ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

KATEDRA TECHNOLOGIÍ A MĚŘENÍ

BAKALÁŘSKÁ PRÁCE

Ověření parametrů impedanční trubice

Filip Šanda

Originál (kopie) zadání BP/DP

Abstrakt

Tato bakalářská práce se zabývá ověřením parametrů impedanční trubice a měřením činitele zvukové pohltivosti. Dále popisuje základní akustické jevy, metody měření činitele zvukové pohltivosti a impedanční trubici.

Klíčová slova

Zvuk, činitel zvukové pohltivosti, impedanční trubice, stojatá vlna, kmitočet.

Abstract

This bachelor thesis describes the verification of impedance tube parameters and the measurement procedure of the sound absorption coefficient. It also describes basic acoustic phenomena, methods of measurement of the sound absorption coefficient and describes the impedance tube.

Key words

Sound, sound absorption coefficient, impedance tube, standing wave, frequency.

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce.

Dále prohlašuji, že veškerý software, použitý při řešení této bakalářské/diplomové práce, je legální.

.....

podpis

V Plzni dne 8.6.2017

Filip Šanda

Poděkování

Tímto bych rád poděkoval vedoucímu bakalářské práce Ing. Martinu Schlosserovi za cenné profesionální rady, připomínky a metodické vedení práce.

Obsah

OBSAH	Ŧ	7
ÚVOD		9
SEZNA	AM SYMBOLŮ A ZKRATEK	10
1 ZV	/UK – ZÁKLADNÍ INFORMACE	12
11	Šίδενί τνημή	12
1.1	5 ΜΕΝΤΖΥΟΚΟ 1 Σίτερι τνημεί νε νάζουνέμη τνημεουροία	
1.1	Rychi ost šířfní zvuku	12
2 PR	ROSTOROVÁ AKUSTIKA	
0.1		14
$\frac{2.1}{2.2}$		
3 PC	DOBA DOZVUKU	
3.1	MECHANIKA POHLCOVÁNÍ	
3.1	1.1 Přeměny vznikající třením	
3.1	2.2 Přeměny vznikající poklesem akustického tlaku	
3.1	.3 Přeměny vznikajíci nepružnou deformaci	
3.2	CINITEL ZVUKOVE POHLTIVOSTI	
3.2	2.1 Používané materialy k pohlcovaní zvuku	
3.3	IMPEDANCNI TRUBICE	
3.3	5.1 Mereni cinitele ponitivosti v impedanchi trudici	
5.5		
4 KN	ИГГОСТОVА РАЅМА	25
4.1	OKTÁVOVÉ KMITOČTOVÉ PÁSMO	
4.2	TŘETINOOKTÁVOVÉ PÁSMO	
5 M	ĚŘICÍ ZAŘÍZENÍ PODLE NORMY ČSN ISO 10534-1	28
51	Ιμαριανιζνή τρυβίας	28
5.2	DRŽÁK VZORKU	
53	Mikrofon	28
5.4	REPRODUKTOR	29
5.5	Zařízení pro zpracování signálu	
5.6	GENERÁTOR SIGNÁLU	
5.7	Teploměr	
6 M	ĚŘICÍ ŘETĚZEC	32
61		20
0.1	INFEDANCNI IKUBICE	
61	12 Mikrofonní sonda	
67		
63	MIKROFON	
64	ZAŘÍZENÍ PRO ZPRACOVÁNÍ SIGNÁLU	36
6.5	GENERÁTOR SIGNÁLU	36
6.6	Zesilovač	
7 M	ĚŘENÍ	

7.1	URČENÍ PRACOVNÍHO KMITOČTOVÉHO ROZSAHU IMPEDANČNÍ TRUBICE	
7.2	OVĚŘOVÁNÍ POMĚRU STOJATÉ VLNY	
7.3	DYNAMICKÝ ROZSAH MIKROFONNÍ SONDY	
7.4	URČENÍ VLNOVÉ DÉLKY	
7.5	URČENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V IMPEDANČNÍ TRUBICI	
7.6	URČENÍ KOREKCÍ NA ÚTLUM V TRUBICI	
7.7	URČENÍ ČINITELE ZVUKOVÉ POHLTIVOSTI	
7.7	7.1 Popis měřeného vzorku	53
7.7	7.2 Porovnání naměřených hodnot s hodnoty od výrobce	
ZÁVĚF	۶	56
SEZNA	M LITERATURY A INFORMAČNÍCH ZDROJŮ	58
PŘÍLO	НҮ	1

Úvod

Šíření zvuku v uzavřených prostorech je velmi závislé na materiálu obkladu, který určí, zda zvuková vlna v prostoru bude odražena, či pohlcovaná. Z tohoto důvodu je při návrzích prostorů, jako např. koncertní sály, kino sály nebo přednáškové místnosti důležité znát vlastnosti použitého materiálu a to především jeho akustickou pohltivost. Pohltivost zvuku se vyjadřuje pomocí činitele zvukové pohltivosti, podle kterého se materiály rozdělují do různých tříd pohltivosti. Činitel zvukové pohltivosti je možné měřit v dozvukové komoře, která je ale rozměrná a měření touto metodou je často zdlouhavé a nákladné, proto se pro měření činitele zvukové pohltivosti častěji používá metoda měření pomocí impedanční trubice, pomocí jíž se snadněji a rychleji získají potřebné výsledky měření. Impedanční trubice, která se používá k tomuto měření, se dále dělí na metodu přenosové funkce a na metodu stojatého vlnění.

Tato bakalářská práce navazuje na diplomovou práci s názvem Konstrukce interferometru od Richarda Hůrky, který měl za úkol zkonstruovat impedanční trubici. V práci bude táto impedanční trubice doplněna další mechanické části, a dále budou ověřeny její parametry, kdy se následně změří činitel zvukové pohltivosti určitého typu materiálu.

2017

Seznam symbolů a zkratek

c Rychlost šíření zvuku [m/s]
c_0 Rychlost šíření zvuku v impedanční trubici [m/s]
$c_0(f)$ Rychlost šíření zvuku v impedanční trubici závislé na kmitočtu [m/s]
c ₀ (<i>T</i>)Rychlost šíření zvuku v impedanční trubici závislé na teplotě [m/s]
$c_0(T_0)$ Rychlost šíření zvuku při teplotě 25 °C [m/s]
dVnitřní průměr impedanční trubice [m]
fKmitočet [Hz]
f_1, f_2, f_3, f_4 Krajní kmitočet zlomkooktávových pásem [Hz]
fd Dolní mezní kmitočet [Hz]
fn Horní mezní kmitočet [Hz]
$f_{ m m}$ Střední kmitočet oktávového pásma [Hz]
I_0 Intenzita dopadající vlny [W/m ²]
<i>I</i> a Intenzita pohlcené zvukové vlny [W/m ²]
I_q Intenzita zvukové vlny přeměněná na teplo [W/m ²]
$I_{\rm r}$ Intenzita odražené zvukové vlny [W/m ²]
I_t Intenzita prošlé zvukové vlny [W/m ²]
k_0 Vlnové číslo [m ⁻¹]
k_0 ' Reálná hodnota vlnového čísla [m ⁻¹]
<i>k</i> ₀ ''Činitel zeslabení [Np/m]
l Délka pracovního úseku impedanční trubice [m]
<i>L</i> _p Hladina akustického tlaku [dB]
n, m Pořadí tlakového minima/maxima [-]
<i>p</i> Akustický tlak [Pa]
p_0 Fiktivní amplituda akustického tlaku [Pa]
rČinitel odrazu [-]
S Celková plocha stěn [m ²]
so Korigovaný poměr stojaté vlny [-]
s _n Poměr stojatého vlnění [-]
S_n Plochy stěn $[m^2]$
T Aktuální teplota v trubici [K]
<i>T</i> ₀ Teplota 20 °C v kelvinech [K]
<i>T</i> _D Doba dozvuku [s]

<i>T</i> _s Doba dozvuku na základě Sabineho předpokladu [s]
V Objem uzavřeného prostoru [m ³]
W _{dop} Dopadající zvuková energie [-]
Wodr Odražená zvuková energie [-]
W _{pohl} Pohlcená zvuková energie [-]
<i>x</i> _{max} Poloha tlakového maxima [-]
<i>x</i> _{max,n} Poloha maxima stojatého vlnění [-]
x _{min} Poloha tlakového minima [-]
x _{min,n} Poloha minima stojatého vlnění [-]
α Činitel zvukové pohltivosti [-]
α_N Činitel zvukové pohltivosti udáván výrobcem [-]
γ Teplotní součinitel [K ⁻¹]
ΔL Poměr obrazců stojatého vlnění [dB]
θ Aktuální teplota prostředí [°C]
λ_0 Vlnová délka [m]
$\lambda_0(f)$ Vlnová délka závislá na kmitočtu [m]
ω Úhlová rychlost [rad/s]

1 Zvuk – základní informace

Zvuk chápeme jako chvění pevného, kapalného nebo plynného prostředí v rozsahu slyšitelných kmitočtů [1]. Člověk je schopen slyšet kmitočty od 16 Hz do 20 kHz, pouze málo kdo je ale schopen vnímat celé frekvenční pásmo, kdy především horní hranice je velmi proměnná a se zvyšujícím se věkem klesá. Mimo toto pásmo zvuky neslyšíme, ale přesto mohou mít nepříznivý vliv na naše zdraví či psychiku. Frekvence pod 16 Hz značíme jako infrazvuk a nad 20 kHz jako ultrazvuk. [2]

1.1 Šíření zvuku

Zvuk se od zdroje šíří převážně postupným podélným vlněním v plynech a kapalinách. Výjimkou jsou pevné látky, kde se zvuk může šířit i vlněním postupným příčným. Nejběžnějším prostředím je ovšem vzduch, kde částice vzduchu přenášejí zvuk kmitáním kolem rovnovážné polohy ve směru šíření zvukových vln. To má za následek střídavé zhušťování a zřeďování vzduchu. V místech s vyšší hustotou je vyšší akustický tlak a v místech s nižší hustotou je akustický tlak nižší. Ve vakuu se zvuk nešíří. Akustický tlak způsobuje změnu teploty a hustoty v daném prostředí. Zvýšením akustického tlaku se zvýší i teplota a hustota vzduchu. [1,3]

1.1.1 Šíření zvuku ve válcovém zvukovodu

Zvuk ve válcovém zvukovodu může vzniknout mnoha způsoby, avšak nejjednodušším případem je vratný pohyb pístu, kdy píst, který kmitá malou rychlostí, vyvolá jednorozměrné vlnění [1]. Pokud vlnová délka zvuku je mnohonásobně větší, než příčný rozměr trubice, vzniklá vlna se nazývá vlna rovinná [1]. Rovinou vlnou se rozumí stav, kdy se body v prostoru v určitém okamžiku a se stejným akustickým stavem nachází v rovině [4]. Poměr mezi akustickým tlakem a akustickou rychlostí je v této vlně konstantní [4].

1.2 Rychlost šíření zvuku

Rychlost šíření zvuku neboli rychlost, kterou se šíří zvukové vlny prostředím závisí na daném prostředí a na aktuálních podmínkách, kterými jsou teplota, tlak a u vzduchu také vlhkost. [3]

Rychlost šíření zvuku je vyjádřena vztahem [5]:

$$c = c_0 \sqrt{1 + \gamma \vartheta} \cong 331, 4 + 0,607\vartheta , \qquad (1)$$

kde c_0 je rychlost šíření zvuku ve vzduchu při 0°C, γ je součinitel teplotní roztažnosti (1/273 K⁻¹) a ϑ je aktuální teplota prostředí.

