
University of West Bohemia
Faculty of Applied Sciences
Department of Mathematics

Bachelor’s thesis

Calibration of stochastic
volatility models using

quasi-evolutionary
algorithms

Plzeň 2017 Tomáš Osvald

Místo této strany bude
zadání práce.

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 9 July 2017

Tomáš Osvald

Abstract
In this thesis, we focus on calibration of stochastic volatility models using
quasi-evolutionary algorithms. First we introduce evolutionary algorithms
and types of initialization of a new population, that has an important im-
pact on the algorithm. In methodology, we describe each step of the genetic
algorithm, set the test functions and focus on stochastic volatility models.
An implementation part of this thesis is also a modification of genetic al-
gorithm in software Matlab. We compare quasi random and random initial
population on real market data calibration problem.

Abstrakt
V této práci se zabýváme kalibrací modelů stochastické volatility pomocí
kvazi-evolučních algoritmů. V úvodu nastíníme problém evolučních algo-
ritmů a typy inicializačních populací, které mají velký vliv na výsledek al-
goritmu. V práci popisujeme jednotlivé kroky genetického algoritmu, sta-
novýme si testovací funkce a zabýváme se modely stochastické volatility.
Součástí práce je i modifikace genetického algoritmu v programu Matlab.
Zde porovnáváme použití náhodné a quasi náhodné inicializační populace
při kalibraci na reálná tržní data.

Contents

1 Introduction 6

2 Methodology 10
2.1 Evolutionary algorithms . 10

2.1.1 Terminology . 10
2.2 Genetic algorithm . 13

2.2.1 Algorithm . 15
2.3 Test functions for optimization 19
2.4 Stochastic volatility models 20

3 Results 24
3.1 Test function . 24
3.2 Stochastic volatility model 24

4 Conclusion 32

A Appendix 33

Bibliography 34

5

1 Introduction

Evolutionary algorithms are optimizations algorithms, inspired by biological
processes that allow populations of organisms to adapt to their environment.
This theory was introduced by Charles Darwin (Ellegård (1958)) in the 19th
century and it is still valid, but it was completed with further details.

In the mid 1960th were presented many of new Darwin’s theory exten-
sions. For example Holland (1992) introduced genetic algorithms, Fogel et al.
(1966) and colleagues began experiments on evolutionary programing and
Rechenberg (1973) started to work on evolutionary strategies. Their work
brought bases of optimization methods suited for hard problems, where little
is known about the underlying search space. For introduction to evolution-
ary computing Eiben – Smith (2003), or see also Fogel (1999) - 40 Years of
Evolutionary Programing.

In this thesis, we will compare impact of random and quasi random
numbers on searching global minimum of a d dimensional real valued func-
tion f(x). We will use Evolutionary algorithms (EA), especially Genetic
algorithm (GA) to search global extremes. The research is focused on using
quasi random numbers in generating an initial population in order to im-
prove a starting position in algorithm.

Algorithm

EA algorithm begins with initial population of randomly generated first
individuals. After that, fitness value is evaluated for each member of pop-
ulation. Next step is regeneration, which will be done by selection of the
best individuals and will set a new one for new generation by evolution rules
(mutation and crossover). Then we evaluate fitness value for each new mem-
ber form new population and replace last population with the new one. This
procedure is repeated until the stopping conditions end the algorithm.

The aim of the thesis is to study Quasi-EA (QEA), i.e. EA that uses
QRS. We will see that QRS are especiall crucial for initial population.

First we will make an introduction to initialization of the first population.

6

Population initialization techniques

Following Kazimipour et al. (2014) we can divide initialization of a new
population in Evolutionary algorithm (EA) into 3 categories according to
the techniques (Figure 1.1):

• Randomness,

• Compositionality,

• Generality.

Figure 1.1: Initialization techniques.

Randomness

Random initial population is a truly random sequence of numbers. Truly
random is defined as a sequence with unpredictability, irregularity and in-
compressibility.

