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Abstrakt

Diserta£ní práce je v¥nována studiu matematických problém· Navierových -
Stokesových rovnic v kontextu rigorózního matematického odvození model·
a jejich matematické analýzy. Zejména je práce zam¥°ena na problematiku
singulárních limit v mechanice tekutin pro stla£itelné tekutiny (reºim malého
Machova £ísla, velkého Reynoldsova £ísla, redukce dimenze) a problematice reg-
ularity pro nestla£itelné tekutiny.

Klí£ová slova

Navierovy-Stokesovy rovnice, stla£itelné tekutiny, Navierovy-Stokesovy-Fourierovy
rovnice, singulární limity, slabé °e²ení, silné °e²ení, Eulerovy rovnice, teorie reg-
ularity, nestla£itelné tekutiny, anisotropní Lebesgueovy prostory.
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Abstract

The present thesis is devoted to the study of mathematical problems related to
the Navier-Stokes equations in the context of mathematical rigorous derivation
of models and their analysis. In particular we deal with the problem of singular
limits in �uid mechanics for compressible �uids (low Mach number limit and
high Reynolds number limit, reduction of dimension) and the problem of global
regularity for incompressible �uids.

Keywords

Navier-Stokes equations, compressible �uids, Navier-Stokes-Fourier equations,
singular limits, weak solutions, strong solutions, Euler equations, regularity the-
ory, incompressible �uids, anisotropic Lebesgue spaces.
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Estratto

Il presente lavoro di tesi è dedicato allo studio di problematiche legate alle
equazioni di Navier-Stokes nel contesto della derivazione rigorosa di modelli
e della loro analisi. In particolare ci occuperemo dei problemi relativi ai limiti
singolari nella meccanica dei �uidi comprimibili (limite di bassi numeri di Mach e
alti numeri di Reynolds, riduzione di dimensione) e del problema della regolarità
globale per �uidi incomprimibili.

Parole chiave

Equazioni di Navier-Stokes, �uidi comprimibili, equazioni di Navier-Stokes-
Fourier, problemi ai limiti singolari, soluzioni deboli, soluzioni forti, equazioni di
Eulero, teoria della regolarità, �uidi incomprimibili, spazi di Lebesgue anisotropi.
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Preface

Navier-Stokes equations is a challenging problem in mathematical analysis. Dur-
ing the years several authors have faced di�erent problems related to these equa-
tions. Some of these problems concern variations of the Navier-Stokes equations
depending on the properties of the �uid and the presence of external forces. The
present work deals with the so-called problem of singular limit in �uid mechanics
for compressible �uids and the problem of global regularity for an incompressible
�uid. The following articles are the results of this work:

• Guo Z., M. Caggio, Z. Skalák, Regularity criteria for the Navier-Stokes
equations based on one component of velocity, Nonlinear Analysis: Real World
Application, 35, 379-396, 2017.

• Caggio M., �. Ne£asová, Inviscid incompressible limit for rotating �uids,
to appear in Nonlinear Analysis.

• Ducomet B., M. Caggio, �. Ne£asová, M. Pokorný, The rotating Navier-
Stokes-Fourier system on thin domains, submitted in Acta Appl. Math; available
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Chapter 1

Introduction

The present work is devoted to the study of mathematical problems related to
models describing the dynamics of �uids.

A �uid is a continuous medium whose state is characterized by its veloc-
ity, pressure and density �elds, and possibly other relevant �elds (for example
temperature).

Most of the �uid dynamics results have been obtained starting from the
Navier-Stokes equations. These equations have many variations depending on
the properties of the �uid itself, for example compressibility, thermoconduc-
tivity, viscosity, etc., and on the forces acting on the �uid, for example the
centrifugal force, the Coriolis force, the gravity force etc. (see Nazarenko [79]).

Two kind of problems will be under consideration: the problem of singular
limits for compressible �uids and the problem of global regularity for incom-
pressible �uids.

1.1 The problem of singular limits for compress-
ible �uids

The problem of singular limits for compressible �uids can be presented in the
following way. One starts from a system of equations describing the motion of
a kind of �uid. After a scale analysis the system presents several characteristic
parameters whose asymptotic behavior determines a change in the �uid phe-
nomenology and consequently, at least at a formal level, a di�erent system of
equations compared to the starting one. The singular limit problem requires to
show that the solution of the starting system converges to the solution of the
limit (or target) system when these parameters tend to zero or in�nity in some
sense.

In the following we would like to brie�y describe the problems we will deal
with, postponing a deeper analysis to the next chapters.

1.1.1 The inviscid incompressible limit for compressible

barotropic �uids

The motion of a compressible barotropic �uid is described by means of two
unknown �elds: the density % = % (x, t) and the velocity u = u (x, t) of the
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�uid, functions of the spatial position x ∈ R3 and the time t ∈ R, and satisfying
the following Navier-Stokes system of equations. The continuity equation reads

∂t%+ divx(%u) = 0. (1.1.1)

The momentum equation is

∂t (%u) + divx (%u⊗ u) +∇xp(%) = divxS (∇xu) + %f , (1.1.2)

with the stress tensor given by the following relation

S = S(∇xu) = µ

(
∇xu +∇txu−

2

3
divxuI

)
+ η divxuI, µ > 0, η ≥ 0.

(1.1.3)
The system above presents two parameters: the shear viscosity coe�cient µ
and the bulk viscosity coe�cient η. The scalar function p is the pressure, given
function of the density, and %f represents an external forcing.

For each physical quantity X present in the Navier-Stokes system (1.1.1)
- (1.1.3), we introduce its characteristic value Xchar and replace X with its
dimensionless analogue X/Xchar. As a result, we obtain the scaled version of
the compressible Navier-Stokes system

[Sr] ∂t%+ divx(%u) = 0, (1.1.4)

[Sr] ∂t (%u) + divx (%u⊗ u) +
1

[Ma]
2∇xp(%) =

1

[Re]
divxS +

1

[Fr]2
%f . (1.1.5)

The above system presents several characteristic numbers. The Strouhal number

[Sr] =
lengthchar

timecharvelocitychar
.

The Strouhal number plays a role in oscillating, non-steady �ows, as the Kármán
vortex street. It is often de�ned as

[Sr] =
fL

U
,

where f is the frequency of vortex shedding in the wake of von Kármán, L is the
characteristic length of the body invested by the �ow and U is the characteristic
velocity of the �ow investing body. The Mach number

[Ma] =
velocitychar√

pressurechar/densitychar
.

The Mach number is the ratio of the characteristic velocity of the �ow to the
speed of the sound in the �uid. Low Mach number limit characterizes incom-
pressibility. The Reynolds number

[Re] =
densitycharvelocitycharlengthchar

viscositychar
.
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The Reynolds number is the ratio of the inertial to the viscous forces in the �uid.
High Reynolds number is attributed to turbulent �ows. The Froude number

[Fr] =
velocitychar√

lengthcharfrequencychar
.

The Froude number is the ratio of the �ow inertia to the external �eld. The
latter in many applications simply due to gravity.

Rede�ning the Reynolds number and the Mach number in terms of a non-
negative parameter ε, namely Re := ε−1 and Ma := ε, and setting the other
characteristic numbers equal to one, the inviscid incompressible limit aims to
show the convergence u → v and % → 1, for ε → 0, where v is the solution of
the incompressible Euler system

∂tv + v · ∇xv +∇xΠ = 0, divxv = 0 (1.1.6)

and u is the solution of the compressible Navier-Stokes system. Indeed, in the
high Reynolds number limit the viscosity of �uid becomes negligible and in the
low Mach number limit the �uid becomes incompressible. The inviscid and/or
incompressible limit problem was investigated by several authors in similar and
di�erent contexts: in bounded, unbounded or expanding domains, in presence of
external forces and for barotropic or heat conductive �uids. For more details we
refer to the works of Bardos and Nguyen [2], Feireisl [39], Feireisl and Novotný
[44], Feireisl, Jin and Novotný [46], Feireisl, Ne£asová and Sun [47], Lions and
Masmoudi [72] (see also [73, 74]), Masmoudi [75], Sueur [104] and references
therein.

In the context described above, we will deal with the inviscid incompressible
limit for a compressible barotropic �uid in a "fast" rotating frame occupying the
whole space R3. More precisely, we would like to show the convergence of the
solution of the compressible Navier-Stokes system

∂t%+ divx(%u) = 0, (1.1.7)

∂t (%u) + divx (%u⊗ u) = − 1

ε2
∇xp(%) + εdivxS(∇xu)− (%u× ω) , (1.1.8)

S = S(∇xu) = µ

(
∇xu +∇txu−

2

3
divxuI

)
+ η divxuI, µ > 0, η ≥ 0.

(1.1.9)
towards the solution of the rotating incompressible Euler system

∂tv + v · ∇v + v × ω +∇xΠ = 0, divxv = 0, (1.1.10)

for large values of the angular velocity ω = [0, 0, 1], namely "fast" rotating frame.
Above, the shear viscosity coe�cient µ and the bulk viscosity coe�cient η are
assumed to be constant. The quantity (%u× ω) represents the Coriolis force.
The e�ect of the centrifugal force is neglected. This is a standard simpli�cation
adopted, for instance, in models of atmosphere or astrophysics (see [54, 55, 56]).

The analysis will be based on the work of Caggio and Ne£asová [7]. The
problem is a particular case of the Masmoudi [75] result where we will use a
di�erent technique (see the discussion below).
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The technique to reach the convergence will be based on the so-called rel-
ative energy method in the framework of the relative energy inequality. The
relative energy inequality was introduced by Dafermos [20] in the context of
the Second Law of Thermodynamics. In the �uid context, it was introduced by
Germain [51]. Afterwards, the method was developed by Feireisl, Novotný and
co-workers in the framework of the problem of singular limits in �uid mechanics
(see for example Feireisl and Novotný [41], [43], Feireisl, Jin and Novotný [45]
and Feireisl, Novotný and Sun [50] and references therein). In the following we
describe brie�y the method, leaving the technical details to the next chapters.
The basic idea is to introduce a relative energy functional. This functional plays
the role of measuring the stability of two solutions. One with more regularity
compared to the other one. In our context, the two solutions will be the weak so-
lution of the Navier-Stokes system and the classical solution of the Euler system
respectively. Next, along with the relative energy functional, a relative energy
inequality has to be derived. This last will give us the possibility to reach the
convergence in terms of a Gronwall type inequality.

The compressibility of the �uid allows the propagation of acoustic waves de-
scribed by the acoustic system related to the Navier-Stokes model. The acoustic
waves have to decay in the incompressible limit. Therefore, the analysis requires
a technique in order to ensure this decay. In the whole space is common to use
the so-called dispersive estimates (see Desjardins and Grenier [22], Feireisl and
Novotný [42], Masmoudi [75], Schochet [95] and Strichartz [103]). We will in-
troduce the acoustic system and the dispersive estimates during our analysis.

1.1.2 The dimension reduction limit for compressible heat

conducting �uids

The motion of an heat conducting compressible �uid is described by means of
three unknown �elds: the density % = % (x, t), the velocity �eld u = u (x, t) and
the temperature ϑ = ϑ(x, t) of the �uid, functions of the spatial position x ∈ R3

and the time t ∈ R, and satisfying the following Navier-Stokes-Fourier system
of equations. The continuity equation reads

∂t%+ divx (%u) = 0. (1.1.11)

The momentum equation is

∂t (%u) + divx (%u⊗ u) +∇xp(%, ϑ) = divxS (ϑ,∇xu) + %f . (1.1.12)

with the stress tensor given by the following relation

S (ϑ,∇xu) = µ (ϑ)

(
∇xu +∇txu−

2

3
divxuI

)
+ η (ϑ) divxuI. (1.1.13)

The entropy equation is

∂t (%s (%, ϑ)) + divx (%s (%, ϑ) u) + divx

(
q (ϑ,∇xϑ)

ϑ

)

=
1

ϑ

(
S (ϑ,∇xu) : ∇xu−

q (ϑ,∇xϑ) · ∇xϑ
ϑ

)
, (1.1.14)
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with
q = −κ (ϑ)∇xϑ. (1.1.15)

In the system above the shear viscosity coe�cient µ (ϑ), the bulk viscosity co-
e�cient η (ϑ) and the heat conductivity coe�cient κ (ϑ) are functions of the
temperature. The scalar functions p(%, ϑ) and s(%, ϑ) are the pressure and the
entropy respectively, functions of the density and the temperature, and %f rep-
resents an external forcing.

In analogy with the arguments presented before, we can obtain the scaled
version of the compressible Navier-Stokes-Fourier system

[Sr] ∂t%+ divx (%u) = 0, (1.1.16)

[Sr] ∂t (%u) + divx (%u⊗ u) +

[
1

Ma2

]
∇xp(%, ϑ)

=

[
1

Re

]
divxS (ϑ,∇xu) +

[
1

Fr2

]
%f , (1.1.17)

∂t (%s (%, ϑ)) + divx (%s (%, ϑ) u) +

[
1

Pe

]
divx

(
q (ϑ,∇xϑ)

ϑ

)

=
1

ϑ

([
Ma2

Re

]
S (ϑ,∇xu) : ∇xu−

[
1

Pe

]
q · ∇xϑ

ϑ

)
. (1.1.18)

where the Péclet number [Pe] is de�ned as follows

[Pe] =
pressurecharvelocitycharlengthchar
heat conductivitychartemperaturechar

.

Similarly to Reynolds number, high Péclet number corresponds to low heat
conductivity of the �uid that may be attributed to turbulent �ows.

Rede�ning the Froude number in terms of a non-negative parameter ε,
namely Fr = εβ , with β arbitrary non-negative number, and setting the other
characteristic numbers equal to one, the dimension reduction limit aims to show
the convergence [%,u, ϑ]→ [r,w,Θ], for ε→ 0, where the couple [%,u, ϑ] is the
solution of the three-dimensional Navier-Stokes-Fourier system and the couple
[r,w,Θ] is the solution of the corresponding two-dimensional system.

Indeed, in the low Froude number limit the gravitational e�ects become
predominant forcing the �uid to a two-dimensional dynamics.

The analysis will be based on the work of Ducomet, Caggio, Ne£asová and
Pokorný [25] and it aims the extension of the result of Feireisl, Novotný and
co-workers [1].

Remark 1. For the sake of clarity, in the presence of gravity force, the system de-
scribing an heat conducting �uid is given by the Navier-Stokes-Fourier-Poisson
system of equations.

Remark 2. It is possible to read ε as follows

ε =
l

L
.

Here, l is the horizontal length and L the vertical length. Consequently, the
limit can be also seen, more easily, in terms of a pure geometric reduction.
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In the context describe above, we will deal with the dimension reduction
limit for a compressible heat conducting �uid in a rotating frame occupying a
bounded domain in R3 where the external forcing is given by the gravity force.
More precisely, we consider a �uid con�ned in a straight layer Ωε = ω × (0, ε)
where ω is a two-dimensional domain. We rescale to a �x domain as follows

(xh, εx3) ∈ Ωε → (xh, x3) ∈ Ω,

where xh = (x1, x2) ∈ ω and x3 ∈ (0, 1). Above, we denoted

∇ε =

(
∇h,

1

ε
∂x3

)
, ∇h = (∂x1

, ∂x2
) , (1.1.19)

divεu = divhuh +
1

ε
∂x3

u3, uh = (u1, u2) , divhuh = ∂x1
u1 + ∂x2

u2, (1.1.20)

4ε = ∂2
x1x1

+ ∂2
x2x2

+
1

ε2
∂2
x3x3

. (1.1.21)

The continuity equation reads now as follow

∂t%+ divε (%u) = 0, (1.1.22)

the momentum equation is

∂t (%u) + divε (%u⊗ u) + %u× χ+∇εp(%, ϑ)

= divεS (ϑ,∇εu) + ε−2β%∇εφ+ %∇ε |x× χ|2 , (1.1.23)

the entropy equation is

∂t (%s (%, ϑ)) + divε (%s (%, ϑ) u) + divε

(
q (ϑ,∇εϑ)

ϑ

)

=
1

ϑ

(
S (ϑ,∇εu) : ∇εu−

q (ϑ,∇εϑ) · ∇εϑ
ϑ

)
, (1.1.24)

with

S (ϑ,∇εu) = µ (ϑ)

(
∇εu +∇tεu−

2

3
divεuI

)
+ η (ϑ) divεuI (1.1.25)

and

q = −κ (ϑ)∇εϑ. (1.1.26)

The quantities %u × χ and %∇ε |x× χ|2 represent the Coriolis force and the
centrifugal force respectively with χ = [0, 0, 1] angular velocity and

∇ε |x× χ|2 =
(
∇h |x× χ|2 , 0

)
=

(x1, x2, 0)√
x2

1 + x2
2

.

The gravitational force is expressed by %∇εφ where the potential φ satis�es the
Poisson's equation
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−4εφ = 4πG(α%+ (1− α)g) in (0, T )× Ω. (1.1.27)

Here, G is the Newton constant and α a positive parameter. The �rst contribu-
tion on the right-hand side of the relation (3.0.6) corresponds to self-gravitation
while in the second one g is a given function modeling the external gravitational
e�ects. Here and hereafter, we assume that the function % is extended by zero
outside of Ω. Supposing further that g is such that the integral below converges,
we have

φ (t, x) = G

ˆ
R3

K (x− y) (α% (t, y) + (1− α) g (y)) dy,

where K (x− y) = 1
|x−y| and the parameter α may take the values 0 or 1. For

α = 0 the gravitation only acts as an external �eld, for α = 1 only the self-
gravitation is present. Since we also work with ∇εφ (t, x), we have to further
assume that

ˆ
R3

∇εK (x− y) (α% (t, y) + (1− α) g (y)) dy <∞.

In particular, the gravitational force is given by the following relation (see [25]
and [26])

∇εφ (t, x) = ε

ˆ
Ωε

α%(t, ξ)
(x1 − ξ1, x2 − ξ2, ε (x3 − ξ3))(
|xh − ξh|2 + ε2 |x3 − ξ3|2

)3/2
dξ

+

ˆ
R3

(1− α) g(y)
(x1 − y1, x2 − y2, ε (x3 − y3))(
|xh − yh|2 + ε2 |x3 − y3|2

)3/2
dy

= εαΦ1 + (1− α) Φ2. (1.1.28)

In our analysis we will distinguish two cases with respect to the behavior of the
Froude number, namely Fr =

√
ε for β = 1/2 and Fr = 1 for β = 0. According

to the choice of the Froude number, we have to consider the correct form of the
gravitational potential. In the former the self-gravitation, namely α = 1, and in
the latter the external gravitation force, namely α = 0. In the latter, we could
also include the self-gravitation, it would, however disappeared after the limit
passage. Taking Fr =

√
ε for β = 1/2 the momentum equation reads as follow

∂t (%u) + divε (%u⊗ u) + %u× χ+∇εp(%, ϑ)

= divεS (ϑ,∇εu) + %Φ1 + %∇ε |x× χ|2 . (1.1.29)

While, taking Fr = 1 for β = 0, we have

∂t (%u) + divε (%u⊗ u) + %u× χ+∇εp(%, ϑ)

= divεS (ϑ,∇εu) + %Φ2 + %∇ε |x× χ|2 . (1.1.30)

For Fr =
√
ε and β = 1/2, the corresponding two-dimensional momentum

equation reads as follows
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r∂tw + rw · ∇hw +∇hp(r,Θ) + r (w × χ)

= divhS(Θ,∇hw) + r∇hφh + r∇h |x× χ|2 , (1.1.31)

with the formula

φh(t, xh) =

ˆ
ω

r(t, yh)

|xh − yh|
dyh (1.1.32)

and

Sh (Θ,∇hw) = µ
(
∇hw +∇thw − divhw

)
+
(
η +

µ

3

)
divhwIh (1.1.33)

where Ih is the unit tensor in R2×2 in the domain (0, T )×ω. While, for Fr = 1
and β = 0, we have

φh(t, xh) = G

ˆ
R3

g(y)√
|xh − yh|2 + y2

3

dy. (1.1.34)

As in the previous discussion, the technique to reach the convergence will
be based on the relative energy method in order to show the convergence of
the weak solution of the three-dimensional Navier-Stokes-Fourier system to the
classical solution of the corresponding two-dimensional system. In particular,
we will follow the framework developed in [43]. The main point of the analysis
will be the treatment of the gravitational force.

