ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

KATEDRA TECHNOLOGIÍ A MĚŘENÍ

DIPLOMOVÁ PRÁCE

Analýza síťování ethylen-vinyl acetátu používaného ve fotovoltaických panelech

vedoucí práce: autor:

doc. Ing. Radek Polanský, Ph.D. Bc. Monika Bartůňková 2012

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2011/2012

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Bc. Monika BARTŮŇKOVÁ
Osobní číslo:	E09N0004P
Studijní program:	N2612 Elektrotechnika a informatika
Studijní obor:	Komerční elektrotechnika
Název tématu:	Analýza síťování ethylen-vinyl acetátu používaného ve fotovol- taických panelech
Zadávající katedra:	Katedra technologií a měření

Zásady pro vypracování:

- 1. Zpracujte tématiku výroby a provozu fotovoltaických panelů (základní principy využití solární energie, její výhody a nevýhody, dle možností popište také konstrukci a postup výroby solárních panelů).
- 2. Popište úlohu ethylen-vinyl acetátu (EVA) při výrobě fotovoltaického panelu (základní vlastnosti EVA materiálů, výhody a nevýhody jejich nasazení v tomto oboru).
- 3. Navrhněte diagnostický systém vhodný pro měření základních fyzikálních parametrů materiálů EVA používaných pro laminaci solárních panelů.
- 4. Po konzultaci s vedoucím práce prakticky realizujte na dodaných materiálech vybraná laboratorní měření.

Rozsah grafických prací: podle doporučení vedoucího Rozsah pracovní zprávy: 30 - 40 stran

Forma zpracování diplomové práce: tištěná/elektronická

Seznam odborné literatury:

- 1. CZANDERNA, A.W.; PERN, F.J. Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Solar Energy Materials and Solar Cells. vol. 43, 1996.
- 2. AGROUIA, K., et al. Quality control of EVA encapsulant in photovoltaic module process and outdoor exposure. Desalination. vol. 209, 2007.
- 3. Elektronické informační zdroje (databáze SCIENCE DIRECT, Interscience-Wiley apod.)

Vedoucí diplomové práce:

Doc. Ing. Radek Polanský, Ph.D. Katedra technologií a měření

Datum zadání diplomové práce: Termín odevzdání diplomové práce: 11. května 2012

18. října 2010

Doc. Ing. Jiří Hammerbauer, Ph.D. děkan

V Plzni dne 17. října 2011

Doc. Ing. Vlastimil Skočil, CSc. vedoucí katedry

Abstrakt

Cílem diplomové práce je optimalizace procesu síťování ethylen-vinyl acetátové folie, používané pro zapouzdření ve fotovoltaických panelech. U vzorků vystavených rozdílným síťovacím teplotám a tlakům byly nejprve porovnány teplotní závislosti proudu, permitivity a ztrátového činitele (v teplotním rozmezí 21 - 170 °C). Dále byla aplikována diferenční skenovací kalorimetrie. Určení optimálních podmínek síťování bylo založeno na proměřených absorpčních proudů a následném dopočítání polarizačních indexů (minutového i desetiminutového) a vnitřní rezistivity. Výsledky experimentu prokázaly, že u dodaného materiálu je možné síťovat při teplotě 135 °C (oproti výrobcem udávané hodnotě 150 °C), což je ekonomicky výhodnější.

Klíčová slova

Fotovoltaika, ethylen-vinyl acetát (EVA), zapouzdřovací materiál, síťování, absorpční charakteristika, rezistivita, polarizační index.

Abstract

The target of the master thesis is focused on process optimization of an ethylene-vinyl acetate encapsulant used in photovoltaic panels crosslinking. The delivered samples previously exposed to different crosslinking temperatures and pressures were first put to the tests of temperature dependence (in temperature range 21- 170°C). Then these samples were analyzed by differential scanning calorimetry. The optimal conditions determination of crosslinking was based on the measurement of absorption characteristics and calculation of polarization indexes (1 min and 10 min) and specific volume resistance afterwards. The results of the experiment revealed that it is possible to modify condition for crosslinking (lower the temperature from 150°C provided by the manufacturer to 135°C) and make it less economically demanding.

Key words

Photovoltaic, ethylene-vinyl acetate (EVA), encapsulant, crosslinking, absorption characteristic, resistivity, polarization index.

Prohlášení

Předkládám tímto k posouzení a obhajobě diplomovou práci zpracovanou na závěr studia na Fakultě elektrotechnické Západočeské univerzity v Plzni.

Prohlašuji, že jsem tuto diplomovou práci vypracovala samostatně s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce.

Dále prohlašuji, že veškerý software, použitý při řešení této diplomové práce, je legální.

V Plzni dne 7. 5. 2012

Monika Bartůňková

.

Poděkování

Tímto bych ráda poděkovala vedoucímu diplomové práce doc. Ing. Radkovi Polanskému, Ph.D. za získání společnosti, která poskytla materiálovou podporu pro tuto práci, za cenné profesionální rady a vyčerpávající korekturu. Dále bych ráda poděkovala Ing. Martině Pinkerové, která proměřila významnou část vzorků.

Seznam použitých symbolů a zkratek

Tg	[°C]	teplota skelného přechodu
tg δ	[-]	ztrátový činitel
E _r	[-]	relativní permitivita
ε"	[-]	imaginární část komplexní relativní permitivity
Α	$\left[m^{2}\right]$	aktivní plochy elektrod
C_0	[pF]	mezielektrodová kapacita daného uspořádání
\mathcal{E}_0	$\left[F \cdot m^{-1} \right]$	permitivita vakua
p_{i1}	[-]	minutový polarizační index
<i>p</i> _{i10}	[-]	desetiminutový polarizační index
$R_{i_{15}}, R_{i_{16}}$	$[\Omega]$	izolační odpor v 15. a 60. sekundě
R_{i60} , R_{i600}	$[\Omega]$	izolační odpor v 60. a 600. sekundě
R_{ν}	$[\Omega]$	vnitřní odpor
$ ho_v$	$[\Omega \cdot m]$	vnitřní rezistivita

EVA	Ethylen-vinyl acetát
DSC	Diferenční skenovací kalorimetrie
DMA	Dynamická mechanická analýza
TGA	Termogravimetrická analýza

Obsah

OBSAH	8
ÚVOD	10
1 SOLÁRNÍ ENERGIE	11
1.2 ROZDĚLENÍ SOLÁRNÍCH ČLÁNKŮ	12
1.2.1 První generace článků	
1.2.2 Druhá generace článků (thin film)	
1.2.3 Třetí generace článků	13
1.3 POSTUP VÝROBY PV PANELŮ	14
1.3.1 Výroba solárních článků	
1.3.2 Konstrukce PV panelů	15
2 MATERIÁL EVA (ETHYLEN-VINYL ACETÁT)	19
2.1 EVA OBECNĚ	19
2.2 POUŽITÍ PRO PV PANELY	19
3 EXPERIMENT	21
3.1 CÍLE EXPERIMENTU	21
3.1 POPIS MATERIÁLU	21
3.2 PŘÍPRAVA VZORKŮ	22
3.3 DIAGNOSTICKÝ SYSTÉM	23
3.3.1 Orientační měření	23
3.3.1.1 Teplotní závislost proudu	23
3.3.1.2 Teplotní závislost ztrátového činitele tg δ a permitivity ϵ	24
3.3.1.3 Diferenční skenovací kalorimetrie	25
3.3.2 Hlavní část experimentu: měření absorpčních proudů	26
3.4 VYHODNOCENÍ DAT	28
3.4.1 Orientační měření	
3.4.1.1 Teplotní závislost proudu	
3.4.1.2 Teplotní závislost tg δ a ϵ	29
3.4.1.3 Diferenční skenovací analýza	
3.4.2 Hlavní část experimentu: měření absorpčních proudů	
4 VÝSLEDKY MĚŘENÍ	
ZÁVĚR	

POUŽITÁ LITERATURA	38
PŘÍLOHY	41
PŘÍLOHA A - MATERIÁLOVÝ LIST	41
PŘÍLOHA B - TECHNICKÉ SPECIFIKACE PŘÍSTROJŮ	45
PŘÍLOHA C - TABULKY NAMĚŘENÝCH A VYPOČTENÝCH HODNOT	45

Úvod

Zájem o obnovitelné zdroje energie stoupá každým rokem. Obnovitelné zdroje nabízejí řešení problémů jako je omezené množství fosilních paliv nebo globální oteplování způsobené produkcí oxidu uhličitého.

Tato práce je zaměřena na sluneční energii, která jako jediná z obnovitelných zdrojů nabízí možnost přímé přeměny na energii elektrickou pomocí solárních článků.

Než mohou být sluneční paprsky přeměněny na elektrickou energii pomocí solárních článků, prochází vrstvou ochranného skla a laminovací ethylen-vinyl acetátové (EVA) folie. Obě tyto vrstvy mohou v důsledku ovlivňovat účinnost a životnost celého solárního panelu. S ohledem na organický původ EVA folie je velmi důležité sledovat její vlastnosti a to jak elektrické, tak strukturální. Hlavním cílem provedených experimentů byla optimalizace procesu síťování EVA folie, při kterém je materiál vystaven zvýšené teplotě a tlaku. V přípravné fázi experimentu byly jednotlivé vzorky (síťované při různých teplotách a tlacích) analyzovány pomocí diferenční skenovací kalorimetrie s cílem popsat samotný proces síťovaní. V hlavní části experimentu, byl zaznamenáván průběh absorpčního proudu u všech vzorků a následně dopočtena jejich vnitřní rezistivita a polarizační indexy. Žádaným výsledkem je nalezení optimálních (ekonomicky méně nákladných) parametrů u materiálu vystaveného rozdílným podmínkám při síťování než jsou doporučené výrobcem.

1 Solární energie

Většina obnovitelných zdrojů má svůj původ v energii ze slunečního záření. Přímé využití slunečního záření k výrobě tepla nebo elektřiny má tedy největší potenciál (ve smyslu množství energie, které nám může poskytnout).

Přesto, že slunce je hlavním energetickým zdrojem pro naši planetu, jeho přímá energie pro výrobu elektřiny není zatím příliš využívána. Množství energie, které dnes získáváme z celkové energie slunečního záření, je z hlediska celkové produkce elektrické energie zanedbatelné (podíl fotovoltaiky na celkové produkci elektrické energie ve světě představuje cca 0,01 %). ¹ [1,2]

Na Slunci probíhají již několik miliard let termonukleární reakce. Těmito reakcemi se za uvolnění velkého množství energie přeměňuje sluneční vodík (který obnovován není) na helium. Ze Slunce je energie předávána na Zemi ve formě záření. Energetický příkon ze Slunce ve vzdálenosti, v níž se nachází Země, je dán sluneční konstantou² udávanou v rozmezí 1 353 W/m² - 1 367 W/m². Tolik energie dopadne na horní hranici atmosféry. Tato energie ze sluneční záření je zeslabena při průchodu atmosférou, částečně rozptýlena, částečně odražena a pohlcena. Na zemský povrch pak dopadá přibližně 500 - 1000 W/m². [3, 4, 13]

Nespornými přednostmi je nekonečnost (z pohledu historické doby člověka na Zemi) a plošná dostupnost zdroje fotovoltaické elektřiny. Fotovoltaické (dále jen PV³) panely při provozu neprodukují škodlivé odpady a nijak neovlivňují tepelnou rovnováhu Země. Významnou výhodou je i to, že PV panely je možné instalovat v městské zástavbě (na rozdíl od vodních či větrných elektráren).

Nevýhodou solární energie je časová proměnlivost, tedy nutnost použití dalšího zdroje při nedostatečné slunečním svitu, nízká účinnost a vysoká pořizovací cena. Neměli bychom, ale také zapomínat, že veškeré použité články bude nutno po 20 až 30 letech provozu likvidovat. Vzniká tím obtížně ekologicky likvidovatelný odpad spojený se spotřebou energie na zpracování tohoto odpadu. [2]

¹ pozn.: Existují i výjimky, kde na ostrově Samsø (Dánský ostrov) vyrábí více energie, než spotřebují, přičemž 100 % této energie pochází z obnovitelných zdrojů. Přesto Samsø není zcela energeticky soběstačný, protože jsou okamžiky, kdy je spotřeba vyšší než výroba. [7]

² celkový zářivý tok Slunce dopadající kolmo na plochu 1 čtverečního metru za 1 sekundu. [4]

³ Z angl. "photovoltaic"

Technologie likvidace vysloužilých PV článků se stále vyvíjí. Některé ze společností nabízí i výrobu recyklovaných modulů, např. u termické recyklace nepoškozených panelů lze vytěžit až 85 % článků pro nové použití. [5, 6]

Vzhledem k vysokým pořizovacím nákladům byla v České republice elektřina z obnovitelných zdrojů státem podporována (jako ve většině vyspělých zemí) garantovanými výhodnými výkupními cenami nebo formou tzv. zelených bonusů. Výše státní podpory měla dramatický vliv na rozvoj fotovoltaiky. Díky nevhodnému nastavení výkupních cen (v letech 2009 a 2010) převládají na našem území velké pozemní instalace. A přesto, že stop-stav instalací byl oficiálně ukončen, není prakticky možné připojit novou fotovoltaickou elektrárnu k distribuční soustavě (s výjimkou Prahy). Fotovoltaika je opakovaně používána jako odstrašující příklad nezvládnutí státní regulace podporovaného oboru. [7]

1.2 Rozdělení solárních článků

Fotovoltaický článek je základním prvkem systémů pro přeměnu slunečního záření na elektrickou energii. Ve všech případech se jedná o velkoplošnou polovodičovou součástku s jedním nebo i více PN přechody. Materiály pro výrobu solárních článků lze kategorizovat do několika skupin.

1.2.1 První generace článků jsou založeny na křemíkových substrátech. Křemík je hojně zastoupen v zemské kůře, v přírodě se nejčastěji nachází ve formě křemene nebo oxidu křemičitého. Pro použití v PV panelech rozlišujeme dva druhy křemíku: monokrystalický a polykrystalický, přičemž platí, že polykrystalický křemík má obecně nižší účinnost než monokrystalický. (podrobněji kapitola 2.3.)

1.2.2 Druhá generace článků (thin film) - důvodem vývoje těchto článků byla snaha o snížení výrobních nákladů nahrazením krystalického křemíku. Tyto články jsou tvořeny podložkou ze skla, plastu nebo textilie, na kterou je nanášena tenká polovodičová vrstva (thin film). Zatímco články první generace jsou vyráběny výhradně na bázi křemíku, pro tenkovrstvé materiály je možné použít amorfní či mikrokrystalický křemík (ukázka rozdílnosti struktur monokrystalu a amorfního křemíku je na obrázcích *Obr. 1.1* a *Obr. 1.2*) nebo řadu jiných materiálů (silicon-germanium, či silicon-karbid⁴, ale také tzv. směsné polovodiče z materiálů jako Cu, In, Ga, S, Se, označované obecně jako CIS struktury). Účinnost článků je nižší než u článků první generace (cca 8 až 10%), je tedy potřeba větší

⁴ Silicon-karbid (SiC) – sloučenina uhlíku a křemíku, používá se jako polovodič či např. díky své tvrdosti i jako náhražka diamantu [8]

instalační plocha pro dosažení stejného výkonu, avšak výhodou zůstávají nižší výrobní náklady (až stokrát menší množství křemíku), tedy i nižší pořizovací cena. [9, 10, 11] V současné době jsou komerčně dostupné amorfní panely pružné a ohebné, podstatně tenčí a lehčí než krystalické články. Je možné je přímo integrovat na horní povrch pružného (povrchově upraveného) ocelového substrátu a do běžných polymerních hydroizolačních folií na bázi etylen-vinyl-acetátu. Nepotřebují žádnou vlastní nosnou konstrukci. Mohou se používat např. jako střešní krytina. [9, 11, 12]

Obr. 1.1 Struktura monokristalického křemíku

Obr. 1.2 Struktura amorfního křemíku

1.2.3 Třetí generace článků - solární články třetí generace představují revoluci ve fotovoltaice, jejich hlavním cílem je snížení výrobních nákladů a maximalizace účinnosti PV článků. Pojem třetí generace solárních článků je nutné považovat spíše za plán dalšího výzkumu. Jedná se o procesy pokoušející se o překročení Shockley-Queisserovy hranice⁵ omezující účinnost fotovoltaické přeměny. [9, 11, 12]

Existuje řada směrů, kterým je v tomto výzkumu věnována pozornost [9]:

- tandemové tenkovrstvé články,
- organické články,
- články s vícenásobnými pásy, apod.

Jediným prakticky fungujícím systémem z třetí generace jsou tandemové články. Nejvýznamnějšími z rozvíjejících se směrů jsou zatím články vícevrstvé a organické. Vyšší účinnosti vícevrstvých článků je dosaženo pomocí více vrstev, z nichž každá využívá pouze

⁵ Shockley-Queisserova hranice – hranice omezují účinnost PV přeměny. Podstatou omezení je předpoklad, že 1 foton vytváří 1 využitelný exciton o energii rovné zakázanému pásu a přebytečná energie se mění na teplo. [13]

část slunečního spektra a zbylé záření propouští do nižších vrstev. U článků organického typu, např. na bázi polymerů došlo k výraznému snížení výrobních nákladů, avšak jejich účinnost je zatím pouze 2 až 4% (v oblasti makromolekulární chemie vychází množství publikací zabývajících se účinností přeměny, viz článek [10]) a komerčně jsou zatím nedostupné.[9]

1.3 Postup výroby PV panelů

1.3.1 Výroba solárních článků

V současné době jsou nejvíce rozšířeny PV panely z první generace na bázi polykrystalického nebo monokrystalického křemíku (více než 95% z celkového instalovaného výkonu [2]). Dále budou zmiňovány pouze PV panely z první generace.

Nejdůležitější složkou PV panelu je polovodič, v našem případě křemík. K výrobě křemíku požadované čistoty (pro PV panely nečistoty řádově 10⁻⁶) se nejčastěji používají chemické metody. Mezi nejpoužívanější se řadí Siemensův postup⁶. Zpracování křemíku takovéto čistoty je značně nákladné a odvíjí se od něj přímo cena křemíku. Po zpracování křemíku na požadovanou čistotu se z tohoto polotovaru vyrábějí monokrystalické či polykrystalické ingoty. Pro výrobu polykrystalického ingotu je materiál roztaven a nalit do formy, kde definovanou rychlostí chladne. Polykrystalický křemík má nepatrně nižší účinnost a je levnější než křemík monokrystalický, doba návratnosti energie (označována EPT^{7}) je udávána na 2,2 roky. Monokrystal, u kterého je laboratorně udávána účinnost až 24 % (běžně 14 - 16%) je vyráběn řízenou krystalizací z taveniny tzv. Czochralského proces⁸. Polykrystalické křemíkové ingoty se vyrábějí se čtvercovým průřezem, vhodným pro využití co největší možné plochy solárních článků. Kulaté monokrystalické ingoty se často ořezávají na průřez čtverce se zaoblenými rohy, aby byla lépe využitá plocha solárních panelů. Vzniklé ingoty, ať už polykrystalické či monokrystalické, se příčně řežou na destičky o tloušť ce kolem 200 µm (tuto tloušťku se výrobci neustále snaží snižovat, kvůli úspoře materiálu, aktuálně je možné dosáhnout až 100 µm). [3]

⁶ Siemensův postup - chemická rafinace křemíku - z křemíku je nejprve vyrobena těkavá sloučenina (trichlórsilan HSiCl3 nebo chlorid křemičitý SiCl4). Tato plynná sloučenina se potom vede přes vrstvu vysoce čistého křemíku o teplotě přes 1100 °C a přitom dochází k jejímu rozkladu. Vzniklý vysoce čistý křemík se ukládá v krystalické podobě na původní křemíkovou podložku. [14, 15]

⁷ Z angl. "energy payback time" - doba za kterou vyrobí systém tolik energie, kolik bylo zapotřebí k jeho výrobě.
⁸Czochralského proces - řízená krystalizace - při tomto postupu je do křemíkové taveniny ponořen zárodečný krystal vysoce čistého křemíku, který se za předem definované rychlosti otáčí a postupně je vytahován z taveniny. [3]

Takto vyrobené křemíkové destičky se dále zpracovávají leptáním, při kterém se vytvoří textura (dojde k vytvoření miniaturních pyramid snižujících odraz světla, tedy zvyšujících účinnost) a odstraní se jím poškození, která vznikla při řezání. Na přední straně destičky je těsně pod povrchem vytvořen PN přechod (difuzí příměsí donorů či akceptorů). Následně se provádí antireflexní úprava (vrstva nevodivého nitridu) pro další snížení odrazů a ochranu povrchu před mechanickým poškozením. Sítotiskem se vyrobí vodivý kontakt na přední i zadní straně. Článek se vypálí, aby došlo k vodivému spojení kontaktů s křemíkem. [2,3]

Poslední fází výroby je kontrola měřením a tříděním. Články zapojené do fotovoltaických panelů musí mít přibližně stejné vlastnosti. Při ověřování vlastností se články ozařují světlem odpovídajícím slunečnímu záření o intenzitě 1000 W/m². Výkon fotovoltaických článků se udává v jednotkách Wp (watt peak - špičková hodnota). Základním parametrem pro třídění je proud generovaný fotočlánkem při napětí 0,45 V. [3]

Jednotlivé články (rozměr cca 10 x 10 cm) generují velmi malé množství energie a proto jsou zapojovány do sério-paralelní kombinace, pro poskytnutí žádaného stejnosměrného napětí a výkonu. Maximální výkon záleží především na velikosti celkové plochy PV panelu, na osvětlení a na úhlu dopadajícího světla. [3]

1.3.2 Konstrukce PV panelů

Protože jsou PV články velmi křehké, je nutné jejich zakomponování do konstrukce, jejíž řez je uveden na obrázku (*Obr. 1.3*). První vrstvou je ochranné kalené sklo (odolné vůči povětrnostním podmínkám i optickým degradacím). Další vrstvu tvoří EVA folie. Poté jsou umístěny propojené PV články, následuje opět EVA folie a podkladová ochranná folie ve spodní části panelu (někteří výrobci uvádějí např. materiál DuPont[™] Tedlar® vyrobený z polyvinyl fluoridu - PVF). Celá sestava je pomocí tepelné laminace EVA folií zatavena a následně zarámována a zatmelena do hliníkového rámu.

