
University of West Bohemia

Faculty of applied sciences

Department of Geomatics

Traffic Volume Modeling in Parallel
Computing Environment

Master Thesis

Frantǐsek Kolovský

Thesis supervisor:

Ing. Jan JEŽEK, Ph.D. Plzeň, spring 2017

Declaration

I declare that this thesis is my original work of authorship that I have created myself.

All resources, sources and literature, which I used in my thesis, is cited indicating

the full link to the appropriate source.

In Pilsen

Frantǐsek Kolovský

Acknowledgment

I thank to my supervisor Jan Ježek for comments and methodical guidance. Ac-

cess to computing and storage facilities owned by parties and projects contribut-

ing to the National Grid Infrastructure MetaCentrum, provided under the pro-

gramme ”Projects of Large Infrastructure for Research, Development, and Inno-

vations” (LM2010005), is greatly appreciated.

Abstract

Nowadays, a lot of transport-related data for a traffic modeling are available, but

present software tools that can process such data volume and compute large models

are still lacking. The aim of this thesis is to analyse, design and test an imple-

mentation of the transport models in the scalable parallel computing environment.

More particularly, the work is primarily focused on the Origin-Destination matrix

estimation and the traffic assignment, which are the essential parts for traffic volume

modeling. Parallel algorithms that are suitable for such a problem are described,

evaluated and implemented into the Map-Reduce computing model (Apache Spark is

used for such a purpose). Implemented methods are tested on various-sized datasets

and the test results are demonstrated . Experiments have shown, that the proposed

solution is capable of processing a large-scale model (e.g. a model of whole Europe

consisting of millions of edges) within a time frame of tens of hours.

Key words

Map-Reduce, Origin-Destination matrix estimation, traffic assignment, distributed

environment, Apache Spark, traffic volume, parallel computing

Abstrakt

V posledńıch letech je k dispozici stále v́ıce dat vhodných jako podklad pro výpočet

dopravńıch intenzit, ale softwarové nástroje pro tvorbu velkých model̊u z těchto

dat nejsou dostupné. Ćılem této práce je analyzovat, navrhnout a otestovat imple-

mentaci transportńıch model̊u ve škálovatelném paralelńım výpočetńım prostřed́ı.

Práce se předevš́ım zaměřuje na odhad matice přepravńıch vztah̊u a na přidělováńı

zátěže na śı̌t. Vhodné paralelńı algoritmy jsou popsány, vyhodnoceny a imple-

mentovány ve výpočetńım prostřed́ı typu MapReduce (pro tento účel je použ́ıván

Apache Spark). Implementované metody jsou testovány na datech o r̊uzné velikosti.

Výsledky těchto test̊u ukazuj́ı, že pomoćı vyvinutého frameworku lze vytvořit velké

modely (např́ıklad model celé Evropy, který obsahuje milióny hran) v řádu deśıtek

hodin.

Kĺıčová slova

Map-Reduce, odhad matice přepravńıch vztah̊u, přidělováńı zátěže na śı̌t, distribuo-

vané výpočetńı prostřed́ı, Apache Spark, intenzity dopravy, paralelńı výpočty

Contents

1 Theoretic background 7

1.1 Basic terms definition . 7

1.1.1 Graph . 7

1.1.2 Transport modeling . 8

1.2 Macro Traffic Volume Model . 8

1.2.1 Trip generation . 9

1.2.2 Trip distribution . 10

1.2.3 Modal split . 10

1.2.4 Traffic assignment . 10

1.3 Time and memory complexity of the problem 11

1.4 Existing software tools limitations . 11

1.5 Map-Reduce parallel computing model 12

1.6 Algorithm for optimization . 13

1.6.1 Frank-Wolfe . 13

2 Problem formulation and State of the Art 15

2.1 Traffic assignment . 15

2.1.1 All-or-nothing method . 16

2.1.2 Wardrop’s method . 16

2.2 Origin-Destination Matrix Estimation 17

2.2.1 Trip Distribution model . 18

2.2.2 Using link count . 19

4

3 Formulation of Implemented methods 22

3.1 Estimation parameters of deterrence function 22

3.2 Calibration method based on Spiess’s approach 23

3.3 Calibration method based on Doblas’s approach 27

4 Implementation 30

4.1 Apache Spark . 30

4.2 Network and graph algorithms . 32

4.2.1 Network optimization . 33

4.3 Framework architecture . 34

4.4 Basic parallelization technique . 36

5 Results 39

5.1 Hardware and datasets for testing . 39

5.2 Trip distribution . 40

5.2.1 Calibration . 41

5.3 Traffic assignment . 43

5.4 Practical example . 43

5.5 Lessons learned . 44

A Contents of attached CD 52

Introduction

In recent years, the traffic volume in road network increases. This puts higher

demands on the traffic management through intelligent systems. One of the tools

for the traffic management is a traffic modeling. A state-of-the-art traffic modeling

approach is based on a 4-step transport model, that consists of four consecutive

independent steps, where each step model one aspect of the transport.

Nowadays these transport models are mostly created by using proprietary soft-

ware tools, that works in single-computer desktop environment. This way of creating

the transport models is limited by the computational speed and memory size. As

the size of the model and computational complexity increases, there is a rise of the

demand for a scalable solution that will utilize the benefits of cloud computing. Such

a solution might open many new possibilities to model large-scale networks.

This thesis aims to solve this problem by converting all the calculations into

the distributed parallel computing environment. This work is especially focused on

Origin-Destination matrix estimation and the traffic assignment.

The parallel algorithms for creating these models are going to be introduced in

the upcoming text. The first chapter is focused on definition of the basic therms

including 4-step transport model. The second chapter contains the problem formula-

tion and introduces the methods of solving these problems. The detailed description

of the implemented methods is in third chapter. The fourth chapter is focused on

a implementation of chosen methods by using Apache Spark. The last part of this

thesis contains the performance tests.

6

Chapter 1

Theoretic background

This chapter introduces the basic terminology and model data, that is used in the

area of transport modeling. It focuses its relation to the programing model that is

essential for upcoming chapters.

Furthermore, the memory and time complexity of the problem is described, such

aspects represent a limiting factor for existing solutions.

Algorithms used in the area of transport modeling are further elaborated at the

end of this chapter.

1.1 Basic terms definition

1.1.1 Graph

A graph is defined as a pair of sets

G =< V,A > (1.1)

where V is a set of vertices (nodes) and A is a set of edges (links)

A = {{u, v}|u, v ∈ V, u 6= v} (1.2)

Oriented graph is a directed graph. Edge {u, v} is directed from u to v (can be

crossed only from u to v).

Vertex degree is number of edges that start or end in a vertex. If edge starts and

ends in the same vertex, the degree is increased by two.

7

A path is a sequence of the edges (vertices).

1.1.2 Transport modeling

A zone is a place, which at least one path starts or ends. The zone can be region,

district of the city or block of buildings. The size of the zones depends on details of

the model.

The number of the trips that begin and end in the zone is a main property of

the zone. Real world example of a trip can be a path from home to work by car.

1.2 Macro Traffic Volume Model

The traffic model tries to model the transport in the area of interest. The model is

created by considering detailed knowledge of the area and theoretical assumptions

about human behavior.

One of the most commonly used model is classic 4-step transport models, which

has been used for more than 50 years. Even though some details have changed

recently, the basic principles remain unchanged. The model consist of 4 consequence

steps (sub-models). These steps are:

1) trip generation, which determines the number of the trips incoming/outcoming

from/to the zones,

2) trip distribution, which determines the number of the trips between the zones,

3) modal split, which splits the trips between different modes of transport,

4) traffic assignment, which allocates the trips between the zones to the road

network thereby computes the traffic volume on every link.