From a phenomenological point of view, this limit concerns the rigorous
derivation of the equations describing astrophysical objects called accretion disk
which are thin structures observed in various places in the universe. These disks
are indeed three-dimensional but their thickness is usually much smaller than
their extension, therefore they are often modeled as two-dimensional structures.
Indeed, if a massive object attracts matter distributed around it through New-
tonian gravitation in presence of an angular momentum, this matter is not
accreted isotropically around the central object but forms a thin disk around it.
For further details we refer to the work of Choudhuri [17], Montesinos Armijo
[78], Ogilvie [87], Pierens [89], Pringle [90] and Shore [96].

1.2 The problem of global regularity for incom-
pressible �uids

The motion of an incompressible �uid is described by means of its velocity �eld
u = u (x, t), functions of the spatial position x ∈ R3 and the time t ∈ R, and
satisfying the following Navier-Stokes system of equations

∂tu + u · ∇xu− µ∆xu +∇xp = f , divxu = 0. (1.2.1)

In the system above µ is the shear viscosity coe�cient. The scalar function p is
the pressure, functions of the spatial position x ∈ R3 and the time t ∈ R, and f
represents a given external forcing.

An open problem in applied analysis concerns the global regularity of the
solution of the Navier-Stokes equations in the whole space R3. Over the years,
several authors have faced the problem (see, for example, [18], [19], [24], [63],
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[64], [66], [70], [71], [92], [102], [107], [108], [109]). It is known that for the initial
data u0 ∈ L2

σ (solenoidal functions in L2) the problem (1.2.1) possesses at least
one global weak solution u satisfying the energy inequality

||u(t)||22/2 +

ˆ t

0

||∇xu(τ)||22 dτ ≤ ||u0||22/2 (1.2.2)

for every t ≥ 0 (see [53], [67] and [93]). Such solutions are called Leray-Hopf
solutions.

More precisely (see [93]), given u0 ∈ L2
σ, a weak solution of (1.2.1) on [0, T )

is a function u ∈ L∞
(
0, T ;L2

σ

)
∩ L2

(
0, T ;W 1,2

)
such that

ˆ T

0

(u, ϕt)− (∇u,∇ϕ)− ((u · ∇) u, ϕ) = − (u0, ϕ) (1.2.3)

for every ϕ ∈ D
(
[0, T ) ,R3

)
, the set of all functions in C∞0

(
[0, T ) ,R3

)
that are

also divergence free, and the following existence Theorem holds (see [93]).

Theorem 3. For any u0 ∈ L2
σ there exists at least one weak solution of (1.2.1).

This solution is weakly continuous into L2, namely for any v ∈ L2,

lim
t→t0

(u (t) ,v) = (u (t0) ,v)

for all t0 ∈ [0, T ), and in addition it satis�es the energy inequality (1.2.2) for
every t ∈ [0, T ). Moreover, u(t)→ u0 in L2 as t→ 0.

Remark 4. Above we used (·, ·) to denote the inner product in L2.

Nevertheless, the uniqueness, regularity, and continuous dependence on ini-
tial data for weak solutions are still open problems ([10]).

If u0 ∈ W 1,2
σ (solenoidal functions from the standard Sobolev space W 1,2),

then strong solutions exist for a short interval of time whose length depends on
the physical data of the initial-boundary value problem. Moreover, this strong
solution is unique in the larger class of weak solutions ([19], [63], [102], [107]).
In fact, a strong solution is a weak solution with the additional regularity ([93])

u ∈ L∞
(
0, T ;W 1,2

)
∩ L2

(
0, T ;W 2,2

)
.

From the pioneer works of Prodi [91] and of Serrin [98], many results were
presented in providing su�cient conditions for the global regularity (see for ex-
ample Chae and Lee [13], Constantin [18], Doering and Gibbon [24], Ladyzhen-
skaya [63, 64], Lemarié-Rieussett [66], Lions [70, 71], Sohr [102] and Temam
[107, 108, 109] and references therein).

Some of these conditions provide regularity criteria for the velocity �eld (see
for example Escauriaza, Seregin and �verák [31], Fabes, Jones and Riviere [32]
and Serrin [98]): if a Leray-Hopf weak solution u satis�es

u ∈ Lr(0, T ;Ls(R3)) for some
2

r
+

3

s
≤ 1, 3 ≤ s ≤ ∞

then u is regular.
Others involve analogous criteria for the pressure (see for example Berselli

[5], Berselli and Galdi [6], Cao and Titi [9], Kukavica [59], Seregin and �verák
[97], Zhou [115]): if the pressure p satis�es
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p ∈ Lr(0, T ;Ls(R3)) for some
2

r
+

3

s
≤ 2, s >

3

2
or

∇p ∈ Lr(0, T ;Ls(R3)) for some
2

r
+

3

s
≤ 3, 1 ≤ s ≤ ∞

then u is regular.
An analogical situation occurs for ∇u. It was proved in [3] that u is regular

if

∇u ∈ Lr(0, T ;Ls(R3))

where s ∈ (3/2,∞) and

2

r
+

3

s
= 2.

Still others state su�cient conditions for regularity in terms of the vorticity
(see for example Beirao da Veiga [4]): if the vorticity ω = ∇×u of a Leray-Hopf
weak solution u belongs to the space

Lr(0, T ;Ls(R3)) for some
2

r
+

3

s
≤ 2, s > 1

then u is regular. The result above concerns the regularity of the solution u
when conditions are imposed on all the components of the vorticity vector. Chae
and Choe [12] obtained regularity by imposing the conditions

ωj ∈ Lr (0, T ;Ls) , j = 1, 2, for some
2

r
+

3

s
≤ 2, s ∈ (3/2,∞)

namely, on only two components of the vorticity vector, while the problem with
one vorticity component is an outstanding open problem.

1.2.1 Regularity criteria in terms of one velocity compo-

nent

The above mentioned criteria are based on the entire velocity vector or on the
entire gradient. In the last two decades many authors have studied the regu-
larity criteria where additional conditions were imposed only on some velocity
components or on some items of the velocity and pressure gradients. The �rst
contribution in this direction was done by Neustupa and Penel [81]. After,
over the years, several authors have obtained important results in that direction
(see for example Kukavica and Ziane [61], Zhou and Pokorný [116], [117] and
reference therein).

In the context described, we are interested in criteria based on only one
velocity component. More speci�cally, we will study criteria based on u3, ∇u3

and ∇2u3, and prove, for example, that the condition

∇u3 ∈ Lβ(0, T ;Lp),

where p ∈ (2,∞] and

2/β + 3/p = 7/4 + 1/(2p),
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yields the regularity of u on (0, T ].
The analysis will be based on the work of Guo, Caggio and Skalák [52] in

the framework of anisotropic Lebesgue spaces.
The anisotropic Lebesgue spaces framework seems to be convenient for our

purposes, since it di�erentiates between di�erent directions. It can be useful in
the situations where regularity conditions are imposed only on one velocity com-
ponent. Indeed, in Theorems 38 - 42 we will see that the use of the anisotropic
Lebesgue spaces framework can improve some results from the literature.
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Chapter 2

Inviscid incompressible limit
for rotating �uids

We consider the scaled compressible Navier-Stokes system for a barotropic ro-
tating �uid in the whole space R3 already mentioned in Introduction. The
continuity equation reads

∂t%+ divx(%u) = 0, (2.0.1)

the momentum equation is

∂t (%u) + divx (%u⊗ u) = − 1

ε2
∇xp(%) + εdivxS(∇xu)− (%u× ω) , (2.0.2)

with the stress tensor given by the following relation

S = S(∇xu) = µ

(
∇xu +∇txu−

2

3
divxuI

)
+ η divxuI, µ > 0, η ≥ 0.

(2.0.3)
The system is supplemented by the initial conditions

% (x, 0) = %0 (x) , u (x, 0) = u0 (x) (2.0.4)

and by the following far �eld conditions for the density and the velocity �eld

lim
|x|→∞

%(x, t) = 1, lim
|x|→∞

u(x, t) = 0. (2.0.5)

The �rst relation in (2.0.5) means the mass of the �uid is in�nite.
As mentioned in the previous chapter, we want to show that the weak so-

lution of the Navier-Stokes system converges to the classical solution of the
corresponding rotating incompressible Euler system

∂tv + v · ∇v + v × ω +∇xΠ = 0, divxv = 0, (2.0.6)

for large values of ω, namely "fast" rotating frame.
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2.1 Weak and classical solutions

In the following, we introduce the de�nition of weak solutions for the com-
pressible Navier-Stokes system (2.0.1 - 2.0.3) and we discuss the global-in-time
existence. In particular, we de�ne the so-called bounded energy weak solution
(see [38], [48] and [86]) and we discuss the global-in-time existence. Then, we
discuss the global existence of the classical solution of the incompressible Eu-
ler system (2.0.6). For the discussion on weak solutions we will consider an
arbitrary open set Ω ⊂ R3.

The introduction of the bounded energy weak solution is motivated by the
following discussion. In [21] it was shown the existence of weak solutions to
the compressible Navier-Stokes equations on unbounded domain satisfying the
di�erential form of the energy inequality (and consequently the integral form)
for a barotropic �uid with �nite mass. While the existence of weak solutions for
a �uid with in�nite mass remains an open question. Weak solutions satisfying
the di�erential form of the energy inequality are usually termed �nite energy
weak solutions (see [2], [45], [49], [62] and [86]), while weak solutions satisfying
the integral form of the energy inequality are usually termed bounded energy
weak solutions (see [38], [48] and [86]).

Because our analysis will be performed in the whole space R3 under the
condition that the mass of the �uid is in�nite (see relation 2.0.5), we have to
use the integral form of the energy inequality and consequently to deal with
bounded energy weak solutions.

2.1.1 Bounded energy weak solutions

Multiplying (formally) the equation (2.0.2) by u and integrating by parts, we
deduce the energy inequality in its integral form

E(T ) + ε

ˆ T

0

ˆ
Ω

S (∇xu) : ∇xu dxdt ≤ E0 (2.1.1)

where the total energy E is given by the formula

E = E [%,u] (t) =

ˆ
Ω

1

2
% |u|2 +

H(%)

ε2
dx, (2.1.2)

with E0 the initial energy, and

H(%) =

ˆ %

1

p (z)

z2
dz (2.1.3)

the Helmholtz free energy (see [41] and [86]).

Remark 5. Here and hereafter the Helmholtz free energy will have the following
form (see Novotný and Stra²kraba [86]):

H(%) =
1

γ − 1
(%γ − γ%+ γ − 1) .

The parameter γ is the adiabatic index or heat capacity ratio.

Now, we de�ne the so-called bounded energy weak solution of the compress-
ible Navier-Stokes system (2.0.1 - 2.0.3) (see Feireisl, Novotný and Petzeltová
[48] and Novotný and Stra²kraba [86]).
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De�nition 6. (Bounded energy weak solution) Let Ω ⊂ R3 be an arbitrary open
set. We say that [%,u] is a bounded energy weak solution of the compressible
Navier-Stokes system (2.0.1 - 2.0.3) in the time-space cylinder (0, T )× Ω if

% ∈ L∞ ((0, T ) , Lγloc (Ω)) , % ≥ 0 a.e. in (0, T )× Ω,

H(%) ∈ L∞((0, T ) , L1(Ω)),

u ∈ L2

(
(0, T ) ,

(
D1,2

0 (Ω)
)3
)
, % |u|2 ∈ L∞

(
(0, T ) , L1(Ω)

)
.

The continuity equation (2.0.1) holds inD′((0, T )×Ω). The momentum equation
(2.0.2) holds in (D′((0, T )× Ω))

3. The energy inequality (2.1.1) holds for a.a.
t ∈ (0, T ) with E de�ned by

E =

ˆ
Ω

1

2

|%u|2

%
1{x;%>0} +

H(%)

ε2
dx (2.1.4)

and E0 de�ned by

E0 =

ˆ
Ω

1

2

|%0u0|2

%0
1{x;%0>0} +

H(%0)

ε2
dx. (2.1.5)

Remark 7. Here, the spaceD1,2
0 (Ω) is a completion of D(Ω), the space of smooth

functions compactly supported in Ω, with respect to the norm

‖u‖2D1,2
0 (Ω) =

ˆ
Ω

|∇u|2 dx.

Now, the following theorem concerns with the global-in-time existence of the
bounded energy weak solution (see [38] and [48]).

Theorem 8. (Global-in-time existence of bounded energy weak solution) Let
Ω ⊂ R3 be an arbitrary open set. Let the pressure p be given by a general
constitutive law satisfying

p ∈ C1 [0,∞) , p(0) = 0,
1

a
%γ−1 − b ≤ p′(%) ≤ a%γ−1 + b, for all % > 0

(2.1.6)
with

a > 0, b ≥ 0, γ >
3

2
.

Let the initial data %0, u0 satisfy

%0 ∈ L1(Ω), H(%0) ∈ L1(Ω), %0 ≥ 0 a.e. in Ω,

%0u0 ∈
(
L1 (Ω)

)3
such that

|%0u0|2

%0
1{x;%0>0} ∈ L1 (Ω)

and such that %0u0 = 0 whenever x ∈ {%0 = 0} . (2.1.7)
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Then the problem (2.0.1 - 2.0.3) admits at least one bounded energy weak solu-
tion [%,u] on (0, T )×Ω in the sense of De�nition 6. Moreover [%,u] satisfy the
energy inequality (2.1.1).

Remark 9. The �rst existence result for problem (2.0.1 - 2.0.3) was obtained
by Lions [71] on condition that Ω ⊂ R3 is a domain with smooth and compact
boundary and that p(%) ≈ %γ with γ ≥ 9

5 . This result was relaxed to γ > 3
2 by

Feireisl, Novotný and Petzeltová [49] on condition that Ω is a bounded smooth
domain. Existence for certain classes of unbounded domains was shown in
Novotný and Stra²kraba [86] (see also Lions [71]).

Remark 10. The existence result in Feireisl [38] and Feireisl, Novotný and Pet-
zeltová [48] holds in the presence of the Coriolis force (see for example Feireisl
and Novotný [44] and Feireisl, Jin and Novotný [46] and reference therein).

2.1.2 Classical solutions

For the solvability of the system (2.0.6) with the initial data v(0) = v0, we
report the following result (see Takada [105]):

Theorem 11. Let s ∈ R satisfy s > 3
2 + 1. Then, for 0 < T < ∞ and

v0 ∈ W s,2
(
R3
)
satisfying divxv0 = 0, there exists a positive parameter Ω0 =

Ω0(s, T, ‖v0‖W s,2) such that if |ω| ≥ Ω0 then the system (2.0.6) possesses a
unique classical solution v satisfying

v ∈ C
(
[0, T ] ;W s,2(R3;R3)

)
,

∂tv ∈ C
(
[0, T ] ;W s−1,2(R3;R3)

)
,

∇Π ∈ C
(
[0, T ] ;W s,2(R3;R3)

)
. (2.1.8)

Remark 12. The global existence stated above was proved by Kho, Lee and
Takada [57] for the initial data in W s,2

(
R3
)
with s > 7/2.

Remark 13. Theorem 11 deals with inviscid �ows in a rotating frame under the
condition of fast rotation. In terms of scale analysis (see Nazarenko [79]), if we
de�ne by U and L the characteristic velocity and length scale of the �uid, we
can estimate the order of magnitude of the non-linear term and the rotational
term in the equation (2.0.6) as follows

v · ∇v ∼ O
(
U2

L

)
, (2.1.9)

v × ω ∼ O (ΩU) , (2.1.10)

where

ω ∼ O (Ω) ∼ O
(
U

L

)
, (2.1.11)

with Ω characteristic angular velocity. Comparing (2.1.9) and (2.1.10), we have

U

L
∼ Ω. (2.1.12)
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Fast rotation implies

U

ΩL
� 1 (2.1.13)

and we can neglect the non-linear term in (2.0.6), obtaining

∂tv + v × ω +∇xΠ = 0, divxv = 0. (2.1.14)

These are linear equations. In other words, fast rotation leads to averaging
mechanism that weakens the nonlinear e�ects. This of course prevents singu-
larity allowing the life span of the solution to extend (see Chemin, Desjardines,
Gallagher and Grenier [16] and references therein).

2.2 Acoustic waves

In the following, we introduce the acoustic system related to the equations
(2.0.1) and (2.0.2). Then, we brie�y discuss the acoustic energy introducing
appropriate energy estimates. Finally, we discuss the decay of acoustic waves
in the limit of Mach number tends to zero introducing the dispersive estimate
mentioned before.

We assume the perturbation of the density of the �rst order and small com-
pared to the given ambient �uid density. Therefore, we can write the acoustic
system related to the equations (2.0.1) and (2.0.2) by the following linear rela-
tions (see Feireisl and Novotný [41], Feireisl, Ne£asová and Sun [47] and Lighthill
[68, 69]):

ε∂ts+4Ψ = 0, ε∂t∇Ψ + a∇xs = 0, a = p′(1) > 0, (2.2.1)

with the initial data

s(0) = %
(1)
0 , ∇xΨ(0) = ∇xΨ0 = u0 − v0 (2.2.2)

where v0 = H[u0] and H denotes the Helmholtz projection into the space of
solenoidal functions and Ψ is a potential. Here, s is de�ned as the change
in density for a given ambient �uid density. In other words, the density per-
turbation. The sound velocity squared is represented by a. For more detail
physical discussion concerning acoustics, we refer to the book of Falkovich [33]
and Landau-Lifshitz [65].

2.2.1 Energy and dispersive estimates

The total change in energy of the �uid caused by the acoustic wave is given by
the integral

ˆ
R3

(
1

2
a |s|2 +

1

2
|∇xΨ|2

)
dx, (2.2.3)

where the integrand may be regarded as the density of sound energy (see
Landau-Lifshitz [65]). It is easy to verify (see Landau-Lifshitz [65]) that the
density of sound energy is conserved in time, namely
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[ˆ
R3

(
1

2
a |s|2 +

1

2
|∇xΨ|2

)
(t, ·) dx

]t=T
t=0

= 0. (2.2.4)

In addition, we have the following energy estimates (see Feireisl and Novotný
[42])

‖∇xΨ (t, ·)‖Wk,2(R3;R3) + ‖s (t, ·)‖Wk,2(R3)

≤ c
(
‖∇xΨ0‖Wk,2(R3;R3) +

∥∥∥%(1)
0

∥∥∥
Wk,2(R3)

)
, k = 0, 1, ..., (2.2.5)

for any t > 0. Instead, concerning the decay of the acoustic waves in the
incompressible limit, the following dispersive estimates hold

‖∇xΨ (t, ·)‖Wk,p(R3;R3) + ‖s (t, ·)‖Wk,p(R3)

≤ c(1 +
t

ε
)−( 1

q−
1
p )
(
‖∇xΨ0‖Wk,q(R3;R3) +

∥∥∥%(1)
0

∥∥∥
Wk,q(R3)

)
, (2.2.6)

2 ≤ p ≤ ∞, 1

p
+

1

q
= 1, k = 0, 1, ....

For the purpose of our analysis and the use of the estimates (2.2.5) and
(2.2.6), it is convenient to regularize the initial data (2.2.2) in the following way

%
(1)
0 = %

(1)
0,η = χη ?

(
ψη%

(1)
0

)
, ∇xΨ0 = ∇xΨ0,η = χη ? (ψη∇xΨ0) , η > 0,

(2.2.7)
where {χη} is a family of regularizing kernels and ψη ∈ C∞0 (R3) are stan-
dards cut-o� functions. Consequently, the acoustic system possesses a (unique)
smooth solution [s,Ψ] and the quantities ∇xΨ and s are compactly supported
in R3 (see Feireisl and Novotný [42]).