Obr. 1.3 Průřez PV panelem

Panel musí zajistit hermetické zapouzdření solárních článků, dostatečnou mechanickou a klimatickou odolnost. Přední krycí materiály musí zajišťovat dostatečnou propustnost světla. Konstrukce solárních panelů jsou značně rozmanité dle druhu použití. Pro názornost připojuji postup výroby PV panelů i s fotografiemi, které byly získány přímo z výrobny PV panelů.

Postup kompletace:

Začneme celkovým pohledem na automatickou výrobní linku (*Obr. 1.4*). Na obrázku (*Obr. 1.5*) je vidět posuvný stůl, na němž je již připraveno ochranné sklo a EVA folie. Křemíkové destičky jsou dodány po kompletních úpravách v ochranném obalu a je možné je rovnou použít (*Obr. 1.6*). V automatickém stroji (*Obr. 1.7*) jsou jednotlivé články propojeny do sério-paralelní kombinace. Dále na automatické lince dochází k poskládání jednotlivých spojených řad do konečného tvaru na připravené sklo s EVA folií (*Obr. 1.8 - 1.11*). Jednotlivé řady PV článků je potřeba následně ručně spojit a vyvést vývodní kontakty (*Obr. 1.12*). Na zadní stěnu se přidá podkladová ochranná folie (*Obr. 1.13*) a poté je celá sestava přesunuta do lisu (*Obr. 1.14*), kde se vyčerpá vzduch a za příslušného tlaku a teploty jsou vrstvy pomocí EVA folie laminovány. Obrázek (*Obr. 1.15*) ukazuje laminovaný panel před zarámováním. Na závěr se panely zarámují a zatmelí do hliníkových profilů (*Obr. 1.16*).

Obr. 1.4 Celkový pohled na výrobní linku

Obr. 1.5 Posuvný stůl s ochranným sklem a EVA folií - připraveno pro uložení PV článků

Obr. 1.6 Křemíkové články

Obr. 1.8 Automatická linka - řada propojených PV článků

Obr. 1.10 Automatická linka - složení jednotlivých řad do konečného tvaru

Obr. 1.7 Pájecí automat

Obr. 1.9 Automatická linka – složení jednotlivých řad do konečného tvaru

Obr. 1.11 Konec automatického procesu

Obr. 1.12 Ručně propojené řady PV článků s vyvedenými kontakty

Obr. 1.14 Lis pro vakuovou laminaci

Obr. 1.16 Rámování do hliníkových profilů

Obr. 1.13 Přidání podkladové folie připraveno k lisu

Obr. 1.15 Zalaminovaný PV panel

Obr. 1.17 Připojení krabičky s výstupními kontakty

2 Materiál EVA (ethylen-vinyl acetát)

2.1 EVA obecně

Jedná se o kopolymer ethylenu s vinylacetátem, vyrobený blokovou radikálovou vysokotlakou polymerací. Mechanické vlastnostmi EVA jsou podobné elastomerům, ale zpracovává se jako termoplast. Materiál je průhledný s vysokou pevností. Rozpouští se v ketonech⁹ a aromatických i chlorovaných uhlovodících. Vlastnosti kopolymeru závisí převážně na obsahu vinylacetátové složky, čím větší je její podíl, tím více stoupá průtažnost a odolnost proti tvorbě trhlin pod napětím. Tvrdost a tvarová stálost naopak s větším obsahem vinylacetátové složky klesá, stejně jako se zhoršují elektrické parametry. Pro zvýšení tepelné odolnosti se EVA folie síťují.[16]

EVA má mnohostranné využití. Tento materiál je převážně používán pro oplášťování kabelů¹⁰ nebo jako modifikátor vlastností, především křehkých termoplastů (zvyšuje rázovou houževnatost). [16,17]

Pro použití ve fotovoltaice je velmi důležitá teplota skelného přechodu a teplota tavení materiálu. Podle těchto dvou hodnot máme možnost určit teplotní rozmezí použitelnosti celého PV panelu.

Skelný přechod - jedná se o teplotu přechodu materiálu z měkkého kaučukovitého stavu do stavu sklovitého. Při této teplotě dochází k velkým mechanickým i elektrickým změnám v materiálu, proto je znalost této teploty velmi důležitá. Teplota skelného přechodu (T_g) se u EVA folií pohybuje v širokém teplotním rozmezí (-40 až 20 °C). Přesná teplota T_g závisí na obsahu vinylacetátu v materiálu.

2.2 Použití pro PV panely

Pro laminaci PV panelů se nejčastěji používá kopolymer EVA s 33% vinylacetátové složky. Skelný přechod materiálu s tímto poměrem vinylacetátové složky je dle metody DSC¹¹ udáván v teplotním rozmezí -37 až -33 °C. V PV panelech slouží EVA folie především jako mechanická podpora, vzhledem k tomu jsou důležitější parametry získané metodou

⁹ Karbonylová sloučenina obsahující oxoskupinu C=O, kde na uhlíku jsou dva uhlovodíkové zbytky. Nižší ketony jsou kapaliny rozpustné ve vodě. Vyšší ketony jsou pevné látky ve vodě nerozpustné, často se zápachem. K nejznámějším ketonům patří např. propanon (aceton), metanal (při roztoku s vodou vzniká formalin) apod. [24]

¹⁰ Pozn.: Při nižším obsahu vinylacetátu (cca 20%) se vlastnosti blíží měkčenému PVC a používá se i jako potravinová folie. [16,17]

¹¹ Z angl. ,,differential scanning calorimetry"

DMA¹², kde je teplota T_g určena z maxima ztrátového činitele. Zde je udávaná teplota značně vyšší (v rozmezí -22 až -15 °C). [21, 22]

Materiál použitý pro zapouzdření PV panelů musí splňovat následující požadavky [21, 22, 23]:

- strukturální podpora,
- přilnavost (která přímo ovlivňuje případnou korozi) k různým materiálům panelu,
- přizpůsobivost různým teplotním roztažnostem materiálů,
- maximální optické spojení (počáteční propustnost slunečního záření nejméně 90% se ztrátou méně než 5% po 20 letech provozu - výhledově životnost 30 let),
- fyzická izolace solárních článků, ochrana před vnějšími vlivy životního prostředí (reaktivní prvky, sloučeniny, kroupy, ptáci),
- elektrická izolace,
- trvanlivý a snadno zpracovatelný materiál,
- chemická inertnost,
- vysoká odolnost vůči UV degradacím.

EVA folie tyto požadavky splňuje. Její hlavní výhodou je, že dokáže zajistit vynikající optické spojení při nízké pořizovací ceně, navíc její výroba je velmi jednoduchá. Nevýhodou jsou ne zcela ideální mechanické a tepelné vlastnosti, navlhavost a nutnost vakuové laminace. [21, 23, 24] V dřívějších letech se u EVA folie po několika letech provozu objevilo zežloutnutí způsobené kyselinou octovou vznikající při stárnutí materiálu (především za zvýšených teplot). [21, 24] Dnešní postupy však zajišťují životnost EVA folie 20 až 30 let, bez projevů této degradace. Otázkou zůstává, zda nedochází k jiným nepříznivým reakcím následkem pomalé produkce kyseliny octové. [21] Také osmiletá expozice slunečními paprsky v pouštním klimatu Alžírské Sahary prokázala nepatrné degradace, přestože hlavní parametry zůstaly nezměněny. [23]

Výzkum ukázal, že některé materiály, např. silikony [26], mohou výše uvedené parametry splňovat lépe. EVA folie je přesto nejčastěji používaným laminovacím materiálem především díky nízké ceně. O použití jiného materiálu by mělo být uvažováno především při umístění PV panelu v klimatech, kde se teplota běžně delší dobu pohybuje pod -15 °C. [21]

¹² Z angl.dynamic mechanical analysis

3 Experiment

3.1 Cíle experimentu

Cílem experimentu je optimalizace podmínek síťování. Tedy nalezení nejvhodnější kombinace teploty, tlaku a času síťování tak, aby byly dosaženy co nejlepší elektrické vlastnosti síťované EVA folie. Tato optimalizace může ve svém důsledku ušetřit výrobci PV panelů nejen čas, ale i peníze související s energetickou náročností procesu laminace.

Hlavní část experimentu byla zaměřena na měření absorpčních proudů a vyhodnocení všech důležitých parametrů s nimi souvisejícími (minutový polarizační index p_{i1} , desetiminutový polarizační index p_{i10} a vnitřní rezistivita ρ_v). Díky těmto parametrům bylo možno vyvodit patřičné závěry a následně doporučit nové parametry síťování.

Hlavní části předcházela série orientačních měření, která byla zařazena po konzultaci s vedoucím práce z důvodu nutnosti analyzovat samotný proces síťování a ověřit tak možnosti použití EVA folie v určitém teplotním rozsahu. Bylo také důležité zjistit rozdílné chování mezi síťovaným a nesíťovaným materiálem.

3.1 Popis materiálu

Měřeným materiálem byla tenká EVA folie s průměrnou tloušťkou cca 0,45 mm Jednotlivé změřené tloušťky všech testovaných vzorků jsou uvedeny v příloze C (viz tabulky *Tab. 2 a 3*). Zkoušený materiál je označen výrobcem (Vista Solar, Inc.) jako rychle síťovatelný ("Fast Cure") s doporučenou teplotou síťování 150 °C. Je doporučeno udržovat tuto teplotu nejméně po dobu 3 - 5 minut v průběhu vakuace systému a dalších 10 - 15 minut v průběhu laminace panelu při kterém nastává samotné síťování folie. Výrobce dodává EVA folie jako nesíťovaný materiál v ochranné černé folii zabraňující osvitu materiálu slunečním zářením. Slepení jednotlivých nesíťovaných vrstev EVA zabraňuje HDPE¹³ folie vkládaná jako mezivrstva. Takto dodaný materiál je možné uskladnit při teplotě do 30 °C a do relativní vlhkosti vzduchu 50 - 60 % maximálně 6 měsíců od data výroby.

Ve výrobně PV panelů je poté provedeno síťování v hermeticky uzavřeném lisu za doporučeného tlaku a teploty. Dodané vzorky byly síťovány ve firmě zadávající téma této diplomové práce při různých tlacích (10 - 275 mBar) a teplotách (125 °C až do 145 °C). Parametry síťování dodaných vzorků jsou podrobněji uvedeny v tabulce níže (*Tab. 3.1*). U materiálu dodaného k experimentu bylo (pro účely experimentu, kterým se zabývá článek

¹³ HDPE - vysokohustotní polyetylen [16]

[20]) pomocí termogravimetrie zjištěno, že obsahuje 25,5% vinylacetátové složky (při výpočtu byl vzat v úvahu i zbytek vzorku na konci měření). Hodnota skelného přechodu u síťovaného materiálu (měřeno metodou TMA) je -16,9 °C.

Číslo vzorku	Teplota [°C]	950 mBar/s	600 mBar/s	300 mBar/s
1		155	60	10
2		185	90	30
3	125	215	120	70
4		245	150	100
5		275	180	130
6		155	60	10
7		185	90	30
8	130	215	120	70
9		245	150	100
10		275	180	130
11		155	60	10
12		185	90	30
13	135	215	120	70
14		245	150	100
15		275	180	130
16		155	60	10
17		185	90	30
18	140	215	120	70
19		245	150	100
20		275	180	130
21		155	60	10
22		185	90	30
23	150	215	120	70
24		245	150	100
25		275	180	130

Tab. 3.1 Parametry síťování

3.2 Příprava vzorků

Z každého archu síťovaného za specifické teploty a specifického tlaku bylo vytvořeno deset vzorků o rozměru 10 x 10 cm. Zadavatelskou firmou bylo dodáno také několik archů nesíťované EVA folie. V některém případě bylo vytvořeno vzorků pouze devět z důvodu nekvalitního materiálu obsahujícího vzduchové bubliny. Z důvodu probíhajícího (samovolného) procesu síťování i při pokojové teplotě byl jako první jednotlivými měřicími

metodami proměřen nesíťovaný materiál. Poté byly postupně proměřeny i ostatní vzorky. Vlhkost vzorků nebyla stabilizována.

3.3 Diagnostický systém

V této kapitole jsou popsány všechny měřicí metody, které byly pro optimalizaci podmínek síťování EVA folie použity.

Nejprve byla provedena orientační měření pro ověření teplotní stability a charakterizaci procesu síťování nesíťované folie. Mezi orientační měření byla kromě fenomenologických zkoušek zařazena i diferenční skenovací kalorimetrie. Po orientačních měřeních následovala hlavní část experimentu, jehož náplní bylo proměření absorpčních proudů, z nichž byly následně dopočteny polarizační indexy (minutový i desetiminutový) a vnitřní rezistivita. Na základě vypočtených hodnot byla provedena optimalizace procesu síťování a navržena nejvhodnější kombinace síťovací teploty a tlaků.

3.3.1 Orientační měření

3.3.1.1 Teplotní závislost proudu

Pro proměření teplotní závislosti proudu byla dle normy ČSN IEC 93 ("Metody měření vnitřní rezistivity a povrchové rezistivity tuhých elektroizolačních materiálů") [27] a normy ČSN IEC 345 ("Metody měření elektrického izolačního odporu a rezistivity elektroizolačních materiálů při zvýšených teplotách") [28] zvolena voltampérová metoda. Jedná se o nejjednodušší metodu přímého záznamu procházejícího proudu.[29] Měření probíhalo za konstantního stejnosměrného napětí 500 V a v teplotním rozmezí od 24 °C do 170 °C, ohřev vzorku byl ručně regulován přes vyhřívaný elektrodový systém, viz obrázek (*Obr. 3.2*). Vyšší teploty nebylo možné použít díky výrazné deformaci (tečení) vzorků.

Obr. 3.1 Elektrometr Keithley Instruments 6514

Obr. 3.2 Vyhřívaný elek. Systém TETTEX 2914

3.3.1.2 Teplotní závislost ztrátového činitele tg δ a permitivity ϵ

Ztrátový činitel¹⁴ a permitivita¹⁵ jsou frekvenčně, napěťově a teplotně závislé. Vzhledem k tématu diplomové práce, byla při orientačních měřeních proměřena pouze teplotní závislost těchto parametrů. Pro tento účel byl použit automatický můstek LDV-5, který pracuje na principu klasického Scheringova můstku, viz schéma zapojení na obrázku *Obr. 3.3* [29]

Měření probíhalo při konstantním střídavém napětí (500 V) a síťové frekvenci pro jeden nesíťovaný vzorek a jeden náhodně vybraný částečně síťovaný vzorek. Oba dva byly měřeny v teplotním rozmezí od 24 °C do 170 °C. Záznam veškerých signálů probíhal počítačem, následně byly dopočteny požadované hodnoty permitivity (její reálné i imaginární části). Na následujících obrázcích jsou zobrazeny fotografie z měření (*Obr. 3.4*, a *Obr. 3.5*).

Obr. 3.3 Schéma zapojení automatického můstku LDV-5 (převzato z [29])

¹⁴ Ztrátový činitel tg δ - Při vložení dielektrika do střídavého pole se uplatňují vodivostní a hlavně polarizační ztráty, které se dají vyjádřit ztrátovým činitelem. Měření ztrátového činitele patří k nejběžněji používaným nedestruktivním metodám pro monitorování stavu materiálu. [18, 29]

¹⁵ Permitivita ε - Pro střídavá elektrická pole zavádíme pojem tzv. komplexní permitivita, která se skládá z reálné části, kterou představuje relativní permitivita ($ε_r$) a imaginární části neboli ztrátového čísla (ε´´), které představuje míru ztrát v dielektriku v střídavém elektrickém poli. [18, 29]

Obr. 3.4 Vyhodnocovací jednotka LDV-5, vysokonapěťový napájecí systém - LM 30 a ovládací panel SM 4

Obr. 3.5 Detail elektrodového systému

3.3.1.3 Diferenční skenovací kalorimetrie

Kromě fenomenologických měření byla zařazena i metoda strukturální, která se zabývá přímo ději ve struktuře materiálu. [30] Konkrétně proběhla ve spoluprácí s Katedrou technologií a měření analýza síťovací reakce EVA folie pomocí diferenční skenovací kalorimetrie přístrojem TA Instruments SDT Q600. [20]

Jedná se o přístroj schopný měřit současně diferenční skenovací kalorimetrií (DSC) a termogravimetrií (TGA¹⁶) v průběhu jednoho ohřevu vzorku. Ohřev vzorku je možný až do teploty 1 500 °C. Pro účely této práce byl vyhodnocen pouze DSC signál. Na obrázku *Obr. 3.4* a *Obr. 3.5* jsou fotografie přístroje. Bližší technická specifikace přístroje je uvedena v příloze B (viz *Tab. 1*).

Obr. 3.4 TA Instruments SDT Q600

Obr. 3.5 Detail pícky a vahadel

Z dodaného materiálu byly vyseknuty malé vzorky (cca 10 mg), které byly v průběhu měření umístěny v hliníkových, hermeticky uzavřených kelímcích. Takto připravené vzorky

¹⁶ Z angl. "termogravimetric analysis"

byly ohřívány rychlostí 20 °C/min od teploty okolí do teploty 280 °C. Zvolený teplotní režim zaručil úplné sesíťování (příp. dosíťování u částečně síťovaných vzorků). Analýzy byly provedeny v aktivní atmosféře proudícího dusíku (100 ml/min). Pro teplotní kalibraci a kalibraci tepelného toku byl použit safír a zinek. [20]

3.3.2 Hlavní část experimentu: měření absorpčních proudů

Dielektrická absorpce jsou složité nestacionární děje, které probíhají v reálném dielektriku po vložení do stejnosměrného pole. Díky pomalým polarizacím nebude nárůst napětí skokový. Absorpční proud je časově proměnný a s časem postupně klesá až k hodnotě tzv. prosakujícího proudu, jehož hodnota je následně použita pro výpočet vnitřní rezistivity. Průběh absorpčního proudu v čase není přesně exponenciální (tato situace by nastala pouze při jednom typu polarizace). Rychlost poklesu je dána strukturou a stavem dané látky, proto se z pohledu elektroizolačních materiálů jedná o vysoce vypovídající hodnoty. [18, 29] Pro účely této práce bude dopočtena vnitřní rezistivita a polarizační indexy (minutový i desetiminutový).

Definice základních pojmů souvisejících s měřením: [18, 27, 29]

Vnitřní odpor - Je poměr stejnosměrného napětí připojeného mezi dvě elektrody, které jsou umístěny na dvou protilehlých stranách zkušebního tělesa a ustáleného proudu mezi elektrodami, vyjímaje proud po povrchu zkušebního tělesa se zanedbáním polarizačních jevů v oblasti elektrod.

Vnitřní rezistivita - Je poměr intenzity stejnosměrného elektrického pole a hustoty ustáleného proudu uvnitř elektroizolačního materiálu. Je to vnitřní odpor redukovaný na objemovou jednotku.

Polarizační index - popisuje stav materiálu pomocí časové proměnnosti absorpčních proudů.

Rozlišujeme *Minutový polarizační index* $p_{i1}[-]$ (Poměr absorpčních proudů v patnácté a šedesáté sekundě od přiložení napětí na vzorek) a *Desetiminutový polarizační index* p_{i10} [-] (Poměr absorpčních proudů v první a desáté minutě). Čím je hodnota p_{i1} větší, tím menší je počet nosičů elektrického pole a jedná se o lepší elektroizolační materiál.

Postup měření:

Pro účely měření byla opět zvolena voltampérová metoda, schéma zapojení je uvedeno na obrázku níže (*Obr. 3.6*). Dále je možné odpor měřit také metodou porovnávací např. Wheatstonův můstek či metodou kompenzační. [26, 28]

Obr. 3.6 VA metoda pro měření odporu izolantů (převzato z [29])

V prvních fázích experimentu byly nejprve vzorky z důvodu jejich uvedení do dielektricky stabilního stavu před měřením umístěny po dobu minimálně 24 hodin ve zkratovací knížce. Bohužel, vzhledem k velké přilnavosti materiálu k listům zkratovací knížky a jeho následnému nabití při odtržení folie bylo od tohoto postupu ustoupeno a vzorky byly měřeny bez kondicionace. Měření probíhalo při konstantním stejnosměrném napětí 500 V. Absorpční proud, jak již bylo řečeno, byl považován za ustálený po třicáté minutě. Na obrázcích níže je zobrazena měřicí aparatura, na které měření probíhalo.

Obr. 3.7 Elektrometr Keithley 6517

Obr. 3.8 Tříelektrodový systém Keithley 8008

3.4 Vyhodnocení dat

3.4.1 Orientační měření

3.4.1.1 Teplotní závislost proudu

Z níže uvedeného grafu (*Obr. 3.9*) je patrná rozdílnost mezi křivkou síťovaného materiálu a materiálu v nesíťovaném stavu. Pro účely této práce je pro nás zajímavější křivka nesíťovaného vzorku (měřen s četností 3), kde máme možnost vidět při zvyšující se teplotě proces síťování, projevují se zde dva druhy vodivosti. Mechanismus vodivosti se v materiálu výrazně mění v okolí teploty 120 °C, v tomto okamžiku nastává počátek procesu síťování. Síťovací reakce dosahuje svého maxima v okolí teploty 125 - 130 °C a končí při dosažení teploty 162 °C. Náhodně vybraný síťovaný vzorek vykazuje odlišné chování. V oblasti nárůstu proudu (tato oblast odpovídá s odkazem na výsledky DSC oblasti tavení EVA folie) mezi teplotou okolí a maximem reakce při teplotě v rozmezí 109 - 114 °C se mechanismus vodivosti nemění. Po dosažení maxima reakce hodnota proudu strmě klesá a v okolí teploty 140 °C nastává výrazná změna charakteru vodivosti.

Obr. 3.9 Teplotní závislost proudu

3.4.1.2 Teplotní závislost tg δ a ϵ

Ztrátový činitel (tg δ) byl získán přímo z vyhodnocovací jednotky automatického můstku. Relativní permitivita (ϵ_r) a imaginární část permitivity (ϵ ^{''}) byla dopočítána dle normy ČSN IEC 250 ("Doporučené postupy ke stanovení permitivity a ztrátového činitele elektroizolačních materiálů při průmyslových, akustických a rozhlasových kmitočtech včetně metrových vlnových délek") viz následující vztahy.

Výpočet parametrů elektrod:

Na následujícím obrázku je znázorněno označení elektrod dle normy [30], dle kterého je poté uskutečněn výpočet.