Rychlost šíření zvuku v suchém vzduchu roste přibližně lineárně se zvyšující se teplotou a nepatrně roste se zvyšující se vlhkostí. V kapalinách a pevných látkách se zvuk šíří rychleji než v plynech. [3]

Prostředí	ostředí Rychlost zvuku (m/s)		
Suchý vzduch	332	0	
Suchý vzduch	346	25	
Destilovaná voda	1497	25	
Mořská voda	1500	13	
Ocel	5000	20	
Led	3250	-4	
Sklo	5200	20	

Tab. 1.1 Rychlost šíření zvuku ve vybraných prostředí. [3,6]

2 Prostorová akustika

2.1 Odraz zvuku

Při dopadu zvukového vlnění na překážku část zvukové vlny proniká do překážky a část se odrazí. Proniklá část energie do překážky se pohltí a část projde přes. Intenzita odraženého vlnění je vždy menší než intenzita vlnění dopadajícího na překážku. Rozložení intenzit při dopadu na překážku je popsáno na Obr. 2. 1, kde:

- Io intenzita dopadající vlny,
- *I*_r intenzita odražené zvukové vlny,
- Ia intenzita pohlcené zvukové vlny,
- I_q intenzita zvukové vlny přeměněná na teplo,
- I_t intenzita prošlé zvukové vlny. [7]

Obr. 2. 1 Rozdělení intenzity zvuku při dopadu na překážku. (převzato z [7])

2.2 Doba dozvuku

Během ustáleného stavu je zvuková energie, která je pohlcována do stěn, neustále doplňována zdrojem zvuku. Pokud zdroj přestane dodávat zvukovou energii, vlivem pohltivosti stěn se začne zvuková energie postupně snižovat. Zvuk, který se šíří prostorem po tom, co zvukový zdroj přestal dodávat energii, se nazývá dozvuk a doba po kterou se šíří, než jeho intenzita poklesne o 60 dB, se nazývá doba dozvuku. [1]

Doba dozvuku je tedy doba, za kterou hustota energie nebo intenzita zvuku klesne na 10⁻⁶ původní hodnoty tj. o -60 dB. Z tohoto lze odvodit vztah určující dobu dozvuku [1]

$$T_D = 0.161 \frac{V}{\propto S},\tag{2}$$

kde V je objem uzavřeného prostoru, α činitel zvukové pohltivosti a S plocha stěn. [1]

Obr. 2. 1 Definice doby dozvuku. (překresleno z [8])

Experimentálně bylo ale zjištěno, že pro dobu dozvuku platí přesnější výraz [1]:

$$T_S = 0,164 \frac{V}{\propto S},\tag{3}$$

kde T_S značí dobu dozvuku na základě Sabineho předpokladu, který předpokládal, že stěny obklopující prostor plynule pohlcují zvukovou energii. Jestliže stěny obklopující prostor nemají všude stejný činitel zvukové pohltivosti, za α se dosadí průměrná hodnota daná vztahem [1]:

$$\alpha = \frac{\alpha_1 S_1 + \alpha_2 S_2 + \ldots + \alpha_n S_n}{S} \tag{4}$$

kde $\alpha_1, \alpha_2, ..., \alpha_n$ jsou činitele zvukové pohltivosti různých stěn nebo jejich částí o plochách S_1 , $S_2, ..., S_n$ a S je celková plocha stěn. V praxi tento Sabineho vzorec vyhovuje pouze pro prostory se stěnami s činitelem zvukové pohltivosti přibližně do 0,20. [1]

Za předpokladu, že by stěny zvuk dokonale odrážely ($\alpha=0$), doba dozvuku by byla nekonečně velká, a za předpokladu, že by zvuk dokonale pohlcovaly ($\alpha=1$), doba dozvuku by byla dána hodnotou výrazu 0,164 *V/S* a to i přesto, že by se měla rovnat nule. [1]

3 Pohlcování zvuku

3.1 Mechanika pohlcování

Pohlcování zvuku znamená nevratné přeměnění zvukové energie v jinou energii, obvykle tepelnou. Z tohoto důvodu se způsoby přeměny zvukové energie při šíření v pevných látkách dělí na přeměny vznikající třením, přeměny vznikající poklesem akustického tlaku a přeměny vznikající nepružnou deformací. [1]

3.1.1 Přeměny vznikající třením

K přeměně vznikající třením dochází, když vlákna a jiné částice začnou působením zvukové vlny vibrovat. Vibrace následně způsobí tření a změnu akustické energie na tepelnou. K přeměně akustické energii v tepelnou tedy dochází třením molekul vzduchu o vláknitý materiál. Z důvodu přeměnění požadovaného množství energie musí plocha, na níž dochází k tření, být dostatečně velká. Z tohoto důvodu se k pohlcování zvuku tímto způsobem hodí nejvíce porézní materiály, u nichž se zvuk v látce šíří jemnými póry, jejichž celková plocha je poměrně velká vzhledem k jejich objemu. [1,8]

Jestliže akustický obklad je stěna nebo deska, která je schopna mechanicky kmitat v oblasti zvukového spektra, rozkmitá se při dopadu zvukových vln. Část mechanické energie kmitající stěny nebo desky se přemění zpět na akustickou energii, která vyzařuje do prostoru za překážkou. Zbytek mechanické energie se vlivem vnitřního tření v kmitající překážce mění na tepelnou energii. [1]

3.1.2 Přeměny vznikající poklesem akustického tlaku

Přeměny vznikající poklesem akustického tlaku vznikají důsledkem zmenšení akustického tlaku. V místech, kde se zhušťují částice, stoupá celkový tlak. Pokud se akustický tlak zmenší, zmenší se nashromážděna potenciální energie a tím se zmenší také energie zvukové vlny. [1]

3.1.3 Přeměny vznikající nepružnou deformací

Přeměna vznikající nepružnou deformací nastává u látek, které vykazují pružnou hysterezi. Tato látka se po stlačení určitou silou nevrátí do původního stavu ani po tom, co síla na látku přestane působit. Z toho plyne, že práce vynaložena na deformaci je větší, než práce získaná pružností tělesa při návratu do původního stavu. Rozdíl těchto dvou prací

představuje úbytek zvukové energie vlivem nedokonalé pružnosti. [1]

3.2 Činitel zvukové pohltivosti

Činitel zvukové pohltivost je schopnost tělesa pohlcovat zvuk. Značí se α a jeho velikost se pohybuje v intervalu od 0 do 1. Pokud se činitel pohltivosti rovná 0, jedná se o povrch dokonale odrážející zvuk a naopak rovná-li se 1, jedná se o povrch úplně pohlcující zvuk. [1]

Početně se jedná se o poměr akustického výkonu vstupujícího do povrchu zkoušeného obkladu k dopadajícímu akustickému výkonu rovinné vlny při kolmém dopadu. [9]

$$\propto = \frac{W_{pohl}}{W_{dop}} = \frac{W_{dop} - W_{odr}}{W_{dop}} = 1 - \frac{W_{odr}}{W_{dop}},\tag{5}$$

kde W_{pohl} je pohlcená zvuková energie, W_{dop} je dopadající zvuková energie a W_{odr} je odražená zvuková energie [10].

Podobné je to u činitele zvukové odrazivosti *r*. Pokud je zvuková vlna od stěny dokonale odražena, činitel pohltivosti se rovná 1 a pokud je stěnou zvuková vlna dokonale pohlcena, činitel zvukové odrazivosti se rovná 0 [11].

Velikost činitele zvukové pohltivosti závisí kromě použitého materiálu na obklad také na frekvenci dopadajícího akustického vlnění, na teplotě, na tloušťce použitého materiálu a na úhlu dopadající zvukové vlny [7,11,12].

Pokud rovinná zvuková vlna dopadá na nějaký materiál kolmo, činitel zvukové pohltivosti se značí, jako činitel pohltivosti pro kolmý dopad zvuku. Tento činitel se obvykle měří v impedanční trubici pomocí stojatého vlnění. [12]

Pro všesměrný dopad zvukových vln se používá metoda měření činitele pohltivosti v dozvukové komoře, která je založena na řadě zjednodušujících a aproximativních předpokladech, tudíž měření není tak přesné, ale jedná se o reálnější výsledky. Nicméně pro tuto metodu je nutné použít velké měřící vzorky (podle normy ČSN ISO 354 velké 10 až 12 m²) a je tedy oproti měření v impedanční trubici zdlouhavá a více nákladná. [12]

0.75

0.80

Tab. 3. 1 Cinitel zvukove ponitivosti vybranych materialu. (prekresieno z [11])									
Matariál	Tloušťka	Činitel zvukové pohltivosti α [-]							
wateria	[mm]	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz		
Azbest	25	0,25	0,60	0,65	0,60	0,60	0,61		
Laminát	50	0,30	0,50	0,80	0,90	0,80	0,75		
Písek	100	0,15	0,35	0,40	0,50	0,55	0,80		
Plst	25	0.12	0.32	0.51	0.62	0.60	0.56		

V Tab. 3. 1 je znázorněn činitel zvukové pohltivosti vybraných materiálů.

Sníh 25 0,15 0,40 0,65

3.2.1 Používané materiály k pohlcování zvuku

Jedná se o zvukově pohltivé panely, které se používají k odstranění odrazů zvuku a tím snížení doby dozvuku, ke zlepšení srozumitelnosti řeči a k omezení stojatých vln. [13] Mezi takovéto materiály patří např. polyuretanová pěna s otevřenou buněčnou strukturou, pěna na bázi melaminu nebo minerální či skelná vata [13]. Tyto zmíněné materiály jsou vhodné především pro pohlcování středních a vysokých kmitočtů. Pro pohlcování nízkých kmitočtů se používají rezonanční prvky, které ale v impedanční trubici nelze měřit s dostatečnou přesností.

• Polyuretanová pěna ve tvarů jehlanů

Jedná se o polyuretanovou pěnu s otevřenou buněčnou strukturou, která je vyrobena s hustotou 30 kg/m³. Podle tloušťky se odvíjí její akustické vlastnosti, kdy pěna o větší tloušťce je schopna pohlcovat více zvuku a to hlavně při nižších frekvencí, což lze sledovat v Tab. 3. 2. Využití má hlavně jako zvukově pohlcující materiál v nahrávacích studiích, v domácnostech nebo továrnách. [14]

						• •/			
Tloušťka	Činitel zvukové pohltivosti α [-]								
[mm]	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz			
51	0,14	0,32	0,72	1,01	1,05	1,08			
76	0,44	0,48	1,19	1,12	1,16	1,16			
102	0,39	0,60	1,21	1,14	1,16	1,13			

Tab. 3. 2 Činitel zvukové pohltivosti polyuretanové pěny ve tvaru jehlanů. (překresleno z [15])

0.85

Obr. 3. 1 Polyuretanová pěna ve tvarů jehlanů. (překresleno z [16])

• Pěna na bázi melaminu ve tvaru jehlanů

Jedná se o pěnu vyrobenou na bázi melaminové pryskyřice s otevřenou buněčnou strukturou, jejíž hodnoty činitele zvukové pohltivosti při různých kmitočtech a tloušť ce jsou vypsány v Tab. 3. 3. Mezi hlavní vlastnosti tohoto materiálu patří schopnost odolávat stálým teplotám až do 182 °C a schopnost výborně pohlcovat zvuk při středních a vyšších frekvencí. Díky těmto vlastnostem je pěna na bázi melaminu obecně využívaná ve stavebnictví, v dopravních prostředcích, strojích a větracích zařízení. [17,18]

Tloušťka	Činitel zvukové pohltivosti α [-]								
[mm]	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz			
51	0,09	0,28	0,79	0,94	1,00	1,04			
76	0,10	0,48	0,91	1,11	1,11	1,14			
102	0,16	0,56	1,11	1,13	1,13	1,21			

Tab. 3. 3 Činitel zvukové pohltivosti polyuretanové pěny ve tvaru jehlanů. (překresleno z [17])

Obr. 3. 2 Melaminová pěna ve tvaru jehlanů. (překresleno z [19])

• Minerální vata

Jedná se o minerální materiál, který se vyrábí převážně z vyvřelých hornin. Hlavní vlastnosti tohoto materiálu jsou vynikající tepelně izolační vlastnosti, odpudivost vody, paropropustnost a snadná pohltivost zvuku. Díky těmto vlastnostem se nejčastěji využívá k pohlcování zvuku a jako tepelná izolace ve stavebnictví, automobilovém průmyslu nebo v místech, kde je nutno, aby odolávala hlodavcům. [20,21]

Tloušťka	Činitel zvukové pohltivosti α [-]							
[mm]	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz		
51	0,25	0,85	1,15	1,1	1,04	1,06		
76	0,8	1,07	1,11	0,99	0,98	0,96		
102	0,99	1,01	1,1	1,03	1,03	1,05		

Tab. 3. 4 Činitel zvukové pohltivosti minerální vaty s hustotou 96 kg/m³. (překresleno z [22])

2017

Obr. 3 1 Minerální vata. (překresleno z [23])

3.3 Impedanční trubice

Impedanční trubice jinak nazývaná také interferometr nebo Kundtova trubice je válcový zvukovod s tuhými a hladkými stěnami, kde na jednom konci je zvukový zdroj a na druhém měřený vzorek [9,10]. Metodu měření, kde je jako měřící zařízení použita impedanční trubice lze použít pouze pro kolmý dopad akustického vlnění, proto se většinou používá při vývoji akustických materiálů a obkladů nebo při porovnávání různých materiálů z hlediska jejich pohltivosti zvuku. Výhodou impedanční trubice je přesnost a možnost použití malých vzorků měřeného materiálu. [24]

Impedanční trubice může být s jedním či dvěma mikrofony. S jedním mikrofonem se používá k měření metou poměru stojaté vlny a s dvěma mikrofony se používá k měření metou přenosové funkce, viz následující kapitola.

Impedanční trubice se používá pro určení činitele zvukové pohltivosti, činitele odrazu, povrchové impedance nebo admitance materiálů a obkladů. [9]

Obr. 3. 3 Profesionální impedanční trubice Brüel & Kjær type 4206. (převzato z [25])

3.3.1 Měření činitele pohltivosti v impedanční trubici

Měření činitele pohltivosti v impedanční trubici se rozděluje na měření metodou přenosové funkce a metodou poměru stojaté vlny. [7]

• Metoda přenosové funkce

K měření touto metodou se používá impedanční trubice, která většinou obsahuje dva mikrofony v pevných polohách nebo jeden v případě, že se přendavá. Na jednom konci impedanční trubice je umístěn reproduktor a na druhém konci je umístěn měřený vzorek. Na trubici, jak je vidět na Obr. 3.1 jsou mikrofony umístěny na horní části impedanční trubice a využívají se pro měření akustických tlaků. Velikost činitele zvukové pohltivosti pomocí této metody se stanoví z rovnice [24]:

$$\alpha = 1 - |r|^2 = 1 - r_r^2 - r_i^2 , \qquad (6)$$

kde *r* je činitel akustického odrazu tlaku, r_r je reálná složka činitele odrazu a r_i je imaginární složka činitele odrazu [24, 25].