2.3 Convergence analysis

For the purpose of the convergence analysis, we introduce the relative energy
functional and the relative energy inequality associated to the system (2.0.1 -
2.0.3) already mentioned in the Introduction.

2.3.1 Relative energy inequality

The relative energy functional associated to the system (2.0.1 - 2.0.3) is given
by the following relation

E(%,u | r,U) =

ˆ
R3

[
1

2
% |(u−U)|2

+
1

ε2
(H (%)−H ′ (r) (%− r)−H (r))

]
dx (2.3.1)
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along with the relative energy inequality

[E(%,u | r,U)]
t=T
t=0

+ε

ˆ T

0

ˆ
R3

S (∇xu−∇xU) : (∇xu−∇xU) dxdt ≤
ˆ T

0

R(%,u, r,U)dt,

(2.3.2)
where the remainder R is expressed as follows

R(%,u, r,U) =

ˆ
R3

% (∂tU + u · ∇xU) · (U− u)dx

+ε

ˆ
R3

S(∇xU) : (∇xU−∇xu)dx

+
1

ε2

ˆ
R3

((r − %) ∂tH
′(r) +∇xH ′(r) · (rU− %u)) dx

− 1

ε2

ˆ
R3

(p(%)− p(r)) divxUdx.

+

ˆ
R3

(%u× ω) · (U− u) dx := I1 + ...+ I5 (2.3.3)

Here, r and U are su�ciently smooth functions such that

r > 0, r − 1 ∈ C∞c
(
[0, T ]× R3

)
, U ∈ C∞c

(
[0, T ]× R3;R3

)
. (2.3.4)

It can be shown (see Feireisl, Jin and Novotný [45] for di�erent type of do-
mains and boundary conditions) that any weak solution [%,u] to the compress-
ible Navier-Stokes system (2.0.1 - 2.0.3) satis�es the relative energy inequality
for any pair of su�ciently smooth test functions r, U as in (2.3.4). The partic-
ular choice of [r,U] will be clari�ed later.

2.3.2 Main results

The following theorem is the main result of this chapter.

Theorem 14. Let M > 0 be a constant. Let the pressure p satisfy

p ∈ C1 [0,∞) ∩ C3(0,∞), p(0) = 0,
1

a
%γ−1 − b ≤ p′(%) ≤ a%γ−1 + b, (2.3.5)

for all % > 0, with

a > 0, b ≥ 0, γ >
3

2
.

Let the initial data [%0,u0] for the Navier-Stokes system (2.0.1 - 2.0.3) be of the
following form

%(0) = %0,ε = 1 + ε%
(1)
0,ε, u(0) = u0,ε, (2.3.6)
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∥∥∥%(1)
0,ε

∥∥∥
L2∩L∞(R3)

+ ‖u0,ε‖L2(R3;R3) ≤M. (2.3.7)

Let all the requirements of Theorem 11 be satis�ed with the initial datum for
the Euler system v0 = H[u0]. Let [s,Ψ] be the solution of the acoustic system
(2.2.1) with the initial data (2.2.7). Then,

‖√% (u− v −∇Ψ) (t, ·)‖2L2(R3;R3)

+

∥∥∥∥%− 1

ε
(t, ·)− s(t, ·)

∥∥∥∥2

L2(R3)

+

∥∥∥∥%− 1

ε2/γ
(t, ·)− s(t, ·)

ε(2/γ)−1

∥∥∥∥γ
Lγ(R3)

≤ c
(
‖u0,ε − u0‖2L2(R3;R3) +

∥∥∥%(1)
0,ε − %

(1)
0

∥∥∥2

L2(R3)

)
, t ∈ [0, T ] , (2.3.8)

for any weak solutions [%,u] of the compressible Navier-Stokes system (2.0.1 -
2.0.3).

Remark 15. The �rst relation in (2.3.6) refers to the �rst-order perturbation of
the density, namely ε%(1)

0,ε, respect to the ambient �uid density settled equal one.

A consequence of the above Theorem is the following Corollary.

Corollary 16. Let all the requirements of Theorem 14 be satis�ed. Assume
that

%
(1)
0,ε → %

(1)
0 in L2(R3), u0,ε → u0 in L2(R3;R3) when ε→ 0.

Then

ess sup
t∈[0,T ]

‖√% (u− v) (t, ·)‖2L2(R3;R3) → 0 when ε→ 0,

ess sup
t∈[0,T ]

‖%− 1‖2L2(R3) → 0 when ε→ 0,

ess sup
t∈[0,T ]

‖%− 1‖γLγ(R3) → 0 when ε→ 0,

for any weak solutions [%,u] of the compressible Navier-Stokes system (2.0.1 -
2.0.3) and [r,U] su�ciently smooth test functions.

2.3.3 Convergence

The following discussion is devoted to the proof of Theorem 14. Here and
hereafter, the symbol c will denote a positive generic constant, independent by
ε, usually found in inequalities, that will not have the same value when used in
di�erent parts in the analysis.

We start with the a priori bounds. In accordance with the energy inequality
(2.1.1), we have

ess sup
t∈[0,T ]

‖%(t, ·)‖Lγ∩L1(R3) ≤ c(M), (2.3.9)

37



ess sup
t∈[0,T ]

‖√%u(t, ·)‖L2(R3;R3) ≤ c(M). (2.3.10)

From (2.3.9) and (2.3.10), we obtain

‖%u(t, ·)‖Lq(R3;R3) = ‖√%√%u(t, ·)‖Lq(R3;R3)

≤ ‖√%(t, ·)‖L2γ(R3) ‖
√
%u(t, ·)‖L2(R3;R3) , (2.3.11)

with

q =
2γ

γ + 1
. (2.3.12)

We conclude that

ess sup
t∈[0,T ]

‖%u(t, ·)‖Lq(R3;R3) ≤ c(M), q =
2γ

γ + 1
. (2.3.13)

Moreover, introducing (see Germain [51])

I(%, r) = H (%)−H ′ (r) (%− r)−H (r) , (2.3.14)

we observe that the map % → I(%, r) is, for any �xed r > 0, a strictly convex
function on (0,∞) with global minimum equal to 0 at % = r, which grows at
in�nity with the rate %γ . Consequently, the integral

´
R3 I (%, r) (t, x)dx in (2.3.2)

provides a control of (%− r) (t, ·) in L2 over the sets {x : |%− r| (t, x) < 1} and
in Lγ over the sets {x : |%− r| (t, x) ≥ 1}. So, for any r in a compact set (0,∞),
there holds

I(%, r) ≈ |%− r|2 1{|%−r|<1} + |%− r|γ 1{|%−r|≥1}, ∀% ≥ 0, (2.3.15)

in the sense that I(%, r) gives an upper and lower bound in term of the right-hand
side quantity (see Bardos and Nguyen [2], Feireisl, Novotný and Sun [50] and
Sueur [104]). Indeed, is possible to show (see Bardos and Nguyen [2], Lemma
2.2) that for the quantity I(%, r) the following approximation holds

I(%, r) ≈ % (H ′(%)−H ′(r))− r (%− r)H ′′(r),

where the right-hand-side is of order |%− r|2 when |%− r| ≤ 1, and of order
|%− r|γ when |%− r| ≥ 1. Therefore, we have the following uniform bounds

ess sup
t∈[0,T ]

∥∥[(%− 1) (t, ·)] 1{|%−1|<1}
∥∥
L2(R3)

≤ c(M)ε, (2.3.16)

ess sup
t∈[0,T ]

(∥∥[(%− 1) (t, ·)] 1{|%−1|≥1}
∥∥
Lγ(R3)

)
≤ c(M)ε2/γ , (2.3.17)

where we have set r = 1 and U = 0 in the relative energy inequality (2.3.2).
Now, the basic idea is to apply (2.3.2) to [r,U] = [1 + εs,v +∇xΨ]. The

particular choice of the test functions is motivate by the regularity of the solu-
tions of the Euler (2.0.6) and acoustic (2.2.1) system. In the following, η will
be �xed. For the initial data we have
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[E(%,u | r,U)](0) =

ˆ
R3

1

2
%0,ε |u0,ε − u0|2 dx

+

ˆ
R3

1

ε2

[
H
(

1 + ε%
(1)
0,ε

)
− εH ′

(
1 + ε%

(1)
0

)(
%

(1)
0,ε − %

(1)
0

)
−H

(
1 + ε%

(1)
0

)]
dx,

(2.3.18)
where u0 = H[u0] +∇Ψ0. Given (2.3.6) and (2.3.7), for the �rst term on the
right hand side of the equality (2.3.18), we have

ˆ
R3

1

2
%0,ε |u0,ε − u0|2 dx

≤
ˆ
R3

1

2

∣∣∣1 + ε%
(1)
0,ε

∣∣∣ |u0,ε − u0|2 dx

≤
ˆ
R3

1

2
|u0,ε − u0|2 dx+

ˆ
R3

1

2

∣∣∣ε%(1)
0,ε

∣∣∣ |u0,ε − u0|2 dx

≤
ˆ
R3

1

2
|u0,ε − u0|2 dx+ ε

∥∥∥%(1)
0,ε

∥∥∥
L∞(R3)

ˆ
R3

1

2
|u0,ε − u0|2 dx

≤ c(M) (1 + ε) ‖u0,ε − u0‖2L2(R3;R3) . (2.3.19)

For the second term on the right hand side of the equality (2.3.18), setting
a = 1 + ε%

(1)
0,ε and b = 1 + ε%

(1)
0 , and observing that

H(a) = H(b) +H ′(b)(a− b) +
1

2
H ′′(ξ)(a− b)2, ξ ∈ (a, b) ,

|H(a)−H ′(b)(a− b)−H(b)| ≤ c |a− b|2 ,

we have

ˆ
R3

1

ε2

[
H
(

1 + ε%
(1)
0,ε

)
− εH ′

(
1 + ε%

(1)
0

)(
%

(1)
0,ε − %

(1)
0

)
−H

(
1 + ε%

(1)
0

)]
dx

≤ c(M)

ˆ
R3

1

ε2

(∣∣∣ε(%(1)
0,ε − %

(1)
0

)∣∣∣2) dx

≤ c(M)
∥∥∥%(1)

0,ε − %
(1)
0

∥∥∥2

L2(R3)
. (2.3.20)

Finally, we can conclude

[E(%,u | r,U)](0) ≤ c(M)[(1 + ε) ‖u0,ε − u0‖2L2(R3;R3) +
∥∥∥%(1)

0,ε − %
(1)
0

∥∥∥2

L2(R3)
].

Now, we decompose I1 into

ˆ T

0

I1dt =

ˆ T

0

ˆ
R3

% [(∂tU + U · ∇xU) · (U− u)]dxdt
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−
ˆ T

0

ˆ
R3

%∇xU · (U− u) · (U− u)dxdt. (2.3.21)

For the second term on the right hand side of (2.3.21), thanks to the Sobolev
imbedding theorem, the Minkowski inequality, (2.1.8) and the dispersive esti-
mate (2.2.6), we have

ˆ T

0

ˆ
R3

%∇xU · (U− u) · (U− u)dxdt

≤
ˆ T

0

ˆ
R3

% |∇xU| · |(U− u)|2 dxdt

≤
ˆ T

0

E
∥∥∇xv +∇2

xΨ
∥∥
L∞(R3;R3)

dt

≤
ˆ T

0

E ‖∇xv‖L∞(R3;R3) dt+

ˆ T

0

E
∥∥∇2

xΨ
∥∥
L∞(R3;R3)

dt

≤ c
ˆ T

0

Edt (2.3.22)

The �rst term on the right hand side of (2.3.21) can be rewritten as follows

ˆ T

0

ˆ
R3

% [(∂tU + U · ∇xU) · (U− u)]dxdt

=

ˆ T

0

ˆ
R3

%(U− u) · (∂tv + v · ∇xv) dxdt

+

ˆ T

0

ˆ
R3

%(U− u) · ∂t∇xΨdxdt

+

ˆ T

0

ˆ
R3

%(U− u)⊗∇xΨ : ∇xvdxdt

+

ˆ T

0

ˆ
R3

%(U− u)⊗ v : ∇2
xΨdxdt

+

ˆ T

0

ˆ
R3

%(U− u) · ∇x |∇xΨ|2 dxdt. (2.3.23)

In view of uniform bounds (2.3.13), (2.1.8) and dispersive estimate (2.2.6), the
last three integrals can be estimated as follows

ˆ T

0

ˆ
R3

%(U−u)⊗∇xΨ : ∇xvdxdt =

ˆ T

0

ˆ
R3

%(v+∇xΨ−u)⊗∇xΨ : ∇xvdxdt

=

ˆ T

0

ˆ
R3

(%v)⊗∇xΨ : ∇xvdxdt
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+

ˆ T

0

ˆ
R3

(%∇xΨ)⊗∇xΨ : ∇xvdxdt

−
ˆ T

0

ˆ
R3

(%u)⊗∇xΨ : ∇xvdxdt

≤ c
ˆ T

0

‖%‖L1 ‖v‖L∞ ‖∇xΨ‖L∞ ‖∇xv‖L∞ dt

+c

ˆ T

0

‖%‖L1 ‖∇xΨ‖L∞ ‖∇xΨ‖L∞ ‖∇xv‖L∞ dt

+c

ˆ T

0

‖%u‖
L

2γ
γ+1
‖∇xΨ‖

L
2γ
γ−1
‖∇xv‖L∞ dt

≤ c(M)

[
ε (log (ε+ T )− log (ε)) +

(
ε− ε2

ε+ T

)
+

(
γ (ε+ T )

(
ε+T
ε

)−1/γ

γ − 1
− γε

γ − 1

)]
.

(2.3.24)
Similarly to (2.3.24),

ˆ T

0

ˆ
R3

%(U− u)⊗ v : ∇2
xΨdxdt =

ˆ T

0

ˆ
R3

%(v +∇xΨ− u)⊗ v : ∇2
xΨdxdt

≤ c(M)

[
ε (log (ε+ T )− log (ε)) +

(
ε− ε2

ε+ T

)
+

(
γ (ε+ T )

(
ε+T
ε

)−1/γ

γ − 1
− γε

γ − 1

)]
(2.3.25)

and

ˆ T

0

ˆ
R3

%(U− u) · ∇x |∇xΨ|2 dxdt =

ˆ T

0

ˆ
R3

%(v +∇xΨ− u) · ∇x |∇xΨ|2 dxdt

≤ c(M)

[(
ε− ε2

ε+ T

)
+

(
ε

2
− ε3

2 (ε+ T )
2

)
+

(
γ (ε+ T )

(
ε+ T

ε

)−1/γ

− εγ

)]
.

(2.3.26)
Using (2.0.6), for the �rst term of (2.3.23), we have

ˆ T

0

ˆ
R3

%(U− u) · (∂tv + v · ∇xv) dxdt

= −
ˆ T

0

ˆ
R3

%(U− u) · ∇xΠdxdt−
ˆ T

0

ˆ
R3

(U− u) · (ω × %v) dxdt
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=

ˆ T

0

ˆ
R3

%u·∇xΠdxdt−
ˆ T

0

ˆ
R3

%U·∇xΠdxdt−
ˆ T

0

ˆ
R3

(U−u)·(ω × %v) dxdt.

(2.3.27)
Regarding the �rst integral on the right hand side of (2.3.27), as a consequence
of the estimate (2.3.13), we have

%u→ w weakly-(*) in L∞
(

0, T ;L2γ/γ+1(R3;R3)
)
, (2.3.28)

where w denotes the weak limit of the composition. Now, taking the limit in
the weak formulation of the continuity equation

ε

ˆ T

0

ˆ
R3

(
%− 1

ε

)
∂tϕdxdt+

ˆ T

0

ˆ
R3

%u∇xϕdxdt = 0 (2.3.29)

for su�ciently smooth ϕ, thanks to the estimate (2.3.16) and (2.3.17), we deduce
that

ˆ T

0

ˆ
R3

w · ∇xϕdxdt = 0 (2.3.30)

when ε→ 0. We may infer that

ˆ T

0

ˆ
R3

%u · ∇xΠdxdt→
ˆ T

0

ˆ
R3

w · ∇xΠdxdt = 0. (2.3.31)

For the second integral on the right hand side of (2.3.27), we have∣∣∣∣∣
ˆ T

0

ˆ
R3

%U · ∇xΠdxdt

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ T

0

ˆ
R3

(%− 1) ·U · ∇xΠdxdt

∣∣∣∣∣
+

∣∣∣∣∣
ˆ T

0

ˆ
R3

U · ∇xΠdxdt

∣∣∣∣∣ . (2.3.32)

For the �rst integral on the right-hand side of (2.3.32), thanks to (2.1.8), the
estimate (2.2.6) and the uniform bounds (2.3.16) and (2.3.17), we have

ˆ T

0

ˆ
R3

(%− 1) ·U · ∇xΠdxdt

≤ cε
ˆ T

0

∥∥∥∥[%− 1

ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

· ‖v +∇xΨ‖L2(R3;R3) · ‖∇xΠ‖L∞(R3;R3) dt

≤ cε
ˆ T

0

∥∥∥∥[%− 1

ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

· ‖v‖L2(R3;R3) · ‖∇xΠ‖L∞(R3;R3) dt

+cε

ˆ T

0

∥∥∥∥[%− 1

ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

·‖∇xΨ‖L2(R3;R3)·‖∇xΠ‖L∞(R3;R3) dt ≤ c(M)ε

(2.3.33)
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and

ˆ T

0

ˆ
R3

(%− 1) ·U · ∇xΠdxdt

≤ c
ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥
Lγ(R3)

· ‖(v +∇xΨ) · ∇xΠ‖
L

γ
γ−1 (R3;R3)

dt

≤ c
ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥
Lγ(R3)

· ‖v · ∇xΠ‖
L

γ
γ−1 (R3;R3)

dt

+c

ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥
Lγ(R3)

· ‖∇xΨ · ∇xΠ‖
L

γ
γ−1 (R3;R3)

dt. (2.3.34)

Thanks to the following interpolation inequalities

‖∇xΨ · ∇xΠ‖
L

γ
γ−1 (R3;R3)

≤ ‖∇xΨ · ∇xΠ‖
γ−1
γ

L1(R3;R3) ‖∇xΨ · ∇xΠ‖1−
γ−1
γ

L∞(R3;R3)

≤ ‖∇xΨ‖
γ−1
γ

L2(R3;R3) ‖∇xΠ‖
γ−1
γ

L2(R3;R3) ‖∇xΨ · ∇xΠ‖1/γL∞(R3;R3)

≤ c(M) ‖∇xΨ · ∇xΠ‖1/γL∞(R3;R3) ≤ c(M) ‖∇xΨ‖1/γL∞(R3;R3) · ‖∇xΠ‖1/γL∞(R3;R3)

≤ c(M) ‖∇xΨ‖1/γL∞(R3;R3) , (2.3.35)

‖v · ∇xΠ‖
L

γ
γ−1 (R3;R3)

≤ ‖v · ∇xΠ‖
γ−1
γ

L1(R3;R3) ‖v · ∇xΠ‖1−
γ−1
γ

L∞(R3;R3)

≤ ‖v‖
γ−1
γ

L2(R3;R3) ‖∇xΠ‖
γ−1
γ

L2(R3;R3) ‖v · ∇xΠ‖1/γL∞(R3;R3)

≤ c ‖v · ∇xΠ‖1/γL∞(R3;R3) ≤ c ‖v‖
1/γ
L∞(R3;R3) · ‖∇xΠ‖1/γL∞(R3;R3) ≤ c, (2.3.36)

and the estimate (2.2.6), for the integral in (2.3.34) we have,

ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥
Lγ(R3)

· ‖v · ∇xΠ‖
L

γ
γ−1 (R3;R3)

dt

+

ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥
Lγ(R3)

· ‖∇xΨ · ∇xΠ‖
L

γ
γ−1 (R3;R3)

dt

≤ c(M)ε2/γ + c(M)ε2/γ

ˆ T

0

‖∇xΨ‖1/γL∞(R3;R3) dt

≤ c(M)ε2/γ + c(M)ε2/γ

(
γ (ε+ T )