We can also discriminate randomness initial techniques by attributes of
resulted populations on:

• Stochastic,

• Deterministic.

7

Results, in stochastic techniques, depend on initial seeds. There is for ex-
ample pseudo-random number generator (PRNG), or chaotic number gener-
ator (CNG). Deterministic techniques always generate the same populations.
They are also called low-discrepancy techniques. It means that points with
low-discrepancy are points with high level of uniformity. To this category
belong quasi-random sequences and uniform experimental design.

Compositionality

Compositionality is defined as individual procedures involved in initialization
techniques. We can divide initialization techniques into two groups:

• non-compositional,

• compositional

Non-compositional are techniques, that produce population in only one
step. So we can mark all random (Stochastic, Deterministic) techniques as
non-compositional.

On the other hand compositional techniques generate the population by
more than one step. We divide this group in two subgroups:

• hybrid

• multi-step techniques

We can apply each component of hybrid techniques as a non-compositional
separately. For example we can use CNG to generate the initial seed for
PRNG. The hybrid techniques can be also used to give quasi random se-
quences (QRS) more randomness. It will cause that the new population has
a uniformity of QRS and randomness of PRNG.

The second technique is multi-step, which consist of two or more ini-
tializations. Within the next steps they improve the population, which was
generated.

The most used multi-step is opposition based learning. For the first pop-
ulation is generated a set of points by using any initializer technique, for
example PRNG or CNG. We call it Original population. The Opposite pop-
ulation is generated in the second step by using simple heuristic rules. This
new Opposite population has the same size as the Original population. As
the last step, we make subset of both populations, which is based on fitness

8

value.

Generality

This selection is about variability of population initializer to be applied on
many types of techniques.

• Generic

• Application Specific

The Generic techniques produce populations, which can be applied to all
types of optimization problems. On the other hand, the application specific
techniques are specially designed to specific real world problems.

Structure of the thesis

Structure of the thesis is as follows. In Chapter 2 we introduce quasi ran-
dom initial population and we compare random and quasi random initial
population. We discuss Genetic algorithm in steps, set a few test functions
and we introduce stochastic volatility models.

In Chapter 3 we present results of GA on test functions and we compare
quasi random and random creation function on real market data.

We conclude in Chapter 4.

9

2 Methodology

Let
f : Rd → R

be a real function of d variables (x1, ..., xd). The aim of the thesis is to study
a simple minimization problem

min
x∈Rd

f(x)

with respect to simple bounds (constraints)

lk ≤ xk ≤ uk; k = 1, ..., d,

where lk are given lower bounds and uk are given upper bounds.

2.1 Evolutionary algorithms
Evolutionary algorithm (EA) belongs to the evolutionary computing. It is
a group of algorithms for global optimization, that use biological evolution
processes. In contrast to local gradient based optimization algorithms, there
are no restrictions or requiremets for function f. EAs can be successfully used
if f is not smooth or even if f is discontinous.

2.1.1 Terminology
We have to define a few terms, that we will use in the description of EA
optimization techniques.

Fitness function is a function that will be optimized. The main pur-
pose of EA is to find a global minimum of fitness function.

An individual is a vector [x1,, xd] ∈ Rd where fitness function can
be evaluated, we usually call this value a score. When we talk about the
best fitness value, it means the lowest fitness value from one population.
Population is a finite set of individuals. For example, if we have a function
with 2 variables and a size of population is 50, the whole population can be
represented by a matrix 50× 2.

10

(a) Generation 1 (b) Generation 10

(c) Last generation

Figure 2.1: Iteration process

The first (initial) population is of special importance. There exist sev-
eral initiation techniques that we introduce above. In the interation process
of every EA, a new popilation is generated from the previous population by
evolution rules. One step in this iteration process is called a generation. In
each consecutive generation, a new population should have all individuals
closer to minimum of the function. We can see the generation process in
Figure 2.1.