Figure 1.1 depicts activity diagram of the transport modeling. Detailed descrip-

tion is elaborated in upcoming sections.

8

Figure 1.1: Classic transport 4-step transport model

1.2.1 Trip generation

The main goal of this step is a determination of the number of the trips that begin

and end in the zones. During the trip modeling, the focus is given to a personal trips.

The number of personal trips is affected by many factors, that are very important

in practical studies. The main factors are:

• income level, car ownership (number of cars), household size and structures

(ages, gender, size),

• value of land, residential density (number of houses per area), accessibility

(hard to determine it),

• roofed space for industrial, commercial and other services,

• number of employees, number of sales, total area of firm.

The first two groups of factors affect the personal trip production. The zone attrac-

tion (income trips) is influenced by the last two groups [dDOW11].

For local model it is usually a simple task to obtain these detailed data, but for

the large area of interest it might became hard (e.g Europe model).

9

1.2.2 Trip distribution

Trip distribution is the most important step. The aim of this step is to estimate

the Origin-Destination Matrix (ODM). The ODM contains the number of the trips

between all zones. One cell of the ODM is called OD pair. There are many different

methods for estimating the ODM. This problem is further discussed in Section 2.2,

3.2 and 3.3.

The basic idea is that the number of the trips indirectly depends on a distance

between two zones (travel time, generalized cost). More people are travelling shorter

distance. As a consequence the cost matrix must be computed at first. Dijkstra’s

algorithm can be used for such a purpose.

The input for this step is the road network (graph) and a set of the zones.

1.2.3 Modal split

Modal split is a process that splits the trips between more modes of transport (e.g

bus, train, personal car, bike). The ODM is split into several matrices according

to the type of transport (e.g public and private transport). If only the private

transport is considered (or any other one type) in the previous steps, modal split

can be skipped.

1.2.4 Traffic assignment

The last step of transport model determines a traffic volume on every link in the

road network. The idea is that the drivers use an optimal path. The traffic volume

on every link in the path is increased by the number of all trips between the source

and the destination zone. There are two basic method of the traffic assignment

[dDOW11]:

• no congestion effects (all-or-nothing),

• with congestion effects (Wardrop’s or Equilibrium).

10

Wardrop’s or Equilibrium assignment reflects the path choice by the actual traf-

fic volume (congestion effect). Equilibrium state is searched in this case [War52],

therefore the algorithms for this problem are iterative.

1.3 Time and memory complexity of the problem

Time and memory complexity are the main properties of the algorithm, so it is

necessary be discussed in details. As stated above, the main problem of the macro

traffic modeling is the process of searching the shortest paths. One of the most

relevant algorithm for the shortest path search is the Dijkstra’s algorithm. The

time complexity of Dijkstra (when a binary heap is used) is [Dij59]:

O(|A|+ |V |log2|V |) (1.3)

where A is set of edges, V is set of vertex (nodes). Fibonacci heap is more effective

but its implementation is more complicated and most graph libraries use the binary

heap [FT87].

The task of the traffic model is to find the shortest path for all zone pairs. It is

|Z|2 − |Z| paths. One Dijkstra’s search find |Z| − 1 paths (shortest path tree). So

the final complexity is:

O(|Z|(|A|+ |V |log2|V |)) (1.4)

where Z is a set of the zones.

The number of the trips must be stored for every zone pair. This is |Z|2 − |Z|

values. This implies, that memory demand increases quadratically with number of

the zones. However, it is not necessary to consider all OD pairs in the large models,

because the influence of two villages, which are very distant, is insignificant.

1.4 Existing software tools limitations

The most popular traffic modeling software for macro scale are OmniTRANS, Cube,

Visum, Emme, MATSIM. All these solutions are based on the desktop environment

(Cube has cloud version). In this thesis, the term ”desktop” means a personal

computer with 8GB RAM and with one processor.

11

Name Company note

OmniTRANS DAT.Mobility

Cube Citilabs exists cloud solution

Emme INRO

Visum PTV GROUP

MATSIM open source

Table 1.1: Tradition modeling software

The main motivation for this thesis was a discussion with transport modeling

experts from a few reputable companies. The size of the model is often mentioned

as one of the main problem, that limits the efficient use of assembled models and

impossibility to create the large models. The model is composed from the road

network (graph), zones and count profiles (reference values of traffic volume). Ac-

cording to the findings from the previous section, the main limitation is the size of

the network and the number of zones.

For example, the shortest path searching for Czech Republic model, where the

set of zones has 7000 items (every village and city district) and the road network has

3 mil. edges (including all relevant roads), takes more than 4 hours (one Dijkstra’s

search takes 2 s) and more than 196 MB for storing OD Matrix (one cell in ODM

takes 4 bytes (double)). This model can be easily computed by a commodity desktop

computer. However, more accurate model with 22 000 zones (real model created

by reputable company) can not be calculated by conventional modeling software,

because exceeds the memory limits and processor performance.

One of the relevant approach to deal with this limitations is the usage of the

distributed computing environment for large models.

1.5 Map-Reduce parallel computing model

Map-reduce is a high level programming model for processing a large set of data. The

model was published in 2008 by [DG08]. There are many cluster-based computing

systems that implements such the model (e.g Apache Hadoop, Apache Spark, Google

12

File System (GFS)). Nowadays, the Map-reduce might be considered as one of the

most popular programming model for processing big data.

Map-reduce is based on two basic operations: Map and Reduce. The map and

the reduce functions are running with a set of data in a parallel across the whole

cluster.

The map operation is a transformation function, that transforms every item in

the set of data. Usually (not always) the size of an input dataset is the same as the

size of an output dataset. For example, the transportation function splits every line

(input item) from a text file to words and counts them. So the output will contain

integers (number of words in line).

Reduce operation combines the items in the dataset and reduces their number

according to a combiner function. For example, when the combiner function ”plus”

(a+ b) will be applied to the output dataset from the previous paragraph, the result

will be the number of the word in the whole text.

In general, the input of the map function is a pair (key, value) and the output

is a list of transformed (key, value) (cardinality is 1 - N). The input of the reduce

function is a key and a list of values (usually 2 item) and the output is the key and

one value computed from the list of the input values (cardinality is N - 1).

operation input output

map (k1, v1) → list(k2, v2)

reduce (k2, list(v2)) → (k2, v2)

1.6 Algorithm for optimization

In this Section well-known algorithms focused on the optimization are going to be

described.

1.6.1 Frank-Wolfe

Frank-Wolfe algorithm (FWA) is the first-order minimization algorithm for a con-

strained convex problem. FWA solves minimization problem:

min
x
f(x) subject to x ∈ D (1.5)

13

where f(x) is a convex and continuously differentiable. D is a compact optimization

domain. The pseudocode is depicted in Algorithm 1.1.

Algorithm 1.1 Frank-Wolfe algorithm [FW56]

1: Let x0 ∈ D

2: for k = 0, 1 . . . K do

3: sk ← arg mins∈D s
T∇f(x0)

4: λ← 2
k+2

or λ← arg minλ∈[0,1] f(xk + λ(sk − xk))

5: xk+1 ← xk + λ(sk − xk)

6: end for

x0

s0,2

x1

x2

s1,3

x4

D

Figure 1.2: 4 iteration of Frank-Wolfe algorithm

In the line number 1 the starting point (initial solution) is chosen. A search

direction is calculated in line 3. λ is a step of the algorithm in the search direction

(line 4). There are two methods for determining λ. The first method, which was

published in the original article [FW56], is considered to be easier for use. The

second method provides better results, but the implementation is considered as the

harder one.

In Figure 1.2 there is a graphical visualization. The algorithm has a bad con-

vergence rate near the optimal solution. There are a lot of methods for solving this

problem (e.g PARTAN FWA).