(
ε+T
ε

)−1/γ

γ − 1
− γε

γ − 1

)
. (2.3.37)
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For the second integral on the right-hand side of (2.3.32), we have

ˆ T

0

ˆ
R3

U·∇xΠdxdt =

ˆ T

0

ˆ
R3

v·∇xΠdxdt+
ˆ T

0

ˆ
R3

∇xΨ·∇xΠdxdt. (2.3.38)

Performing integration by parts in the �rst term on the right-hand side of
(2.3.38), we have

ˆ T

0

ˆ
R3

divxv ·Πdxdt = 0

thanks to incompressibility condition divxv = 0. For the second term on the
right-hand side of (2.3.38) using integration by parts and the acoustic equation
(2.2.1), we have

ˆ T

0

ˆ
R3

∇xΨ · ∇xΠdxdt = −
ˆ T

0

ˆ
R3

4Ψ ·Πdxdt

= ε

ˆ T

0

ˆ
R3

∂ts ·Πdxdt

= ε

[ˆ
R3

s ·Πdx
]t=T
t=0

− ε
ˆ T

0

ˆ
R3

s · ∂tΠdxdt, (2.3.39)

that it goes to zero for ε→ 0. For the second term of (2.3.23), we have

ˆ T

0

ˆ
R3

%(U− u) · ∂t∇xΨdxdt

= −
ˆ T

0

ˆ
R3

%u · ∂t∇xΨdxdt+

ˆ T

0

ˆ
R3

%v · ∂t∇xΨdxdt

+
1

2

ˆ T

0

ˆ
R3

%∂t |∇xΨ|2 dxdt, (2.3.40)

where

ˆ T

0

ˆ
R3

%v · ∂t∇xΨdxdt

=

ˆ T

0

ˆ
R3

(%− 1) v · ∂t∇xΨdxdt+

ˆ T

0

ˆ
R3

v · ∂t∇xΨdxdt. (2.3.41)

We use the acoustic equation (2.2.1) to rewrite the �rst term above as follows

ˆ T

0

ˆ
R3

(%− 1) v · ∂t∇xΨdxdt

= −a
ˆ T

0

ˆ
R3

%− 1

ε
v · ∇xsdxdt, (2.3.42)

where, thanks to (2.1.8), (2.2.6), (2.3.16) and (2.3.17), we have
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ˆ T

0

ˆ
R3

%− 1

ε
v · ∇xsdxdt

≤
ˆ T

0

∥∥∥∥[%− 1

ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

‖v‖L2(R3;R3) ‖∇xs‖L∞(R3;R3) dt

≤ c(M)ε (log (ε+ T )− log (ε)) (2.3.43)

and

ˆ T

0

ˆ
R3

%− 1

ε
v · ∇xsdxdt

≤
ˆ T

0

∥∥∥∥[%− 1

ε

]
1{|%−1|≥1}

∥∥∥∥
Lγ(R3)

‖v‖
L

γ
γ−1 (R3;R3)

‖∇xs‖L∞(R3;R3) dt

≤ c(M)ε
2
γ (log(ε+ T )− log(ε)) , (2.3.44)

where we used the following interpolation inequality for v

‖v‖
L

γ
γ−1 (R3;R3)

≤ ‖v‖
γ−1
γ

L1(R3;R3) ‖v‖
1− γ−1

γ

L∞(R3;R3)

≤ ‖v‖
γ−1
γ

L2(R3;R3) ‖v‖
γ−1
γ

L2(R3;R3) ‖v‖
1/γ
L∞(R3;R3) ≤ c.

For the second term in (2.3.41), performing integration by parts, we have

ˆ T

0

ˆ
R3

divxv · ∂tΨdxdt = 0 (2.3.45)

thanks to incompressibility condition, divxv = 0. Regarding I2, we have

ˆ T

0

I2dt ≤
ε

2

ˆ T

0

ˆ
R3

(S(∇xU)− S(∇xu)) : (∇xU−∇xu)dxdt

+cε

ˆ T

0

ˆ
R3

|S(∇xU)|2 dxdt, (2.3.46)

where we used the Young inequality and the following Korn inequality

ˆ
R3

|∇xU−∇xu|2 dx ≤ c
ˆ
R3

(S(∇xU)− S(∇xu)) : (∇xU−∇xu) dx.

The �rst term on the right-hand side of (2.3.46) can be absorbed by the second
term on the left-hand side in the relation (2.3.2). For the second term on the
right-hand side of (2.3.46), in view of (2.1.8) and (2.2.5), we have

cε

ˆ T

0

ˆ
R3

|S(∇xU)|2 dxdt ≤ c(M)ε. (2.3.47)
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Regarding the terms I3 and I4 we deal with the following analysis. First, we
have

ˆ
R3

∇xH ′(r) · rUdx = −
ˆ
R3

p(r)divxUdx (2.3.48)

that it will cancel with its counterpart in I4. Next,

1

ε2

ˆ T

0

ˆ
R3

∇xH ′(r) · (%u) dxdt =
1

ε

ˆ T

0

ˆ
R3

H ′′(r)∇xs · (%u) dxdt

=

ˆ T

0

ˆ
R3

H ′′(1 + εs)−H ′′(1)

ε
∇xs · (%u) dxdt+

1

ε

ˆ T

0

ˆ
R3

p′(1)∇xs · (%u) dxdt.

(2.3.49)
Observing that

H ′′(1 + εs)−H ′′(1)

ε
= H ′′′(ξ)s, ξ ∈ (1, 1 + εs) ,

∣∣∣∣H ′′(1 + εs)−H ′′(1)

ε

∣∣∣∣ ≤ cs,
the �rst term on the right-hand side of (2.3.49) can be estimated in the following
way

ˆ T

0

ˆ
R3

H ′′(1 + εs)−H ′′(1)

ε
∇xs · (%u) dxdt

≤ c
ˆ T

0

‖s‖L∞ ‖∇xs‖
L

2γ
γ−1 (R3;R3)

‖%u‖
L

2γ
γ+1 (R3;R3)

dt

≤ c(M)

(
γ (ε+ T )

(
ε+ T

ε

)−1/γ

− εγ

)
. (2.3.50)

For the second integral on the right-hand side, using the acoustic equation
(2.2.1), we get

1

ε

ˆ T

0

ˆ
R3

p′(1)∇xs · (%u)dxdt

= −
ˆ T

0

ˆ
R3

(%u) · ∂t∇xΨdxdt (2.3.51)

that it will cancel with its counterpart in (2.3.40). Now, we write

1

ε2

ˆ T

0

ˆ
R3

[(r − %) ∂tH
′(r)− p(%)divxU] dxdt

=
1

ε

ˆ T

0

ˆ
R3

(r − %)H ′′(r)∂tsdxdt
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− 1

ε2

ˆ T

0

ˆ
R3

p(%)4Ψdxdt

=

ˆ T

0

ˆ
R3

(1− %)

ε
H ′′(r)∂tsdxdt+

ˆ T

0

ˆ
R3

sH ′′(r)∂tsdxdt

− 1

ε2

ˆ T

0

ˆ
R3

p(%)4Ψdxdt. (2.3.52)

The last term on the right-hand side can be split as follows

− 1

ε2

ˆ T

0

ˆ
R3

p(%)4Ψdxdt

= − 1

ε2

ˆ T

0

ˆ
R3

[p(%)− p(1)]4Ψdxdt

− 1

ε2

ˆ T

0

ˆ
R3

p(1)4Ψdxdt. (2.3.53)

Using integration by parts, we have

− 1

ε2

ˆ T

0

ˆ
R3

∇xp(1)∇xΨdxdt = 0. (2.3.54)

Now, we have

− 1

ε2

ˆ T

0

ˆ
R3

[p(%)− p(1)]4Ψdxdt

= −
ˆ T

0

ˆ
R3

[p(%)− p′(1)(%− 1)− p(1)]

ε2
4Ψdxdt

−
ˆ T

0

ˆ
R3

p′(1)(%− 1)

ε2
4Ψdxdt. (2.3.55)

Then, the following estimates hold

∣∣∣∣∣
ˆ T

0

ˆ
R3

[p(%)− p′(1)(%− 1)− p(1)]

ε2
4Ψdxdt

∣∣∣∣∣ ≤ c
ˆ T

0

E ‖4Ψ‖L∞(R3;R3) dt.

(2.3.56)
Now, we have

1

2

ˆ T

0

ˆ
R3

%∂t |∇xΨ|2 dxdt

=
1

2

ˆ T

0

ˆ
R3

(%− 1) ∂t |∇xΨ|2 dxdt+
1

2

ˆ T

0

ˆ
R3

∂t |∇xΨ|2 dxdt

=
1

2

ˆ T

0

ˆ
R3

(%− 1) ∂t |∇xΨ|2 dxdt+

[
1

2

ˆ
R3

|∇xΨ|2 dx
]t=T
t=0

, (2.3.57)

47



where, using (2.2.1) in the �rst term on the right-hand side, we have

ε

2

ˆ T

0

ˆ
R3

(%− 1)

ε
∂t |∇xΨ|2 dxdt = a

ˆ T

0

ˆ
R3

(%− 1)

ε
∇xΨ · ∇xsdxdt. (2.3.58)

Now, using (2.2.6), (2.3.16) and (2.3.17) in (2.3.58), we have

ˆ T

0

ˆ
R3

(%− 1)

ε
∇xΨ · ∇xsdxdt

≤
ˆ T

0

∥∥∥∥[ (%− 1)

ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

‖∇xΨ‖L2(R3) ‖∇xs‖L∞(R3) dt

≤ c(M)ε (log(ε+ T )− log(ε)) (2.3.59)

and

ˆ T

0

ˆ
R3

(%− 1)

ε
∇xΨ · ∇xsdxdt

≤
ˆ T

0

∥∥∥∥[ (%− 1)

ε

]
1{|%−1|≥1}

∥∥∥∥
Lγ(R3)

‖∇xΨ‖
L

γ
γ−1 (R3)

‖∇xs‖L∞(R3) dt

≤ c(M)ε2/γ

(
γ

(
ε+ T

ε

)−1/γ

− γ

)
, (2.3.60)

where we have used the following interpolation inequality for ∇xΨ

‖∇xΨ‖
L

γ
γ−1 (R3;R3)

≤ ‖∇xΨ‖
γ−1
γ

L1(R3;R3) ‖∇xΨ‖1−
γ−1
γ

L∞(R3;R3)

≤ ‖∇xΨ‖
γ−1
γ

L2(R3;R3) ‖∇xΨ‖
γ−1
γ

L2(R3;R3) ‖∇xΨ‖1/γL∞(R3;R3) ≤ c(M) ‖∇xΨ‖1/γL∞(R3;R3) .

Now, collecting the remained terms, we write

ˆ T

0

ˆ
R3

(1− %)

ε
H ′′(r)∂tsdxdt+

ˆ T

0

ˆ
R3

sH ′′(r)∂tsdxdt

−
ˆ T

0

ˆ
R3

p′(1)(%− 1)

ε2
4Ψdxdt. (2.3.61)

For the �rst integrals in (2.3.61), it is possible to show (see Feireisl, Ne£asová
and Sun [47]) that ∣∣∣∣∣

ˆ T

0

ˆ
R3

(1− %)

ε
H ′′(r)∂tsdxdt

∣∣∣∣∣
≤
ˆ T

0

ˆ
R3

(%− 1)

ε2
p′(1)4Ψdxdt+ c(M)

ˆ T

0

E ‖4Ψ‖L∞(R3;R3) dt, (2.3.62)
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where the �rst term on the right hand side of the inequality it will cancel with
its counterpart in (2.3.61). While, for the second integral in (2.3.61), we have

∣∣∣∣∣
ˆ T

0

ˆ
R3

sH ′′(r)∂tsdxdt

∣∣∣∣∣ ≤ p′(1)

[
1

2

ˆ
R3

s2dx
]t=T
t=0

+c(M)

ˆ T

0

E ‖4Ψ‖L∞(R3;R3) dt.

(2.3.63)
From (2.3.56), (2.3.62), (2.3.63) we need to estimate the following term

ˆ T

0

E ‖4Ψ‖L∞(R3;R3) dt ≤ c(M)

ˆ T

0

Edt. (2.3.64)

Finally, regarding I5, we have

ˆ T

0

ˆ
R3

(%u× ω) · (v − u) dxdt−
ˆ T

0

ˆ
R3

(%v × ω) · (v − u)dxdt

=

ˆ T

0

ˆ
R3

(%u× ω) · vdxdt+

ˆ T

0

ˆ
R3

(%v × ω) · udxdt

=

ˆ T

0

ˆ
R3

(%u× ω) · vdxdt−
ˆ T

0

ˆ
R3

(%u× ω) · vdxdt = 0 (2.3.65)

and, thanks to (2.1.8), (2.2.6), (2.3.9) and (2.3.13), we have

ˆ T

0

ˆ
R3

(%u× ω) · ∇xΨdxdt

≤
ˆ T

0

‖%u‖
L

2γ
γ+1 (R3;R3)

‖∇xΨ‖
L

2γ
γ−1 (R3;R3)

dt

≤ c(M)

(
γ (ε+ T )

(
ε+T
ε

)−1/γ

γ − 1
− γε

γ − 1

)
(2.3.66)

and

ˆ T

0

ˆ
R3

(%v × ω) · ∇xΨdxdt

≤
ˆ T

0

‖%‖Lγ(R3) ‖v‖
γ
γ−1

L∞(R3;R3) ‖∇xΨ‖L∞(R3;R3) dt

≤ c(M)ε (log(ε+ T )− log(ε)) . (2.3.67)

Combining the previous estimates and letting ε→ 0 we can rewrite (2.3.2) as

[E(%,u | r,U)](T ) ≤ [E(%,u | r,U)](0) + c(M)

ˆ T

0

Edt (2.3.68)

In virtue of the integral form of the Gronwall inequality, we have
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[E(%,u | r,U)](T ) ≤ ([E(%,u | r,U)](0))
(

1 + c(M)Tec(M)T
)

for t ∈ [0, T ] ,

(2.3.69)
where the quantity

(
1 + c(M)Tec(M)T

)
is bounded for �xed t ∈ [0, T ]. Theorem

14 is proved and, consequently, Corollary 16.

2.4 Conclusions

The problem we faced above has focused on the inviscid incompressible limit
for a compressible barotropic �uid in a "fast" rotating frame. The problem was
analyzed in the whole space R3. However, a possible extension for a �uid in a
bounded domain can give light to the interesting analysis of the formation of the
boundary layers. Moreover, it is not excluded that the "fast" rotating frame can
develop a particular phenomenology in the �uid that can be of some interest,
from the mathematical view point, in the analysis of other kind of models in
bounded domains or in the whole space.
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Chapter 3

Dimension reduction for
compressible heat conducting
�uids

We consider the scaled compressible Navier-Stokes-Fourier-Poisson system de-
scribing the motion of an heat conducting �uid in a rotating frame con�ned in
a straight layer Ωε = ω× (0, ε) where ω is a two-dimensional domain and in the
presence of the gravity force already mentioned in Introduction. The continuity
equation reads

∂t%+ divε (%u) = 0, (3.0.1)

the momentum equation is

∂t (%u) + divε (%u⊗ u) + %u× χ+∇εp(%, ϑ)

= divεS (ϑ,∇εu) + ε−2β%∇εφ+ %∇ε |x× χ|2 , (3.0.2)

with the stress tensor given by the following relation

S (ϑ,∇εu) = µ (ϑ)

(
∇εu +∇tεu−

2

3
divεuI

)
+ η (ϑ)divεuI. (3.0.3)

The entropy equation is

∂t (%s (%, ϑ)) + divε (%s (%, ϑ) u) + divε

(
q (ϑ,∇εϑ)

ϑ

)

=
1

ϑ

(
S (ϑ,∇εu) : ∇εu−

q (ϑ,∇εϑ) · ∇εϑ
ϑ

)
, (3.0.4)

with

q = −κ (ϑ)∇εϑ. (3.0.5)

The gravitational force is given by the following relation
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∇εφ (t, x) = ε

ˆ
Ωε

α%(t, ξ)
(x1 − ξ1, x2 − ξ2, ε (x3 − ξ3))(
|xh − ξh|2 + ε2 |x3 − ξ3|2

)3/2
dξ

+

ˆ
R3

(1− α) g(y)
(x1 − y1, x2 − y2, ε (x3 − y3))(
|xh − yh|2 + ε2 |x3 − y3|2

)3/2
dy

= εαΦ1 + (1− α) Φ2. (3.0.6)

The system (3.0.1) - (3.0.4) is completed with the initial conditions

% (x, 0) = %0 (x) , u (x, 0) = u0 (x) , ϑ (x, 0) = ϑ0 (x) , x ∈ Ω (3.0.7)

and the boundary conditions

u|∂ω×(0,1) = 0, (3.0.8)

u · n|ω×{0,1} = 0, [S · n]× n|ω×{0,1} = 0, (3.0.9)

∇ϑ · n|ω×{0,1} = 0. (3.0.10)

q · n|∂Ω = 0. (3.0.11)

Remark 17. The �rst condition in (3.0.9) can be written as

u3 = 0 on ω × {0, 1} .

Remark 18. We consider the no-slip boundary condition holds on the boundary
ω × (0, 1) (on the lateral part of the domain) and the slip boundary condition
on the other parts of the boundary ω × {0, 1} (the top and the bottom part of
the layer).

Remark 19. We would like to emphasize that we imposed a slip condition on
the boundary ω×{0, ε} in order to avoid di�culties in passing to the dimension
reduction limit.

As already mentioned in the Introduction, we will consider two cases: β =
1/2 and β = 0. In the �rst case we will take α = 1, assuming only the self-
gravitation. In the second case, we will take α = 0, assuming only the gravita-
tional force due to external e�ects.

We want to show that the weak solution of the Navier-Stokes-Fourier-Poisson
system converges to the classical solution of the corresponding two-dimensional
system in which the continuity equation reads

∂tr + divh (rw) = 0, (3.0.12)

the momentum equation is

r∂tw + rw · ∇hw +∇hp(r,Θ) + r (w × χ)

52



= divhS(Θ,∇hw) + r∇hφh + r∇h |x× χ|2 , (3.0.13)

with the stress tensor given by the following relation

Sh (Θ,∇hw) = µ
(
∇hw +∇thw − divhw

)
+
(
η +

µ

3

)
divhwIh. (3.0.14)

where Ih is the unit tensor in R2×2 in the domain (0, T ) × ω. The entropy
equation is

r∂ts+ rw · ∇hs+ divh

(
qh(Θ,∇hΘ)

Θ

)

=
1

Θ

(
Sh (Θ,∇hw) : ∇hw −

qh(Θ,∇hΘ) · ∇hΘ

Θ

)
, (3.0.15)

with

qh(Θ,∇hΘ) = −κ (Θ)∇hΘ. (3.0.16)

Above,

φh(t, xh) = G

ˆ
ω

r(t, yh)

|xh − yh|
dyh for α = 1 (3.0.17)

and

φh(t, xh) = G

ˆ
R3

g(y)√
|xh − yh|2 + y2

3

dy for α = 0. (3.0.18)

Moreover, qh · n|∂ω×(0,T ) = 0 and w|∂ω×(0,T ) = 0.

3.1 Thermodynamics

The physical properties of heat conduction �ows are re�ected through various
relations which are expressed as typically non-linear functions relating the pres-
sure p (%, ϑ), the internal energy e(%, ϑ), the entropy s (%, ϑ) to the macroscopic
variables %, u and ϑ. The following discussion is based on the general existence
theory for the Navier-Stokes-Fourier system developed in [41].

