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Abstract
This thesis deals with the development of model predictive control of ac electric drives with

long prediction horizons and yet with computational cost of the algorithm comparable to con-

ventional cascade control approaches. The basic idea is to approximate the cost to go of dynamic

programming on long prediction horizon. For specific cases (linear model and quadratic cost

function) the optimization of the control problem can be solved analytically which leads to a dra-

matic computational cost reduction. However the analytical solution does not consider the hard

state and input constraints. Therefore proposed control algorithm combines unconstrained solu-

tion with constraint manager. Resulting algorithm is very simple and computationally compara-

ble to conventional control schemes, nonetheless it still preserves excellent control performance

of MPC solved on long prediction horizon. Proposed control technique has been implemented

in DSP and tested in three practical examples of drive control on laboratory prototype of PMSM

drive of rated power 10.7 kW.

The first case is described in chapter four and it is focused on cascade free speed control

of PMSM using PWM. In this case, we aim to achieve comparable performance to existing

PWM-based solutions of cascade free control at much lower computational cost.

The second case is focused on speed control of PMSM using finite number of admissible

control inputs. Existing one step FCS-MPC suffer from high distortion of the stator current. In

this case we aim to enhance the current control performance at computational cost comparable

to one-step ahead solution of FCS-MPC.

The third Example is focused on designing MPC for control of the traction PMSM drive

with input LC filter fed from dc catenary. The control problem is divided in two parts.i) stability

of the input LC filter and ii) dynamics of the PMSM drive. Both parts are elegantly combined

in the cost function of a simple one step FCS-MPC. The term respecting the input LC filter is

designed analytically taking into account long prediction horizons.



Anotace
Tato práce se zabývá vývojem prediktivního řízení střídavých elektrických pohonů s uvažováním

dlouhého predikčního horizontu a výpočetními nároky, které jsou srovnatelné s konvenčně

používanými metodami řízení. Základní myšlenka navrhovaného řízení vychází z aproximace

cost to go funkce Dynamického programování pro dlouhý predikční horizont. Pro speciální pří-

pady (tj. lineární matematický model a kvadratická ztrátová funkce) je možné problém řízení

vyřešit analyticky což vede na dramatické snížení výpočetních nároků. Problém je však do-

držet tvrdá omezení. Navržená technika řízení využívá aproximaci dlouhého horizontu v jed-

nokrokovém MPC, hlavní důraz je přitom kladen na splnění tvrdých stavových a vstupních

omezení, která jsou řešena pouze v rámci jednoho kroku MPC. Výsledný algoritmus je velmi

jednoduchý a snadno implementovatelný, přesto si ponechává výborné vlastnosti srovnatelné s

MPC řešeného na dlouhém predikčním horizontu.

Navrhované algoritmy řízení byly implementovány do DSP a testovány na laboratorním

prototypu pohonu s PMSM o jmenovitém výkonu 10,7kW, ve třech praktických případech.

První případ popisovaný v kapitole 4 se zaměřuje na řízení PMSM s využitím pulsně

šířkové modulace. Úkolem je navrhnout prediktivní řízení pohonu s PMSM s vlastnostmi srov-

natelnými s existujícími metodami řízení bez využití kaskádního řazení lineárních regulátorů, s

mnohem nižšími výpočetními nároky algoritmu.

Druhý případ popisovaný v páté kapitole se zaměřuje na prediktivní řízení PMSM

bez PWM s využitím přímého výběru napět’ového vektoru (FCS-MPC). Navržené řešení má

za úkol minimalizovat zvlnění proudu při nízkých spínacích frekvencích s využitím dlouhého

predikčního horizontu a překonat existující jednokroková řešení se srovnatelnými výpočetními

nároky.

Třetí případ popisovaný v šesté kapitole, se zaměřuje na zvýšení stability trakčního po-

honu s PMSM napájeného ze stejnosměrné troleje přes vstupní LC filter. Problém je rozdělen

na dvě části: i) stabilita vstupního LC-filteru, která je řešena na dlouhém predikčním horizontu

a ii) řízení PMSM, které je řešeno na krátkém horizontu. Obě dvě řešení jsou elegantně zkom-

binována ve ztrátové funkci jednokrokového FCS-MPC algoritmu.



Annotation
Diese Dissertationsarbeit beschäftigt sich mit der Entwicklung von der Prädiktivregelung der

abwechselnden elektrischen Antriebe mit einem langen prädiktiven Horizont und Rechnungs-

ansprüchen, die mit den konventionell angewandten Regelungsmethoden vergleichbar sind. Der

elementare Gedanke der entworfenen Regelung geht von der Approximation der Lösung von der

cost to go Funktion der Dynamischen Programmierung für einen langen prädiktiven Horizont

aus. Bei speziellen Fällen (d.i. das lineare mathematische Modell und die quadratische Ver-

lustfunktion) kann das Regelungsproblem analytisch gelöst werden, was zu einer dramatischen

Senkung von Rechnungsansprüchen führt. Die strengen Begrenzungen einzuhalten, ist jedoch

ein Problem. Die entworfene Regelungstechnik nutzt die Approximation des langen Horizonts

im einschritt MPC. Der größte Akzent wird dabei auf das Einhalten der strengen Zustands- und

Eingangsbegrenzungen gelegt, die lediglich im Rahmen eines Schrittes des MPC gelöst werden.

Der resultierende Algorithmus ist sehr einfach und leicht implementierbar, trotzdem behält er

ausgezeichnete Eigenschaften. Diese sind mit dem MPC, der auf einem langen prädiktiven

Horizont gelöst wird, vergleichbar. Die entworfenen Regelungsalgorithmen wurden in DSP im-

plementiert und auf einem Laborprototyp eines Antriebes mit PMSM und der Leistung von 10,7

kW in drei praktischen Regelungsfällen getestet.

Der erste Fall, der im Kapitel 4 beschrieben wird, konzentriert sich auf die Regelung

PMSM mit der Nutzung von der Pulsbreitenmodulation. Die Aufgabe ist es, eine Antrieb-

sregelung mit PMSM zu entwerfen, die vergleichbare Eigenschaften mit den bereits existieren-

den Regelungsmethoden hat, ohne Gebrauch der Kaskadenreihung der linearen Regler und mit

viel niedrigeren Rechnungsansprüchen des Algorithmus.

Der zweite Fall, der im fünften Kapitel beschrieben wird, richtet sich auf die prädiktive

Regelung PMSM ohne PWM mit der Nutzung von der direkten Auswahl des Spannungsvektors

(FCS-MPC). Die entworfene Lösung hat die Aufgabe, die Wellung des Stroms bei niedrigen

Schaltfrequenzen mit der Nutzung des langen prädiktiven Horizonts zu minimalisieren. Weiter

soll sie existierende Einschritt Lösungen mit vergleichbaren Rechnungsansprüchen überwinden.

Der dritte Fall, der im Kapitel 6 beschrieben wird, richtet sich auf die Stabilitätser-

höhung des Traktionsantriebes mit PMSM, der aus einem gleichmäßigen Fahrdraht über einen

LC Eingangsfilter gespeist wird. Das Problem ist in zwei Teile eingeteilt: i) die Stabilität des LC

Eingangsfilters, die auf dem langen Tranktionsantriebes und ii) die Regelung des PMSM, die

auf einem kurzen Horizont gelöst wird. Beide Lösungen sind elegant in einer Verlustfunktion

eines Einschritt FCS-MPC Algorithmus kombiniert.
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1. Introduction

Variable speed ac electric drives in general play a very important role in modern industry and

traction. In a standard configuration, the current in electric machine is controlled by input power

inverter. The choice of a particular components of a drive, as well as the control algorithm es-

sentially influence the behavior of the drive. Nowadays a lot of attention is dedicated to an

improvement of variable speed ac electric drives in order to satisfy increasing demands of a

market in quality and reliability. Extremely fast development on the field of power-electronics

over the last few decades enabled a use of advanced switches and power inverter topologies,

which yield lower THD, higher efficiency, higher reliability, lower costs and significantly im-

proves the overall drive behavior. The need for more accurate control requires to consider not

only the drive itself but also its supply (with LC or LCL filters) and load (e.g. with elastic joints

or non-symmetries). The complexity of the control algorithms is thus significantly increasing.

Therefore, development of a control algorithms can represent equally challenging task as the

design of the drive itself.

The control algorithm has to secure not only proper operation of the drive in all oper-

ating conditions, but also it needs to satisfy all additional control objectives such us: stability

of the supply, satisfaction of hard state constraints, active balancing of the inverter capacitors,

improvement of the overall drive efficiency etc. Standard solution often leads to a cascade of

linear PI controllers, which offers relatively simple and well understood way how to deal with

some special cases of nonlinear multi-variable (MIMO) systems, moreover it handles hard con-

straints, which are usually inevitably imposed on the drive. However, the performance of such

control design is limited. Nonetheless the tuning of PI controllers is often based on empirical

guess of a fixed coefficients, which may be inefficient and hard to tune.

Model predictive control ( MPC ) offers a very attractive alternative to the conventional

cascade controllers. The main idea is to formulate control problem as optimization task and

solve it numerically on a few steps ahead receding prediction horizon. The solution is found for

all possible control actions and all possible objectives, thus there is no need for cascades. More-

over, the MPC allows to consider constraints on the input and state variables on the prediction

horizon.

11



Chapter 1. Introduction

MPC has never reached extensive popularity in electric drives. The potential reason for

that might be relatively high computational cost of the algorithm, especially when we consider

a long prediction horizons. So far, MPC has been widely used in chemical industry, where

the time constants are long and computation of MPC can be easily performed on conventional

micro-controllers. Recent advances in computational hardware, however, made MPC available

also for electric drives and power-electronics, even thought the computational cost of the algo-

rithm remains one of the limiting factors for wide range MPC implementation.

There has been a lot of work dedicated to a reduction of the computational cost of

long horizon MPC. One way how to achieve that, is to pre-compute the solution of the optimal

control problem in open loop offline. The controller is than designed in approximated form

of the compute solution. Even thought the computational cost of the algorithm is dramatically

reduced, it looses its ability to react to parameters changes in a simple and understandable way.

This thesis investigates design and implementation of several approximative forms of

MPC for ac electric drives, with focus on extensions of prediction horizons, as a cascade free

alternative to the conventionally used cascade structures of PI controllers. Special attention

is dedicated to preserving understandable logic and low computational cost of the resulting

algorithms such that it could be implemented on conventionally used hardware.

1.1. State of the art analysis

The ac electric drive is a nonlinear multi-variable system with rather high dynamics and hard

operating constraints which represent a significant challenge for control. Satisfaction of all con-

trol objectives including hard constraint on the state variables is essential for proper operation

of the drive. Today, vast majority of ac electric drives is controlled by so called cascade con-

trol which is based on cascade structure of PI/PID controllers [1, 2]. The potential reasons for

that are i) decomposition of the control problem into several control loops is an intuitive and

relatively simple way how to understand the problem, ii) the cascade control schemes represent

well understood solution which can be used with conventional control hardware.

In many applications, if well designed, the cascade control provides relatively good per-

formance and can address multiple control objectives including hard constraints [3] and today it

represent the industrial standard. On the other hand, the cascade structure of PI/PID controllers

has its limits which are given by the constant tuning of the controllers. This becomes even more

evident, when the control structure contains multiple control loops and the optimal tuning of

particular gains of the controller may become very complicated. In order to fulfill growing de-

2



Chapter 1. Introduction

mands on modern ac electric drives, researches turn to alternative approaches based on modern

optimal control theory using state space models and avoiding cascades and loops [4].

One such approach is MPC [5], which offers extremely flexible solution for control of

constraint multi-variable systems. The MPC stands for rather large group of controllers, which

are based on solving the optimization of the control problem over receding horizon policy [6].

Despite being well known among the control society since 1960s, most of the particular

results with MPC in electric drive control has been only theoretical due to high computational

demands of the algorithm, preventing its wider practical application. Nevertheless, rapid devel-

opment in control hardware over the last few decades made MPC-based algorithms available

also for conventional, low cost DSP’s [7]. The computational cost of the algorithm, however,

still remains one of the limiting factor in control design.

A popular version of MPC, which gained extensive attention over the last few decades

in drive control is the finite control set (FCS) MPC [8], which is based on reduction of the

number of admissible control action to a limited set. This is a natural choice for example in

power electronics [9, 10, 11], where the number of switching combinations is fixed. FCS-MPC

is able to handle the control of nonlinear multi-variable (MIMO) systems with constraint on

state variables while keeping its low computational demands. It has been successfully applied

to induction machine drive control [12, 13] as well as PMSM drive control [14, 15] and control

of other types of ac electric drives [16, 10]. Its has also been used to extend the performance

of the drive control to additional problems like: improving stability of the drive [9], improving

switching losses [17, 18] etc. The key components of a successful FCS-MPC controller is the

chosen form of the cost function and the chosen penalization coefficients [11]. If tuned properly

FCS-MPC can successfully compete with conventional PWM based solutions [19, 13].

Computational cost of brute force enumeration of all switching combinations grow ex-

ponentially with the length of prediction horizon and can thus become too expansive for long

prediction horizons. Therefore in most cases, the evaluation of the cost function is done one

or two steps ahead only [8]. This may be a significant restriction, when the control action has

long term consequences, which needs to be considered by the control algorithm in order to

achieve optimal control action [20]. Modern FPGA’s can help to extend the prediction horizon

of FCS-MPC [21], nevertheless, it may not be sufficient for larger scale problems.

Another solution to minimize the control effort of enumeration of the limited set of

control action is Branch and bound [22], where the objective function is restricted by defined

bounds. As a result the number of feasible (relevant) control actions is dramatically reduced

which lowers the computational burden of the algorithm. In [23] it has been used for one

3



Chapter 1. Introduction

step ahead optimization. For longer horizon, the branch and bound approach has been used in

[24]. A different approach of achieving long prediction horizon with FCS-MPC is based on

integer programming and it is called sphere decoding [25]. It was developed for application in

communication or cryptography and can be interpreted as a special case of the branch and bound

algorithm. The key idea is to solve the least square problem on predetermined discrete lattices.

As shown in [26, 27, 28] this technique can be successfully adopted to control of ac electric

drives. Despite significant reduction of the computational cost of those control algorithms, they

require complex software for online optimization.

Nevertheless, the FCS-MPC also has its weak points, such as variable switching fre-

quency resulting in spread frequency spectrum of the converter currents, and operation at lower

switching frequencies resulting in higher current ripple. These can be mitigated by smart tech-

niques [29] or using PWM as a modulator for control designed by the FCS-MPC [18, 30]. The

key objective of the latter approach is usually to achieve fixed switching frequency [21]. The

simplest approach is however, to solve the optimization problem in continuous action variable.

This was done in [31, 32], where a general solver was used. Optimal solution was achieved at

high computational cost.

MPC is often formulated as optimal control based on minimization of linear or quadratic

criterion. The following procedure can be treated as an quadratic programming [33] or linear

programming [34] problem for which numerous effective solvers are available today. Never-

theless solving an optimization task of MPC online is a demanding procedure that is too com-

putationally expensive for the common hardware used in drive control. The possible choice is

to solve the quadratic programming offline and approximate it, with piece-wise affine optimal

control law [35] . The result is a MPC based controller with long prediction horizon which

handles hard constraints on the state variables with acceptable computational cost. However,

the resulting solution has no freedom to change any parameter without reevaluation of the full

offline optimization.

For special class of control problems with linear model and quadratic criterion, the

computational burden of the algorithm can bee dramatically reduced if we are able to solve the

control problem analytically, however such solution lack the ability to include hard input and

state constraints in a simple way.