14

Chapter 2

Problem formulation and State of

the Art

Mathematical formulation of the problems and existing solutions are going to be

described in this chapter.

The first Section contains the problem formulation of two basic traffic assignment

methods (all-or-nothing and Wardrop’s equilibrium) and existing approaches for

solving problems, that relate to these methods.

Problem formulation and existing methods for the matrix estimation are de-

scribed in the second section of this chapter.

2.1 Traffic assignment

Traffic assignment is a process which assigns the traffic volume for every road link

in the network. The input is the ODM and the output is the number of vehicles

that crosses the link.

The upcoming text describes the two methods of assignment (all-or-nothing and

equilibrium). In this thesis we focus on the implementation of the approach with

no congestion effects. The reason is that the congestion effect is insignificant for a

large area of the interest (a main road and first-third class road between the cities),

that we focus on.

15

2.1.1 All-or-nothing method

This method ignores the congestion effect, which means that every link in the net-

work has a fixed travel cost. Mathematical model for the traffic volume (va) at link

a ∈ A is

va =
∑
i

∑
j

Tijδ
a
ij (2.1)

where T is the ODM and δaij is defined as:

δaij =

1 if path from i to j crosses edge a

0 else

(2.2)

The function δaij is determined by using a general algorithm for the shortest path

search (e.g Dijkstra, Floyd–Warshall). This method is sensitive to the path choice,

so it is necessarily to choose carefully the weight of the edges in the network. The

cost of the edge is a linear combination of the length and usual travel time usually

(called generalized cost).

This method is suitable for the uncongested networks (macroscopic networks).

2.1.2 Wardrop’s method

Wardrop’s assignment method reflects the congestion effect. The travel cost is con-

sidered as a function of the traffic volume. This dependence is expressed as a Cost-

flow curves (Ca).

Ca = Ca(va) (2.3)

Most commonly, the function is determined by using a road capacity (vehicles per

hour).

The equilibrium state is searched. It means that all used paths (r) from source to

destination zone have the same (minimal) travel cost and unused paths have higher

costs [War52].

The mathematical programming approach can be written as [BMW56]:

min
Tijr

∑
a∈A

∫ va

0

Ca(υ)dυ (2.4)

16

subject to ∑
r

Tijr = Tij (2.5)

Tijr ≥ 0 (2.6)

where Tijr is the number of the trips from i to j by path r.

There are several methods for solving this problem. The existing approaches are

[dDOW11]:

• The Frank–Wolfe Algorithm - it was the first algorithm for solving this prob-

lem, but is considered as being too slow.

• Route Based Assignment - this algorithm is faster than FWA, but it needs a

lot of memory [JTPR94].

• Origin Based Assignment - the latest relevant method which has an excellent

convergence performance [BG02].

2.2 Origin-Destination Matrix Estimation

Origin-Destination matrix estimation is the most important step out of the four-step

classic model. The ODM estimation has the main influence on the accuracy of the

resulting traffic volume.

There are three basic methods of the ODM estimation [DB05]:

1) accuracy transport data survey (license plate, roadside),

2) using trip distribution model (e.g Gravity, Gravity-Opportunity),

3) calibration of existing ODM the using traffic volume counts.

The first method is the most accurate, but it is expensive and impracticable for the

large area of interest.

The second method uses a trip distribution model (deterrence function). Detailed

socio-economic data and information about local habits (e.g how far people travel

to work) for the area of interest are needed for this second method (more in section

1.2.1).

17

The last method calibrates existing ODM (a target ODM) only. The target

ODM can be determined using the trip distribution model. For such a purpose, less

accurate statistical data are usually sufficient as its impact on the final model is

insignificant (e.g only number of people in the zone).

In this chapter a following notation will be used:

T Origin-Destination matrix,

Tij trips between zone i and j,

Oi number of trips started in zone i,

Dj number of trips ends in zone j,

Z set of zones.

In some cases it is easier to write equations in a vector form (bold characters are

further used to represent a vector). For example, the ODM as matrix and as a

vector are

T =

 0 10

10 0

 T =

0

10

10

0

 (2.7)

2.2.1 Trip Distribution model

Trip distribution model determines the number of the trips between zone i and j.

The number of the trips is

Tij = OiDjAiBjfij (2.8)

subject to ∑
j

Tij = Oi (2.9)

∑
i

Tij = Dj (2.10)

Ai and Bj are balancing factors. These factors can be determined according to the

Equation 2.10 and 2.9. Most commonly, iterative proportional fitting are used for

this purpose.

Oi represents the number of trips starts in zone i and Dj represents the number

of trips ends in zone j (or attractive of zone).

18

f is a generalized function of the travel costs (deterrence function). There are

a lot of versions of this function available in the literature. For example from

[dDOW11]:

classic f(cij) = c−2ij

power function f(cij) = cαij

exponential f(cij) = e−βcij

combined function f(cij) = cαije
−βcij

In practice, these parameters are usually determined empirically by a domain

expert or using an accurate research in the area of interest. This method features

high complexity and its application is usually highly time-expensive.

The second approach published by [TW89] uses traffic count in the road network.

The relationship between model traffic and the zones by [TW89] can be expressed

as follows:

va =
∑
p

∑
i

∑
j

Op
iD

p
jA

p
iB

p
j f

p
ijδ

a
ij (2.11)

where va represents the model traffic on link a ∈ A, p is a trip purpose (e.g shopping,

sports, hobbies) and δaij is defined as:

δaij =

1 if path from i to j crosses edge a

0 else

(2.12)

There is one set of parameters for every trip purpose, so for 2 parameters per function

there are 2p unknown parameters. Tamin and Willumsen used non-linear-least-

squares, weighted-non-linear-least-squares and maximum likelihood for determining

the parameters of the deterrence function. Newton’s method was used for solving

the optimization problem.

2.2.2 Using link count

This method calibrates existing ODM using the traffic counts. The traffic counts

are measured values on suitable links in the road network. Input is the target ODM

and output is the calibrated ODM.

19

The problem can be formulated as optimization of an objective function [LP08]:

F (v, T) = γ1F1(T, T̂) + γ2F2(v, v̂) (2.13)

subject to

Tij, va ≥ 0 (2.14)

v = assign(T) (2.15)

where F1 and F2 is distance measures, v̂ is vector of the traffic counts, T̂ is the target

ODM. assign(T) is the assignment function (one of method from chapter 2.1).

There are a lot of methods for solving this problem available in the literature.

These methods can be split to 3 categories [Abr98], [BR11]:

• Information Minimization (IM) and Entropy Maximization (EM),

• Statistical approach

– Maximum likelihood,

– Generalized least squares,

– Bayesian Inference,

• Gradient based solution.

IM and EM are based on a statistical principle of maximum entropy (information

entropy). The entropy function can be explicitly written as:

I =
∑
ij

Tijlog

(
Tij

T̂ij

)
(2.16)

The function (I) corresponds with F1 in Equation 2.13 (more in [VZW80], [vZB82]).

Maximum likelihood approach maximizes likelihood of observing ODM and the

traffic counts. The likelihood can be written as:

L(T̂ , v̂|T) = L(T̂ |T) L(v̂|T) (2.17)

where L is the likelihood. This equation can be rewritten according to 2.13 as

log(L(T̂ , v̂|T)) = log(L(T̂ |T)) + log(L(v̂|T)) (2.18)

20

The functions F1 and F2 can be defined by using a Poisson probability distribution

as [Spi87]

F1 = lnL(T̂ , v̂|T) =
∑
ij

(−αiTij + T̂ijln(αiTij)) (2.19)

F2 = lnL(v̂|v(T)) =
∑
a∈Â

(v̂aln(va(T))− va(T)) (2.20)

where

αi =

∑
j T̂ij∑
j Tij

(2.21)

The objective function F should be maximized by the appropriate algorithm.