According with the fundamental principles of thermodynamics, the internal
energy e is related to the pressure p and the entropy s through Gibbs' relation

ϑDs = De+ pD

(
1

%

)
, (3.1.1)

where D denotes the di�erential with respect to the state variables %, ϑ. We
consider the pressure p and the internal energy e in the form

p (%, ϑ) = p1 (%, ϑ) +
a

3
ϑ4, (3.1.2)

e (%, ϑ) = e1 (%, ϑ) +
a

3

ϑ4

%
(3.1.3)

where
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p1 (%, ϑ) = (γ − 1) %e (%, ϑ) (3.1.4)

with γ > 1. The component a
3ϑ

4 represents the e�ect of "equilibrium" radi-
ation pressure (see [28] for the motivations). Gibbs' equation (3.1.1) can be
equivalently written in the form of Maxwell's relation as follows

∂e (%, ϑ)

∂%
=

1

%2

(
p (%, ϑ)− ϑ∂p (%, ϑ)

∂ϑ

)
. (3.1.5)

It follows, under some regularity assumptions on the functions p1 and e1,
that

p1 (%, ϑ) = ϑ
γ
γ−1P

(
%

ϑ
1

γ−1

)
(3.1.6)

where P : [0,∞)→ [0,∞) is a given function with the following properties

P ∈ C1 ([0,∞)) ∩ C2 ((0,∞)) , P (0) = 0, P ′ (Z) > 0 for all Z ≥ 0,
(3.1.7)

0 <
γP (Z)− P ′ (Z)Z

Z
≤ c <∞ for all Z > 0, lim

Z→∞

P (Z)

Zγ
= p∞ > 0.

(3.1.8)
Condition (3.1.8) re�ects the fact that the speci�c heat at constant volume
is strictly positive and uniformly bounded. Recalling the Maxwell's relation
(3.1.5), for the internal energy we have

e1 (%, ϑ) =
1

γ − 1

ϑ
γ
γ−1

%
P

(
%

ϑ
1

γ−1

)
. (3.1.9)

Due to the form of the pressure and the internal energy, the entropy is given by

s (%, ϑ) = s1 (%, ϑ) +
4

3
a
ϑ3

%
, (3.1.10)

with

s1 (%, ϑ) = M

(
%

ϑ
1

γ−1

)
, M ′ (Z) = − 1

γ − 1

γP (Z)− P ′ (Z)Z

Z2
< 0,

lim
Z→∞

M (Z) = 0. (3.1.11)

Note, that it is possible to show that

s1 (%, ϑ) ≤ c (1 + |ln %|) (3.1.12)

in the set % ∈ (0,∞), ϑ ∈ (0, 1), and

s1 (%, ϑ) ≤ c (1 + |ln %|+ lnϑ) (3.1.13)

in the set % ∈ (0,∞), ϑ ∈ (1,∞).
The coe�cients µ, η and κ are continuously di�erentiable functions of the

temperature, such that
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0 < c1 (1 + ϑ) ≤ µ (ϑ) , µ′ (ϑ) < c2, 0 ≤ η (ϑ) ≤ c3 (1 + ϑ) , (3.1.14)

0 < c4
(
1 + ϑ3

)
≤ κ (ϑ) ≤ c5

(
1 + ϑ3

)
(3.1.15)

for any ϑ > 0. For the sake of the simplicity, we consider the particular case

µ (ϑ) = µ0 + µ1ϑ, µ0, µ1 > 0, η ≡ 0 (3.1.16)

and
κ (ϑ) = κ0 + κ2ϑ

2 + κ3ϑ
3, κi > 0, i = 0, 2, 3. (3.1.17)

3.2 Weak and classical solutions

In the following, we introduce the de�nition of weak solutions for the compress-
ible Navier-Stokes-Fourier-Poisson system (3.0.1) - (3.0.4) and we discuss the
global in time existence. Then, we discuss the global existence of the classical
solution of the two-dimensional heat conducting system (3.0.12) - (3.0.18).

3.2.1 Weak solutions

To present the weak formulation, we consider the functional space

W 1,2
0,n

(
Ω;R3

)
=
{

u ∈W 1,2
(
Ω;R3

)
; u · n|ω×{0,1} = 0, u|∂ω×(0,1) = 0

}
.

De�nition 20. (Weak solution) We say that [%,u, ϑ] is a weak solution of the
system (3.0.1) - (3.0.4) if

% ≥ 0, ϑ > 0, a.e. in (0, T )× Ω,

% ∈ Cweak ((0, T ) , Lγ (Ω)) , %u ∈ Cweak
(

(0, T ) , L
2γ
γ+1

(
Ω;R3

))
,

u ∈ L2
(

(0, T ) ,W 1,2
0,n

(
Ω;R3

))
,

ϑ ∈ L∞
(
(0, T ) , L4 (Ω)

)
∩ L2

(
(0, T ) ,W 1,2 (Ω)

)
,

and if [%,u, ϑ] satisfy the following integral identities:

ˆ T

0

ˆ
Ω

(%+ b (%)) ∂tϕ+ (%+ b (%)) u · ∇εϕ+ (b (%)− b′ (%) %) divεuϕ dxdt

= −
ˆ

Ω

(%0 + b (%0))ϕ (0, ·) dx (3.2.1)

for any ϕ ∈ C∞c
(
[0, T )× Ω

)
and b ∈ C∞ ([0,∞)) , b′ ∈ C∞c ([0,∞)), where

(3.2.1) includes as well the initial condition % (x, 0) = %0 (x);
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ˆ T

0

ˆ
Ω

%u · ∂tϕ+ (%u⊗ u) : ∇εϕ+ (%u× χ) ·ϕ+ p (%, ϑ)divεϕ dxdt

−
ˆ T

0

ˆ
Ω

S (ϑ,∇εu) : ∇εϕ− ε−2β%∇εφ ·ϕ− %∇ε |x× χ|2 ·ϕ dxdt

= −
ˆ

Ω

%0u0 ·ϕ (0, ·) dx (3.2.2)

for any ϕ ∈ C∞c
(
[0, T )× Ω;R3

)
, ϕ|[0,T ]×∂ω×(0,1) = 0, ϕ3|[0,T ]×∂ω×{0,1} = 0,

where (3.2.2) includes as well the initial condition %u (x, 0) = %0u0 (x);

ˆ T

0

ˆ
Ω

%s (%, ϑ) ∂tϕ+ %s (%, ϑ) u · ∇εϕ+
q (ϑ,∇εϑ)

ϑ
· ∇εϕ dxdt

≤ −
ˆ

Ω

%0s (%0, ϑ0)ϕ (0, ·) dx

−
ˆ T

0

ˆ
Ω

1

ϑ

(
S (ϑ,∇εu) : ∇εu−

q (ϑ,∇εϑ) · ∇εϑ
ϑ

)
ϕ dxdt (3.2.3)

for any ϕ ∈ C∞c
(
[0, T )× Ω

)
, ϕ ≥ 0; together with the total energy balance

ˆ
Ω

(
1

2
% |u|2 + %e(%, ϑ)

)
(t, ·) dx

=

ˆ
Ω

(
1

2%0
|%0u0|2 + %0e(%0, ϑ0)

)
dx+

ˆ T

0

ˆ
Ω

%Φj · u + %∇ε |x× χ|2 · u dxdt

(3.2.4)
with j = 1, 2, and the integral representation of the gravitational force (3.0.6).

Remark 21. In the weak formulation above, we replace the weak formulation of
the continuity equation (3.0.1) with its (weak) renormalized version in the sense
of DiPerna and Lions [23].

Remark 22. The concept of weak solution to the Navier-Stokes-Fourier system
based on the Second Law of thermodynamic presented above was introduce in
[27]. In order to compensate the lack of information resulting from the entropy
inequality, the system is supplemented by the total energy balance. Under these
circumstances, it can be show (see [41]) that any weak solution of (3.0.1) - (3.0.4)
that is su�ciently smooth satis�es the entropy equality (3.0.4).

Remark 23. Concerning the weak formulation introduced above, there are at
least two alternative ways by which to replace the entropy balance (3.0.4),
namely the total energy balance

∂t

(
1

2
% |u|2 + %e (%, ϑ)

)
+divε

[(
1

2
% |u|2 + %e (%, ϑ) + p (%, ϑ)

)
u

]
+divεq (ϑ,∇εϑ)
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= divε [S (ϑ,∇εu) u] (3.2.5)

or by the internal energy balance

∂t (%e (%, ϑ)) + divε (%e (%, ϑ) u) + divεq (ϑ,∇εϑ)

= S (ϑ,∇εu) : ∇εu− divεp (%, ϑ) u. (3.2.6)

Although relations (3.2.5) and (3.2.6) are equivalent to (3.0.4) for classical so-
lutions, this is, in general, not the case in the framework of weak solutions.
Moreover, as mentioned in [43], it is precisely the entropy balance (3.0.4) that
gives rise, in combination with the total energy balance, to the relative energy
inequality yielding the weak-strong uniqueness property and the convergence we
are asking for.

It should also be noted that the term S (ϑ,∇εu) u in the total energy balance
(3.2.5) is not controlled on the (hypothetical) vacuum zones of vanishing density.
Replacing (3.2.5) by the internal energy equation (3.2.6), dividing (3.2.6) on
1/ϑ and using Maxwell's relation (3.1.5), we may rewrite (3.2.6) as the entropy
equation (3.0.4) we already introduced in the beginning of the chapter.

The next Theorem concerns with the global-in-time existence of weak solu-
tions for the Navier-Stokes-Fourier-Poisson system (3.0.1) - (3.0.4).

Theorem 24. Let E0 and S0 be non-negative constants. Suppose the ther-
modynamic functions p, e, s satisfy relations (3.1.2) - (3.1.11), the transport
coe�cients µ, η, κ comply with (3.1.16) - (3.1.17). Let γ > 3/2 if α = 0 or
γ > 12/7 if α = 1. Let g be such that g ∈ Lp

(
R3
)
for p = 1 if γ > 6 and

p = 6γ/ (7γ − 6) for 3/2 < γ ≤ 6. Suppose the initial data satisfy

ˆ
Ω

(
1

2
% |u|2 + %e(%, ϑ)

)
(0, ·) dx ≡

ˆ
Ω

(
1

2%0
|%0u0|2 + %0e(%0, ϑ0)

)
dx ≤ E0,

ˆ
Ω

%s(%, ϑ) (0, ·) dx ≡
ˆ

Ω

%0s(%0, ϑ0)dx ≥ S0. (3.2.7)

Then, the system (3.0.1) - (3.0.4) with boundary conditions (3.0.8) - (3.0.10)
admits at least one weak solution in the sense of De�nition 20.

Proof. The existence of weak solutions to the above problem can be deduced
from the works of Feireisl et al. [29], [35], [40] and [45]. In fact, we �x ε > 0, we
construct a weak solution in Ωε and then we rescale the solution.

3.2.2 Classical solutions

The next Theorem concerns with the existence of classical solution for the two-
dimensional heat conducting system (3.0.12) - (3.0.18). From classical results of
Matsumura and Nishida [76], we know that the target system admits a unique
global strong solution provided the initial data are close to a stationary solution.
Another possible result is the existence of local-in-time smooth solution (see for
example Tani [106]). More precisely
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Theorem 25. Let E be a given positive constant. Suppose that p ∈ C2
(

(0,∞)
2
)
,

µ, η, κ ∈ C1 (0,∞) and that

r0 ∈W 2,2 (ω) , inf
ω
r0 > 0, w0 ∈W 3,2

(
ω;R2

)
∩W 1,2

0

(
ω;R2

)
,

Θ0 ∈W 3,2 (ω) , inf
ω

Θ0 > 0. (3.2.8)

Moreover, assume that the following condition holds

1

r0

(
∇hp (r0,Θ0) + r0 (w0 × χ)− divhS(Θ0,∇hw0)− r0∇hφh − r0∇h |x× χ|2

)∣∣∣∣
∂ω

= 0.

(3.2.9)
Then:

1) (Local solution) There exists a positive parameter T∗, such that [r,w,Θ] is
the unique classical solution to the problem (3.0.12) - (3.0.18) with the boundary
conditions

w|∂ω = 0, (3.2.10)

∂Θ

∂n

∣∣∣∣
∂ω

= 0 (3.2.11)

and the initial conditions [r0,w0,Θ0] in (0, T )× ω for any T < T∗ such that

r ∈ C
(
[0, T ] ;W 3,2 (ω)

)
∩ C1

(
[0, T ] ;W 2,2 (ω)

)
, (3.2.12)

w ∈ C
(
[0, T ] ;W 3,2

(
ω;R2

))
∩ C1

(
[0, T ] ;W 1,2

(
ω;R2

))
, (3.2.13)

Θ ∈ C
(
[0, T ] ;W 3,2 (ω)

)
∩ C1

(
[0, T ] ;W 1,2 (ω)

)
. (3.2.14)

2) (Global solution) Let [r0,w0,Θ0] and χ be such that for a su�ciently
small ε > 0 ∥∥r0 − r,w0,Θ0 −Θ

∥∥
3,2

+ |χ| ≤ ε, (3.2.15)

where
[
r,0,Θ

]
is a stationary solution to (3.0.12) - (3.0.18) with the boundary

condition

∂Θ

∂n

∣∣∣∣
∂ω

= 0. (3.2.16)

Then, for any T∗ < +∞ there exists a global unique strong solution to to (3.0.12)
- (3.0.18) with the boundary condition (3.2.10) - (3.2.11) and the initial condi-
tions [r0,w0,Θ0] in the class (3.2.12) - (3.2.14).

Proof. It follows from [76, Theorem 1.1] and [106] with slight modi�cations due
to the rotation and the self-gravitation.
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3.3 Convergence analysis

For the purpose of the convergence analysis, we introduce the relative energy
functional and the relative energy inequality associated to the system (3.0.1) -
(3.0.4) already mentioned in the Introduction.

3.3.1 Relative energy inequality

The relative energy functional associated to the Navier-Stokes-Fourier-Poisson
system (3.0.1) - (3.0.4) is given by the following relation

I(%,u, ϑ | r̃, w̃, Θ̃) =

ˆ
Ω

(
1

2
% |u− w̃|2 + E(%, ϑ | r̃, Θ̃)

)
(t, ·)dx (3.3.1)

where for the Helmholtz potential

HΘ̃(%, ϑ) = %e(%, ϑ)− Θ̃%s(%, ϑ) (3.3.2)

we have

E(%, ϑ | r̃, Θ̃) = HΘ̃(%, ϑ)− ∂%HΘ̃(r̃, Θ̃)(%− r̃)−HΘ̃(r̃, Θ̃). (3.3.3)

While, the relative energy inequality reads as follows[
I(%,u, ϑ | r̃, w̃, Θ̃)

]t=T
t=0

+

ˆ T

0

ˆ
Ω

Θ̃

ϑ

(
S(ϑ,∇εu) : ∇εu−

q(ϑ,∇εϑ) · ∇εϑ
ϑ

)
dxdt

≤
ˆ T

0

R(%,u, ϑ, r̃, w̃, Θ̃)dt (3.3.4)

where the reminder R is expressed as follows

R(%,u, ϑ, r̃, w̃, Θ̃)

=

ˆ
Ω

% (u− w̃) · ∇εw̃ · (w̃ − u) dx

+

ˆ
Ω

%
(
s(%, ϑ)− s(r̃, Θ̃)

)
· (w̃ − u) · ∇εΘ̃dx

+

ˆ
Ω

% (∂tw̃ + w̃ · ∇εw̃) · (w̃ − u)dx

−
ˆ

Ω

%
(
s(%, ϑ)− s(r̃, Θ̃)

)
∂tΘ̃dx

−
ˆ

Ω

%
(
s(%, ϑ)− s(r̃, Θ̃)

)
w̃ · ∇εΘ̃dx

+

ˆ
Ω

((
1− %

r̃

)
∂tp(r̃, Θ̃)− %

r̃
u · ∇εp(r̃, Θ̃)

)
dx
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+

ˆ
Ω

% (χ× u) · (w̃ − u)− %∇ε |χ× x|2 · (w̃ − u) dx

−
ˆ

Ω

(
ε−2β%∇εφ · (w̃ − u) +

q(ϑ,∇εϑ) · ∇εΘ̃
ϑ

)
dx

−
ˆ

Ω

p(%, ϑ)divεw̃ + S(ϑ,∇εu) : ∇εw̃dx := I1 + ...+ I11. (3.3.5)

Here, r̃, w̃ and Θ̃ are su�ciently smooth functions. Moreover, r̃ and Θ̃ are
bounded below away from zero in [0, T ]×Ω, w̃|∂ω×(0,1) = 0 and w̃3|ω×{0,1} = 0.

The particular choice of r̃, w̃ and Θ̃ will be clari�ed later.

Remark 26. Any weak solution of the Navier-Stokes-Fourier-Poisson system
(3.0.1) - (3.0.4) satis�es the relative energy inequality (3.3.4).

3.3.2 Main results

Our main result reads

Theorem 27. Suppose that the thermodynamic functions p, e and s satisfy the
hypothesis (3.1.2) - (3.1.11), the transport coe�cients µ, λ and κ comply with
(3.1.15) and (3.1.16) and the stress tensor is given by (1.1.25). Let [r0,w0,Θ0]
satisfy assumptions of Theorem 25 and let T∗ > 0 be the time interval of exis-
tence of the strong solution to problem (3.0.12) - (3.0.14).

Let
• either Fr = 1, β = 0, α = 0, γ > 3/2 and g ∈ Lp

(
R3
)
with p = 1 for

γ > 6 and p = 6γ/ (7γ − 6) for γ ∈ (3/2, 6], and

ˆ
R3

g(y)y3(√
|xh − yh|2 + y2

3

)3 dx = 0 (3.3.6)

for all xh ∈ ω.
• or Fr =

√
ε β = 1/2, α = 1 and γ ≥ 12/5.

Let [%,u, ϑ] be a sequence of weak solutions to the three-dimensional com-
pressible Navier-Stokes-Fourier-Poisson system (3.0.12) - (3.0.14) with (3.0.6),
emanating from initial data [%0,u0, ϑ0].

Suppose that
[I(%0,u0, ϑ0 | r0,w0,Θ0)]→ 0. (3.3.7)

Then,

[I(%,u, ϑ | r,w,Θ)] (t)→ 0, when ε→ 0 for t ∈ [0, T ] , (3.3.8)

u→ w strongly in L2
(
0, T ;W 1,2

(
Ω;R3

))
, (3.3.9)

ϑ→ Θ strongly in L2
(
0, T ;W 1,2 (Ω)

)
, (3.3.10)

log ϑ→ log Θ strongly in L2
(
0, T ;W 1,2 (Ω)

)
, (3.3.11)

where the triple [r,w,Θ] satis�es the two-dimensional Navier-Stokes-Fourier-
Poisson system (3.0.12) - (3.0.14) with the boundary conditions (3.0.8) and
(3.0.10) on the time interval [0, T ] for any 0 < T < T∗
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Remark 28. For β = 0 we may also include the self-gravitation of the �uid.
However, passing with ε → 0, this term tends to zero. Therefore we do not
consider here as it would lead to an additional restriction to γ.

Remark 29. Condition (3.3.6) is the necessary condition for the validity of the
two-dimensional system, as it means that the gravitational force in the x3-
direction in ω is zero.

Remark 30. From (3.3.8) it follows

%→ r in Cweak ([0, T ] ;Lγ (Ω)) , %→ r a.a. in (0, T )× Ω.

Remark 31. For α = 1 and β = 1/2, we assume more stronger assumptions then
in Theorem 24 since we need a priori estimates independent of ε.

As a consequence, we have the following Corollary.

Corollary 32. Suppose that the thermodynamics functions p, e and s satisfy hy-
pothesis (3.1.2) - (3.1.11), that the coe�cients µ, λ and κ comply with (3.1.16)
and (3.1.17) and the stress tensor is given by (1.1.25).

Assume that [%0,u0, ϑ0], %0 ≥ 0, ϑ0 ≥ 0 satisfy

ˆ 1

0

%0 (x) dx3 → r0 weakly in L1 (ω) ,

ˆ 1

0

%0u0 (x) dx3 → w0 weakly in L1
(
ω;R2

)
,

ˆ 1

0

Θ0 (x) dx3 → Θ0 weakly in L1 (ω) ,

where [r0,w0,Θ0] belong to the regularity class (3.2.8), and

ˆ
Ω

(
1

2
%0 |u0|2 + %0e (%0, ϑ0)

)
dx→

ˆ
ω

(
1

2
r0 |w0|2 + r0e (r0,Θ0)

)
dxh.