Obr. 3.10 Disková elektroda s ochranným prstencem (Zdroj: [31])

Parametry elektrodového systému byly dopočteny dle následujících vztahů:

 $g = 0,001 m \qquad h_{sit'} = 0,6648 \cdot 10^{-3} m$ $d_1 = 0,0495 m \qquad h_{nesit'} = 0,5192 \cdot 10^{-3} m$

Výpočet aktivní plochy elektrod:

$$A = \frac{\pi}{4} (d_1 + g)^2 = \frac{\pi}{4} (0,001 + 0,0495)^2 = 2,003 \cdot 10^{-3} m^2$$
(3.1)

Výpočet mezielektrodové kapacity:

$$C_{0} = \varepsilon_{0} \cdot \frac{A}{h}$$
(3.2)
síťovaný: $C_{0} = 0,267 \cdot 10^{-12} F$
nesíťovaný: $C_{0} = 0,342 \cdot 10^{-12} F$

Výpočet požadovaných veličin:

$$\varepsilon_r = \frac{c_x}{c_0} \tag{3.3}$$

C_x - získáno z automatického můstku

$$\varepsilon'' = tg\delta \cdot \varepsilon_r \tag{3.4}$$

Všechny vypočtené hodnoty jsou uvedeny v příloze C (viz *Tab. 6*). Na následujících obrázcích jsou přiloženy grafy teplotních závislostí všech měřených veličin. Jak již bylo řečeno, u nesíťovaného vzorku se v průběhu síťování objevují dva mechanismy vodivosti. I z grafu teplotní závislosti ztrátového činitele (*Obr. 3.11*) máme možnost vyčíst počátek síťovací reakce (115 °C), maximum (131 °C) a konec (165 °C). U grafu teplotní závislosti relativní permitivity je počátek síťovací reakce při (116 °C), maximum (128 °C) a konec (162 °C). Vzorek nebylo možné po ohřevu opětovně použít, z toho důvodu jsou možné mírné odchylky zjištěných hodnot.

Obr. 3. 11 Změřená teplotní závislost ztrátového činitele

Obr. 3.12 Změřená teplotní závislost relativní permitivity

Obr. 3. 13 Změřená teplotní závislost imaginární části relativní permitivity

Průběh reálné a imaginární části permitivity je úzce spojen se ztrátovým činitelem. Výsledné charakteristiky (*Obr. 3.11, 3.12 a 3.13*) vychází v souladu s odbornou literaturou. [28]

Obě aplikované metody (3.4.1.1 a 3.4.1.2) vykazují stejné výsledky. Je z nich patrný proces síťování i rozdílné chování síťovaného a nesíťovaného vzorku.

3.4.1.3 Diferenční skenovací analýza

Termogram (*Obr. 3.14*) zobrazuje průběh tepelného toku v průběhu ohřevu vzorku EVA folie. V případě odklonu křivky pod základní linií termogramu probíhá ve vzorku endotermní chemická reakce [30], v našem případě se jedná o dosažení oblasti tavení folie. Pokud se křivka odkloní naopak nad základní linii, jedná se o exotermní reakci, v našem případě síťovací reakci.

Testovaný vzorek byl analyzován v tzv. režimu "reheatingu", tj. opakovaným ohřevem. Jak je zřejmé z grafu (*Obr. 3.14*), testovaný materiál prochází při prvním ohřevu oblastí tavení začínající od teploty cca 45 - 50 °C s maximem této reakce (~lokálním minimem křivky) při teplotě 69,8 °C. Po jejím ustálení nastává rozsáhlá exotermní reakce odpovídající síťování vzorku [30]. Exotermní pík dosahuje svého maxima při teplotě 177,6 °C, následně reakce pozvolna odeznívá. Celková entalpie síťování je dle DSC 23,67 J/g. Při druhém ohřevu prochází již zcela síťovaný vzorek pouze oblastí tavení s maximem při teplotě 65,51 °C.

V průběhu tavení by se měly projevit dva druhy krystalizace - dva endotermní píky (dle [20] a [32]), odpovídající tavení nedokonalých, malých krystalitů, které jsou výsledkem začlenění vinylacetátu do struktury polyethylenu a tavení odpovídající větším a dokonaleji uspořádaným krystalitům polyetylenu. Na zaznamenaném termogramu se tyto dva píky překrývají a tudíž není možné jednoznačně separovat jejich maxima. To poukazuje na splynutí okamžiku tavení obou fází (vinylacetátové a polyetylenové) testovaného kopolymeru.

Obr. 3.14 Ukázka naměřených hodnot (DSC signál)

3.4.2 Hlavní část experimentu: měření absorpčních proudů

Jak již bylo řečeno, hlavní část experimentu byla věnována proměření absorpčních charakteristik, z nichž byla následně dopočtena vnitřní rezistivita a polarizační indexy (minutový i desetiminutový) pro všechny připravené vzorky. Z důvodu celkové časové náročnosti experimentu byl pro účely této práce absorpční proud považován za ustálený ve 30. minutě od přiložení napětí na vzorek (od zahájení polarizace). Výpočty jsou uskutečněny dle norem. [27,31]

Výpočet polarizačních indexů:

Minutový:

$$p_{i1} = \frac{R_{60}}{R_{15}} = \frac{i_{15}}{i_{60}} \tag{3.5}$$

 R_{15} , R_{16} - jsou odpory v 15. a 60. sekundě od přiložení napětí [Ω]

i15, i60 - jsou odpovídající absorpční proudy [A]

Desetiminutový:

$$p_{i10} = \frac{R_{600}}{R_{60}} = \frac{i_{60}}{i_{600}}$$
(3.6)

 R_{60} , R_{600} - jsou odpory v 60. a 600. sekundě od přiložení napětí [Ω]

i₆₀, i₆₀₀ - jsou odpovídající absorpční proudy [A]

Výpočet vnitřní rezistivity:

Parametry elektrodového systému (využit stejný tvar elektrod viz Obr. 3.10):

g = 0,0035 m

 $d_1=0,\!05m$

Výpočet aktivní plochy elektrod:

$$A = \frac{\pi}{4} (d_1 + g)^2 = \frac{\pi}{4} (0.05 + 0.0035)^2 = 2.248 \cdot 10^{-3} m^2$$
(3.7)

Vnitřní rezistivita

$$\rho_V = \frac{R_V \cdot A}{h}$$

$$R_v - \text{vnitřní odpor}$$
(3.8)

A – aktivní plocha elektrod

h – tloušťka vzorku

Pro přehlednost uvádím pouze výsledky průměrných hodnot společně se směrodatnou odchylkou, výsledky jednotlivých vzorků je možné najít v příloze C (*Tab. 7*).

Tab. 3.2 Výsledky měření hlavní části experimentu

Vzorek č.		pi1 [-]	pi10 [-]	Rv [GΩ]	ρν [MΩm]
n o cít		1,68 ± 0,12	3,62 ± 0,44	2253,26 ± 680,38	11,82 ± 3,24
nesit.	V. koef.	7,43	12,09	30,20	27,42
1		3,14 ± 0,38	2,62 ± 0,33	3163,42 ± 822,17	15,39 ± 3,97
T	V. koef.	11,92	12,42	25,99	25,77
2		2,90 ± 0,30	1,31 ± 0,25	923,16 ± 290,35	4,52 ± 1,42
2	V. koef.	10,18	19,38	31,45	31,36

Image: space	Vzorek č.		pi1 [-]	pi10 [-]	Rv [GΩ]	ρν [MΩm]
N. keef. 12,30 10,58 29,84 30,30 A 3,16 ± 0,46 2,99 ± 0,45 2541,35 ± 937,86 12,51 ± 4,54 V. koef. 14,43 15,05 36,90 36,34 5 - 3,36 ± 0,55 2,57 ± 0,50 1911,18 ± 417,97 9,48 ± 2,00 6 - 2,99 ± 0,41 2,75 ± 0,57 15,24 ± 8,00 2,53 ± 0,18 22,91 7 - - 3,52 ± 0,32 2,53 ± 0,18 2779,63 ± 767,90 13,28 ± 3,37 7 - - 3,55 ± 0,25 2,596 ± 0,555 2790,31 ± 909,60 13,72 ± 4,26 8 - - 3,55 ± 0,25 2,596 ± 0,555 2790,31 ± 909,60 13,72 ± 4,26 9 - - 3,55 ± 0,25 2,596 ± 0,555 2790,31 ± 909,60 13,72 ± 4,26 9 - - 3,54 ± 0,54 3120,43 ± 137,69 13,72 ± 4,26 10 - - 3,44 ± 0,44 2,45 ± 0,44 3120,43 ± 137,59 15,45 10 N. koef. 11,0,29 </td <td>2</td> <td></td> <td>3,51 ± 0,43</td> <td>1,45 ± 0,15</td> <td>1065,05 ± 317,96</td> <td>5,32 ± 1,61</td>	2		3,51 ± 0,43	1,45 ± 0,15	1065,05 ± 317,96	5,32 ± 1,61
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	V. koef.	12,30	10,58	29,84	30,30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4		3,16 ± 0,46	2,99 ± 0,45	2541,35 ± 937,86	12,51 ± 4,54
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V. koef.	14,43	15,05	36,90	36,34
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	5		3,36 ± 0,55	2,57 ± 0,50	1911,18 ± 417,97	9,48 ± 2,00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V. koef.	16,24	19,42	21,87	21,06
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	6		2,99 ± 0,41	2,75 ± 0,87	3145,19 ± 1747,75	15,24 ± 8,06
$\begin{array}{ c c c c c c c } \hline \begin{array}{ c c c c c } \hline \hline \end{bmatrix} 1, 2, 2, 3, 2, 0, 18, 2, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$		V. koef.	13,73	31,50	55,57	52,91
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7		3,52 ± 0,32	2,53 ± 0,18	2779,63 ± 767,90	13,28 ± 3,37
8 Image: Im		V. koef.	9,14	6,90	27,63	25,34
$ \begin{array}{ c c c c c c } \hline V. \ koet. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	8		3,55 ± 0,25	2,596 ± 0,555	2790,31 ± 909,60	13,72 ± 4,26
$\begin{array}{ c c c c c c } \hline \begin{array}{ c c c c c c } \hline \begin{array}{ c c c c c c c } \hline \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V. koef.	6,99	21,38	32,60	31,06
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline 10,02 & 18,63 & 44,13 & 46,83 \\ \hline \end{tabular} \\ \hline \end{tabular} \hline ta$	9		4,16 ± 0,42	2,34 ± 0,44	3120,43 ± 1376,99	15,33 ± 7,18
$\begin{array}{ c c c c c c c } \hline 10 & \hline 3,48 \pm 0,53 & 3,04 \pm 0,73 & 3073,68 \pm 886,42 & 115,71 \pm 4,26 \\ \hline V. koef. & 15,32 & 24,04 & 28,84 & 28,01 \\ \hline 3,43 \pm 0,44 & 2,85 \pm 0,44 & 3020,13 \pm 783,06 & 14,72 \pm 3,69 \\ \hline V. koef. & 12,97 & 15,43 & 25,93 & 25,07 \\ \hline V. koef. & 23,35 & 25,40 & 3651,39 \pm 877,39 & 17,00 \pm 3,95 \\ \hline V. koef. & 23,35 & 25,40 & 24,03 & 23,23 \\ \hline V. koef. & 7,84 & 20,20 & 53,47 & 53,54 \\ \hline V. koef. & 15,01 & 27,15 & 31,74 & 30,55 \\ \hline V. koef. & 15,01 & 27,15 & 31,74 & 30,55 \\ \hline V. koef. & 15,01 & 27,15 & 31,74 & 30,55 \\ \hline V. koef. & 4,34 & 11,52 & 39,49 & 39,18 \\ \hline V. koef. & 12,44 \pm 0,09 & 4,59 \pm 0,53 & 2825,59 \pm 1115,89 & 14,68 \pm 5,75 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 12,45 & 0,94 & 308,21 \pm 134,14 & 51,12 \\ \hline V. koef. & 12,64 \pm 0,33 & 4,09 \pm 0,64 & 2828,81 \pm 931,12 & 14,13 \pm 4,67 \\ \hline V. koef. & 12,290 & 17,61 & 41,29 & 38,38 \\ \hline 0 & V. koef. & 12,290 & 17,61 & 41,29 & 38,38 \\ \hline 0 & V. koef. & 12,290 & 17,61 & 41,29 & 38,38 \\ \hline 0 & V. koef. & 14,78 & 18,15 & 55,18 & 53,32 \\ \hline 0 & V. koef. & 14,78 & 18,15 & 55,18 & 53,32 \\ \hline 0 & V. koef. & 14,78 & 18,15 & 55,18 & 53,32 \\ \hline 0 & V. koef. & 14,78 & 18,15 & 55,18 & 53,32 \\ \hline 0 & V. koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 0 & V. koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 0 & V. koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 0 & V. koef. & 15,25 & 10,37 & 35,42 & 34,30 \\ \hline 0 & V. koef. & 15,25 & 10,37 & 35,42 & 34,30 \\ \hline 0 & V. koef. & 11,27 & 18,30 & 50,36 & 48,92 \\ \hline 0 & V. koef. & 11,27 & 18,30 & 50,36 & 48,92 \\ \hline 0 & V. koef. & 11,27 & 18,30 & 50,36 & 48,92 \\ \hline 0 & V. koef. & 11,27 & 13,50 & 21,57 & 21,57 & 31,56 \\ \hline 0 & V. koef. & 11,27 & 18,30 & 50,36 & 48,92 \\ \hline 0 & V. koef. & 11,27 & 18,30 & 50,36 & 48,92 \\ \hline 0 & V. koef. & 11,27 & 13,50 & 21,57 & 21,57 \\ \hline 0 & V.$		V. KOET.	10,02	18,63	44,13	46,83
$\begin{array}{ c c c c c c } \hline V. koef. 15,32 24,04 28,84 28,01 \\ \hline 11 \\ \hline V. koef. 12,97 15,43 22,01 \pm 78,306 14,72 \pm 3,69 \\ \hline V. koef. 12,97 15,43 22,00 3651,39 \pm 877,39 17,00 \pm 3,95 \\ \hline V. koef. 23,35 25,00 3651,39 \pm 877,39 17,00 \pm 3,95 \\ \hline V. koef. 23,35 25,00 3651,39 \pm 877,39 17,00 \pm 3,95 \\ \hline V. koef. 7,84 20,20 53,47 53,54 \\ \hline V. koef. 7,84 20,20 53,47 53,54 \\ \hline V. koef. 15,01 27,15 31,74 30,55 \\ \hline V. koef. 15,01 27,15 31,74 30,55 \\ \hline V. koef. 14,009 4,59 \pm 0,53 2825,59 \pm 115,89 14,68 \pm 5,75 \\ \hline V. koef. 12,47 31,30 48,26 46,90 \\ \hline V. koef. 12,65 15,59 32,92 33,04 \\ \hline V. koef. 12,64 \pm 0,33 4,09 \pm 0,64 282,81 \pm 31,12 14,13 \pm 4,67 \\ \hline V. koef. 12,90 17,61 41,29 33,84 \\ \hline V. koef. 12,90 17,61 41,29 33,83 \\ \hline V. koef. 14,78 18,15 55,18 53,32 \\ \hline V. koef. 14,78 18,15 55,18 53,32 \\ \hline V. koef. 14,78 18,15 55,18 53,32 \\ \hline V. koef. 14,49 21,43 53,39 49,03 \\ \hline V. koef. 14,49 21,43 53,39 49,03 \\ \hline V. koef. 14,49 21,43 53,39 49,03 \\ \hline V. koef. 15,25 10,37 35,42 34,30 \\ \hline V. koef. 11,27 18,30 50,36 48,92 \\ \hline V. koef. 11,27 51,57 3 32,47 7,50,33 50,56 34,53,51 \\ \hline V. koef. 11,57 51,57 $	10		3,48 ± 0,53	3,04 ± 0,73	30/3,68 ± 886,42	15,21 ± 4,26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		V. koef.	15,32	24,04	28,84	28,01
$ \begin{array}{ c c c c c c } \hline V. koef. & 12,97 & 15,43 & 25,93 & 25,07 \\ \hline 4,11 \pm 0,96 & 2,35 \pm 0,60 & 3651,39 \pm 877,39 & 17,00 \pm 3,95 \\ \hline V. koef. & 23,35 & 25,40 & 24,03 & 23,23 \\ \hline 3,52 \pm 0,28 & 2,12 \pm 0,43 & 1984,29 \pm 1060,91 & 9,89 \pm 5,30 \\ \hline V. koef. & 7,84 & 20,20 & 53,47 & 53,54 \\ \hline V. koef. & 15,01 & 27,15 & 31,74 & 30,55 \\ \hline V. koef. & 15,01 & 27,15 & 31,74 & 30,55 \\ \hline V. koef. & 15,01 & 27,15 & 31,74 & 30,55 \\ \hline V. koef. & 4,34 & 11,52 & 39,49 & 39,18 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. koef. & 8,17 & 20,48 & 43,75 & 40,43 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. koef. & 14,78 & 18,15 & 55,18 & 53,32 \\ \hline V. koef. & 14,78 & 18,15 & 55,18 & 53,32 \\ \hline V. koef. & 14,78 & 18,15 & 55,18 & 53,32 \\ \hline V. koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline V. koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 2. & 0,38 \pm 0,45 & 3,53 \pm 0,62 & 3527,95 \pm 113,43 & 17,22 \pm 4,94 \\ \hline V. koef. & 16,75 & 17,52 & 31,56 & 28,71 \\ \hline V. koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 2. & 0,08 \pm 0,45 & 3,53 \pm 0,65 & 35,18 & 53,32 \\ \hline 2. & 0,08 \pm 0,45 & 3,53 \pm 0,65 & 35,18 & 53,32 \\ \hline 1. & 0,02 \pm 0,33 & 4,65 \pm 0,45 & 3,53 \pm 0,02 & 37,95 \pm 1113,43 & 17,22 \pm 4,94 \\ \hline 0,03 \pm 0,45 & 3,53 \pm 0,65 & 35,18 & 53,32 \\ \hline 0,03 \pm 0,45 & 3,53 \pm 0,65 & 35,175 & 51,187,43 & 14,60 \pm 7,16 \\ \hline 0, koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 2. & 0,06 & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 2. & 0,06 & 11,52 & 10,37 & 35,42 & 34,30 \\ \hline 0,03 \pm 0,27 \pm 0,26 & 4,67 \pm 0,86 & 317,28 \pm 1597,67 & 15,74 \pm 7,70 \\ \hline 0, koef. & 11,52 & 15,73 & 21,87 \\ \hline 0, koef. & 11,52 & 15,73 & 21$	11		3,43 ± 0,44	2,85 ± 0,44	3020,13 ± 783,06	14,72 ± 3,69
$\begin{array}{ c c c c c c } \hline 12 & 4,11\pm0,96 & 2,35\pm0,60 & 3651,39\pm877,39 & 17,00\pm3,95 \\ \hline V. koef. & 23,35 & 25,40 & 24,03 & 23,23 \\ \hline 3,52\pm0,28 & 2,12\pm0,43 & 1984,29\pm1060,91 & 9,89\pm5,30 \\ \hline 3,52\pm0,28 & 2,12\pm0,43 & 1984,29\pm1060,91 & 9,89\pm5,30 \\ \hline V. koef. & 7,84 & 20,20 & 53,47 & 53,54 \\ \hline 0.5 & 3,32\pm0,50 & 3,48\pm0,94 & 4325,30\pm1372,78 & 20,88\pm6,38 \\ \hline 0.5 & 3,32\pm0,50 & 3,48\pm0,94 & 4325,30\pm1372,78 & 20,88\pm6,38 \\ \hline 0.5 & 2,14\pm0,09 & 4,59\pm0,53 & 2825,59\pm1115,89 & 14,68\pm5,75 \\ \hline 0.5 & 4,34 & 11,52 & 39,49 & 39,18 \\ \hline 0.5 & 2,14\pm0,09 & 4,59\pm0,53 & 2825,59\pm1115,89 & 14,68\pm5,75 \\ \hline 0.5 & 4,34 & 11,52 & 39,49 & 39,18 \\ \hline 0.5 & 3,38\pm0,42 & 3,84\pm1,20 & 6560,31\pm3166,19 & 30,81\pm14,45 \\ \hline 0.5 & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline 0.5 & 2,73\pm0,22 & 4,57\pm0,94 & 4065,54\pm1778,68 & 20,07\pm8,12 \\ \hline 0.5 & 0,273\pm0,22 & 4,57\pm0,94 & 4065,54\pm1778,68 & 20,07\pm8,12 \\ \hline 0.5 & 0,273\pm0,22 & 4,57\pm0,94 & 4065,54\pm1778,68 & 20,07\pm8,12 \\ \hline 0.5 & 0,2,0\pm0,33 & 4,09\pm0,64 & 2828,81\pm931,12 & 14,13\pm4,67 \\ \hline 0.5 & 12,290 & 17,61 & 41,29 & 38,38 \\ \hline 0.5 & 0,2,0\pm0,33 & 4,85\pm0,88 & 3283,07\pm1811,49 & 16,62\pm8,86 \\ \hline 0.5 & 0,2,0\pm0,33 & 4,85\pm0,88 & 3283,07\pm1811,49 & 16,62\pm8,86 \\ \hline 0.5 & 0,2,0\pm0,33 & 4,85\pm0,88 & 3283,07\pm1811,49 & 16,62\pm8,86 \\ \hline 0.5 & 0,2,0\pm0,33 & 4,85\pm0,88 & 3283,07\pm1811,49 & 16,62\pm8,86 \\ \hline 0.5 & 0,2,0\pm0,33 & 4,85\pm0,88 & 3283,07\pm1811,49 & 16,62\pm8,86 \\ \hline 0.5 & 0,12,90 & 17,61 & 41,29 & 38,38 \\ \hline 0.5 & 0,2,0\pm0,54 & 3,53\pm0,62 & 3527,95\pm1113,43 & 17,22\pm4,94 \\ \hline 0.5 & 0,2,0\pm0,54 & 3,53\pm0,62 & 3527,95\pm1113,43 & 17,22\pm4,94 \\ \hline 0.5 & 0,2,0\pm0,54 & 3,53\pm0,62 & 3527,95\pm1113,43 & 17,22\pm4,94 \\ \hline 0.5 & 0,55 & 10,37 & 35,42 & 34,30 \\ \hline 0.5 & 0,55 & 10,37 & 35,42 & 34,30 \\ \hline 0.5 & 0,27\pm0,26 & 4,67\pm0,86 & 3172,82\pm1597,67 & 15,74\pm7,70 \\ \hline 0.5 & 0,27\pm0,26 & 4,67\pm0,86 & 3172,82\pm1597,67 & 15,74\pm7,70 \\ \hline 0.5 & 0,27\pm0,26 & 4,67\pm0,38 & 3224,47\pm705,33 & 16,27\pm3,51 \\ \hline 0.5 & 0,31\pm0,27 & 4,64\pm0,73 & 3224,47\pm0,70,33 & 16,27\pm3,51 \\ \hline 0.5 & 0,57 & 0,57 & 0,57 & 0,57 & 3,57 & 0,57 \\ \hline 0.5 & 0,57 & 0,57 & 0,57 & 0,57 & 3,57 & 0,57 \\ \hline 0.5 & 0,57 & 0,57 & 0,57 & 0,57 & 0,57 \\ \hline 0.5 & 0,$		V. koef.	12,97	15,43	25,93	25,07
$ \begin{array}{ c c c c c c } \hline V. \ koef. & 23,35 & 25,40 & 24,03 & 23,23 \\ \hline 3,52 \pm 0,28 & 2,12 \pm 0,43 & 1984,29 \pm 1060,91 & 9,89 \pm 5,30 \\ \hline V. \ koef. & 7,84 & 20,20 & 53,47 & 53,54 \\ \hline V. \ koef. & 3,32 \pm 0,50 & 3,48 \pm 0,94 & 4325,30 \pm 1372,78 & 20,88 \pm 6,38 \\ \hline V. \ koef. & 15,01 & 27,15 & 31,74 & 30,55 \\ \hline V. \ koef. & 15,01 & 27,15 & 31,74 & 30,55 \\ \hline V. \ koef. & 4,34 & 11,52 & 39,49 & 39,18 \\ \hline V. \ koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. \ koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. \ koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. \ koef. & 12,47 & 31,30 & 48,26 & 46,90 \\ \hline V. \ koef. & 8,17 & 20,48 & 43,75 & 40,43 \\ \hline V. \ koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. \ koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. \ koef. & 12,65 & 15,59 & 32,92 & 33,04 \\ \hline V. \ koef. & 12,20 & 17,61 & 41,29 & 38,38 \\ \hline 0 & V. \ koef. & 14,78 & 18,15 & 55,18 & 53,32 \\ \hline 0 & V. \ koef. & 14,78 & 18,15 & 55,18 & 53,32 \\ \hline 1 & 3,25 \pm 0,54 & 3,53 \pm 0,62 & 3527,95 \pm 113,43 & 17,22 \pm 4,94 \\ \hline V. \ koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 2 & 0 & 3,08 \pm 0,45 & 3,53 \pm 0,62 & 3527,95 \pm 113,43 & 17,22 \pm 4,94 \\ \hline V. \ koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 2 & 0 & 3,08 \pm 0,45 & 3,53 \pm 0,62 & 3527,95 \pm 113,43 & 17,22 \pm 4,94 \\ \hline V. \ koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 2 & 0 & 3,08 \pm 0,45 & 3,53 \pm 0,62 & 3527,95 \pm 113,43 & 17,22 \pm 4,94 \\ \hline V. \ koef. & 14,49 & 21,43 & 53,39 & 49,03 \\ \hline 2 & 0 & 3,08 \pm 0,45 & 3,53 \pm 0,62 & 3527,95 \pm 113,43 & 17,22 \pm 4,94 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	12		4,11 ± 0,96	2,35 ± 0,60	3651,39 ± 877,39	17,00 ± 3,95
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V. koef.	23,35	25,40	24,03	23,23
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	13		3,52 ± 0,28	2,12 ± 0,43	1984,29 ± 1060,91	9,89 ± 5,30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V. KOET.	7,84	20,20	53,47	53,54
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	V koof	3,32 ± 0,50	3,48± 0,94	4325,30 ± 1372,78	20,88 ± 6,38
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V. KUEL	2 14 + 0 00	27,15	31,74 2825 50 ± 1115 90	50,55 14 69 ± 5 75
	15	V koof	2,14 ± 0,09	4,59± 0,55	2825,59 ± 1115,89	14,00 ± 5,75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		v. KOEI.	4,34	11,52	39,49	39,18
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	16		3,38 ± 0,42	3,84± 1,20	6560,31 ± 3166,19	30,81 ± 14,45
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V. KOET.	12,47	31,30	48,26	46,90
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	17	V koof	2,73±0,22	4,57±0,94	4065,54 ± 1778,68	20,07 ± 8,12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		v. KOEI.	8,17	20,48	43,75	40,43
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	V koef	2,04 ± 0,55	4,09±0,04	2020,01 ± 951,12	14,15 ± 4,07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		V. KUCI.	2 10 + 0 27	1 66 + 0 82	32,32	15 11 + 5 20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	V koef	12 90	4,00 ± 0,82	41 29	38.38
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		THOCH .	2 20 + 0 33	4 85 + 0 88	3283 07 + 1811 49	16 62 + 8 86
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	V koef	14 78	18 15	5203,07 2 1011,13	53 32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		V. ROCH	2 25 + 0 54	2 52 + 0 62	2527.05 + 1112.42	17.22 + 4.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	V koof	3,25 ± 0,54	3,53 ± 0,62	3527,95 ± 1113,43	17,22 ± 4,94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V. KUCI.	3 08 + 0 45	2 52 + 0 76	2002 57 + 1507 72	20,71
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	V koef	5,00 ± 0,45	3,35 ± 0,70	53 30	14,00 ± 7,10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V. ROCI.	2 25 + 0 34	4 36 + 0 45	2544 53 + 901 27	12 79 + 4 39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	V. koef.	15.25	10.37	35.42	34.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$2,27 \pm 0.26$	4,67 ± 0.86	3172.82 ± 1597.67	15.74 ± 7.70
25 V koef 11 55 15 73 21 87 21 56	24	V. koef.	11.27	18.30	50.36	48.92
25 V koef 11 55 15 73 21 87 21 56			2,31 ± 0,27	4,64 ± 0,73	3224,47 ± 705,33	16,27 ± 3,51
	25	V. koef.	11.55	15.73	21.87	21.56