We can see, that diversity (average distance among scores of individuals
in population)

σN =

√√√√∑N
i=1(fki − f

k)2

N − 1 ,

where
f
k = 1

N

N∑
i=1

fki

is higher in the first generation, than diversity in the next generation. It

11

means that the diversity is getting lower with each generation.

For evolutionary proceses, we have to choose parents among individu-
als in each population, which will create individuals for the new population.
These new individuals are called children.

Quasi random initial population

The main intention of low discrepancy sequence is to create more uniformly
distributed individuals than the standard random number sequences. We
apply the low discrepancy sequence generator instead of PRNG.

One way how to measure uniformity is to define the discrepancy number
for N points X1, X2, . . . , XN in [0, 1]d as

DN = sup
R∈R
| 1
N

∑−→1 {Xn∈R} − vol(R) |,

where R is a rectangles such [a1; a2]×· · ·× [ad; bd] in [0, 1]d and 0 ≤ an ≤
bn ≤ 1 andR is a set of all rectangles. Volume of R: vol(R) = ∏d

n=1(bn−an).

This formula calculates the discrepancy of the set of points (Xi), where
i = 1, . . . , N . Discrepancy measures the uniformity between the points (Xi).
We find the rectangle R, where the points are the most different from our
uniformity expectation.

Since DN can be algorithmically difficult to compute, we define also the
star discrepancy

D∗N = sup
R∈A
| 1
N

∑−→1 {Xn∈R} − vol(R) | .

The only difference from the definition of DN is such that the supremum
is taken over the set A that contains all rectangles with one corner at the
origin, i.e. where all an ≡ 0, n = 1, . . . , d.

Lemma 2.1. For all N and d:

D∗N ≤ DN ≤ 2dD∗N .

Proof. The left-hand bound is obvious since A ⊂ R The right-hand bound
follows form the fact that every R ∈ R can be composed via unions, in-
tersections and complements of no more than 2d anchored rectangles, i.e.

12

rectangles in A.

Sequences with low D∗N are called low discrepancy sequences. One
good example is a Halton sequence. It is an extension of one dimensional
Van der Corput sequence, that is formed by a binary expansion of the
integer i and it reflects the digits around the decimal point. Let φb(n) be a
radical inverse function in base b :

φb(n) =
+∞∑
k=0

akb
−k−1,

where n = ∑+∞
k=0 akb

k and ak are the digits in the base b expansion of n.

The Halton sequence extend Van der Corput sequence to multiple
dimensions. Let pm be the m-th smallest prime, then the n−th point Xn of
the d-dimensional Halton sequence is

Xn = (φp1(n), φp2(n), ..., φpd
(n)).

Halton sequence is extensible. That means, it is not necessary to choose
the length of sequence at the beginning.

2.2 Genetic algorithm
Genetic algorithm (GA) is a process inspired by nature. It is based on bio-
logical process. There are mainly used operators of mutation, selection and
crossover.

GA is a subgroup of EA. The main preference of GA is due to genera-
tions of high quality solutions for optimizations.

Optimization

The main intention of an optimization task is to get the best solution from
the initial population by genetic operations. Each individuals have a set of
properties which are used to differentiate how they will be altered. Usually,
there we consider individuals Xi ∈ Rd with real valued scores f(Xi).

13

(a) Random generation initial population

(b) Quasi random initial population

Figure 2.2: Comparation of quasi random and random initial population

Initial population of GA is usually random generation of individuals,

14

which is modified to better solution in each iteration (generation). Fitness
value of all functions is evaluated in each generation and works like a main
indicator. Individuals are modified by recombinations or they randomly
mutate to get a new better generation. The new generation is used as the
next iteration. This process is applied until the time, when the algorithm
will be terminated by stopping criteria, which can be for example exceeding
maximum number of iterations, or getting acceptable fitness values.

