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ABSTRACT
This paper presents an efficient algorithm for a global parameterization of triangular surface meshes. In contrast
to previous techniques which achieve global parameterization through the optimization of non-linear systems of
equations, our algorithm is solely based on solving at most two linear equation systems, in the least square sense.
Therefore, in terms of running time the unfolding procedure is highly efficient. Our approach is direct – it solves
for the planar UV coordinates of each vertex directly – hence avoiding any numerically challenging planar recon-
struction in a post-process. This results in a robust unfolding algorithm. Curvature prescription for user-provided
cone singularities can either be specified manually, or suggested automatically by our approach. Experiments on a
variety of surface meshes demonstrate the runtime efficiency of our algorithm and the quality of its unfolding. To
demonstrate the utility and versatility of our approach, we apply it to seamless texturing. The proposed algorithm
is computationally efficient, robust and results in a parameterization with acceptable metric distortion.

0.1 Keywords
surface parameterization, geometry processing,triangular mesh, mesh unfolding

1 INTRODUCTION
Surface parameterization represents a main topic in ge-
ometry processing and computer graphics fields. It is
defined as a one-to-one mapping between a surface and
typically a 2D plane, where geometrical tasks can be
carried out more efficiently. The most important ap-
plication of surface parameterization are texture map-
ping, texture synthesis, re-meshing, and morphing. In
order to unfold a surface to the plane, it must have a disk
topology; for a closed surface this requirement implies
cutting it into a single or multiple disk topology charts.
Cutting can result in visual artifacts due to the discon-
tinuities across the boundaries of the charts. To this
extent, methods for global parameterization of triangu-
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lated surfaces have been proposed. Within this frame-
work, the global parameterization of a surface with disk
topology can be defined as a homeomorphism from the
surface to a subset of the plane, such that the discrete
Gaussian curvature, i.e. the difference between 2π and
the incident triangles’ sum of angles at a vertex, is zero
everywhere except for a few vertices called cone singu-
larities. These can be thought of distortion absorbers,
being chosen as vertices of the mesh where large area
distortion can be predicted prior to the actual parame-
terization, [Kha05].

Several approaches based on metric scaling have been
proposed in the past to address global parameterization
[Jin08, Yan09]. However, these methods mostly rely on
non-linear solvers and are hence computationally ex-
pensive. Linearized approximations, although compu-
tationally attractive, are imprecise (the target metric is
only approximated and therefore is not guaranteed to be
flat). More importantly, the planar coordinates of the
surface vertices (the actual output) are not the variables
that are optimized by this family of techniques. We
will refer to those as indirect methods [Ben08]. Indeed
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they focus on the surface metric, i.e. the edge lengths,
and later reconstruct the planar coordinates in a post-
process. However, this reconstruction post-process may
be computationally expensive and, more importantly,
numerically challenging. This paper addresses these
two issues by presenting a global parameterization tech-
nique which is fast by employing linear solvers, which
minimizes angular distortion through imposed confor-
mality, and reduces the area distortion through the use
of cone singularities. Our method is simple and direct.
It directly solves for the 2D coordinates. Thus, it does
not suffer from numerical instabilities due to angle-to-
uv or scaling factors-to-uv conversions, as found with
indirect approaches, [She06]. In contrast to more com-
putationally expensive techniques based on non-linear
solvers, the computational speed of our approach makes
it a good candidate for interactive applications, such as
user-driven parameterization improvement for instance,
where the users could interactively adjust the number
and locations of the cones.

Contributions
This paper makes the following new contributions:

1. A fast and robust global parameterization algo-
rithm: Our method is direct (hence robust), non-
iterative and only relies on the solving of at most
two linear systems.

2. Automatic curvature prescription: Given a list of
cone singularities, we present a fast algorithm to au-
tomatically evaluate relevant curvature prescriptions
at the cone singularities.

The next section presents related work. Next, we in-
troduce the method and its preliminaries. Sec. 4 and
5 present the proposed global parameterization algo-
rithm in detail. The modeling of the linear systems is
described in Sec. 6, while experimental results are re-
ported in Sec. 7. To demonstrate the utility and ver-
satility of our technique, we present its application to
seamless texturing in Sec. 8 and finally, Sec. 9 con-
cludes the paper.