An alternative approach to multi-step optimization is based on the idea of dynamic

programming [36]. The multi-step optimization problem can be reduced to a one-step ahead

optimization if the cost-to-go function (also known as the Bellman function) is known. Since

exact evaluation of the cost-to-go function is computationally prohibitive, approximations of the

4



Chapter 1. Introduction

cost-to-go function has to be used. This technique is known as Limited lookahead policy where

the dynamic programming problem over the prediction horizon truncates into optimization of

the control problem on limited number of steps ahead [36]. Various approaches to design of

the approximate cost-to-go function have been proposed for drive control. For example, off line

calculation via multi-parametric toolbox [37], or heuristic approximate of the numerical solution

[38]. This is possible when the dimensionality of the cost-to-go function is rather low. In higher

dimensions, the computational cost of numerical solutions grow and analytical approximations

are harder to find.

A several approaches were developed to combine unconstrained solution with con-

straints manager that is applied after calculation of the unconstrained solution. This idea has

been proved theoretically in [39] and already used in PMSM control e.g. in [40] in simpler set-

tings. The problem is then decomposed into two parts: (i) what unconstrained solution to use,

and (ii) what constraints to impose. In some circumstances this approach can be understood as

a limited lookahead approach where the unconstrained solution represents the approximation of

the cost to go function. The unconstrained solutions were designed using heuristics [38], SDRE

approach [41, 42] or non-linear predictive control [43]. The constraints can be addressed by ei-

ther aforementioned FCS-MPC [38], or in continuous space [44], [45], [31] and [32]. However,

the implied computational cost of the solution in continuous space is typically too high.

1.2. Objectives of the thesis

The overall objective of the thesis is to develop MPC-based control algorithms that are suitable

for routine application in industry. To compete with existing cascade PI control, the new algo-

rithms have to offer simple implementation, and comparable execution time. At the same time

it has to offer some advantage, e.g. in terms of faster performance in transients.

Since it has been well established that existing MPC-based solutions outperform cas-

cade PID controllers in terms of control performance, the main focus of this thesis is on re-

duction of computational cost of the MPC algorithms. Therefore, our main competitors are

one-step and multi-step ahead controllers based on FCS-MPC or numerical solution of the op-

timization problem by general purpose solvers. In this thesis the main theoretical tool is the

limited lookahead strategy combining unconstrained solution with constraint manager.

The proposed algorithms will be tested on PMSM drive. The main aims of the thesis

can be summarized into following points as follows:

5



Chapter 1. Introduction

• Improve cascade free speed control of PMSM drive by better combination of constraint

management in transients and exact tracking in steady state. We will focus on both cases

with PWM and without PWM.

– Existing PWM-based solutions of cascade free control are using numerical solvers

which are computationally expensive. We aim to achieve the same performance at

much lower computational cost.

– Existing one-step FCS-MPC suffers from high current ripple when required to op-

erate at low switching frequencies. Improvement by multi-steps ahead MPC is too

expensive. We aim to lower the current ripple at computational cost comparable to

one-step ahead solution.

• Improve stability of traction PMSM drive with input LC filter fed from dc catenary. We

aim to improve damping of unwanted oscillation of the filter while preserving as much

drive dynamics as possible.

1.3. Applided methodology of the thesis

The thesis is organized into several chapters as follows:

In chapter 2, the theory of MPC is introduced and its key components discussed. Tech-

niques that will be used in subsequent chapters are discussed in detail. In particular, we review

the technique of limited lookahead which will be used to achieve the defined aims.

In chapter 3, the problem of cascade free speed control of PMSM is defined and existing

solutions for it are reviewed.

In chapter 4, the limited lookahead approach is applied to the cascade free speed control

of PMSM drive with PWM. Specifically, the unconstrained solution (obtained by SDRE) is used

to approximate the cost-to-go, it is further complemented by constraints and solved by convex

optimization. The resulting input voltage is then applied via PWM controlled 3-phase power-

converter. The main emphasis is on simplicity of proposed solution in order to be suitable for

use with conventional control hardware.

In chapter 5, an extension of the FCS-MPC for control the PMSM drive is presented.

The extension is based on the unconstrained solution (SDRE) as the approximate of the cost

to go function. The unconstrained solution is then combined with simple one step ahead FCS-

MPC as additive term in the cost function. The FCS-MPC does not require any PWM modulator

and applies the input voltage via selection of the direct switching combination. We will show
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Chapter 1. Introduction

that such extension allows to minimize switching loses at lower current ripples than with con-

ventional one-step ahead FCS MPC.

In chapter 6, the limited lookahead technique is used to improve stability of a traction

PMSM drive fed from dc cantenary. The LC filter is almost undamped by design. Thus the

control algorithm needs to secure active damping of the input LC filter, as well as the control

of PMSM. Conventionally this may be achieved by additive term in the cost function which

is usually designed manually. In this chapter, we propose to use the LQR to design the active

damping term which takes optimization on long prediction horizon into account.

Conclusions are given in chapter 7 together with proposed directions for future research.
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2. Theoretical background of model
predictive control

MPC is defined as an optimization task in discrete time on prediction horizon of length h, for

which a chosen cost function is minimized. The result is a vector of optimal control actions

over selected prediction horizon, although only the first one is used to perform the control

action. This procedure is repeated in each control step and it is called receding horizon policy

[4]. Formally, we seek solution of problem:

u
opt
t:t+h = arg min

ut:t+h∈U

t+h∑
τ=t+1

g(xτ , uτ ),

subject to:uτ ∈ U ,

xτ ∈ X ,

xτ = f(xτ , uτ ), ∀τ = t, t+ 1, . . . , t+ h.

(2.1)

where g() is the chosen cost function, uτ is the vector of inputs, xτ is the vector of system

states, U is the set of admissible inputs and X is the set of allowed system states, f() is the

mathematical model of the evolution of the state variable in time. Index τ is a running time on

the prediction horizon from the current time t to t+h. Star in the upper index denotes requested

value of the symbol, e.g. x∗ is the requested value of the state vector. The MPC stands for rather

large group of controllers, where the designer needs to carefully choose the flowing ingredients,

when designing a MPC based controller.

• Mathematical model, f(.)

• Cost function, g(.)

• Admissible control action set, U

• Prediction horizon, h

• State constraints,X
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Chapter 2. Theoretical background of model predictive control

We will now briefly outline the possible choices and their use.

2.1. Mathematical model

The mathematical model is used to describe the future behavior of a controlled system. In lit-

erature, there is several different model formulations (a good overview of existing models can

be seen in [46]). In general, MPC can deal with the nonlinear systems, if proper mathematical

model is available. However, the synthesis of the controller for nonlinear systems is rather diffi-

cult task, usually requiring great amount of computational power. Contrary to that, a significant

simplification of MPC design can be obtained if the system can be described by a linear model.

A general formulation in continuous state space form can be written as

dx

dt
= Acx+Bcu, (2.2)

where, Ac andBc are constant matrices with appropriate dimensions. Note, that many electrical

components can be described by linear first order differential equation.

Modern controllers are implemented in microprocessors, which works in discrete time.We

will assume, that all mathematical models, used in this thesis are time invariant, therefore for

the sake of readability, in the following text we will use the simplified notation

xτ+1 = f(xτ , uτ )⇔xt+1 = f(xt, ut) . (2.3)

Conversion of the model ( 2.2) into discrete time form with sampling time ∆t is achieved using

the conventional discretization formula

A = exp(Ac∆t),

B =

∫ ∆t

0
eAc(∆t−σ)Bcdσ.

(2.4)

Here, A and B are constant matrices of appropriate dimensions. Then the discrete form of state

space model is

xt+1 = Axt +But. (2.5)

The formulation (2.5) can be extended to address the nonlinear systems by parametrization of

the model resulting in piece-wise linear state dependent structure. Many techniques for local

linearization can be used for this task, such as Taylor series method or numerical interpolation
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Chapter 2. Theoretical background of model predictive control

method (see[47],[48]). The resulting formulation can be written as:

xt+1 = A(xop)xt +B(xop)ut. (2.6)

Where, xopis an operational point of the linearization, matrices A(xop) and B(xop) are state

dependent matrices of appropriate dimensions.

Note, that the linearization of (2.5) is not unique operation and optimality of the close

loop performance cannot be always ensured [49]. Moreover for complex MIMO systems where

several terms are nonlinear, the parametrization of the model may become too complex and even

intractable.

2.2. Cost function

The cost function g is a key component of MPC based control design. It is used to specify all

control objectives in the MPC and in general, it may take an arbitrary form.

The performance of the MPC based controller strongly relies on the specific form of

the cost function and the way of its minimization. The control problem has typically multiple

objectives. For on-line operations, these must be composed into a single objective. This is

typically achieved using a weighted sum of all objectives [50]1

g(xt, ut) =
K∑
j=1

gj(xt, ut, )λj , (2.7)

λj ≥ 0, j ∈ N ,

where: K is the number of control objectives, gj(xt, ut) are the elements of the cost function

representing particular control objectives, and λj are the weighting factors, which are used to

set the preferences for individual control objectives.

2.2.1. Pareto optimality

The additive form of the cost function has some attractive properties. Specifically, the expected

solution of the cost function minimization lies on so called Pareto front [50] (as it can be seen

from Fig. 2.1). Pareto optimality principle states, that any solution lying on the Pareto front

may not be further minimized without negative impact on other elements of the cost function.

1The weighted sum is only one of many existing methods to solve the multi-objective optimization, it may be
interesting to compare the others in future research.
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Chapter 2. Theoretical background of model predictive control

One setting of the penalization vector λ defines a point of the Pareto front. Different

choice may result in a different point on the Pareto front, thus individual weighting factors

have significant influence on the overall behavior of the controller and their correct tuning is

very important. In most cases, the weighting factors λ are chosen empirically by the designer.

Nonetheless it may not be sufficient especially when single decision variables may be of dif-

ferent units or scale. The process of tuning can be simplified by normalizing the quantities in

relation to their nominal values. Some useful guidelines for tuning of the weighting factors

has been provided in [51]. The weighting factors can be avoided in some cases by evaluating

multiple cost functions independently and the optimized solution is obtained by computation of

ranking and using simple sorting algorithm[52], [53]. Further improvement can be achieved by

designing the weighting factors by optimizing method [12].

g1

g2

posible solution
Pareto optimality curve

Figure 2.1.: Example of Pareto optimality principle in two dimensions

2.2.2. Quadratic cost function

A special case of (2.7), which is very common in modern control theory, is a quadratic cost

function. It is popular choice, which has several advantages, favoring its use among other forms

of the cost functions:

• It leads to an analytical solution of the optimization problem (theoretically infinite pre-

diction horizons can be achieved) [4]

• It is convex allowing fast numerical solution even for constraint optimization problem
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Chapter 2. Theoretical background of model predictive control

• It is symmetric ( positive and negative control deviations are treated the same)

• Small penalty for small deviations of states from their requested values and quadratically

rising penalty for linear increase of the deviation of the states from their requested values.

Quadratic cost function in a standard form can be expressed as

g(xt, ut) = xt
TQ

1
2Q

1
2xt + ut

TR
1
2R

1
2ut + 2xTt Nut, (2.8)

Q ∈ QT ≥ 0, R ∈ RT > 0.

Where Q, R and N are matrices of appropriate dimensions. For the problem of tracking a

predefined state and input trajectory the cost function can be rewritten as

g(xt, ut, x
∗
t , u
∗
t ) = (xt − x∗t )TQ

1
2Q

1
2 (xt − x∗t ) + (ut − u∗t )TR

1
2R

1
2 (ut − u∗t ), (2.9)

where x∗t , u
∗
t are the requested values of the state and the input action. In order to obtained

standard form, we augment the state vector x̃ = [xt, x
∗
t , u
∗
t ]. Than (2.9) is

g(x̃t, ut) = x̃t
TQ

1
2Q

1
2 x̃t + ut

TR
1
2R

1
2ut + 2x̃t

TNut =

=
[
x̃t ut

]
ZTxuZxu

[
x̃t

ut

]
, (2.10)

Zux =

[
Q

1
2 −Q

1
2 0 0

0 0 −R
1
2 R

1
2

]
, N
[
0 0 0

]
,

Q ∈ QT ≥ 0, R ∈ RT > 0, Z ≥ 0.

2.3. Admissible control action set

The goal of the optimization of the control problem (2.1) is to find an appropriate control ac-

tion ut which drives the system to the required state, while respecting all given objectives and

restrictions. The admissible control action set U is often limited by the physical nature of the

system (e.g. maximum available voltage, the quantity of fuel, maximum achievable temperature

etc.). MPC can be divided into two main groups according to the admissible control action set

to:

CCS-MPC Continuous control set MPC,

12
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FCS-MPC Finite control set MPC ,

This distinction has impact on the technique for solving the optimization problem.

2.3.1. Continuous control set

The MPC with continuous control set covers a large group of controllers. The admissible control

set is defined as

ut ∈ U ⊂ <nu , nu ≥ 1, (2.11)

where, nu is the number of control inputs. Searching for optimal control input in continuous

space is often a demanding procedure where the algorithm needs to search over infinite number

of possible control actions. The solution to this problem however can be dramatically simplified

if the cost function is convex.

Convex optimization

Consider the task of finding a minimum of the convex cost function subject to a set of convex

constraints
xopt =arg min g0(x),

subject to: cm(x), m = 1...M,
(2.12)

where, g0(x) is the convex cost function, cm(x) are convex constraints and M is the number

of all constraints. Assume that g0(x) is differentiable, and X = {x|cm(x)m = 1...M} is the

set of all x satisfying the defined constraints. Then the xopt is unique and needs to satisfy the

condition

∇ g0(x)T (x− xopt) ≥ 0, ∀x ∈ X (2.13)

This condition is illustrated geometrically in Fig. 2.2. Note, that for solving of the convex

optimization problems a various efficient numerical solvers are available (an interested reader

may reefer to [54] for more about convex optimization) .
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X

−∇ g0(x)

xopt

c1(x)

x

ϑ

g0(x)

∇ g0(x)

Figure 2.2.: Geometrical illustration of the convex optimality condition.

2.3.2. Finite control set

A special case of a MPC controller arise when only a limited number of admissible control

action is available, forming as set U = [u
(1)
t , u

(2)
t , . . . , u

(n)
t ]. This approach is known as Finite

control set MPC, FCS-MPC.

It has been one of the most successful versions of MPC in industry due to its extremely

simple and robust design. The predictive model is run n times, once for each possible control

action to yield prediction x(i)
t+h. The cost function g(·) is evaluated for each prediction and the

control input with minimum cost is selected as being optimal.

The FCS-MPC provides a very efficient control approach for various applications which

requires very little computations to obtain the optimal control action. However this is true only

when the prediction horizon h is short. The computational demands exponentially grow with

each extra time step, making the prediction horizon with FCS-MPC restricted to only few steps

ahead (see fig. 2.3). Inability to consider long term effects of the control action however may

have negative impact on the control quality.
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xt+1(u
(1)
t )

xt+1(u
(2)
t )

xt+1(u
(n)
t )

xt(ut−1)

xt

τt t+ 1 t+ h

xt+h(u
(1)
t+1)

xt+h(u
(n)
t+1)

Figure 2.3.: Illustration of combination of control actions of FCS-MPC on longer prediction
horizon.

2.4. Prediction horizon

In order to incorporate long term consequences, long prediction horizons h are necessary. How-

ever longer prediction horizons implies higher computational costs of the resulting optimization

algorithms, often prohibiting its use in real time applications.

One possible approach to address this problem is based on the concept of dynamic

programming [36]. Note that the solution of the optimization control problem on long prediction

horizons can be expressed recursively

u
opt
t:t+h = arg min

ut:t+h∈U

t+h∑
τ=t+1

g(x̃τ , uτ ) =

= arg min
ut ∈U

{
g(x̃t+1, ut+1) + arg min

ut+1∈U

{
g(x̃t+2, ut+2)+

+ . . . . . . arg min
ut+h∈U

{g(x̃t+h, ut+h)}

}}
, (2.14)

where x̃t = [xTt , x
∗T
t , u∗Tt ]T is the state vector augmented by the vectors of requested values. If
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we can find an optimal policy uopt(x̃t+h), then the last term of (2.14) can be written as

V (xt+h) = g(x̃t+h, u
opt(x̃t+h)).

