, and y replaced by w+y and w′+y, respectively,
we have v, v′ ∈ Bβ(0). Since w′ ∈ Φ(u), we obtain u ∈ G−1

Ā
(v). Moreover, (32)

implies that u ∈ B2`β(x̄). Lemma 12 then can be applied, yielding the existence of
u′ ∈ G−1

Ā
(v′) such that

‖u− u′‖ ≤ (`− γ)‖v − v′‖ = (`− γ)‖w − w′‖.

Then w ∈ Φ(u′) and thus

d
(
u, Φ−1(w)

)
≤ ‖u− u′‖ ≤ (`− γ)‖w − w′‖.

Since w′ ∈ Φ(u) ∩ Bεb(0) was arbitrarily chosen, we get (31). Hence, Φ is metrically
regular at ū for 0 with constant `− γ.

We can now apply Theorem 10 with P := L(X,Y ), κ := `, and γ := 6δ obtaining
that there exists γ′ > 0 such that for each A ∈ B with ‖A−Ā‖ < γ′ there is u(A) ∈ X
satisfying

g(A, u(A)) + Φ(u(A)) 3 0 and ‖u(A)− ū‖ ≤ 6δ`

1− ν`
‖A− Ā‖.

Note that g(A, u) + Φ(u) = GA(u) − y + f(x) − f(x̄) − A(x − x̄) for any (u,A) ∈
X × L(X,Y ). Since ‖ū− x‖ < `‖y − y′‖, making γ′ smaller if necessary, we obtain

u(A) ∈ G−1
A

(
y − f(x) + f(x̄) +A(x− x̄)

)
∩

o

B`‖y−y′‖(x) = H̃(A)

whenever ‖A− Ā‖ < γ′. This proves the inner semicontinuity of the mapping H̃ at Ā

which was chosen arbitrarily in B; thus, H̃ is inner semicontinuous on B, and hence
so is H.

We showed that the mapping H is inner semicontinuous and has nonempty closed
convex values on B. Michael’s selection theorem (see, e.g., [14]) yields the existence
of the desired continuous selection.

Choose any x ∈ B3δ(x̄), y ∈ Bεb(0), and y′ ∈ B3εb(0) such that x ∈ (f +F )−1(y′).
From Lemma 13 we obtain that the mapping B 3 A 7→ H(A)−x, where H is as in (30),
has a continuous selection in B. Denote this selection by ϕx,y,y′ . Keep x ∈ B3δ(x̄)
fixed and define the following set-valued mapping acting from X into the subsets of B:

(33) X 3 h 7→ Ψx(h) :=
{
A ∈ B

∣∣ ‖f(x+ h)− f(x)−Ah‖ ≤ ε‖h‖
}
.
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Lemma 14. Given x ∈ B3δ(x̄), y ∈ Bεb(0), and y′ ∈ B3εb(0) such that x ∈
(f + F )−1(y′), the composition mapping Ψx ◦ ϕx,y,y′ acting from B into itself has a
fixed point.

Proof. Since f is continuous, the mapping Ψx has closed graph. Note that
ϕx,y,y′(B) ⊂ dom Ψx. Indeed, fix any A ∈ B. Then there exists x̃ ∈ B`‖y−y′‖(x)
such that ϕx,y,y′(A) = x̃− x. Hence ‖ϕx,y,y′(A)‖ ≤ `‖y − y′‖ and therefore

‖x+ ϕx,y,y′(A)− x̄‖ = ‖x− x̄‖+ `‖y − y′‖ ≤ 3δ + 4ε`b < 7δ < r.

Then (25) with v := x+ϕx,y,y′(A) and u := x implies that Ψx(ϕx,y,y′(A)) 6= ∅. Clearly,
the set Ψx(ϕx,y,y′(A)) is closed and convex. Therefore, the set-valued mapping B 3
A 7→ Ψx(ϕx,y,y′(A)) ∈ B has nonempty closed convex values and also a closed graph
(this last property holds because Ψx has a closed graph and ϕx,y,y′ is continuous).
Since B is compact and convex, we can apply Gliksberg’s extension of the Kakutani
fixed point theorem given in [16] to obtain the claimed property.