2 RELATED WORK
In the following, we will only focus on surface parame-
terization techniques that are related to our work. We
refer the reader to survey articles [Flo05, She06] for
further reading. Most existing parameterization meth-
ods focus on conformal parameterizations (where an-
gle distortion is minimized). Several methods [Des02,
Lev02, Liu08, Ray03] focus on parameterizing sur-
faces of disk topology while reducing angular distor-
tion. These methods employ linear solvers for the min-
imization of energy functions (that are discrete analo-
gous to Laplace and Cauchy-Riemann equations) de-
fined in terms of the 2D coordinates of the vertices in

(a) LSGP (b) MIQ

Figure 1: Comparison between our approach (a) and
Mixed-Integer Quadrangulation (MIQ) [Bom09] (b).
On this example, the MIQ approach generates many
boundary self-intersections, see the unfolded blue

boundary.

the mesh. These are therefore direct methods. They al-
low a free boundary setting but pin two vertices to avoid
a non-trivial solution (a more recent approach removes
such necessity through a spectral embedding [Mul08]).

Indirect methods [She05, She00, Zay07] aim at mini-
mizing the difference between the initial angles of the
3D mesh and the final ones. The methods are computa-
tionally expensive (for advances see linearized version
[Zay07]) and suffer from numerical instability when
converting the obtained angles to actual 2D coordinates.

Indirect global parameterization methods
[Ben08, Spr08, Kha05] determine the necessary
edge lengths to parameterize the mesh to the plane be-
fore cutting it along a set of cut-paths to disk topology.
Moreover, they also make use of cone singularities to
absorb the curvature (i.e. the angle deficits), resulting
in a global parameterization where the scaling of the
surface is continuous across each cut-path.

While expensive non-linear solvers are usually em-
ployed [Jin08, Kha06, Spr08, Yan09], Ben Chen et
al. [Ben08] approximate the solution through a Finite
Element discretization of the Poisson equation, yielding
better computational complexity at the expense of met-
ric accuracy. Some methods [Spr08, Myl12, Myl13]
additionally provide the possibility of obtaining seam-
less parameterizations by iteratively quantizing the
cone angle deficits to multiples of π/2 and rectifying
the cone positions to integer locations. Myles and
Zorin [Myl12] compute seamless parameterizations, by
employing linear solvers with linear constraints in an
iterative manner for the first two steps of their algorithm
(cone detection and curvature prescription). However,
the last step consists in optimizing the non-linear
as-rigid-as-possible (ARAP) energy function. Even
though the first two steps solve linear systems, they do
so in an iterative fashion and many iterations may be
required. Moreover, the last step still requires the use of
a time-consuming non-linear solver. Quadrangulation
techniques based on structure-aligned parameteriza-
tions [Ray06, Ton06, Kal07, Bom09, Cam15, Myl14]
are also related to global parameterization (for a more
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(a) (b) (c) (d)

Figure 2: Algorithm overview: (a) Given an input triangular mesh and cone singularities, the mesh is cut through
the cones in order to obtain a disk topology. The cones are shown by colored spheres and conic cuts by colored

cylinders. (b) Next, the mesh is conformally parameterized by concentrating the entire curvature at the cones. (c)
Given the cone angles resulting from the previous step, the surface is globally parameterized. (d) Optionally, the

mesh can be seamlessly parameterized.

detailed description see [Bom12]). Bommes et al.
[Bom09] obtain quadrangulations by solving two
mixed integer problems, one for the computation of a
direction-aware cross field [Ray08, Pan12, Kno13] and
one for the global parameterization, with additional
similar solves in case of singularity relocation. The
transition functions across cut-paths that we employ
are similar to the ones used by Bommes et al. [Bom09]
and Myles et al. [Myl12]. However, we formulate such
constraints in a different optimization setting, which is
based on faster, linear solvers.

Although the Mixed-Integer Quadrangulation (MIQ)
method [Bom09] generates high quality output
quadrangulations, it can yield many boundary
self-intersections in the planar domain, Fig. 1 - param-
eterization using the MIQ method obtained by Ebke
et al. [Ebk13], which may challenge their systematic
usage for sub-sequent applications (such as surface
cross parameterization for instance). An extension
of (MIQ) [Bom09] has been proposed to address this
boundary domain intersection problem [Bom13] but at
the expense of increasing further computation times.