Let [%,u, ϑ] be a sequence of weak solution to the three-dimensional compress-
ible Navier-Stokes-Fourier-Poisson system (3.0.1) - (3.0.7) emanating from the
initial data [%0,u0, ϑ0]. Then (3.3.8) - (3.3.11) holds.

3.3.3 Convergence

The following discussion is devoted to the proof of Theorem 27. Here and
hereafter, the symbol C will denote a positive generic constant, independent by
ε, usually found in inequalities, that will not have the same value when used in
di�erent parts in the analysis.

We start with the a priori bounds. It is easy to verify that

S (ϑ,∇εv) : ∇εv =

(
η (ϑ)− 2

3
µ (ϑ)

)
|divεv|2 + µ (ϑ)

(
|∇εv|2 +∇εv : ∇tεv

)
(3.3.12)

for any v ∈W 1,2
(
Ω;R3

)
. As for any v ∈W 1,2

0,n

(
Ω;R3

)
,

ˆ
Ω

∇εv : ∇tεvdx =

ˆ
Ω

(divεv)
2 dx
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we have ˆ
Ω

S (ϑ,∇εv) : ∇εvdx ≥ C ‖v‖2W 1,2(Ω;R3) , (3.3.13)

ˆ
Ω

1

ϑ
S (ϑ,∇εv) : ∇εvdx ≥ C ‖v‖2W 1,2(Ω;R3) , (3.3.14)

provided µ ful�lls (3.1.16), η ≡ 0, ε ≤ 1 and ϑ > 0 in (0, T )× Ω. Moreover, we
have ˆ

Ω

Sh (Θ,∇hw) : ∇hwdx ≥ C ‖w‖2W 1,2(ω;R2) , (3.3.15)

ˆ
Ω

1

Θ
Sh (Θ,∇hw) : ∇hwdx ≥ C ‖w‖2W 1,2(ω;R2) , (3.3.16)

and the Poincaré inequality in the form

‖w‖L2(ω;R2) ≤ C ‖∇hw‖L2(ω;R2×2) (3.3.17)

for any w ∈W 1,2
0

(
ω;R2

)
and Θ > 0 in (0, T )× ω.

Due to the energy equality (3.2.4) combined with the entropy inequality
(3.2.3) and the inequality (3.3.14), we have the following estimates for [%,u, ϑ]

‖%‖L∞(0,T ;Lγ(Ω)) + ‖√%u‖L∞(0,T ;L2(Ω;R3)) + ‖u‖L2(0,T ;W 1,2(Ω;R3))

+ ‖ϑ‖L2(0,T ;L2(Ω;R3)) + ‖ϑ‖L∞(0,T ;L4(Ω)) + ‖ϑ‖L3(0,T ;L9(Ω)) ≤ C (3.3.18)

with the constant C independent by ε. These estimates hold if γ ≥ 12/5 (if
α = 1) or under the assumptions on g from Theorem 27 (if α = 0), for any
γ ≥ 3/2. The limit on γ comes from the gravitational potential, as∥∥∥∥∥∥∥

ˆ
Ω

% (y) (x1 − y1, x2 − y2, ε (x3 − y3))(√
(xh − yh) + ε2 (x3 − y3)

)3 dy

∥∥∥∥∥∥∥
Lp(Ω;R3)

≤ C ‖%‖Lp(Ω)

for 1 < p <∞, with C independent of ε. Thus

∣∣∣∣∣
ˆ T

0

ˆ
Ω

%Φ2 · udxdt

∣∣∣∣∣ ≤ ‖%‖L∞(0,T ;Lγ(Ω)) ‖u‖L2(0,T ;L6(Ω;R3)) ‖Φ2‖
L∞

(
0,T ;L

6γ
5γ−6 (Ω)

)

≤ ‖%‖2L∞(0,T ;Lγ(Ω)) ‖u‖L2(0,T ;L6(Ω;R3)) (3.3.19)

if γ ≥ 12/5. On the other hand,∣∣∣∣∣
ˆ T

0

ˆ
Ω

%Φ1 · udxdt

∣∣∣∣∣ ≤ ‖%‖L∞(0,T ;Lγ(Ω)) ‖u‖L2(0,T ;L6(Ω;R3)) ‖Φ1‖
L∞

(
0,T ;L

6γ
5γ−6 (Ω)

)

≤ ‖%‖L∞(0,T ;Lγ(Ω)) ‖u‖L2(0,T ;L6(Ω;R3)) ‖g‖Lp(R3) (3.3.20)

with p from Theorem 27, as∥∥∥∥∥∥∥
ˆ
R3

g (y) (x1 − y1, x2 − y2, ε (x3 − y3))(√
(xh − yh) + ε2 (x3 − y3)

)3 dy

∥∥∥∥∥∥∥
L

6γ
5γ−6 (Ω;R3)

≤ C ‖g‖Lp(Ω) (3.3.21)
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where we used the embedding W 1,p ↪→ L
6γ

5γ−6 .
Following [41], it is convenient to introduce the set of essential values Oess ⊂

(0,∞)
2,

Oess =
{

(%, ϑ) ∈ R2 ; %/2 < % < 2%, ϑ/2 < ϑ < 2ϑ
}

(3.3.22)

and the residual set
Ores = (0,∞)

2 ∩ Ocess. (3.3.23)

We next de�ne the essential and residual set of points as follows

Mess ⊂ (0, T )× Ω, (3.3.24)

Mess = {(x, t) ∈ (0, T )× Ω ; (% (x, t) , ϑ (x, t)) ∈ Oess} , (3.3.25)

Mres = ((0, T )× Ω) ∩ (Mess)
c
. (3.3.26)

Finally, each measurable function g can be decomposed as

g = [g]ess + [g]res (3.3.27)

and we set
[g]ess = g1Mess

, [g]res = g1Mres
= g − [g]ess . (3.3.28)

Now, we need to investigate the structural properties of the Helmholtz func-
tion. More precisely, we would like to show that the quantity (3.3.3) is non-
negative and strictly coercive, attaining its global minimum zero at

(
%, ϑ
)
. The

structural properties of the Helmholtz function follow as

Lemma 1. Let Hϑ(%, ϑ) be the Helmholtz function de�ned in (3.3.2) and % > 0,

ϑ be constants. Let Oess, Ores be the sets of essential and residual values in
(3.3.3) and (3.3.3). Then, there exists ci = ci(%, ϑ), i = 1, ..., 4, such that

c1

(
|%− %|2 +

∣∣ϑ− ϑ∣∣2) ≤ Hϑ(%, ϑ)− ∂%Hϑ(%, ϑ)(%− %)−Hϑ(%, ϑ)

≤ c2
(
|%− %|2 +

∣∣ϑ− ϑ∣∣2) (3.3.29)

for all (%, ϑ) ∈ Oess

Hϑ(%, ϑ)− ∂%Hϑ(r, ϑ)(%− %)−Hϑ(%, ϑ)

≥ inf
(r,Θ)∈∂Oess

Hϑ(r,Θ)− ∂%Hϑ(%, ϑ)(r − %)−Hϑ(%, ϑ) = c3
(
%, ϑ
)
> 0 (3.3.30)

for all (%, ϑ) ∈ Ores

Hϑ(%, ϑ)− ∂%Hϑ(%, ϑ)(%− %)−Hϑ(%, ϑ) ≥ c4 (%e (%, ϑ) + % |s (%, ϑ)|) (3.3.31)

for all (%, ϑ) ∈ Ores

Proof. See [41] Lemma 5.1.

As a consequence we have the following lemma
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Lemma 2. There exists a constant C = C
(
%, %, ϑ, ϑ

)
> 0 such that for all

% ∈ [0,∞), r ∈
[
%/2, 2%

]
, ϑ ∈ (0,∞) and Θ ∈

[
ϑ/2, 2ϑ

]
E(%, ϑ | r,Θ)(t, ·)

≥ C
(
1Oess + %γ1Ores + ϑ41Ores + (%− r) 1Oess + (ϑ−Θ) 1Oess

)
(3.3.32)

The lemma yields the lower bound of the relative energy functional

I(%,u, ϑ | r,w,Θ)

≥ C
ˆ

Ω

(
% |u−w|2 + 1res + [%γ ]res + [%− r]2ess + [ϑ]

4
ess + [ϑ−Θ]

2
ess

)
dx

(3.3.33)

Now, the basic idea is to apply (3.3.4) to
[
r̃, w̃, Θ̃

]
= [r,w,Θ]. We assume

that [r,w,Θ], w = (w, 0), is such that [r,w,Θ] solves the two-dimensional
Navier-Stokes-Fourier-Poisson system (3.0.12) - (3.0.14) in (0, T )× ω. In order
to integrate over Ω, we assume that the functions de�ned only on ω are extended
being constant in x3 for 0 ≤ x3 ≤ 1. Moreover, we write w instead of w
when we need to use a vector �eld with three components. Finally, we denote
% = inf(0,T )×Ω r, % = sup(0,T )×Ω r, ϑ = inf(0,T )×Ω Θ, ϑ = sup(0,T )×Ω Θ and use
these numbers in order to de�ne the essential and residual sets de�ned above.

Now, we have

I1 =

ˆ
Ω

% (u−w) · ∇εw · (w − u) dx ≤ CD(t)I(%,u, ϑ | r,w,Θ) (3.3.34)

with
D(t) = ‖∇hw‖L∞(Ω;R2×2) ∈ L

1 (0, T ) .

Next
I2 =

ˆ
Ω

% (s (%, ϑ)− s (r,Θ)) (w − u) · ∇εΘdx

≤ ‖∇hΘ‖L∞(Ω;R2)

·
[
2%

ˆ
Ω

|[s (%, ϑ)− s (r,Θ)]ess| · |w − u| dx+

ˆ
Ω

|[s (%, ϑ)− s (r,Θ)]res| · |w − u| dx
]

(3.3.35)
Lemma 2 together with the properties of entropy (3.1.12) and (3.1.13) yields
ˆ

Ω

|[s (%, ϑ)− s (r,Θ)]ess|·|w − u|dx ≤ δ ‖w − u‖2L2(Ω;R3)+C(δ)

ˆ
Ω

E(%, ϑ | r,Θ)dx

for δ > 0, and ˆ
Ω

|[s (%, ϑ)− s (r,Θ)]res| · |w − u| dx

≤ δ ‖w − u‖2L6(Ω;R3) + C(δ) ‖[s (%, ϑ)− s (r,Θ)]res‖
2
L6/5(Ω)

.

Using again the properties of the entropy (3.1.12) and (3.1.13) together with
the fact that the mapping t→

´
Ω
E(%, ϑ | r,Θ)dx ∈ L∞ (0, T ), we conclude that

‖[s (%, ϑ)− s (r,Θ)]res‖
2
L6/5(Ω)

≤ C
ˆ

Ω

E(%, ϑ | r,Θ)dx.
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Finally, we end up with

I2 ≤ δ ‖w − u‖2W 1,2
0 (Ω;R3) + C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Next, using the fact that [r,w,Θ] solve the two-dimensional Navier-Stokes-
Fourier-Poisson system, we have

I3 =

ˆ
Ω

% (∂tw + w · ∇hw) · (u−w) dx = I3,1 + I3,2,

where
I3,1 =

ˆ
Ω

%

r
(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ)) dx,

I3,2 =

ˆ
Ω

% (w − u) ·
(
− (χ×w) +∇ε |χ× x|2 +∇hφh

)
dx =

3∑
i=1

Ki.

We write

I3,1 =

ˆ
Ω

%− r
r

(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ)) dx

+I3,1 =

ˆ
Ω

(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ)) dx.

Similarly to I2, we have∣∣∣∣ˆ
Ω

%− r
r

(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ)) dx
∣∣∣∣

≤ C (δ; r,w,Θ) ‖[%− r]ess‖
2
L2(Ω)

+ δ ‖w − u‖2L2(Ω;R3)

+C (δ; r,w,Θ)
(
‖[%]res‖

2
L6/5(Ω)

+ ‖[1]res‖
2
L6/5(Ω)

)
+ δ ‖w − u‖2L6(Ω;R3) .

Integrating by parts the second integral of I3,1, we have
ˆ

Ω

(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ)) dx

= −
ˆ

Ω

(S (Θ,∇εw) : ∇ε (w − u)− p (r,Θ) · divε (w − u)) dx.

We conclude

I3,1 ≤
ˆ

Ω

(p (r,Θ) · divh (w − u)− S (Θ,∇εw) : ∇ε (w − u)) dx+δ ‖w − u‖2W 1,2
0 (Ω;R3)

+C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx

for any δ > 0. The terms K1 - K3 will be treated below in combination with I7
and I9. Now,

I4 = −
ˆ

Ω

% (s (%, ϑ)− s (r,Θ)) ∂tΘdx
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= −
ˆ

Ω

(%− r) (s (%, ϑ)− s (r,Θ)) ∂tΘdx−
ˆ

Ω

r (s (%, ϑ)− s (r,Θ)) ∂tΘdx.

For the �rst term above, we have

−
ˆ

Ω

(%− r) (s (%, ϑ)− s (r,Θ)) ∂tΘdx

= −
ˆ

Ω

(%− r) [s (%, ϑ)− s (r,Θ)]ess ∂tΘdx−
ˆ

Ω

(%− r) [s (%, ϑ)− s (r,Θ)]res ∂tΘdx

≤ C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Now,

−
ˆ

Ω

r (s (%, ϑ)− s (r,Θ)) ∂tΘdx

= −
ˆ

Ω

r (s (%, ϑ)− s (r,Θ)− ∂%s (r,Θ) (%− r)− ∂ϑs (r,Θ) (ϑ−Θ)) ∂tΘdx

−
ˆ

Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ)) ∂tΘdx,

and in analogy as before, we end up with

I4 ≤ C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx

−
ˆ

Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ)) ∂tΘdx.

For I5 we use the same procedure as for I4, obtaining

I5 = −
ˆ

Ω

% (s (%, ϑ)− s (r,Θ)) w · ∇hΘdx

≤ C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx

−
ˆ

Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ)) w · ∇hΘdx.

Moreover,

I6 =

ˆ
Ω

((
1− %

r

)
∂tp (r,Θ)− %

r
u · ∇εp (r,Θ)

)
dx

=

ˆ
Ω

(
1− %

r

)
(∂tp (r,Θ) + w · ∇hp (r,Θ)) dx+

ˆ
Ω

p (r,Θ)divεudx

+

ˆ
Ω

(
1− %

r

)
∇εp (r,Θ) · (u−w) dx.

Using the same argument as for I2, we have∣∣∣∣ˆ
Ω

(
1− %

r

)
∇εp (r,Θ) · (u−w) dx

∣∣∣∣
≤ δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx
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for any δ > 0. We end with

I6 ≤
ˆ

Ω

(
1− %

r

)
(∂tp (r,Θ) + w · ∇hp (r,Θ)) dx+

ˆ
Ω

p (r,Θ)divεudx

δ ‖w − u‖2W 1,2
0 (Ω;R3) + C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Finally, we have I7+K1 = 0 and I8+K2 = 0. We consider now the gravitational
potential. We start with the case α = 0. We assumedˆ

R3

g(y)y3(√
|xh − yh|2 + y2

3

)3 dy = 0. (3.3.36)

Therefore, we have to show that

lim
ε→0+

ˆ
Ω

r (w − u) ·
ˆ
R3

g(y)

 (xh − yh,−y3)(√
|xh − yh|2 + y2

3

)3 −
(xh − yh, εx3 − y3)(√
|xh − yh|2 + (εx3 − y3)

2

)3

 dy

dx = 0.

(3.3.37)
First, due to the estimates above, it is enough to verify

lim
ε→0+

ˆ
R3

g(y)

 (xh − yh,−y3)(√
|xh − yh|2 + y2

3

)3 −
(xh − yh, εx3 − y3)(√
|xh − yh|2 + (εx3 − y3)

2

)3

 dy = 0

for all xh ∈ ω, x3 ∈ (0, 1) and g ∈ C∞c
(
R3
)
. As

lim
ε→0+

 (xh − yh,−y3)(√
|xh − yh|2 + y2

3

)3 −
(xh − yh, εx3 − y3)(√
|xh − yh|2 + (εx3 − y3)

2

)3

 dy = 0

for almost all (xh, x3) ∈ Ω, (yh, y3) ∈ R3, and∣∣∣∣∣∣∣∣∣
(xh − yh, εx3 − y3)(√
|xh − yh|2 + (εx3 − y3)

2

)3

∣∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1√
|xh − yh|2 + (εx3 − y3)

2

∣∣∣∣∣∣ ∈ L1
loc

(
R3
)
,

for all ε ∈ [0, 1]. The Lebesgue dominated converge theorem yields the require
identity (3.3.37). For the case α = 1, we have to show that

ˆ
Ω

% (w − u)·


ˆ

Ω

% (t, y) (xh − yh, ε (x3 − y3))(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy +∇ε
ˆ
ω

r (t, yh)

|xh − yh|
dyh

dx

67



≤ δ ‖w − u‖L6(Ω;R3) + c (δ; r,w,Θ)

ˆ
Ω

I (%, r;ϑ,Θ)dx+Hε, (3.3.38)

where Hε = O (ε). The derivative of the integral over ω with respect to x3 is
zero. For γ ≥ 12/5, as in (3.3.18), we have to verify

lim
ε→0+

ˆ
Ω

rw·


ˆ

Ω

r (t, yh)
(
xh − yh, ε2 (x3 − y3)

)(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy +∇ε
ˆ
ω

r (t, yh)

|xh − yh|
dyh

dx = 0.

Again, it is enough to show

lim
ε→0+


ˆ

Ω

r (t, yh)
(
xh − yh, ε2 (x3 − y3)

)(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy +∇ε
ˆ
ω

r (t, yh)

|xh − yh|
dyh

dx = 0.

First, we note that

∇ε
ˆ
ω

r (t, yh)

|xh − yh|
dyh = −p.v.

ˆ
ω

r (t, yh) (xh − yh)

|xh − yh|3/2
dyh,

where p.v. denotes the integral in the principal value sense. Therefore, we have
to verify that

lim
ε→0+

ˆ
Ω

εr (t, yh) (x3 − y3)(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy = 0 (3.3.39)

and

lim
ε→0+

ˆ
Ω

εr (t, yh) (xh − yh)(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy = p.v.
ˆ
ω

r (t, yh) (xh − yh)

|xh − yh|3/2
dyh.

(3.3.40)
Let us �x x0 ∈ ω,4 > 0, su�ciently small, and denoteB4 (x0) = {x ∈ ω; |x− x0| < ∆}
and C4 (x0) = {x ∈ Ω; |xh − x0| < ∆, 0 < x3 < 1}. We consider (3.3.39). Let
us �x δ > 0. Then, there exists ∆ > 0 such that for any 0 < ε ≤ 1 and
0 < x3 < 1, we have∣∣∣∣∣∣∣∣∣

ˆ
C4(x0)

εr (t, yh) (x3 − y3)(√
|x0 − yh|2 + ε2 (x3 − y3)

2

)3 dy

∣∣∣∣∣∣∣∣∣ < δ

and for this 4 > 0 there exists ε0 > 0 such that for any 0 < ε ≤ ε0∣∣∣∣∣∣∣∣∣
ˆ

Ω/C4(x0)

εr (t, yh) (x3 − y3)(√
|x0 − yh|2 + ε2 (x3 − y3)

2

)3 dy

∣∣∣∣∣∣∣∣∣ < δ,
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whence (3.3.39). We consider (3.3.40). Since (xh − yh) /
(
|xh − yh|3

)
is a sin-

gular integral kernel in the sense of the Calderon-Zygmund theory, for a �xed
x0 ∈ ω, 0 < x3 < 1 and δ > 0, there exists ∆ > 0 such that∣∣∣∣∣∣∣∣∣

ˆ
C4(x0)

r (t, yh) (x0 − yh)(√
|x0 − yh|2 + ε2 (x3 − y3)

2

)3 dy

∣∣∣∣∣∣∣∣∣ < δ

and ∣∣∣∣∣p.v.
ˆ
B4(x0)

r (t, yh) (xh − yh)

|xh − yh|3
dyh

∣∣∣∣∣ < δ.