Final part of the proof of Theorem 7. In the last part of the proof we will
show that the mapping (f +F )−1 has the Aubin property at 0 for x̄; then, according
to the equivalence of this last property with metric regularity of f + F at x̄ for 0, we
will arrive at the desired result. Specifically, we will show that for any y, y′ ∈ Bεb(0)
and any x′ ∈ (f + F )−1(y′) ∩ Bδ(x̄), there exists x ∈ (f + F )−1(y) such that

(34) ‖x− x′‖ ≤ `

1− ε`
‖y − y′‖.

Taking into account the choice of the constants ` and ε, this will give us (17).
To show (34), we construct a sequence {xn} in X and a sequence {An} in B that

satisfy for each nonnegative integer n the following relations:
(i) ‖xn − x̄‖ < 3δ;

(ii) ‖xn+1 − xn‖ ≤ (ε`)n‖x1 − x0‖;
(iii) ‖f(xn+1)− f(xn)−An(xn+1 − xn)‖ ≤ ε‖xn+1 − xn‖;
(iv) f(xn) +An(xn+1 − xn) + F (xn+1) 3 y.
We use induction. Let x0 := x′. Since x0 ∈ (f + F )−1(y′) ∩ Bδ(x̄), by Lemma 14

the mapping Ψx0 ◦ ϕx0,y,y′ has a fixed point A0 ∈ B. Set x1 := x0 + ϕx0,y,y′(A0).
Then A0 = Ψx0(x1 − x0), hence

‖f(x1)− f(x0)−A0(x1 − x0)‖ ≤ ε‖x1 − x0‖,

which is (iii) with n = 0. Note that (i) and (ii) with n = 0 hold trivially. Further,
from

x1 = x0 + ϕx0,y,y′(A0) ∈ G−1
A0

(
y − f(x0) + f(x̄) +A0(x0 − x̄)

)
∩ B`‖y−y′‖(x0),

we obtain (iv) for n = 0. Moreover, we have

(35) ‖x1 − x0‖ ≤ `‖y − y′‖ ≤ 2`εb < 2b < 2δ.

Hence ‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖ < 3δ, which is (i) with n = 1.
Further, suppose that for a positive integer N we have found x0, x1, . . . , xN and

A0, . . . , AN−1 that satisfy conditions (i)–(iv) for all n < N and (i) with n = N .
By (i) with n = N we have xN ∈ B3δ(x̄). By (iv) for n = N − 1, we obtain

y′N := y + f(xN )− f(xN−1)−AN−1(xN − xN−1) ∈ f(xN ) + F (xN ).
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Thus xN ∈ (f +F )−1(y′N )∩B3δ(x̄). Combining (ii) and (iii) for n = N − 1 with (35)
we get

‖y′N‖ ≤ ‖y‖+ ‖f(xN )− f(xN−1)−AN−1(xN − xN−1)‖ ≤ εb+ ε‖xN − xN−1‖
≤ εb+ ε‖x1 − x0‖ < εb+ 2εb = 3εb.

From Lemma 14 we conclude that the mapping ΨxN ◦ ϕxN ,y,y′N has a fixed point in
B; denote it by AN . Set xN+1 := xN +ϕxN ,y,y′N (AN ). Then AN = ΨxN (xN+1−xN ),
hence

‖f(xN+1)− f(xN )−AN (xN+1 − xN )‖ ≤ ε‖xN+1 − xN‖,

which is (iii) for n = N . Note that

xN+1 = xN + ϕxN ,y,y′N (AN )

= G−1
AN

(
y − f(xN ) + f(x̄) +AN (xN − x̄)

)
∩ B`‖y−y′N‖(xN ),

hence (iv) is satisfied for n = N . Noting that (iii) and (ii) with n = N − 1 imply

‖xN+1 − xN‖ ≤ `‖y − y′N‖ = `‖f(xN )− f(xN−1)−AN−1(xN − xN−1)‖
≤ ε`‖xN − xN−1‖ ≤ ε`(ε`)N−1‖x1 − x0‖,

we obtain that (ii) holds for n = N . By (35) and (28), we also have

‖xN+1 − x̄‖ ≤ ‖x0 − x̄‖+

N∑
n=0

‖xn+1 − xn‖ < δ +
‖x1 − x0‖

1− `ε
≤ δ +

2`εb

1− `ε
= δ + 2`εδ < 3δ.