3 METHOD OVERVIEW

3.1 Preliminaries
The input surface M is given as a mesh made of ver-
tices (V ), edges (E) and triangles (T ). Their num-
ber is noted with |V |, |E| and |T | respectively. The
geometry of M is given as the 3D coordinates of the
vertices Xv = (vx,vy,vz),∀v ∈ V . The output parame-
terization is represented with 2D coordinates for each
vertex Uv = (u,v). The length of an edge is given
by ei, j = ‖Xvi − Xv j‖2 in 3D or ei, j = ‖Uvi −Uv j‖2
in 2D. An angle in a triangle t is given by: α t

vi
=

arccos
(

e2
i, j+e2

i,k−e2
j,k

2ei, jei,k

)
, where vi,v j and vk are the ver-

tices of t.

The discrete Gaussian curvature is given by K ={
kvi =

{
2π−∑t∈Tvi

(α t
vi
), for an interior vertex

π−∑t∈Tvi
(α t

vi
)}, for a boundary vertex

}
,

where Tvi represents the set of incident triangles to the
vertex vi.

The Gauss-Bonnet Theorem states that the integral of
the curvature is a constant, which depends on the topol-
ogy of M: ∑K = 2πχ , where χ represents the Eu-
ler characteristic of M (χ = |V | − |E|+ |T |). Given a
mesh with disk topology, a global parameterization is a
homeomorphism to a subset of the plane, such that the
discrete Gaussian curvature is zero everywhere except
at a set of selected vertices C, called cones.

3.2 Algorithm Description

Given an input triangular mesh, our algorithm first cuts
the mesh open through a set of cut-paths that connect
cone singularities. We call those conic cuts. Such sin-
gularities will absorb the area distortion of the param-
eterization, as showcased in Fig. 3. The second step
consists in parameterizing the mesh, while minimizing
angular distortion and imposing zero curvature every-
where except at the cones. This is achieved by intro-
ducing straightness conditions for the entire boundary,
Fig. 2(b). By employing only conformality and bound-
ary straightness conditions, the two sides of a conic cut
might have different lengths in the plane, Fig. 2(b). To
ensure that the two resulting sides of a conic cut are
scaled similarly, we additionally enforce rotations and
translations between each side of a conic cut, Fig. 2(c)
note the continuity of the distortion across the cuts.

The rotation angles are either provided by the user or
detected as the angles between the conic cuts in the pa-
rameterization that resulted from the previous step, i.e.
the curvature prescription..
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(a) LSCM [Lev02] (b) LSCM [Lev02], conic cuts (c) Our approach (d) Our approach - Seamless

Figure 3: Comparison between Least-Squares Conformal Maps (LSCM) [Lev02] without (a) and with conic cuts
(b) and our approach (c), (d). From top to bottom: (i) textured surface with cones (colored spheres) and cuts

(colored cylinders), as well as planar unfolding, (ii) area distortion (color map: blue (0) to red (10)) and sister
edge length distortion on the cuts (rainbow color map), (iii) histograms of sister edge length, quasi-conformal and
area distortions (ideal values: 1). Introducing cones (b) drastically reduces area distortion, while minimizing sister
edge length distortion (c) yields a global parameterization . By imposing positional and rotational constraints on

cones, and respectively on conic cuts, our approach can be used to generate seamless parameterizations (d).

4 GLOBAL PARAMETERIZA-
TION WITH ROTATIONAL CON-
STRAINTS

Given a set of cone singularities and their correspond-
ing curvature prescriptions (either provided by the user
or computed automatically, see Sec. 5), a global param-
eterization can be defined as an angle preserving home-
omorphism from the input triangular surface to a subset
of a plane, such that the discrete curvature is zero every-
where except at the cones. In this section, we present an
algorithm that computes such a mapping, by minimiz-
ing angular distortion and penalizing the deviation from
the target curvature in the least-squares sense. First, the
surface is cut open along conic cuts to become homeo-
morphic to a disk. Second, the surface is unfolded and
the target curvature is enforced by imposing affine tran-
sition functions across conic cuts.

4.1 Mesh Cutting
To be unfolded to the plane, we require the input sur-
face to have a disk topology. For surfaces with a sphere
topology, this can be obtained by introducing a bound-
ary component, by cutting the mesh along the short-
est paths that connect the cones. We detail this process
hereafter. Variants of this strategy can be derived for
surfaces with different genus.