Obr. 3. 4 Blokově schéma měření metodou přenosové funkce. (překresleno z [26])

Měření metodou poměru stojaté vlny

Měření metodou poměru stojaté vlny se provádí tak, že pomocí mikrofonní sondy, která se nachází uvnitř trubice, se urči maximum a minimum akustického tlaku stojatého vlnění v místech, která jsou nejblíže zkoumanému vzorku [24]. Stojaté vlnění v trubici vznikne tak, že na jednom konci impedanční trubice je umístěn reproduktor, který budí rovinou sinusovou vlnu, která dopadá na měřený vzorek a interferuje s vlnou odraženou [9]

Pro dolní mezní kmitočet impedanční trubice platí, že příslušná vlnová délka má velikost [9]:

$$\lambda_0 \ge \frac{4l}{3},\tag{7}$$

kde *l* je délka pracovního úseku impedanční trubice. Pro horní mezní kmitočet kruhové trubice platí podmínka, že vlnová délka musí být [9]:

$$\lambda_0 \le \frac{d}{0,58},\tag{8}$$

kde *d* je vnitřní průměr impedanční trubice. Na konci sondy je připojen mikrofon, který je připojen k analyzátoru zvuku. Analyzátorem zvuku se zjistí hladiny akustického tlaku v minimu a následným maximu a jejich rozdíl se jako veličina ΔL dosadí do následujícího vztahu [9]:

$$\alpha = \frac{4 \cdot 10^{\frac{\Delta L}{20}}}{(10^{\frac{\Delta L}{20}} + 1)^2},\tag{9}$$

ze kterého se zjistí činitel zvukové pohltivosti. Blokové schéma měření se nachází na Obr. 6. 1.

3.3.2 Stojaté vlnění

Stojaté vlnění může vzniknout jak v trubici, tak v místnosti [8]. Pokud se v trubici na jedné straně nachází zvukový zdroj vyzařující zvukovou energii a na druhé straně akusticky pohltivý vzorek, vzorek část zvukové energie pohlcuje a část odráží zpět ke zvukovému zdroji [10]. Tím proti sobě budou postupovat dvě podélná rovinná vlnění o stejném kmitočtu, které navzájem interferují a tím vznikne stojaté vlnění [10]. Polohy nulové a maximální výchylky se v čase nemění a tak se stojaté vlnění nepohybuje ani do leva ani doprava [27].

Za předpokladu že proti sobě působí vlnění se stejnou amplitudou a frekvencí, vzniká úplné stojaté vlnění, pokud se amplituda vlnění liší, vzniká částečné stojaté vlnění [10]. Body, které kmitají s největší amplitudou, se nazývají body kmitny stojatého vlnění a body které nekmitají, protože naopak mají stále nulovou výchylku od rovnovážné polohy, se nazývají uzly stojatého vlnění [27].

Při měření stojatého vlnění se sleduje průběh akustického tlaku, protože má stejný průběh jako výchylka stojatého vlnění a je přímo měřitelný měrným mikrofonem. [10]

Obr. 3. 5 Průběh akustického tlaku. (převzato z [10])

Úplné stojaté vlnění se projeví uzly, ve kterých je hodnota akustického tlaku trvale nulová a kmitnami, kde je hodnota akustického tlaku maximální. Částečné stojaté vlnění se projeví maximy a minimy akustického tlaku, kdy vzájemná vzdálenost dvou sousedních maxim nebo dvou sousedních minim je polovina vlnové délky. [10]

Obr. 3. 6 Průběh stojatého vlnění.

2017

4 Kmitočtová pásma

Akustické veličiny jsou frekvenčně závislé. Výsledkem je pak kmitočtové pásmo daných akustických veličin. Z důvodu, že k určení celkové hlučnosti se většinou nepožaduje přesná znalost kmitočtových spekter, je možné použitím zlomkooktávových pásem snížit objem zpracovávaných dat. Mezi takováto pásma patří kmitočtová pásma oktávová a třetinooktávová, díky kterým se získá jednodušší kmitočtové spektrum akustických veličin, aniž by se tím příliš změnila přesnost spektra k určení celkové hlučnosti. [28]

4.1 Oktávové kmitočtové pásmo

V kmitočtovém pásmu od 25 Hz do 20 kHz je celkem deset oktáv, kde je každá oktáva charakterizována poměrem krajních frekvencí f_1 a f_2 [28].

$$\frac{f_2}{f_1} = 2$$
 (9)

Oktáva se označuje střední frekvencí f_m , která se získá ze vztahu [12]:

$$f_m = \sqrt{f_1 f_2} \,. \tag{10}$$

Střední frekvence v oktávových pásmech jsou stanoveny normou, ze které vychází tabulka Tab. 2. Díky tomu se po úpravě předchozích vztahů získá dolní frekvence f_1 a horní frekvence f_2 [12].

$$f_1 = \frac{fm}{\sqrt{2}},\tag{11}$$

$$f_2 = f_m \sqrt{2} , \qquad (12)$$

Šířka oktávy jako rozdíl horní a dolní frekvence se zvětšuje se střední frekvencí, což znázorňuje tato rovnice. [12]

$$f_2 - f_1 = f_m \cdot \left(\sqrt{2} - \frac{1}{\sqrt{2}}\right) = \frac{f_m}{\sqrt{2}},$$
 (13)

Střední	1/1	1/3	Střední	1/1	1/3	Střední	1/1	1/3
frekvence	oktávy	oktávy	frekvence	oktávy	Oktávy	frekvence	oktávy	oktávy
pásma			pásma			pásma		
[<i>Hz</i>]			[<i>Hz</i>]			[<i>Hz</i>]		
25		х	250	х	х	2500		х
31,5	х	х	315		х	3150		х
40		х	400		х	4000	х	х
50		х	500	х	х	5000		х
63	х	х	630		х	6300		х
80		х	800		х	8000	х	х
100		х	1000	х	х	10000		х
125	х	х	1250		х	12500		х
160		х	1600		х	16000	х	х
200		Х	2000	Х	Х	20000		х

Tab. 4. 1 Střední oktávové a třetinooktaávové kmitočty pro akustiku. (převzato z [12])

Pokud se oktávy očíslují vzestupně tak, že první oktáva ve slyšitelném pásmu bude f_m = 31,5 Hz a poslední oktáva f_m = 16 kHz, lze střední frekvenci v daném oktávovém pásmu zjistit ze vztahu [12]:

$$f_m = 15,625 \cdot 2^n \,, \tag{14}$$

kde n je číslo oktávy[12,28].

Obr. 4. 1 Oktávové pásmo. (převzato z [28])

4.2 Třetinooktávové pásmo

Třetinooktávová pásma jsou rozdělena oktávová pásma na třetiny. Celkem je tedy třicet třetinooktávových pásem, které jsou znázorněny v Tab. 4. 1. Pokud frekvence f_1 a f_4 ohraničují pásmo oktávy a frekvence f_2 a f_3 jsou krajními frekvencemi vnitřní třetiny oktávy, může se psát [12]:

$$\log \frac{f_2}{f_1} + \log \frac{f_3}{f_2} + \log \frac{f_4}{f_3} = \log \frac{f_4}{f_1} = \log 2 , \qquad (15)$$

kde platí rovnost [12]:

$$\frac{f_2}{f_1} = \frac{f_3}{f_2} = \frac{f_4}{f_3} = \sqrt[3]{2} \cong 1,26,$$
(16)

ze které lze vidět, že poměř krajních kmitočtů v libovolné třetině oktávy je konstantní [12,28].

Krajní frekvence třetnoktávového pásma jsou závislá na střední frekvenci a platí pro ně následující vztahy [28].

$$f_1 = \frac{f_m}{\sqrt[6]{2}} \tag{17}$$

$$f_2 = f_m \cdot \sqrt[6]{2} \tag{18}$$

Obr. 4. 2 Třetinooktávové pásmo. (převzato z [28]).

5 Měřicí zařízení podle normy ČSN ISO 10534-1

5.1 Impedanční trubice

Jedná se o trubici s konstantním průřezem, s tuhými, hladkými, neporézními stěnami bez děr nebo štěrbin v měřeném úseku. Z důvodu zabránění rozkmitání a rezonování stěn vlivem působení zvukového signálu je důležité, aby stěny byly dostatečně silné a těžké. Uvádí se, že pokud jsou stěny zhotovené z kovu, měla by jejich tloušťka být kolem 5% pro stěny kruhového průřezu a 10% pro stěny pravoúhlého průřezu. Stěny z betonu a stěny ze dřeva by měly být povrchově upraveny. [9]

5.2 Držák vzorku

Držák vzorku slouží k upevnění vzorku k impedanční trubici. Jeho délka musí být tak velká, aby za vzorkem byl vzduchový polštář požadovaných hloubek. Existují dva typy držáků a to držák s odnímatelným víkem a držák s oddělenou součástí. [9]

Držák s oddělenou součástí se rozměry může lišit od rozměrů trubice maximálně do 0,2 % a musí být pevně připevněn a utěsněn (nejlépe vazelínou). Doporučovaným typem je držák s odnímatelným víkem, který se začlení přímo do impedanční trubice. Část pro vkládání vzorků by měla být provedena pomocí odnímatelného víka, kdy plochy víka a držáku musí být opracovány tak, aby na sebe dokonale doléhaly. [9]

Z důvodu používání držáku vzorku i jako tuhé ukončení trubice, je nutné, aby zadní stěna držáku byla tuhá a vyrobena nejlépe z kovové desky tlusté alespoň 2 *cm*. [9]

Pro některá měření se vzduchový polštář hloubky $\lambda_0/4$ za vzorkem chová jako tlakově propustný uzávěr. Pro nastavení proměnlivé hloubky vzduchového polštáře se někdy jako tuhé zakončení držáku vzorku používá pohyblivá zátka. [9]

5.3 Mikrofon

Mikrofon je pohyblivý a slouží ke snímání stojaté vlny v impedanční trubici pro zjištění poloh tlakových minim a hladin akustického tlaku v maximech a minimech stojaté vlny [9].

Mikrofon se pohubuje buď uvnitř impedanční trubice, nebo vně impedanční trubice, přičemž je k němu připevněna sondážní trubka s otvorem pro snímání zvuku v trubici. Mikrofon spolu s podpěrkami nesmí zabírat více než 5 % průřezu impedanční trubice. [9] Trubka sondy musí být z kovového materiálu a její stěny musí být dostatečně tlusté, aby nedocházelo k proniknutí zvuku do trubice. Ve vodorovné trubici musí být trubka sondy uprostřed podepřena, aby se zabránilo jejímu prohýbání a tím vzniku vyšších vlnových módů. U pravoúhlé trubice se muže mikrofon umístit do dolního rohu trubice a to z důvodu, že v rozích trubice jsou nejmenší vibrace, je ovšem důležité zamezit mechanickým stykům mezi trubicí a trubkou sondy, doporučuje se proto trubku podložit měkkým pěnovým materiálem. [9]

Zařízení pro pohyb mikrofonu a pro určování polohy jeho akustického středu by mělo mít přesnost $\pm 0,5$ mm. Pro kmitočty klesající od 300 Hz do 50 Hz může přesnost lineárně stoupat až na maximální toleranci ± 2 mm. [9]

5.4 Reproduktor

Reproduktor se nachází na opačném konci než držák vzorku. Jedná se o membránový reproduktor, kdy plocha membrány musí pokrývat minimálně dvě třetiny průřezu impedanční trubice. [9]

Reproduktor může mít různé typy provedení uzávěrů. Patří mezi ně přímý reproduktorový uzávěr, uzávěr se vsunutou mikrofonní sondou a s odkloněným reproduktorem a reproduktor připojený k trubici pomocí kolena se vsunutou mikrofonní sondou. [9]

Obr. 5. 1 Přímý reproduktorový uzávěr. (převzato z [9])

Obr. 5. 2 Uzávěr s odkloněným reproduktorem a vsunutou sondou. (převzato z [9])

Obr. 5. 1 Reproduktor připojený k trubici kolenem se vsunutou sondou. (převzato z [9])

Aby se zabránilo přímému přenosu zvuku do mikrofonu, musí být reproduktor umístěn do zvukově odizolované skříně. Dále je důležité, aby impedanční skříň byla pomocí pružného těsnění odizolována od reproduktorové skříně a koše reproduktoru z důvodu buzení impedanční trubice zvukem šířeným konstrukcí. [9]

Pro zabránění vzniku rezonancí vzduchového válce vlivem vysoké mechanické impedance reproduktorové membrány je možné uvnitř trubice před reproduktorem použít porézní absorpční obklad. [9]

5.5 Zařízení pro zpracování signálu

Zařízení pro zpracování signálu je složeno ze zesilovače, filtru, měřidla akustického tlaku nebo hladiny akustického tlaku a plynulého zapisovače obrazce stojaté vlny. Dynamický rozsah by měl přesahovat 60 dB. Nelinearity, nestabilita, chyba čtení a teplotní citlivost by měly být menší než 0,2 dB. Dále je důležité, aby po umístění mikrofonu do tlakového maxima byl pomocí filtru potlačen šum a obsah harmonických signálů alespoň 50 dB pod jeho základní kmitočet. [9]

5.6 Generátor signálu

Generátor signálu je složen z generátoru sinusových kmitů, výkonového zesilovače a, pokud možno i čítače kmitů. Přesnost nastavení a čtení musí být lepší než 2 %. Buzení vyšších harmonických generátorem signálu, výkonovým zesilovačem a reproduktorem musí být takové, aby je bylo ještě možné odfiltrovat. [9]

5.7 Teploměr

Jelikož rychlost šíření zvuku a vlnová délka jsou teplotně závislé, je třeba teplotu uvnitř impedanční trubice udržovat stálou s tolerancí ±1 K, ke sledování teploty se tedy využívá teploměr. [9]

6 Měřicí řetězec

Měřicí řetězec se skládá ze samotné impedanční trubice, která obsahuje reproduktor a mikrofon, dále ze zařízení pro zpracování signálu, generátoru signálu a zesilovače. Blokové schéma měřicího řetězce je na Obr. 6. 1.