Názorněji můžeme výsledky porovnat v následujících grafech. Na obrázku (*Obr. 3.15*) jsou znázorněny vyhodnocené minutové polarizační indexy (p_{i1}) se směrodatnou odchylkou měření. Za vyhovující polarizační index, značící suchý a neznečištěný materiál, je brána hodnota větší než jedna. Pokud bychom posuzovali materiál pouze podle hodnoty p_{i1} bylo by nejvhodnější volit materiál síťovaný při teplotě 130 °C nebo 135 °C (vzorky č. 9 a 12). V případě vzorku č. 12 je ovšem nutné vzít v úvahu velkou směrodatnou odchylku naměřené hodnoty. Následující graf (*Obr. 3. 16*) je věnován desetiminutovému polarizačnímu indexu (p_{i10}), který se využívá hlavně při měření vinutí strojů či jeho částí. Obdobně jako u p_{i1} vyžadujeme co největší hodnoty. V tomto případě můžeme za nejvhodnější vzorky považovat vzorky č. 20,15, 17, 19, 24 a 25.

Obr. 3.15 Dopočtené minutové polarizační indexy

Obr. 3.16 Dopočtené desetiminutové polarizační indexy

Neméně důležitým parametrem pro zhodnocení stavu izolačního materiálu je vnitřní rezistivita ρ_v . Opět vyžadujeme hodnotu co největší (značící nenavlhlý a nepoškozený materiál).S probíhajícím stárnutím materiálu bude tato hodnota postupně klesat (především díky teplotě okolí). [18] Dle grafu (*Obr. 3.17*) nejlepším materiálem, z pohledu vnitřní rezistivity, je vzorek č. 16, případně č. 14 a 17.

Obr. 3.17 Dopočtené vnitřní rezistivity

4 Výsledky měření

Pro závěrečné zhodnocení experimentu není možné hodnotit dle jednotlivých parametrů, ale je potřeba nalézt jistý kompromis mezi minutovým/desetiminutovým polarizačním indexem, vnitřní rezistivitou a ekonomickou náročností síťování. Např. vzorek číslo 15 (síťovaný při teplotě 135 °C) má velmi dobrý desetiminutový polarizační index a vnitřní rezistivitu i ekonomická náročnost spojená především s ohřevem je přijatelná, bohužel jeho hodnota minutového polarizačního indexu je jedna z vůbec nejnižších dosažených hodnot. Pokud takto rozebereme všechny měřené vzorky, jeví se nejideálněji vzorky číslo 16, 17 a 14. Vzhledem k tomu, že první dva vzorky mají teplotu síťování 140 °C, vyhovuje pro naše účely nejvíce vzorek číslo 14 síťovaný při teplotě 135 °C.

Provedená měření ukázala rezervy v parametrech doporučených přímo výrobcem. Dle předchozích výsledků máme možnost jiné (ekonomicky méně nákladné) výroby. Nejlepším kompromisem mezi důležitými parametry vychází vzorek číslo 14. Bližší specifikace parametrů síťování viz tabulka *Tab. 3.1*. Úspora nákladů na výrobu PV panelů je tedy možná.

PV panely lze laminovat vhodnějšími materiály, ale použití EVA folie vychází prozatím nejekonomičtěji a proto si udržuje dominantní podíl v oblasti fotovoltaiky.

Závěr

V této práci byla představena fotovoltaika jako jeden z obnovitelných zdrojů elektrické energie. Byla také přiblížena výroba PV článků i kompletace celých PV panelů a byly uvedeny některé z úskalí, které jsou s fotovoltaikou spojeny.

Hlavním cílem bylo vyhodnocení experimentu, zabývajícího se optimalizací síťování EVA folie, která představuje z pohledu případných degradací značné riziko. Komplikací u tohoto materiálu je relativně vysoká teplota skelného přechodu zamezující použití při teplotách překračujících -16,9 °C. S čímž je spojena větší křehkost materiálu a tedy i menší odolnost celého PV panelu. Dalším teplotním omezením je teplota tavení, která u síťovaného materiálu nastává již při 65 °C. Při použití ve fotovoltaice může být tato hodnota lehce překročena a u nakloněných panelů může mimo teplotních degradačních účinků dojít i k "stečení" materiálu do spodní části PV panelu. PV panely s EVA folii by se tedy neměli používat mimo teplotní rozmezí (-16,9 až 65 °C).

Přesto, že EVA má nesporné zápory, provedená měření ukázala ekonomičtější možnost výroby, než je doporučena výrobcem. Nejlepším kompromisem mezi důležitými parametry vychází teplota síťování 135 °C, přesněji vzorek číslo 14.

Použitá literatura

- [1] PATEL, MUKUND, R.: Wind and solar Power Systems, CRC Press, 2006.
- [2] Kolektiv autorů: Obnovitelné zdroje energie a možnosti jejich uplatnění v České republice. Praha, 2007 Dostupné z WWW:
 <www.cez.cz/edee/content/file/o-spolecnosti/oze-cr-all-17-01-obalka-in.pdf>.
 [cit. 2012-03-20]
- [3] POULEK, V.; LIBRA,M.: Konstrukce a výroba fotovoltaických článků a panelů.
 Elektro 3/2010, s. 6-9
- [4] JŮZA, P.: Globální záření- kolik slunečního tepla dopadá na zemský povrch. 2001, Dostupné z WWW:
 < http://infomet.cz/index.php?id=read&idd=1293892370> [cit. 2012-04-01]
- [5] APPLEYARD, D.: *Recyklace PV materiálů*. Alternativní energie, 5/2009, s. 18-21.
- [6] BECHNÍK, B.: Recyklace fotovoltaických panelů na konci životnosti. 2011, Dostupné z WWW:
 http://oze.tzb-info.cz/fotovoltaika/7868-recyklace-fotovoltaickych-panelu-na-konci-zivotnosti [cit. 2012-04-01]
- [7] ZILVAR, J.: Energetická soběstačnost: Samsø 100 % energie z OZE, 2011
 Dostupné z WWW:
 http://www.czrea.org/cs/evropska-unie-a-oze/energeticka-sobestactnost-samsoes
 [cit. 2012-04-01]
- [8] <http://cs.wikipedia.org/wiki/Karbid_křemíku>[cit. 2012-05-1]
- [9] FEJFAR, A.: Fotovoltaika druhé a třetí generace. Fyzikální ústav AV ČR, 2006, Dostupné z WWW:
 < http://www.tzb-info.cz/3506-fotovoltaika-druhe-a-treti-generace> [cit. 2012-04-28]
- SHROTRIYA, V.; Li, G.; Yao, Y.: Accurate Measurement and Characterization of Organic Solar Cells, Advanced functional materials, 16 (2006) s. 2016–2023, Dostupné z WWW: http://organicsolar.com/papers/YY-PV-12-Vishal-Measurement-AFM-06.pdf> [cit. 2012-04-28]
- [11] CENK, M.: Obnovitelné zdroje energie. Praha: FCC Public, 2001.
- [12] <http://www.czrea.org/cs/druhy-oze/fotovoltaika> [cit. 2012-05-1]
- [13] Bechník, B.: *Historie a perspektivy OZE fotovoltaika, méně rozšířené technologie.*2009. Dostupné z WWW:

<http://oze.tzb-info.cz/fotovoltaika/5517-historie-a-perspektivy-oze-fotovoltaikamene-rozsirene-technologie > [cit. 2012-05-1]

- [14] Rafinace křemíku pro výrobu polovodičů, Dostupné z WWW: http://www.prvky.com/14.html> [cit. 2012-04-28]
- [15] <http://cs.wikipedia.org/wiki/Křemík> [cit. 2012-04-28]
- [16] MLEZIVA, J.; ŠŇUPÁREK, J.: Polymery výroba, struktura, vlastnosti a použití., Sobotáles, 2000.
- [17] DUCHČEK, V.: Polymery výroba, vlastnosti, zpracování, použití. Praha: VŠCHT,
 2005
- [18] ARTBAUER, J.; ADAMEC, V.; ŠEDOVIČ, J.: *Izolanty a izolácie*. Bratislava : Alfa, 1969.
- [19] MEISSNER, B.; ZILVAR, V.: Struktura a vlastnosti polymerních materiálů, Praha: Nakladatelství technické literatury, 1987.
- [20] POLANSKÝ, R.: Mechanical behaviour and thermal stability of EVA encapsulant material used in photovoltaic modules. [nepublikováno]
- [21] KEMPKE, M. D.; JOURGENSEN, G. J.; TERWILLIGER, K. M.: Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic device. Solar Energy Materials & Solar Cells 91 (2007), s. 315-329.
- [22] CZANDERA, A. W.; PERN, F. J.: Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review. Solar Energy Materials & Solar Cells 43(1995), s. 101-181.
- [23] AGROUI, K.; BELGHACHI, A.; COLLINS, G.: *Quality control of EVA encapsulant in photovoltaic module process and outdoor exposure*. Desalination 209 (2007), s. 1-9.
- [24] KLEMCHUK, P.; EZRIN, M.;LAVIGNE, G.: Investigation of the degradation and stabilization of EVA – based encapsulant in field-aged solar energy modules. Polymer Degradation and Stability 55 (1997), s. 347-365.
- [25] FIKR, J.; KAHOVEC, J.: Názvosloví organické chemie. Olomouc: Rubico, 2002.
- [26] MUIRHEAD, I. J.; HAWKINS, B. K.: An assessment of photovoltaic power in the Telstra network. Conference of the Australian and New Zealand Solar Energy Society, 1995.
- [27] ČSN IEC 93, Zkoušky tuhých elektroizolačních materiálů. Metody měření vnitřní rezistivity tuhých elektroizolačních materlů, 1993

- [28] ČSN IEC 345, Metody měření elektrického odporu a rezistivity elektroizolačních materiálů při zvýšených teplotách, 1992.
- [29] MENTLÍK, V.: *Dielektrické prvky a systémy*. Praha: BEN, 2006
- [30] MENTLÍK, V.; et al.: *Diagnostika elektrických zařízení*. Praha: BEN, 2008.
- [31] ČSN IEC 250, Doporučené postupy ke stanovení permitivity a ztrátového činitele elektroizolačních materiálů při průmyslových, akustických a rozhlasových kmitočtech včetně metrových vlnových délek, 1998
- [32] AGROUI, K.; MAALLEMI, A.; BOUMAOUR, M.: Thermal stability of slow and fast cure EVA encapsulant material for photovoltaic module manufacturing proces. Solar Energy Materials & Solar Cells 90 (2006), s. 2509-2514.

Přílohy Příloha A - Materiálový list

ETIMEX SOLAR GMBH

VISTASOLAR® FILMS ENCAPSULANTS FOR SOLAR CELLS.

- PROVEN QUALITY
- RELIABLE SUPPLY
- FLEXIBLE SERVICE
- CUSTOMER SUPPORT

etimex

VISTASOLAR® ENCAPSULANTS FOR SOLAR CELLS

ETIMEX provides excellent products and services to the PV industry - since 1980!

- leading supplier of EVA films standard cure, fast cure and ultra fast cure EVA
- excellent reliability of IEC by TÜV tested products
- under UL file no E315694 registered products
- company certified to DIN EN ISO 9001, DIN EN ISO 14001 and OHSAS 18001
- · increased capacity, flexible production
- · fast response to customers needs

ETIMEX has many years of experience in laboratory and application work!

- · continuous and extensive quality controls
- · assistance for customers with laboratory controls or laminator trials
- development of new products
- · tests on own laminator and climate chamber
- service for gel content tests
- · on site assistance for optimised lamination cycles

ETIMEX offers the widest range of EVA and other encapsulation films:

- innovative products UFC (ultra fast cure) lowest cycle times
- laminated EVA with back sheet or scrim (non woven glass)
- EVA with different surface properties
- TPU (non curing) with continuous process on roll laminator
- technical advantage by automated production and inline controls
- products made in Germany
- in 2010 production in USA

VISTASOLAR® FILMS

Products of ETIMEX Solar GmbH

517.84

EVA based encapsulants ETIMEX® VISTASOLAR®

486.00	Fast cure	One side sticky
486.10	Fast cure	Both sides non sticky
496.00	Fast cure LS	One side sticky
496.10	Fast Cure LS	Both sides non sticky
520.43	Ultra Fast Cure LS	Both sides non sticky
485.00 / 485.10	Standard cure	Only on request

TPU based encapsulants ETIMEX® VISTASOLAR®

TPU Fili VISTASOL	AR [®] no measuring of gel content, easier to store
Width:	max. 1650 mm, some types up to 2300 mm
	coloured films and TPU films max. 1020 mm
Gauge:	0.300 to 1.200 mm, standard 0.500 mm and 0.460 mm
Shelf life:	We strongly recommend to use the film within 6 months
	after production. UFC has a shelf life of 4 months.
	Store dry (50 – 60 % r.h.) and below 30°C/ 85°F in undamaged
	original packaging!
Laminates:	VISTASOLAR® films are available laminated to nonwoven glass (scrim)
	or various backsheet materials
Packaging:	Standard reel size is 150 meters with HDPE film as interlayer. Each reel
	is sealed into a black PE bag. Special aluminium packing on request.

no curing - continuous processing on roll laminator

Application of ETIMEX[®] EVA VISTASOLAR[®] films:

	Temp. plate / Pumping time	Temp. plate / Lamination time
Standard Cure	142 - 150 °C / 5 min.	150 °C / 20 - 25 min.
Fast Cure	150 °C / 3 - 5 min.	150 °C / 10 - 15 min.
Ultra Fast Cure	150 °C / 2 - 3 min.	150 °C / 7 - 10 min.

ETIMEX SOLAR GMBH

VISTASOLAR® FILMS ENCAPSULANTS FOR SOLAR CELLS.