This procedure can be repeated in backward recursion until the complete optimization problem

is solved, as in (2.15), and it is generally referred to as Dynamic programming [4]

u
opt
t:t+h = arg min

ut:t+h∈U
{g(x̃t:t+h, ut:t+h, ) + V (x̃t+h)} , (2.15)

where the prediction horizon h is short as the optimal control problem to be solved, and V (x̃t+h)

is the cost to go function defining the optimal policy for the control problems beyond t+ h.

2.4.1. Lookahead

past future

t t+ h

reference state

MPC lookahead horizon

predicted states

cost-to-go func.
measured state
contour

τ

x(τ)

Figure 2.4.: Principle of limited lookahed

The optimal cost to go function V (x̃t+h) can be found numerically or analytically. The

numerical solution often requires complete enumeration of the sub-problems involving high

computational demands. Thus, it is desirable to find V (x̃t+h) analytically. Nevertheless in

some specific cases the analytical solution may be unavailable or hard to find, and therefore, it

needs to be approximated. The (2.15) can be then reformulated as lookahead policy [4] as (see

fig. 2.4)

u
opt
t:t+h = arg min

ut:t+h∈U

{
g(x̃t:t+h, ut:t+h) + Ṽ (x̃t+h)

}
, (2.16)

where the prediction horizon h is as short as possible to allow tractable solution the optimal

control problem, and Ṽ (x̃t+h) is the approximated cost to go function for the control problems

beyond t+ h.
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Lookahead represents an elegant way how to design long range MPC with hard con-

straints on state variables in a computationally efficient way. This approach will be the main

mathematical tool used in this thesis.

Remark 1. Many different approaches can be used to design approximated cost to go function

[55],

2.5. State constraint management

Satisfaction of operational constraints on inputs ut ∈ U, and states xt ∈ X , is essentially one

of the major requirements imposed on modern controller. While the input saturation is given by

the physical capabilities of the system and thus can not be violated, the violation of constraints

which are imposed on the states may result in undesirable consequences. We have discussed the

problem of limited admissible control set above, so for the clarity in this chapter we focus only

on the problem of state constraints.

Contrary to many optimal control approaches, MPC is able to naturally handle the hard

constraints, via their explicit statement in (2.1). The set of allowed states may be defined as

X = {xt : cm(xt) < 0,m = 1, . . . ,M}, (2.17)

The number of constraints M is finite 2. The solution of the constraint optimization is typically

based on introduction of so called penalty functions glim(), that are added into the cost function

(2.7)

g(xt, x
∗
t , ut, u

∗
t ) =

K∑
j=1

gj(xt, x
∗
t , ut, u

∗
t )λj +

M∑
m=1

glim,m(xt) (2.18)

which are designed to increase the cost over all possible values of the original cost function.

Such penalty function will be further used for the FCS-MPC approach:

glim,m

0 if (cm(t) < 0)

λlim,m cm(xt) otherwise
, λlimm ≥ 0,

2Under certain circumstances the constraint optimization of the control problem in open loop may result in unfea-
sible behavior of a closed loop. Note, that the feasibility and stability issues in MPC theory is extremely large
topic which goes beyond the framework of this thesis and thus it is not discuses in detail (interested reader in this
topic may see [56] or [57]). However due to the rather difficult implementation and problems with the feasibility,
the hard constraint may be softened [49].
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λlim,m is a sufficiently large penalization for the violation of particular state constrains. An

alternative to glim,mwith fixed penalty λlimm, is so called barrier function [58] which introduces

near to zero penalty when the system is operating far from the constraint region and as the

system is closer to the constraint, the penalty function introduces larger penalty, reducing the

dynamics of the controller (see fig. 2.5).

allowed states restricted states

state constraint x0

glim, (x)
penalty function

Figure 2.5.: Illustrative example of barier function

2.6. Optimization methods

Solution of the optimization problem in general is a hard task. Many specialized algorithms

exist for specific choices of the cost, constraints and prediction models. In this Section we

briefly review methods of unconstrained optimization that will be used in this thesis, the LQR

and SDRE approaches.

2.6.1. Linear Quadratic Regulator (LQR)

Consider a linear system (2.2) with quadratic cost function (2.8) without any constraints. Based

on matrix triangularization [59] and under the assumption of quadratic cost-to-go function in

the form

V (x̃t) =x̃Tt Stx̃t, (2.19)

S =ΨT
t Ψt,
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where Ψt is a square upper triangular matrix and x̃t = [xTt , x
∗T
t , uTt−1]T is augmented state

vector. One step of the optimization (2.15) can be performed analytically. The cost function

inside minimization in (2.15) can be written as

g(x̃t, ut) + V (x̃t+1) = x̃t
TQ

1
2Q

1
2 x̃t + ut

TR
1
2R

1
2ut + x̃Tt Stx̃t, (2.20)

which can be rewritten in the matrix notation as

g(x̃t, ut) + V (x̃t+1) =
[
x̃t ut

]
ZTZ

[
x̃t

ut

]
, (2.21)

ZT = [Zxu, ZΨ], Zxu =

[
Q

1
2 −Q

1
2 0 0

0 0 −R
1
2 R

1
2

]
,

Zψ = ΨT
t+1


A 0 0 B

0 Ax 0 0

0 0 Au 0

 .
Note that the term with Zxu correspond to (xt−x∗t )TQ(xt−x∗t )+(ut−u∗t )R(ut−u∗t ), and the

term with ZΨ to the cost-to-go function with substitutions xt+1 = Axt + But, x∗t+1 = Axx
∗
t ,

u∗t+1 = Auu
∗
t , where Ax and Au are matrices of the reference dynamics. Under the assumption

of stationary reference values, Ax and Au are identity matrices of appropriate dimensions.

Using an arbitrary triangularization procedure, product ZTZ in (2.21) can be uniquely

decomposed into the product of triangular matrices

ZTZ = Y TY, Y =

[
Yuu Yux

0 Yx̃x̃

]
, (2.22)

yielding

g(x̃t, ut) + V (x̃t+1) = (Yuuut + Yuxx̃t)
T (Yuuut + Yuxx̃t) + x̃Tt Y

T
xxYxxx̃t. (2.23)

which is quadratic in ut and thus we obtain following optimization problem

u
opt
t = arg min

ut(xt)

{
(ut + Lxt)

TY (ut + Lxt)
}

(2.24)

L = Y −1
uu Yux,

Y = Yuu.
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The (2.24) is minimized for Yuuut + Yuxx̃t = 0, yelling optimal policy uopt(xt) in the form

u
opt
t = −Lxt, (2.25)

where L is the designed gain matrix.

Remark 2. Note, that, the LQR is a basic technique of control theory with many potential

methods of design of the gain matrix L. In this thesis we will follow the standard approach

based on solving the algebraic Riccati equation (ARE)[60] (??)for matrix variable S, where,

the cost to go function is defined as

V (x̃t+1) = x̃Tt+1Sx̃t+1. (2.26)

Many tools such as Matlab dlqr are available for this task.

The LQR provides computationally cost efficient solution for the optimization problem

on long prediction horizons, which does not take into account any state or input constraints and

does apply only to linear systems with quadratic cost.

2.6.2. State-dependent Riccati Equation (SDRE)

Solution via the Riccati equation (??) can be used as local approximation of a non-linear model

around an operating point. The model is linearized at this point (2.6) (see the section 2.1) and

LQR solution for the resulting linear system is designed. The task is how to design the overall

control scheme for all operating points. Many approaches based e.g. on Taylor linearization are

available [47].

We will follow a simpler approach based on numerical evaluation of the controller on a

fixed grid of operating points, i.e.

uopt = −L(xop)xt. (2.27)

where L(xop) is the the designed state dependent matrix of gains. Then, we approximate the

controller coefficients using polynomial fitting.

20



Chapter 2. Theoretical background of model predictive control

Example: SDRE control design

Consider a nonlinear system with quadratic cost (2.8) in a special form penalizing difference of

the input variable (which is used to suppress steady state error of the resulting controller):

g(xt, x
∗
t , ut, ut−1) = (xt − x∗t )TQ(xt − x∗t ) + (ut − ut−1)TR(ut − ut−1), (2.28)

To obtain the standard form (2.8) we use augmented state vector x̃t = [xTt , x
∗T
t , uTt−1]T with

state dynamics: 
xt+1

x∗t+1

ut

 =


A(xop) 0 0

0 I 0

0 0 0


︸ ︷︷ ︸

Ã


xt

x∗t

ut−1

+


B(xop)

0

I


︸ ︷︷ ︸

B̃

ut, (2.29)

and quadratic cost function:

g(x̃t, ut) = x̃t
T Q̃x̃t + ut

TRut + 2x̃Tt Nut,

Q̃ =


Q −Q 0

−Q Q 0

0 0 R

 , (2.30)

N = [0, 0,−R].

The optimal control is found by solving the state dependent discrete time Riccati equation

(2.31),

ÃTSÃS(ÃTSB̃ +N)(B̃TSB̃ +R)−1(B̃TSÃ+NT) + Q̃ = 0, (2.31)

for matrix variable S.

Since Ã is state dependent, the resulting S is also state dependent. The matrix S(xop)

defines the cost-to-go function of dynamic programming on infinite horizon [4]:

V (x̃t+1) = x̃Tt+1S(xop)x̃t+1, (2.32)
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The SDRE controller is thus the optimizer of the following optimization problem:

ut = arg min
ut(xt)

{
(ut + Lx̃t)

TY (ut + Lx̃t)
}

(2.33)

L = Y −1(B̃TSÃ+NT ),

Y = (B̃TSB̃ +R).

Which is well known to be

u
opt
t = −L(xop)x̃t. (2.34)

This controller will be evaluated on a grid of state points xopt
t and the coefficients L(xopt) will

be interpolated. See Section 4 for details.

.

2.7. Partially observed state

In predictive control, the optimization is often done with the simplifying assumption of perfectly

known state. However in some cases, accurate knowledge of the state may not be available.

Many observers can be designed for this task.

If the system is linear, the optimal observer can be designed as the standard Kalman

filter [61]. We assume that the state space model (2.5) is subject to stochastic error or residues

due to model imperfection. Then it can be rewritten as

xt+1 = Axt +But + εx, (2.35)

where, εx is the model error, which is assumed to be Gaussian distributed with covariance ma-

trix Σx. The state is observed only via observation equation (representing noisy measurement,

inaccurate sensors etc.)

yt = Cxt + εy, (2.36)

where, yt is the observed state, C is the observation matrix of appropriate dimensions and εy
is the measurement noise with covariance matrix Σy. The standard Kalman filter algorithm

provides an optimal reconstruction of the state in terms of mean square error.

In this text, we will consider only linear time-invariant systems (2.5). For such system,

the observer converges to a linear feedback observer with constant gain [62]:

x̂t = Axt−1 +But−1 +K(yt − Cxt), (2.37)
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where K is the matrix of pre-computed Kalman gains. The gain can be obtained using Matlab

function kalmd.m.
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3. Speed control of PMSM drive

In this chapter, we consider speed control of drive with PMSM as an exemplary case of ac ma-

chine. However the main principles described here remain valid for other types of ac machines

as well.

Nowadays, most of the control algorithms for PMSM are based on Field Oriented Con-

trol (FOC) or Direct torque control (DTC). Both techniques are considered to be industrial

standards in PMSM drive control. The main principle is based on decoupling the control into

the flux and torque control loops, similarly as it is naturally done in DC machines. This may be

achieved only when sufficiently accurate knowledge of the rotor position is available. In the case

of DTC, the lookup table defines each relevant switching combination of the converter in terms

of its effect on torque and flux control, depending on the rotor position. In the case of FOC, the

stator current is transformed into a single vector in the rotating coordination frame d, q which

is linked with rotor flux vector (rotor flux vector allies with rotor position). Each component of

the current vector id and iq is, proportional to the flux or torque respectively. The output of the

current controller, is then the required stator voltage vector ud,q which is transformed back to

phase coordinates ua,b,c and applied to the drive via PWM.

In both cases it is relatively simple to secure hard current constraint due to the linear

nature of the torque and flux control by simply limiting the current references. In speed control,

the current reference is given by the speed controller, which forms outer loop of the current

control, see Figure 3.1 a).

The basic MPC is based on a different concept, where cascades are replaced by a single

mathematical optimization of the full state space model. The block diagram of the control is then

very simple (Figure 3.1 b)) and all complexities of the control are solved by the optimization

method. Therefore, the block diagrams are not very good description of the MPC approach and

we will not make extensive use of them.
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Figure 3.1.: a) Block diagram of cascade control of PMSM drive b) Block diagram of MPC for
PMSM drive

3.1. Aim of control

The behavior of the predictive controller is given by the chosen cost function. In the context of

speed control of PMSM drives, the cost function is designed to reach two main objectives: (i)
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speed tracking, (ii) drive efficiency. These two requirements can be formulated as minimization

of the tracking error

gω = (ωt − ω∗t )2, (3.1)

and minimization of the current amplitude (i.e. Joule losses):

gi = (i2d,t + i2q,t). (3.2)

Since these two requirements are contradictory, we need to define a compromise between them,

typically in the form of weighted sum (see chapter 2.2). The MPC is then defined as

u
opt
t:t+h

= arg min
ut:t+h∈U

t+h∑
τ=t

(λωgω(ωτ , ω
∗
τ ) + λigi(id,τ , iq,τ ))

subject to: c1 : uτ ∈ U ,

c2 : xτ ∈ X ,

c3 : xτ = f(xτ , uτ ), ∀τ = t, t+ 1, . . . , t+ h,

(3.3)

where, λω, λi are the penalization’s, setting the preferences to particular terms in the cost func-

tion. The minimization of the cost function is done with respect to given constraints. The

constraints c1 and c2 are defined by admissible stator current amplitude Imax and admissible

control actions which is given by maximum amplitude of the input stator voltage Umax = Udc√
3

(where Udc is converter dc-link voltage) :

X = {i : |is| ≤ Imax}, U ={ut : |ut| ≤ Umax}. (3.4)

The c3 represents the mathematical model, which describes the behavior of PMSM.
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3.2. Model of the drive

The mathematical model of PMSM drive is described by five differential equations:

did
dt

= −Rs
Ld
id +

Lq
Ld
iqω +

1

Ld
ud, (3.5)

diq
dt

= −Rs
Lq
iq −

ΨPM

Lq
ω − Ld

Lq
idω +

1

Lq
uq, (3.6)

dω

dt
=

1

J
[kpp

2
p (ΨPM iq + (Ld − Lq)idiq)− ppTL], (3.7)

dϑ

dt
= ω, (3.8)

dTL
dt

= 0. (3.9)

The state vector x = [id, iq, ω, ϑ, TL] is composed of components of the stator current vector of

the drive in rotating (d,q) reference frame linked to a rotor flux vector (id,q), the electrical rotor

speed ω, the electrical rotor position ϑ, and load torque TL. Input of the state space model are

components of the stator voltage vector ud,q. The system parameters are: the components of

the stator inductance in d- and q-axis the stator resistance Rs, and the flux linkage excited by

permanent magnets on the rotor ΨPM .