Obr. 6. 1 Měřící řetězec. (překresleno z [10])

6.1 Impedanční trubice

Impedanční trubice, použita k měření úloh této práce byla vyrobena jako předmět diplomové práce Richardem Hůrkou.

Tělo impedanční trubice je vyrobené z PVC trubky DN 110 o vnitřním průřezu 103 mm, která je vsazena do trubky DN 125 a místo mezi nimi je vyplněno štukovým pískem. Tím je zvýšena hmotnost a tloušťka stěn, díky čemuž by mělo být zabráněno možnému rozkmitání a rezonování stěn. Délka pracovního úseku je 1,2 m. [29]

Impedanční trubice, na které bylo prováděno měření, je uzpůsobena pouze pro měření činitele zvukové pohltivosti, nikoli impedance. Zařízení je vyfocené na Obr. 6. 2.

Obr. 6. 2 Impedanční trubice použita k měření.

6.1.1 Držák vzorku

Držák vzorku je vyroben z hrdla trubice DN 125, silonového kotouče a dílu novodurové trubice o vnějším průměru 110 mm a vysypán pískem [29].

Jelikož použitý typ držáku vzorku je držák s oddělenou jednotkou je nutné ho pevně připevnit k impedanční trubici, aby se vyvarovalo případnému kmitání nástavce. Impedanční trubice vyrobena Richardem Hůrkou ovšem žádný systém pevného uchycení držáku vzorku neobsahovala, bylo jej tedy nutné navrhnout a vyrobit. Návrh daného systému uchycení, podle kterého se postupovalo dále, se nachází na Obr 6. 3. Výroba začala pomocí plazmy vyříznutím dvou delších ocelových pásů určených na boční stranu konstrukce, jednoho kratšího určeného na přední část konstrukce a jedné části určené jako přítlačná platle, přičemž do pásů určených na boční část byly navíc vyříznuty tři otvory pro nasazení na impedanční trubici a možnost použití minimálně tří různě velkých držáků vzorků. Vyříznuté díly byly k sobě následně svařeny. Aby se zamezilo ohýbání konstrukce upevňujícího systému, bylo nutné na díly navařit navíc vzpěry a další část kusy pásoviny tak, aby konečná konstrukce měla profil ve tvaru L. Do přední části byla vyvrtána díra a navařena matka, do

které se natočila závitová tyč s plastovou hlavou na konci. Svařená konstrukce společně s platlí, na kterou byly navařeny čtyři packy pro nasazení na držák vzorku, se následně nechaly poniklovat. Nakonec se na obou bočních stranách jedné z noh impedanční trubice vyvrtala díra, do které bylo na natočeno závitové pouzdro a do toho následně natočen šroubek určen pro nasazování vyrobené konstrukce. Výsledný systém uchycení držáku vzorku použitý v praxi je vidět na Obr. 6. 2.

Obr. 6. 3 Návrh systému pevného uchycení držáku vzorku na impedanční trubici.

6.1.2 Mikrofonní sonda

Mikrofonní sonda má podobu duté hliníkové trubičky o průměru 8 mm, kde jako redukce mezi trubičkou a mikrofonem slouží silonový nástavec [29]. Protože mikrofonní sonda v původní podobě neměla žádné kolečko, o které by se opírala, aby nedocházelo k jejímu prohýbání, bylo nutné jej vyrobit. Vyrobeno bylo tak, že se koupilo klasické kolečko určené pro nábytek, na kterém se provedly pouze kosmetické úpravy, a následně se na něj navařila ocelová tyčka s navařeným válečkem na konci, do kterého bylo nutné vyříznout drážku pro vložení mikrofonní sondy. Pevné uchycení trubičky je provedeno utažením imbusových šroubků nacházející na bočních stranách válečku. Konečný výrobek je vyfocený na Obr. 6. 4.

2017

Obr. 6. 4 Vyrobené kolečko mikrofonní sondy.

6.2 Reproduktor

Reproduktor je k impedanční trubici připevněn přímo a jedná se o Monacor SPH-100C [29] s parametry [30] o výkonu 30 W, frekvenčním rozsahem od 3 Hz do 6 kHz, impedancí 8 Ω a rozměry viz Obr. 6. 6. Citlivostní charakteristika reproduktoru je znázorněna na Obr. 6. 5.

2017

Obr. 6.6 Rozměry reproduktoru Monacor SPH-100C. (převzato z [30])

6.3 Mikrofon

Jako mikrofon byl požit mikrofon typu M2210 od výrobce NTi Audio AG, který má parametry [31] o frekvenčním rozsahu od 5 Hz do 20 kHz a dynamickým rozsahu od 19 do 140 dB.

6.4 Zařízení pro zpracování signálu

Pro zpracování signálu byl použit analyzátor zvuku XL2 od výrobce NTi Audio AG s frekvenčním rozsahem v reálném čase [32] od 6,3 Hz do 20 kHz, kdy pomocí tohoto analyzátoru byla snímána hladina akustického tlaku a to po třetinách oktávy v pracovním kmitočtovém rozsahu.

6.5 Generátor signálu

Pro generování měřicího signálu byl použit tónový generátor Minirator MR-PRO od výrobce NTi Audio AG s kmitočtovým rozsahem [33] od 10 Hz do 20 kHz, na kterém jako typ generovaného signálu byla nastavena sinusová vlna a amplituda měřicího signálu byla nastavena na 100 mV. Poté se postupně nastavoval kmitočet a to po krocích jedné třetiny oktávy v celém pracovním kmitočtovém rozsahu.
6.6 Zesilovač

Jako zesilovač byl použit Behringer EP 2000 EUROPOWER, který disponuje dvěma kanály. Jeho výstupní výkon do zátěže o velikosti 8 Ω je 2x350 W, frekvenční rozsah je od 5 Hz do 50 kHz a celkové harmonické zkreslení plus šum je menší než 1% [34]. Zesilovač byl spojen s tónovým generátorem přes XLR konektor a na potenciometru pro hlasitost vybraného kanálu byla nastavena hodnota 18.

7 Měření

Aby se předešlo chybám a zajistilo se splnění minimálních požadavku, je třeba, aby měřící zařízení bylo před samotným měřením zkontrolováno řadou zkoušek, které probíhají se zakončenou impedanční trubicí tuhým uzávěrem a je nutné je po každé úpravě měřícího zařízení opakovat. Mezi tyto zkoušky patří například ověření poměru stojatého vlnění a dynamický rozsah mikrofonní sondy. Dále se provádí ještě předběžná měření, která probíhají taktéž se zakončenou impedanční trubicí tuhým uzávěrem a jejich cílem je určit vlnovou délku nebo rychlost šíření a korekci na útlum zvuku. Předběžná měření je také nutné po jakékoliv úpravě měřícího zařízení opakovat. [9]

Amplitudu je třeba stanovit takovou, aby byla nejlépe vyšší než 10 dB a minimálně o 5 dB převyšovala okolní hluk v nejnižším tlakovém minimu na daném kmitočtu. [9]

7.1 Určení pracovního kmitočtového rozsahu impedanční trubice

Pracovní kmitočtový rozsah je kmitočtový rozsah, který je větší než dolní mezní kmitočet a menší než horní mezní kmitočet a ve kterém je možné provést měření. V Jiném rozsahu měření provést nelze. Podle ISO 10534 je nejlépe použít kmitočtovou řadu odpovídající středním kmitočtům třetinooktávových pásem. Pro odhalení rezonancí u vzorku, který je rezonančního typu je možné třetinooktávová pásma doplnit i o jiné kmitočty. [9]

Pracovní kmitočtový rozsah je závislý na délce a na příčném rozměru impedanční trubice. Aby bylo možné se zabývat dvěma tlakovými minimy i během nepříznivých fází odrazu, je třeba, aby délka měřeného úseku na dolním mezním kmitočtu byla:

$$l \ge \frac{3\lambda_0}{4},\tag{19}$$

kde *l* je délka a λ_0 je vlnová délka. [9]

Reproduktor kromě rovinné vlny většinou budí i vlny vyšších módů. Vlny, které se nacházejí pod nižším mezním kmitočtem prvního vyššího módu, vymizí do vzdálenosti asi tří průměrů kruhové trubice. Měřené vzorky, které mají laterálně proměnné akustické vlastnosti, jako jsou např. rezonátory, přispívají vlnami vyšších módů k odražené vlně. [9]

Protože v místech zkušebního úseku se nesmí nacházet ani jedna z oblastí možného

výskytu vln vyšších módů, má délka trubice mezi předním povrchem vzorku a reproduktorem vztah k dolnímu meznímu kmitočtu f_d pracovního kmitočtového rozsahu podle podmínky:

$$l \ge \frac{250}{f} + 3d , \qquad (20)$$

kde l je délka, f – kmitočet, d – vnitřní průměr. Po úpravě a dosazení parametrů použité impedanční trubice se získá hodnota dolního mezního kmitočtu [9].

$$f_{d} \ge \frac{250}{l} + 3 \cdot d \tag{21}$$

$$f_{d} \ge \frac{250}{1,2} + 3 \cdot 0,103$$

$$f_{d} \ge 208,6423 \text{ Hz}$$

Horní mez f_h pracovního kmitočtového rozsahu je dána možným začátkem šíření vln vyšších módů. Podmínkou pro horní mezní kmitočet u kruhových trubic o vnitřním průměru d je [9]:

$$d \le 0,58\lambda_0 , \qquad (22)$$

$$f_h d \le 200 , \qquad (23)$$

kde λ_0 je vlnová délka a *d* vnitřní průměr trubice. Pro výpočet horní meze pracovního kmitočtového rozsahu se použije následující vztah [9], do kterého se dosadí parametry použité impedanční trubice:

$$f_h \leq \frac{200}{d}$$

$$f_h \leq \frac{200}{0,103}$$

$$f_h \leq 1941,7476 Hz$$

$$(24)$$

Z předchozích výpočtu se určil pracovní kmitočtový rozsah impedanční trubice použité k měření, který je od 209 do 1942 Hz. V tomto kmitočtovém rozsahu se nacházejí

třetinooktávová pásma od 250 do 1600 Hz.

7.2 Ověřování poměru stojaté vlny

Průběh stojatého vlnění se zaznamenává tak, že v celém pracovním kmitočtovém rozsahu na kmitočtech třetinooktávových pásem se pohybem mikrofonní zaznamenává hodnota hladiny akustického tlaku a vzdálenost, ve které se mikrofonní sonda nachází. Pokud na sousedních třetinooktávých pásmech dochází k velkým změnám je třeba průběh přeměřit detailněji doplněním o další kmitočty. [9]

Obr. 7. 1 Obvyklý obrazec stojaté vlny s útlumem v trubici. (převzato z [9])

Aby bylo možné měřit hodnoty činitele zvukové pohltivosti tak malé jako $\alpha = 0,04$, nesmí být poměr zaznamenaných obrazců menší než 45 dB. Výsledná obálka tlakových minim musí být buď vodorovná, nebo musí monotónně narůstat směrem ke zdroji zvuku, kdy tolerovaný nárůst je ±1 dB, zároveň zaznamenané obrazce stojatého vlnění nesmí být nijak zvlněné. Pokud tyto podmínky nejsou splněny, mohlo dojít k následujícím příčinám:

- dolní obálka vykazuje příliš velký nárůst při příliš malých hodnotách poměru stojaté vlny
 - Příčinou je velký útlum v impedanční trubici. Ten může být způsoben např.
 štěrbinami nebo hrubými, porézními a vibrujícími stěnami.
- Příliš malé hodnoty poměru stojatého vlnění
 - První možnou příčinou může být, že zařízení pro zpracování signálu má příliš malý dynamický rozsah a druhou možnou příčnou je, že vlivem nedostatečné izolace reproduktoru nebo vibrací mikrofonní sondy se šíří zvuk vzduchem nebo konstrukcí.

• Dolní obálka nenarůstá monotónně

Obrazce stojaté vlny narušené superpozicí vyšších módů můžou být zapříčiněny vyššími módy v měřeném úseku vyvolané reproduktorem nebo mikrofonem či jinými předměty v měřeném úseku. Další možnou příčinou je zvuk šířící se konstrukcí do impedanční trubice popřípadě do trubky mikrofonní sondy.

Obr. 7. 2 Obrazec stojatého vlnění narušený superpozicí vyšších módů. (převzato z [9]).

- Obrazce stojatých vln jsou zvlněny
 - Příčinou je výskyt vyšších harmonických v signálu, ty mohou být způsobeny nedostatečným filtrováním, chvěním mikrofonní sondy, či nelineárním buzením generátorem.

Obr. 7. 3 Zvlnění na obrazci stojaté vlny. (převzato z [9])

- Minima jsou zaoblena
 - Příčinou je, že signál se nachází pod hladinou šumu nebo hluku, to může způsobeno např. velkým útlumem v trubici mikrofonní sondy nebo malou amplitudou signálu. [9]

Naměřené hodnoty se vložily do tabulek, ze kterých se následně pro každou měřenou

2017

frekvenci vykreslil graf stojatého vlnění. Na Obr. 7. 4 je vyobrazen graf stojatého vlnění na kmitočtu o velikosti 1 kHz. Na tomto grafu stojatého vlnění lze vidět, že podmínka normy, která říká, že tolerovaný nárůst každého následujícího minima je ± 1 dB, není splněna. Možnou příčinou mohla být příliš vysoká hodnota signálu, ale při jejím snížení byl nárůst stále větší než ± 1 dB, z toho důvodu impedanční trubice, na které bylo provedeno měření, neodpovídá požadavkům normy ČSN ISO 10534-1.

Obr. 7. 4 Graf změřeného stojatého vlnění při kmitočtu 1 kHz.