- LONGTERM PHOTOTHERMAL STABILITY
- VERY HIGH LIGHT TRANSMISSION
- SELECTION OF SHORT TO VERY SHORT CYCLE TIMES
- FLEXIBLE RESPONSE TO CUSTOMERS NEEDS
- WORLD WIDE SALES AND SERVICE

ETIMEX Solar GmbH

Industriestrasse 3 D-89165 Dietenheim Germany

Phone: + 49 (0) 7347 67 - 201 Fax: + 49 (0) 7347 67 - 209 ETIMEX Solar USA, Inc

777 Campus Commons Road, Suite 200 Sacramento, CA 98525 USA

Phone: +1-916-565-7449 Fax: +1-916-565-7452

E-Mail: solar@etimex-solar.com www.etimex-solar.com

Issue: July 2009

Příloha B - Technické specifikace přístrojů

Tab. 1 TA Instruments Q600

System Design	Horizontal Balance & Furnace	
Balance Design	Dual Beam	
Sample Capacity	200 mg (350 mg including sample holder)	
Balance Sensitivity	0,1 μg	
Furnace Type	Bifilar Wound	
Temperature Range	Ambient to 1500 °C	
Heating rate - Ambient to 1000 °C	0,1 to 100 °C/min	
Heating rate - Ambient to 1500 °C	0,1 to 25 °C/min	
Furnace Cooling	Forced Air (1500 to 50 °C in < 30 min)	
Thermocouples	Platinum/Platinum-Rhodium (Type R)	
Temperature Calibration	Metal Standards (1 to 5 Points)	
DTA Sensitivity	0,001 °C	
Calorimetric Accuracy/Precision	± 2% (based on metal standards)	
Mass Flow Controller with	Included	
Automatic Gas Switching		
Vacuum	to 7 Pa (0,05 torr)	
Reactive Gas Capability	Included - separate gas tube	
Dual Sample TGA	Included	
Auto-Stepwise TGA	Included	
Sample Danc	Platinum: 40 μL, 110 μL	
Sample Paris	Alumina: 40 μL, 90 μL	

Příloha C - Tabulky naměřených a vypočtených hodnot

Tab. 2 Tloušťky nesíťovaných vzorků

Číslo v	zorku		Tlo	oušťka [mi	n]	Průměr [mm]	Směrodatná odchylka [mm]	Variační koeficient [%]	
	1	0,421	0,423	0,431	0,423	0,426	0,005	1,134	
	2	0,431	0,431	0,424	0,412	0,431	0,426	0,007	1,741
<u>لا</u>	3	0,426	0,415	0,416	0,430	0,426	0,423	0,006	1,417
zor	4	0,412	0,409	0,417	0,420	0,414	0,414	0,004	0,923
ιé v	5	0,421	0,413	0,416	0,414	0,413	0,415	0,003	0,724
ovar	6	0,431	0,442	0,430	0,429	0,438	0,434	0,005	1,175
esíťo	7	0,432	0,431	0,421	0,436	0,414	0,427	0,008	1,894
Ň	8	0,418	0,422	0,431	0,423	0,423	0,423	0,004	0,998
	9	0,458	0,445	0,449	0,435	0,457	0,449	0,008	1,882
	10	0,422	0,413	0,412	0,412	0,424	0,417	0,005	1,267

Tab	3	Tloušťky	síťov	vaných	vzorků	
-----	---	----------	-------	--------	--------	--

Číslo	o vzorku		Tlo	ušťka [mr	n]		Průměr [mm]	Směrodatná odchylka [mm]	Variační koeficient [%]
	1	0,456	0,500	0,459	0,449	0,457	0,464	0,018	3,924
Ē	2	0,461	0,473	0,462	0,430	0,480	0,461	0,017	3,714
	3	0,475	0,463	0,453	0,422	0,471	0,457	0,019	4,150
	4	0,454	0,449	0,447	0,447	0,470	0,453	0,009	1,916
1	5	0,462	0,456	0,480	0,461	0,464	0,465	0,008	1,752
	6	0,479	0,456	0,471	0,482	0,449	0,467	0,013	2,755
	7	0,442	0,457	0,457	0,459	0,487	0,460	0,015	3,179
	8	0,463	0,459	0,449	0,515	0,470	0,471	0,023	4,866
	9	0,469	0,444	0,428	0,480	0,471	0,458	0,019	4,218
	10	0,470	0,494	0,434	0,440	0,467	0,461	0,022	4,729
-						1	1	T	
-	1	0,477	0,465	0,471	0,459	0,476	0,470	0,007	1,448
-	2	0,436	0,438	0,429	0,451	0,440	0,439	0,007	1,627
_	3	0,472	0,452	0,446	0,470	0,459	0,460	0,010	2,185
-	4	0,430	0,464	0,448	0,459	0,429	0,446	0,014	3,237
2	5	0,454	0,451	0,461	0,449	0,430	0,449	0,010	2,302
	6	0,480	0,455	0,470	0,531	0,467	0,481	0,026	5,500
	7	0,436	0,472	0,451	0,468	0,453	0,456	0,013	2,832
	8	0,476	0,420	0,458	0,538	0,478	0,474	0,038	8,055
	9	0,489	0,476	0,437	0,426	0,475	0,461	0,025	5,323
	10	0,464	0,461	0,418	0,448	0,461	0,450	0,017	3,801
		0.450	0.400	0.500	0.440	0.447	0.474		5 4 5 0
-	1	0,460	0,489	0,509	0,449	0,447	0,471	0,024	5,158
-	2	0,424	0,470	0,474	0,433	0,445	0,449	0,020	4,411
-	3	0,452	0,452	0,494	0,448	0,472	0,464	0,017	3,745
-	4	0,432	0,438	0,449	0,444	0,487	0,450	0,019	4,302
3	5	0,445	0,402	0,464	0,451	0,492	0,403	0,023	4,950 5 160
-	7	0,402	0,455	0,408	0,455	0,433	0,442	0,023	5 2/18
-	8	0,453	0,437	0,413	0,414	0,407	0,430	0,023	3,340
-	9	0,456	0.472	0 457	0,433	0,405	0.453	0.013	2 842
-	10	0 480	0 4 3 9	0 446	0 439	0 434	0 448	0.017	3 719
		0,100	0,100	0,110	0,100	0)101	0,110	0,017	3)/ 13
	1	0.455	0.426	0.458	0.424	0.461	0.445	0.016	3.662
	2	0.429	0.459	0.450	0.444	0.455	0.447	0.010	2.343
	3	0,466	0,450	0,443	0,458	0,449	0,453	0,008	1,762
	4	0.465	0.434	0.411	0.459	0.465	0.447	0.021	4.755
	5	0,441	0,448	0,452	0,447	0,443	0,446	0,004	0,867
4	6	0,474	0,439	0,492	0,428	0,454	0,457	0,023	5,068
	7	0,469	0,443	0,456	0,473	0,480	0,464	0,013	2,836
	8	0,481	0,450	0,451	0,458	0,462	0,460	0,011	2,437
Ī	9	0,442	0,495	0,444	0,453	0,462	0,459	0,019	4,194
	10	0,459	0,472	0,498	0,449	0,490	0,474	0,018	3,876
		· · · · ·	· _	· .	-		. ·		· ·

Číslo	o vzorku		Tlo	ušťka [mr	n]		Průměr [mm]	Směrodatná odchylka [mm]	Variační koeficient [%]
	1	0,437	0,451	0,472	0,446	0,440	0,449	0,012	2,757
	2	0,456	0,432	0,428	0,434	0,437	0,437	0,010	2,229
	3	0,437	0,427	0,459	0,442	0,448	0,443	0,011	2,419
	4	0,461	0,554	0,554	0,407	0,437	0,483	0,061	12,590
5	5	0,437	0,416	0,453	0,455	0,458	0,444	0,016	3,535
	6	0,442	0,456	0,456	0,436	0,450	0,448	0,008	1,763
	7	0,469	0,438	0,437	0,483	0,450	0,455	0,018	3,949
	8	0,462	0,475	0,449	0,458	0,440	0,457	0,012	2,595
	9	0,469	0,446	0,471	0,444	0,456	0,457	0,011	2,457
	1	0,443	0,427	0,433	0,428	0,466	0,439	0,014	3,290
	2	0,466	0,474	0,445	0,465	0,461	0,462	0,010	2,073
	3	0,460	0,454	0,469	0,451	0,445	0,456	0,008	1,795
	4	0,505	0,479	0,464	0,526	0,506	0,496	0,022	4,412
6	5	0,423	0,459	0,457	0,456	0,431	0,445	0,015	3,393
Ŭ	6	0,449	0,486	0,444	0,442	0,439	0,452	0,017	3,829
	7	0,458	0,445	0,457	0,465	0,452	0,455	0,007	1,461
	8	0,438	0,455	0,433	0,435	0,467	0,446	0,013	2,969
	9	0,442	0,417	0,462	0,641	0,453	0,483	0,080	16,651
	10	0,463	0,444	0,448	0,446	0,434	0,447	0,009	2,089
		T							
	1	0,458	0,472	0,452	0,451	0,447	0,456	0,009	1,917
	2	0,496	0,439	0,479	0,459	0,464	0,467	0,019	4,106
	3	0,461	0,483	0,459	0,457	0,457	0,463	0,010	2,139
	4	0,511	0,499	0,608	0,430	0,414	0,492	0,069	14,010
7	5	0,498	0,501	0,500	0,436	0,519	0,491	0,028	5,791
	6	0,435	0,453	0,444	0,465	0,456	0,451	0,010	2,283
	7	0,475	0,437	0,432	0,472	0,428	0,449	0,020	4,543
	8	0,513	0,447	0,496	0,466	0,459	0,476	0,024	5,143
	9	0,480	0,494	0,443	0,452	0,497	0,473	0,022	4,636
	10	0,476	0,471	0,467	0,453	0,450	0,463	0,010	2,195
	1	0 5 0 9	0.459	0.402	0.459	0.465	0.476	0.020	1 202
	2	0,508	0,456	0,495	0,456	0,405	0,470	0,020	4,205
	2	0,409	0,434	0,300	0,404	0,419	0,402	0,028	2 272
	3	0,403	0,440	0,433	0,477	0,434	0,401	0,011	1 522
		0,423	0.440	0,470	0.416	0,440	0,455	0,021	6 277
8	6	0 452	0 450	0 366	0.454	0 425	0,400 0 // 20	0.023	7 808
	7	0 463	0 421	0 473	0 426	0 472	0 451	0 023	5 050
	8	0.465	0.460	0.472	0.453	0.430	0,456	0.014	3,160
	9	0 436	0 451	0 457	0 444	0 416	0 441	0 014	3 232
	10	0 493	0 478	0 434	0 439	0 462	0 451	0 024	5 288
	10	5,755	5,720	5,734	5,755	0,702	5,751	0,024	5,200

Číslo v	/zorku		Tlo	ušťka [mr	n]		Průměr [mm]	Směrodatná odchylka [mm]	Variační koeficient [%]
	1	0,439	0,465	0,434	0,473	0,435	0,449	0,016	3,662
	2	0,457	0,482	0,481	0,444	0,492	0,471	0,018	3,781
	3	0,458	0,475	0,456	0,467	0,427	0,457	0,016	3,565
	4	0,490	0,433	0,481	0,488	0,476	0,474	0,021	4,414
Q	5	0,523	0,458	0,435	0,471	0,453	0,468	0,030	6,373
5	6	0,462	0,468	0,443	0,483	0,452	0,462	0,014	2,966
	7	0,469	0,437	0,500	0,518	0,448	0,474	0,031	6,450
	8	0,468	0,452	0,472	0,444	0,463	0,460	0,010	2,253
	9	0,429	0,456	0,475	0,444	0,453	0,451	0,015	3,341
	10	0,436	0,454	0,367	0,447	0,483	0,437	0,038	8,798
	1	Г Т							
	1	0,433	0,448	0,470	0,442	0,442	0,447	0,012	2,787
	2	0,463	0,457	0,460	0,433	0,453	0,453	0,011	2,345
	3	0,441	0,441	0,447	0,444	0,462	0,447	0,008	1,750
	4	0,443	0,444	0,444	0,446	0,427	0,441	0,007	1,581
10	5	0,462	0,433	0,468	0,456	0,457	0,455	0,012	2,612
	6	0,460	0,458	0,457	0,508	0,477	0,472	0,019	4,115
	7	0,457	0,467	0,455	0,442	0,443	0,453	0,009	2,064
	8	0,461	0,436	0,455	0,445	0,481	0,456	0,015	3,359
	9	0,470	0,425	0,452	0,453	0,441	0,448	0,015	3,314
	10	0,455	0,486	0,445	0,443	0,459	0,458	0,015	3,367
	4	0.445	0.462	0.464	0.400	0.452	0.465	0.018	2.005
	1	0,445	0,403	0,464	0,498	0,453	0,465	0,018	3,895
	2	0,447	0,493	0,460	0,405	0,499	0,473	0,020	4,214
	5	0,475	0,400	0,400	0,471	0,471	0,468	0,003	2,005
11	4	0,420	0,454	0,451	0,449	0,447	0,440	0,013	5 106
	6	0,450	0,433	0,491	0,413	0,405	0,433	0,023	4 046
	7	0,474	0.443	0,490	0,403	0,450	0.458	0.021	4 520
	8	0 480	0 513	0 442	0 454	0 453	0 468	0.021	5 456
	9	0.402	0.441	0.427	0.434	0.454	0.432	0.017	4.004
		-,	•,••=	•, ·=·	-,	-,			.,
	1	0,507	0,492	0,493	0,502	0,445	0,488	0,022	4,535
	2	0,535	0,514	0,494	0,474	0,481	0,500	0,022	4,470
	3	0,463	0,482	0,546	0,431	0,468	0,478	0,038	7,924
	4	0,527	0,473	0,458	0,494	0,445	0,479	0,029	6,018
10	5	0,494	0,483	0,457	0,462	0,479	0,475	0,014	2,877
12	6	0,512	0,465	0,470	0,455	0,503	0,481	0,022	4,647
	7	0,471	0,458	0,488	0,453	0,499	0,474	0,017	3,688
	8	0,443	0,468	0,489	0,543	0,453	0,479	0,035	7,401
	9	0,486	0,443	0,489	0,492	0,473	0,477	0,018	3,778
	10	0,511	0,451	0,452	0,506	0,518	0,488	0,030	6,096

Číslo v	/zorku		Tlo	ušťka [mr	n]		Průměr [mm]	Směrodatná odchylka [mm]	Variační koeficient [%]
	1	0,446	0,462	0,444	0,419	0,453	0,445	0,014	3,228
	2	0,471	0,454	0,464	0,439	0,467	0,459	0,011	2,499
	3	0,457	0,464	0,470	0,464	0,491	0,469	0,012	2,483
	4	0,447	0,424	0,472	0,453	0,433	0,446	0,017	3,725
12	5	0,489	0,430	0,469	0,422	0,439	0,450	0,025	5,613
15	6	0,463	0,432	0,442	0,441	0,461	0,448	0,012	2,707
	7	0,461	0,479	0,432	0,439	0,448	0,452	0,017	3,697
	8	0,443	0,443	0,433	0,436	0,430	0,437	0,005	1,202
	9	0,476	0,439	0,421	0,382	0,469	0,437	0,034	7,806
	10	0,474	0,486	0,440	0,464	0,439	0,461	0,019	4,035
	I	T							
	1	0,475	0,459	0,437	0,524	0,525	0,480	0,018	3,833
	2	0,473	0,443	0,458	0,475	0,486	0,470	0,022	4,592
	3	0,445	0,413	0,453	0,450	0,414	0,452	0,015	3,229
	4	0,478	0,454	0,472	0,494	0,447	0,469	0,017	3,598
14	5	0,478	0,473	0,487	0,472	0,438	0,470	0,017	3,550
14	6	0,446	0,442	0,435	0,435	0,430	0,438	0,006	1,298
	7	0,467	0,439	0,462	0,462	0,461	0,458	0,010	2,145
	8	0,447	0,435	0,442	0,457	0,477	0,452	0,015	3,229
	9	0,507	0,476	0,464	0,463	0,441	0,470	0,022	4,592
	10	0,497	0,455	0,495	0,494	0,461	0,480	0,018	3,833
	T	r							
	1	0,422	0,439	0,439	0,445	0,441	0,437	0,008	1,809
	2	0,446	0,439	0,444	0,440	0,427	0,439	0,007	1,506
	3	0,429	0,445	0,433	0,425	0,437	0,434	0,007	1,586
	4	0,460	0,434	0,442	0,447	0,432	0,443	0,010	2,275
15	5	0,414	0,412	0,398	0,429	0,386	0,408	0,015	3,599
10	6	0,411	0,408	0,416	0,426	0,430	0,418	0,008	2,031
	7	0,433	0,421	0,415	0,458	0,446	0,435	0,016	3,637
	8	0,450	0,427	0,425	0,426	0,443	0,434	0,010	2,373
	9	0,444	0,429	0,428	0,454	0,443	0,440	0,010	2,241
	10	0,434	0,437	0,449	0,447	0,430	0,439	0,007	1,682
	1								
	1	0,468	0,460	0,466	0,466	0,452	0,462	0,006	1,265
	2	0,498	0,509	0,473	0,547	0,474	0,500	0,027	5,438
	3	0,498	0,463	0,478	0,505	0,454	0,480	0,020	4,083
	4	0,448	0,438	0,506	0,477	0,441	0,462	0,026	5,623
16	5	0,472	0,449	0,472	0,454	0,504	0,470	0,019	4,103
-	6	0,456	0,459	0,532	0,441	0,472	0,472	0,032	6,690
	7	0,464	0,474	0,474	0,469	0,442	0,465	0,012	2,560
	8	0,497	0,485	0,433	0,455	0,454	0,465	0,023	4,971
	9	0,457	0,460	0,482	0,470	0,494	0,473	0,014	2,925
	10	0,508	0,555	0,502	0,501	0,490	0,511	0,023	4,432

Číslo v	vzorku		Tlo	ušťka [mr	n]		Průměr [mm]	Směrodatná odchylka [mm]	Variační koeficient [%]
	1	0,446	0,484	0,442	0,450	0,430	0,442	0,015	3,368
	2	0,469	0,454	0,473	0,473	0,475	0,469	0,008	1,632
	3	0,470	0,463	0,470	0,462	0,427	0,458	0,016	3,503
	4	0,414	0,415	0,432	0,434	0,445	0,428	0,012	2,776
17	5	0,433	0,428	0,454	0,416	0,446	0,435	0,013	3,073
	6	0,474	0,491	0,506	0,458	0,454	0,477	0,020	4,128
	7	0,450	0,449	0,451	0,447	0,454	0,450	0,002	0,514
	8	0,456	0,450	0,467	0,463	0,452	0,458	0,006	1,414
	9	0,447	0,460	0,421	0,453	0,428	0,442	0,015	3,368
	1						1	1	
	1	0,461	0,470	0,466	0,450	0,451	0,460	0,008	1,733
	2	0,444	0,425	0,441	0,456	0,438	0,441	0,010	2,266
	3	0,476	0,452	0,463	0,454	0,466	0,462	0,009	1,878
	4	0,445	0,455	0,450	0,442	0,430	0,444	0,008	1,902
18	5	0,446	0,478	0,421	0,451	0,461	0,451	0,019	4,148
10	6	0,469	0,463	0,445	0,450	0,455	0,456	0,009	1,898
	7	0,423	0,431	0,443	0,443	0,465	0,441	0,014	3,220
	8	0,450	0,461	0,430	0,459	0,470	0,454	0,014	2,991
	9	0,452	0,449	0,457	0,459	0,452	0,454	0,004	0,805
	10	0,438	0,442	0,439	0,426	0,443	0,438	0,006	1,391
	1	T							
	1	0,429	0,432	0,440	0,439	0,449	0,438	0,007	1,592
	2	0,437	0,444	0,446	0,434	0,469	0,446	0,012	2,761
	3	0,434	0,430	0,441	0,425	0,430	0,432	0,005	1,234
	4	0,423	0,437	0,425	0,417	0,439	0,428	0,008	1,973
19	5	0,447	0,388	0,449	0,430	0,455	0,434	0,024	5,615
	6	0,437	0,451	0,468	0,465	0,468	0,458	0,012	2,655
	7	0,439	0,446	0,452	0,454	0,449	0,448	0,005	1,1/3
	8	0,462	0,456	0,452	0,560	0,420	0,470	0,047	10,063
	9	0,432	0,453	0,448	0,464	0,432	0,446	0,012	2,782
	10	0,426	0,426	0,457	0,484	0,428	0,444	0,023	5,205
	1	0.449	0.444	0.426	0 427	0 427	0.428	0.007	1.640
	1	0,440	0,444	0,450	0,457	0,427	0,436	0,007	1,049 5 097
	2	0,404	0,403	0,441	0,455	0,400	0,430	0,022	3,007
	3	0,449	0,480	0,440	0,433	0,437	0,433	0,017	2 109
	-+	0,439	0,445	0,420	0,422	0,430	0,440	0,014	1 8/1
20	6	0 /121	0/122	0 /12/	0 /12	0/12/	0,443	0,000	1 076
	7	0,451	0,455	0,434	0,412	0,434	0,429	0,000	2 211
	8	0 472	0 4 2 3	0 478	0.434	0 110	0,440	0.021	4 740
	9	0 470	0.462	0 412	0 /128	0 422	0.443	0.021	4 640
	10	0 447	0 436	0 453	0 430	0 430	0 441	0.021	1 842
		0,747	0,70	5,755	0,70	5,-55	0,771	0,000	1,072