The shortest path between each possible pair of cones is
first computed with Dijkstra’s algorithm. Next, a min-
imum spanning tree is constructed on a graph where
the nodes denote the cones and where each edge is
weighted by the geodesic distance between its cones
(i.e. the length of their shortest paths). The edges of
the spanning tree then correspond to the shortest paths
along which the surface is cut open and that we call
conic cuts. The valence of a cone corresponds to the
number of conic cuts incident to it. The actual cutting
process involves the duplication of all the surface edges
found on the paths. Given an edge initially present on
a shortest path, its copy is called its sister edge. Sim-
ilarly, the copy of a conic cut is called its sister conic
cut. Throughout the paper, sister conic cuts will be
represented by curves with matching colors (see Fig. 2
for instance). Note that after the cutting, a cone may
have a high valence. Also, similarly to Springborn et
al. [Spr08], each boundary component is treated as a
cone.

4.2 Least-Squares Conformal Maps with
Rotational Constraints

Once the mesh is cut open, we unfold it to the plane
with a new algorithm that minimizes angular distortion
and penalizes the deviation from the target curvature.
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Figure 4: Rotational transformation relations between
simple and complex sister conic cuts of a cube.

Our approach relies on the conformality criterion in-
troduced by Lévy et al. [Lev02], as it enables a direct
and fast optimization. We impose similar conditions
as Aigerman et al. [Aig15], but in contrast to them
we are not restricted to four cone configurations, allow-
ing a general framework. Given some prescribed target
curvatures for each cone, our approach consists in im-
posing this angle deficit by constraining combinations
of translations and rotations between sister conic cuts,
which is achieved as follows. Sister conic cuts can be
classified into two categories:

1. Simple conic cuts - cuts connected to a cone of va-
lence 1 (see the orange cuts connected to the green
cone of valence 1 in Fig. 4);

2. Complex conic cuts - cuts not connected to a cone of
valence 1 (see the dark blue cut connected in Fig. 4).

Note that simple sister cuts will be adjacent in the plane
while complex ones will not. Given a cone of valence 1,
we enforce its prescribed angle deficit θ by constrain-
ing its incident sister cuts to be related by a rotation of
angle θ (Fig. 4, left inset zoom). For complex sister
cuts, we first translate them to the origin (translation
T 2), apply the required rotation of angle θ (rotation R)
and translate them back to their original location (trans-
lation T 1):

Vs2 u
Vs2 v

1

=

1 0 C1s2 u
0 1 C1s2 v
0 0 1


T 1

·

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


R

·

1 0 −C1s1 u
0 1 −C1s1 v
0 0 1


T 2

Vs1 u
Vs1 v

1


(1)

where (Vs1 u,Vs1 v) and (Vs2 u,Vs2 v) are the unknown
(u,v) coordinates of the cut vertex Vs1 and its sister
cut vertex Vs2 (Fig. 4), and where (C1s1 u,C1s1 v) and
(C1s2 u,C1s2 v) are the unknown (u,v) coordinates of
the cone C1 on the conic cut s1 and of its duplicate
on the sister conic cut s2 (Fig. 4). For simple conic
cuts, the latter two cones will coincide (the cone being
of valence one). Therefore, for each vertex along a
conic cut, we add the following two equations to the
least-squares conformal map system:

Vs2 u =Vs1 u · cos(θ)−Vs1 v · sin(θ)−C1s1 u · cos(θ)
+C1s1 v · sin(θ)+C1s2 u

Vs2 v =Vs1 u · sin(θ)+Vs1 v · cos(θ)−C1s1 u · sin(θ)
−C1s1 v · cos(θ)+C1s2 v

(2)