Na kmitočtu 630 Hz, jehož průběh stojatého vlnění je na Obr. 7. 5 dochází k dalšímu případu nedodržení podmínky normy, kdy vzdálenost prvního minima s druhým je o 4 mm delší než vzdálenost mezi ostatními minimy. Z tohoto důvodu byl tento kmitočet přeměřen ještě jednou, jestli nedošlo ke špatnému odečítání hodnot, ale vzdálenost prvního minima s druhým se po přeměření oproti vzdálenostem ostatních minim stále lišila. Dále lze pozorovat, že nárůst tlakových minim není monotónní. Nemonotónní nárůst tlakových minim dále vykazují stojaté vlnění měřené na kmitočtech 800 Hz a 1,6 kHz. Na zbylých kmitočtech tlaková minima monotónně rostou, ale o více než ± 1 dB.

2017

Obr. 7. 5 Graf změřeného stojatého vlnění při kmitočtu 630 Hz.

Na Obr. 7. 6 je graf stojatého vlnění pro kmitočet 200 Hz a z důvodu, že tento kmitočet nepatří do pracovního kmitočtového rozsahu, lze pozorovat, že se vytvořilo pouze jedno tlakové minimum, a protože pro další výpočty jsou třeba tlaková minima dvě, nebude se s tímto kmitočtem dále počítat.

Obr. 7. 6 Graf změřeného stojatého vlněné při kmitočtu 200 Hz.

Poměr stojatého vlnění se určí tak, že z naměřených hladin akustického tlaku se vyberou hodnoty hladin akustických minim a následujících maxim a jejich rozdílem se stanový jejich poměr. Jako ukázka je zde uveden výpočet poměru první minima a následujícího maxima při kmitočtu 1 kHz, jehož naměřené hladiny akustických tlaků minim maxim spolu se zbylými poměry naměřených obrazců jsou vypsány v Tab. 7. 1.

 $-49.6 = 50.1 \, dB$ (28)

n	L _p (x _{min}) [dB]	L _p (x _{min}) [dB]	ΔL[dB]
1	49,6	99,7	50,1
2	55,5	99,7	44,2
3	59,3	99,7	40,4
4	61,7	99,7	38,0
5	63,5	99,7	36,2

Tab. 7. 1 Vypočtený poměr obrazců stojatého vlnění při 1000 Hz.

7.3 Dynamický rozsah mikrofonní sondy

Tato část měření probíhá tak, že při zapnutém zdroji signálu se na kmitočtech třetinooktávových pásem nacházejících se v pracovním kmitočtovém rozsahu pohybem mikrofonní sondy nalezne tlakové minimum, u kterého se pomocí analyzátoru zvuku změří hladina akustického tlaku. Dále se zjistí odstup hlukového pozadí a to tak, že se vypne zdroj zvuku a opět se pomocí analyzátoru zvuku změří hladina akustického tlaku, která se následně odečte od naměřené hodnoty hladiny akustického tlaku při zapnutém zdroji signálu. Hodnoty nalezených tlakových minim s následnými výpočty odstupu hlukového pozadí se nachází v Tab. 7. 2.

f [Hz]	L _p (x _{min}) se zdrojem zvuku [dB]	L _p (x _{min}) bez zdroje zvuku [dB]	Odstup hlukového pozadí [dB]	
200	77,1	12,2	64,9	
250	78,4	15,0	63,4	
315	71,5	13,5	58,0	
400	64,7	9,8	54,9	
500	60,2	15,0	45,2	
630	56,2	17,2	39,0	
800	62,7	16,0	46,7	
1000	54,0	9,7	44,3	
1250	63,8	10,4	53,4	
1600	37,8	10,8	27,0	

Tab. 7. 2 Odstup hlukového pozadí.

Hladina akustického tlaku tlakového minima stojatého vlnění naměřena při zapnutém zdroji zvuku musí být alespoň o 10 dB vyšší než hladina akustického tlaku stejného tlakového minima při vypnutém zdroji zvuku. Naměřené hodnoty tuto podmínku splňují na všech měřených kmitočtech, ovšem v případě, že by odstup hlukového pozadí nebyl větší než 10 dB bylo by nutné zkontrolovat, jestli není příliš velký útlum v trubce mikrofonní sondy, jestli impedanční trubice a trubka mikrofonní sondy nevibrují nebo jestli je

7.4 Určení vlnové délky

reproduktor dostatečně izolován. [9]

Vlnová délka se určuje na základě znalosti rychlosti zvuku impedanční trubice c_0 . Vlnová délka poté plyne z rovnice

$$\lambda_0 = \frac{c_0}{f},\tag{29}$$

kde c_0 je rychlost šíření zvuku v impedanční trubici a f je frekvence. [6]

Rychlost šíření zvuku v impedanční trubici c_0 se určuje v celém pracovním kmitočtovém rozsahu v třetinooktávových pásmech se zakončenou trubicí pevným uzávěrem. [9]

Na základě změřených poloh tlakových minim během ověřování poměru stojatého vlnění, se určí vlnové délky λ_0 podle vztahu [9]:

$$\lambda_0 = \frac{2}{n-m} (x_{min,n} - x_{min,m}) \quad (\text{pro } n = 1, 2, ...) (\text{pro } m = 1, 2, ...),$$
(30)

kde *n* a *m* je pořadí tlakového minima, $x_{\min,n}$ poloha prvního vybraného tlakového minima a $x_{\min,m}$ poloha druhého vybraného tlakového minima. Výpočet vlnové délky pro kmitočet 1 kHz po dosazení poloh tlakových minim vypadá následovně.

$$\lambda_0 = \frac{2}{1-2}(0,065 - 0,238) = 0,346 \, m$$

Polohy tlakových minim a dopočítané vlnové délky všech kmitočtů pracovního kmitočtového rozsahu se nachází v Tab. 7. 3.

f [Hz]	X _{min,1} [m]	X _{min,2} [m]	λ₀ [m]	
250	0,143	0,842	1,398	
315	0,073	0,623	1,100	
400	0,017	0,448	0,862	
500	0,324	0,669	0,690	

Tab. 7. 3 Výsledné vlnové délky.

630	0,217	0,493	0,552
800	0,128	0,344	0,432
1000	0,065	0,238	0,346
1250	0,012	0,150	0,276
1600	0,076	0,184	0,216

Tyto výsledky vlnové délky ovšem nejsou zcela přesné, protože u impedanční trubice použité k měření dochází k nárůstu akustických tlaků následujících minim o více než ± 1 dB a tím tedy není splněna podmínka normy a tento výpočet nelze použít.

7.5 Určení rychlosti šíření zvuku v impedanční trubici

Pro určení rychlosti šíření zvuku v impedanční trubici c_0 závislé na okolní teplotě se použije vztah, kde se bere v potaz aktuální teplota T [9].

$$c_0(T) = c_0(T_0) \sqrt{\frac{T}{T_0}},$$
 (31)

kde $c_0(T_0)$ je rychlost šíření zvuku při 25 °C, *T* je aktuální teplota v trubici a T_0 je 20 °C v kelvinech.

V impedanční trubici byla pomocí přístroje ALMEMO 2290-4 naměřena teplota 25 °C, která se po převedení na kelviny spolu s ostatními známými hodnotami dosadila do předchozí rovnice a následně se vypočetla rychlost šíření zvuku v impedanční trubici.

$$c_0(T) = 343.3 \sqrt{\frac{298,15}{293}} = 346,3039 \ m/s$$

Pro určení rychlosti šíření zvuku závislé na frekvenci se použije vztah

$$c_0(f) = \lambda_0(f) \cdot f \tag{32}$$

kde $\lambda_0(f)$ je vlnová délka závislá na kmitočtu a f je kmitočet. [9] Pro kmitočet 1 kHz, kde se dosadí vlnová délka zjištěna v předešlé kapitole, vypadá výpočet náslovně.

$$c_0(f) = 0,346 \cdot 1000 = 346 \, m/s$$

Zbylé hodnoty jsou dopočítané v Tab. 7. 4, ze kterých je vynesená křivka v závislosti na kmitočtu (viz Obr. 7. 7), kde lze sledovat, že křivka vykazuje sklony a špičky. Sklony a

(22)

špičky v tomto grafu ukazují na chyby v použité impedanční trubici, kdy tyto chyby můžou být např. štěrbiny v impedanční trubici, vyšší módy nebo nesprávný kmitočet [9].

	rana zamola na n		
f [Hz]	c ₀ (f) [m/s]		
250	349,5		
315	346,5		
400	344,8		
500	345,0		
630	345,2		
800	345,6		
1000	346,0		
1250	345,0		
1600	345,6		

Tab. 7. 4 Rychlost šíření zvuku závislá na kmitočtu

Obr. 7. 7 Křivka rychlosti šíření zvuku v závislosti na kmitočtu.

7.6 Určení korekcí na útlum v trubici

Vlivem viskózních a tepelných ztrát je dopadající zvuková vlna spolu s odrážející zvukovou vlnou během šíření tlumena. To je způsobeno monotónním nárůstem amplitud akustických tlaků v minimech se zvětšující se vzdáleností od odrazivého povrchu. Z toho důvodu je nutné, aby určované veličiny během měření byly použity s korekcemi na útlum. [9]

Analyticky je možné útlum popsat tak, že reálné vlnové číslo k_0 se nahradí komplexním vlnovým číslem.

Filip Šanda

$$k_0 = k'_0 - jk''_0 , (33)$$

kde k'_0 je reálná složka vlnového čísla a k''_0 je činitel zeslabení na jeden metr [6]. k_0 se určí z rovnice (29) [6] a k'_0 se vyjádří pomocí rovnice (30) [9].

$$k_0 = \frac{\omega}{c_0} = \frac{2\pi f}{c_0} \tag{34}$$

$$k_0' = \frac{2\pi}{\lambda_0} \tag{35}$$

Amplitudy akustického tlaku v minimech $|p(x_{\min,n})|$ a maximech $|p(x_{\max,n})|$ se určí z hladin akustických tlaků v minimech a maximech, které byly zjištěny během ověřování poměru stojatého vlnění. Pro tento výpočet se použijí rovnice [28]:

$$|p(x_{min,n})| = 10^{\frac{L_p(x_{min,n})}{20}},$$
 (36)

$$|p(x_{max,n})| = 10^{\frac{L_p(x_{max,n})}{20}},$$
 (37)

kde číslování n = 1, 2, 3, ... začíná prvním minimem směrem k reproduktoru a prvním maximem vpravo od minima.

Poté se pomocí amplitud akustických tlaku v minimech a maximech určí poměr stojaté vlny s_{n} [9].

$$s_n = \frac{|p(x_{max,n})|}{|p(x_{min,n})|} \tag{38}$$

Vzorec [6] pro výpočet absolutní hodnoty činitele odrazu vypadá následovně.

$$|r| = e^{2k_0'' x_{min,n}} \left(\frac{s_n - e^{\frac{k_0'' \lambda_0}{4}}}{s_n + e^{-\frac{k_0'' \lambda_0}{4}}} \right)$$
(39)

Pro jeho určení se musí nejdříve určit veličina Δ_n [9], pro jejíž výpočet se použijí první dvě minima amplitudy akustického tlaku a maximum amplitudy akustického tlaku nacházející se mezi nimi.

$$\Delta_n = \frac{\left| p(x_{min,n+1}) - |p(x_{min,n})| \right|}{|p(x_{max,n})|}$$
(40)

Dále se tato veličina dosadí do následujících rovnic [9].

$$\frac{k_0''\lambda_0}{4} = \ln\left(\frac{\Delta_n}{2} + \sqrt{\frac{\Delta_n^2}{4} + 1}\right) \tag{41}$$

$$e^{\frac{k_0''\lambda_0}{4}} = \left(\frac{\Delta_n}{2} + \sqrt{\frac{\Delta_n^2}{4} + 1}\right) \tag{42}$$

$$e^{-\frac{k_0''\lambda_0}{4}} = \left(\frac{\Delta_n}{2} + \sqrt{\frac{\Delta_n^2}{4} + 1}\right)^{-1}$$
(43)

Poté lze určit následující rovnici [9].

$$k_0'' x_{min,1} = 4 \left(\frac{k_0'' \lambda_0}{4} \right) \left(\frac{x_{min,1}}{\lambda_0} \right)$$
(44)

Tím jsou známé všechny veličiny pro vypočtení absolutní hodnoty činitele odrazu z rovnice (35).

Činitel zeslabení k_0'' trubice je nutné určit vždy po jakékoliv změně trubice [9].

