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Abstract. Artificial neural networks have become the state-of-the-art
in the task of language modelling whereas Long-Short Term Memory
(LSTM) networks seem to be an efficient architecture. The continuous
skip-gram and the continuous bag of words (CBOW) are algorithms for
learning quality distributed vector representations that are able to cap-
ture a large number of syntactic and semantic word relationships. In
this paper, we carried out experiments with a combination of these pow-
erful models: the continuous representations of words trained with skip-
gram/CBOW /GloVe method, word cache expressed as a vector using la-
tent Dirichlet allocation (LDA). These all are used on the input of LSTM
network instead of 1-of-N coding traditionally used in language models.
The proposed models are tested on Penn Treebank and MALACH cor-
pus.
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1 Introduction

In last years, recurrent neural networks (RNN) have attracted attention among
other types of language models (LM) caused by their better performance [5]
and their ability to learn on a smaller corpus than conventional n-gram mod-
els. Nowadays, they are considered as a state-of-the-art, especially the Long-
short Term Memory (LSTM) variant. Skip-gram and continuous bag of words
(CBOW) [6] are recently developed technique for building a neural network that
maps words to real number vectors, with the desideratum that words with similar
meanings will be mapped to the similar vectors. In this paper, we propose using
these vectors on the input of LSTM language model and we observe an effectivity
of this model.

There is described our proposed language model architecture in Section 2,
including the description of sub-parts of the model such as continuously dis-
tributed representations of words. Section 3 deals with experiments and results
and Section 4 summarizes the results and draws conclusions.
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2 Model Architecture

2.1 Recurrent Neural Network Language Model

In standard back-off n-gram language models, words are represented in a discrete
space – in the vocabulary. This prevents better interpolation of the probabilities
of unseen n-grams because a change in this word space can result in an arbitrary
change of the n-gram probability. The basic architecture of neural network model
was proposed by Y. Bengio in [1]. The main idea is to understand a word not
as a separate entity with no specific relation to other words, but to see words
as points in a finite dimensional (separable) metric space. The recurrent neural
networks – using the similar principle – were successfully introduced to the field
of language modelling by T. Mikolov [5] and have become widely used language
modelling technique.

In our work, we aimed to discover whether we are able to step further and
move from words that are projected into the continuous space by network itself
to the words projected to vectors with some more powerful techniques (as it is
shown in [7]) and to learn the RNN model on this vectors afterwards.

2.2 Skip-gram and CBOW

Mikolov et al. in [6] introduced a new efficient architecture for training dis-
tributed word representations which belongs to the class of methods called “neu-
ral language models”. Authors proposed two architectures: continuous skip-gram
that tries to predict the context words given the input word and continuous bag-
of-words (CBOW) that predicts the current word given the context (Figure 1).
The input words are encoded in 1-of-N coding, the model is trained with hier-
archical softmax, a context in interval 5-10 word is usually considered. We used
publicly available word2vec1 tool in our experiments.

2.3 Log-bilinear Variant of Skip-gram and CBOW

The log-bilinear variant (LBL) of both previously described architectures (CBOW-
LBL and skip-gram-LBL) learned by noise-contrastive estimation (more could be
found in [9]) seemed to perform slightly better on word analogy tasks. Thus, we
decided to compare word vectors obtained with these architectures with the pre-
vious ones. We used the publicly available LBL4word2vec tool in experiments.2

2.4 GloVe (Global Vectors for Word Representation)

In essence, GloVe (Global Vectors for Word Representation) [10] is a log-bilinear
model with a weighted least-squares objective. The main intuition which under-
lies this model is the simple observation that ratios of word-word co-occurrence

1 code.google.com/p/word2vec
2 github.com/qunluo/LBL4word2vec
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Fig. 1. The scheme of CBOW and skip-gram architecture. CBOW predicts the current
word given the context and skip-gram that predicts the context words given the input
word.

probabilities have the potential for encoding some form of meaning. The train-
ing criterion of GloVe is to estimate word vectors such that their dot product
equals the logarithm of the words’ probability of co-occurrence. Owing to the
fact that the logarithm of a ratio equals the difference of logarithms, this ob-
jective associates (the logarithm of) ratios of co-occurrence probabilities with
vector differences in the word vector space. Because these ratios can encode
some form of meaning, this information gets encoded to the vector differences as
well. Details about this architecture and implementation are published in [10].
We used the publicly available GloVe tool in our experiments.3

2.5 LDA

In addition to the word embeddings – to exploit more information from the long
span context – we decided to use the latent Dirichlet allocation (LDA) [2] in our
experiments as we already did in our previous work [13].

The LDA process converts word representation of a document to a low-
dimensional vector which represents a probability of the topic. It represents
documents as mixtures of topics that split out words with certain probabili-
ties. In our experiments, we fixed the length of the word cache while computing
the topic distribution.

3 nlp.stanford.edu/projects/glove
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We divided text to documents of 10 non-overlapping sentences for Penn Tree-
bank corpus. For MALACH corpus, we stacked sentences to documents so that
they are not longer than 200 words. The input vector of NN is modified as word
embedding extended with this additional LDA feature computed from cache
with the length of 50 words. The models were created with gensim tool [12].
We explored several configurations of trained models with a different number of
topics.

2.6 Our Model Architecture

The motivation for our model and the background of the work was already lightly
sketched out in Section 2.1. The main idea was to replace the word projections,
which are computed by the recurrent neural network itself, with better ones. By
the training RNN language model, the network learns own word embeddings, but
if we look closer to they are estimated only from the past word co-occurrences
(which comes from recurrentness of the network).