2.2.1 Algorithm
Step 1:
Initialize the population P0 ∈ Rd×N of N individuals xi ∈ Rd,i = 1, ..., N.
Define the elite proportion e ∈ [0, 1], crossover proportion c ∈ [0, 1] :
e + c < 1. Algorithm then creates the sequence of new populations Pk, k =
1, 2, . . . , kmax.

Step 2:
Let dxe denote the upper integer part of x (ceil) dxe = min{z ∈ R; z ≥ x}.
Ne = deNe be the number of elite individuals, Nc = dc(N − Ne)e be the
number of crossover individuals and Nm = N − Ne − Nc be the number of
mutated individuals. Number of parents will be denoted by Np = 2Nc+Nm.

Step 3:
Elite kids: form the ordered population Pk : xk1, . . . , xkN , where f(x(k)

1) ≤
f(x(k)

2) ≤ ... ≤ x
(k)
N , select the elite kids a(k) = [x(k)

1 , . . . , x
(k)
Ne

].

Step 4:
Crossover kids: Let Xi = [xi,1, xi,2, . . . , xi,d] and Yi = [yi,1, yi,2, . . . , yi,d] be
two parents; Xi, Yi ∈ Pk. We get, by random combination of these parents,
a new child b(k) = [x(k)

1 , . . . , x
(k)
Nc

].

Step 5:
Mutate kids: Substitute the rest of population Pk by randomly generated
kids c(k) = [x(k)

1 , . . . , x
(k)
Nm

], where lk ≤ x
(k)
j ≤ uk.

Step 6:
New population Pk+1 = [a(k); b(k), c(k)].

Step 7:

15

Termination: if a tereminal condition is met, then repeat form step 3.

Figure 2.3: Population

In the following paragraphs, we will describe each step in more details.

Initialization (Step 1)

We will compare two types of initialization. Initial population is usually
generated randomly, but we can also use quasi random numbers, which have
better conditions for the initial population. Population size depends on
the solved problem, it is given and constant in all generations. It can contain
thousands of individuals.

Creating next generation (Step 2)

GA has a specific procedure of generating a new generation. There are 3
techniques to produce children:

• Elite

• Crossover

• Mutation

16

The ratio of genetic operators is always set in the algorithm. For example
elite 20 %, crossover 60 % and mutation 20 %. It means 20 % of individuals
will be selected, 60 % will be recombined by crossover and 20 % will mutate.

Figure 2.4: GA operators (MathWorks (2017))

Elite (Step 3)

For generating a new generation it is necessary to find the best individu-
als by using fitness-based process. Each individual is measured by fitness
function and the best solutions are selected as the elite kids. Some meth-
ods calculate and rate fitness of all solutions, the others use only random
samples of solutions and rate them to reach better calculation time.

After selection elite kids, only a few best individuals from the initial gen-
eration are in the next generation. To form a new generation, crossover and
mutation will be used.

Crossover (Step 4)

One of genetic operations is crossover, that recombines parents’ genotypes
to produce new children. Crossover function combines two parents’ vector
in every step.

Selection function specify how the genetic algorithm chooses parents for
the next generation. For example roulette selection chooses parents by sim-

17

ulating a roulette wheel, in which the area of the section of the wheel cor-
responding to an individual is proportional to the individual’s expectation.
The algorithm uses a random number to select one of the sections with a
probability equal to its area. Parents are selected and used for crossover.
This is used in matlab like the function for selection selectionroulette
function.

There exist many types of crossover functions to produce new children.
For example crossover function creates a random binary vector and combines
two parents’ vectors according to the binary vector. On positions, where are
on binary vector ones, there will be applied the genes from first parent and
where are zeros, there will be applied the genes form the second parent.

Example: if two parents have vectors:

X1 = [1; 2; 3; 4; 5; 6; 7; 8];Y2 = [9; 10; 11; 12; 13; 14; 15; 16]

and random generated binary vector is

[0, 0, 1, 0, 1, 0, 1, 1]

then child vector will be:

b = [9; 10; 3; 12; 5; 14; 7; 8]

This function is used in matlab as the default crossover function for
problems without linear constraint. It is called crossoverscatterd.