For this ∆ > 0, using that

1(√
|x0 − yh|2 + ε2 (x3 − y3)

2

)3 −
1

|x0 − yh|3
→ 0 as ε→ 0

for any yh ∈ ω, 0 < x3, y3 < 1, except x0 = yh, there exists ε0 > 0 such that for
any 0 < ε ≤ ε0∣∣∣∣∣∣∣∣∣
ˆ

Ω/C4(x0)

εr (t, yh) (xh − yh)(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy − p.v.
ˆ
ω/B4(x0)

r (t, yh) (xh − yh)

|xh − yh|3
dyh

∣∣∣∣∣∣∣∣∣ < δ,

whence (3.3.40). In conclusion, we have

I9 +K3 ≤ δ ‖w − u‖2L6(Ω;R3) + C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx+Hε.

Plugging all the previous estimates in (3.3.4), we obtain
ˆ

Ω

(
1

2
% |u−w|2 + E(%, ϑ | r,Θ)

)
(t, ·) dx

+

ˆ T

0

ˆ
Ω

(
Θ

ϑ
S (ϑ,∇εu) : ∇εu− S (Θ,∇εw) : (∇εu−∇εw)− S (ϑ,∇εu) : ∇εw

)
dxdt

+

ˆ T

0

ˆ
Ω

(
q (ϑ,∇εϑ) · ∇εΘ

ϑ
− Θ

ϑ

q (ϑ,∇εϑ) · ∇εϑ
ϑ

)
dxdt

≤
ˆ

Ω

(
1

2
%0 |u0 −w (0, ·)|2 + E(%0, ϑ0 | r (0, ·) ,Θ (0, ·))

)
dx+Hε

+

ˆ T

0

[
δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ; r,w,Θ)

ˆ
Ω

(
1

2
% |u−w|2 + E(%, ϑ | r,Θ)

)
dx
]
dt

+

ˆ T

0

ˆ
Ω

(p (r,Θ)− p (%, ϑ)) divhwdxdt
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+

ˆ T

0

ˆ
Ω

(
1− %

r

)
(∂tp (r,Θ) + w · ∇hp (r,Θ)) dxdt

−
ˆ T

0

ˆ
Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ)) (∂tΘ + w · ∇hΘ) dxdt.

Using the Maxwell (3.1.5), the Gibbs (3.1.1) relations and the continuity equa-
tion (3.0.12), we write
ˆ

Ω

(p (r,Θ)− p (%, ϑ)) divhwdx+

ˆ
Ω

(
1− %

r

)
(∂tp (r,Θ) + w · ∇hp (r,Θ)) dx

−
ˆ T

0

ˆ
Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ)) (∂tΘ + w · ∇hΘ) dxdt

=

ˆ
Ω

(p (r,Θ)− p (%, ϑ)) divhwdx+ r (Θ− ϑ) ∂ϑs (r,Θ) (∂tΘ + w · ∇hΘ)dxdt

−
ˆ

Ω

(r − %) ∂%p (r,Θ)divhwdx.

Using the same identities as above and the entropy balance (3.0.15), the second
term on the right-hand side can be rewritten as follows

ˆ
Ω

r (Θ− ϑ) ∂ϑs (r,Θ) (∂tΘ + w · ∇hΘ)dx

=

ˆ
Ω

r (Θ− ϑ) (∂ts (r,Θ) + w · ∇hs (r,Θ)) dx−
ˆ

Ω

(Θ− ϑ) ∂ϑp (r,Θ)divhwdx

=

ˆ
Ω

(Θ− ϑ)

[
1

Θ

(
Sh (Θ,∇hw) : ∇hw −

qh (Θ,∇hΘ) · ∇hΘ

Θ

)
− divh

(
qh (Θ,∇hΘ)

Θ

)]
dx

−
ˆ

Ω

(Θ− ϑ) ∂ϑp (r,Θ)divhwdx.

Observing that∣∣∣∣ˆ
Ω

(p (r,Θ)− p (%, ϑ) + ∂%p (r,Θ) (%− r) + ∂ϑp (r,Θ) (ϑ−Θ)) divhwdx
∣∣∣∣

≤ ‖divhw‖L∞(Ω)

ˆ
Ω

E(%, ϑ | r,Θ)dx,

we reduce to ˆ
Ω

(
1

2
% |u−w|2 + E(%, ϑ | r,Θ)

)
(t, ·) dx

+

ˆ T

0

ˆ
Ω

(
Θ

ϑ
S (ϑ,∇εu) : ∇εu− S (Θ,∇εw) : (∇εu−∇εw)− S (ϑ,∇εu) : ∇εw

)
dxdt

+

ˆ T

0

ˆ
Ω

Θ− ϑ
ϑ

Sh (Θ,∇hw) : ∇hwdxdt

+

ˆ T

0

ˆ
Ω

(
q (ϑ,∇εϑ) · ∇εΘ

ϑ
− Θ

ϑ

q (ϑ,∇εϑ) · ∇εϑ
ϑ

)
dxdt
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+

ˆ T

0

ˆ
Ω

(
(Θ− ϑ)

qh (Θ,∇hΘ) · ∇hΘ

Θ2
+

q (Θ,∇εΘ) · ∇ε (ϑ−Θ)

Θ

)
dxdt

≤
ˆ

Ω

(
1

2
%0 |u0 −w (0, ·)|2 + E(%0, ϑ0 | r (0, ·) ,Θ (0, ·))

)
dx+Hε

+

ˆ T

0

[
δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ; r,w,Θ)

ˆ
Ω

(
1

2
% |u−w|2 + E(%, ϑ | r,Θ)

)
dx
]
dt.

(3.3.41)
Now, following the discussion in [43], we study the terms in the left-hand side
in order to show that the terms containing ∇εu and ∇εϑ are strong enough to
control the W 1,2-norm of the velocity. In accordance with hypothesis (3.1.16)
we write

S (ϑ,∇εu) = S0 (ϑ,∇εu) + S1 (ϑ,∇εu)

where

S0 (ϑ,∇εu) = µ0

(
∇εu + (∇εu)

T − 2

3
divεuI

)
,

S1 (ϑ,∇εu) = µ1ϑ

(
∇εu + (∇εu)

T − 2

3
divεuI

)
.

Then

Θ

ϑ
S1 (ϑ,∇εu) : ∇εu− S1 (Θ,∇εw) : (∇εu−∇εw)− S1 (ϑ,∇εu) : ∇εw

+

(
ϑ−Θ

Θ
S1
h (Θ,∇hw) : ∇hw

)
= Θ

(
S1 (ϑ,∇εu)

ϑ
− S1 (Θ,∇εw)

Θ

)
: (∇εu−∇εw)

+ (Θ− ϑ)

(
S1 (ϑ,∇εu)

ϑ
− S1 (Θ,∇εw)

Θ

)
: ∇εw.

Using the Korn inequality in the �rst term and the splitting in essential and
residual sets for the second one, we obtain∣∣∣∣(Θ− ϑ)

(
S1 (ϑ,∇εu)

ϑ
− S1 (Θ,∇εw)

Θ

)
: ∇εw

∣∣∣∣
≤ δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Now, for 0 < Θ ≤ ϑ, we have

Θ

ϑ

(
S0 (∇εu)− S0 (∇εw)

)
: (∇εu−∇εw)+Θ

(
1

ϑ
− 1

Θ

)
S0 (∇εw) : (∇εu−∇εw)

+
ϑ−Θ

ϑ

(
S0 (∇εw)− S0 (∇εu)

)
: ∇εw

≤ Θ

ϑ
S0 (∇εu) : ∇εu− S0 (∇εw) : (∇εu−∇εw) + S0 (∇εu) : ∇εw
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+
ϑ−Θ

ϑ
S0
h (∇hw) : ∇hw.

As (1/ϑ) ≤ (1/Θ), the term on the left-hand side of the inequality can be
controlled on the right-hand side by

δ ‖w − u‖2W 1,2
0 (Ω;R3) + C (δ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Now, for 0 < ϑ ≤ Θ, we have(
S0 (∇εu)− S0 (∇εw)

)
: (∇εu−∇εw)+

Θ− ϑ
ϑ

(
S0 (∇εu) : ∇εu− S0

h (∇hw) : ∇hw
)

≤ Θ

ϑ
S0 (∇εu) : ∇εu− S0 (∇εw) : (∇εu−∇εw)− S0 (∇εu) : ∇εw

+
ϑ−Θ

ϑ
S0
h (∇hw) : ∇hw

As ∇εu→ S0 (∇εu) : ∇εu is convex, we have

Θ− ϑ
ϑ

(
S0 (∇εu) : ∇εu− S0

h (∇hw) : ∇hw
)
≥ Θ− ϑ

ϑ
S0 (∇εw) : (∇εu−∇εw) .

This term can be controlled on the right-hand side by

δ ‖w − u‖2W 1,2
0 (Ω;R3) + C (δ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Summing up, we have
ˆ

Ω

(
1

2
% |u−w|2 + E(%, ϑ | r,Θ)

)
(t, ·) dx+ +k1

ˆ T

0

ˆ
Ω

|∇εu−∇εw|2 dxdt

+

ˆ T

0

ˆ
Ω

(
q (ϑ,∇εϑ) · ∇εΘ

ϑ
− Θ

ϑ

q (ϑ,∇εϑ) · ∇εϑ
ϑ

)
dxdt

+

ˆ T

0

ˆ
Ω

(
(Θ− ϑ)

qh (Θ,∇hΘ) · ∇hΘ

Θ2
+

q (Θ,∇εΘ) · ∇ε (ϑ−Θ)

Θ

)
dxdt

≤
ˆ

Ω

(
1

2
%0 |u0 −w (0, ·)|2 + E(%0, ϑ0 | r (0, ·) ,Θ (0, ·))

)
dx+Hε

+

ˆ T

0

[
δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ; r,w,Θ)

ˆ
Ω

(
1

2
% |u−w|2 + E(%, ϑ | r,Θ)

)
dx
]
dt

(3.3.42)
For the remaining terms, the procedure is exactly as in [43]. We end up with
ˆ

Ω

(
1

2
% |u−w|2 + E(%, ϑ | r,Θ)

)
(t, ·) dx+ k1

ˆ T

0

ˆ
Ω

|∇εu−∇εw|2 dxdt

k2

ˆ T

0

ˆ
Ω

|∇εϑ−∇εΘ|2 dxdt+ k3

ˆ T

0

ˆ
Ω

|∇ε log ϑ−∇ε log Θ|2 dxdt

≤
ˆ

Ω

(
1

2
%0 |u0 −w (0, ·)|2 + E(%0, ϑ0 | r (0, ·) ,Θ (0, ·))

)
dx+Hε

k4

ˆ T

0

ˆ
Ω

(
1

2
% |u−w|2 + E(%, ϑ | r,Θ)

)
dxdt. (3.3.43)

The positive constants kj depends on (r,w,Θ) through the norms involved in
Theorem 27 and Hε → 0 as ε→ 0. The Gronwall lemma �nishes the proof.
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3.4 Conclusions

The problem we faced above has focused on the dimension reduction limit for
a compressible heat conducting �uid in which the analysis on the gravity force
has played the main role. We believe that the strategy used, or its analogue,
could be applied for other kind of models describing systems in which the dy-
namics is essentially two-dimensional due to the predominance of gravitational
e�ects. Moreover, further extensions of the above problem are not excluded.
For example, �uids where the magnetic �eld is taken into account.

73



Chapter 4

Global regularity for
incompressible �uids

We consider the incompressible Navier-Stokes equations in whole space R3

∂tu + u · ∇xu− µ∆xu +∇xp = f , divxu = 0. (4.0.1)

The shear viscosity coe�cient µ is assumed to be constant and without loss
of generality we put µ = 1. Moreover, we put f ≡ 0 for simplicity.

In the following we will discuss some preliminary results necessary for our
analysis. In particular, we will introduce the the anisotropic Lebesgue spaces
as key tool of our analysis and the so-called Troisi inequality, proving several
Lemmas.

4.1 Preliminary results

First, we de�ne the anisotropic Lebesgue spaces.

De�nition 33. Let p̄ = (p1, p2, p3), pi ∈ [1,∞], i = 1, 3. We say that a function
f belongs to Lp̄ if f is measurable on R3 and the following norm is �nite:

||f ||Lp̄ ≡
∥∥∥∥∥∥∥‖f‖Lp1

1

∥∥∥
L
p2
2

∥∥∥∥
L
p3
3

:=

ˆ
R

(ˆ
R

(ˆ
R
|f(x1, x2, x3)|p1 dx1

) p2
p1

dx2

) p3
p2

dx3


1
p3

.

Second, we introduce the Troisi inequality, which has been proved in [110].

Lemma 3. (Troisi inequality) Suppose that r, p1, p2, p3 ∈ (1,∞) and

1 +
3

r
=

3∑
i=1

1

pi
.
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Then there exists a constant c > 0 such that for every f ∈ L2 ∩ C∞

‖f‖r ≤ c
3∏
i=1

‖∂if‖1/3pi
. (4.1.1)

Now, the following inequality generalizes the Troisi inequality.

Lemma 4. (Generalized Troisi inequality) Let r ∈ (1,∞). Suppose that α ∈
(1,∞), γ1, γ2, γ3 ∈ (0, 1) and γ1 + γ2 + γ3 = 1. Let the following conditions be
satis�ed:

(α− 1) r

αγ1r − α+ 1
> 1, (4.1.2)

r

αγ2r − 1
> 1, (4.1.3)

r

αγ3r − 1
> 1, (4.1.4)

(α− 1) r

αγ3r − 1
> 1. (4.1.5)

Then there exists a constant c > 0 such that for every f ∈ L2 ∩ C∞

‖u‖r ≤ ‖∂1u‖
α−1
α+1

r

r−αγ1r
α−1

+1

‖∂2u‖
1

α+1
r

r−αγ2r+1

∥∥∥∥‖∂3u‖
L

r
r−αγ3r+1
23

∥∥∥∥ 1
α+1

L
r

αr−r−αγ3r+1
1

. (4.1.6)

Remark 34. Let r ∈ (3/2,∞), p1, p2, p3 ∈ (1,∞), 1 + 3/r =
∑3
i=1 1/pi. Then,

putting in the previous lemma α = 2, γi = (pir+ pi − r)/(2pir), the conditions
(4.1.2) - (4.1.5) are satis�ed and (4.1.6) yields (4.1.1). So, for r ∈ (3/2,∞) the
Troisi inequality can be viewed as a special case of Lemma 4.

Proof. By the use of the density argument we can suppose that f ∈ C∞0 (R3).
De�ne

f(x1, x2) = sup
x3

|u(x1, x2, x3)|γ3 ,

g(x1, x3) = sup
x2

|u(x1, x2, x3)|γ2 ,

h(x2, x3) = sup
x1

|u(x1, x2, x3)|γ1 .

Then (ˆ
R
|u(x1, x2, x3)|r dx3

) 1
r

≤
(ˆ

R
frgrhrdx3

) 1
r

≤ f(x1, x2)

(ˆ
R
gr(x1, x3)hr(x2, x3)dx3

) 1
r

≤ f(x1, x2)

(ˆ
R
gαr(x1, x3)dx3

) 1
αr
(ˆ

R
h

αr
α−1 (x2, x3)dx3

)α−1
αr

.

It follows that (ˆ
R2

|u(x1, x2, x3)|r dx2dx3

) 1
r
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≤
(ˆ

R
gαr(x1, x3)dx3

) 1
αr

(ˆ
R
fr(x1, x2)

(ˆ
R
h

αr
α−1 (x2, x3)dx3

)α−1
α

dx2

) 1
r

≤
(ˆ

R
gαr(x1, x3)dx3

) 1
αr
(ˆ

R
fαr(x1, x2)dx2

) 1
αr
(ˆ

R2

h
αr
α−1 (x2, x3)dx2dx3

)α−1
αr

and (ˆ
|u(x)|r dx

) 1
r

≤
(ˆ

R2

h
αr
α−1 (x2, x3)dx2dx3

)α−1
αr

·

(ˆ
R

(ˆ
R
gαr(x1, x3)dx3

) 1
α
(ˆ

R
fαr(x1, x2)dx2

) 1
α

dx1

) 1
r

≤
(ˆ

R2

h
αr
α−1 (x2, x3)dx2dx3

)α−1
αr
(ˆ

R2

gαr(x1, x3)dx1dx3

) 1
αr

·

(ˆ
R

(ˆ
R
fαr(x1, x2)dx2

) 1
α−1

dx1

)α−1
αr

. (4.1.7)

Now, we will estimate all three terms on the right hand side of (4.1.7). We have(ˆ
R2

gαr(x1, x3)dx1dx3

) 1
αr

≤
(ˆ

R2

sup
x2

|u(x1, x2, x3)|αγ2r dx1dx3

) 1
αr

≤ C
(ˆ
|u(x1, x2, x3)|αγ2r−1 |∂2u(x1, x2, x3)| dx

) 1
αr

≤ C ‖u‖
αγ2r−1
αr

r ‖∂2u‖
1
αr

r
r−αγ2r+1

. (4.1.8)

Above we used the condition (4.1.3). Analogically, using (4.1.2), we obtain(ˆ
R2

h
αr
α−1 (x2, x3)dx2dx3

)α−1
αr

≤ C ‖u‖
αγ1r−α+1

αr
r ‖∂1u‖

α−1
αr

r

r−αγ1r
α−1

+1

. (4.1.9)

At last, using (4.1.4) and (4.1.5) we get(ˆ
R

(ˆ
R
fαr(x1, x2)dx2

) 1
α−1

dx1

)α−1
αr

≤

(ˆ
R

(ˆ
R

sup
x3

|u(x1, x2, x3)|αγ3r dx2

) 1
α−1

dx1

)α−1
αr

≤ C

(ˆ
R

(ˆ
R2

|u(x1, x2, x3)|αγ3r−1 |∂3u(x1, x2, x3)| dx2dx3

) 1
α−1

dx1

)α−1
αr
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≤ C

(ˆ
R

(ˆ
R2

|u(x1, x2, x3)|r dx2dx3

)αγ3r−1

(α−1)r
(ˆ

R2

|∂3u(x1, x2, x3)|
r

r−αγ3r+1 dx2dx3

) r−αγ3r+1

(α−1)r

dx1

)α−1
αr

≤ C ‖u‖
αγ3r−1
αr

r

(ˆ
R

(ˆ
R2

|∂3u(x1, x2, x3)|
r

r−αγ3r+1 dx2dx3

) r−αγ3r+1

(α−1)r−αγ3r+1

dx1

) (α−1)r−αγ3r+1

αr2

and (ˆ
R

(ˆ
R
fαr(x1, x2)dx2

) 1
α−1

dx1

)α−1
αr

≤ C ‖u‖
αγ3r−1
αr

r

∥∥∥∥‖∂3u‖
L

r
r−αγ3r+1
23

∥∥∥∥ 1
αr

L
r

(α−1)r−αγ3r+1
1

. (4.1.10)

It follows from (4.1.7) - (4.1.10) that

‖u‖r ≤ ‖u‖
αγ2r−1
αr +

αγ1r−α+1
αr +

αγ3r−1
αr

r

×‖∂1u‖
α−1
αr

r
r− α

α−1
γ1r+1

‖∂2u‖
1
αr

r
r−αγ2r+1

∥∥∥∥‖∂3u‖
L

r
r−αγ3r+1
23

∥∥∥∥ 1
αr

L
r

(α−1)r−αγ3r+1
1

and (4.1.6) follows immediately.

The following key lemma is a slight generalization of Lemma 2.2 from [114].
We use here the Fourier transform, which is de�ned in a standard way, namely
f̂(ξ) =

´
Rd e

−ix·ξf(x)dx, x, ξ ∈ Rd, d ∈ N.