Note that the model (3.5)–(3.9) is non-linear due to products of state variables, idω in

(3.5) idω in (3.6) and idiq in (3.7). To apply the standard linear system theory, we linearize the

model (see chapter 2.1 ) using a simple method based on two assumptions: (i) the assumption

of slowly varying rotor speed ω with respect to the sampling period; and (ii) first order Taylor

approximation of the product id, iq. The first assumption allows us to approximate the products

idω and iqω by linear terms idωop and iqωop, where ωop is the operational point of the rotor

speed. In the resulting algorithm it will be replaced by instantaneous speed. First order Taylor

approximation of the nonlinear term in (3.7) is:

f(id, iq) = f(i
op
d , i

op
q ) + (id−i

op
d )
∂f(id, iq)

∂id
+ (iq−i

op
q )
∂f(id, iq)

∂iq
⇒

⇒ idiq ≈ iop
d i

op
q + (id−i

op
d )iop

q + (iq−i
op
q )i

op
d =

= −iop
d i

op
q + i

op
d iq + idi

op
q , (3.10)

where iop
d and iop

q are components of stator current vector at the given operational point. They

will be also replaced by instantaneous currents.
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Under these simplifications, the continuous time model can be rewritten in linear form

dx

dt
=Ac(x

op)x+Bcu, (3.11)

where

xop = [i
op
d , i

op
q , ω

op, 0, 0],

Ac(x
op) =



−Rs
Ld

−Lq

Ld
ωop 0 0 0 0

−Ld
Lq
ωop −Rs

Lq
−ΨPM

Lq
0 0 0

κi
op
q κΨ + κi

op
d 0 0 −pp

J −kiop
d i

op
q

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, Bc =



1
Ld

0

0 1
Lq

0 0

0 0

0 0

0 0


,

(3.12)

κ =
3

2J
p2
p(Ld − Lq), κΨ =

3

2J
p2
pΨPM

To accommodate for the constant term −iop
d i

op
q from (3.10), we assume that the state vector

is extended to contain additional constant, i.e. x = [id, iq, ω, ϑ, TL, 1]. This is an auxiliary

step allowing the use of standard software, that has no impact on physical interpretation of the

model.

Conversion of the model into discrete time form (2.5) with sampling time ∆t is done

using standard formulas for linear systems (2.4) described in Chapter 2.1. The resulting discrete

time system is then

xt+1 = A(xop)xt +B(xop)ut. (3.13)

3.3. Fundamental consideration of the constraints influence

on the drive

Satisfaction of all constraints in the full model on the whole prediction horizon is too complex,

hence, we propose to use a problem simplification where, particular solutions are derived for

special cases, where only one of the constraints is active.

The first special case is based on consideration of only the maximum stator current limit.

It has been shown, that operation on this limit, that maximizes the produced torque implies the
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maximum torque per ampere (MTPA) rule:

MTPA : id +
Ld − Lq

ΨPM
(i2d − i2q) = 0. (3.14)

The second special case is derived by considering operation on the the maximum supply voltage

limit. The result is an equation that can be used as the field weakening curve FW:

FW :

(
Lq
Ld
iq

)2

+

(
id +

ΨPM

Ld

)2

−
(
ζUmax

|ω|Ld

)2

= 0, (3.15)

where ζ ∈ [0, 1] is a chosen safety factor. (3.14) and (3.15) may be used to direct the MPC to

find the optimal solution on shorter horizon. In [63], those two rules have been used as attraction

region in the cost function forcing the the FCS-MPC with one step ahead prediction to operate

near to the attraction region. The optimal control input is found by exhaustive search over the

finite number of the admissible voltage vectors (switching combinations) one step ahead only,

therefore the algorithm is computationally very cheep and the hard state and voltage constraints

are easily meet by simply eliminating such switching combination which would lead to their

violation.

On the other hand FCS-MPC may results in relatively high current distortion due to

constant duty cycles and inconstant switching frequency, which may be prohibitive in some ap-

plications (i.e. traction where the inconstant switching frequency may interfere with the railway

safety systems).

Therefore an alternative can be found in [31], where rules (3.14) and (3.15) have been

used in combination with CCS-MPC using PWM modulator in a feed forward based control

design. The PWM modulator has several advantageous over the FCS-MPC direct switching

combination selection

• constant switching frequency

• accurate transformation of the input control voltage to the output of the power-converter

• relatively low current ripples.

The aim in [31] is to design current reference which respect all given constraints and follow the

MTPA curve. Nevertheless meeting the hard constraints in this case still imposes relatively high

demands on computational power which may not be available for PMSM drive control.
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Remark 3. The proposed solution of the input constraints is specific to the problem of speed

control of the PMSM drive. Similar rules, however, are available for speed control of other ac

machines. .

3.3.1. Operation in the field weakening region

To illustrate the benefit of using the explicit rules to reinforce the MPC, we study the conven-

tional MPC formulation in simulation. Speed control of a PMSM drive with parameters from

Table A.1 using MPC with cost (3.3) and system model (3.11) has been simulated using nu-

merical toolbox CVX [64]. The results of transient behavior of the step change of the required

speed from 1100 to 1102 rad/s is displayed in Figure 3.2 a). For comparison, the id current

satisfying the field weakening curve (3.15) is displayed as well. Note that even for horizon of

length h = 100 the numerical solution does not secure steady performance in the steady-state.

However, in the transient, the numerical solution is equal to that of the FW equation. If the FW

curve is used as an attraction region, the numerical solution follows it exactly even for very low

penalization of the attraction region. The use of the FW constraint allows to use much shorter

without explicit FW solution with explicit FW solution (3.15)
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Figure 3.2.: Simulation of step change of electrical rotor speed at field weakening region, from
1100 to 1102 rad/s, without explicit FW constraint (left column) and with explicit
constraint on the FW curve (right column). The length of prediction horizon h =
100.
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horizons.

Remark 4. The field weakening limit (3.15) is based on approximation of the allowed voltage

by a circle. More accurate solution is available in [65] which requires more computational

resources.

3.4. SDRE for PMSM

Following the approach of [63] of finding approximate solutions with few constraints, we con-

sider a case without any constraint on the voltage or current. Then, the task becomes standard

quadratic control of non-linear system for which many techniques exist. One such approach is

the state dependent Riccati equation (SDRE) which has been applied to PMSM for example in

[41, 42].

The basic idea is to linearize the system at operating point and derive local LQR solution

(see section 2.6.2). The state reference vector x∗t = [i∗d,t, i
∗
q,t, ω

∗
t , ϑ
∗
t , T

∗
L,t, 1] is assumed to be

constant, the model f(xt, ut) is (3.13) and we assume the quadratic cost function2.9, with the

substitution of u∗t = ut−1. Than we can rewrite (2.9) as

g(xt, x
∗
t , ut, ut−1) = (xt − x∗t )TQ(xt − x∗t ) + (ut − ut−1)TR(ut − ut−1). (3.16)

The term penalizing difference of the input variable (ut−ut−1)TR(ut−ut−1) is used to penalize

too high control inputs. In contrast to the penalization of the control action itself (i.e. uTt Rut) it

does not introduce a steady state error of the resulting controller1.

The synthesis of the controller at each point of linearization can be achieved by pole

placement or Riccati equation. We will follow the latter approach. Due to the used penalization

of the input difference, we need to augment the state vector to obtain the standard form. The

augmented vector is x̃t = [xTt , x
∗T
t , uTt−1]T with state dynamics

xt+1

x∗t+1

uτ

 =


A(xop) 0 0

0 I 0

0 0 0


︸ ︷︷ ︸

Ã


xt

x∗t

ut−1

+


B(xop)

0

I


︸ ︷︷ ︸

B̃

ut, (3.17)

1Other causes of steady state error, such as inaccurate model parameters, can be handled by adding an integrator
into the system [66]. However, this extension was not necessary in our tests.
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and quadratic cost function:

g(x̃t, ut) = x̃t
T Q̃x̃t + ut

TRut + 2x̃Tt Nut, (3.18)

Q̃ =


Q −Q 0

−Q Q 0

0 0 R

 ,
N = [0, 0,−R].

The optimal control is found by state dependent discrete time Riccati equation (??), where

the matrix S defines the cost-to-go function of dynamic programming on infinite horizon (see

section 2.6.2).The SDRE controller is then defined as:

uSDRE
t = −L(xop)x̃t. (3.19)

In order to avoid online evaluation of the gain L(xop) or its approximation by Taylor expansion,

we seek explicit parametric form of the gain using the interpolation method. This is typically

more accurate approach [48]. Specifically, we solve the LQR problem for a range of operational

states Xop = [xop(1), xop(2), . . . , xop(N)].

Illustration of the interpolation for the studied drive parameters is presented in Figure

3.3.
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Figure 3.3.: Gains of the SDRE controller evaluated for a grid of ωop ∈ 〈−1000, 1000〉 rad/s
(circles). The gains are interpolated by a first order polynomial (full line).
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3.5. State observer

The MPC controller consider a perfectly known state vector xt. However the states are usually

available through noisy measurement, thus it is desirable to use observer to reconstruct the state

vector xt. We focus on standard Kalman filter for this purpose.

We follow the Kalman filter design from chapter 2.7. We assume that the state model

(3.13) is imperfect

xt+1 = A(xop)xt +B(xop)ut + εx, (3.20)

where εx is the model error which is assumed to be Gaussian distributed with covariance matrix

Σx. The state is observed via measurements of the phase currents, ia,t, ib,t, ic,t and position

ϑt. Transforming the observed currents into the d-q reference frame, we have an observation

equation

yt =


imeasd,t

imeasd,t

ϑmeast

 = Cxt + εy, C =


1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

 (3.21)

where εy is the observation error with covariance matrix Σy. Using the standard Kalman filter

equations for each operational point of linearization xop, we obtain a constant Kalman gain

K(xop). In analogy to the SDRE controller, the gain scheduling for the observer is linear

K(xop) = K0 + xopKx, (3.22)

with sparse matrices K0 and Kx. The state reconstruction is then

x̂t = A(xop)xt−1 +B(xop)ut−1 +K(yt − Cxt−1). (3.23)

Since covariance matrices of the measurement error and especially the model error are

not known, they must be tuned. Useful guidelines for contrivances matrices tuning in Kalman

filter can be found in [67]. A several work has been done on adaptive tuning of the Kalman

filter [68],[69]. This is a promising research direction for tuning of the Kalman filter, however,

we are still using manual tuning in this thesis.

The correct tuning of the Kalman filter has been validated in simulation on the data,

measured on real laboratory prototype of PMSM drive ( The example of the simulation result is

shown in fig 3.4).
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Figure 3.4.: Example of the covariance matrices tuning on set of data measured on laboratory
prototype of the PMSM drive with parameters (A.1) and sampling period 125e−6s.

3.6. Open problems

1. Efficient evaluation of the constrained MPC with PWM

The one of the greatest challenge in the designing of MPC for speed control of PMSM is

a simple way of handling the hard state constraints. While the input voltage is limited by

the physical nature of the the converter (i.e. maximum available voltage) inclusion of the

hard state constraints in the optimization problem over the whole length of the prediction

horizon requires extensive computational resources. The approach presented in [31, 32] is

based on the use of general purpose solvers that are not useful in practical PMSM drives.

An algorithm that solves the multi-step ahead MPC with constraints with computational

cost comparable to the cost of a PID controller is not available.

2. Minimization of the average switching frequency of the FCS-MPC

An alternative way how to solve the constrained optimization is FCS-MPC with very

short sampling period. The shorter the sampling period is, lower the current ripple can
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be. However, the optimization is then allowed to switch very often which leads to increase

switching losses (since they are not considered in the cost). Penalization of the switching

losses can be easily added, however, the solution on the one step ahead horizon is again

sub-optimal. Better results can be achieved by multi-step ahead FCS-MPC at much higher

computational cost.

An algorithm that provides effective reduction of the switching losses with computational

cost of one-step ahead MPC is not available.
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4. CCS-MPC for cascade free speed
control of PMSM with constraint
optimization

In this chapter, the main focus is dedicated to a design of a simple and computationally efficient

predictive speed control of PMSM based on CCS-MPC (see section2.3.1), which achieves opti-

mal performance in steady state as well as transients and. Existing solutions (e.g. [31]), usually

requires relatively high computational resources.

It has been shown, that analytical solutions of the control problem can be incorporated

into the cost function of the MPC formulation which allows to obtain good results even for

short prediction horizon. Specifically, in this chapter, SDRE (see section 3.4) is used to solve

the unconstrained optimization problem on long prediction horizon which is combined with

constrained manager. The unifying principle is the principle of limited lookahead policy (section

2.4.1). The resulting optimization routine forms a convex problem (see section2.3.1) and can

be solved using geometrical interpretation of the problem.

4.1. MPC formulation

We propose to solve the speed control of a PMSM drive by optimization of the following control

problem

u
opt
t:t+h

= arg min
ut:t+h∈U

t+h∑
τ=t

(λωgω(ωτ , ω
∗
τ ) + λigi(id,τ , iq,τ ) + λugdin(ut, ut−1)) ,

subject to: c1 : i2d,τ+1 + i2q,τ+1 ≤ I2
max,

c2 : (iΨd + id,τ+1)2 + ξi2q,τ+1 ≤ I2
FW ,

c3 : xτ = f(xτ , uτ ), ∀τ = t, t+ 1, . . . , t+ h,

(4.1)
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where, the c1 and c2 are the maximum current constraint and field-weakening constraint lying

on the FW curve (3.15), with substitutions iΨd = ΨPM
Ld

, ξ =
L2
q

L2
d

, and IFW = ζ Umax
|ω|Ld

. In

contrast to (3.3), the cost has an additional penalization of the difference of the input voltage

gdin = (ut−ut−1)2 which is common in SDRE. The constraints c1 and c2 are identical to those

proposed in [63], with the distinction, that they are used as hard constraints and only for first

value on the horizon. This simplification is important for computational cost and we will show,

that it has negligible impact on the performance.

Since constraints c1 and c2 are active only at time t + 1, optimization for t + 2 and

further on is unconstrained. Thus we can substitute the SDRE solution derived from (2.24) into

the cost function (4.1). This yields the following one step ahead optimization problem

u
opt
t = arg min

ut(xt)

{
(ut − usdre)TY (ut − usdre)

}
, (4.2)

subject to:

c1 : i2d,t+1 + i2q,t+1 ≤ I2
max, (4.3)

c2 : (iΨd + id,t+1)2 + ξi2q,t+1 ≤ I2
FW , (4.4)

where the simplification of the SDRE solution has a consequence that it does not con-

sider constraint on the torque. This may produce undesired side effects. A solution to this

problem was suggested in [38] using modification of the speed tracking error. Specifically, we

introduce saturation of the speed tracking error

∆ω =


∆ωmax if (ω∗t − ωt) > ∆ωmax,

−∆ωmax if (ω∗t − ωt) < −∆ωmax,

ω∗t − ωt otherwise.

(4.5)

This limit prevents extreme values of the linear controller at step changes. This is a heuristic

solution of the operation on the current limit for longer horizon. It was proposed in [38] as one

of many heuristics. It is possible to use the full non-linear cost-to-go presented in [38] using

local quadratic approximation. However, in our experiments, we found (4.5) to be sufficiently

accurate solution of the cost-to-go saturation.
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4.2. Convex constrained optimization

The main contribution of this chapter is an efficient and simple algorithm for constrained opti-

mization, solving (4.2-4.4), which is essentially the convex optimization problem (see chapter

2.3). The aim is to achieve accuracy comparable to solvers used in [31] at much lower compu-

tational cost. For clarity of explanation, we reformulate the problem to the current space, where

most of the constraints are defined. Formulation in the voltage space is also possible, however,

it would not be as intuitive.