Pokud nárůst hladin mezi prvním a druhým minimem je menší než 2 dB a velikost $x_{min,1}/\lambda_0$ není větší než 0,3, je možné korekci na útlum odvodit jinou, přibližnou metodou. Tou lze korigovat poměr stojaté vlny s_0 , který je odvozený lineární extrapolací minim do roviny x = 0. Korekce extrapolací musí být o proti předešlé metodě použita na každém kmitočtu a pro každý měřený vzorek. [9]

Když se fiktivní amplituda $|p_0|$ prvního minima nachází na povrchu vzorku v rovině x = 0, jak je vidět na Obr 7. 7 je možné ji aproximovat na základě definice korigovaného poměru stojaté vlny s_0

$$s_0 = \frac{|p(x_{max,1})|}{|p_0|} \tag{45}$$

a po dosazení za so z rovnice

$$\frac{1}{s_0} = \frac{1}{s_1} + \frac{2x_{min,1}}{\lambda_0} \left(\frac{1}{s_1} - \frac{1}{s_2}\right)$$
(46)

kde s_1 a s_2 jsou poměry stojaté vlny prvního a druhého minima určené tlakovým maximem $|p(x_{max,1})|$ mezi nimi. Takto zjištěný poměr stojaté vlny s_0 je potřeba použít místo s v rovnici pro zjištění absolutní hodnoty činitele odrazu stojaté vlny. [9]

$$|r| = \frac{s-1}{s+1}$$
(47)

Pokud nelze přesně proměřit dvě tlaková minima v dolní části pracovního kmitočtového pásma a během provozních měření, je možné činitel zeslabení odhadnout vzorcem

$$k_0^{\prime\prime} = 1,94 \times 10^{-2} \left(\frac{\sqrt{f}}{c_0} \cdot d \right),$$
 (48)

kde d je průměr kruhové trubice v příčném řezu a f je kmitočet. V takto zjištěném činiteli zeslabení se neberou v potaz zdroje útlumu jako např. porézní stěny a předměty v trubici, lze je teda pokládat za dolní mez. [9]

Pokud není jisté, že tyto dodatečné příspěvky k útlumu existují, doporučuje se určit útlum s použitím rovnic pro určení fáze činitele odrazu v této kapitole a to na středních a vyšších kmitočtech pracovního kmitočtového rozsahu a následně jej extrapolovat do nižších kmitočtů. [9]

Obr. 7. 7 Korekce na útlum v trubici. (převzato z [6])

Z důvodu, že při ověřování poměru stojatého vlnění bylo zjištěno, že dochází k nárůstu akustických tlaků následujících minim o více než ± 1 dB, a tudíž zjištěna vlnová délka není zcela přesná, není tedy možné použít výpočet útlumu v trubici.

7.7 Určení činitele zvukové pohltivosti

Činitel zvukové pohltivosti tuhého zakončení trubice se určí tak že absolutní hodnota činitele pohltivosti, která se zjistila v předchozí kapitole, se dosadí do vztahu [9]:

$$\alpha = 1 - |r|^2 \,, \tag{49}$$

kde |r| je absolutní hodnota činitele odrazu.

Pro určení činitele zvukové pohltivosti libovolného materiálu je zapotřebí mít k dispozici vzorek vyhovující svými rozměry držáku vzorku dané trubice. Vybraný materiál se vloží do držáku vzorku a utěsní se modelínou, viz Obr. 7. 8. Poté se držák vzorku upevní na impedanční trubici a po třetionooktávových pásmech v pracovním kmitočtovém rozsahu se pomocí analyzátoru zvuku změří hladiny akustického tlaku v prvním minimu a následujícím maximu. Z těchto změřených hodnot se po dosazení do rovnic (36) a (37) určí amplitudy akustického tlaku, které se dosadí do rovnice (38), kde se určí poměr stojatého vlnění se následně dosadí do rovnice pro výpočet absolutní hodnoty činitele odrazu (39), kde se jako zbylé veličiny použijí zjištěné hodnoty z tématu určení korekce na útlum v trubici. Nakonec se absolutní hodnota činitele odrazu dosadí do rovnice pro výpočet činitele zvukové pohltivosti (49).

Z důvodu, že u použité impedanční trubice nelze přesně určit vlnovou délku a tudíž nelze použít výpočet útlumu, se činitel zvukové pohltivosti určí tak, že rozdílem naměřeného akustického tlaku prvního minima a následujícího maxima na daném kmitočtu se určí

veličina ΔL . Poté se veličina ΔL dosadí do rovnice (9), která jako příklad pro kmitočet 1 kHz bude vypadat následovně.

$$\alpha = \frac{4 \cdot 10^{\frac{\Delta L}{20}}}{(10^{\frac{\Delta L}{20}} + 1)^2} = \frac{4 \cdot 10^{\frac{14}{20}}}{(10^{\frac{14}{20}} + 1)^2} = 0,75$$

Naměřené hladiny akustického tlaku, jejich rozdíl jako veličina ΔL a výsledný činitel zvukové pohltivosti pro všechny kmitočty pracovního kmitočtového pásma se nacházejí v Tab. 7. 5.

f [Hz]	Lp(Xmin,1) [dB]	Lp(x _{max,1}) [dB]	ΔL [dB]	α [-]
250	95,20	123,70	28,50	0,14
315	89,70	115,60	25,90	0,18
400	89,80	112,20	22,40	0,26
500	85,40	105,50	20,10	0,33
630	76,70	98,80	22,10	0,27
800	88,80	102,30	13,50	0,58
1000	83,20	97,20	140	0,55
1250	87,10	95,70	8,60	0,79
1600	72,40	78,20	5,80	0,90

Tab. 7. 5 Hladiny akustických tlaků.

Filip Šanda

Obr. 7. 8 Umístění měřeného vzorku do držáku vzorku.

7.7.1 Popis měřeného vzorku

Materiál použitý k měření je 40 mm tlustá zvukopohltivá pěna s názvem Basotect® od výrobce BASF. Tato pěna je vyrobena z melaminové pryskyřice a jejím hlavním charakteristickým rysem je trojrozměrná síťovina. [35] Díky vlastnostem jako jsou vysoká teplotní odolnost, vysoká pohltivost zvuku, abraze a nízká hmotnost se tento materiál díky své pohltivosti používá například v interiérech a jako teplená izolace v dopravním průmyslu, nebo jako čistící houbičky [35].

Graf na Obr. 7. 8 ukazuje výrobcem v impedanční trubici naměřenou křivku činitele zvukové pohltivosti závislého na frekvenci pro různé tloušťky materiálů

2017

Obr. 7. 8 Výrobcem naměřené hodnoty činitele zvukové pohltivosti materiálu Basotec®. (překresleno z [36])

7.7.2 Porovnání naměřených hodnot s hodnoty od výrobce

Naměřené hodnoty činitele zvukové pohltivosti α spolu s hodnoty činitele zvukové pohltivosti pro tloušťku 40 mm dodané výrobcem měřeného vzorku α_N , jsou v tab. 7. 7, kde lze pozorovat, že mimo kmitočty 630 Hz a 1 kHz si jsou hodnoty velmi podobné. Grafické porovnání hodnot je na Obr. 7. 9.

f [Hz]	α _N [-]	α[-]	
250	0,15	0,14	
315	0,18	0,18	
400	0,21	0,26	
500	0,30	0,33	
630	0,45	0,27	
800	0,60	0,58	
1000	0,75	0,55	
1250	0,85	0,79	
1600	0,92	0,90	

Tab. 7. 6 Porovovnání činitelů zvukové pohltivosti.

Obr. 7. 8 Grafické porovnání naměřeného činitele zvukové pohltivosti s hodnoty od výrobce vzorku

Závěr

V první části této práce byly popsány základní akustické jevy, jako šíření zvuku, prostorová akustika a pohlcování zvuku, ve kterém byly mimo druhů pohlcování představeny metody měření činitele zvukové pohltivosti, kterými jsou měření v dozvukové komoře a měření v impedanční trubici. Taktéž byly uvedeny nejčastěji používané materiály k izolování zvuku.

V další části je popsána impedanční trubice podle normy ČSN ISO 10534-1 a měřící řetězec, kde jsou uvedeny měřicí přístroje a taktéž popsaná impedanční trubice na které bylo prováděno měření. V této části je také popsána výroba předmětů, jež byly nutné navrhnout a vyrobit před samotným měřením. Těmito předměty jsou kolečko, které podpírá mikrofonní sondu a tím zabraňuje jejímu prohýbání a systém pevného upevnění držáku vzorku, aby nedocházelo k rozkmitání držáku.

V další části se tato práce zabývá ověřováním parametrů použité impedanční trubice podle normy ČSN ISO 10534-1 a měřením činitele zvukové pohltivosti materiálu, který byl v době měření dostupný. Při ověřování poměru stojatého vlnění bylo zjištěno, že je splněna podmínka odstupu signálu od hlukového pozadí 10 dB, ale při kmitočtu 630 Hz byla zjištěna nerovnoměrná vzdálenost minim. Kvůli podezření nesprávného odečtení hodnot bylo měření na tomto kmitočtu opakováno, výsledkem byla ale opět nerovnoměrná vzdálenost akustických minim. Při kmitočtech 630, 800 a 1600 Hz obálka tlakových minim není buďto vodorovná nebo nenarůstá monotónně směrem k reproduktoru. U zbylých kmitočtů obálka tlakových minim monotónně narůstá, ale o více než tolerovaný nárůst ±1 dB, který je udáván normou. V domnění, že byla použita nesprávná velikost vstupního signálu, byly vyzkoušeny jiné velikosti signálů, ovšem výsledný nárůst tlakových minim byl velmi podobný, někdy dokonce horší. Z tohoto důvodu nebylo možné správně určit vlnovou délku, a tudíž nebylo možné vypočítat korekci na útlum v trubici, kde je k získání výsledku potřeba znát danou vlnovou délku. Také bylo zjištěno, že poměr naměřených obrazců ve vzdálenostech blíže k reproduktoru nedosahují poměru 45 dB, který je udáván normou. Při zjišťování rychlosti šíření zvuku v impedanční trubici byla z důvodu předešlých špatných výsledků vynesena křivka kmitočtově závislé rychlosti šíření zvuku v závislosti na kmitočtu, u které lze pozorovat sklony a špičky, které ukazují na chyby v použité impedanční trubici, kdy mezi takovéto chyby mohou podle normy patřit např. štěrbiny v impedanční trubici nebo vyšší módy. Při ověřování parametrů impedanční trubice, bylo tedy zjištěno, že impedanční

trubice použita k měření neodpovídá podmínkám normy ČSN ISO 10534-1. Pravděpodobné příčiny chyb jsou na straně reproduktoru, který mohl budit vyšší módy anebo manipulační hluk, ke kterému nejspíše docházelo při pohybu mikrofonní sondy přes těsnění mezi trubicí a mikrofonní sondou. Na měření mělo taktéž negativní vliv časté chvění mikrofonní sondy a to i přesto, že byla podepřena vyrobeným kolečkem. Kvůli těmto jevům bylo někdy obtížné přesně určit minima hladin akustického tlaku a měření bylo proto velmi zdlouhavé.

Při zjišťování činitele zvukové pohltivosti dostupného materiálu, kterým byla melaminová pěna Basotect®, nebylo možné použít výpočet činitele zvukové pohltivosti, kde se bere v potaz útlum v trubici, pro jehož korekci je nutné znát vlnovou délku, kterou nebylo na použité impedanční trubici možné správně určit, proto byl pro určení činitele zvukové pohltivosti použit základní vzorce, kde korekce na útlum v trubici není použita. Takto zjištěny hodnoty činitele zvukové pohltivosti se poté porovnaly s hodnoty od výrobce měřeného materiálu, kdy kromě kmitočtů 630 Hz a 1 kHz si byly hodnoty dosti podobné.

Závěrem této práce je, že z důvodu nesplnění podmínky normy ověřované impedanční trubice, bude měření prováděno na této trubici vykazovat jistou nepřesnost. Pro orientační měření ovšem tuto trubici použít lze, což potvrzuje provedené měření činitele zvukové pohltivosti, jehož výsledky byly porovnány s údaji od výrobce.

Seznam literatury a informačních zdrojů

- [1] KOLMER, Felix a Jaroslav KYNCL. *Prostorová akustika: vysokošk. příručka pro vys. školy techn. směru.* 2., nezm. vyd. Praha: SNTL, 1982.
- [2] Akustika, vznik a šíření zvuku, frekvenční analýza a syntéza, sluchový vjem zvukového signálu. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: http://homen.vsb.cz/~ber30/texty/varhany/anatomie/pistaly_akustika.htm
- [3] Šíření akustického vlnění. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: http://www.wikiskripta.eu/index.php/%C5%A0%C3%AD%C5%99en%C3%AD_a kustick%C3%A9ho_vln%C4%9Bn%C3%AD
- [4] NOVÝ, Richard. Šíření akustických vln ve volném prostoru. [online] 24.5.2017 [cit.
 2017-05-24]. Dostupné z: http://fyzweb.cz/materialy/aplety_hwang/waveType/index.html
- [5] Stifter, Jiří. Přenosové veličiny ve sdělovací technice, základní akustické veličiny, vlastnosti lidského sluchu. (přednáška) Plzeň :ZČU FEL, 26.9.16.
- [6] Rychlost zvuku. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: <u>https://cs.wikipedia.org/wiki/Rychlost_zvuku</u>
- [7] Odraz zvuku, pohlcování zvuku. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: http://fyzika.jreichl.com/main.article/view/197-odraz-zvuku-pohlcovani-zvuku
- [8] JAKSH, Ivan. Základy akustiky a hlukové diagnostiky. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: <u>http://www.fm.tul.cz/esf0247/index.php?download=96</u>
- [9] ČSN ISO 10534-1. Akustika Určování činitele zvukové pohltivosti a akustické impedance v impedančních trubicích: Část 1: Metoda poměru stojaté vlny. Český normalizační institut, Praha, 1999
- [10] ŽICHOVSKÝ, Pavel. Měření činitele zvukové pohltivosti materiálů v akustickém interferometru. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: <u>ftp://www.kovosluzba.cz/pub/skola/cvut-fel/Fyzststm/protokoly/f2/Lab.%20%FAloha%206%20-%20protokol.doc</u>
- [11] Pohlcování zvuku, šíření hluku ve volném a uzavřeném prostoru. [online]. 26.4.2017
 [cit. 2017-04-26]. Dostupné z: <u>http://ufmi.ft.utb.cz/texty/env_fyzika/EF_04.pdf</u>
- [12] NOVÝ, Richard. Hluk a chvění. Praha: Vydavatelství ČVUT, 1995. ISBN 80-01-01306-5
- [13] Sound Absorbers. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: http://www.acousticsfirst.com/sound-absorbers.htm