We arrive at (i) for n = N + 1. The induction step is complete.
Since x′ = x0, the combination of (ii) and (35) implies that, for each natural n,

(36) ‖xn − x′‖ ≤
n−1∑
i=0

‖xi+1 − xi‖ ≤
‖x1 − x′‖

1− `ε
≤ `

1− `ε
‖y′ − y‖.

Since {xn} is a Cauchy sequence, it converges to some x ∈ X. From (iv), (i), and
(29) we get for each index n that(

xn+1, y − f(xn) +An(xn − xn+1)
)
∈
(
B3δ(x̄)× Bβ(−f(x̄))

)
∩ gphF

⊂
(
B2`β(x̄)× Bβ(−f(x̄))

)
∩ gphF.

Since the last set is closed, the continuity of f and the boundedness of the set B where
An belong, imply that, passing to the limit, we have (x, y − f(x)) ∈ gphF , that is,
y ∈ f(x) + F (x). Taking the limit with n in (36) we complete the proof of (34).

4. Two corollaries. In this section we will show that the main results of the
recent papers [4] and [6] can be derived from Theorem 7. The following theorem is a
slightly improved version of the main result in [4] also including an estimate for the
regularity modulus.

Theorem 15. Consider a function f : X → Y , a set-valued mapping F : X →→ Y ,
and a point (x̄, ȳ) ∈ gph(f + F ) with x̄ ∈ int dom f and suppose that for a convex
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subset T of L(X,Y ) and a constant µ ≥ 0 the assumptions (A) in Theorem 6 and (B)
in Theorem 7 are satisfied. In addition, suppose that assumption (B) is augmented
by the condition that for every A ∈ T the mapping GA in (12) is strongly metrically
regular at x̄ for ȳ. Then the mapping f + F is strongly metrically regular at x̄ for ȳ;
moreover, its regularity modulus satisfies (17).

Proof. On the assumptions of Theorem 15, there are positive constants ε and `
such that (23) holds. Find A = {A1, A2, . . . , Ak} ⊂ T such that T ⊂ A + (ε − µ)B.
For each i ∈ {1, 2, . . . , k}, the strong metric regularity of GAi yields the existence of
βi > 0 such that the mapping Bβi(ȳ) 3 w 7→ G−1

Ai
(w) ∩ B`βi(x̄) is single-valued and

Lipschitz continuous with the constant `. Let β := minβi.
We will now show that for some b > 0 the set G−1

A (v)∩Bb(x̄) is at most singleton
for each v ∈ Bb(ȳ) and each A ∈ T . Since T is bounded, there is b ∈ (0, βmin{1, `})
such that

v + (A′ −A′′)(u− x̄) ∈ Bβ(ȳ) whenever (u, v,A′, A′′) ∈ Bb(x̄)× Bb(ȳ)×A× T .

Fix arbitrary v ∈ Bb(ȳ) and A ∈ T . Suppose that there are two distinct u, u′ ∈
G−1
A (v)∩Bb(x̄). Pick Ai ∈ A with ‖Ai−A‖ ≤ ε−µ. Then both w := v+(Ai−A)(u−x̄)

and w′ := v + (Ai −A)(u′ − x̄) are in Bβ(ȳ) ⊂ Bβi(ȳ) and also u ∈ G−1
Ai

(w) ∩ B`βi(x̄)

and u′ ∈ G−1
Ai

(w′) ∩ B`βi(x̄). Thus

0 < ‖u− u′‖ ≤ `‖w − w′‖ = `‖(Ai −A)(u− u′)‖ ≤ `(ε− µ)‖u− u′‖ < ‖u− u′‖,

which is impossible. Hence G−1
A (v)∩Bb(x̄) is at most singleton. Thus, all assumptions

of Theorem 7 hold, hence the mapping f + F is metrically regular at x̄ for ȳ with
regularity modulus satisfying (17).

Since

κ := `/(1− ε`) > ß/(1− (µ+ χ(T ))ß),

for any sufficiently small γ > 0 the mapping

Bγ(ȳ) 3 y 7→ σγ(y) := (f + F )−1(y) ∩ Bκγ(x̄)

is a non-empty-valued localization of (f + F )−1 around ȳ for x̄. But f is continuous
and T is bounded, hence there is γ ∈

(
0, κ−1 min{r, `β}

)
, where r is the constant

from (A), such that

(37) y− f(x) + f(x̄) +A(x− x̄) ∈ Bβ(ȳ) for each (x, y,A) ∈ Bκγ(x̄)×Bγ(ȳ)×T .