We note that the stator current vector it+1 is modeled by a first order model:

it+1 = Ai(xt)it +Biut, (4.6)

where Ai(xt) and Bt are blocks of the matrices A(xop) and B(xop) from (2.6) corresponding

to the current equations and ut is stator voltage vector. Since matrix Bi is invertible,

ut = B−1
i (it+1 −Ai(xt)it), (4.7)

Than projection of the unconstrained control input obtained in 4.2 to the current space as

iunc
t+1 = Ai(xt)it +Biu

unc
t . (4.8)

Rewriting (2.24) as

u
opt
t = arg min

ut(xt)

{
(ut + Lxt)

TY (ut + Lxt)
}
, (4.9)

and substituting (4.7) and uunc
t in to it we obtain:

i
opt
t+1 = arg min

it+1

{(
(B−1

i (it+1 −Ai(xt)it)− (B−1
i (iunc

t+1 −Ai(xt)it)T
)
Y

(
(B−1

i (it+1 −Ai(xt)it)− (B−1
i (iunc

t+1 −Ai(xt)it))
)}
⇒

⇒ arg min
it+1

{(
(B−1

i ((it+1)− (iunc
t+1))

)T
Y
(
(B−1

i ((it+1)− (iunc
t+1))

)}
, (4.10)
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which yields

i
opt
t+1 = arg min

it+1

{
(it+1 − iunc

t+1)TΦ(it+1 − iunc
t+1)

}
(4.11)

subject to: c1(it+1), c2(it+1),

where Φ = B−Ti Y B−1
i with Choleski decomposition Φ

1
2 , Φ = (Φ

1
2 )TΦ

1
2 . Further simplifica-

tion can be achieved by one-to-one transformation it+1 = Φ
1
2 it+1 under which the optimization

problem becomes:

i
opt
t+1 = arg min

it+1

{
(it+1 − i

unc
t+1)T (it+1 − i

unc
t+1)

}
subject to: |Φ−

1
2 it+1| < Imax, (4.12)

|ΞΦ−
1
2 (it+1 − i

Ψ
t+1)| < IFW ,

where iΨt+1 = Φ
1
2

[
iΨd

0

]
, Ξ =

[
1 0

0
√
ξ

]
. The optimization problem (4.12) will be solved for

i
opt
t+1 and the optimal stator voltage vector found as

u
opt
t = B−1

i (Φ−
1
2 i

opt
t+1 −Ai(xt)it). (4.13)

4.3. Simplified solution of the convex constraint

optimization

We derive a simplified optimization algorithm based on the assumptions, that the matrix Φ is

diagonal and thus axis of all constraining ellipses are aligned with the d-q coordinate system1.

Without loss of generality, we assume that the SDRE solution has form Φ = diag([1, φ2]).

Under this assumption, constraints c1 and c2 become

c1 : i
2
d + i

2
qφ
−2 ≤ I2

max, (4.14)

c2 : (id + iψd )2 + i
2
qφ
−2ξ ≤ I2

FW , (4.15)

i.e. two ellipsis centers [0, 0], [−iψd , 0] and radii [Imax, Imaxφ], [IFW , IFWφξ
−0.5], respectively.

Since all variables are in time t+ 1, we omit its explicit mentioning in the notation for clarity.

1Extension to general case is possible but it would involve additional rotations that are not needed in many appli-
cations.
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īq

īd

S3

S2(in)
S5

S1(in)

c1

c2

S4

S2(out)
S1(out)

ic2 ic1

iunc

iint−

iint+

Figure 4.1.: Decomposition of the space for optimal solutions, dashed lines denote normals to
the ellipses at their intersection. Feasible set S5 is denoted by gray area. Illustra-
tion of projection of unconstrained solution iunc to ellipse c1 is denoted by ic1 and
projection to ellipse c2 by ic2. Intersection of ellipses is denoted by iint

+ and iint
− .

The optimization problem (4.12) is essentially minimization of Euclidean distance to

the unconstrained solution iunc, hence the optimum solution is obtained by projection onto the

feasible set, as illustrated in Fig. 4.1. This general task of convex optimization can be solved by

geometric intuition:

1. In lower speed region, only constraints c1 can be violated. The optimal solution is then

a projection of iunc to ellipse c1 (), which will be denoted ic1. If the constraint is not

violated ic1 = iunc.

2. If only constraint c2 is violated, the optimal solution is projection of iunc to c2 which will

be denoted ic2.

3. Loaded operation at high speed requires to operate the machine at the intersection of

ellipses c1 and c2. Efficient algorithm for computing the intersection points iint is given

in.

The key question is which of the three cases above is optimal at the current state. Decisions

based on comparing speed with reference has been proposed [31], however, they are not optimal

in transients. Therefore, we propose a new solution based on convex optimization results.

From Fig. 4.1 it is obvious, that the optimal projection depends on the position of

the vector iunc in the current plane. If the unconstrained current vector iunc belongs to S2, the

optimal solution is projection ic1. In such a case, projection ic2 will lie outside of constraint
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c1, i.e. ic2 6∈ c1. This combination of ic1 ∈ c2 and ic2 6∈ c1 is unique for S2. The full set of

equivalences is then (see chapter 2.3.1) :

iunc ∈ S1 ⇐⇒ ic1 6∈ c2, ic2 ∈ c1,

iunc ∈ S2 ⇐⇒ ic1 ∈ c2, ic2 6∈ c1,

iunc ∈ S3 ⇐⇒ ic1 6∈ c2, ic2 6∈ c1, i
unc
q,t+1 > 0,

iunc ∈ S4 ⇐⇒ ic1 6∈ c2, ic2 6∈ c1, i
unc
q,t+1 < 0,

iunc ∈ S5 ⇐⇒ ic1 ∈ c2, ic2 ∈ c1.

(4.16)

When none of the projections satisfy both constraints (sets S3 and S4), the solution is at the

intersection of both ellipses, denoted iint
+ and iint

− . The sign of the q component is equal to the

sign of the q component of the unconstrained solution. Note that the ellipses can be also disjoint,

e.g. when dc-link voltage suddenly drops in field weakening regime. In such case, constraint c1

has higher priority and the optimal solution is iopt = [−Imax, 0].

Conditions on the right hand side of (4.16) allow to design a very efficient control design

presented in algorithm 4.1.

4.4. Simulations

The proposed control approach was tested on a system (PMSM drive prototype) with sampling

time ∆t = 125µs, dc-link voltage Udc =100V and parameters (see Table A.1)

Since the main contribution of this chapter is the constrained optimization algorithm,

we present the simulation results with perfect state information for clarity. The controller for

state reference x∗t = [0, 0, ω∗t , 0, 0, 0] and penalization matrices

Q
1
2 = diag([0.4, 0.4, 1, 0, 0]),

R
1
2 = 2× 10−4 diag([1, 1]).

(4.17)

was designed using the SDRE approach. The penalization of the currents in d and q axis is iden-

tical since the resistive losses are also identical. The penalization for the ud and uq differences

is also chosen as symmetric.

Using (4.17) and model (2.6) in the SDRE design procedure with polynomial interpo-
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Algorithm 4.1 Simplified solution of the convex constraint optimization with SDRE lookahead.
Off-line (SDRE):

1. Design approximate linear model of the controlled system 3.13with matrices
A(xop), B(xop).

2. Choose quadratic loss function (3.18) with appropriate penalization matrices Q, R.

3. Design the unconstrained solution of the optimization problem by solving the SDRE (4.2).

4. Validate results of the optimized closed loop. If not successful GOTO 2.

On-line (Simplified constrained one-step optimization):

1. Project the unconstrained optimal control input uopt
t to the current space (4.8)

2. Project iunc to c1 and c2 (see fig 4.1) and select the optimal constrained current iopt found
by simple procedure as follows:

1: ic1 := projection(iunc, c1)
2: ic2 := projection(iunc, c2)
3: if (ic1

d + iΨd )2 + (ic1
q )2φ−2ξ ≤ I2

FW thenCommentS2 or S5

4: iopt := ic1

5: else . S1, S3, S4

6: if (ic2
d )2 + (ic2

d )2φ−2 ≤ Imax then . S1 or S5

7: iopt := ic2

8: else . S3, S4

9: if IFW + Imax > iΨd then . Intersection exists
10: iint := intersect(c1, c2)
11: i

opt
d := iint

d

12: i
opt
q := sgn(iunc

q )iint
q

13: else . Secure c1, ignore c2
14: iopt := [−Imax, 0]
15: end if
16: end if
17: end if
18: return iopt

3. Compute the optimal control action uopt (4.13) corresponding to the iopt

4. Apply the optimal control action uopt via PWM
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Figure 4.2.: Comparison of the current trajectory of the proposed SDRE controller with the
MTPA trajectory on speed control of PMSM drive at startup and speed reversal of
el. rotor speed of ω = ±100rad/s under current limit Imax = 20A. Top left:
simulated speed of the drive and speed reference. Bottom left: flux and torque
component of the stator current current vector in the dq reference frame (idq). .
Right: trajectory of the current vector in the dq plane and its comparison with
MTPA trajectory.

lation, we obtain controller in form (2.34):

uunc
d,t =− 27id,t − (1.9e− 3ωt + 1.8e− 3iq,t)iq,t (4.18)

− (−6.5e− 3ωt − 0.2iq,t)∆ω + 2e− 4id,tiq,t

− (1.7e− 3ωt + 0.064iq)TL,t + 3e− 4ud,t−1.

uunc
q,t =− 32iq,t + 1.7e− 3ωt − 8.5e− 2iq,tid,t+ (4.19)

− (79 + 3.9e− 3id,t − 2.9e− 4− i2q,t)∆ωt+ (4.20)

+ (27 + 7.2e− 2id,t + 2e− 4i2d,t − 2e− 4i2q,t)TL+

− 2.3e− 4i2d,tiq,t + 2.5e− 4uq,t−1,

where the only requested value is ω∗ entering the equation via ∆ω given in (4.5). Substitution

i
op
d = id,t, i

op
q = iq,t and ωop = ωt was already made.

The second output of the Riccati equation is matrix Y =

[
1.16 0.01

0.01 0.96

]
with state-

dependent variations lower than 1% of the values which will be neglected. Due to low values

of off-diagonal elements, the approximation of the matrix Φ proposed in Section 4.3 is well

justified with φ2 =1.05.
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Figure 4.3.: Comparison of the current trajectory of the proposed SDRE controller with the
MTPA trajectory and FW constraints on speed control of PMSM drive at startup and
speed reversal of el. rotor speed of ω = ±230rad/s under current limit Imax =20A.
Top left: simulated speed of the drive and speed reference. Bottom left:flux and
torque component of the stator current vector in the dq reference frame (idq). Right:
trajectory of the current vector in the dq plane and its comparison with the MTPA
trajectory and FW constraints.

4.4.1. SDRE solution follows the MTPA curve

Validation of efficiency of the SDRE solution with respect to non-linearities is presented by

comparison of the current trajectory under SDRE control and the MPTA rule (3.14). The results

of simulation of the proposed control strategy for step change of the requested rotor speed from

0 to 100rad/s and reversal to −100rad/s is displayed in Figure 4.2. We note that the current

vector follows the MTPA trajectory very accurately when the current is decreasing from the

limit to zero. Slight deviation from the MTPA is notable when the current is increasing from

zero to the limit (isolated dots right from the MTPA curve in Figure 4.2 right). We conjecture

that this is due to the local linearization that is inherent in the SDRE approach.

4.4.2. Field weakening operation

The results of simulation of the proposed control strategy for a step change of the requested

speed from 0 to 230rad/s and reversal to −230rad/s is displayed in Figure 4.3. The current

vector in dq reference frame follows the MTPA trajectory at the beginning. When the cur-

rent limit constraint is reached, the trajectory is kept at the intersection of the current limit and

MTPA. With increasing speed, the current vector is moved to intersection of the current limit

(curve c1) and FW constraints. As the speed approaches the reference, the torque is decreas-
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Figure 4.4.: Speed control of PMSM drive at startup and speed reversal of el. rotor speed of
ω = ±230rad/s under current limit Imax =20A. Top left: measured speed of the
drive and speed reference. Bottom left: flux and torque component of the stator
current current vector in the dq reference frame (idq). Right: trajectory of the
current vector in the dq plane and its comparison with the MTPA trajectory and FW
constraint.

ing and the current follows the FW curve at the actual speed. The current vector leaves c1 at

ω =221rad/s and ends at the requested ω =230rad/s, Figure 4.3.

4.5. Experimental results

A laboratory prototype of the PMSM drive with the same parameters as in the simulation (see

TableA.1) was used to verify the approach experimentally. The proposed algorithm was imple-

mented in digital signal processor Texas Instruments TMS320F28335. Computational times of

individual blocks of the controller are displayed in Table 4.1. The computational time of the

constraint manager corresponds to the worst case scenario, i.e. computation of the ellipse in-

tersection Since the most expensive operation of the constraint manager is inverse square root,

further computational savings can be achieved using its approximation [70].

Tuning of the controller was identical to that in simulation, i.e. (4.18) and (4.20). How-

ever, the perfect state values were replaced by the output of the Kalman observer which was de-

signed with covariance matrices Σx = diag(1, 1, 1e−8, 5e−6) and Σy = diag(0.01, 0.01, 0.0001).

However, all variables in the subsequent Figures are displayed before any filtering to visualize

real conditions as close as possible. The rotor speed is obtained by moving average filter of nu-

merical differentiation of the rotor position. Therefore, quantization effect of the rotor position

encoder are visible as a ripple on the unfiltered speed.
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Figure 4.5.: Speed control of PMSM drive under load at el. rotor speed of ω = 100rad/s.
Top left: measured speed of the drive and speed reference. Bottom left: flux and
torque component of the stator current current vector in the dq reference frame (idq).
Right: trajectory of the flux and torque component of the stator current (idq) and its
comparison with the MTPA trajectory.

Table 4.1.: Execution times of steps of the algorithm
operation exec. time

data acquisition 3.3µs
Kalman filter 3.1µs

delay compensation 0.9µs
SDRE controller evaluation 3µs

constraint manager < 7µs

total 17.3µs
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Results of the startup and speed reversal ±230rad/s are displayed in Figure 4.4 for

repeated runs. Note that the current vector operates within the constraints in the same manner

as in simulations. Slight fluctuations of the current are caused by minor fluctuations of the

dc-link voltage.

Response of the drive to load is displayed in Figure 4.5. Note that even in the loading

scenario, the current also follows the MTPA trajectory.

4.6. Conclusion

In this chapter we have proposed an algorithm for cascade-free speed control of a PMSM drive.

It combines results of unconstrained control strategies with explicit constraints on the stator cur-

rent and input voltage. The focus of the solution is on efficient implementation. Therefore, we

implement the unconstrained SDRE solution using gain scheduling approach. The main contri-

bution is computationally efficient constraint manager. We show that it is sufficient to compute

only two projections to ellipses and one ellipse intersection to obtain optimal solution. The

resulting algorithm provides optimal behavior of the drive comparable to expensive predictive

control strategies at the computational cost comparable to cascade PID control.
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5. FCS-MPC with limited lookahead to
reduce switching frequency in speed
control of PMSM

In electric drive the power converter has limited number of admissible switching combinations.

Thus FCS-MPC (see chapter 2.3.2) is a natural approach to control of power converters and ac

drives. Evaluation of FCS-MPC is computationally efficient on one step ahead horizon. Ex-

tension to longer prediction horizons improves the performance but at the expense of increased

computational cost. The benefits of the extended prediction horizon, however, becomes obvi-

ous, when we deal with the control objectives with long time constants where the control action

influences the behavior of the drive very slowly. This is the case of PMSM speed control, where

the speed is changing relatively slowly compared to the stator current.

We propose to lower the computational burden of the brute force search over the se-

quence of control inputs ut, ut+1, . . . ut+h, by approximation of the longer horizon using con-

tinuous control set. Similarly to the previous CCS-MPC approach (chapter 4), only optimal

control input in time t is constrained (uopt
t ∈ U) and the optimal inputs beyond uopt

t+1 are un-

constrained. The resulting algorithm is computationally as cheap as the conventional one step

FCS-MPC, however it provides the solution respecting long prediction horizons. A similar solu-

tion has been presented in [71] where the approximation of the solution of the optimal control on

long prediction horizon has been used as region of the attractions in combination with explicitly

given constraints.