The Generalized least squares is a technique similar to classic linear least squares

(e.g regression). The problem can be formulated (in vector form) as [Cas84]:

arg min
T

(T̂−T)′Y−1(T̂−T) + (v̂ − v(T))′W−1(v̂ − v(T)) (2.22)

where T is the ODM as a vector, Y and W are covariance matrices and v,v̂ are the

traffic volumes as vectors. This method is not suitable for large models, because the

matrix inversion about size |Z|2 takes a lot of time.

The Bayesian Inference approach is based on Bayes theorem which provides a

method for combining two source of information [Abr98], [BR11]. More information

are mentioned by [Mah83] and [DF94].

The Gradient based solution (Bi-level programing approach) is the most general

optimization approach, which is suitable for the large networks. The target ODM

is adjusted in each iteration using suitable numerical method. A starting point for

numerical minimization is the target ODM. Solution (ODM) should converge to

local minimum. The minimization problem is formulated as [LP08]:

min
Tij≥0

F (T) = γ1F1(T, T̂) + γ2F2(v(T), v̂) (2.23)

Gradient-based descent algorithm is used usually for this minimization. Lund-

gren and Peterson deeply elaborate this problem in [LP08]. Solutions based on

articles [Spi90], [DB05] are going to be described in Sections 3.2 and 3.3.

21

Chapter 3

Formulation of Implemented

methods

This chapter presents a mathematical formulation of implemented methods for the

ODM estimation and an adjustment of the existing solution for the distributed

parallel environment. Furthermore, the focus was given on usage of better methods

of numerical minimization.

3.1 Estimation parameters of deterrence function

This section describes the method of determining the deterrence function parame-

ters. The proposed method is derived from [TW89] with some adjustments.

Used simplified approach has only one trip purpose (p = 1). Therefore, the

fundamental equation can be written as

va =
∑
i

∑
j

kOiDjAiBjfijδ
a
ij (3.1)

where

f(cij) = cαije
−βcij (3.2)

the factors Ai and Bj were determined form Equations

Oi =
∑
j

OiDjAiBjfij (3.3)

22

Dj =
∑
i

OiDjAiBjfij (3.4)

The balancing factors (Ai and Bj) were determined by using the iteration algo-

rithm. The first approximation of the ODM is computed using Ai = Bj = 1. After

that, coefficients Ai are determined by using 3.3 and every matrix row is multiplied

by these coefficients. Thereafter, values Bj can be determined by using 3.4. The

last two steps are repeated until the error is small enough.

In Equation 3.1 there are 3 unknown parameters (α, β, k). These parameters

must be optimized. The least square method was used for this purpose. The problem

can be written as:

min
α,β,k

∑
a∈Â

(va − v̂a)2 (3.5)

where v̂a is the reference traffic volume (counts) in edge a ∈ Â. A regular simplex

minimization method was used for solving the problem, because the derivation Ai

and Bj by α and β is complicated and the simplex minimization is a method of the

first order so does not need the derivation.

The efficiency of all numerical methods are given by initial point choice. There-

fore, the initial solution must be determined appropriately.

The initialization value of the parameter k is estimated by using the least square

method 3.5 in used approach, because the explicit equation can be expressed un-

like the parameters α and β that are constant in this case (minimization in one

dimension). The parameter k can be expressed as:

k =

∑
a v̂av

′
a∑

a v
′2
a

(3.6)

where v′a is the derivation by k:

dva
dk

= v′a =
∑
i

∑
j

OiDjAiBjfijδ
a
ij (3.7)

3.2 Calibration method based on Spiess’s approach

A method by Spiess calibrates (estimates) the ODM by using the steepest descent.

Spiess supposes that the assignment is the Wardrop’s equilibrium assignment. In

this case the drivers use k paths with equal travel cost between pair of zones. The

23

all-or-nothing assignment method is used for our purpose. Therefore, the mathe-

matical model had to be modified. This modified model is described in the following

paragraphs.

The objective function can be written as [Spi90]:

F (T) =
1

2

∑
a∈Â

(va − v̂a)2 (3.8)

where Â ⊂ A. The subset Â contains the links, which have got the reference value

of the traffic volume (links with traffic counts). According to Equation 2.13, the

parameter γ1 is 0 and γ2 is 1.

A method of the steepest descent is one of the classic method for minimization.

The algorithm can be written as:

xn+1 = xn − λn∇F (xn) (3.9)

where −∇F (xn) is a direction of the biggest descent and the linear coefficient λn

is a step for n-th iteration. The coefficient λn is chosen as a sufficiently small

value (classic steepest descent) or is determined by using minimization in the search

direction (steepest descent with long step). Spiess used the second method (with

long step) in his work. One iteration of the optimization algorithm is composed of

three steps, which are:

1) determining the search direction,

2) searching minimum of the objective function in the search direction (line

search),

3) updating the target ODM.

In the upcoming text gradient of the objective function F (T) are going to be used

in many equations. So the gradient is:

∂F (T)

∂Tij
=
∑
a∈Â

δaij(va − v̂a) (3.10)

The modeled values of the traffic volume va are calculated according to Equation

2.1. That implies that the derivation by Tij is a sum of a difference between the

24

observed and the modeled traffic volume on the path between the pair of zones (from

i to j). It follows that if there is no count profile on the path, the derivation is 0.

Therefore OD pairs without the reference value are not calibrated. It is the main

disadvantage of the approach by [Spi90]. This problem can be eliminated by using

the appropriate distribution of the count profiles in the network.

x
0

x

Figure 3.1: Steepest descent with long step (green line) and Conjugate gradient

method (red line) [Wik17]

There are a lot of methods for determining the search direction available in

literature. The main measure of a performance is a convergence rate (speed).

Search direction as a negative value of the gradient

The simplest approach computes the search direction as a negative value of the

gradient (−∇F (T)). In this case the convergence rate is poor, because the zig-zag

effect occurs. This effect is significant in a narrow valley (Figure 3.1). The search

direction as a negative value of the gradient was used by [Spi90].

Search direction using Conjugate gradient method

The Conjugate gradient method provides a better approach for determining the

search direction. This technique was developed for solving of a big system of a

linear equations. In Figure 3.1 there is a comparison of the conjugate gradient

25

with the method of the steepest descent. The example is in two-dimensional space.

The method of the steepest descent (green line) converges to the minimum and the

conjugate gradient method finds the exact minimum after 2 steps.

It can be proved that the method reaches the exact minimum of a quadratic

problem after n steps, where n is a space dimension. The search direction can be

written by using the conjugate gradient method as:

dk = gk + βkdk−1 (3.11)

where dk is the search direction and gk = ∇F (Tk). The linear coefficient βk can be

determined using several techniques. For example, Fletcher–Reeves [FR64]:

βk =
gTk gk

gTk−1gk−1
(3.12)

or Polak–Ribière [PR69]:

βk =
(gk − gk−1)

Tgk
gTk−1gk−1

(3.13)

method can be used.

The Conjugate gradient method depends on the vectors gk−1 and dk−1, therefore

requires more memory then the method of the steepest descent.

Now the target ODM can be updated using the search direction as [Spi90]

T k+1
ij = T kij

(
1− λkdkij

)
(3.14)

where λk is determined using a minimization of the subproblem, which is defined

as:

min
λ
F (Tk (1− λkdk)) (3.15)

subject to

λkdij ≤ 1 (3.16)

This subproblem has an analytical solution as [Spi90]

λ∗ =

∑
a∈Â v

′
a(v̂a − va)∑
a∈Â v

′
a
2 (3.17)

where

v′a =
dva
dλ

= −
∑
ij

Tijdijδ
a
ij (3.18)

The coefficient λ∗ must be bounded according to Equation 3.16. Details about

implementation in the distributed environment are contained in chapter 4.