Mutation (Step 5)

The second genetic operations is mutation. This operation is based on mak-
ing small random changes in individuals to get mutated children for new
population.

For example, the mutation could be provided by mutationadaptfeasible
function (default mutation function in matlab). This function is constrained
and randomly generates directions as a follow up to previous successful and
un-successful generations. Mutation function choses the direction, that sat-
isfies the set bounds and constraints.

Termination (Step 6)

Termination conditions stop the generating process when one of them is
reached. Usually in an algorithm setting there are more than one stopping
condition. We will consider:

18

• Fitness limit - a solution is found when the score for the best point is
less then fitness limit,

• Generations - maximum number of generation K is reached K = kmax,

• Stall generations - the algorithm stops, when there is no change in the
best score over the StallGenLimit number of generations.

2.3 Test functions for optimization
Example 2.1. There exist many useful functions for testing the optimiz-
ation algorithms. One of them is the Rastrigin’s function. Formula of the
function is

f(x) = Ad+
d∑
i=1

[x2
i − A cos(2πxi)],

where A = 10. This function has many local minimas and maximas, but it
has a clear global minimum f(0, 0) = 0. In Figure 2.5, there is a graph of
Rastrigin’s fuction in the region [−5, 5]× [−5, 5] for d = 2.

Figure 2.5: Rastrigin’s function in 2D.

19

Example 2.2. Another example is the Ackley’s function

f(x, y) = −20 exp[−0.2
√

0.5(x2 + y2)]− exp[0.5(cos 2πx+ cos 2πy)] + e+ 20.

It has also many local minimas and maximas but there exists only one
global minimum f(0, 0) = 0. A graph of Ackley’s function in the region
[−2, 2]× [−2, 2] is in Figure 2.6.

Figure 2.6: Ackley’s function in 2D.

Example 2.3. To test the behaviour of the algorithm for functions with
multiple global minimums, we consider

f(x, y) = sin(x) ∗ cos(y).

In Figure 2.7, there is a graph of fuction with multiple same global minimas
and maximas in the region [−5, 5]× [−5, 5] for d = 2.

2.4 Stochastic volatility models
Stochastic volatility (SV) models have the main contribution to finance.
They were developed to modify the Black & Scholes model for option pri-
cing, that brings to Scholes the Nobel memorial price for economics sciences

20

Figure 2.7: Function with the same global extremes.

in 1997. In Black & Scholes model, it is assumed that the modelled volatility
of the underlying security is constant. In SV models, volatility is modelled
as a stochastic process.

One of the models, that allows calibration to real market data, is the
Heston model Heston (1993). We have the risk-neutral stock price model:

dSt = rStdt+√vtStdW̃ s
t ,

dvt = k(θ − vt)dt+ σ
√
vtdW̃

v
t ,

dW̃ s
t dW̃

v
t = ρdt,

with initial conditions S0 ≥ 0 and v0 ≥ 0. St is the price of the underly-
ing asset at the time t, instant variance vt at the time t, risk free rate r, long
term average price variance θ, the rate k which vt reverse to θ and σ is the
volatility of the volatility. (W̃ s, W̃ v.) is a two dimensional Wiener process
under the risk of a neutral measure P̃ with instant correlation ρ.

A price of the European call option with strike price K, time to maturity
τ can be calculated as

V = S −Ke−rτ 1
π

∫ ∞+i/2

0+i/2
e−ikX

F̂ (k, v, τ)
k2 − ik

dk, (2.1)

21

where X = ln(S/K) + rτ and

F̂ (k, v, τ) = exp
2κθ
σ2

[
q g − ln

(
1− he−ξq

1− h

)]
+

+ vg

(
1− e−ξq

1− he−ξq

),
where

g = b− ξ
2 , h = b− ξ

b+ ξ
, q = σ2τ

2 ,

ξ =
√
b2 + 4(k2 − ik)

σ2 ,

b = 2
σ2

(
ikρσ + κ

)
.