FCS-MPC provides an elegant solution to the managing the state and input voltage

constraints, moreover, unlike the PWM based approaches, the switching of the power converter

is directly influenced by the controller. From the efficiency point of view, we wish to reduce the

switching of the power converter and so decrease the switching losses to its minimum. On the

other hand, the lower switching frequency results in increase of the current distortion. Thus the

control needs to consider both criteria. This phenomenon has been addressed for example in [7]
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In this chapter, we intend to minimize the average switching frequency of the FCS-MPC

which is used for speed control of PMSM, while keeping the stator current distortion as low as

possible. The SDRE has been used to approximate the cost to go function which is then added

to the one step FCS-MPC as an additional term in the cost function.

5.1. MPC formulation

Consider a speed control of PMSM defined as (3.3) with the mathematical model (3.13). In this

case, the control action is selected from limited set ut ∈ {u(1)
t , . . . , u

(7)
t }, which is defined by

admissible switching combinations of the converter {000, 001, 010, 100, 011, 101, 110} (Fig.

5.1), where 1 or 0 defines the states of respective switches. Finding the optimal control action is

uα

uβ

V1(100)

V2(010)

V0(000/111)

V3(010)

V4(011)

V5(001) V6(101)

Figure 5.1.: Admissible switching combination of three-phase inverter and corresponding out-
put voltage vectors

achieved by brute-force search over the admissible ut and finite prediction horizon, thus the hard

state constraints can be simply addressed by additional terms in the cost function, penalizing the

violation of those constraints (see chapter2.5) The FCS-MPC for speed control of PMSM can

be, then, formulated as,

u
opt
t:t+h = arg min

ut:t+h∈U

t+h∑
τ=t+1

(λωgω(ωτ , ω
∗
τ )+

λigi(id,τ , iq,τ ) + λLgL(id,τ , iq,τ ) + λfwgfw(id,τ , iq,τ ) + gdin(uτ , uτ−1)) (5.1)
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subject to:xτ = f(xτ , uτ ),

∀τ = t, t+ 1, . . . , t+ h,

where, gω and gi are defined as in (3.1) and (3.2), gL is a penalty function respecting the hard

stator current constraints defined as

gL = χ (
√
i2d,t + i2q,t)− Imax), (5.2)

χ =


0 if (

√
(i2d,t + i2q,t)5Imax)

1 if (
√

(i2d,t + i2q,t) > Imax)
,

and gfw is used to respect the limited input voltage vector ut and it is derived from (3.15) as

gfw = γ
√

(Lqiq,t)2 + (Ldid,t + Ψpm)2 − ζUc√
3ω
, (5.3)

γ =

0 if (
√

(Lqiq,t)2 + (Ldid,t + Ψpm)2 − ζUc√
3ω

) < 0

1 otherwise
.

The last term gdin = λu,ddud+λu,qduq, dud = (ud,t−ud,t−1)2, duq = (uq,t−uq,t−1)2 is used

to penalize the difference of the input voltage similarly as in (4.1). However, here it has a distinct

meaning. Note that due to discrete nature of the action set, this penalization is either zero, if

the same combination is preserved but rather high when the switching combination is changed.

This allows to penalize the change of the switching combination and therefore minimize the

switching effort of the converter. In order to evaluate the the switching effort of the converter

we define the average switching frequency as

faw,t+1 = fs

(
0.99faw,τ + 0.01

(
sa + sb + sc

3

))
, (5.4)

where fs is a sampling frequency of the algorithm and sa,b,c defines the switching transition in

corresponding phases of the converter during one sampling period of the algorithm.

Since extensive part of (5.1) is quadratic, we can apply the same idea of approximating

the horizon of the unconstrained control problem using SDRE, as in (4.1). This yields the

following one step FCS - MPC

u
opt
t = arg min

ut(xt)
{gunc(x̃t, ut) + λLgL(id,t, iq,t) + λfwgfw(id,t, iq,t)} , (5.5)
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where gunc is derived from (2.33) using the model (3.12) and quadratic cost function

gSDRE,t = (λqωgω(ωt, ω
∗
t ) λqigi(id,t, iq,t) + λqugdin(ut, ut−1)) . (5.6)

The final FCS-MPC can be then written as

u
opt
t = arg min

ut(xt)

{
(ut − usdre)TY (ut − usdre) + λlgL,t + λfwgfw,t

}
(5.7)

Note, that the constraints are addressed only in the FCS-MPC cost function on one step of the

prediction horizon. Further on the control does not consider hard constraints. The proposed

control design is summarized in Algorithm 5.1.

Algorithm 5.1 FCS-MPC with SDRE lookahead.
Off-line (SDRE):

1. Design approximate linear model of the controlled system 3.13 with matrices
A(xop), B(xop).

2. Choose quadratic loss function (5.6) with appropriate penalization,

3. Design the unconstrained solution of the optimization problem by solving the SDRE
(2.33) in the form (ut − usdre)TY (ut − usdre).

4. Validate results of the optimized closed loop. If not successful GOTO 2.

On-line (FS-MPC):

1. For all admissible control inputs u(i)
t ∈ U, i = 1, . . . , I evaluate cost function in ( 5.7)

2. Apply optimal- control input u(i)
t which minimize (5.7)

5.2. Simulations

The proposed control approach was tested on a PMSM drive system with parameters (see Table

A.1) and sampling time ∆t = 50µs. The penalization of the input voltage of the q axis is higher

than that of the d axis. We conjecture that this is because the q current has higher influence on

the speed which is also penalized (see below).
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5.2.1. Influence of input penalization

Direct comparison of the conventional and the SDRE lookahead cost functions is difficult due to

different effect of the tuning parameters. The most notable difference is however, the effect of

penalizations of the input differences (ut − u1−t). With increasing penalization of the change

of the switching combination, the switching frequency is decreasing which results in current

distortions (current ripple). The current ripple is also propagated into the speed ripple which

has an impact on the speed tracking error.

Tracking error of the state was evaluated using the cumulative quadratic cost function

G =

t2∑
τ=t1

(xτ − x∗τ )TQ(xτ − x∗τ ) (5.8)

where τ is a running index on a window of samples starting at time t1 and ending at time t2 and

Q is the penalization matrix which set the importance to a specific terms in the cost function.

Distortion of the phase current was evaluated numerically using the total harmonic distortion

plus noise (THDn), [72], of the phase current ia :

THDn(ia) =

√∑
j 6=jnom

I2
j

Ijnom

. (5.9)

evaluated on the same recorded time window 〈t1 . . . t2〉 (which was 0.25s) as the tracking error.

Its distinction from the classical THD is that indexes j in the numerator are not only multipliers

of the nominal frequency, but all frequencies in the spectrum typically excluding the dc and the

nominal frequency of the current. This measure is more informative than the classical THD in

the context of FCS-MPC [73].

Simulation studies using one step FCS-MPC with conventional cost (5.6) and proposed

cost SDRE (5.7) were performed using single penalization of Q = diag([0.01, 0.01, 1, 0, 0])

and a range of penalization of λu ∈
〈
10−8, 4× 10−6

〉
. Note, that the Q penalization has non-

zero penalization for tracking of reference currents i∗q and i∗d. We chose the same value 0.01

for both currents for simplicity. For higher penalizations of the currents, the control problem is

approaching the current control and the differences between the cost functions become smaller.

In general, penalizations of the currents lower the current ripple.

Two scenarios were tested: i) steady state operation at electrical rotor speed of 100 rad/s

with load torque of 6.25 Nm, and ii) steady state operation at electrical rotor speed of 800rad/s,

i.e. field weakening with i∗d = −15.7A. Since the penalizations are not directly comparable,
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we plot the speed tracking error (5.8) and the THDn of the phase current (5.9) as a function of

the average switching frequency in Fig. 5.2. Both methods were tuned to provide comparable

results. Note that for low penalizations λu (which are numerically different for each method),

both methods provide very similar results. However, with growing penalization of λu, the FCS-

MPC with the SDRE lookahead cost achieves significantly better results for the same average

switching frequency. We conjecture that this is due to the ability of the SDRE lookahead to

consider longer horizons.

Remark 5. As low penalization region we understand such penalization tuning, which results in

operation at 1.6-4 kHz of the average switching frequency.

5.2.2. Length of the receding horizon

To verify this conjecture, we run an experiment on multi steps optimization of the FCS-MPC

part of the horizon. The cost-to-go function of the SDRE lookahead approach is applied in

the original form (2.32), i.e. as an additional term after k ∈ {1, 2, 3, 4} optimization steps.

The optimization on the k steps of the FCS-MPC block is done by brute force search over all

possible switching combinations.

The mean square error of the speed control of a PMSM drive with parameters (see

Table A.1) running at 100 rad/s and 6.25 Nm load torque is displayed in Fig. 5.3 for Q =

([0.01, 0.01, 1, 0, 0]) and two values of penalization λu: low (10−8) and high (10−6). The per-

formance of the FCS-MPC without and with the SDRE lookahead cost-to-go are compared in

Fig. 5.3 via cumulative sum of cost functions g(). As expected, the control error of all algo-

rithms improves with the length of the FCS-MPC optimization horizon k. The improvement of

the conventional FCS-MPC is more significant, which is given by challenging properties of the

control task. The control with the SDRE lookahead cost also improves with the horizon length.

This is due to the fact, that SDRE is sub-optimal solution on the horizon because of incorrect

assumption of continuous control inputs.

The relative improvement of both approaches heavily depends on the penalization of the

input. For low penalization, the performance of FCS-MPC with conventional cost is comparable

for k = 3 and actually better for k = 4. For high penalization, the SDRE lookahead cost at

k = 1 is still better than the conventional cost at k = 4. This behavior can be understood

from evolution of the gains of the SDRE controller with increasing lookahead horizon, Fig. 5.3

right. For low penalization, only two elements of the controller gain change significantly with

increasing length of the lookahead horizon. Thus, the one step ahead optimal controller is

rather similar to that with infinite lookahead horizon. For high penalization, the controller
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a) normal operation at 100 rad/s with TL = 6.25Nm
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b) field-weakening operation at 800 rad/s with i∗d = −15.7A and with TL = 6.25Nm
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Figure 5.2.: The effect of switching loss minimization for the FCS-MPC with the conventional
cost and with the SDRE lookahead cost for normal operation and field weakening
operation. The average speed tracking error (left) and total harmonic distortion with
noise (THDn) were evaluated.
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high penalization of differences λu = 10−6,
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Figure 5.3.: Comparison of influence of the optimization horizon on the control cost of FCS-
MPC for speed control of PMSM running at 100 rad/s and 6.25 Nm load torque
for Q = diag([0.01,0.01,1,0,0]) and different penalization of the input λu = 10−8

(top row) and λu = 10−6 (bottom row). Each result is composed of comparison
of the control cost for FCS-MPC with and without the SDRE lookahead term (left
column) and gains of the SDRE for different lookahead horizon (right column).
The display of SDRE coefficients is zoomed to show smaller coefficients, the two
largest coefficients converge within few steps.
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Table 5.1.: Execution times of steps of the FCS-MPC algorithm
conventional SDRE

data acquisition 4.3µs 4.3µs
delay compensation 0.7µs 0.7µs

model prediction (Axt) 0.4µs
SDRE controller evaluation 0.7µs

cost evaluation for all combinations 11.7µs 11.1µs

gains change more significantly with longer horizon, reaching steady state values for lookahead

horizons longer than 10 steps. In both graphs, we omit the SDRE gain of the (ω − ω∗) term,

which has much higher value. It behaves similarly for both penalizations, reaching convergence

after 5 steps.

Remark 6. The same approach was applied to torque control operation of the drive. The differ-

ence between one step ahead approach and the SDRE extension was completely negligible.

5.3. Experimental results

A laboratory prototype of the PMSM drive with the same parameters as in the simulation (Ta-

bleA.1) was used to verify the approach experimentally. The control algorithm was imple-

mented in digital signal processor TMS320F28335.

We compared the classical one-step ahead FCS-MPC with the conventional cost and

the LQ lookahead cost. Both algorithms were run with control sampling period of 50µs. The

algorithm follows the conventional FCS-MPC timing [71] with execution times listed in Table

5.1.

Penalizations of both approaches were tuned to obtain as close performance in dynamic

operation as possible. Specifically, the penalization of the speed error in the conventional cost

(λω in (3.3)) has to be higher than that of the version with SDRE lookahead to achieve the same

dynamic behavior. For penalization of the switching combinations yielding average switching

frequency (5.4) of 2kHz, the behavior is almost equivalent, Fig. 5.4. In this rapid step change,

the dynamics is limited by the maximum allowed current, which is 20A, Fig. 5.4 lower row.

With growing penalization of the switching frequency, the distortion of the phase cur-

rents increases. In agreement with simulation, the SDRE lookahead cost exhibits much lower

distortion of the phase currents than the conventional cost. For average switching frequency of

550Hz the distortion (current ripple) becomes very visible, Fig. 5.5. Note that the switching

frequency rises to 2kHz during the transient for both methods, thus the current ripple is lower
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a) FCS-MPC with conventional cost b) FCS-MPC with the SDRE lookahead cost

ch1: ω∗
t (100rad/s/div), ch2: ωt (100rad/s/div), ch3: average switching frequency (2kHz/div), ch4: ia (10A/div),

ch4: iq (10A/div), ch3: id (10A/div),

Figure 5.4.: Comparison of FCS-MPC with conventional (left) and with the SDRE lookahead
cost (right) for step change of speed of PMSM drive from −100 to 100rad/s at
6.25Nm of load torque. Penalization λu was tuned to average switching frequency
2000Hz in steady state.
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a) FCS-MPC with conventional cost b) FCS-MPC with the SDRE lookahead cost

ch1: ω∗
t (100rad/s/div), ch2: ωt (100rad/s/div), ch3: average switching frequency (1kHz/div), ch4: ia (10A/div),

ch4: iq (10A/div), ch3: id (10A/div),

Figure 5.5.: Comparison of FCS-MPC with conventional cost (left) and with the SDRE looka-
head cost (right) for step change of speed of PMSM drive from -100 to 100 rad/s at
6.25 Nm of load torque. Penalization λu was tuned to average switching frequency
of 550Hz in steady state.
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Figure 5.6.: Frequency spectrum of the phase current of the FCS-MPC of PMSM drive running
at 100rad/s and 6.25 Nm load torque for conventional and lookahead cost function,
both tuned approximately to faw = 550Hz. (The window of FFT is 1s)

Table 5.2.: Total harmonic distortion with noise, THDn(ia), for steady state operation of the
drive at 100rad/s with 6.25 Nm nominal load.

average switching frequency 2000Hz 550Hz
THDn(ia) conventional cost 32% 94%

THDn(ia) SDRE lookahead cost 29% 44%

than that in the steady state. Frequency spectrum of the phase current in the steady state is

displayed in Fig. 5.6 for both methods.

Numerical evaluation of the THDn (5.9) of the phase current for the steady state op-

eration of the drive is presented in Table 5.2. In agreement with simulation in Fig. 5.2, the

improvement of the SDRE lookahead is minor for low penalization, however, it becomes more

significant with increasing penalizations of the switching losses.

Naturally, performance of the classical FCS-MPC can be improved by expert chosen

terms of the cost function. For example, the current ripple would be reduced by the additional

term with filtered value of the iq as proposed in [8]. However, the SDRE lookahead achieves

the same result without additional on-line computation and without additional tuning.
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5.4. Conclusion

In this chapter, we propose to extend the horizon of the FCS-MPC via approximation obtained

from an unconstrained solution on the infinite prediction horizons. Specifically, this approach

results in combination of two well known techniques, the SDRE control and the FCS-MPC

approach. The idea is that the SDRE controller provides an approximate cost-to-go on the

extended horizon of the FCS-MPC optimization. In effect, the SDRE methodology is used to

design a cost function that will be evaluated by the FCS-MPC. Advantages of this approach

were demonstrated on speed control of the PMSM drive, where the SDRE controller can be

computed off-line. Moreover, model of the system allows to simplify the cost function such

that its evaluation is very fast. The resulting FCS-MPC control is then used to handle the phase

currents constraints.