It suffices to show that σγ is nowhere multivalued on Bγ(ȳ); then, from [12, Proposition
3G.1], f + F is in fact strongly metrically regular at x̄ for ȳ.

Suppose that there exists y ∈ Bγ(ȳ) for which there are two distinct x′, x′′ ∈ σγ(y).
Since κγ < r, assumption (A) yields the existence of A ∈ T such that

‖f(x′)− f(x′′)−A(x′ − x′′)‖ ≤ µ‖x′ − x′′‖.

Let Ai ∈ A be such that ‖Ai −A‖ ≤ ε− µ. Then

‖f(x′)− f(x′′)−Ai(x′ − x′′)‖ ≤ ε‖x′ − x′′‖.
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From (37), both w′ := y − f(x′) + f(x̄) + Ai(x
′ − x̄) and w′′ := y − f(x′′) + f(x̄) +

Ai(x
′′ − x̄) are in Bβ(ȳ). Since κγ < `β ≤ `βi and x′, x′′ ∈ (f + F )−1(y)∩Bκγ(x̄) we

obtain that

x′ = G−1
Ai

(w′) ∩ B`βi(x̄) and x′′ = G−1
Ai

(w′′) ∩ B`βi(x̄).

Taking the difference gives us

0 < ‖x′ − x′′‖ ≤ `‖w′ − w′′‖ = `‖f(x′)− f(x′′)−Ai(x′ − x′′)‖
≤ `ε‖x′ − x′′‖ < ‖x′ − x′′‖,

which is a contradiction. Hence, σγ is not multivalued on its domain and the proof is
complete.

There are some parts of the proof of Theorem 15 in [4] that are similar to parts of
the proof of Theorem 7 in the present paper but there are also important differences.
For example, in [4] we used Brouwer’s fixed point theorem instead of Gliksberg’s ex-
tension of the Kakutani fixed point theorem, which allows us to shorten the argument
in Lemma 14 in comparison to the one used in [4, Lemma 3]. We also use a different
iteration procedure relying on the new Lemma 13.

We will next show how to derive the main result in [6] from Theorem 7. In the
proof of Theorem 7 it is not really needed to assume that f is defined on the whole
neighborhood of x̄. It suffices to assume that dom f ⊃ domF ∩ Br(x̄) =: D for some
r > 0 and suppose that (A) holds only for u, v ∈ D.

Theorem 16. Let X and Y be Banach spaces, and let f : X → Y be a continuous
mapping with closed convex domain. Assume that for a given x̄ ∈ dom f there is a
compact convex subset T of L(X,Y ) along with positive % and µ such that

(a) there exists a neighborhood U of x̄ such that for any x, x′ ∈ U ∩ dom f there
is A ∈ T satisfying

‖f(x)− f(x′)−A(x− x′)‖ ≤ µ‖x− x′‖;

(b) (%+ µ)B ⊂ A
(
B ∩ (dom f − x̄)

)
for any A ∈ T .

Then f is metrically regular at x̄ with reg (f ; x̄) ≤ 1/%.

Proof. Without any loss of generality assume that x̄ = 0 and f(x̄) = 0. Let r > 0
be such that (a) holds for any x, x′ ∈ (rB) ∩ dom f =: D. Define F : X →→ Y by
F (x) = 0 when x ∈ dom f , and F = ∅ otherwise. Then f = f + F and (A) holds for
u, v ∈ D. Fix any A ∈ T . The mapping GA from (12) is just the restriction of A to
dom f . Thus, it satisfies the convexity assumption in (C) for U × V := X × Y . By
(b), reg(GA; 0) ≤ 1/(% + µ). Indeed, let %′ ∈ (0, %) be arbitrary. Pick γ ∈ (0, 1) such
that µ+ %′ < (1− γ)(µ+ %). There is a constant δ ∈ (0, 1) such that for each x ∈ δB
we have

(1− γ)B− x ⊂ B and ‖Ax‖ < (1− γ)(µ+ %)− µ− %′.

Fix any x ∈ (δB) ∩ dom f . The convexity of dom f implies that

A
(
B ∩ (dom f − x)

)
⊃ A

(
((1− γ)B) ∩ dom f − x

)
⊃ A

(
(1− γ)[B ∩ dom f ]

)
−Ax

⊃ (1− γ)(µ+ %)B−Ax ⊃ (µ+ %′)B.