- [14] Acoustical Foam Absorber Panels. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: http://www.acousticsfirst.com/acoustical-foam-sound-panels.htm
- [15] Traditional pyramid acoustic foam. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: http://www.acousticsfirst.com/acoustical-foam-poly-urethane-pyramid.htm
- [16] Acoustic foam pyramid PUR. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: https://www.eurokustik.com/english/acoustic-foam-pyramid-pur-50-pupir50.html
- [17] Melaminová pěna. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: <u>http://maadpoland.cz/melaminova-pena-2/</u>
- [18] FireFlex[™] pyramid acoustical foam. pěna. [online] 5.6.2017 [cit. 2017-06-05].
 Dostupné z: <u>http://www.acousticsfirst.com/acoustical-foam-fireflex-pyramid.htm</u>
- [19] Acoustic foam pyramid Basotect®. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: <u>https://www.eurokustik.com/english/acoustic-foam-pyramid--basotect-50-mepir50.html</u>
- [20] Minerální vata. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: https://cs.wikipedia.org/wiki/Miner%C3%A1ln%C3%AD_vata
- [21] Step skelná a minerální vata. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: <u>http://www.envic.cz/faq/step-skelna-a-mineralni-vata.htm</u>
- [22] Fiberglass, rockwool, polyester, cotton, and sheep absorption coefficients. [online]
 5.6.2017 [cit. 2017-06-05]. Dostupné z: http://www.bobgolds.com/AbsorptionCoefficients.htm
- [23] Thermal acoustic insulation. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: http://www.archiexpo.com/prod/knauf-insulation/product-59601-1513364.html
- [24] VAŠINA, Martin. Studium materiálů z hlediska tlumení zvuku a vibrací. [online].
 26.4.2017 [cit. 2017-04-26]. Dostupné z: http://www.fce.vutbr.cz/deska/ getFile.asp?spis_id=4562
- [25] Impedance tube. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: http://www.dracoustic.com/%D9%84%D9%88%D9%84%D9%87%E2%80%8C% DB%8C-%D8%A7%D9%85%D9%BE%D8%AF%D8%A7%D9%86%D8%B3impedance-tube/
- [26] A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: <u>http://www.mdpi.com/1424-8220/10/11/10027/htm</u>

- [27] Postupné a stojaté vlnění. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: http://fyzweb.cz/materialy/aplety_hwang/waveType/index.html
- [28] Decibelové veličiny v akustice, kmitočtová pásma. [online]. 26.4.2017 [cit. 2017-04-26]. Dostupné z: <u>http://ufmi.ft.utb.cz/texty/env_fyzika/EF_03.pdf</u>
- [29] HŮRKA, Richard, Konstrukce interferometru. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: https://portal.zcu.cz/StagPortletsJSR168/PagesDispatcherServlet?pp_destElement= %23ssSouboryStudentuDivId_14&pp_locale=cs&pp_reqType=render&pp_portlet= souboryStudentuPagesPortlet&pp_page=souboryStudentuDownloadPage&pp_nam eSpace=G521091&soubidno=8846
- [30] SPH-100C. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: <u>http://all4music.eu/reprosoustavy-a-reproduktory/583-sph-100c-4007754064797.html</u>
- [31] NTI M2210 Measurement Microphone for XL2. [online] 5.6.2017 [cit. 2017-06-05].
 Dostupné z: <u>http://www.markertek.com/product/nti-m2210/nti-m2210-measurement-microphone-for-xl2</u>
- [32] Analogový analyzátor zvuku NTi Audio AG. [online] 5.6.2017 [cit. 2017-06-05].
 Dostupné z: <u>http://cz.rs-online.com/web/p/akusticka-analyza-a-testovani/6949396/</u>
- [33] Generátor audio signálu NTi Audio AG. [online] 5.6.2017 [cit. 2017-06-05].
 Dostupné z: <u>http://cz.rs-online.com/web/p/akusticka-analyza-a-testovani/0166305/</u>
- [34] Behringer EP 2000 EUROPOWER. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: <u>https://www.muziker.cz/behringer-ep-2000-</u> <u>europower?gclid=Cj0KEQjwx6TJBRCWtsiXpI7bhOYBEiQA1en3F9TnzMY75xw</u> <u>XoFq-4IyK_yIWDM3s5Ebvk17TrZwn7CQaAuqc8P8HAQ</u>
- [35] Basotect®. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: http://www.sinfo.cz/cz/basotect
- [36] Properties of Basotect®. [online] 5.6.2017 [cit. 2017-06-05]. Dostupné z: https://www.plasticsportal.net/wa/plasticsEU~en_GB/portal/show/content/products/ foams/basotect_properties#01

Přílohy

Příloha A - Měření průběhu stojatého vlnění

A. 1 Stojaté vlnění při kmitočtu 200 Hz

l [mm]	L _p [dB]	ا [mm]	L _p [dB]	ا [mm]	L _p [dB]	ا [mm]	L _p [dB]	
0	116,7	225	87,1	239	88,3	560	118,4	
10	116,4	226	85,4	240	89,3	610	118,9	
40	115,4	227	84,1	245	93,2	660	119,1	
60	114,5	228	82,4	250	95,6	730	118,9	
80	113,6	229	80,1	260	99,5	770	118,4	
100	112,4	230	78,0	270	102,0	810	117,8	
120	111,1	231	77,2	290	105,6	850	117,0	
140	109,5	232	77,1	310	108,1	900	115,5	
160	107,4	233	78,6	330	110,0	950	113,2	
180	104,6	234	80,9	350	111,5	980	111,3	
200	100,2	235	82,8	390	113,8	1000	109,4	
210	97,0	236	84,5	430	115,5			
215	94,6	237	86,0	470	116,7			
220	91,5	238	87,4	510	117,6			

Obr. A. 1 Průběh stojatého vlnění při kmitočtu 200 Hz.

Α.	2 Stojaté vlnění při kmitočtu 250 Hz
	Tab. A. 2. Záznam stajatába vlnění nři kmitačtu 250 Hz

Tab. A. 2 Záznam stojatého vlnění při kmitočtu 250 Hz.								
ا [mm]	L _p [dB]	l [mm]	L _p [dB]	l [mm]	L _p [dB]	ا [mm]	L _P [dB]	
0	119,3	151	94,4	680	120,1	844	87,2	
20	118,1	153	96,4	700	119,1	845	89,6	
40	116,7	155	98,0	720	117,9	846	91,0	
60	114,9	160	101,1	740	116,5	847	92,0	
80	112,6	165	103,4	760	114,7	848	92,8	
100	109,4	170	105,1	780	112,3	850	94,4	
110	107,1	175	106,7	790	110,9	852	96,1	
120	104,1	180	107,0	800	108,9	854	98,8	
125	101,9	190	110,0	810	106,8	856	99,3	
130	99,2	200	111,6	815	105,1	858	101,0	
133	97,1	210	113,0	820	103,3	860	102,2	
136	94,2	230	115,1	825	101,4	865	103,8	
138	91,8	250	116,8	830	98,1	870	105,6	
139	90,0	270	118,2	832	96,9	875	107,2	
140	88,1	290	119,3	834	94,8	880	108,3	
141	85,9	310	120,2	835	94,1	890	110,2	
142	82,9	330	121,0	836	92,7	900	111,8	
143	80,3	360	121,9	837	92,3	910	113,2	
144	80,7	400	122,8	838	89,9	920	114,3	
145	83,5	440	123,3	839	88,3	940	116,0	
146	86,3	480	123,6	840	86,6	960	117,6	
147	88,5	530	123,5	841	85,6	980	118,8	
148	90,1	580	123,0	842	85,3	995	119,5	
149	91,7	630	121,9	843	85,7	1000	120,4	

Obr. A. 2 Průběh stojatého vlnění při kmitočtu 250 Hz.

A. 3 Stojaté vlnění při kmitočtu 315 Hz

Tab. A. 3 Záznam stojaté vlny při kmitočtu 315 Hz.

l [mm]	L _P [dB]	ا [mm]	L _p [dB]	l [mm]	L _P [dB]	ا [mm]	L _p [dB]
0	108,7	84	91,8	590	101,8	655	101,6
10	107,4	86	93,4	600	98,8	660	102,9
20	106,0	88	94,6	605	96,6	665	104,0
30	104,2	90	95,7	610	93,9	670	104,9
40	102,0	95	98,1	613	91,9	680	106,5
50	99,0	100	99,9	616	88,9	690	107,9
55	96,9	110	102,7	617	87,9	700	109,0
57	95,9	120	104,7	618	86,8	710	110,0
59	94,8	130	106,4	619	85,1	720	110,9
62	93,0	140	107,7	620	83,4	740	112,3
65	90,2	160	109,9	621	81,9	760	113,5
67	88,2	180	111,6	622	80,0	780	114,5
69	85,3	200	112,9	623	79,5	800	115,2
70	83,2	220	113,9	624	80,0	830	116,0
71	81,1	240	114,8	625	81,5	860	116,5
72	77,2	280	116,0	626	83,5	900	116,7
73	73,1	320	116,6	627	85,0	950	116,3
74	71,3	360	116,7	628	86,4	995	115,2
75	75,0	400	116,3	630	88,9	1000	115,0
76	79,5	440	115,4	632	90,6		
77	82,2	480	113,8	635	93,5		
78	84,2	520	111,4	638	95,2		
79	86,2	540	109,6	640	96,3		
80	87,4	560	107,3	645	98,4		
82	89,7	580	104,1	650	100,2		

Obr. A. 3 Průběh stojatého vlněné při kmitočtu 315 Hz.

	Tab. A. 4 Záznam stojatého vlnění při kmitočtu 400 Hz.							
l [mm]	L _P [dB]	ا [mm]	L _P [dB]	ا [mm]	L _P [dB]	ا [mm]	L _p [dB]	
0	93,9	90	106,2	450	75,5	850	98,9	
5	90,6	110	108,0	451	78,1	860	95,6	
10	85,8	140	109,8	455	85,4	870	89,4	
12	82,3	200	111,7	460	90,6	875	84,8	
14	76,0	250	112,1	480	99,2	880	75,6	
15	72,4	300	111,2	500	103,4	879	77,3	
16	65,9	350	108,7	520	105,9	882	79,6	
17	62,3	400	103,1	540	107,8	885	84,7	
18	73,8	420	98,5	580	110,1	890	89,8	
19	77,8	430	94,8	620	111,5	900	95,5	
20	80,4	440	88,0	660	112,0	920	101,2	
25	88,0	445	80,8	700	111,8	940	104,6	
30	92,1	446	77,9	750	110,4	970	107,7	
40	96,8	447	73,3	800	107,1	1000	109,6	
50	99,8	448	72,7	830	103,4			
70	103,7	449	72,9	840	101,5			

A. 4 Stojaté vlnění při kmitočtu 400 Hz

A. 5 Stojaté vlnění při kmitočtu 500 Hz

l [mm]	L _P [dB]	ا [mm]	L _P [dB]	l [mm]	L _P [dB]	ا [mm]	L _P [dB]
0	91,3	326	71,0	650	90,0	690	91,1
30	98,6	327	74,2	655	87,5	700	94,4
60	102,0	328	76,6	660	83,8	720	98,4

Tab. A. 5 Záznam stojaého vlění při kmitočtu 500 Hz.

150	105,6	329	78,2	664	79,9	740	100,9
190	105,1	330	80,2	666	77,5	780	104,0
240	102,4	335	85,3	667	76,3	840	105,7
280	97,4	340	88,3	668	75,4	900	104,5
310	87,7	350	92,6	669	74,0	950	100,7
320	77,5	400	101,3	670	76,1	1000	88,9
322	73,6	500	105,5	671	77,2		
323	68,8	560	104,0	672	79,0		
324	63,6	610	99,6	675	81,7		
325	67,1	640	93,7	680	86,0		

Obr. A. 5 Průběh stojatého vlnění při kmitočtu 500 Hz.

A. 6 Stojaté vlnění při kmitočtu 630 Hz

	Tab. A. 6 Zaznam stojateno Vineni pri kmitočtu 630 Hz.										
l [mm]	L _P [dB]	ا [mm]	L _P [dB]	ا [mm]	L _P [dB]	ا [mm]	L _P [dB]				
0	91,8	219	65,5	489	68,1	760	69,2				
20	93,2	220	67,9	490	65,6	761	67,0				
50	95,0	225	75,4	491	61,4	762	63,8				
100	95,5	230	79,3	492	51,8	763	58,1				
140	93,5	240	83,8	493	46,2	764	53,3				
170	89,7	250	86,8	494	59,0	765	47,2				
180	87,8	260	89,0	495	63,6	766	60,1				
190	85,0	290	92,8	496	66,5	767	65,0				
200	81,0	330	95,5	500	73,6	770	71,5				
205	77,9	360	95,8	510	81,1	780	80,3				
210	73,1	400	94,5	520	85,0	790	84,5				
211	71,5	420	93,0	540	89,5	800	87,3				
212	70,1	440	90,5	580	93,7	820	91,0				
213	68,2	460	86,3	620	95,4	840	93,2				

¥ . . : ~~~ ~ ~

2017

214	65,9	470	83,6	660	94,9	900	95,9
215	61,8	480	78,7	720	89,3	950	94,6
216	58,4	485	74,2	740	84,3	1000	89,0
217	57,4	487	71,7	750	79,7		
218	61,9	488	70,1	755	75,9		

Obr. A. 6 Průběh stojatého vlnění při kmitočtu 630 Hz.