The main intention of calibrating model to real market data is to minim-
ize the pricing errors between the real market price and model price. This
error can be measured by nonlinear least square method

minG(Θ),

G(Θ) =
N∑
i=1

wi|vΘ
i (τi, Ki)− v∗i (τi, Ki)|2,

where N is a number of option prices, wi is a weight, v∗i is the real market
price of option and vΘ

i is the calculated price by the model, where Θ is a
vector of model parameters, here Θ = (v0, κ, θ, σ, ξ).

The function G may have more than one global minimum and it is not
clear to decide, if a unique minimum can be found by gradient based meth-
ods. There is a high probability, that the method ends up in a local min-
imum. According to Mrázek et al. (2016) a suitable combination of a global
and a local optimizer is the most convenient way of calibration. Global
optimizers are required in order to find a suitable initial guess for gradient-
based local optimizers. In this thesis, we will focus on the global optimization
part of the calibration. For this purpose we will use GA and its quasi modi-
fication.

22

The main intention is to compare the real market results with a calibra-
tion of Heston model for our real data. We will need to define 5 parameters
to calibrate the model. Vector of model parameters is defined:

Θ = (v0, κ, θ, σ, ξ),

where v0 is initial volatility, κ is a mean reversion rate, θ is an average
volatility, σ is a volatility of volatility and ξ is a corelation koeficient.

We measure two types of errors, as a criterion for the performance evalu-
ation of the optimizing methods. The average of absolute relative errors
across all strikes and maturities

AARE(Θ) = 1
N

N∑
i=1

|vΘ
i − v∗i |
v∗i

and maximum absolute value of relative errors (for i = 1, ..., N)

MARE(Θ) = max
i

|vΘ
i − v∗i |
v∗i

.

We also have to define weights wi, that set the biggest weight to the most
liquid quotes on the market. There exist many types of weight function. For
example:

wi = |δi|−1∑N
j=1 |δj|−1 ,

wi = δ−2
i∑N

j=1 δ
−2
j

,

wi = 1
N
,

where δi is the bid ask spread.

23

3 Results

We test modification of GA with quasi random initial population on test
functions.

3.1 Test function
The algorithm has found global minimum in all our test function examples.
In Figure 3.1 there is Rastrigin’s function (Example 2.1). In Figure 3.2
we can see results for the Ackley’s function (Example 2.2) and in Figure
3.3 there is the function with multiple same global minimums (Example
2.3). In first two examples we can see that all individuals converge to global
minimum. But in the last example, there are more than one same global
minimums, we can see that the algorithm finds a different minimums in the
first steps, but later, the optimizer choses only one global minimum. The
primary aim of the algorithm was find one global minimum, not all of them.

3.2 Stochastic volatility model
Data description

We consider the following real market data set for comparison of the EA and
QEA: 97 ODAX call options traded on March 18, 2013 ranging from 86.5
percent to 112.0 percent moneyness across 5 maturities from ca. 13.5 weeks
to 1.75 years. This data were gained form Bloomberg’s Option Monitor.
They consist of call contracts on the Deutsche Boerse AG German Stock
Index (DAX).

Illustration of our real market data is shown in Figure3.4.