Fix ε ∈ (0, δ). Since ε < 1, the convexity of dom f − x implies that

A
(
(x+ εB) ∩ dom f

)
= Ax+A

(
(εB) ∩ (dom f − x)

)
⊃ Ax+A

(
ε[B ∩ (dom f − x)]

)
⊃ Ax+ (µ+ %′)εB.
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Thus, (4) holds with λ := µ + %′. Since %′ < % was chosen arbitrarily we obtain the
desired estimate for reg(GA; 0).

Noting that T is compact, we have χ(T ) = 0 and thus (B) is satisfied. Applying
Theorem 7 we conclude that f is metrically regular at 0, and

reg (f ; 0) ≤
((

(%+ µ)−1
)−1 − µ

)−1

= %−1.

5. Applications. In this section we present applications of Theorem 7. First,
we consider a special case where the function f in Theorem 7 is defined by a Nemyt-
skii operator. Let Lk∞(0, 1) be the space of all measurable and essentially bounded
functions x(·) defined on [0, 1] with values in Rk, for some natural k, and the standard
norm

‖x(·)‖∞ = ess supt∈[0,1]‖x(t)‖,

and let X be a Banach space which is a subspace of Lk∞(0, 1) and is equipped with a
norm ‖ · ‖ stronger than ‖ · ‖∞; that is, for any x ∈ X one has ‖x‖ ≥ ‖x‖∞. Setting
Y = Ls∞(0, 1), the mapping f : X → Y defined as

(38) f(x)(t) = ϕ(x(t)),

where ϕ : Rk → Rs is locally Lipschitz continuous, is usually called a Nemytskii
operator; see, e.g., [27]. Recall that the Clarke’s generalized Jacobian ∂̄ϕ(ξ) of ϕ at
ξ ∈ Rk consists of (s× k)-matrices.

Let x̄ ∈ X, δ > 0, and ε ≥ 0, and let D = Dx̄δ,ε be a measurable, closed- and
convex-valued mapping, D : [0, 1]→→ Rn, having the following property.

Property (P). For a.e. t ∈ [0, 1], for every ξ ∈ Bδ(x̄(t)), and for every D′ ∈ ∂̄ϕ(ξ),
there exists D ∈ D(t) such that ‖D −D′‖ ≤ ε (where we use the operator norm).

Let T = T x̄δ,ε be the set of all measurable selections of D. Notice that every A ∈ T
is a measurable and bounded (s × k)-matrix function of t; thus it can be viewed as
an element of L(X,Y ), acting as (Ax)(t) = A(t)x(t), x ∈ X. Consider a set-valued
mapping F : X →→ Y with closed and convex graph and a point ȳ ∈ (f + F )(x̄).

Proposition 17. Let ϕ, D, and T be as described. Assume that for every A ∈ T
the mapping GA in (12) is metrically regular at x̄ for ȳ and, in addition, ß

(
ε+χ(T )) <

1, where ß is defined in (13). Then

(39) reg(f + F ; x̄ | ȳ) ≤ (ß−1 − (ε+ χ(T ))−1.

Proof. We have to check conditions (A)–(C) stated in Theorems 6 and 7 with
µ = ε and r = δ. Condition (C) holds since F has convex graph. Condition (B) is an
assumption. To check condition (A) we take arbitrary u, v ∈ Bδ(x̄) and consider the
difference f(u)(t) − f(v)(t) = ϕ(u(t)) − ϕ(v(t)). Fix t ∈ [0, 1] for which u(t), v(t) ∈
Bδ(x̄(t)). According to the mean value theorem [8, Proposition 2.6.5] there exists
D′t ∈ co ∂̄ϕ(co{u(t), v(t)}) =: Ξ(t) such that

(40) ϕ(u(t))− ϕ(v(t)) = D′t (u(t)− v(t)).

One may use the representation D′t =
∑n
i=1 αiD

′
ti, where n ≤ sk + 1, αi ≥ 0,∑n

i=1 αi = 1, D′ti ∈ ∂̄ϕ(ξi), ξi ∈ co{u(t), v(t)} ⊂ Bδ(x̄(t)). Property (P) implies that
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there exist Dti ∈ D(t) such that ‖Dti−D′ti‖ ≤ ε, i = 1, . . . , n. Then Dt :=
∑n
i=1 αiDti

satisfies Dt ∈ D(t) and ‖Dt −D′t‖ ≤ ε. Define

Γ(t) = {(D,D′)| D′ ∈ Ξ(t), ϕ(u(t))− ϕ(v(t)) = D′ (u(t)− v(t)), D ∈ D(t),

‖D −D′‖ ≤ ε}.
The set Γ(t) is nonempty since it contains (Dt, D

′
t). This applies for a.e. t ∈ [0, 1].