5 CURVATURE PRESCRIPTION ESTI-
MATION BY STRAIGHTNESS CON-
STRAINTS

So far, we assumed that the target curvatures, i.e. the
corresponding target θ angles, were provided by the
user. We describe in this section a new, fast algo-
rithm for the automatic evaluation of relevant curva-
ture prescriptions for a set of input cone singulari-
ties. The cone singularities can be either user-provided
or automatically extracted with an existing technique
([Ben08, Spr08, Myl12]). The key idea of our algo-
rithm is to unfold the input surface while minimizing
in the least-squares sense angle distortion as well as
the deviation from zero curvature, everywhere except
at the cones. With this strategy, cone angles will self-
adjust to provide a good balance between cone curva-
ture absorption and angular distortion. This procedure
can be interpreted as a redistribution of the surface cur-
vature onto the cones in a least-squares sense. As de-
scribed below, an appealing aspect of this method is
that it only requires a single linear solving. Hence, it
is very efficient in terms of computation time. To pe-
nalize the deviation from zero curvature, we enforce
straightness constraints. First, for each vertex located
on a conic cut, we evaluate its (3D) arc-length param-
eterization along the conic cut. This parameterization
will be used as barycentric coordinates to enforce the
alignment of the conic cut in 2D, as follows. We denote
the original edge lengths vectors along a conic cut as
LCP = [eVC1 ,V

1
s
, ...,eV i

s ,V
i+1
s

, ..], Fig. 5, the total conic cut

lengths as LTot
CP =∑e∈CP LCP[e]; the relative edge lengths

will be: rCP[e] = [LCP[e]
LTot

CP
,∀e ∈CP.

We calculate the cumulative sum for the ratio vector and
obtain: RCP = [0,r1

CP,r
1
CP + r2

CP, ...,1].
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Figure 5: Conic cut.

To enforce the straightness
of the conic cuts in the plane,
we impose that each vertex
along a cut is placed at a lo-
cation which is dictated by
the linear interpolation be-
tween the ending points of

the cut, with factors ri
CP. This yields two new equations

that we add to the least-squares conformal map system:

V i
s u =C1u · (1− ri

CP)+C2u · (ri
CP)

V i
s v =C1v · (1− ri

CP)+C2v · (ri
CP)

(3)

where (V i
s u,V

i
s v), (C1u,C1v) and (C2u,C2v) stand for

the unknown (u,v) coordinates of the cut vertex Vs and
the cones C1 and C2 respectively, Fig. 5. The result
of this least-squares solution is illustrated in Fig. 2(b),
where the conic cuts have been straightened in the
plane. From there, our algorithm collects for each cone

Figure 6: Possible cut intersections are recursively
resolved by cone swapping. Here, the intersection A
between segments [θ1,θ2] and [θ4,θ5] is first solved
instead of intersection B because it counts the most
intersections between its two extremities θ1 and θ5.

the angle between its incident conic cuts and provides
this value as a curvature prescription for the rest of the
pipeline, Fig. 2(c). This approach is non-iterative and
simple to implement, requiring only solving one linear
system. By applying these straightness conditions for
all paths, it is possible that such paths intersect. If such
a configuration is encountered, we simply recursively
swap the positions of their extremity cones. In particu-
lar, this swapping procedure processes intersections in
decreasing order of the number of remaining intersec-
tions between their path extremities, Fig. 6.

6 FORMULATING THE LINEAR SYS-
TEM

In this section, we detail how the equations discussed
in the previous sections can be integrated in the least-
squares conformal map system. The least-squares con-
formal map (LSCM) method [Lev02] defines the con-
formality of the mapping in terms of its gradients: the
gradient vectors inside a triangle should be orthogonal
and have the same norm. Thus, the authors propose the
minimization of the following energy ELSCM:

ELSCM = ∑
Tj⊂T

ATj

∥∥∥∥∇v−
(

0 −1
1 0

)
∇u
∥∥∥∥2

(4)

where ATj represents the area of a triangle Tj and ∇u
and ∇v stand for the gradient of the (u,v) coordinates
within the triangle Tj = {p1, p2, p3}:

∇u = (Xp1 · (vp2 − vp3)+Xp2 · (vp3 − vp1)

+Xp3 · (vp1 − vp2))/(2 ·ATj)
(5)

Similarly, for ∇v. In order to obtain a non-trivial solu-
tion, the authors fix the 2D coordinates of two vertices
(Vp), leaving the rest of the vertices evolve freely (Vf ),
|Vp|+ |Vf | = |V |. The objective function will have the
form E(x) = ‖A · x−b‖2, where x represents the vec-
tor of 2D coordinates of the free vertices of the mesh
(x ∈ R2|V f |), A is a sparse matrix containing the con-
formality conditions (A ∈ R2|T |×2|V f |). b ∈ R2|T | is the
vector that introduces the 2D coordinates of the fixed
vertices into the system. Considering that the system
is defined in terms of 2D coordinates, other positional
constraints can be easily added to it, the result being
a trade-off between the conformality of the mapping
and the imposed constraints. By adding the rotation
equations (2) that impose affine transformations for sis-
ter cuts (Fig. 4), the minimization energy will become:
ELSGP = ELSCM +ERot , where:

ERot = ∑
CPi⊂CP

(
∑

V⊂CPi

∥∥∥UVS2
− (T 1 ·R ·T 2)UVS1

∥∥∥2
)
(6)

The number of additional equations will be equal to the
number of duplicated vertices Vd from each conic cut
CPi multiplied by two (one equation for each of the
two planar coordinates - u and v). Therefore in the
linear system, the number of equations will increase
(A ∈ R(2|T |+2|Vd |)×2|V f |), while the number of variables
remains the same.

In the case of straightness conditions (Sec. 5), the em-
ployed minimization energy is: ECurvature_Precription =
ELSCM +EStr, where:

EStr = ∑
Pi⊂P

(
∑

V j⊂Pi

∥∥∥UV j −UC1 ·
(

1− r j
CP

)
−UC2 · (ri

CP)
∥∥∥2
)

(7)
where P represents the entire set of paths resulted af-
ter the cutting. Therefore the total number of equa-
tions will be 2|T | to which we add 2

(
∑Pi⊂P (|Pi|−2)

)
straightness equations, corresponding to the total num-
ber of vertices along paths, except their ending points;
which is equal to (|Vbdry|−2|P|), where Vbdry represents
the total number of boundary vertices after the mesh has
been cut. To remove the need for positional constraints
of at least two vertices as in LSCM [Lev02], we em-
ploy the spectral approach described by Mullen et al.
[Mul08].
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(a) Armchair (b) Fandisk (c) Hand (d) Hygeia

Figure 7: Global parameterization examples obtained with our algorithm. From top to bottom: (i) textured surface
with cones and cuts (with planar domain inset), (ii) quasi-conformal distortion, (iii) area distortion. Inset

histograms on the left indicate, from top to bottom: sister edge length, quasi-conformal and area distortions (ideal
values: 1). Our approach yields global conformal parameterizations with low area distortion.

7 EXPERIMENTS
Experiments were performed with a C++ implementa-
tion of our approach (using Eigen, Spectra and Boost li-
braries), on a laptop with a 2.50GHz i7-4710HQ CPU.
Our test data-sets were taken from the AIM@SHAPE
repository, [AIM].

7.1 Quality Estimations
We evaluated the quality of our approach with respect to
the following quantitative measures. They should ide-
ally be all equal to 1.

1. Quasi-conformal distortion [Kha06]: ratio between
the largest and smallest eigenvalues of the metric
tensor of the parameterization. This indicates a vio-
lation of the conformality condition. The color code
map depicted in Fig. 7 and Fig. 9 ranges from blue
(1) to red (1.5).

2. Area distortion: ratio between the normalized area
of a triangle in 3D and in 2D (the normalized area
refers to the proportion between the area of a tri-
angle and the total area of the mesh). This indicates
how much the surface needs to be stretched to be un-
folded. The color code map depicted in Fig. 7 and
Fig. 9 ranges from blue (0) to red (5).

3. 10th and 90th Percentile of Area distortion: area dis-
tortion values below which (and above which) are
located the top 10% triangles that have been scaled
down (and scaled up respectively) the most after pa-
rameterization.

4. Sister edge length distortion: ratio between the pla-
nar lengths of a conic cut edge and its sister’s. This
indicates the violation of the continuity of the global
parameterization.

5. L2Stretch: measure of distance preservation, com-
puted as in [San01].

Tab. 1 reports a comparison, with respect to these mea-
sures, between our technique and Least-Squares Con-
formal Maps (LSCM) [Lev02], to which conic cuts
have been applied in a pre-process (as in Fig. 3(b)),
for the sake of a fair comparison. Although slightly
higher than those of LSCM, the quasi-conformal dis-
tortion measures obtained by our approach are reason-
able, Fig. 7: in all our experiments, the worst quasi-
conformal distortion is 1.119, Fig. 7(c). For all the re-
maining criteria - area distortion, sister edge length dis-
tortion, L2stretch - our approach outperforms LSCM
with conic cuts for all surface examples but one. Al-
though our approach balances conformality for global-
ity, it still produces a quasi-conformal distortion that is
on par with Least-Squares Conformal Maps (LSCM),
while improving on the area distortion, Fig. 3. The sis-
ter edge length distortion is very close to 1.0 on all mod-
els, demonstrating the good globality of our parameter-
ization. This is further exemplified in Fig. 3(c), where
the area distortion is indeed continuous across the conic
cuts (in contrast to LSCM with conic cuts Fig. 3(b)).