26

3.3 Calibration method based on Doblas’s approach

This approach aims to improve the properties of the method according to [Spi90].

This method solves partly the problem with 0 derivation by the OD pairs (Tij)

without the count profiles (more information in section 3.2). It turned out that

this method solves the problem very marginally. However, this approach will be

described, because this method uses more information from the ODM (eg. sum of

all trips) and the optimization process is more under control.

The minimization problem is formulated as [DB05]

min
T
F (T) =

∑
a∈Â

(va − v̂a)2 (3.19)

subject to

lij ≤ Tij ≤ uij (3.20)

lOi ≤
∑
j

Tij ≤ uOi (3.21)

lDj ≤
∑
i

Tij ≤ uDj (3.22)

l ≤
∑
ij

Tij ≤ u (3.23)

The biggest advantage of this algorithm is that the lower and upper bounds for

every OD pair (lij, uij), sum by columns (lOi , uOi) and rows (lDj , uDj) and for total

number of trips in the network (l, u) can be defined.

An Augmented Lagrangian Function (ALF) is used for solving the problem 3.19.

The ALF is optimized by the Frank-Wolfe algorithm (FWA). The conditions 3.21,

3.22, 3.23 are solved using the ALM and condition 3.20 is tackled by the Frank-

Wolfe algorithm. The Lagrangian function can be written according to [RRR06] as

27

[DB05]

min
T
P (T, σ(s), β(s)) =

∑
a∈Â

(va − v̂a)2

+S

∑
i

{〈
uOi −

∑
j

Tij + σ
O(s)
i

〉2

−
(
σ
O(s)
i

)2}
+
∑
i

{〈∑
j

Tij − lOi + β
O(s)
i

〉2

−
(
β
0(s)
i

)2}
+S

∑
j

{〈
uDj −

∑
i

Tij + σ
D(s)
j

〉2

−
(
σ
D(s)
j

)2}
+
∑
j

{〈∑
i

Tij − lDj + β
D(s)
j

〉2

−
(
β
D(s)
j

)2}
+ S

{〈u−∑
ij

Tij + σ(s)

〉2

−
(
σ(s)

)2}
+

{〈∑
ij

Tij − l + β(s)

〉2

−
(
β(s)

)2}
(3.24)

where vector σ is associated with the upper bounds and β with the lower bounds.

Parameter S is a scale factor, which sets an importance of a restriction part of the

Lagrangian function (last 3 rows in Equation 3.24). If the scale factor is too large,

the optimization is very slow and if the factor is too small, the conditions (3.21,

3.22, 3.23) are not respected. This minimization 3.24 represents one subproblem (s)

of the problem 3.19.

Operator 〈.〉 is defined as:

〈x〉 =

x for x < 0

0 for x ≥ 0

(3.25)

After the minimization the parameters of the ALF (σ and β) are updated as:

σ
(s+1)
i =

〈
uOi −

∑
j

T
(s)
ij + σ

0(s)
i

〉
, β

(s+1)
i =

〈∑
j

T
(s)
ij − lOi + β

0(s)
i

〉
σ
(s+1)
j =

〈
uOj −

∑
i

T
(s)
ij + σ

D(s)
j

〉
, β

(s+1)
j =

〈∑
i

T
(s)
ij − lDj + β

D(s)
j

〉
σ(s+1) =

〈
u−

∑
ij

T
(s)
ij + σ(s)

〉
, β(s+1) =

〈∑
ij

T
(s)
ij − l + β(s)

〉
(3.26)

The Lagrangian function P with new parameters, that was determined by using

Equations 3.26, is minimized again. The number of subproblems (iterations) is

dependent on the desired accuracy.

28

A lot of equations by [DB05] were modified, because the all-or-nothing assign-

ment is used in our approach. The modifications are similar as in previous section.

29

Chapter 4

Implementation

This chapter describes an implementation of the methods used or mentioned in the

previous chapter and the data structures for these purposes. This entire solution is

implemented by using the Apache Spark framework, which is going to be introduced

in the upcoming section.

The result is a newly designed library named Spark Traffic Modeler, which ar-

chitecture and interface are going to be define. The source code and documentation

are published on GitHub under an open source license. The project home page can

be found on https://github.com/kolovsky/spark-traffic-modeler.

4.1 Apache Spark

The Apache Spark is a framework for large-scale data processing, which priority is

generality and speed. Spark’s abstraction is a distributed collection of data called

the Resilient Distributed Dataset (RDD), which is stored across all the cluster. The

RDD can be created from other technologies focused on distributed storage as file

systems or databases [Spa].

In the Spark cluster, there are two basic types of nodes. The worker node pro-

cesses tasks and the master node manages workers and splits the work. In each

physical cluster node (computer) there are the workers and data nodes. The pro-

gram can load the data from the data nodes of some distributed file system (e.g

HDFS) or distributed databases (e.g Cassandra, HBase). This architecture mini-

30

https://github.com/kolovsky/spark-traffic-modeler

HDFS

Spark

worker

Node

HDFS

Spark

worker

Node

Master Node

Driver

HDFS

Spark

worker

Node

Figure 4.1: Schema of Apache Spark cluster

mizes the transfer between the cluster nodes because the data are processed in the

same computer as are stored. In Figure 4.1 you can see the schema of the Spark

cluster [Spa].

In Figure 4.2 there is a source code for the example from section 1.5. The code

is written in Scala programming language, which combines the object-oriented pro-

gramming with functional and runs on Java Virtual Machine (JVM). This language

was chosen because Spark itself is written in Scala and Java library can be used.

Spark also supports Java, Python and R.

// load text file form HDFS

val lines = sc.textFile("text.txt")

// computed mumber of word in text file using "_"

val num_of_word = lines.map(_.split().length).reduce(_+_)

// same using "=>"

val num_of_word = lines.map(line => line.split().length).reduce((a,b)

=> a + b)

Figure 4.2: Scala source code for example in section 1.5

31

4.2 Network and graph algorithms

An important part is a model of the road network, therefore a large part of this

work are graph data structures and algorithms which are customised for the use in

the distributed environment.

Each object must be serializable for use in the Apache Spark. Therefore, the

implementation of the road network had to meet this criterion. There are many

Java libraries providing the graph structures and the algorithms but did not meet

the required criteria such as speed or possibility to serialize the model objects.

Therefore, the implementation of the graph structure was written specifically for

our purposes.

Network

NetworkIndex

EdgeNode

EdgeIndex

Link

N N
12

1 1

Figure 4.3: UML digram of Network class

The class Network provides a functionality associated with the paths searching

and other graph algorithms. The graph was implemented as an adjacency list. In

Figure 4.3 you can see UML diagram of this implementation and in Figure 4.4 there

is an example of the graph representation as the adjacency list. The class Graph is

written as an immutable collection because it is not necessary to add any elements

to the graph during the program execution.

Abstract class Network has these basic methods: addEdges, getPaths, getCosts.

The method addEdges creates the graph from a list of the edges. The other two

methods are the search methods that use Dijkstra’s algorithm for searching the

shortest paths and the shortest distances.

32

A

BC

1

2 3A

B

C

3

2

1

array

0

1

2

linked list

Figure 4.4: Example of adjacency list representation

The conversion between the node ID and the index in the nodes array is provided

by method idToNode which uses a classic Hash table.