1 0,439 0,442 0,425 0,441 0,452 0,440 0,009 2 0,502 0,474 0,465 0,456 0,507 0,481 0,020 3 0,435 0,434 0,455 0,449 0,443 0,443 0,008 4 0,467 0,489 0,446 0,443 0,443 0,443 0,000 5 0,434 0,448 0,453 0,444 0,465 0,451 0,010 6 0,442 0,469 0,453 0,448 0,455 0,405 0,452 0,009 7 0,445 0,451 0,404 0,439 0,427 0,433 0,017 8 0,476 0,475 0,462 0,472 0,514 0,480 0,018 9 0,460 0,475 0,458 0,531 0,503 0,485 0,028 10 0,448 0,405 0,414 0,455 0,415 0,431 0,010 2	1,969 4,208 1,819 4,223 2,233 2,000 3,836 3,711 5,749 4,859 2,394
2 0,502 0,474 0,465 0,456 0,507 0,481 0,020 3 0,435 0,434 0,455 0,449 0,443 0,443 0,008 4 0,467 0,489 0,446 0,443 0,488 0,467 0,020 5 0,434 0,448 0,453 0,454 0,465 0,451 0,010 6 0,442 0,469 0,453 0,448 0,450 0,452 0,009 7 0,445 0,451 0,404 0,439 0,427 0,433 0,017 8 0,476 0,475 0,462 0,472 0,514 0,480 0,018 9 0,460 0,475 0,458 0,531 0,503 0,485 0,028 10 0,448 0,405 0,414 0,425 0,426 0,441 0,425 0,426 0,415 0,431 0,010 2 0,461 0,441 0,425 0,426 0,440 0,439	4,208 1,819 4,223 2,233 2,000 3,836 3,711 5,749 4,859
3 0,435 0,434 0,455 0,449 0,443 0,443 0,008 4 0,467 0,489 0,446 0,443 0,488 0,467 0,020 5 0,434 0,448 0,453 0,454 0,465 0,451 0,010 6 0,442 0,469 0,453 0,448 0,450 0,452 0,009 7 0,445 0,451 0,404 0,439 0,427 0,433 0,017 8 0,476 0,475 0,462 0,472 0,514 0,480 0,018 9 0,460 0,475 0,458 0,531 0,503 0,485 0,028 10 0,448 0,405 0,414 0,455 0,453 0,435 0,021 $$	1,819 4,223 2,233 2,000 3,836 3,711 5,749 4,859 2,394
4 0,467 0,489 0,446 0,443 0,488 0,467 0,020 5 0,434 0,448 0,453 0,454 0,465 0,451 0,010 6 0,442 0,469 0,453 0,448 0,450 0,452 0,009 7 0,445 0,451 0,404 0,439 0,427 0,433 0,017 8 0,476 0,475 0,462 0,472 0,514 0,480 0,018 9 0,460 0,475 0,458 0,531 0,503 0,485 0,028 10 0,448 0,405 0,414 0,455 0,453 0,435 0,021 2 0,461 0,428 0,426 0,442 0,415 0,431 0,010 2 0,461 0,441 0,425 0,426 0,440 0,439 0,013	4,223 2,233 2,000 3,836 3,711 5,749 4,859
5 0,434 0,448 0,453 0,454 0,465 0,451 0,010 6 0,442 0,469 0,453 0,448 0,450 0,452 0,009 7 0,445 0,451 0,404 0,439 0,427 0,433 0,017 8 0,476 0,475 0,462 0,472 0,514 0,480 0,018 9 0,460 0,475 0,452 0,531 0,503 0,485 0,028 10 0,448 0,405 0,414 0,455 0,453 0,431 0,010 2 0,461 0,428 0,426 0,442 0,415 0,431 0,010 2 0,461 0,441 0,425 0,426 0,440 0,439 0,013	2,233 2,000 3,836 3,711 5,749 4,859 2,394
6 0,442 0,469 0,453 0,448 0,450 0,452 0,009 7 0,445 0,451 0,404 0,439 0,427 0,433 0,017 8 0,476 0,475 0,462 0,472 0,514 0,480 0,018 9 0,460 0,475 0,458 0,531 0,503 0,485 0,028 10 0,448 0,405 0,414 0,455 0,453 0,435 0,021	2,000 3,836 3,711 5,749 4,859 2,394
7 0,445 0,451 0,404 0,439 0,427 0,433 0,017 8 0,476 0,475 0,462 0,472 0,514 0,480 0,018 9 0,460 0,475 0,458 0,531 0,503 0,485 0,028 10 0,448 0,405 0,414 0,455 0,453 0,435 0,021	3,836 3,711 5,749 4,859 2,394
8 0,476 0,475 0,462 0,472 0,514 0,480 0,018 9 0,460 0,475 0,458 0,531 0,503 0,485 0,028 10 0,448 0,405 0,414 0,455 0,453 0,435 0,021 u 0,442 0,428 0,426 0,442 0,415 0,431 0,010 2 0,461 0,441 0,425 0,426 0,440 0,439 0,013	3,711 5,749 4,859 2,394
9 0,460 0,475 0,458 0,531 0,503 0,485 0,028 10 0,448 0,405 0,414 0,455 0,453 0,435 0,021	5,749 4,859 2,394
10 0,448 0,405 0,414 0,455 0,453 0,435 0,021 I 0,442 0,428 0,426 0,442 0,415 0,431 0,010 I 0,461 0,441 0,425 0,426 0,440 0,439 0,013	4,859 2,394
1 0,442 0,428 0,426 0,442 0,415 0,431 0,010 2 0,461 0,441 0,425 0,426 0,440 0,439 0,013	2,394
1 0,442 0,428 0,426 0,442 0,415 0,431 0,010 2 0,461 0,441 0,425 0,426 0,440 0,439 0,013	2,394
2 0,461 0,441 0,425 0,426 0,440 0,439 0,013	
	2,978
3 0,445 0,430 0,446 0,452 0,445 0,444 0,007	1,642
4 0,456 0,448 0,436 0,457 0,439 0,447 0,009	1,915
5 0,470 0,466 0,456 0,427 0,457 0,455 0,015	3,310
6 0,457 0,585 0,492 0,474 0,488 0,499 0,045	8,938
7 0,441 0,446 0,452 0,414 0,482 0,447 0,022	4,877
8 0,466 0,460 0,468 0,454 0,461 0,462 0,005	1,064
9 0,468 0,426 0,512 0,442 0,499 0,469 0,033	6,954
10 0,441 0,454 0,439 0,456 0,441 0,446 0,007	1,625
1 0,449 0,449 0,459 0,422 0,445 0,445 0,012	2,766
2 0,453 0,450 0,436 0,460 0,451 0,450 0,008	1,738
3 0,434 0,438 0,451 0,456 0,448 0,445 0,008	1,838
4 0,466 0,457 0,438 0,435 0,452 0,450 0,012	2,588
5 0,451 0,424 0,442 0,437 0,478 0,446 0,018	4,044
6 0,421 0,465 0,503 0,450 0,440 0,456 0,028	6,054
7 0,444 0,449 0,461 0,432 0,446 0,446 0,009	2,085
8 0,444 0,435 0,436 0,439 0,440 0,439 0,003	0,726
9 0,434 0,430 0,449 0,433 0,457 0,441 0,011	2,387
10 0,441 0,454 0,436 0,424 0,445 0,440 0,010	2,259
1 0,481 0,420 0,441 0,432 0,447 0,444 0,021	4,621
2 0,527 0,405 0,467 0,430 0,458 0,457 0,041	8,979
3 0,437 0,450 0,444 0,449 0,453 0,447 0,006	1,256
4 0,436 0,439 0,446 0,414 0,433 0,434 0,011	2,469
5 0,472 0,447 0,459 0,446 0,419 0,449 0,018	3,914
6 0,452 0,422 0,421 0,448 0,440 0,437 0,013	2,960
7 0,481 0,456 0,434 0,555 0,529 0,491 0,045	9,160
8 0,447 0,435 0,448 0,471 0,451 0,450 0,012	2,588
9 0,460 0,448 0,459 0,446 0,445 0,452 0,007	1,446
10 0,453 0,448 0,456 0,436 0,436 0,446 0,008	1,884

Číslo v	/zorku		Tic	ušťka (mr	n]	Průměr [mm]	Směrodatná odchylka [mm]	Variační koeficient [%]	
	1	0,444	0,440	0,432	0,437	0,450	0,441	0,006	1,389
	2	0,444	0,486	0,451	0,463	0,453	0,459	0,015	3,183
	3	0,462	0,422	0,465	0,427	0,465	0,448	0,019	4,339
	4	0,448	0,476	0,446	0,438	0,458	0,453	0,013	2,882
25	5	0,418	0,413	0,433	0,463	0,451	0,436	0,019	4,374
25	6	0,426	0,439	0,430	0,423	0,415	0,427	0,008	1,855
	7	0,448	0,470	0,434	0,458	0,546	0,471	0,039	8,324
	8	0,440	0,426	0,430	0,453	0,419	0,434	0,012	2,731
	9	0,426	0,460	0,456	0,434	0,445	0,444	0,013	2,891
	10	0,443	0,391	0,471	0,465	0,434	0,441	0,028	6,440

Tab. 4 Teplotní závislost proudu

		Sitovan	ý vzorok				
1. m	ěření	2. m	ěření	3. m	ěření	Sitovan	y vzorek
T [°C]	l [nA]	T[⁰C]	l[nA]	T[°C]	l[nA]	T[°C]	I[nA]
27	2,1	27	1,8	27	2,13	27	1,65
28	2,3	28	1,93	28	2,43	28	1,88
29	2,5	29	2,2	29	2,62	29	2,11
30	2,8	30	2,47	30	2,93	30	2,3
31	3,2	31	2,76	31	3,3	31	2,54
32	3,5	32	3,27	32	3,63	32	2,86
33	4,1	33	3,41	33	4,2	33	3,19
34	4,6	34	3,7	34	4,64	34	3,61
35	5,3	35	4,35	35	5,15	35	4,2
36	6,2	36	5,16	36	5,94	36	4,74
37	6,7	37	5,34	37	6,28	37	5,5
38	7,2	38	5,75	38	7,03	38	6,38
39	7,9	39	5,97	39	8,08	39	7,13
40	8,7	40	6,6	40	8,92	40	8,76
41	9,7	41	8,7	41	9,82	41	9,89
42	10,5	42	9,91	42	11,62	42	11,88
43	11,8	43	10,16	43	12,12	43	12,67
44	13	44	12,24	44	13,78	44	14,56
45	14	45	13,8	45	14,85	45	16,89
46	15,5	46	14,9	46	16,95	46	18,28
47	17	47	16,1	47	17,91	47	21,5
48	19	48	17,42	48	19,2	48	24,1
49	20	49	18,33	49	20,86	49	29,5
50	21,6	50	19,87	50	23,2	50	31,6

		Nesíťova	né vzorky				
1. m	ěření	2. m	ěření	3. m	iěření	Sitovan	iy vzorek
T [°C]	l [nA]	T[°C]	I[nA]	T[°C]	I[nA]	T[°C]	I[nA]
51	23,7	51	21,8	51	25,7	51	35,1
52	25,8	52	23,9	52	27,1	52	39,9
53	27,9	53	26,1	53	28,4	53	48,5
54	31,3	54	27,8	54	32,2	54	50,8
55	33,4	55	30,1	55	37	55	57,5
56	36	56	32,9	56	39,2	56	65,9
57	38,1	57	35,9	57	41,9	57	69,1
58	41,4	58	36,2	58	47,2	58	76,3
59	44,2	59	39,2	59	50,2	59	87,6
60	47	60	42,6	60	53,8	60	92,3
61	50	61	45,5	61	57,2	61	99,8
62	53,8	62	48,9	62	59,3	62	108,9
63	56,6	63	50,2	63	63,8	63	122,3
64	60	64	52 <i>,</i> 3	64	68,2	64	126,5
65	62,3	65	57 <i>,</i> 8	65	72	65	142
66	65,7	66	63,3	66	75,5	66	149
67	70	67	65 <i>,</i> 8	67	77,8	67	156
68	73	68	67,5	68	84,8	68	168
69	77,4	69	71,8	69	89,2	69	182,3
70	80	70	77,6	70	92,2	70	194,3
71	85,4	71	81	71	97,2	71	204
72	89,4	72	82,9	72	102,9	72	216
73	95	73	89,2	73	109,2	73	230
74	97,1	74	95	74	112,7	74	244
75	101,9	75	98,6	75	118,1	75	258
76	108,4	76	101,1	76	121,2	76	276
77	112,8	77	109,2	77	129	77	293
78	117,4	78	113,9	78	136,1	78	307
79	121,2	79	116,2	79	144,6	79	324
80	127,6	80	124,3	80	149	80	346
81	132,6	81	127,3	81	152	81	362
82	140,3	82	131	82	160,8	82	388
83	145,3	83	139	83	167,4	83	411
84	151	84	145,2	84	173,8	84	421
85	155,6	85	154	85	180,5	85	439
86	163,2	87	162,7	86	187,9	86	464
87	168	88	174,3	87	194,2	87	488
88	175,3	89	178,5	88	202,9	88	507
89	181,3	90	179	89	208,9	89	531
90	188,5	91	189	90	217	90	560

		Citize and a second					
1. m	ěření	2. m	iěření	3. m	ěření	Sitovan	y vzorek
T [°C]	l [nA]	T[°C]	I[nA]	T[°C]	I[nA]	T[°C]	I[nA]
91	196,7	92	196	91	225	91	584
92	202,4	93	203,6	92	231	92	616
93	211	94	215	93	240	93	654
94	217	95	220	94	248	94	674
95	249	96	233	95	256	95	702
96	269	97	239	96	265	96	736
97	285	98	249	97	277	97	769
98	309	99	256	98	283	98	799
99	351	100	256	99	290	99	830
100	359	101	276	100	302	100	863
101	400	102	284	101	308	101	893
102	444	103	297	102	314	102	946
103	435	104	307	103	325	103	961
104	431	105	316	104	331	104	986
105	428	106	326	105	339	105	1033
106	436	107	342	106	348	106	1061
107	456	108	352	107	356	107	1091
109	460	109	361	108	369	108	1117
110	525	110	371	109	375	109	1154
111	611	111	382	110	383	110	1189
112	630	112	390	111	390	111	1217
113	744	113	402	112	402	112	1248
114	803	114	404	113	437	113	1291
115	880	115	485	114	532	114	1309
116	939	116	559	115	589	115	1346
117	966	117	647	116	674	116	1379
118	985	118	747	117	789	117	1391
119	1010	119	813	118	869	118	1404
120	1037	120	886	119	930	119	1422
121	1049	121	946	120	941	120	1419
122	1073	122	996	121	964	121	1407
123	1096	123	1031	122	984	122	1390
124	1115	124	1059	123	991	123	1366
125	1126	125	1087	124	987	124	1328
126	1142	126	1104	125	992	125	1276
127	1150	127	1124	126	981	126	1220
128	1161	128	1133	127	978	127	1140
129	1154	129	1152	128	969	128	1092
130	1151	130	1153	129	963	129	1024

		Nesíťovan	é vzorky			Síťovan	(wzorok
1. m	ěření	2. m	ěření	3. m	ěření	Situvali	VZOTEK
T [°C]	I [nA]	T[°C]	l[nA]	T[°C]	l[nA]	T[°C]	l[nA]
131	1152	131	1141	130	939	130	931
132	1144	132	1127	131	919	131	860
133	1129	133	1117	132	896	132	796
134	1109	134	1096	133	885	133	742
135	1112	135	1060	134	871	134	697
136	1103	136	1015	135	842	135	643
137	1092	137	999	136	794	136	604
138	1087	138	954	137	742	137	562
139	1065	139	896	138	714	138	529
140	1054	140	864	139	687	139	489
141	1042	141	816	140	661	140	453
142	1022	142	806	141	651	141	443
143	1001	143	706	142	624	142	432
144	972	144	711	143	616	143	421
145	933	145	665	144	589	144	409
146	900	146	636	145	560	145	399
147	856	147	580	146	544	146	386
148	803	148	553	147	500	147	373
149	792	149	521	148	465	148	360
150	718	150	452	149	432	149	347
151	660	151	429	150	392	150	333
152	587	152	378	151	361	151	323
153	560	153	359	152	326	152	308
154	537	154	331	153	317	153	296
155	503	155	305	154	293	154	283
156	488	156	282	155	283	155	273
157	460	157	273	156	271	156	260
158	437	158	250	157	260	157	249
159	415	159	233	158	251	158	242
160	406	160	217	159	243	159	237
161	395	161	206	160	233	160	232
162	390	162	202	161	225	161	228
163	383	163	190	162	220	162	227
164	387	164	184	163	215	163	227
165	386	165	177	164	212	164	229
166	390	166	177	165	210	165	231
167	393	167	176	166	209	166	230
168	391	168	172	167	209	167	230
				168	207	168	231

The with the function		Ne	esíťované vzor	ky		Síťovaný
noustka [mm]	1. měření		2. měření		3. měření	vzorek
h ₁	0,441		0,542		0,504	0,584
h ₂	0,449		0,519		0,529	0,557
h ₃	0,512		0,533		0,510	0,613
h ₄	0,486		0,546		0,523	0,624
h ₅	0,543		0,480		0,512	0,618
průměr h	0,486		0,524		0,516	0,599

T 1 5	T1 Y/1	1.0	ו, / 1	~~ /	1 1 1 /	1.1	1
Ian >	LIOUSTRV	v70rku	pouzitvch	nro mereni	teniotni	7 <i>avislost</i>	proudu
10000	10000000	12,011000	0002,009000		reprovin	2000000	pronon

Tab. 6 Teplotní závislost ztrátového čin	itele, relativni	í permitivity a	imaginární	části i	relativní
permitivity					

		Nesíťova	ný vzorek			Síťovan	ý vzorek	
t [°C]	C _x [nF]	tgδ [-]	ε _r [-]	[-]``ع	C _x [nF]	tgδ [-]	ε _r [-]	[-]``ع
25	0,1233	0,0090	3,6090	0,0326	0,0943	0,0068	3,5340	0,0241
26	0,1232	0,0092	3,6068	0,0333	0,0942	0,0069	3,5317	0,0244
27	0,1232	0,0094	3,6071	0,0338	0,0943	0,0071	3,5334	0,0250
28	0,1231	0,0096	3,6043	0,0347	0,0943	0,0072	3,5334	0,0254
29	0,1231	0,0097	3,6050	0,0351	0,0943	0,0073	3,5345	0,0259
30	0,1232	0,0098	3,6062	0,0354	0,0944	0,0074	3,5393	0,0262
31	0,1233	0,0099	3,6092	0,0358	0,0945	0,0075	3,5435	0,0265
32	0,1233	0,0101	3,6107	0,0364	0,0946	0,0076	3,5460	0,0270
33	0,1235	0,0101	3,6144	0,0366	0,0947	0,0077	3,5513	0,0274
34	0,1237	0,0103	3,6217	0,0374	0,0948	0,0078	3,5551	0,0278
35	0,1239	0,0104	3,6280	0,0378	0,0950	0,0080	3,5608	0,0284
36	0,1241	0,0105	3,6336	0,0382	0,0951	0,0081	3,5664	0,0287
37	0,1243	0,0106	3,6397	0,0385	0,0953	0,0081	3,5736	0,0291
38	0,1247	0,0107	3,6499	0,0390	0,0956	0,0083	3,5844	0,0296
39	0,1251	0,0108	3,6623	0,0395	0,0958	0,0084	3,5927	0,0300
40	0,1255	0,0109	3,6751	0,0401	0,0961	0,0084	3,6015	0,0304
41	0,1258	0,0110	3,6820	0,0404	0,0963	0,0086	3,6081	0,0309
42	0,1262	0,0111	3,6936	0,0409	0,0965	0,0087	3,6190	0,0314
43	0,1264	0,0111	3,7007	0,0412	0,0969	0,0088	3,6342	0,0320
44	0,1268	0,0112	3,7119	0,0414	0,0973	0,0089	3,6469	0,0325
45	0,1272	0,0112	3,7232	0,0417	0,0976	0,0090	3,6578	0,0329
46	0,1274	0,0113	3,7311	0,0420	0,0978	0,0091	3,6662	0,0332
47	0,1277	0,0113	3,7397	0,0424	0,0981	0,0092	3,6789	0,0339
48	0,1280	0,0113	3,7471	0,0425	0,0984	0,0093	3,6874	0,0343
49	0,1282	0,0114	3,7540	0,0428	0,0986	0,0094	3,6954	0,0347
50	0,1284	0,0115	3,7604	0,0431	0,0988	0,0095	3,7031	0,0352

		Nesíťova	ný vzorek			Síťovan	ý vzorek	
t [°C]	C. [nF]	tgδ [-]	Er[-]	[-]``ع	C_[nF]	tgδ [-]	ε.[-]	[-]``ع
51	0 1288	0.0115	3 7703	0.0434	0 0991	0.0097	3 7142	0.0360
52	0 1290	0.0115	3 7770	0.0436	 0 0994	0,0099	3 7257	0.0368
53	0 1292	0.0116	3 7815	0.0438	0 0997	0.0100	3 7363	0.0373
54	0 1293	0.0117	3 7862	0.0443	0 1000	0.0101	3 7476	0.0380
55	0.1296	0.0118	3,7938	0.0449	0.1003	0.0103	3,7601	0.0387
56	0.1297	0.0118	3.7961	0.0450	0.1006	0.0104	3.7717	0.0394
57	0.1300	0.0120	3.8052	0.0455	0.1010	0.0107	3.7864	0.0405
58	0.1302	0.0121	3.8104	0.0462	0.1014	0.0110	3.8007	0.0418
59	0,1303	0,0122	3,8143	0,0467	0,1016	0,0112	3,8095	0,0427
60	0,1304	0,0124	3,8170	0,0473	0,1020	0,0115	3,8237	0,0441
61	0,1304	0,0126	3,8182	0,0481	0,1024	0,0119	3,8375	0,0457
62	0,1304	0,0127	3,8179	0,0486	0,1027	0,0123	3,8512	0,0472
63	0,1304	0,0129	3,8183	0,0494	0,1030	0,0127	3,8610	0,0489
64	0,1304	0,0132	3,8179	0,0503	0,1034	0,0134	3,8759	0,0518
65	0,1304	0,0134	3,8179	0,0511	0,1038	0,0140	3,8906	0,0543
66	0,1304	0,0136	3,8190	0,0518	0,1041	0,0144	3,9008	0,0560
67	0,1304	0,0138	3,8177	0,0525	0,1044	0,0150	3,9135	0,0587
68	0,1303	0,0139	3,8152	0,0531	0,1048	0,0157	3,9267	0,0615
69	0,1302	0,0142	3,8127	0,0540	0,1051	0,0164	3,9411	0,0648
70	0,1301	0,0145	3,8097	0,0551	0,1055	0,0175	3,9536	0,0692
71	0,1301	0,0147	3,8076	0,0559	0,1058	0,0183	3,9646	0,0724
72	0,1300	0,0149	3,8054	0,0567	0,1062	0,0190	3,9796	0,0757
73	0,1299	0,0154	3,8019	0,0584	0,1067	0,0203	4,0007	0,0814
74	0,1298	0,0156	3,7992	0,0592	0,1073	0,0215	4,0206	0,0864
75	0,1297	0,0158	3,7978	0,0600	0,1076	0,0230	4,0327	0,0929
76	0,1296	0,0162	3,7951	0,0614	0,1080	0,0241	4,0492	0,0975
77	0,1295	0,0166	3,7908	0,0630	0,1085	0,0253	4,0666	0,1029
78	0,1293	0,0171	3,7865	0,0647	0,1090	0,0267	4,0842	0,1089
79	0,1292	0,0174	3,7833	0,0660	0,1095	0,0280	4,1041	0,1151
80	0,1292	0,0179	3,7812	0,0677	0,1099	0,0291	4,1189	0,1200
81	0,1290	0,0184	3,7761	0,0695	0,1103	0,0303	4,1362	0,1255
82	0,1288	0,0188	3,7714	0,0710	0,1108	0,0317	4,1526	0,1317
83	0,1287	0,0193	3,7674	0,0726	0,1113	0,0331	4,1722	0,1382
84	0,1286	0,0197	3,7643	0,0740	0,1117	0,0347	4,1876	0,1453
85	0,1283	0,0206	3,7570	0,0775	0,1120	0,0364	4,1990	0,1527
86	0,1282	0,0211	3,7529	0,0793	0,1123	0,0379	4,2113	0,1594
87	0,1281	0,0214	3,7505	0,0804	0,1127	0,0394	4,2242	0,1665
88	0,1279	0,0221	3,7456	0,0828	0,1128	0,0415	4,2293	0,1753
89	0,1277	0,0230	3,7380	0,0860	0,1129	0,0435	4,2319	0,1841
90	0,1275	0,0235	3,7341	0,0876	0,1130	0,0457	4,2348	0,1936