7.2 Time Requirement
Tab. 2 presents the running times for the different steps
of our approach on the surfaces shown in the paper.
This table also presents the total runtime of our ap-
proach and the runtime of the LSCM approach [Lev02]
with conic cuts, including mesh cutting, as well as the
speedup. As illustrated, the most expensive steps of
our approach are the linear solvers for the curvature
prescription and the final unfolding. Note that even
combined, these two steps are still faster than the orig-
inal LSCM approach. We suspect this performance
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Model |T | |C|

Distortion
Quasi Conformal Areal 10th Percentile Areal 90th Percentile Areal Sister Edge Length L2Stretch
Our LSCM Our LSCM Our LSCM Our LSCM Our LSCM Our LSCM

Approach [Lev02] Approach [Lev02] Approach [Lev02] Approach [Lev02] Approach [Lev02] Approach [Lev02]
Octa-flower (Fig. 2) 16K 6 1.016 1.016 0.965 1.089 0.808 0.661 1.166 1.428 1.002 1.294 1.010 1.063

Planck (Fig. 3) 47K 8 1.026 1.021 1.488 1.575 0.516 0.525 3.370 3.295 1.007 1.711 1.273 1.273
Fandisk (Fig. 7(b)) 13K 25 1.017 1.018 1.276 3.601 0.606 0.536 2.068 8.748 1.001 2.609 1.132 1.926

Armchair (Fig. 7(a)) 5K 12 1.056 1.042 1.215 1.560 0.633 0.525 1.961 3.156 1.014 1.626 1.099 1.252
Hand (Fig. 7(c)) 5K 11 1.119 1.085 1.868 4.166 0.451 0.350 4.134 8.445 1.036 1.365 1.455 2.010

Hygeia (Fig. 7(d)) 16.5K 14 1.039 1.037 1.235 1.521 0.618 0.462 2.123 3.013 1.011 1.448 1.111 1.247

Table 1: Comparison of distortion measures between our approach and Least Squares Conformal Maps [Lev02]
with conic cuts. For each criterion (ideal values: 1), the best measure of the two techniques is displayed in bold.

Model |T | |C|

Runtime [s] Speedup
Curvature Rotationally of our

Mesh Prescription Constrained Our LSCM approach
Cutting (Sec. 5) Unfolding approach [Lev02] vs.

(Sec. 4.1) (Sec. 4.2) Total Total LSCM
Setup Solve Setup Solve [Lev02]

Octa-flower (Fig. 2) 16K 6 0.144 0.051 0.028 0.079 0.014 0.316 2.085 6.6
Planck (Fig. 3) 47K 8 1.096 0.214 0.130 0.477 0.091 2.008 16.760 8.35

Fandisk (Fig. 7(b)) 13K 25 0.010 0.053 0.032 0.088 0.029 0.212 1.551 7.32
Armchair (Fig. 7(a)) 5K 12 0.017 0.014 0.007 0.019 0.007 0.064 0.324 5.06

Hand (Fig. 7(c)) 5K 11 0.017 0.015 0.008 0.017 0.008 0.065 0.235 3.62
Hygeia (Fig. 7(d)) 16.5K 14 0.160 0.067 0.033 0.090 0.024 0.374 2.399 6.41

Table 2: Computation times for each step of our approach in seconds.

gain is due to the fact that the original LSCM method
uses an indirect method (Conjugate Gradients) to solve
the least-squares problem, while we employ the spec-
tral method described by Mullen et al. [Mul08]. The
average speedup of our method compared to LSCM,
[Lev02] is 6.23.
In comparison to the approach by Myles and
Zorin [Myl12], who report a timing of 12.55 sec-
onds for the Fandisk mesh for only the first two
steps of their algorithm (cone detection and curvature
prescription), our method requires only 0.328 seconds
overall.