The outer semicontinuity of ∂̄ϕ [8, Proposition 2.6.2] implies that Ξ(t) is closed,
which together with the closedness of D(t) gives closedness of Γ(t). Moreover, the
mapping t 7→ Γ(t) is measurable. Indeed, the mapping t 7→ Ξ(t) is measurable due
to the outer semicontinuity of ∂̄ϕ and the fact that taking a convex hull preserves
measurability. Then the measurability of Γ follows from [1, Theorem 8.2.9]. Hence,
Γ has a measurable selection (A(t), A′(t)). In particular, A ∈ T by the definition of
T . Then

‖f(u)− f(v)−A(u− v)‖∞ = ess sup
t∈[0,1]

‖ϕ(u(t))− ϕ(v(t))−A(t)(u(t)− v(t))‖

≤ ess sup
t∈[0,1]

(
‖ϕ(u(t))− ϕ(v(t))−A′(t)(u(t)− v(t))‖

+ ε‖u(t)− v(t)‖
)

= ε‖u− v‖∞ ≤ ε‖u− v‖.
Thus, condition (A) holds as well. Theorem 7 then implies the estimate (39).

Note that the measure of noncompactness χ(T ) can be estimated as follows:

χ(T ) ≤ χ := sup
t∈[0,1]

min
D∈D(t)

max
D′∈D(t)

‖D −D′‖ = sup
t∈[0,1]

radD(t).

This is an easy consequence of [1, Theorem 8.2.11], which implies existence of a
measurable selection D(t) ∈ D(t) (thus D(·) ∈ T ) with ‖D(t) − A(t)‖ ≤ χ for every
A ∈ T .

Corollary 18. Assume that ∂̄ϕ is uniformly outer semicontinuous around the
set x̄([0, 1]), meaning that for every ε > 0 there exists δ > 0 such that for a.e. t ∈ [0, 1]
it holds that ∂̄ϕ(ξ) ⊂ ∂̄ϕ(x̄(t)) + εB whenever ‖ξ − x̄(t)‖ ≤ δ. Let T be the set of
all measurable selections of the mapping t 7→ ∂̄ϕ(x̄(t)). Assume also that for every
A ∈ T the mapping GA defined in (12) is metrically regular at x̄ for ȳ and ßχ(T ) < 1,
where ß is defined in (13). Then

(41) reg(f + F ; x̄ | ȳ) ≤ (ß−1 − χ(T ))−1.

Proof. It is enough to observe that for every ε > 0 there is δ > 0 such that
Property (P) is fulfilled for the mapping T (which is independent of ε). Then Propo-
sition 17 yields metric regularity of f + F , and the estimation for reg(f + F ; x̄ | ȳ)
follows from (39), since the latter holds for any ε > 0.

If, in particular, ϕ is continuously differentiable, we have χ(T ) = 0 in (41) since
T = {∇ϕ(x̄(·))}, and then reg(f + F ; x̄ | ȳ) ≤ ß.

If the generalized Jacobian ∂̄ϕ is not uniformly outer semicontinuous around
x̄([0, 1]) (or this property is not easy to check) it is still possible to define the mapping
D in such a way that Property (P) holds with an arbitrarily small δ > 0 and ε = 0;
namely, we put

(42) Dδ(t) = co
⋃

ξ∈Bδ(x̄(t))

∂̄ϕ(ξ).
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The measurability of this mapping follows from the outer semicontinuity of ∂̄ϕ. Ob-
serve that Dδ has Property (P) with ε = 0. Applying Proposition 17 we obtain the
following corollary, where as before we define Tδ ⊂ L(X,Y ) as the set of all measurable
selections of Dδ.

Corollary 19. Let the mapping GA defined in (12) be metrically regular at x̄
for ȳ for every A ∈ Tδ, and let ßχ(Tδ) < 1, where ß:= supA∈Tδ reg(GA; x̄ | ȳ). Then

(43) reg(f + F ; x̄ | ȳ) ≤ (ß−1 − χ(Tδ))−1.