Both direction road links were represented as two one-directional edges, but the

relationship between these two edges was lost. Therefore, the class Link was added

to the graph structure. Class Link provides the relationship between the edges and

contains information about the travel time, the length and the link ID. In Figure

4.5 there is displayed the relationship between the Edge and Link classes.

Link

Edge Edge BA

A B

in direction edge
opposite direction

edge

Figure 4.5: Relationship between class Edge and Link

4.2.1 Network optimization

In a real road network dataset (e.g from OpenStreetMap) there are a lot of road

classes as highways, sidewalks, local roads, main roads and other, however, some of

them are not relevant to the transport modeling. If only the main roads are selected,

the graph contains a lot of vertices with degree 2 (Figure 4.6).

33

1

1

1

1

3

3 2

2

redundant nodes

new edge

Figure 4.6: Replacement of redundant edges by new aggregate edge

This problem was solved by an algorithm, which replaces the redundant edges

by a new aggregated edge. The algorithm is based on Depth-first search (DFS). Let

E is set of edges, which will be merged in one edge. In each DFS step, the algorithm

detects the degree of the vertex and if the degree is 2, the edges around the vertex

are added to the set E. The cost of the new edge is a sum of all edges in the set

E. After that set E is set to empty. In Algorithm 4.1 there is a pseudocode of this

algorithm.

This procedure reduces the number of the edges and nodes in all network, there-

fore all the other graph algorithms (e.g Dijkstra) are faster.

For example, the Europe road network from OpenStreetMap (with all paths and

predestinations) has about 100 mil. edges. If all the edges from the first to the third

class (including motorway) are selected, the network has about 14 mil. edges and

after the optimization has about 5 mil. edges. The table below shows the exact

number of the edges before and after the optimization.

Europe only first 3 class after optimization

84 398 263 13 978 425 4 946 493

4.3 Framework architecture

The core of the developed framework is a class Model, which provides all methods

for the trip distribution, ODM calibration and for the traffic assignment (excluding

the simplex algorithm). The Model consists of the network and the set of the zones.

In Figure 4.7 you can see the framework UML diagram.

34

Algorithm 4.1 Graph optimization

s← some vertex from V

Let S be a stack

Let set E is empty

Let function P returns previous vertex

S.push(s)

while S in not empty do

n← S.pop()

if n is not found then

n is found

for all neighbors v of n do

S.push(v)

if degree of n is 2 then

if E is empty then

add edge (P (n), n) to E

end if

add edge (n, v) to E

if degree of v is not 2 and E is not empty then

merge all edge ∈ E and new edge add to graph

E is empty

end if

end if

end for

end if

end while

35

Model

ModelConf

ODMatrixEstimator

SimplexEstimatorNetwork

Zone

Figure 4.7: Framework UML diagram

The class SimplexEstimator provides a functionality for the calibration of the

deterrence function using the simplex algorithm (more in Section 3.1). This class is

dependent on the class Model.

The class ModelConf is a kind of settings class, which provides the model con-

stants and other model properties (e.g type of the deterrence function, max search

radius for Dijkstra’s algorithm).

The class Zone represents the real zone in the model and has these properties:

nearest node ID in the network, the number of trips and zone ID. Class Network

was described in Section 4.2.

The detailed description of all methods is in the documentation.

4.4 Basic parallelization technique

This section describes a technique for rewriting a mathematical formulation to the

Map-Reduce programming model, which requires a different programming mindset.

All-or-nothing Map-Reduce traffic assignment algorithm is going to be described.

All other algorithms are based on this technique.

Reduce

Map

Figure 4.8: All-or-nothing math model with highlights Map and Reduce parts

In Figure 4.8 in Section 2.1.1 there is a traffic assignment mathematical model.

Generally aggregate functions (e.g sum, min, max, std) are a Reduce type functions

36

(red color in Fig. 4.8). Expressions in the sum (or other aggregate function) are a

Map type functions (green color).

The function δaij must be computed by using some shortest path search. Dijk-

stra’s algorithm was used in our case.

In Figure 4.9 there is an activity diagram of the traffic volume calculation. The

input is the ODM, which is stored as RDD of the OD pairs (Scala data type Tuple).

The output represents RDD of the traffic volumes.

(source, destination, trips)

.�atMap(f3)

.reduceByKey(f2)(source, Array[(destination, trips)])

.map(f1)

(source, Array[(destination, trips)])

(source, destination, trips, Array[link_id]) .�atMap(f4)

(link_id, trips) .reduceByKey(f5)

(link_id, trips)

OD Matrix

rows of ODM

paths

tra�c volume

Figure 4.9: calculation flow of the all-or-nothing traffic assignment

In line 1 the ODM is transformed to a form which is suitable for the reduce func-

tion. The function f1 transforms the Origin-Destination pair (source, destination,

trips) to a key-value form, where the key represents the source zone and the value

is an array with one item (source, Array[(destination, trips)]).

The aggregation by the source zone using the reduceByKey method is performed

in the next line. The result of this transformation are rows of the ODM (a key is

the source zone and the value is the array of the destination zone with the number

37

// transform to rows form

var traffic_volume = odm.map(od => (od._1,Array((od._2, od._3))))

.reduceByKey(_++_)

// compute shortest path tree

.flatMap(row => n.getPathsTrips(row._1,row._2, m_conf.length_coef,

m_conf.time_coef, Double.PositiveInfinity))

.flatMap(path => path._4.map(link_id => (link_id, path._3)))

.reduceByKey(_+_)

Figure 4.10: Scala source code for all-or-nothing traffic assignment

of trips).

The function f3 at line 3 computes the shortest paths from the source zone to

all destination zones in a parameter array. All rows of the ODM are transformed to

an OD pairs with a path attribute (source, destination, trips, path), where

the path is an array of the link ID.

The function f4 transforms the path from the previous step to key-value pair,

where the key is a link ID and the value is the number of the trips. The last line

sums the traffic volume across all paths by a link ID.

In Figure 4.10 there is entire source code. The source code is written in Scala

programming language (is used the short form for function).

The same idea of programming was used for all other methods that are imple-

mented in developed framework.

38

Chapter 5

Results

This chapter contains the test results of implemented algorithms, that was described

in the previous chapter. The tests were conducted on various sizes of the road

network with a different number of zones from a relatively small model (model of

country region) to a large scale model (model of whole Europe). The real application

of the developed framework is described at the end of this chapter.

5.1 Hardware and datasets for testing

Three datasets were created for testing our framework. In Table 5.1 there are

parameters of these datasets, where the counts represent the values of the reference

traffic volume.

The model of Pilsen is small-sized and was used primarily for the development

because all algorithms take less time to compute this model. The second model

represents the Czech republic. The set of all zones contains every village and all

city district. The road network consists of each road, including all streets. The last

model covers all Europe. It includes all roads from motorways to 3rd class. LAU 2

(Local Administrative Units) according to Europe Union (EU) represent the set of

the zones.

Testing was realized on two types of hardware. The dataset City of Pilsen was

tested on a laptop (Intel(R) Core(TM) i5-4300M CPU @ 2.60GHz, 8GB RAM). The

other two models were calculated on the cluster, which runs in YARN mode and

39

Name number of edges number of zones number of counts

City of Pilsen 12 207 115 60

Czech Republic (CR) 2 596 030 22 492 6 407

Europe 4 946 493 156 812 6 381

Table 5.1: Datasets for testing

has 24 nodes. Every node contains 16 cores (Intel(R) Xeon(R) CPU E5-2630 v3 @

2.40GHz) and has 128 GB RAM. So the program can use 3TB of memory and 384

cores.

5.2 Trip distribution

Two methods for the initial estimation of the ODM were implemented. These meth-

ods are:

• using the model from Section 3.1, where the parameter k is estimated by the

least squares method

• using the same model, where all parameters are estimated by a simplex method

The second approach is not suitable for the large models because its computational

complexity is high. This method was tested only on the City of Pilsen dataset.