While all previously described models (in Sections 2.2, 2.3 and 2.4) produce
better word vectors – in some point of view and measured in some applications.
We assume, that this is caused by their architecture since they are all taking
into account both words in past and words in the future context. This, in our
opinion, makes the resulting vectors more accurate. The projections perform
better while they are trained on more text or trained in more iterations, thus we
run experiments with a various number of iterations over the training text.

We chose for our experiments the Long-short Term Memory (LSTM) [4]
networks architecture due its better ability of learning [14].The scheme of one
LSTM cell is shown in Figure 2. The simpler “vanilla” RNN network showed to
be unstable while we were changing the input of the model in experiments.

To be able to catch the longer context, which is also crucial for accurate
language model, we added LDA context features. This architecture, as we expect,
should allow to discover more regularities in a language.

More technically, first the word vectors are computed for every word in vocab-
ulary from training text (by different techniques mentioned above). Afterwards,
in the training phase of the language model we give to the input of LSTM net-
work these vectors instead of 1-of-N encoding of words. The input vector could
be moreover extend simply by appending with the LDA vector – computed for
every context.

3 Experiments and Results

In this section, we describe experiments which we did with proposed models and
presenting the obtained results. The data are described in first part, the details
about the training and the results follow.
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Fig. 2. The scheme of LSTM cell.

3.1 Data

Penn Treebank To maintain comparability with the other experiments in
literature, we chose the well-known and widely used Penn Treebank (PTB) [3]
portion of the Wall Street Journal corpus for testing our models. This is quite
rare in the language modelling field and allows us to compare direct performance
of different techniques and their combinations. Following common preprocessing
was applied to the corpora:

– words outside the 10K vocabulary were mapped to a special token (unknown
word)

– all numbers were unified into 〈N〉 tag

– punctuation was removed.

The corpus was divided into tree parts: sections 0-20 were used as the training
data, sections 21-22 as the validation data and sections 23-24 as the test data.

MALACH We also wanted to carry out results on some real-world problem, so
we decided to evaluate our models on the MALACH corpus [11]. Steven Spielberg
(inspired by his experience making Schindlers List) established the Survivors of
the Shoah Visual History Foundation (1994) to gather video testimonies from
survivors and other witnesses of the Holocaust. It contains approximately 375
hours of interviews with 784 interviewees along with transcripts and other doc-
umentation. The original release includes transcripts of the first 15 minutes of
each interview, which makes in a textual form circa 2M tokens, the vocabulary
consists of 21.7k words. We split this data to train (70%), development and test
folds (13% and 17%).
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3.2 Training

For obtaining word embeddings, we used context window size of 10 words and
the other parameters we anchored to default settings because tuning more pa-
rameters would be exhausting. For the language model – as remarked above – we
used LSTM network, to speed up experiments the simplified version. During the
training phase, the gradients were clipped into the interval < −1, 1 >; starting
with learning rate at α = 0.16 and while not achieving perplexity decrease we
halved learning rate. The width of a hidden layer is fixed to 100 neurons.

3.3 Results

First, we evaluated, which word embeddings are suitable for this task; we em-
ployed algorithms described above. The performance of word embeddings also
strongly depends on a number of training iterations, hence we produced results
with various number of them – they are shown in Figure 3. If we employ the LDA
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Fig. 3. Various types of word vectors, performance measured on PTB while using them
in language model

extension, we obtain a bit better results, as we supposed. The best results on
PTB are shown in Table 1.

The results for the MALACH task are in Table 2, where we compared our
model (LSTM-100&CBOW LBL-100) with RNN models (RNN-100 and RNN-
400 with 100 respectively 400 neurons in hidden layer). The CBOW LBL embed-
dings were used as the best option from experiments before. The RNN models
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Model PPL

LSTM-100 144.0
LSTM-100&CBOW LBL-100 138.4
LSTM-100&CBOW LBL-100 + LDA-50 133.6

Table 1. Perplexity results on Penn Treebank corpus.

were trained with RNNLM Toolkit 4, number denotes a size of a hidden layer.
We also added results achieved with a linear combination of neural models with
more conventional models Knesser-Ney 5-gram (KN5) and maximum entropy
on 5-gram features (ME5). For the completeness the result with LDA (with 50)
extension is added and also the model mixed together with n-gram models (with
linear interpolation, which coefficients were tuned on development data with EM
algorithm).

Model PPL

RNN-100 107
RNN-400 100
LSTM-100 99
RNN-100 + KN5 + ME5 94
LSTM-100&CBOW LBL-100 94
LSTM-100&CBOW LBL-100 + LDA-50 91
LSTM-100&CBOW LBL-100 + LDA-50 + KN5 + ME5 83

Table 2. Perplexity results on MALACH corpus.

4 Conclusion and Future Work

We proposed language model using continuous word representation as input
and extended this input with information from context vectors. We employed
techniques that are assumed as a state-of-the-art such as LDA, skip gram and a
log-bilinear continuous bag of words. The experiments showed the improvement
of 4-5% in perplexity over standard LSTM/RNN models measured on Penn
Treebank and MALACH corpus and with LDA extension circa 7%-8%.

We shown, that using continuous word vectors computed outside of neural
network could improve LSTM-LM performance and even more if we add addi-
tional context information. Nevertheless it is good to notice, that the type and
the quality matter i.e. number of train iterations of word vectors and algorithm.
In our next work, we would like to further verify our approach on other corpora

4 rnnlm.org
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(such as Wikipedia Text8 or “One billion word benchmark”) and on the speech
recognition or automatic translation.
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