		Nesíťova	ný vzorek			Síťovan	ý vzorek	
t [°C]	C_[nF]	tgδ [-]	ε _r [-]	[-]``3	C_[nF]	tgδ [-]	ε.[-]	[-]``3
91	0.1274	0.0242	3.7284	0.0902	0.1130	0.0464	4.2351	0.1967
92	0.1271	0.0250	3.7218	0.0929	0.1131	0.0494	4.2395	0.2094
93	0.1269	0.0258	3.7146	0.0957	0.1132	0.0516	4.2436	0.2191
94	0,1266	0,0267	3,7059	0,0991	0,1131	0,0539	4,2411	0,2284
95	0,1264	0,0274	3,6999	0,1013	0,1128	0,0580	4,2297	0,2453
96	0,1260	0,0284	3,6898	0,1048	0,1127	0,0601	4,2255	0,2539
97	0,1258	0,0290	3,6832	0,1069	0,1126	0,0619	4,2226	0,2612
98	0,1255	0,0300	3,6734	0,1100	0,1124	0,0651	4,2120	0,2741
99	0,1251	0,0310	3,6625	0,1136	0,1120	0,0683	4,1993	0,2867
100	0,1248	0,0319	3,6523	0,1164	0,1118	0,0705	4,1897	0,2953
101	0,1243	0,0330	3,6398	0,1199	0,1113	0,0748	4,1708	0,3120
102	0,1239	0,0340	3,6275	0,1232	0,1111	0,0764	4,1650	0,3182
103	0,1235	0,0350	3,6146	0,1264	0,1106	0,0802	4,1473	0,3324
104	0,1227	0,0365	3,5933	0,1312	0,1102	0,0831	4,1319	0,3433
105	0,1224	0,0373	3,5820	0,1337	0,1095	0,0881	4,1058	0,3616
106	0,1214	0,0389	3,5554	0,1385	0,1092	0,0904	4,0942	0,3702
107	0,1211	0,0395	3,5464	0,1399	0,1089	0,0925	4,0827	0,3778
108	0,1203	0,0410	3,5231	0,1444	0,1083	0,0968	4,0593	0,3930
109	0,1199	0,0419	3,5107	0,1471	0,1078	0,1002	4,0400	0,4047
110	0,1190	0,0435	3,4851	0,1516	0,1073	0,1033	4,0206	0,4152
111	0,1185	0,0445	3,4700	0,1543	0,1063	0,1091	3,9861	0,4350
112	0,1181	0,0451	3,4587	0,1560	0,1057	0,1134	3,9616	0,4492
113	0,1173	0,0468	3,4341	0,1607	0,1050	0,1172	3,9373	0,4616
114	0,1165	0,0483	3,4117	0,1647	0,1041	0,1229	3,9036	0,4796
115	0,1161	0,0492	3,3989	0,1674	0,1038	0,1256	3,8913	0,4888
116	0,1156	0,0512	3,3851	0,1735	0,1030	0,1323	3,8598	0,5107
117	0,1149	0,0557	3,3625	0,1872	0,1025	0,1354	3,8430	0,5204
118	0,1141	0,0603	3,3392	0,2015	0,1017	0,1404	3,8131	0,5352
119	0,1133	0,0649	3,3179	0,2154	0,1010	0,1447	3,7861	0,5480
120	0,1120	0,0733	3,2775	0,2402	0,1004	0,1481	3,7651	0,5578
121	0,1109	0,0784	3,2481	0,2546	0,1001	0,1500	3,7531	0,5631
122	0,1093	0,0848	3,2007	0,2713	0,0988	0,1568	3,7044	0,5810
123	0,1084	0,0874	3,1740	0,2774	0,0978	0,1609	3,6679	0,5902
124	0,1065	0,0912	3,1188	0,2844	0,0970	0,1639	3,6346	0,5959
125	0,1042	0,0945	3,0502	0,2883	0,0960	0,1667	3,5982	0,5999
126	0,1030	0,0956	3,0160	0,2883	0,0939	0,1721	3,5198	0,6057
127	0,1003	0,0983	2,9372	0,2889	0,0925	0,1751	3,4661	0,6071
128	0,0985	0,0995	2,8826	0,2869	0,0914	0,1771	3,4255	0,6067
129	0,0956	0,1007	2,7974	0,2818	0,0895	0,1802	3,3539	0,6045
130	0,0923	0,1019	2,7010	0,2752	0,0869	0,1833	3,2576	0,5972

		Nesíťova	ný vzorek			Síťovan	ý vzorek	
+ [°C]	C [nE]	tgδ [_]		s′′[_]	 C [nE]	tg& [_]		د``[_]
121			^c r [⁻]				^c r [⁻]	[-] 3
131	0,0896	0,1032	2,6228	0,2706	0,0844	0,1856	3,1628	0,5871
132	0,0876	0,1037	2,5655	0,2661	0,0823	0,1870	3,0851	0,5768
133	0,0830	0,1035	2,4294	0,2515	0,0783	0,1888	2,9335	0,5539
134	0,0796	0,1034	2,3294	0,2409	0,0756	0,1897	2,8335	0,5375
135	0,0766	0,1037	2,2429	0,2325	0,0736	0,1904	2,7584	0,5252
136	0,0741	0,1033	2,1685	0,2240	0,0715	0,1910	2,6795	0,5117
137	0,0690	0,1012	2,0215	0,2046	0,0693	0,1919	2,5968	0,4982
138	0,0672	0,1005	1,9661	0,1976	0,0669	0,1926	2,5074	0,4830
139	0,0646	0,0994	1,8910	0,1879	0,0652	0,1927	2,4444	0,4711
140	0,0622	0,0991	1,8222	0,1805	0,0630	0,1920	2,3627	0,4536
141	0,0612	0,0990	1,7904	0,1772	0,0606	0,1908	2,2713	0,4333
142	0,0591	0,0984	1,7305	0,1703	0,0586	0,1895	2,1971	0,4163
143	0,0583	0,0982	1,7078	0,1677	0,0560	0,1885	2,0990	0,3958
144	0,0573	0,0980	1,6787	0,1644	0,0540	0,1875	2,0238	0,3794
145	0,0562	0,0983	1,6457	0,1618	0,0522	0,1867	1,9549	0,3650
146	0,0551	0,0982	1,6127	0,1584	0,0503	0,1856	1,8865	0,3502
147	0,0541	0,0976	1,5842	0,1546	0,0491	0,1845	1,8392	0,3393
148	0,0530	0,0968	1,5528	0,1504	0,0476	0,1820	1,7841	0,3248
149	0,0520	0,0966	1,5217	0,1470	0,0448	0,1769	1,6775	0,2967
150	0,0513	0,0961	1,5030	0,1445	0,0429	0,1733	1,6072	0,2786
151	0,0500	0,0937	1,4650	0,1373	0,0421	0,1715	1,5778	0,2706
152	0,0497	0,0920	1,4543	0,1337	0,0410	0,1686	1,5352	0,2588
153	0,0491	0,0908	1,4363	0,1304	0,0401	0,1667	1,5025	0,2504
154	0,0488	0,0901	1,4284	0,1288	0,0376	0,1621	1,4099	0,2285
155	0,0484	0,0882	1,4167	0,1250	0,0371	0,1606	1,3902	0,2232
156	0,0480	0,0857	1,4050	0,1205	0,0362	0,1580	1,3571	0,2144
157	0,0476	0,0826	1,3930	0,1150	0,0339	0,1504	1,2697	0,1910
158	0,0474	0,0807	1,3865	0,1119	0,0332	0,1488	1,2446	0,1852
159	0,0472	0,0787	1,3832	0,1089	0,0325	0,1473	1,2199	0,1796
160	0,0472	0,0760	1,3827	0,1050	0,0321	0,1458	1,2022	0,1753
161	0,0472	0,0751	1,3814	0,1038	0,0315	0,1442	1,1820	0,1704
162	0,0472	0,0735	1,3826	0,1016	0,0310	0,1426	1,1630	0,1659
163	0,0474	0,0716	1,3882	0,0995	0,0304	0,1406	1,1388	0,1601
164	0,0475	0,0712	1,3914	0,0991	0,0298	0,1386	1,1167	0,1547
165	0,0477	0,0710	1,3974	0,0992	0,0292	0,1364	1,0934	0,1492
166	0,0479	0,0712	1,4030	0,0999	0,0288	0,1353	1,0802	0,1462
167	0,0480	0,0719	1,4038	0,1009	0,0282	0,1331	1,0568	0,1407
168	0,0480	0,0730	1,4059	0,1027	0,0276	0,1314	1,0359	0,1361
169	0,0480	0,0746	1,4042	0,1048	0,0271	0,1294	1,0150	0,1314
170	0,0479	0,0758	1,4017	0,1062	0,0270	0,1291	1,0104	0,1304

Tloušťka [mm]	Nesíťovaný vzorek	Síťovaný vzorek
h ₁	0,52	0,644
h ₂	0,527	0,742
h ₃	0,516	0,641
h ₄	0,514	0,632
h ₅	0,519	0,665
průměr h	0,5192	0,6648

Tab. 7 Tloušťky vzorků použitých pro měření teplotní závislost ztrátového činitele, relativní permitivity a imaginární části relativní permitivity pro síťovaný vzorek

Vorrek Cislo Fodisio 1 2 3 4 5 6 7 8 9 10 Priměr Gněrodatň Variační Cislo t5 920 1205 110A1 125 131 312 323 521 440,700 115.03 26.343 30.082 10 121 144 225 140 225 140 225 140 224 170,000 51,336 30.082 2.661 0.461 3.033 3.027 2.643 3.020 2.661 0.462 0.005 1.02A1 1.02A1 1.02A
Podříslo 1 2 3 4 5 6 7 8 9 10 Průměr Směrodatná Veriační t S 11pA1 12pA 11pA1 12pA 11pA1 11pA1 11pA1 11pA1 12pA3 31pA
2 3 4 5 6 7 8 9 10 Průměr Směrodatná Variační koeficient 11bA 1250 1370 1356,500 25.11 440,700 51.736 30.308 30,78 30.307 30.258 31.42 24.1 170,700 51.736 30.078 2.526 3.024 3.517 3.268 3.795 3.262 3.261 3.422 2.590 3.397 3.142 0.375 1.1920 3.402 2.222 3.511 1.887 2.825 3.846 4.202 3.401 2.041 3.142 0.452 1.058 1.25,971 1.568 <td< td=""></td<>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ $
5 6 7 8 9 10 $Průměr$ Směrodatná Variační 1[pA] 1[pA] 1[pA] 1[pA] 1[pA] 1[pA] 1[pA] 1 odchylka koeficient 1683 1476 1279 1020 1250 1770 1356,500 276,837 20,408 671 455 381 318 329 521 440,700 116,103 26,345 271 174 127 118 144 241 170,700 51,736 30,078 2,505 3,777 3,208 3,799 3,397 3,142 0,325 11,920 2,505 3,846 4,202 3,401 2,041 3,163 0,822 2,590 2,487 2,825 3,846 4,202 3,401 2,612 2,621 1,223 1,887 2,825 3,846 18,780 2,045 1,68 0,461 0,462 0,005 1,068 9,10 ren
6 7 8 9 10 $Průměr$ Směrodatná odchylka Variační koeficient 11pA 11pA 11pA 11pA 11pA 11pA variační 1476 1279 1020 1250 1770 1356,500 276,837 20,408 455 381 318 329 521 440,700 116,103 26,345 174 127 118 144 241 170,700 51,736 30,308 177 130 119 147 245 171,200 51,493 30,078 3,244 3,357 3,208 3,401 2,041 3,163 0,822 2,590 2,615 3,000 2,658 2,162 2,621 0,055 1,068 13,586 18,780 20,045 16,680 9,952 15,392 3,967 2,571 150 7 8 9 10 Průměr Směrodatná odchylka Koeficient 12,829 2,045
7 8 9 10 $Průměr$ Směrodatná odchylka Variační koeficient 11[pA] 11[pA] 11[pA] 11[pA] 11[pA] Směrodatná Variační koeficient 1279 1020 1250 1770 1356,500 276,837 20,408 381 318 32.9 52.1 440,700 51,736 30,308 127 118 144 24.1 170,700 51,736 30,308 130 119 147 245 171,200 51,493 30,078 3,357 3,208 3,799 3,397 3,162 0,326 12,423 3,000 2,695 2,285 2,162 2,590 0,005 1,068 0,460 0,471 0,458 0,461 0,462 0,005 1,068 18,780 20,045 16,28 1637 2092,100 556,404 26,595 755 568 506 515 728,500 174,698 30,303 764<
10 I [pA]PrůměrSměrodatná odchylkaVariační koeficient17701356,500276,83720,408521440,700116,10326,345241170,70051,73630,308245171,20051,49330,0782,4121,7320,37511,9202,413,1420,32612,4232,0413,1630,82225,9900,4610,4620,0051,0689,95215,3923,96725,77110PrůměrSměrodatnáVariační16372092,100556,40426,595515728,500174,67929,3683,1792,8960,29510,1801,3300,9230,29031,4520,4500,4580,0132,7286,6374.5251.41931.356
PrůměrSměrodatnáVariační odchylkaVariační koeficient1356,500276,83720,408440,700116,10326,345170,70051,73630,308171,20051,49330,0783,1420,37511,9202,6210,32612,4233,1630,82225,9900,4620,0051,06815,3923,96725,771SměrodatnáVariačníPrůměrSměrodatnákoeficient2092,100556,40426,595728,500192,63926,443576,500174,67929,3682,8960,29510,1801,3060,25319,3840,9230,29031,4520,4580,0132,7284,5251,41931,356
Směrodatná Variační odchylka koeficient 276,837 20,408 116,103 26,345 51,736 30,008 51,736 11,920 0,375 11,920 0,375 12,423 0,326 25,990 0,326 12,423 0,822 25,990 0,005 1,068 3,967 25,771 Směrodatná Variační odchylka Koeficient 556,404 556,404 26,595 192,639 26,443 174,679 29,368 0,295 10,180 0,295 10,180 0,295 19,384 0,290 31,452 0,013 2,728 1,419 31.356
Variační koeficient 20,408 26,345 30,308 30,078 11,920 12,423 25,990 1,068 25,771 Variační koeficient 26,595 26,443 30,303 29,368 10,180 19,384 31,452 2,728 31,356

		Ne	síťo	ova	né	vzo	rky	,		číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
11,774	0,426	2,232	3,595	1,709		224	232	834	1425	I [pA]	1
13,332	0,426	2,525	4,101	1,674		198	208	853	1428	I [pA]	2
9,672	0,423	1,818	3,256	1,682		275	277	902	1517	I [pA]	3
9,385	0,414	1,730	3,168	1,732		289	291	922	1597	I [pA]	4
10,823	0,415	2,000	3,506	1,882		250	249	873	1643	I [pA]	л
10,974	0,434	2,119	3,620	1,647		236	237	858	1413	I [pA]	6
11,500	0,427	2,183	3,634	1,697		229	227	825	1400	I [pA]	7
8,704	0,423	1,639	3,150	1,677		305	301	948	1590	l [pA]	8
20,197	0,449	4,032	4,582	1,374		124	146	669	919	l [pA]	9
11,818	0,426	2,253	3,624	1,675		236,667	240,889	853,778	1436,889	FIGHTE	Drůměr
3,241	0,010	0,680	0,438	0,124		51,060	44,556	75,724	202,303	odchylka	Směrodatná
27,424	2,277	30,195	12,094	7,430		21,575	18,496	8,869	14,079	koeficient	Variační

	СЛ									číslo	Vzorek					4	2					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo	pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
12,638	0,449	2,525	3,253	3,298		198	194	631	2081	I [pA]	1	7,325	0,445	1,449	2,725	2,871		345	327	891	2558	I [pA]	1
8,106	0,437	1,577	3,116	2,658		317	293	913	2427	I [pA]	2	7,389	0,447	1,471	2,739	2,751		340	318	871	2396	I [pA]	2
10,994	0,443	2,165	3,056	2,922		231	214	654	1911	I [pA]	ω	21,948	0,453	4,425	3,866	2,998		113	112	433	1298	I [pA]	ω
11,091	0,483	2,381	2,404	3,410		210	198	476	1623	I [pA]	4	12,967	0,447	2,577	3,204	3,047		194	186	596	1816	I [pA]	4
7,341	0,444	1,449	2,953	2,619		345	320	945	2475	I [pA]	ы	7,409	0,446	1,471	2,774	2,690		340	319	885	2381	I [pA]	ო
9,123	0,448	1,818	1,915	4,184		275	272	521	2180	I [pA]	6	12,934	0,457	2,632	2,701	3,370		190	187	505	1702	I [pA]	6
10,548	0,455	2,137	2,373	3,740		234	233	553	2068	I [pA]	7	18,484	0,464	3,817	3,355	3,397		131	124	416	1413	I [pA]	7
9,649	0,457	1,961	2,131	4,131		255	251	535	2210	I [pA]	8	11,851	0,460	2,427	3,455	2,984		206	200	691	2062	I [pA]	∞
5,840	0,457	1,188	1,930	3,239		421	416	803	2601	I [pA]	9	11,438	0,459	2,336	2,901	3,148		214	203	589	1854	I [pA]	9
												13,333	0,474	2,809	2,218	4,360		178	174	386	1683	I [pA]	10
9,481	0,453	1,911	2,570	3,356		276,222	265,667	670,111	2175,111	רומווכו	Drůměr	12,508	0,455	2,541	2,994	3,162		225,100	215,000	626,300	1916,300		Drůměr
1,996	0,012	0,418	0,499	0,545		68,425	66,672	165,291	284,979	odchylka	Směrodatná	4,545	0,009	0,938	0,450	0,456		81,919	75,189	189,054	403,605	odchylka	Směrodatná
21,055	2,744	21,870	19,424	16,237		24,772	25,096	24,666	13,102	koeficient	Variační	36,335	1,954	36,904	15,047	14,433		36,392	34,972	30,186	21,062	koeficient	Variační

				C	υ					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
5,999	0,471	1,256	1,391	3,214		398	376	523	1681	I [pA]	1
6,800	0,449	1,359	1,661	3,471		368	345	573	1989	I [pA]	2
3,157	0,464	0,651	1,327	2,889		768	744	987	2851	l [pA]	3
4,170	0,450	0,835	1,505	3,225		599	554	834	2690	I [pA]	4
3,669	0,463	0,755	1,259	3,024		662	640	806	2437	I [pA]	л
5,756	0,442	1,131	1,491	3,479		442	434	647	2251	I [pA]	6
5,550	0,430	1,062	1,186	4,288		471	456	541	2320	I [pA]	7
4,133	0,447	0,821	1,453	3,697		609	556	808	2987	I [pA]	8
5,037	0,453	1,014	1,505	3,709		493	471	709	2630	I [pA]	9
8,905	0,448	1,773	1,690	4,137		282	268	453	1874	I [pA]	10
5,317	0,452	1,066	1,447	3,513		509,200	484,400	688,100	2371,000	FIGHTE	Drůměr
1,611	0,011	0,318	0,153	0,432		140,893	135,319	160,763	408,545	odchylka	Směrodatná
30,301	2,477	29,836	10,582	12,299		27,670	27,935	23,363	17,231	koeficient	Variační

_																									 _
				с	Ø					číslo	Vzorek							Z					číslo	Vzorek	
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo		pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo	ρν [ΜΩm]
16,853	0,476	3,571	2,891	3,467		140	137	396	1373	I [pA]	1		11,738	0,456	2,381	2,458	3,403		210	201	494	1681	I [pA]	1	5,5/3
17,874	0,462	3,676	3,313	3,526		136	128	424	1495	I [pA]	2		8,236	0,467	1,712	2,396	3,236		292	260	623	2016	I [pA]	2	16,888
17,797	0,461	3,650	3,328	3,278		137	134	446	1462	I [pA]	ω		10,546	0,463	2,174	2,670	3,459		230	218	582	2013	I [pA]	3	23,264
9,659	0,453	1,946	1,885	3,900		257	243	458	1786	I [pA]	4		19,345	0,492	4,237	2,225	3,826		118	111	247	945	I [pA]	4	30,215
19,304	0,466	4,000	3,210	3,149		125	119	382	1203	l [pA]	б		15,167	0,491	3,311	2,786	3,129		151	145	404	1264	I [pA]	5	23,818
13,148	0,430	2,513	1,893	3,881		199	196	371	1440	I [pA]	6		11,548	0,451	2,315	2,740	3,413		216	192	526	1795	I [pA]	6	10,/19
9,812	0,451	1,969	2,431	3,746		254	232	564	2113	I [pA]	7		13,991	0,449	2,793	2,471	3,119		179	170	420	1310	I [pA]	7	7,713
12,838	0,456	2,604	2,511	3,742		192	188	472	1766	I [pA]	∞		14,752	0,476	3,125	2,520	3,705		160	152	383	1419	I [pA]	8	10,688
5,183	0,441	1,016	1,866	3,468		492	456	851	2951	I [pA]	9		17,726	0,473	3,731	2,705	4,185		134	132	357	1494	I [pA]	9	17,630
14,740	0,451	2,959	2,635	3,308		169	181	477	1578	I [pA]	10		9,780	0,463	2,016	2,367	3,726		248	245	580	2161	I [pA]	10	5,861
13,721	0,455	2,790	2,596	3,547		210,100	201,400	484,100	1716,700	riullei	Drůměr		13,283	0,468	2,780	2,534	3,520		193,800	182,600	461,600	1609,800	r i ui lici	Drůměr	15,237
4,262	0,012	0,910	0,555	0,248		104,271	94,329	133,386	477,454	odchylka	Směrodatná		3,366	0,014	0,768	0,175	0,322		52,117	46,648	113,129	370,404	odchylka	Směrodatná	8,061
31,064	2,736	32,598	21,385	6,990		49,629	46,837	27,553	27,812	koeficient	Variační		25,344	3,071	27,626	6,899	9,143		26,892	25,547	24,508	23,009	koeficient	Variační	52,907
_												a											ut	-	

_											
				c	ת					číslo	Vzorek
ρv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
5,573	0,439	1,089	1,301	3,722		459	442	575	2140	I [pA]	1
16,888	0,462	3,472	3,477	2,167		144	153	532	1153	I [pA]	2
23,264	0,456	4,717	4,027	2,680		106	111	447	1198	I [pA]	3
30,215	0,496	6,667	3,788	3,228		75	80	303	978	I [pA]	4
23,818	0,445	4,717	3,523	2,703		106	107	377	1019	I [pA]	л
10,719	0,452	2,155	2,265	3,254		232	219	496	1614	I [pA]	6
7,713	0,455	1,563	2,495	2,735		320	297	741	2027	I [pA]	7
10,688	0,446	2,119	2,634	2,967		236	232	611	1813	I [pA]	8
17,630	0,483	3,788	2,191	3,244		132	131	287	931	I [pA]	9
5,861	0,447	1,166	1,783	3,177		429	415	740	2351	I [pA]	10
15,237	0,458	3,145	2,748	2,988		223,900	218,700	510,900	1522,400	רומוופו	Drůměr
8,061	0,017	1,748	0,866	0,410		130,991	122,485	153,491	505,638	odchylka	Směrodatná
52,907	3,729	55,569	31,501	13,725		58,504	56,006	30,043	33,213	koeficient	Variační