The first method, where the parameter k is estimated, showed that the initial ODM

can be computed in an acceptable time. Therefore, this approach was used for the

testing. In Table 5.2 there is an uptime for all models. The uptime includes the

time for data loading too. The ODM size represents the number of the OD pair

(number of cell in the ODM).

In this case, 4 cores and 32 GB of memory per node were used in the cluster (96

cores in total).

40

dataset uptime ODM size note

City of Pilsen < 5 s 10 302 localhost

CR 41 min 421 686 118

Europe 1.6 h 829 051 938 search radius was set to 200 km

Table 5.2: Trip distribution test

5.2.1 Calibration

Two methods for the ODM calibration using traffic count were implemented. These

methods are base on

• Spiess’s approach (more in Section 3.2) and

• Doblas’s approach (more in Section 3.3).

The first method based on Spiess’s approach can be divided according to used

algorithm for the numerical minimization of the objective function F . These algo-

rithms are:

• the steepest descent with long step,

• conjugate gradient method by Fletcher–Reeves,

• conjugate gradient method by Polak–Ribière.

The tests showed that the second method by Doblas is not suitable for the large

models because the convergence rate is not satisfactory and the algorithm needs

a lot of parameters, that must be set very precisely (e.g the scale parameter S).

Therefore, this method was not used for the final performance testing.

The convergence test was performed for the three algorithms, that were used for

the minimization of the function F (T) in the method by Spiess. This test runs on

the laptop, which is described in the text above. The City of Pilsen dataset was

used. All three algorithms take approximately the same time. The steepest descent

takes 14 s. Fletcher–Reeves and Polak–Ribière takes 15 s. In Figure 5.1 there is the

convergence rate for all these minimization algorithms.

41

0 5 10 15 20 25 30 35

0

100

200

300

400

500

600

steepest descent

Polak–Ribière

Fletcher–Reeves

iInunumber of iterations

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 [

v
e

h
ic

le
s
 p

e
r

h
o

u
r]

Figure 5.1: convergence rate for the implemented minimization algorithms

The Polak–Ribière method gives the best result as expected. Therefore, this

approach was used for the calibration of the ODM for the Europe model.

Furthermore, the application uptime was measured depending on the number of

computing nodes. In this case, only one iteration of the Polak–Ribière method was

performed on the Czech republic model. It follows that all shortest paths between

the zones are computed. Further, one step of the conjugate gradient method is

performed.

This test was performed on the cluster, where 24, 18, 12, 6 and 3 nodes (workers)

were used (96, 72, 48, 24 and 12 cores). In Figure 5.2 there is speed-up and the

application uptime, that are dependent on the number of the computing nodes used

in the cluster. The application uptime includes a time for data loading. The input

matrix is stored across 24 nodes. Therefore, if the application uses less nodes, the

parts of the matrix that are stored in the unused nodes, must be moved to the active

nodes.

dataset uptime ODM size iteration note

City of Pilsen < 15 s 10 302 30 localhost using 1 core

CR 6 h 421 686 118 20

Europe 31.1 h 829 051 938 30 search radius was set 200 km

Table 5.3: Application uptime of the ODM calibration

42

0 5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

number of workers

s
p
e
e
d
-u

p

workers cores uptime [h]

3 12 6.95

6 24 3.26

12 48 2.27

18 72 1.11

24 96 0.94

Figure 5.2: Application uptime dependent on the number of computing nodes

In Figure 5.3 there is application uptime of the ODM calibration for all datasets.

The conjugate gradient method together with Polak–Ribière method for determining

the search direction were used for these tests. In this case, 4 cores and 32 GB of

memory per node were used in the cluster.

5.3 Traffic assignment

The last test that was conducted, is the all-or-nothing traffic assignment which was

described in detail in Section 4.4. The whole source code in Scala of this method is

presented in Figure 4.10. This test was performed on the same cluster configuration

as in the previous section (96 cores).

dataset uptime ODM size note

City of Pilsen < 2.5 s 10 302 localhost using 1 core

CR 1.3 h 421 686 118

Europe 2.3 h 829 051 938 search radius was set to 200 km

Table 5.4: Application uptime of all-or-nothing traffic assignment

5.4 Practical example

The developed framework (Spark traffic modeler) was used for the creation of the

European transport model. The transport model includes all motorways and 1-3

43

classes of roads. LAU 2 (Local Administrative Units level 2) were used as the zones.

Areas (LAU2), which were too large, were split to the more zones (e.g big cities).

More about the process of developing a set of the zones can be found in (more in

[JHJ+17]).

Values of the traffic volume for the mentioned roads were calculated by using

this model. The initial ODM was estimated by using the method, which estimates

the parameter k of the deterrence function using the least square method (more in

Section 3.1). The standard deviation of the initial ODM was around 15 000 vehicles

per day. The conjugate gradient method was used for the calibration, where the

search direction was determined by using the Polak-Ribiere method. This method

reduced the standard deviation to 3300 vehicles per day after 30 iterations. The

all-or-nothing method was used for the traffic assignment.

The cluster configuration was the same as with the last test (24 x 4 cores). The

entire calculation took about 35 hours. The calculated traffic volumes have been

added to OpenTransportMap (http://opentransportmap.info/), which originated

in the European project OpenTransportNet (http://opentnet.eu/) (more in [JHJ+]).

OpenTransportMap is open dataset for the transport application, which is compat-

ible to INSPIRE Transport Network.

In Figure 5.3a there is a visualization of the zones, where the dot size is based on

the number of the trips in the zone. The second Figure 5.3b depicts the visualization

of the values of the traffic volumes. Green color means small values and red color

represents big values of the traffic volumes.

5.5 Lessons learned

Apache Spark is a young computer system compared to relational databases. There-

fore, this section has been included to the thesis.

During the implementation, we came across the problems, that can be split into

memory and cache problems.

Spark starts to compute after the last command in a job (spark is ”lazy”).

It means, that any sub-result does not physically exist. In example from previous

44

http://opentransportmap.info/
http://opentnet.eu/

(a
)

Z
o
n

es
(b

)
T

ra
ffi

c
v
ol

u
m

es

F
ig

u
re

5.
3:

E
u
ro

p
e

tr
an

sp
or

t
m

o
d
el

45

lines

loads �le

.map

.reduce

.count

lines

loads �le

.map

.reduce

.count

lines

loads �le

number of

words
number of

words

number of

lines
number of

lines

a) b)

Figure 5.4: a) with lines.persist() b) without lines.persist()

section (Figure 4.2) there is only one job. Last value (num of word) exists in memory

only. If the variable lines is used in other job (e.g we want to compute a number

of the lines lines.count()), Spark performs again all previous calculations (in this

case loads data from the disk). Finally Spark loads all data from the disk twice. It

follows that Spark remembers the calculation procedure.

These properties are not suitable for the iteration algorithms because the calcu-

lation history is very long and without caching all previous results are calculated

in every iteration. In Figure 5.4 you can see the calculation procedure with and

without caching.

For caching there is a method of the RDD named persist(). The argument of

the function is a storage level. The possible storage levels are:

level storage

DISK ONLY only to disk

MEMORY AND DISK memory and disk

MEMORY AND DISK SER serialized

MEMORY ONLY only in memory

MEMORY ONLY SER serialized

It is necessary to call the persist method after every iteration. Furthermore, it is

suitable to call method checkpoint or localCheckpoint, because the calculation

history is forgotten using these methods. Then the developer has certainty that

Spark uses the data from the cache and does not compute all previous results again

because Spark forgot the history.