Model calibration

We try to search global minimum of G(Θ) that uses real market data. First
we use a global optimization that is provided by GA and the second step is

24

-5 0 5

X

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y

Generation 1

(a) Rastrigin’s function in the first gen-
eration

-5 0 5

X

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y

Generation 10

(b) Rastrigin’s function in the 10th gen-
eration

-5 0 5

X

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y

Generation 20

(c) Rastrigin’s function in the 20th gen-
eration

-5 0 5

X

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y

Generation 30

(d) Rastrigin’s function in the 30th gen-
eration

Figure 3.1: Rastrigin’s function (Example 2.1)

25

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y

Generation 1

(a) Ackley’s function in the first gener-
ation

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y

Generation 10

(b) Ackley’s function in the 10th gener-
ation

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y

Generation 20

(c) Ackley’s function in the 20th gener-
ation

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y

Generation 30

(d) Ackley’s function in the 30th gener-
ation

Figure 3.2: Ackley’s function (Example 2.2)

26

-5 0 5

X

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y

Generation 1

(a) Function with the same multiple
global minimums in the first generation

-5 0 5

X

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y

Generation 10

(b) Function with the same multiple
global minimums in the 10th generation

-5 0 5

X

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y

Generation 20

(c) Function with the same multiple
global minimums in the 20th generation

-5 0 5

X

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y

Generation 30

(d) Function with the same multiple
global minimums in the 30th generation

Figure 3.3: Function with the same multiple global minimums (Example
2.3)

27

Figure 3.4: Structure of our real market data, where the center of each point
corresponds to the strike/maturity pair of the traded contract. The diameter
of every point is proportionate to the option premium.

a local optimization. We focus especially on the global optimization part.

We compare two types of optimization of our real market data. In Fig-
ure 3.5 there are results with randomly generated initial population. In the
second Figure 3.6 there are results of optimization with quasi random initial
population.

According to Mrázek – Pospíšil (2017), it’s sufficient to consider only 10
generations in the GA part of the calibration. In Figures 3.5 and 3.6 there
are results of our optimization. In the first column there are numbers of
generation, in the second column are numbers of fitness function evaluations
in each generation, in the third column there are the best scores from the
generation, in the fourth column there are the means of scores in each gen-
eration and in the last column there are numbers of the stalled generations.

Global optimizer ends after 10 generations in both examples. The local
optimizer always find minimum in a few additional steps in relatively short

28

time.

Figure 3.5: Calibration model on our real market data using quasi random
initial population.

The main contrast between our two techniques is in the first two gen-

29

Figure 3.6: Calibration model on our real market data using random initial
population.

erations. When we use the quasi random initial population (Figure 3.5),
there is a big jump from the first population to the second one. It happens
because of a good distribution of individuals by the creation function.

The second results (Figure 3.6), where the initial population is generated
by random generator, go fluently but slowly in the direction to minimum.

30

We tested each process 1000 times. The relative improvement from quasi
random initial population to second generation was 38%. We also tested
the improvement from random initial population to the second generation.
There was only 32% change. We also tested the improvement form initial
population to 3rd generation. There was change of 60% by quasi random
and 56% by random initial population.

31

4 Conclusion

The main intention of this thesis was to compare quasi random and ran-
dom numbers in evolutionary algorithms. We introduced evolutionary al-
gorithms, focused on initial population generation and introduced the global
optimization problem that we solved using quasi-evolutionary algorithm.

We focused on quasi random initial population, that has a significant
influence on searching global minimums, because of more uniformly distrib-
uted individuals (we used quasi-random sequences with low discrepancy).

We set and commented each step of the genetic algorithm, set 3 test func-
tions and introduced the methodology how to calibrate stochastic volatility
models to real market data.

Implementation part of this thesis was written in Matlab. Inspired by
the Matlab ga, we implemented own function myga so that it can work also
with the quasi random initial population. The code was tested using 3 test
functions. We also modified this code for calibration of stochastic volatility
models to real market data.

Using Matlab, we compared quasi random initial population and ran-
dom initial population. We found out, that quasi random initial population
improves the technique of algorithm and terminates in shorter time.

We applied this algorithm to real market data calibration, specifically we
considered 97 ODAX call options traded on March 18, 2013. This data were
gained form Bloomberg’s Option Monitor. Using quasi random sequences
in initial population generation we slightly improved the results obtained by
Mrázek et al. (2016).

32

A Appendix

A.1 Attachments
On CD in the attachment there are all implemented matlab codes.