				1 L	- -					číslo	Vzorek					Ŭ	10					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo	pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
20,502	0,465	4,237	2,722	4,038		118	115	313	1264	[pA]	1	9,245	0,447	1,838	1,732	4,067		272	257	445	1810	I [pA]	1
17,227	0,473	3,623	3,581	2,809		138	136	487	1368	I [pA]	2	13,553	0,453	2,732	2,796	3,801		183	167	467	1775	I [pA]	2
14,039	0,468	2,924	2,897	3,364		171	165	478	1608	I [pA]	ω	8,611	0,447	1,712	3,220	2,812		292	273	879	2472	I [pA]	ω
14,345	0,440	2,809	2,651	3,938		178	169	448	1764	I [pA]	4	12,318	0,441	2,415	2,795	3,785		207	190	531	2010	I [pA]	4
14,954	0,453	3,012	2,555	4,098		166	155	396	1623	I [pA]	თ	17,389	0,455	3,521	2,554	4,156		142	148	378	1571	I [pA]	ы
12,426	0,479	2,646	2,699	3,104		189	196	529	1642	I [pA]	6	16,770	0,472	3,521	3,029	3,309		142	140	424	1403	I [pA]	6
18,584	0,458	3,788	3,412	3,119		132	131	447	1394	I [pA]	7	14,185	0,453	2,857	3,657	2,623		175	169	618	1621	I [pA]	7
13,481	0,468	2,809	3,122	3,225		178	164	512	1651	I [pA]	∞	21,086	0,456	4,274	4,517	3,065		117	116	524	1606	I [pA]	8
6,945	0,432	1,333	2,042	3,165		375	356	727	2301	I [pA]	9	17,060	0,448	3,401	3,650	3,121		147	143	522	1629	I [pA]	9
												21,931	0,458	4,464	2,477	4,056		112	109	270	1095	I [pA]	10
14,723	0,459	3,020	2,853	3,429		182,778	176,333	481,889	1623,889	רועוופו	Drůměr	15,215	0,453	3,074	3,043	3,480		178,900	171,200	505,800	1699,200	רועוופו	Drimán
3,690	0,015	0,783	0,440	0,445		71,673	67,412	106,204	284,268	odchylka	Směrodatná	4,261	0,008	0,886	0,732	0,533		58,591	52,272	153,923	346,525	odchylka	Směrodatná
25,065	3,179	25,928	15,432	12,970		39,213	38,230	22,039	17,505	koeficient	Variační	28,008	1,763	28,839	24,045	15,317		32,751	30,533	30,432	20,393	koeficient	Variační

				ļ	٥					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
9,969	0,449	1,992	2,210	3,835		251	238	526	2017	I [pA]	1
14,457	0,471	3,030	2,632	3,793		165	152	400	1517	I [pA]	2
11,667	0,457	2,370	1,623	5,027		211	204	331	1664	I [pA]	3
8,922	0,474	1,880	1,869	4,500		266	213	398	1791	I [pA]	4
15,801	0,468	3,289	2,473	4,090		152	148	366	1497	I [pA]	ы
14,939	0,462	3,067	3,206	3,597		163	165	529	1903	I [pA]	6
16,685	0,474	3,521	2,515	4,068		142	134	337	1371	I [pA]	7
16,083	0,460	3,289	2,683	4,188		152	145	389	1629	I [pA]	8
9,540	0,451	1,916	2,124	3,904		261	251	533	2081	I [pA]	9
35,202	0,437	6,849	2,034	4,646		73	89	181	841	I [pA]	10
15,326	0,460	3,120	2,337	4,165		183,600	173,900	399,000	1631,100	r I di lici	Drůměr
7,178	0,011	1,377	0,435	0,417		58,995	48,325	104,004	342,757	odchylka	Směrodatná
46,831	2,473	44,128	18,631	10,018		32,132	27,789	26,066	21,014	koeficient	Variační

_												-													-	
				F t	1 /					číslo	Vzorek						н С	12					číslo	Vzorek		
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo		pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo		0V 1V122m 1
22,283	0,480	4,762	2,619	3,741		105	134	351	1313	I [pA]	1		7,566	0,445	1,497	2,386	3,290		334	321	766	2520	I [pA]	1		700,8T
17,075	0,470	3,571	2,225	4,500		140	151	336	1512	I [pA]	2		7,489	0,459	1,529	2,020	3,330		327	348	703	2341	I [pA]	2		21,421
10,036	0,452	2,016	2,502	3,742		248	245	613	2294	I [pA]	ω		13,768	0,469	2,874	2,616	3,419		174	177	463	1583	I [pA]	ω		13,914
21,023	0,469	4,386	2,153	3,296		114	196	422	1391	I [pA]	4		22,117	0,446	4,386	3,022	3,822		114	136	411	1571	I [pA]	4		21,315
18,847	0,470	3,937	4,000	3,064		127	132	528	1618	I [pA]	л		15,521	0,450	3,106	2,240	3,803		161	154	345	1312	I [pA]	л		14,002
17,124	0,438	3,333	4,158	2,869		150	152	632	1813	I [pA]	6		6,784	0,448	1,351	1,871	3,631		370	349	653	2371	I [pA]	6		12,045
19,016	0,458	3,876	4,218	3,011		129	133	561	1689	I [pA]	7		4,936	0,452	0,992	1,595	3,588		504	479	764	2741	I [pA]	7		11,405
22,834	0,452	4,587	3,698	3,121		109	116	429	1339	I [pA]	∞		4,585	0,437	0,891	1,595	2,906		561	630	1005	2921	I [pA]	∞		066,77
36,219	0,470	7,576	4,699	3,120		66	73	343	1070	I [pA]	9		9,589	0,437	1,866	2,008	3,547		268	255	512	1816	I [pA]	9		15,/23
24,372	0,480	5,208	4,520	2,777		96	86	443	1230	I [pA]	10		6,595	0,461	1,351	1,878	3,829		370	352	661	2531	I [pA]	10		0T2'6T
20,883	0,464	4,325	3,479	3,324		128,400	143,000	465,800	1526,900	רועוווכו	Drůměr		9,895	0,450	1,984	2,123	3,517		318,300	320,100	628,300	2170,700	riullici	Drůměr		1/,004
6,380	0,013	1,373	0,945	0,499		45,807	46,167	105,414	331,893	odchylka	Směrodatná		5,298	0,010	1,061	0,429	0,276		137,437	144,954	188,379	527,006	odchylka	Směrodatná		3,950
30,553	2,818	31,738	27,148	15,006		35,675	32,285	22,631	21,736	koeficient	Variační		53,543	2,155	53,466	20,198	7,840		43,179	45,284	29,982	24,278	koeficient	Variační		23,23I
																							U.		1 L	

				71	17					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
18,002	0,488	3,906	3,717	2,922		128	120	446	1303	I [pA]	1
21,427	0,500	4,762	2,065	4,538		105	107	221	1003	I [pA]	2
13,914	0,478	2,959	3,232	3,026		169	168	543	1643	I [pA]	з
21,315	0,479	4,545	2,273	4,952		110	110	250	1238	I [pA]	4
14,002	0,475	2,959	1,760	6,103		169	154	271	1654	I [pA]	л
12,045	0,481	2,577	2,290	3,043		194	231	529	1610	I [pA]	6
11,405	0,474	2,404	2,201	3,580		208	224	493	1765	I [pA]	7
22,996	0,479	4,902	1,800	4,323		102	110	198	856	I [pA]	8
15,723	0,477	3,333	2,212	3,988		150	151	334	1332	I [pA]	9
19,210	0,488	4,167	1,975	4,644		120	121	239	1110	I [pA]	10
17,004	0,482	3,651	2,352	4,112		145,500	149,600	352,400	1351,400	riullei	Drůměr
3,950	0,007	0,877	0,597	0,960		36,239	43,779	129,406	292,437	odchylka	Směrodatná
23,231	1,541	24,029	25,395	23,349		24,906	29,264	36,721	21,640	koeficient	Variační

	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
				Τ,	17					číslo	Vzorek					τC	16					číslo	Vzorek
טע נועוצצודו	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo	pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podcislo
11,40U	0,442	2,252	3,774	2,664		222	208	785	2091	I [pA]	1	7,411	0,462	1,524	1,913	3,378		328	322	616	2081	I [pA]	1
20,009	0,469	4,310	4,333	2,996		116	117	507	1519	I [pA]	2	20,616	0,500	4,587	3,045	3,544		109	111	338	1198	I [pA]	2
ете'ст	0,458	3,226	3,741	2,657		155	174	651	1730	I [pA]	з	30,046	0,480	6,410	3,870	3,362		78	77	298	1002	I [pA]	υ.
18,237	0,428	3,472	4,417	2,889		144	139	614	1774	I [pA]	4	25,343	0,462	5,208	3,093	3,793		96	97	300	1138	I [pA]	4
11,323	0,435	2,232	3,725	2,553		224	218	812	2073	I [pA]	б	58,304	0,470	12,195	5,104	3,629		41	48	245	889	I [pA]	υ
39,973	0,477	8,475	6,633	2,648		59	60	398	1054	I [pA]	6	20,354	0,472	4,274	3,059	4,144		117	118	361	1496	I [pA]	6
18,494	0,450	3,704	5,653	2,544		135	124	701	1783	I [pA]	7	24,437	0,465	5,051	3,275	2,757		99	138	452	1246	I [pA]	/
23,004	0,458	5,102	4,776	2,442		98	107	511	1248	I [pA]	∞	32,679	0,465	6,757	3,911	2,668		74	101	395	1054	I [pA]	œ
19,421	0,442	3,817	4,037	3,161		131	135	545	1723	l [pA]	9	36,590	0,473	7,692	4,870	3,310		65	69	336	1112	I [pA]	9
												52,351	0,511	11,905	6,283	3,204		42	46	289	926	I [pA]	10
20,074	0,451	4,066	4,566	2,728		142,667	142,444	613,778	1666,111	r i di lici	Drůměr	30,813	0,476	6,560	3,842	3,379		104,900	112,700	363,000	1214,200	FIUITE	Drůměr
8,110	0,015	1,779	0,935	0,223		50,513	47,270	129,468	324,867	odchylka	Směrodatná	14,452	0,016	3,166	1,203	0,421		78,333	75,286	100,949	332,834	odchylka	Smèrodatnà
40,434	3,316	43,750	20,483	8,173		35,406	33,185	21,094	19,499	koeficient	Variační	46,903	3,345	48,263	31,299	12,467		74,674	66,802	27,810	27,412	koeficient	Variační

				Ľ	<u>-</u>					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
12,480	0,437	2,427	4,056	2,142		206	213	864	1851	I [pA]	1
9,731	0,439	1,901	4,068	1,909		263	249	1013	1934	I [pA]	2
15,515	0,434	2,994	4,711	2,288		167	159	749	1714	I [pA]	з
14,096	0,443	2,778	4,619	2,156		180	176	813	1753	[pA]	4
13,251	0,408	2,404	4,879	2,091		208	206	1005	2101	I [pA]	ы
12,922	0,418	2,404	4,701	2,174		208	201	945	2054	I [pA]	6
30,789	0,435	5,952	5,040	2,116		84	101	509	1077	I [pA]	7
13,770	0,434	2,660	4,745	2,132		188	192	911	1942	I [pA]	8
15,403	0,440	3,012	5,503	2,133		166	157	864	1843	I [pA]	9
8,821	0,439	1,724	3,558	2,218		290	278	989	2194	I [pA]	10
14,678	0,433	2,826	4,588	2,136		196,000	193,200	866,200	1846,300	riullei	Drůměr
5,751	0,010	1,116	0,529	0,093		53,215	47,116	144,319	293,908	odchylka	Směrodatná
39,179	2,422	39,492	11,521	4,337		27,150	24,387	16,661	15,919	koeficient	Variační

				20	20					číslo	Vzorek					μ	10					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo	ρv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
0,011	0,438	2,101	3,614	2,547		238	236	853	2173	I [pA]	1	9,072	0,438	1,767	3,869	1,991		283	283	1095	2180	I [pA]	1
0,018	0,430	3,472	4,735	2,295		144	136	644	1478	I [pA]	2	11,668	0,446	2,315	4,195	2,064		216	221	927	1913	I [pA]	2
0,041	0,455	8,333	6,541	2,865		60	61	399	1143	I [pA]	ω	10,663	0,432	2,049	3,996	2,107		244	239	955	2012	I [pA]	ω
0,011	0,440	2,155	4,968	2,005		232	220	1093	2191	I [pA]	4	14,830	0,428	2,825	3,679	2,485		177	168	618	1536	I [pA]	4
0,015	0,443	2,907	4,518	2,411		172	170	768	1852	I [pA]	ы	10,082	0,434	1,946	3,715	2,517		257	242	668	2263	I [pA]	л
0,011	0,429	2,101	4,157	2,259		238	223	927	2094	I [pA]	6	12,215	0,458	2,488	4,922	1,649		201	205	1009	1664	I [pA]	6
0,021	0,446	4,132	5,740	1,879		121	131	752	1413	I [pA]	7	19,755	0,448	3,937	5,388	1,761		127	129	695	1224	I [pA]	7
0,015	0,451	2,994	5,488	1,730		167	166	911	1576	I [pA]	8	29,525	0,470	6,173	5,576	2,323		81	85	474	1101	I [pA]	8
0,009	0,443	1,873	3,636	1,978		267	269	978	1934	I [pA]	9	17,036	0,446	3,378	5,246	2,156		148	142	745	1606	I [pA]	9
0,014	0,441	2,762	5,130	2,036		181	169	867	1765	I [pA]	10	16,221	0,444	3,205	6,007	1,938		156	152	913	1769	I [pA]	10
0,017	0,442	3,283	4,853	2,200		182,000	178,100	819,200	1761,900	FIGHTE	Drůměr	15,107	0,444	3,008	4,659	2,099		189,000	186,600	833,000	1726,800		Drůmăr
0,009	0,008	1,811	0,881	0,325		60,309	57,780	183,864	334,827	odchylka	Směrodatná	5,798	0,012	1,242	0,821	0,271		59,816	58,140	183,300	361,948	odchylka	Směrodatná
53,318	1,747	55,177	18,149	14,785		33,137	32,442	22,444	19,004	koeficient	Variační	38,378	2,686	41,292	17,613	12,899		31,649	31,157	22,005	20,961	koeficient	Variační

				Ť	10					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
6,719	0,460	1,374	2,630	2,890		364	349	918	2653	I [pA]	1
17,586	0,441	3,448	4,807	2,458		145	140	673	1654	I [pA]	2
17,126	0,462	3,521	3,763	3,323		142	139	523	1738	I [pA]	ω
13,037	0,444	2,577	4,486	2,612		194	181	812	2121	I [pA]	4
12,088	0,451	2,427	4,286	2,253		206	199	853	1922	I [pA]	ы
19,392	0,456	3,937	4,484	2,850		127	128	574	1636	I [pA]	6
21,240	0,441	4,167	4,143	2,878		120	119	493	1419	I [pA]	7
13,831	0,454	2,793	4,082	2,652		179	171	869	1851	I [pA]	∞
13,760	0,454	2,778	4,824	2,321		180	170	820	1903	I [pA]	9
6,503	0,438	1,266	3,436	2,191		395	367	1261	2763	I [pA]	10
14,128	0,450	2,829	4,094	2,643		205,200	196,300	762,500	1966,000		Drůměr
4,667	0,008	0,931	0,638	0,334		91,478	84,334	215,481	413,252	odchylka	Směrodatná
33,036	1,812	32,916	15,585	12,647		44,580	42,962	28,260	21,020	koeficient	Variační

				5	2 C					číslo	Vzorek					77	22					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo	ρν [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
9,156	0,445	1,812	3,773	2,255		276	264	996	2246	I [pA]	1	4,916	0,431	0,942	2,383	2,790		531	501	1194	3331	I [pA]	1
14,522	0,450	2,907	4,757	2,398		172	169	804	1928	I [pA]	2	14,397	0,439	2,809	4,154	2,523		178	175	727	1834	I [pA]	2
10,559	0,445	2,092	3,966	2,194		239	236	936	2054	I [pA]	ω	13,696	0,444	2,703	3,762	2,947		185	181	681	2007	I [pA]	ω
10,823	0,450	2,165	4,536	1,711		231	224	1016	1738	I [pA]	4	10,561	0,447	2,101	3,367	2,647		238	229	771	2041	I [pA]	4
12,404	0,446	2,463	5,330	1,882		203	182	970	1826	[pA]	л	10,736	0,455	2,174	3,140	3,052		230	221	694	2118	I [pA]	σ
23,486	0,456	4,762	4,427	2,612		105	103	456	1191	[pA]	6	30,844	0,499	6,849	3,690	4,237		73	71	262	1110	[pA]	6
16,565	0,446	3,289	3,895	2,886		152	153	596	1720	I [pA]	7	22,451	0,447	4,464	4,705	3,085		112	105	494	1524	I [pA]	7
6,867	0,439	1,340	3,986	1,870		373	352	1403	2623	I [pA]	8	17,897	0,462	3,676	4,586	3,095		136	128	587	1817	I [pA]	8
12,692	0,441	2,488	4,314	2,458		201	191	824	2025	I [pA]	9	12,805	0,469	2,674	3,011	3,079		187	186	560	1724	I [pA]	9
10,870	0,440	2,128	4,580	2,216		235	224	1026	2274	I [pA]	10	7,727	0,446	1,534	2,528	3,296		326	305	771	2541	I [pA]	10
12,794	0,446	2,545	4,356	2,248		218,700	209,800	902,700	1962,500	FIGHTE	Drůměr	14,603	0,454	2,993	3,533	3,075		219,600	210,200	674,100	2004,700		Drůmăr
4,389	0,005	0,901	0,452	0,343		69,310	64,554	245,403	367,449	odchylka	Směrodatná	7,160	0,018	1,598	0,757	0,446		123,607	115,715	226,977	568,821	odchylka	Směrodatná
34,304	1,107	35,420	10,368	15,249		31,692	30,769	27,185	18,723	koeficient	Variační	49,034	4,057	53,390	21,431	14,489		56,287	55,050	33,671	28,374	koeficient	Variační

	číslo	Vzorek								
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1	1800	600	60	15	t [s]	Podčíslo
11,064	0,440	2,165	3,769	2,526	231	212	799	2018	I [pA]	1
18,264	0,481	3,906	3,864	2,853	128	125	483	1378	I [pA]	2
12,134	0,443	2,392	4,015	2,670	209	196	787	2101	I [pA]	ω
17,456	0,467	3,623	2,851	4,191	138	134	382	1601	I [pA]	4
21,681	0,451	4,348	3,509	3,672	115	112	393	1443	I [pA]	ы
14,529	0,452	2,924	2,795	3,923	171	171	478	1875	I [pA]	6
9,754	0,433	1,880	2,657	3,300	266	251	667	2201	I [pA]	7
23,905	0,480	5,102	4,714	2,777	86	86	462	1283	I [pA]	∞
24,121	0,485	5,208	3,188	3,605	96	96	306	1103	I [pA]	9
19,283	0,435	3,731	3,889	2,976	134	126	490	1458	I [pA]	10
17,219	0,457	3,528	3,525	3,249	158,600	152,100	524,700	1646,100		Drůměr
4,943	0,019	1,113	0,618	0,544	55,613	50,079	160,899	358,175	odchylka	Směrodatná
28,707	4,143	31,560	17,523	16,751	35,065	32,925	30,665	21,759	koeficient	Variační

				ľ	27					číslo	Vzorek					4	ر د					číslo	Vzorek
pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo	pv [MΩm]	h [mm]	Rv [TΩ]	pi10	pi1		1800	600	60	15	t [s]	Podčíslo
9,379	0,441	1,838	4,007	1,956		272	271	1086	2124	I [pA]	1	13,043	0,444	2,577	4,654	2,225		194	188	875	1947	I [pA]	1
15,292	0,459	3,125	3,800	2,710		160	155	589	1596	I [pA]	2	33,208	0,457	6,757	5,778	2,415		74	81	468	1130	I [pA]	2
21,253	0,448	4,237	3,958	2,752		118	119	471	1296	I [pA]	ω	11,039	0,447	2,193	4,634	2,016		228	216	1001	2018	I [pA]	3
19,529	0,453	3,937	5,740	2,089		127	123	706	1475	I [pA]	4	17,878	0,434	3,448	5,640	2,166		145	139	784	1698	I [pA]	4
20,643	0,436	4,000	5,726	2,319		125	117	670	1554	I [pA]	ы	22,371	0,449	4,464	6,000	2,245		112	107	642	1441	I [pA]	5
15,142	0,427	2,874	4,613	2,466		174	168	775	1911	I [pA]	6	13,479	0,437	2,618	4,214	2,300		191	182	767	1764	I [pA]	6
15,903	0,471	3,333	4,503	2,349		150	149	671	1576	I [pA]	7	21,002	0,491	4,587	4,490	2,976		109	102	458	1363	I [pA]	7
14,401	0,434	2,778	5,550	1,987		180	169	938	1864	I [pA]	8	11,500	0,450	2,304	4,406	2,133		217	217	956	2039	I [pA]	8
12,910	0,444	2,551	4,562	2,090		196	185	844	1764	I [pA]	9	8,495	0,452	1,706	3,687	2,119		293	291	1073	2274	I [pA]	9
18,214	0,441	3,571	3,928	2,374		140	139	546	1296	I [pA]	10	5,411	0,446	1,073	3,221	2,142		466	448	1443	3091	I [pA]	10
16,267	0,445	3,224	4,639	2,309		164,200	159,500	729,600	1645,600	Průměr		15,742	0,451	3,173	4,672	2,274		202,900	197,100	846,700	1876,500	riullei	Drůměr
3,507	0,013	0,705	0,730	0,267		43,402	43,098	177,058	255,002	odchylka	Směrodatná	7,701	0,015	1,598	0,855	0,256		107,442	103,368	281,074	523,406	odchylka	Směrodatná
21,558	2,809	21,874	15,726	11,551		26,433	27,021	24,268	15,496	koeficient	Variační	48,917	3,328	50,355	18,304	11,265		52,953	52,444	33,196	27,893	koeficient	Variační