Note that the mapping Tδ can be larger than T in Corollary 18.
We now apply the results just obtained for the Nemytskii operator to establish

conditions for metric regularity of a feasibility mapping in control. Consider a con-
trolled ODE of the form

(44) ṗ(t) = g(p(t), u(t)), t ∈ I := [0, 1].

The control function u : I → Rd is an element of the space Ld∞ of measurable and
essentially bounded functions, the state function p : I → Rn is an element of Wn,0

1,∞,
the space of Lipschitz continuous functions with p(0) = 0. A pair x = (p, u) ∈ X :=
Wn,0

1,∞ × Ld∞ which satisfies (44) almost everywhere on I together with the pointwise
constraint

(45) C(p(t), u(t)) ≤ 0 for a.e. t ∈ I

is said to be a feasible process. The functions g : Rn+d → Rn and C : Rn+d → Rl
are assumed to be locally Lipschitz continuous everywhere. In (45) and further the
notation h ≤ 0 for a vector h = (h1, h2, . . . , hl) ∈ Rl means that hi ≤ 0 for each
i ∈ {1, 2, . . . , l}.

System (44)–(45) can be written in the form of the generalized equation

(46) 0 ∈ f(x)+F (x), with x = (p, u), f(x) =

(
g(p, u)
C(p, u)

)
and F (x) =

(
−ṗ
Rl+

)
.

More precisely, F (x) is defined as

{(ξ, ν) ∈ Ln∞ × Ll∞| ξ(t) = −ṗ(t), ν(t) ≥ 0 for a.e. t ∈ [0, 1]}.

The set (f + F )−1(0) consists of all feasible processes; therefore the mapping f + F
is said to be the feasibility mapping.

Establishing metric regularity of the mapping f+F is of fundamental importance
in control. First of all, metric regularity is a basic tool in deriving necessary conditions
of optimality, which in optimal control are usually called Pontryagin’s maximum prin-
ciple. Furthermore, metric regularity provides a basis for estimating the sensitivity of
the feasibility mapping and allows one to apply various numerical techniques.

Observe that f is in Nemytskii form (38) with ϕ = (g, C) : Rn+d → Rn+l.
Let x̄ = (p̄, ū) be a feasible process. For δ > 0 define Dδ(t) as in (42). In the
case when both g and C are continuously differentiable, we can replace Dδ(t) by
D(t) = {(∇g(x̄(t)),∇C(x̄(t)))} and then eliminate δ in all further considerations. Let
Tδ ⊂ L(X,Y ) be the set of all measurable selections of Dδ. Then any A ∈ Tδ has the
structure

(47) A(t) =

(
P (t) Q(t)
R(t) S(t)

)
,
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where P (t) has dimension (n × n), Q(t) has dimension (n × d), etc., and these sub-
matrices depend on the choice of A ∈ Tδ.

To state the result given next we need some notation. First, in finite-dimensional
spaces the Euclidean norm is used for vectors and the corresponding operator norm
is used for matrices. The norm in X is the sum of the W1,∞ and the L∞ norms, and
similarly for Y . Consider the equation ṗ = Pp+ξ, p(0) = 0, with A ∈ Tδ and ξ ∈ Ln∞.
Its solution has the form p = Lξ, where L is a linear continuous operator from L∞
to Wn,0

1,∞. Clearly, both L and R depend on the choice of A; furthermore, from the
local Lipschitz continuity of (g, C) the quantities

(48) ∆ := sup
A∈Tδ

‖L‖∞ and ρ := sup
A∈Tδ

‖R‖∞

are finite; see (47) for the relation between A and P , R. The following theorem gives
a sufficient condition for metric regularity of the feasibility mapping.

Theorem 20. Assume that for some δ > 0, α > 0, and γ ∈ (0, 1) the set Tδ has
the following property: for every A ∈ Tδ (see (47) for the structure of A) there exist
functions w ∈Wn

1,∞ and v ∈ Ld∞ with ‖(w, v)‖ < γ, for which

(49)
ẇ(t) = P (t)w(t) +Q(t)v(t),
[C(p̄(t), ū(t)) +R(t)w(t) + S(t)v(t)]i ≤ −α, i = 1, 2, . . . , l.