In order to highlight the benefits of long prediction horizon the conventional one step

FCS-MPC has been compared with with proposed solution with extended prediction horizon

by approximated cost to go function. For high switching frequencies, both approaches can be

tuned to obtain almost identical dynamic properties of the drive. However, with increasing

penalization of the switching effort, the SDRE lookahead term results in much lower distortion

of the phase currents.

The proposed approach is very simple and computational cost is relatively low thus it

can be easily implemented into conventionally used control hardware.
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6. Improved stability of DC catenary fed
traction drives using FCS-MPC with
lookahead

This chapter is concerned with control of a traction drive with PMSM fed from a DC catenary.

Contrary to the chapter 5, the control has to consider not only the the control of the PMSM

drive, but also needs to consider behavior of the dc catenary and input LC-filter. Specifically,

the catenary voltage is subject to short circuits, fast changes, harmonics and other disturbances

which can vary in very wide range. Therefore, the drive is equipped by the catenary input LC

filter. The filter is almost undamped by design in order to achieve maximum efficiency and

the control strategy needs to secure active damping of the filter to guarantee the drive stability.

This represents nonlinear MIMO control problem which is difficult to solve. Thus most of the

existing solutions approach each sub-problem (PMSM control and damping of the LC-filter)

separately, significantly simplifying the optimization problem. The crucial property of the con-

trol algorithm is to actively damp the LC-filter as well as provide excellent dynamic properties,

however those objectives are contradictory. In order to effectively resolve this problem, we

design cost function for active damping of the LC filter using approximation of the cost-to-go

function of the limited lookahead approach, which is used as an additional term in the one step

ahead FCS-MPC cost. The dynamic properties of the drive are guaranteed by optimization on

one step ahead horizon using the FCS-MPC.

6.1. Theoretical background of the phenomenon

One of the main constraints of design of traction vehicles control fed from a dc catenary are the

oscillations of an input catenary LC filter and the resulting instability of the traction drive. This

problem is even more complicated in multi-motor propulsion units which operate many drives

with their naturally almost undamped dc-link LC filters in parallel. The problems with the input
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Rf Lf

Uc

DC cantenary

Ut
Cf Iz

Figure 6.1.: Equivalent circuit of the dc catenary supplied traction drive with input LC filter

LC filter are closely linked with frequency characteristics of the whole drive and so-called “drive

resonant frequency”, e.g. [74].

The problem of oscillations of the catenary LC filter in dc catenary supplied traction

drives is known for many years, e.g. [75, 76]. Traction drives use an input LC filter and not

only a C-filter for the following reasons: (i) an effective limitation of the catenary current (due

to fast changes of the catenary voltage and short-circuit of the catenary), and (ii) EMC issues.

Thus, the LC filter is necessary for proper operation of the drive. On the other hand, the dc-link

LC filter has negative impact on the traction drive stability.

The specifics of the traction drive are: i) excellent dynamic properties of its control,

ii) the drive has a very high moment of inertia, i.e. the change of the vehicle speed is slow in

comparison with electrical time constants, and iii) the input to the drive controller is often the

maximum achievable torque command, which will be considered as a constant for the stability

analysis.

Under the above stated conditions, the drive consumes constant active power from the

dc-link filter under steady-state conditions. The equivalent circuit of the drive used for the

description of the LC filter resonance is shown in Fig. 6.1. Voltage-source converter and ac

motor can be replaced by an equivalent current source which models the filter load. The LC filter

resonance can be excited by many events – by the drive itself (e.g. unsuitable control commands

or drive harmonics) or from the outside. One of the most common effects from outside which

can excite the filter oscillations is the change of the catenary voltage which can vary very fast

due to different reasons. If the catenary voltage increases then the drive still takes the constant

power from the dc-link filter (constant torque command and negligible speed change within
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the time interval of investigated transient phenomenon). This may act as a positive feedback

(or negative-resistance effect) which results in dangerous oscillations of the dc-link filter. This

phenomenon can be also explained using frequency characteristics of the drive.

The resonant frequency of the drive is clearly changing with the change of the posi-

tion of the vehicle within the feeding section (change of the catenary parameters with varying

distance from the static substation). However, the drive resonance properties are also changing

with the drive operating point (for more details see [74]). A dangerous situation also occurs

when the resonance loop is composed of a two or more traction drives [77]. It is obvious that

the explained phenomenon significantly impacts the stability of the traction drive and must be

carefully considered during the drive design.

6.1.1. Possible solutions for mitigation of dc-link LC filter oscillations

Stability of the traction drive can be improved by either passive or active damping of the dc-

link LC filter. The passive damping requires addition of a damping resistor to the LC filter

circuit or detailed design of the filter [78]. Passive damping is a bulky and expensive solution

which moreover reduces the drive efficiency. Active damping of the dc-link LC filter is the

preferred solution in the modern traction drives. However, suitability of active damping of the

LC filter heavily depends on operating conditions of the drive. Active damping of the LC filter

is much more difficult in the low speeds where the drive power has smaller impact on damping

of the dc-link filter. These specific conditions are one of the operating states which needs to

be addressed by a braking chopper. The most common techniques of active damping has been

reported e.g. in [77, 79, 76]. In order to suppress only the resonant frequency, the dc-link

voltage is filtered using a band-pass filter. The band-pass filtering is one of the constraints of

these techniques, because the drive resonant frequency is significantly changing as described

in the previous section. Moreover, the band-pass filtering is further complicated in the drive of

locomotives and suburban units where the cut-off frequency of the LC filter is usually very low

in order to reinforce the damping of the danger drive harmonics which can disturb the railway

track circuits. We seek a general method that does not require a band-pass filter, or it is able to

tune the filter on-line.

6.1.2. Relation to other active damping approaches

Active oscillation damping is a common problem of many applications with rich literature and

many possible approaches. The applications range from stabilization of LC filter of a converter

[80, 81] or including model of the grid of network [82, 83, 84] to active suppression of bearing

63



Chapter 6. Improved stability of DC catenary fed traction drives using FCS-MPC with
lookahead

oscillations [85, 86] and two mass systems [87]. Since the root cause of the problem is similar

in all applications, the approaches are often closely related.

When LC filter is used in the drive application it is between the converter and the motor

[88, 89], where the chance of unstable oscillations is quite limited. Stability of the input filter is

much harder problem [90].

In this chapter, we investigate application of the model predictive control for improve-

ment of traction drive stability, specifically active damping of the catenary input LC filter.

Methodology of systematic design of appropriate cost functions is still an open problem

of the MPC approach, as well as its extension for longer prediction horizons [11]. Approaches

based on dynamic optimization [91] or polynomial approximations [92] have been investigated.

In this paper, we propose to use The FCS-MPC with limited lookahead to address both the

control of the LC-filter as well as traction drive control.

6.2. MPC formulation

The control problem is divided into two parts i) the torque control of PMSM and ii) active

damping of the LC filter.

6.2.1. Torque control of PMSM

Consider the mathematical model of PMSM in the form (3.5) - 3.6). For the sake of simplicity

we assume slowly varying speed and therefore dω
dt ≈ 0. Then the mathematical model becomes

linear and torque control of PMSM can be defined as minimization of the cost function

gT =
(
id,t − i∗d,t

)2
+ (iq,t − i∗q,t)2 + g2

L + λSgs, (6.1)

where

gL = χ (
√
i2d,t + i2q,t)− Imax), (6.2)

χ =


0 if(

√
(i2d,t + i2q,t)5 Imax)

1 if(
√

(i2d,t + i2q,t) > Imax)
(6.3)

where gLis the same as in (5.2) χ is the penalty function which imposes high penalty for viola-

tion of the condition in its argument (see section2.5). The last term gs is used to minimize the
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switching effort in order to reduce the switching losses,1

gs =
∑

x=a,b,c

(Sx,t − Sx,t−1), (6.4)

where Sa,b,c ∈ {0, 1} indicates the states of particular switches in each phase leg of the power

converter (i.e. 1 if the upper switch is open and 0 if the upper switch is closed) .

6.2.2. Input LC filter control

The equivalent circuit of the drive used for the description of the LC filter resonance is shown in

Fig. 6.1. The voltage-source converter and an ac motor can be replaced by an equivalent current

source which models the filter load. The associated LC filter can be modeled as:

dil
dt

= −
Rf
Lf

il +
1

Lf
(UT − Uc), (6.5)

dUc
dt

=
1

Cf
(il − iz), (6.6)

dUT
dt

= 0, (6.7)

where Rf , Lf and Cf are the resistance, inductance and capacitance of the LC filter; il is the

catenary current, UT is the catenary voltage and Uc is the voltage on the dc-link filter capacitor;

iz is the current consumed from the dc-link capacitor by the voltage-source converter and it

is considered to be the control input of the LC filter. The whole system interacts via current

equation

iz = iaSa + ibSb + icSc, (6.8)

where Sa,b,c is a switching function indicating open or close state of the upper power switch in

the given inverter leg and ia, ib, ic are the stator phase currents of PMSM.

Approximation of the full system (3.5)–(3.6) and(6.5)–(6.8) by a linear model is very

demanding due to non-stationary input voltage of the PMSM drive. Therefore, we neglect the

PMSM model and consider only the input LC filter in this part.

Note that the model of the LC filter (6.5)–(6.7) is linear with state vector xf = [il,∆Uc],

1Other terms can be added to achieve desired properties of the drive.
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∆Uc = UT − Uc,
dxf
dt

=

−Rf

Lf

1
Lf

− 1
Cf

0


︸ ︷︷ ︸

Acf

[
il

∆Uc

]
+

[
0
1
Cf

]
︸ ︷︷ ︸
Bcf

iz, (6.9)

The mathematical model (6.9) is discretized for sampling time ∆t (reminder from chapter2.1)

Af = exp(Acf∆t),

Bf =

∫ ∆t

0
eAcf (∆t−σ)Bcfdσ.

(6.10)

Here, Afand Bf are constant matrices of appropriate dimensions. Then the discrete form of

state space model is

xf,t+1 = Afxf,t +Bfxf,t. (6.11)

The cost function for active damping is designed to penalize differences from a steady state

solution, which will be denoted by x∗, i.e.

gf,t = (xf,t − x∗f,t)Qf (xf,t − x∗f,t) + (iz,t)
2λ2

z, (6.12)

where Qf = diag(λl, λC) and λz are chosen penalizations. We use standard constant reference

model for state and input variables fx∗ : x∗t+1 = x∗t , fu : iz
∗
t+1 = iz,t.

The requested value of the current i∗l is obtained from the power balance equation of

the drive. Specifically, we want the energy flowing from the catenary through the LC filter to

match the energy consumed by the drive:

i∗l,tUT,t = i∗q,tu
∗
q,t + i∗d,tu

∗
d,t, (6.13)

where u∗q,t and u∗d,t are given by the steady state solution of the drive

u∗d,t = Rsi
∗
d,t − Lsqi∗q,tωt, (6.14)

u∗q,t = Rsi
∗
q,t + Ψpmωt + Lsdi

∗
sd,tωt, (6.15)

for the requested current i∗q,t and the field weakening current i∗d,t, which is either zero when the

drive operates in the region from zero to nominal speed or it is given by a solution of equality
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in (3.15) (see e.g. [71] for details). The remaining steady state solutions are:

i∗z,t = i∗l,t, ∆U∗C,t = Rf i
∗
l,t. (6.16)

Here, the first equality follows from the steady state solution of (6.6) and the second equality

from the steady state solution of (6.5).

6.3. FCS-MPC with lookahead

Since the model of LC filter (6.9) is linear, with quadratic cost function (6.12) we propose to

use LQR (see Chapter 2.6.1) for design of control of the LC filter. The input of the LC filter is

the current iz , hence the optimal input is obtained by linear feedback

iLQ
z,t = −Lf x̃f,t,

where Lf is designed using matlab function dlqr.m and x̃f,t = [il,t,∆Uc,t, i
∗
l,t, i

∗
z,t] denotes

the augmented state vector. This implies cost-to-go function

Ṽf (x̃f,t) = λLC(iz,t + Lf x̃f,t)
2, (6.17)

where λLc is a result of optimization (see 2.24), however it can be also tuned manually due to

its direct dependence on penalization Qf .

Using methodology from Section 2.4.1, active damping of the LC filter and torque

control of PMSM can be elegantly combined in one step ahead optimization of FCS-MPC. The

optimization problem is defined as follows

u
opt
t = arg min

ut∈UFCS

(gT,t+1 + Ṽf (x̃f,t+1)), (6.18)

In effect, the resulting control algorithm acts as a cascade controller, where the LQR provides

a set point i∗z,t for the FCS-MPC controller, see Fig. 6.2The proposed algorithm is described in

algorithm 6.1.
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Algorithm 6.1 Design procedure of the FCS-MPC with LQ lookahead for control of the traction
PMSM drive fed from DC cantenary.
Off-line (LQR):

1. Design approximate linear model of input LC-filter with matrices Af , Bf6.11.

2. Choose quadratic cost function gf,t with penalization matrices Q, R (6.12).

3. Design the approximate cost to go function in the form Ṽf (x̃f,t) = λLC(iz,t + Lf x̃f,t)
2

(6.17), where Lf is designed using matlab function dlqr.m. Note that the cost to go
function Ṽf (x̃f,t) is designed only for the input LC-filter .

4. Validate results of the optimized closed loop. If not successful GOTO 2.

On-line (FS-MPC):

1. For all admissible control inputs u(i)
t ∈ U, i = 1, . . . , I evaluate (gT,t+1 + Ṽf (x̃f,t+1)) in

(6.18)

2. Apply optimal control input u(i)
t which solves (6.18)

Converter

cost

PMSM

Lf , λLC

Rf Lf

Cf
UT

Uc

i∗z

combination

ω, ϑ
ia,b,c
Uc, UT

System

iz

LQ controller

model prediction &

iz id iq

i∗q , i
∗
d

ia, ib, ic

ω, ϑ

switching

param. steady state solution

x∗fxf

miminization

i∗z

Figure 6.2.: Control scheme of the two stage predictive controller, where FCS-MPC is used in
the first stage (short horizon) and LQR in the second stage (long horizon).
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6.4. Simulations

The proposed control approach was tested on a system with parameters in Table A.3 and sam-

pling period∆t = 50µs, In the first experiment, we compare properties of the LC filter. Sub-

stituting parameters of the filter Table A.3 into (6.9), we obtain linear model with eigenvalues

at [0.99998, 0.99998], i.e. almost at the stability boundary. Any disturbance can thus cause

undamped or even unstable oscillations.

Since the LQR design yields linear controller, the properties of the closed loop can be

tested using standard linear systems theory. This can be helpful for tuning of the penalization

terms λC , λl and λz . We may design controllers for different penalization values and check the

closed loop properties.

It remains to tune the relative penalizations, denoted by λ̄∗, starting from a natural

choice λ̄∗ = 1. For better intuition of the penalization matrices, we use penalizations inversialy

proportional to the range of the variable, e.g.

λC =
λ̄C

(UC,min − UC,max)2
,

where variable ranges for the system are:

UT = UC ∈ 〈400, 900〉V, il ∈ 〈−125, 125〉A,

iq ∈ 〈−212, 212〉A, id ∈ 〈−212, 0〉A.

Tuning of the penalizations is done in three steps:

1. Penalizations of the PMSM drive (λ̄d, λ̄q and λ̄S) are tuned in ideal conditions with stable

catenary supply. The aim is maximum dynamic performance of the drive. λ̄S is tuned to

reach the required average switching frequency (see 5.4) of 5kHz.

2. Penalizations of the LC filter (λ̄C , λ̄L and λ̄z) are chosen using properties of the closed

loop of the LC filter such as damping ratio of resonance frequency, see Figure 6.3. Note

that: i) the penalization term λ̄C has the greatest influence on damping of the oscillations,

and ii) increase in λ̄l is increasing the resonance frequency of the closed loop, while λ̄C
has negligible effect in this range.