Matlab codes
calibration_myga_test.m Calibration problem with my GA for 1000 runs
calibration_myga.m Calibration problem with my GA
generation_plots.m Figure of generation
hestonError.m Error in Heston model calibration
HestonLewis.m Function evaluation by Heston Lewis formula
hestonUtility.m Heston calibration - utility function
meanf.m Robust mean function
myCreationFcn.m Simple implementation of creation function
myCrossoverFcn.m Simple implementation of crossover function
myga.m Simple implementation of genetic algorithm
mygademo.m Initiator of myga.m
mygaplot.m Plot function for ga.m
mygaplotbest.m Plot function with highlight of the best individuals
myMutationFcn.m Simple implementation of mutation function
mypeaks.m My own test function
myQuasiCreationFcn.m Simple implementation of creation function

that uses quasi random numbers
mySelectionFcn.m Simple implementation of selection function
option_structure.m Options for figure
run.m Initiator of calibration problem
userFcn.m My own test function with multiple global minimas

33

Bibliography

Eiben, A. E. – Smith, J. E. Introduction to Evolutionary Computing. Springer
Berlin Heidelberg, 2003. doi: 10.1007/978-3-662-05094-1. Available from:
http://dx.doi.org/10.1007/978-3-662-05094-1.

Ellegård, A. Darwin and the general reader: the reception of Darwin’s theory
of evolution in the British periodical press, 1859-1872. University of Chicago
Press, 1958.

Fogel, L. J. Intelligence Through Simulated Evolution: Forty Years of
Evolutionary Programming. John Wiley & Sons, Inc., 1999. ISBN
0-471-33250-X.

Fogel, L. – Owens, A. – Walsh, M. Artificial Intelligence Through Simulated
Evolution. John Wiley & Sons, 1966. Available from:
https://books.google.cz/books?id=75RQAAAAMAAJ.

Heston, S. L. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Rev. Financ. Stud. 1993, 6, 2,
p. 327–343. ISSN 0893-9454. doi: 10.1093/rfs/6.2.327.

Holland, J. H. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT
press, 1992.

Kazimipour, B. – Li, X. – Qin, A. K. A review of population initialization
techniques for evolutionary algorithms. In 2014 IEEE Congress on
Evolutionary Computation (CEC), p. 2585–2592. IEEE, 2014.
doi: 10.1109/CEC.2014.6900618. ISBN 978-1-4799-1488-3.

MathWorks. How the Genetic Algorithm Works [online]. 2017. GA in Matlab.
Available from: https://www.mathworks.com/help/gads/
how-the-genetic-algorithm-works.html.

Mrázek, M. – Pospíšil, J. Calibration and Simulation of Heston Model. Open
Math. 2017, 15, 1, p. 679–704. ISSN 2391-5455. doi: 10.1515/math-2017-0058.

Mrázek, M. – Pospíšil, J. – Sobotka, T. On calibration of stochastic and
fractional stochastic volatility models. European J. Oper. Res. 2016, 254, 3,
p. 1036–1046. ISSN 0377-2217. doi: 10.1016/j.ejor.2016.04.033.

Rechenberg, I. Evolutionsstrategie: optimierung technischer systeme nach
prinzipien der biologischen evolution. Frommann-Holzboog, 1973.

34

http://dx.doi.org/10.1007/978-3-662-05094-1
http://dx.doi.org/10.1007/978-3-662-05094-1
https://books.google.cz/books?id=75RQAAAAMAAJ
http://dx.doi.org/10.1093/rfs/6.2.327
http://dx.doi.org/10.1109/CEC.2014.6900618
https://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html
https://www.mathworks.com/help/gads/how-the-genetic-algorithm-works.html
http://dx.doi.org/10.1515/math-2017-0058
http://dx.doi.org/10.1016/j.ejor.2016.04.033

	Introduction
	Methodology
	Results
	Conclusion
	Appendix
	Bibliography