Let

(50) mχ(Tδ) < 1, where m := max

{
∆

1− γ
,

1 + ρ∆

α

}
,

where ∆ and ρ are as in (48). Then the feasibility mapping f + F defined in (46)
satisfies

reg(f + F ; (p̄, ū) |0) ≤ (m−1 − χ(Tδ))−1.

Proof. Following the analysis in the beginning of this section, for any A ∈ Tδ
define the mapping

(51)

(p, u) 7→ GA(p, u)(t)

=

(
−ṗ(t) + g(p̄(t), ū(t)) + P (t)(p(t)− p̄(t)) +Q(t)(u(t)− ū(t))
C(p̄(t), ū(t)) +R(t)(p(t)− p̄(t)) + S(t)(u(t)− ū(t))

)
+

(
0
Rl+

)
.

Note that the term ṗ is shifted from the second to the first summand in the right-hand
side; here this is just for clarity.

Clearly, GA has a closed and convex graph. We will show that

(52) GA(x̄+
o

B) ⊃ c
o

B with c := 1/m.

Then the version of the Robinson–Ursescu theorem given in [12, Proposition 5B.2]
together with the remark before [12, Exercise 5B.7] imply that GA is metrically regular
at x̄ = (p̄, ū) for 0 with modulus m. We have to verify that for every y = (ξ, ν) with
‖y‖ < c, the system

(53)
ṗ(t) = ˙̄p(t) + P (t)(p(t)− p̄(t)) +Q(t)(u(t)− ū(t))− ξ(t),
C(p̄(t), ū(t)) +R(t)(p(t)− p̄(t)) + S(t)(u(t)− ū(t))− ν(t) ≤ 0

has a solution (p, u) ∈Wn,0
1,∞ × Ld∞ with ‖(p, u)− (p̄, ū)‖ < 1.
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Fix y = (ξ, ν) as above. Let (w, v) satisfy (49), and let p be the solution of the
differential equation in (53) corresponding to the control u = v + ū and p(0) = 0.
Note that p = w + p̄ − Lξ (see the paragraph before the statement of the theorem).
From (50),

‖(p, u)− (p̄, ū)‖ = ‖(w − Lξ, v)‖ ≤ γ + ∆‖ξ‖ < 1.

Furthermore, from (49) and (50), skipping the dependence on t, we obtain

C(p̄, ū) +R(p− p̄) + S(u− ū)−ν = C(p̄, ū) +R(w−Lξ) + Sv − ν
≤ −ᾱ−RLξ − ν ≤ 0,

where ᾱ:=(α, . . . , α) ∈ Rl. Thus (52) holds.
Clearly, F has a closed and convex graph. It remains to apply Corollary 19 (or

Corollary 18 in the case of continuous differentiability) to obtain metric regularity of
f + F at (p̄, ū) for 0 and the desired estimation of its modulus.
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[2] J. M. Borwein and D. M. Zhuang, Verifiable necessary and sufficient conditions for openness

and regularity of set-valued and single-valued maps, J. Math. Anal. Appl., 134 (1988),
pp. 441–459.

[3] J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, CMS Books Math.,
Springer, Berlin, 2006.

[4] R. Cibulka and A. L. Dontchev, A nonsmooth Robinson’s inverse function theorem in Ba-
nach spaces, Math. Program. Ser A, 156 (2016), pp. 257–270.

[5] R. Cibulka and M. Fabian, On primal regularity estimates for set-valued mappings, J. Math.
Anal. Appl., 438 (2016), pp. 444–464.

[6] R. Cibulka and M. Fabian, A note on Robinson-Ursescu and Lyusternik-Graves theorem,
Math. Program. Ser. B, 139 (2013), pp. 89–101.

[7] F. H. Clarke, On the inverse function theorem, Pacific J. Math., 64 (1976), pp. 97–102.
[8] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[9] F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Grad. Texts

in Math. 264, Springer, Berlin, 2013.
[10] A. L. Dontchev and W. W. Hager, An inverse mapping theorem for set-valued maps, Proc.

Amer. Math. Soc., 121 (1994), pp. 481–489.
[11] A. L. Dontchev, The Graves theorem revisited, J. Convex Anal., 3 (1996), pp. 45–53.
[12] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, 2nd

ed., Springer, Berlin, 2014.
[13] A. V. Dmitruk, A. A. Milyutin, and N. P. Osmolovskĭı, Lyusternik’s theorem and the
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