3. Final check of the full system using simulations. It is necessary to check that the con-

tribution of the LQR term is always lower than the limits for the hard constraints on the

current in (6.1).
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Figure 6.3.: Theoretical properties of the closed loop of the LC filter controlled by the LQR for
different values of relative penalizations λ̄l and λ̄C and constant λ̄z = 1.

A suitable tool for final tuning of both components of the controller is the coefficient λLC in

(6.17). Multiplying this value by a chosen constant c correspond to multiplication of all pe-

nalization matrices in cost function of the LC filter by the same constant. Thus by modifying

λLC we preserve the closed loop performance of the LC filter and only tune the importance of

LC-filter damping term in the cost function relative to the torque command tracking.

As a first scenario, we simulated acceleration and deceleration of the tram with fixed

torque current command of 150 A (motor mode) and −150 A (braking mode), respectively.

We neglected the torque command ramp and considered an extreme step change of the torque

current command. The cost function of the PMSM drive was same for all controllers with

relative penalizations λ̄d = λ̄q = 1. Penalization of the switching of IGBTs was chosen as

λ̄S = 0.002 for which the average switching frequency of the converter is the requested 5kHz.

Without active damping, the capacitor voltage oscillates uncontrollably (6.4 a)). Two active

damping terms were tested: i) the LQ controller designed with relative penalizations λ̄l = λ̄z =

λ̄c = 1 and with relative weight λLC = 500; and ii) the conventional damping

gUC,t = gT,t + (Uc,t+1 − Uc,f,t)2 λ̄uc
(UT,min − UT,max)2

, (6.19)

where Uc,f,t is the capacitor voltage filtered by a low-pass filter with cutoff frequency of 100Hz

and relative penalization λ̄uc = 1. This method is closely related to the approach of [93]. The
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results are displayed in Figure 6.4. Note that performance of both active damping terms is
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Figure 6.4.: Start-up, tram acceleration to 10km/h and deceleration to zero speed under FCS-
MPC: a) without active damping, b) active damping using the proposed LQ ap-
proach, and c) conventional damping with filtered Uc; step change of torque current
command to 150A (motor mode) and −150A (braking mode), respectively. Top
rows: catenary and filter capacitor voltage. Bottom rows: torque (iq) and flux (id)
components of the stator current vector and electrical rotor speed (ω).

comparable, with LQR resulting in lower dc-link voltage oscillations and smaller differences

from the requested torque current command.

More demanding scenario is the step change of the catenary voltage from 600V to

550V . The torque current command i∗q was kept constant at 150A for the whole time of the

simulation. If the drive was controlled by the FCS-MPC controller with only the PMSM cost

(6.1), the reference current was followed exactly, however, the drop of the catenary voltage

resulted in undamped oscillations (Figure 6.5a). Results of the same test with active damping

terms designed with the same penalizations as in the previous scenario are displayed in Figure

6.5 b) and c), respectively. Note that in this case, the active damping based on LQR lookahead
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approach (left) secures significantly better damping of the oscillations of the filter capacitor

voltage and the control intervention in the torque current is also evidently smaller than in case

of the conventional approach (right). In this simulation, the LQR active damping results in

slightly lower switching frequency (4.7kHz) than without the LQR lookahead term (5kHz).
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Figure 6.5.: Effect of a step change of the catenary voltage from 600 to 550V under FCS-MPC:
a) without active damping, b) with active damping designed via LQR lookahead,
and c) via conventional approach; fixed electrical rotor speed of 100rad/s and
torque current command of 150A. Top rows: catenary and filter capacitor voltage.
Bottom rows: torque (iq) and flux (id) components of the stator current vector and
electrical rotor speed (ω).

6.4.1. Stability of the closed loop

Since parameters of the input catenary filter vary with position of the vehicle at supply section,

it is necessary to study properties of the closed loop for different values of the input filter total

inductance which is the sum of the fixed filter inductance (Table A.3) and varying equivalent

inductance of the catenary. Therefore, we investigate properties of the closed loop with constant
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controller, but varying Lf of the controlled system. Specifically we study the damping ratio and

resonance frequency, 2, which characterize the frequency properties of the second order system.

A Matlab function damp.m can be used for this purpose. Results of the sensitivity study to the

increase of the total filter inductance is displayed in Figure 6.6.
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Figure 6.6.: Sensitivity study of the closed loop of the LC filter to increase of the total filter
inductance.

Note that the less damped closed loop behavior is expected for the minimal filter induc-

tance, which is achieved when the vehicle is close to the supply station, where the equivalent

catenary inductance is very small. Therefore, it is recommended to tune the controller for such

conditions.

6.5. Experimental results

A laboratory prototype of the traction PMSM drive (Figure A.3) was used to verify the proposed

control approach experimentally. The test rig consists of intelligent power source by AMETEK

emulating the catenary, the input LC filter which is connected to voltage source inverter sup-

plying the PMSM. The proposed control algorithm was implemented in DSP Texas Instruments

TMS320F28335. The parameters of experimental system are in table (A.2) yielding open-loop

eigenvalues [0.9998, 0.9998], i.e. about ten times farther from the stability boundary than the

simulated tram drive.

Drive response to a step change of the catenary voltage from 200V to 150V was ex-

plored under constant electrical rotor speed of fme=20Hz. The drive was operated in torque
2An interested reader may refer to [94] for more about resonance frequency and dumping ratio of the system.
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a) b)

c)

Figure 6.7.: Step change of the catenary voltage from 200 to 150V under FCS-MPC control:
a) without active damping, b) with active damping using LQR lookahead, and c)
conventional active damping; fixed el. rotor speed of 20Hz, constant torque current
command 30A. ch1: ia (30A/div), ch3: iq (30A/div), ch4: Uc (50V/div).

control mode and the torque current command i∗q= 30A was kept constant during the experi-

ment.

If the drive controller does not use any active damping method, the behavior of the

drive under the tested conditions may results in undamped (or very lightly damped) oscillations

of the input LC-filter as demonstrated in Figure 6.7 a). This behavior may result in emergency

shutdown of the drive.

Next, we evaluated performance of two penalization terms of the basic FCS-MPC con-

troller, the proposed LQR and the simple active damping (6.19) under the same test conditions,

see Figure 6.7 b) and c), respectively. Both controllers were tuned to yield comparable perfor-

mance. Note that in agreement with the simulation, the LQR damping term was able to stabilize

the drive faster and with smaller deviation from the requested torque and flux currents.
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Figure 6.8.: Sensitivity of proposed control to the variation of total filter inductance – step
change of the catenary voltage from 200 to 150V; FCS-MPC with active damp-
ing using LQR lookahead; mismatch in the filter inductance in the design and in the
test rig, Lf,LQRdesign = 0.1Lf,RIG, fixed el. rotor speed of 20Hz, constant torque
current command 30A: ch1: ia (30A/div), ch3: iq (30A/div), ch4: Uc (50V/div).

An important problem of dc catenary fed traction vehicles is the change of the total

input filter inductance with changing distance of the vehicle from the supply station. To inves-

tigate sensitivity of the control algorithm to the value of the total filter inductance, we tested

performance of the control with LQR term designed under ten times lower filter inductance

than the real inductance used in experiment. The controller was tuned with the same relative

penalization λ∗ = 1, and λLC = 2. Response of the resulting controller to the step change of

the catenary voltage is displayed in Figure 6.8.

6.6. Conclusion

The problem of stability of the dc catenary fed traction drives was addressed using two stage

model predictive control. In the first stage (short horizon), we used the FCS-MPC approach and

in the second stage (long horizon) we used the LQR to approximate the cost to go function. The

resulting control algorithm can be interpreted as a cascade of LQR and FCS-MPC controllers.

Stability of proposed traction drive controller to an extreme step change of the catenary

voltage was tested in simulation and experiment. The proposed controller was shown to damp

the resulting oscillation faster than conventional active damping terms and with smaller devia-

tion of the requested torque and flux currents. This was achieved even in demanding situations

such as low speed of the drive and varying inductance of the input filter due to the change of the

vehicle position within the supply section.
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The proposed control design methodology offers a range of attractive properties such

as ability to change resonance frequency of the controlled LC filter. Full exploration of these

advantages offers a lot of space for further research.
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7. Conclusion

Model predictive control is one of the most promising research direction in control of drives

and power converters. Due to its mathematical formulation it offers the possibility to operate

the devices at maximum possible dynamics, considering maximum possible efficiency and ro-

bustness. It has already been successfully applied to a key components of the drive as well as

the whole drive itself.

The MPC is defined as an optimization problem on a chosen prediction horizon. It

has been shown that for longer prediction horizons the performance of MPC tends to improve

however the computational cost may grow above the limits given by the capability of the con-

trol hardware. That is one of the potential reasons why MPC haven’t been extensively used in

industry so far. A standard solution is to pre-compute the optimal control law offline and ap-

proximate it as an explicit piece-wise affine control low for real time implementation. This way

the computational cost can be reduced by order of magnitudes. However, an intuitive insight is

lost and tuning of the controller via change of the cost function is computationally expensive.

An alternative to this approach may be found by approximation of the cost function on the long

horizon using simplified model. In this work, we have studied the use of linear/linearized model

with quadratic cost, which allows to use the theory of state dependent Riccati equation (SDRE).

This way the resulting control algorithm take into account long prediction horizon (possibly

infinite) in computationally inexpensive way. However this solution does not consider hard

constraints on the input variables nor the state variables which are important in speed control

of an AC drive. Thus, we proposed several cost functions using combination of constraints and

cost-to-go approximation to achieve the desired performance of the drive control. This approach

has been elaborated into to three special cases of drive control.

• Cascade free speed control of PMSM using PWM modulation ( chapter4). A well known

SDRE has been used to approximate the solution of the optimization on long prediction

horizon. It has been shown, that unconstrained SDRE solution accurately follows the

MTPA curve. The main contribution of this chapter, however, is in design of a com-

putationally efficient constraint manager, which is able to follow hard constraints. We
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propose to use simplified convex optimization based on geometrical operations. The pro-

posed solution provides near to optimal performance as the expensive solution of [31]

but the computational demands are comparable with conventionally used cascade control

schemes with PI/PID controllers.

• FCS-MPC for speed control of PMSM drive with optimized switching losses ( chapter5).

Contrary to PWM based approaches, FCS-MPC is characterized by limited set of control

inputs which drastically simplifies the algorithm. However absence of the PWM leads

to inconstant switching frequency. Very short sampling times are preferred to minimize

the current ripple, which may imply frequent switching and thus high switching loses.

Penalization of the switching on one-step-ahead horizon yields sub-optimal solution. In

this chapter, we have showed, that a better solution can be obtained by the use of SDRE

approach for design of the cost to go function that is optimized using one step FCS-MPC.

The computational cost of the resulting algorithm is comparable to the conventional one

step FCS-MPC. The proposed approach has been tested on speed control of PMSM drive

and improvements were demonstrated on better harmonic distortion of the stator currents.

• Improved Stability of DC Catenary Fed Traction Drives using FCS-MPC with lookahead

( chapter6). The stability of the LC input filter of the traction PMSM drive represent

a challenging task for MPC design. It is essentially highly nonlinear control problem

where the designer expects high-quality torque control and at the same time mitigation

of the oscillations of trolley-wire input LC filter. The proposed approach is based on de-

composition of the control problem to a control of the LC filter and torque control of the

PMSM. The LQR is used to design the required current taken from the DC link i∗z . It

is than used as an additional term in one step ahead FCS-MPC which is used for torque

control of PMSM drive. The proposed control algorithm has been tested on laboratory

prototype of the traction PMSM drive. The results show, that proposed control approach

achieved better results in comparison with existing active damping strategies in terms of

the quality of both the torque control and stability of the dc- link filter. We have demon-

strated the capability of this method on the extreme step change of the catenary voltage

resulting in fast damping of the LC filter oscillations with eligible impact to the torque

response. The proposed cost function can be further extended or modified to incorporate

other control objectives. The resulting algorithm is computationally cheep as conven-

tional one step FCS-MPC while providing the performance which takes into account long

prediction horizons.
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7.1. The main contribution of this research

• The detailed state of the art analysis of the MPC applied in ac electric drives has been

provided together with the definition of the main existing problems.

• In the chapter 2 the basic theory of MPC has been provided

• The main focus of this thesis is on predictive control of ac electric drives specifically

PMSM. The main contribution of this thesis is in design of MPC techniques considering

long prediction horizons with low computational cost, suitable for real time implementa-

tion.

7.2. Perspective directions of future research

This thesis presented a possible way how to make the model predictive control accessible for

electric drives using conventional control hardware. This was achieved by aproximating the cost

to go function of the dynamic programming, which represents very simple way how to extend

the prediction horizon of MPC while preserving very simple and computationaly cheap nature

of the algorithm. The electric drives are, in most cases, considered to be linear or linearized

systems for which an aproximation of the cost to go function may be easily find by analytical

solution of the control problem. A more challenging task however is when the control needs

to consider additional components of the drive which makes the whole system highly nonlinear

and the linearization may not bee traceable. Therefore, approximation of the cost to go for

complex nonlinear systems provides a lot of space for future research.

Another promising direction of further research of MPC, is the design of a cost function

itself. We may enhance the control performance, extend the control objective, include the hard

constraints satisfaction and even extend the prediction horizon of MPC by simply adjusting the

cost function. In addition, if the cost function contains multiple control objectives, the opti-

mization is more complex and often requires a difficult penalization tuning. This phenomenon

is still widely unresolved.
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2012. s. 41-44. ISBN: 978-80-261-0120-8
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2011. 13 s.

[A23] JANOUŠ, Š., JÁRA, M. Analýza možných topologických struktur pro pomocné měniče
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Appendix A.

The test rig - traction drive prototype

A.1. Parameters of the PMSM machine

Table A.1.: Parameters of PMSM
Nominal voltage 3x400V

Nominal frequency 100Hz

Rated power 10.7kW

Number of pole-pairs 4

Stator resistance Rs = 0.2Ω

Stator inductance in d axe Lsd = 0.35H

Stator inductance in q axe Lsq = 0.4H

Permanent magnet flux ΨPM = 0.2Wb

Rated power Ppmsm = 10.7kW

A.2. Parameters of the input LC filter (laboratory prototype)

Table A.2.: Parameters of PMSM
Filter resistance Rf = 0.15Ω

Input inductance Lf = 0.01H

Input capacitor Cf = 0.004F
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Chapter A. The test rig - traction drive prototype

A.3. Parameters of the traction drive and input LC filter (low

floor tram Škoda ForCity)

Table A.3.: Parameters of of the low floor tram Škoda ForCity used in simulation of the traction
PMSM drive:

Nominal voltage (effective) 230V

Nominal frequency 73Hz

Rated power 58kW

Number of pole-pairs 22

Stator resistance Rs = 0.2085Ω

Stator inductance Lsd=Lsq = 0.0025H

Permanent magnet flux ΨPM = 0.398Wb

Filter resistance Rf = 0.005Ω

Input inductance Lf = 0.001H

Input capacitor Cf = 0.001F

A.4. Control hardware

This control hardware was developed by Ing. Tomáš Košan Ph.d., for the purpose of testing

advanced algorithms and drive topologies. It combines DSP TMS320F28335 which supports

floating point calculation and FPGA Altera Cyclon III on a single control unit design with

sufficiently large number of peripherals (PWM outputs, A/D converters, etc.) which allows to

control extremely complex drive topologies, including drives with various multilevel converter

designs. The detailed description can be found in [95].
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Chapter A. The test rig - traction drive prototype

Figure A.1.: Control hardware

A.5. Laboratory PMSM drive

Figure A.2.: Laboratory PMSM of rated power 10.7 kW (left machine) mechanically coupled
with induction machine of rated power 14.5kW used as a loading machine (right
machine)
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Chapter A. The test rig - traction drive prototype

A.6. Laboratory prototype of the traction drive with PMSM

fed from DC catenary

Figure A.3.: Laboratory prototype of the traction PMSM drive
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