8 SEAMLESS TEXTURES APPLICA-
TION

As described previously, our approach computes global
parameterizations, where area distortion is continuous
across conic cuts, Fig. 8(a). For example, this facili-
tates texture design. Artists want to paint across cuts
without noticing distortions. However, for specific tex-
turing tasks such as procedural texturing with periodic
patterns, it is additionally beneficial to enforce planar
coordinate alignment across the cuts, to guarantee the
alignment of the periodic pattern. Such a parameteriza-
tion is called seamless and it is illustrated on a simple
cube in Fig. 8(b), where the repeating checker board
pattern is indeed well aligned across conic cuts. Seam-
less parameterizations are also useful for re-meshing
as pure quadrangulations can readily be extracted from
them. Seamless texturing requires the usage of specific
transition functions across conic cuts: translations and
rotations by multiples of π/2. Additionally, cone sin-
gularities must be located at integer texture coordinates.

(a) LSGP (b) Seamless LSGP

Figure 8: Cube unfolding with our approach (a); our
approach - seamless (b).

These two constraints can easily be integrated in our ap-
proach.

Given input cones as well as initial curvature prescrip-
tions computed automatically by our approach, we start
by rounding the curvature prescriptions to the nearest
multiples of π/2 while respecting the Gauss-Bonnet
theorem, similarly to Springborn et al. [Spr08]. In
particular if the sum of prescribed angles is different
from the allowed sum, we decrease them in descend-
ing order of their rounding error. The resulting angles
are then prescribed in the reminder of the proposed al-
gorithm. Next, we snap each cone to the nearest inte-
ger location. The resulting integer locations are then
added as hard constraints to the linear system described
in Sec. 6 and the rest of the algorithm is executed as
is. In the extreme case where several cones are quan-
tized to the same (u,v) coordinates, we relax the seam-
less constraints by not pinning such cones, but rather
adding them to the system as soft constraints. This case
appears rarely in practice and it is either caused by the
proximity of the cones in 3D, the high cone number or
the low resolution of the texture space.
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(a) Armchair (b) Bird

(c) Head (d) Julius (e) Rabbit
Figure 9: Seamless global parameterization obtained with our algorithm. From left to right: (i) textured surface

with cones and cuts (with planar domain inset), (ii) quasi-conformal distortion, (iii) area distortion, (iv)
quasi-conformal and area distortion histograms (ideal values: 1). Our approach yields global conformal

parameterizations with low area distortion and seamless texture transitions across conic cuts (inset zooms).

Fig. 2(d), Fig. 1(a), Fig. 3(d), Fig. 8(b) and Fig. 9 pro-
vide examples of seamless global parameterizations ob-
tained with our approach. The initial curvature pre-
scription, before rounding, has been automatically eval-
uated by our method for all surfaces. As showcased
in these examples, based on the integration of seam-
less constraints, our approach provides rapidly seam-
less global parameterizations with low area distortion.

9 CONCLUSION
We have presented a fast and efficient method for the
global parameterization of triangular surfaces.

For modeling the transition functions between pairs of
sister conic cuts, we introduced linear equations which
account for translations and rotations with given cone
angles. Also we have provided an automatic method
to compute such angles. Extensive experimental results
demonstrate the time efficiency of our algorithm which
performs better than standard, non-global parameteri-
zation algorithms [Lev02]. The average speedup of our
method compared to LSCM is 6.23. The quality of our
parameterizations has been illustrated by examining ac-
cepted distortion measures. We demonstrated the inter-
est of the computational speed of our approach in the
seamless texturing application, which requires slight
modifications to our algorithm.

In future work, we want to extend the seamless textur-
ing application. In particular, the proposed method for
detecting integer positions for the cones is not guaran-
teed to find solutions for the entire set of cones, the
quantization can be partial, but we show a number of
examples where the application provides satisfactory
results. A more robust but still efficient quantization

of the cones remains an open problem that we will ad-
dress in the future. Although our procedure for the res-
olution of conic cut intersection in the planar domain
has worked successfully in our experiments, we would
like to further investigate theoretical guarantees regard-
ing the bijective property of the maps computed by our
approach. Also, since our method handles only disk or
sphere topology, another future work direction lies in
the extension of our algorithm to surfaces of non triv-
ial topology, by applying loop computation algorithms
[Dey08, Dey13].
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