A. 7 Stojaté vlnění při kmitočtu 800 Hz

1	1	1	I I		1	12.	I
ا [mm]	[dB]	ا [mm]	[dB]	ا [mm]	[dB]	ا [mm]	[dB]
0	101,5	250	102,0	530	95,0	778	68,2
20	102,0	300	97,9	540	91,8	779	70,4
40	101,8	310	95,9	545	89,6	780	73,2
60	100,7	320	93,0	550	86,4	785	82,5
80	98,4	325	91,0	555	81,5	790	87,0
100	94,0	330	88,4	559	73,9	800	91,8
110	90,3	335	84,6	560	67,5	810	94,9
115	87,4	340	77,7	561	62,4	820	97,0
120	83,2	342	73,7	562	64,7	840	99,7
126	72,3	343	69,1	563	68,5	890	102,1
127	66,1	344	65,2	565	75,4	940	99,4
128	61,3	345	67,2	570	83,5	960	96,1
129	67,2	346	70,8	580	90,0	965	94,7
130	71,7	347	74,5	590	93,6	975	91,5
131	75,2	350	80,5	610	96,1	980	89,0
132	77,6	355	85,6	640	101,0	985	86,1
135	82,1	360	88,8	675	102,1	990	80,6
140	86,7	365	91,2	710	100,6	992	77,2
145	89,6	370	92,8	750	94,0	994	73,3

Tab. A. 7 Záznam stojatého vlnění při kmitočtu 800 Hz.

2017

150	91,7	380	95,5	760	90,3	995	70,1
160	94,8	400	98,8	765	87,3	996	69,1
170	96,9	450	102,1	770	83,1	997	71,4
190	99,6	500	100,1	775	74,3	998	74,5
220	101,7	520	97,2	777	70,2	1000	77,8

Obr. A. 7 Průběh stojatého vlnění při kmitočtu 800 Hz.

A. 8 Stojaté vlnění při kmitočtu 1000 Hz

	1 GR		in otojatono				
ا [mm]	L _p [dB]	ا [mm]	Lp [dB]	ا [mm]	Lp [dB]	ا [mm]	Lp [dB]
0	98,7	239	60,9	500	99,7	761	73,9
25	95,3	240	68,8	540	96,2	762	76,1
40	91,5	241	73,0	560	91,6	765	80,8
50	87,2	242	75,6	570	87,4	770	85,2
55	83,8	243	77,4	575	84,1	780	90,6
58	80,6	245	80,5	578	80,7	790	93,8
60	76,2	250	85,0	580	78,1	800	96,0
62	73,4	260	90,5	582	73,9	845	99,7
63	69,9	270	93,9	583	70,9	890	95,6
64	63,7	280	96,1	584	66,8	905	91,9
65	49,6	320	99,7	585	61,7	916	87,7
66	64,1	360	97,2	586	62,9	920	84,9
67	70,1	375	94,6	587	69,5	925	81,0
68	73,4	390	90,3	588	73,5	928	76,3
69	76,2	395	87,9	590	77,7	929	73,8
72	80,7	400	84,8	595	83,8	930	70,9
77	85,5	405	79,8	600	87,3	931	68,3
85	89,9	408	74,8	610	91,8	932	65,7
95	93,4	409	72,8	620	94,6	933	68,7

Tab. A. 8 Záznam stojatého vlnění při kmitočtu 1000 Hz

110	96,6	410	68,5	640	98,0	934	72,5
150	99,7	411	63,8	670	99,7	935	75,1
190	96,7	412	59,3	720	94,9	936	77,1
205	93,8	413	66,4	735	90,9	938	80,1
220	88,9	414	72,1	745	86,0	940	82,0
225	86,2	415	74,8	750	81,9	945	86,1
230	82,3	416	76,9	753	77,7	950	88,8
233	78,3	420	82,4	755	72,8	960	92,7
234	76,5	425	86,4	756	71,6	970	95,2
235	73,8	430	89,1	757	67,3	980	97,0
236	71,7	440	92,9	758	63,5	1000	99,1
237	65,3	450	95,4	759	64,8		
238	55,5	470	98,4	760	70,0		

Obr. A. 8 Průběh stojatého vlnění při kmitočtu 1000 Hz.

A. 9 Stojaté vlnění při kmitočtu 1250 Hz

l [mm]	L _p [dB]	ا [mm]	L _p [dB]	ا [mm]	L _p [dB]	ا [mm]	L _p [dB]		
0	96,3	270	100,5	540	103,2	820	102,5		
5	91,0	275	97,9	550	99,3	830	98,1		
8	85,3	280	93,7	569	90,6	835	93,9		
10	79,7	285	86,8	565	79,9	840	87,7		
11	71,1	286	84,5	566	75,9	841	84,7		
12	56,1	288	78,8	567	70,9	842	83,3		
13	76,6	289	66,3	568	77,1	843	78,9		
14	80,9	290	71,3	569	82,2	844	73,8		
15	84,1	291	78,9	570	84,1	845	74,5		
20	91,5	295	89,9	575	91,5	846	78,8		
25	95,2	300	93,7	580	95,2	850	88,5		

Tab. A. 9 Záznam stojatého vlnění při kmitočtu 1250 Hz.

2017

30	97,5	310	98,3	590	99,0	855	93,6
35	99,1	330	102,5	610	102,8	860	96,4
40	100,3	375	106,6	650	106,5	870	99,7
50	102,2	400	103,5	680	102,9	885	102,4
70	104,8	410	99,7	690	98,6	930	106,4
100	106,7	415	96,7	695	95,1	960	101,9
130	101,1	420	91,9	700	89,7	970	97,2
145	88,9	425	84,0	703	83,5	975	92,7
148	81,5	426	81,3	704	79,7	980	84,4
149	77,4	427	75,6	705	75,2	982	79,3
150	62,9	428	68,6	706	72,3	983	75,2
151	71,1	429	69,3	707	78,1	984	77,6
152	77,8	430	80,8	708	82,1	985	81,3
153	82,3	431	83,3	709	84,7	986	82,6
155	87,1	435	90,4	710	86,1	990	89,8
160	92,9	440	94,5	715	92,4	995	94,2
165	96,0	445	97,0	720	95,7	1000	96,6
170	98,0	450	98,6	730	99,2		
180	102,4	468	101,0	750	102,9		
240	106,6	510	106,5	790	106,4		

Obr. A. 9 Průběh stojatého vlnění při kmitočtu 1250 Hz.

A. 10 Stojaté vlnění při kmitočtu 1600 Hz

l [mm]	L _P [dB]	ا [mm]	L _P [dB]	l [mm]	L _P [dB]	ا [mm]	L _P [dB]			
0	75,8	260	75,6	509	42,0	735	65,3			
25	77,9	270	72,8	510	48,2	740	68,9			
50	74,1	280	67,8	511	53,7	750	73,3			
60	70,0	285	63,0	512	56,5	780	77,8			

Tab. A. 10 Záznam stojatého vlnění při kmitočtu 1600 Hz

2017

Filip Šanda

Filip Šanda

2017

65	66,8	289	55,7	515	62,1	810	73,4
70	60,8	290	52,8	520	67,1	820	69,2
71	59,5	291	47,6	525	70,2	825	65,3
72	57,5	292	38,8	540	75,3	828	61,0
73	54,9	293	45,5	560	77,8	831	56,7
74	49,4	294	51,1	580	76,6	832	54,4
75	39,0	295	55,9	595	72,9	833	49,5
76	33,2	300	64,2	605	67,8	834	43,7
77	50,5	310	71,0	610	63,0	835	48,1
78	54,7	320	74,6	612	59,6	836	52,8
79	57,6	345	77,9	614	56,8	837	56,3
80	59,7	375	74,1	615	52,1	839	59,9
85	66,0	385	70,0	616	47,7	842	64,3
90	69,4	390	66,7	617	43,8	845	66,8
95	71,8	395	60,6	618	50,3	850	70,1
100	73,6	397	56,7	619	53,5	860	74,1
110	76,0	398	54,5	620	56,5	885	77,8
130	77,8	399	50,8	621	58,1	915	74,6
140	77,4	400	41,3	623	62,0	925	71,2
150	76,0	401	43,0	625	64,2	930	68,4
160	73,4	402	51,7	630	68,3	935	64,2
165	71,5	403	55,1	640	73,1	936	62,5
170	68,9	404	57,9	650	75,7	938	59,5
175	64,9	405	59,8	670	77,9	939	57,7
180	58,2	410	65,7	700	74,1	940	54,8
181	55,2	420	71,7	710	70,3	941	52,3
182	51,1	440	74,9	715	67,1	942	50,2
183	43,8	455	77,8	720	61,9	943	47,8
184	34,0	480	75,0	722	58,0	944	52,7
185	46,7	490	71,6	723	55,6	945	56,0
186	52,9	500	65,6	724	53,0	946	57,8
188	58,3	505	58,6	725	48,3	948	61,1
190	62,1	504	56,3	726	46,3	950	61,6
195	67,2	505	58,3	727	48,9	955	67,9
200	70,3	506	55,4	728	53,8	960	70,7
210	74,1	507	52,5	729	56,8	970	74,3
240	77,8	508	47,5	730	58,9	1000	77,8

2017

Obr. A. 10 Průběh stojatého vlnění při kmitočtu 1600 Hz

Příloha B - Výpočty poměru zaznamenaných obrazců stojatého vlnění

B. 1 Poměr zaznamenaných obrazců stojatého vlnění při kmitočtu 200 Hz

Tab. B.	1 V	/ypočtený	poměr	obrazců	stojatého	vlnění	při 200 l	Hz.
---------	-----	-----------	-------	---------	-----------	--------	-----------	-----

n	L _p (x _{min}) [dB]	L _p (x _{min}) [dB]	ΔL [dB]
1	77,1	119,1	42,0

B. 2 Poměr zaznamenaných obrazců stojatého vlnění při kmitočtu 250 Hz

Tab. B. 2 Vypočtený poměr obrazců stojatého vlnění při	250 Hz
--	--------

n	L _p (x _{min}) [dB]	L _p (x _{min}) [dB]	ΔL [dB]
1	80,3	123,6	43,3

B. 3 Poměr zaznamenaných obrazců stojatého vlnění při kmitočtu 315 Hz

Tab. B. 3 Vypocteny pomer obrazcu stojateno vineni pri 315 Hz.					
n	Lp(xmin) [dB]	Lp(xmin) [dB]	ΔL [dB]		
1	71,3	116,7	45,4		
2	79,5	116,7	37,2		

~ . ~ ů stoisták dočoć oži 215 Lli 0 214 , ,

B. 4 Poměr zaznamenaných obrazců stojatého vlnění při kmitočtu 400 Hz

n	L _p (x _{min}) [dB]	L _p (x _{min}) [dB]	ΔL [dB]		
1	62,3	112,1	49,8		
2	72,7	111,8	39,1		

Tab B 4 Vypočtený poměr obrazců stojatého vlnění při 400 Hz

B. 5 Poměr zaznamenaných obrazců stojatého vlnění při kmitočtu 500 Hz

Tab. B. 5 Vypočtený poměr obrazců stojatého vlnění při 500 Hz.				
n	L _p (x _{min}) [dB]	L _p (x _{min}) [dB]	ΔL [dB]	
1	63,6	105,6	42,0	
2	74,0	105,7	31,7	

B. 6 Poměr zaznamenaných obrazců stojatého vlnění při kmitočtu 630 Hz

<i>Tub. B. 6 Vypocleny pomer obrazed stojateno vinem pri 650 Hz.</i>				
n	L _p (x _{min}) [dB]	L _p (x _{min}) [dB]	ΔL [dB]	
1	57,4	95,8	38,4	
2	46,2	95,4	49,2	
3	47,2	95,9	48,7	

Tab B 6 Vypočtený poměr obrazců stojatého vlnění při 630 Hz

B. 7 Poměr zaznamenaných obrazců stojatého vlnění při kmitočtu 800 Hz

L _p (x _{min}) [dB]	L _p (x _{min}) [dB]	ΔL [dB]		
61,3	102,0	40,7		
65,2	102,1	36,9		
62,4	102,1	39,7		
68,2	102,1	33,9		
	L _p (x _{min}) [dB] 61,3 65,2 62,4 68,2	Lp(Xmin) [dB] Lp(Xmin) [dB] 61,3 102,0 65,2 102,1 62,4 102,1 68,2 102,1		

Tab. B. 7 Vypočtený poměr obrazců stojatého vlnění při 800 Hz

B. 8 Poměr zaznamenaných obrazců stojatého vlnění při kmitočtu 1250 Hz

n	L _p (x _{min}) [dB]	L _p (x _{min}) [dB]	ΔL [dB]		
1	56,1	106,7	50,6		
2	62,9	106,6	43,7		
3	66,3	106,6	40,3		
4	68,6	106,5	37,9		
5	70,9	106,5	35,6		
6	72,3	106,4	34,1		
7	73,8	106,4	32,6		

Tab. B. 8 Vypočtený poměr obrazců stojatého vlnění při 1250 Hz

B. 9 Poměr zaznamenaných obrazců stojatého vlnění při kmitočtu 1600 Hz

n	L _p (x _{min}) [dB]	L _p (x _{min}) [dB]	ΔL [dB]	
1	33,2	77,8	44,6	
2	34,0	77,8	43,8	
3	38,8	77,9	39,1	
4	41,3	77,8	36,5	
5	42,0	77,8	35,8	

Tab. B. 9 Vypočtený poměr obrazců stojatého vlnění při 1600 Hz
6	43,8	77,9	34,1
7	46,3	77,8	31,5
8	43,7	77,8	34,1