46

Conclusion

The aim of this work is to convert, test and evaluate the traffic volume calculation

into the distributed parallel computing environment.

The review of the relevant literature about the Origin-Destination matrix estima-

tion and the traffic assignment was performed. Furthermore, the existing solutions

for the traffic modeling have been explored.

Our solution was designed by using the most suitable methods, which are con-

tained in the state-of-the-art. The designed solution was implemented by using a

framework for distributed computing Apache Spark.

The tests and benchmarking showed that the best method for ODM estimation

using the traffic count for the large models is the method by [Spi90], where the

conjugate gradient method, where the search direction is determined by using the

Polak-Ribiere method, is used. The all-or-nothing method of the traffic assignment

was implemented only, because it is enough for uncontested networks, which was

used in the models.

The solution can create larger models then the standard softwares for the traffic

modeling based on desktop environment and is scalable. This property was used to

create the model of the whole Europe. The model contains approximately 150 000

zones and the road network has 5 000 000 links. This model was used to calculate

the traffic volume for an open dataset OpenTransportMap (OTM), which is a part

of the project OpenTransportNet (OTN).

In future, the algorithm for Wardrop’s equilibrium traffic assignment needs to

be implemented. This is a prerequisite for creating a service for the real-time traffic

assignment for the large city models.

47

Bibliography

[Abr98] Torgil Abrahamsson. Estimation of origin-destination matrices using

traffic counts-a literature survey. 1998.

[BG02] Hillel Bar-Gera. Origin-based algorithm for the traffic assignment prob-

lem. Transportation Science, 36(4):398–417, 2002.

[BMW56] Martin Beckmann, CB McGuire, and Christopher B Winsten. Studies

in the economics of transportation. Technical report, 1956.

[BR11] Sharminda Bera and KV Rao. Estimation of origin-destination matrix

from traffic counts: the state of the art. 2011.

[Cas84] Ennio Cascetta. Estimation of trip matrices from traffic counts and sur-

vey data: a generalized least squares estimator. Transportation Research

Part B: Methodological, 18(4-5):289–299, 1984.

[DB05] Javier Doblas and Francisco G Benitez. An approach to estimating and

updating origin–destination matrices based upon traffic counts preserv-

ing the prior structure of a survey matrix. Transportation Research Part

B: Methodological, 39(7):565–591, 2005.

[dDOW11] Juan de Dios Ortuzar and Luis G. Willumsen. Modelling Transport.

John Wiley & Sons, Ltd, 2011. ISBN 978-0-470-76039-0.

[DF94] Soumya S Dey and Jon D Fricker. Bayesian updating of trip gener-

ation data: combining national trip generation rates with local data.

Transportation, 21(4):393–403, 1994.

48

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-

cessing on large clusters. Communications of the ACM, 51(1):107–113,

2008.

[Dij59] Edsger W Dijkstra. A note on two problems in connexion with graphs.

Numerische mathematik, 1(1):269–271, 1959.

[FR64] Reeves Fletcher and Colin M Reeves. Function minimization by conju-

gate gradients. The computer journal, 7(2):149–154, 1964.

[FT87] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their

uses in improved network optimization algorithms. Journal of the ACM

(JACM), 34(3):596–615, 1987.

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic pro-

gramming. Naval research logistics quarterly, 3(1-2):95–110, 1956.

[JHJ+] Karel Jedlička, Pavel Hájek, Jan Ježek, Frantǐsek Kolovský, Tomáš Mil-

dorf, Karel Charvát, Dmitrii Kozhukh, Jan Martolos, Jan Šťastný, and

Daniel Beran. Open transport map: open, harmonized dataset or road

network.

[JHJ+17] Karel Jedlička, Pavel Hájek, Jan Ježek, Frantǐsek Kolovský, Daniel Be-

ran, Tomáš Mildorf, Karel Charvát, Dimitri Kozhukh, Jan Martolos,

and Jan Šťastný. Otevřená dopravńı mapa pro evropu. GIS Ostrava,

2017.

[JTPR94] R Jayakrishnan, Wei T Tsai, Joseph N Prashker, and Subodh Rajad-

hyaksha. A faster path-based algorithm for traffic assignment. University

of California Transportation Center, 1994.

[LP08] Jan T Lundgren and Anders Peterson. A heuristic for the bilevel origin–

destination-matrix estimation problem. Transportation Research Part B:

Methodological, 42(4):339–354, 2008.

49

[Mah83] MJ Maher. Inferences on trip matrices from observations on link vol-

umes: a bayesian statistical approach. Transportation Research Part B:

Methodological, 17(6):435–447, 1983.

[PR69] Elijah Polak and Gerard Ribiere. Note sur la convergence de méthodes

de directions conjuguées. Revue française d’informatique et de recherche

opérationnelle, série rouge, 3(1):35–43, 1969.

[RRR06] A Ravindran, Gintaras Victor Reklaitis, and Kenneth Martin Ragsdell.

Engineering optimization: methods and applications. John Wiley &

Sons, 2006.

[Spa] Apache spark dokumentation.

[Spi87] Heinz Spiess. A maximum likelihood model for estimating origin-

destination matrices. Transportation Research Part B: Methodological,

21(5):395–412, 1987.

[Spi90] Heinz Spiess. A gradient approach for the od matrix adjustment prob-

lem. 1:2, 1990.

[TW89] O. Z. Tamin and L. G. Willumsen. Transport demand model estimation

from traffic counts. Transportation, 16(1):3–26, 1989.

[vZB82] Henk J van Zuylen and David M Branston. Consistent link flow esti-

mation from counts. Transportation Research Part B: Methodological,

16(6):473–476, 1982.

[VZW80] Henk J Van Zuylen and Luis G Willumsen. The most likely trip matrix

estimated from traffic counts. Transportation Research Part B: Method-

ological, 14(3):281–293, 1980.

[War52] John Glen Wardrop. Road paper. some theoretical aspects of road traffic

research. Proceedings of the institution of civil engineers, 1(3):325–362,

1952.

50

[Wik17] Wikipedia. Conjugate gradient method — wikipedia, the free encyclo-

pedia, 2017. [Online; accessed 9-May-2017].

51

Appendix A

Contents of attached CD

• MT Kolovsky.pdf - master thesis

• src/main/scala/com/kolovsky/traffic modeler - source code folder

– Cell.scala

– Edge.scala

– EdgeIndex.scala

– Lagrange.scala

– Link.scala

– MinOrderNodeStatic.scala

– Model.scala

– ModelConf.scala

– Network.scala

– NetworkIndex.scala

– Node.scala

– ODMatrixEstimator.scala

– ODPair.scala

– SimplexEstimator.scala

– Zone.scala

• readme.txt - readme file with a demonstration of use

• build.sbt - SBT file

52

	Theoretic background
	Basic terms definition
	Graph
	Transport modeling

	Macro Traffic Volume Model
	Trip generation
	Trip distribution
	Modal split
	Traffic assignment

	Time and memory complexity of the problem
	Existing software tools limitations
	Map-Reduce parallel computing model
	Algorithm for optimization
	Frank-Wolfe

	Problem formulation and State of the Art
	Traffic assignment
	All-or-nothing method
	Wardrop's method

	Origin-Destination Matrix Estimation
	Trip Distribution model
	Using link count

	Formulation of Implemented methods
	Estimation parameters of deterrence function
	Calibration method based on Spiess's approach
	Calibration method based on Doblas's approach

	Implementation
	Apache Spark
	Network and graph algorithms
	Network optimization

	Framework architecture
	Basic parallelization technique

	Results
	Hardware and datasets for testing
	Trip distribution
	Calibration

	Traffic assignment
	Practical example
	Lessons learned

	Contents of attached CD