Lemma 5. Let p, q, r ∈ [2,∞) and 1/p+1/q+1/r−1/2 ≥ 0. Then there exists
a constant c such that for every f ∈ L2 ∩ C∞∥∥∥∥∥∥∥‖f‖Lp1∥∥∥Lq2

∥∥∥∥
Lr3

≤ c ‖∂3f‖
r−2
2r

2 ‖∂2f‖
q−2
2q

2 ‖∂1f‖
p−2
2p

2 ‖f‖
1
r+ 1

q+ 1
p−

1
2

2 .

Proof. By the use of the density argument we can suppose that f ∈ C∞0 (R3). At
�rst, let us remind a well known de�nition of the homogeneous Sobolev spaces.
Let s ∈ R, d ∈ N. Then

Ḣs(Rd) ≡ Ḣs :=

{
f ∈ S′; f̂ ∈ L1

loc and ‖f‖Ḣs :=

(ˆ
|ξ|2s

∣∣∣f̂ (ξ)
∣∣∣2 dξ) 1

2

<∞

}
,

where S′ denotes the space of the tempered distributions on Rd. It is well known
that

Ḣs ↪→ L
2d
d−2s ; s ∈

[
0,
d

2

)
; d ∈ N. (4.1.11)

De�ne
F1f(ξ1, x2, x3) :=

ˆ
e−iξ1x1f(x1, x2, x3)dx1

and analogically Fj for j = 2, 3. De�ne further the operator Λs1, s ∈ R in the
following way

F1(Λs1f)(ξ1, x2, x3) := |ξ1|s F1f(ξ1, x2, x3)

77



and again analogically we can de�ne Λsj for j = 2, 3. Clearly, using (4.1.11) for
d = 1 and the Plancherel theorem we have

‖f‖Lp1 ≤
∥∥∥∥Λ

p−2
2p

1 f

∥∥∥∥
L2

1

. (4.1.12)

So combining (4.1.12) and the Minkowski inequality

∥∥∥∥∥∥∥‖f‖Lp1∥∥∥Lq2
∥∥∥∥
Lr3

≤

∥∥∥∥∥∥
∥∥∥∥∥
∥∥∥∥Λ

p−2
2p

1 f

∥∥∥∥
L2

1

∥∥∥∥∥
Lq2

∥∥∥∥∥∥
Lr3

≤

∥∥∥∥∥∥
∥∥∥∥∥
∥∥∥∥Λ

p−2
2p

1 f

∥∥∥∥
Lq2

∥∥∥∥∥
L2

1

∥∥∥∥∥∥
Lr3

≤

∥∥∥∥∥
∥∥∥∥Λ

q−2
2q

2

(
Λ
p−2
2p

1 f
)∥∥∥∥

L2
12

∥∥∥∥∥
Lr3

≤

∥∥∥∥∥
∥∥∥∥Λ

q−2
2q

2

(
Λ
p−2
2p

1 f
)∥∥∥∥

Lr3

∥∥∥∥∥
L2

12

≤
∥∥∥∥Λ

r−2
2r

3

(
Λ
q−2
2q

2

(
Λ
p−2
2p

1 f
))∥∥∥∥

2

.

(4.1.13)
Let F denotes the Fourier transform Ff(ξ) =

´
e−ix·ξf(x)dx. Using the Fubini

theorem and the de�nition of the operators Fj and Λsj , j = 1, 2, 3, we have

F
(

Λ
r−2
2r

3

(
Λ
q−2
2q

2

(
Λ
p−2
2p

1 f
)))

(ξ)

=

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2

ˆ
e−ix3ξ3Λ

r−2
2r

3

(
Λ
q−2
2q

2

(
Λ
p−2
2p

1 f
))

(x1, x2, x3)dx3dx2dx1

=

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2F3

(
Λ
r−2
2r

3

(
Λ
q−2
2q

2

(
Λ
p−2
2p

1 f
)))

(x1, x2, ξ3)dx2dx1

= |ξ3|
r−2
2r

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2F3

(
Λ
q−2
2q

2

(
Λ
p−2
2p

1 f
))

(x1, x2, ξ3)dx2dx1

= |ξ3|
r−2
2r

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2

ˆ
e−ix3ξ3Λ

q−2
2q

2

(
Λ
p−2
2p

1 f
)

(x1, x2, x3)dx3dx2dx1

= |ξ3|
r−2
2r

ˆ
e−ix3ξ3

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2Λ

q−2
2q

2

(
Λ
p−2
2p

1 f
)

(x1, x2, x3)dx2dx1dx3

= |ξ3|
r−2
2r

ˆ
e−ix3ξ3

ˆ
e−ix1ξ1F2

(
Λ
q−2
2q

2

(
Λ
p−2
2p

1 f
))

(x1, ξ2, x3)dx1dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q

ˆ
e−ix3ξ3

ˆ
e−ix1ξ1F2

(
Λ
p−2
2p

1 f
)

(x1, ξ2, x3)dx1dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q

ˆ
e−ix3ξ3

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2Λ

p−2
2p

1 f(x1, x2, x3)dx2dx1dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q

ˆ
e−ix3ξ3

ˆ
e−ix2ξ2

ˆ
e−ix1ξ1Λ

p−2
2p

1 f(x1, x2, x3)dx1dx2dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q

ˆ
e−ix3ξ3

ˆ
e−ix2ξ2F1

(
Λ
p−2
2p

1 f
)

(ξ1, x2, x3)dx2dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q |ξ1|

p−2
2p

ˆ
e−ix3ξ3

ˆ
e−ix2ξ2F1f(ξ1, x2, x3)dx2dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q |ξ1|

p−2
2p

ˆ
e−ix3ξ3

ˆ
e−ix2ξ2

ˆ
e−ix1ξ1f(x1, x2, x3)dx1dx2dx3
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= |ξ3|
r−2
2r |ξ2|

q−2
2q |ξ1|

p−2
2p Ff(ξ).

So using the last equality together with the Plancherel theorem we can continue
with (4.1.13) and complete the proof∥∥∥∥∥∥∥‖f‖Lp1∥∥∥Lq2

∥∥∥∥
Lr3

≤
(ˆ
|ξ3|

r−2
r |ξ2|

q−2
q |ξ1|

p−2
p |Ff(ξ)|2dξ

) 1
2

=

(ˆ
|ξ3|

r−2
r |Ff(ξ)|

r−2
r |ξ2|

q−2
q |Ff(ξ)|

q−2
q |ξ1|

p−2
p |Ff(ξ)|

p−2
p |Ff(ξ)|2(

1
r+ 1

q+ 1
p )−1dξ

) 1
2

≤ ‖∂3f‖
r−2
2r

2 ‖∂2f‖
q−2
2q

2 ‖∂1f‖
p−2
2p

2 ‖f‖
1
r+ 1

q+ 1
p−

1
2

2 .

4.2 State of art and main results

In the following we will sum up the present state of art concerning our analysis.
Then, we will present our main results.

4.2.1 State of art

Let us sum up the present state of the art. The best result concerning u3 has
been proved in [117], Theorem 1. The regularity of a solution on (0, T ] is ensured
if u3 ∈ Lβ(0, T ;Lp), where

2

β
+

3

p
≤ 3

4
+

1

2p
, p ∈

(10

3
,∞
]
. (4.2.1)

The condition (4.2.1) is not optimal for any p.
The results for ∇u3 are optimal for p ∈ (3/2, 2]. The solution is regular on

(0, T ] if ∇u3 ∈ Lβ(0, T ;Lp), where

2

β
+

3

p
≤ 2, p ∈

(3

2
,

9

5

]
, see [15] (4.2.2)

2

β
+

3

p
≤ 2, p ∈

(9

5
, 2
)
, see [14] (4.2.3)

2

β
+

3

p
≤ 2, p = 2, see [111] (4.2.4)

2

β
+

3

p
≤ 59

30
, p ∈

(
2,

30

13

]
, see [101] (4.2.5)

2

β
+

3

p
≤ 7

4
+

1

2p
, p ∈

(30

13
, 3
)
, see [101] (4.2.6)

2

β
+

3

p
≤ 7

4
+

1

2p
, p ∈

[
3,

10

3

)
, see [116] (4.2.7)

2

β
+

3

p
≤ 7

4
+

1

2p
, p ∈

[10

3
,∞
)
, see [100]. (4.2.8)

Remark 35. In fact in [14] the authors proved the following result: if moreover
the vorticity∇×u0 ∈ L3/2 then Leray solutions satisfying u3 ∈ Lq(0, T ; Ḣ1/2+2/q),
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q ∈ (4, 6), are regular on (0, T ]. It is obvious that (4.2.3) follows as a direct con-
sequence, namely if ∇u3 ∈ Lq(0, T ;Lp), where 2/q + 3/p = 2 and p ∈ (9/5, 2)
and q ∈ (4, 6), then ∇u3 ∈ Lq(0, T ; Ḣ2/q−1/2) and u3 ∈ Lq(0, T ; Ḣ2/q+1/2). Ap-
plying the criterion from [14] gives the regularity of u. The criterion from [15]
is the extension of the result from [14] for q ∈ (4,∞) and it implies immediately
(4.2.2).

Concerning ∇2u3 the following result has been proved in [115]. The regu-
larity of u is ensured on (0, T ] provided

∂1∂3u3, ∂2∂3u3 ∈ Lβ(0, T ;Lp),
2

β
+

3

p
≤ 2 +

1

p
, p ∈ (1,∞).

An almost regular result is so achieved for p → 1+. It is also noteworthy that
the condition is imposed here only on two items of the Hessian tensor.

4.2.2 Main results

We now present the main results. The following Theorem 36 is a slight gener-
alization of a result from [114]. It is interesting that for p1 → 2+, p2 → 2+, the
criterion is almost optimal.

Theorem 36. Let u = (u1, u2, u3) be a weak solution to (4.0.1) correspond-
ing to the initial condition u0 ∈ W 1,2

σ which satis�es the energy inequality.
Suppose that p1, p2, p3 ∈ (2,∞], 3/(4p1) + 3/(4p2) + 1/p3 ≤ 3/4, β ∈ (2,∞],
p = (p1, p2, p3) and

u3 ∈ Lβ
(
0, T ;Lp

)
.

Then the condition

2

β
+

1

p1
+

1

p2
+

1

p3
=

3

4
+

1

4p1
+

1

4p2
(4.2.9)

ensures the regularity of u on (0, T ].

Putting p1 = p2 = p3 = p in Theorem 36, (4.2.9) reduces to (4.2.1) with one
slight improvement, the value p = 10/3 is now allowed. So Theorem 36 can also
be understood as a generalization of the above mentioned result from [117].

Remark 37. The result from Theorem 36 formulated in the framework of the
anisotropic Lebesgue spaces is almost optimal which is not the case for the
corresponding result formulated in the framework of the standard Lebesgue
spaces (see the result from [117], Theorem 1).

The following Theorem 38 improves the above mentioned result from [101]
(see (4.2.5)). It is due to the fact that while the proof from [101] has been based
on the Troisi inequality, the proof of Theorem 38 uses a generalized version of
the Troisi inequality using the anisotropic Lebesgue spaces (see Lemma 4).

Theorem 38. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satis�es the energy inequality. Suppose
that β ∈ (2,∞) and

∇u3 ∈ Lβ (0, T ;Lp) ,

where

2

β
+

3

p
<

75

38
, p ∈

(
2,

38

17

)
(4.2.10)
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and

2

β
+

3

p
<

7

4
+

1

2p
, p ∈

[38

17
,∞
)
. (4.2.11)

Then u is regular on (0, T ].

Moreover, we have the following Theorem

Theorem 39. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satis�es the energy inequality. Suppose
that

∇u3 ∈ Lβ
(
0, T ;Lp

)
(4.2.12)

where
p = (p1, p2, p3) , pi ∈ (1,∞] , i = 1, 2, 3, β ∈ (1,∞] .

Suppose that there exist numbers qi, ri ∈ [2,∞), i = 1, 2, 3 such that

1

pi
+

1

qi
+

1

ri
= 1, i = 1, 2, 3, (4.2.13)

3

4q1
+

3

4q2
+

1

q3
≥ 1

2
, (4.2.14)

3∑
i=1

1

ri
≥ 1

2
. (4.2.15)

Then the condition

2

β
+

3∑
i=1

1

pi
= 2− 1

4q1
− 1

4q2
(4.2.16)

ensures the regularity of u on (0, T ].

The following Theorem 40 is a consequence of Theorem 39.

Theorem 40. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satis�es the energy inequality. Suppose
that

∇u3 ∈ Lβ
(
0, T ;Lp

)
,

where

p = (p1, p2, p3) , p1, p2 ∈ (1,∞] , p3 ∈ [2,∞] , β ∈ (1,∞] .

Suppose further that if p1, p2 ∈ (2,∞] then

2

β
+

3∑
i=1

1

pi
≤ 7

4
+

1

4

( 1

p1
+

1

p2

)
(4.2.17)

and if at least one of the numbers p1 and p2 is not in (2,∞] then

2

β
+

3∑
i=1

1

pi
<

7

4
+

1

4

( 1

max(p1, 2)
+

1

max(p2, 2)

)
.

Then u is regular on (0, T ].
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Putting in Theorem 40 p1 = p2 = p3 ∈ (2,∞], we obtain the following Corol-
lary 41. It further improves the above mentioned result from [101] (see (4.2.5)).
This improvement is better than the one from Theorem 38 due to the use of
the term

´
|∇u3| |∇u| |∇hu| dx instead of

´
|∇u3| |u| |∇∇hu| dx (see the proofs

of Theorems 38 and 39), which enables us to use more fully the potential of the
anisotropic Lebesgue spaces.

Corollary 41. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satis�es the energy inequality. Suppose
that

∇u3 ∈ Lβ (0, T ;Lp) ,

where
2

β
+

3

p
≤ 7

4
+

1

2p
, p ∈ (2,∞).

Then u is regular on (0, T ].

The following theorem deals with criteria where conditions are imposed on
∇2u3. Unlike the result from [115], we impose conditions on all items of the
Hessian tensor, but unlike [115] we get almost optimal result for a wide range
of p.

Theorem 42. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satis�es the energy inequality. Suppose
that β ∈ (1,∞), p ∈ (1, 3) and

∇2u3 ∈ Lβ (0, T ;Lp) .

If, moreover,
2

β
+

3

p
< 3, p ∈ (1, 3/2] (4.2.18)

or
2

β
+

3

p
=

5

2
+

3

4p
, p ∈ (3/2, 3), (4.2.19)

then u is regular on (0, T ].

4.3 Proofs of main results

In the following, we prove the main results.

4.3.1 Proof of Theorem 36

Proof. Let T ∗ = sup{τ > 0; u is regular on (0, τ)}. Since u0 ∈ W 1,2
σ , u is

regular on some positive time interval and T ∗ is either equal to in�nity (in which
case the proof is �nished) or it is a positive number and u is regular on (0, T ∗),
that is ∇u ∈ L∞loc([0, T ∗);L2). It is su�cient to prove that T ∗ > T . We proceed
by contradiction and suppose that T ∗ ≤ T . We take ε > 0 su�ciently small
(it will be speci�ed later) and �x T1 ∈ (0, T ∗) such that ||∇u||L2(T1,T∗;L2) < ε.
Taking arbitrarily T2 ∈ (T1, T

∗) the proof will be �nished if we show that
||∇u(T2)||2 ≤ C < ∞, where C is independent of T2. Actually, the standard
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extension argument then shows that the regularity of u can be extended beyond
T ∗ and it contradicts the de�nition of T ∗.

As in [116] we de�ne

J(T2)2 = sup
τ∈(T1,T2)

||∇hu(τ)||22 +

ˆ T2

T1

||∇∇hu(t)||22 dt

and

L(T2)2 = sup
τ∈(T1,T2)

||∂3u(τ)||22 +

ˆ T2

T1

||∇∂3u(t)||22 dt,

where ∇hu = (∂1u, ∂2u). As was discussed in the �rst paragraph of this proof,
it now su�ces to show that J(T2)2 + L(T2)2 ≤ C <∞ uniformly in T2.

To estimate L(T2) let us �x an arbitrary τ ∈ (T1, T
∗), multiply (4.0.1) by

−∂33u and integrate over R3 and (T1, τ). We obtain

1

2
||∂3u(τ)||22 +

ˆ τ

T1

||∇∂3u(t)||22 dt =
1

2
||∂3u(T1)||22 +

ˆ τ

T1

ˆ
uj∂juk∂

2
33uk dx dt.

(4.3.1)
Using integration by parts and the continuity equation, we get

ˆ
uj∂juk∂

2
33ukdx

= −
ˆ
∂3uj∂juk∂3ukdx−

ˆ
uj∂

2
j3uk∂3ukdx = −

ˆ
∂3uj∂juk∂3ukdx

=

2∑
j=1

3∑
k=1

ˆ
uk
(
∂2

3juj∂3uk + ∂2
j3uk∂3uj

)
dx+

3∑
k=1

ˆ
(∂1u1 + ∂2u2) ∂3uk∂3ukdx

=

2∑
j=1

3∑
k=1

ˆ
uk
(
∂2

3juj∂3uk + ∂2
j3uk∂3uj

)
dx

−
3∑
k=1

2

ˆ (
u1∂3uk∂

2
31uk + u2∂3uk∂

2
32uk

)
dx

≤ c
ˆ
|u| |∂3u| |∇∇hu| dx

≤ c ‖∂1u‖1/32 ‖∂2u‖1/32 ‖∂3u‖1/32 ‖∂3u‖1/22 ‖∂1∂3u‖1/62 ‖∂2∂3u‖1/62 ‖∂3∂3u‖1/62 ‖∇∇hu‖2

≤ c‖∇hu‖
2
3
2 ‖∂3u‖1/32 ‖∂3u‖1/22 ‖∇∇hu‖

4
3
2 ‖∂3∇u‖

1
6
2 ,

where we have also used the Hölder inequality, the interpolation inequality and
the Troisi inequality (see Lemma 3). So

ˆ τ

T1

ˆ
uj∂juk∂

2
33uk dx dt

≤ c
ˆ τ

T1

‖∇hu‖
2
3
2 ‖∂3u‖1/32 ‖∂3u‖1/22 ‖∇∇hu‖

4
3
2 ‖∂3∇u‖

1
6
2 dt

83



≤ c‖∇hu‖
2
3

L∞(T1,τ ;L2)‖∂3u‖
1
3

L∞(T1,τ ;L2)‖∂3u‖
1
2

L2(T1,τ ;L2)‖∇∇hu‖
4
3

L2(T1,τ ;L2)‖∂3∇u‖
1
6

L2(T1,τ ;L2)

≤ cJ(τ)2L(τ)
1
2 .

Consequently, the last inequality and (4.3.1) yield

1

2
||∂3u(τ)||22+

ˆ τ

T1

||∇∂3u(t)||22 dt ≤
1

2
||∂3u(T1)||22+cJ(τ)2L(τ)

1
2 , τ ∈ (T1, T

∗).

So specially, ˆ T2

T1

||∇∂3u(t)||22 dt ≤ c+ cJ(T2)2L(T2)
1
2

and due to the fact that J and L are increasing in T2

sup
τ∈(T1,T2)

1

2
||∂3u(τ)||22 ≤ c+ cJ(T2)2L(T2)

1
2 .

So it follows from the de�nition of J(T2) and L(T2) that

L(T2)2 ≤ c+ cJ(T2)2L(T2)1/2

and consequently
L(T2) ≤ c+ cJ(T2)4/3. (4.3.2)

The constant c is independent of T2. It is worthwhile to notice that the estimate
of L(T2) is general and it does not require any additional conditions on u.

To estimate J(T2) we multiply (4.0.1) by −∆hu = −
∑2
j=1 ∂

2
jju. We get

1

2
||∇hu(T2)||22+

ˆ T2

T1

||∇∇hu(t)||22 dt =
1

2
||∇hu(T1)||22+

ˆ T2

T1

ˆ
uj∂juk∆huk dx dt.

(4.3.3)
It is possible to show in a standard way (see, for example [117], proof of Theorem
1 and [61], Lemma 2.2) that

ˆ
uj∂juk∆hukdx ≤ c

ˆ
|u3| |∇u| |∇∇hu| dx.

So it follows from (4.3.3) that

J(T2)2 ≤ c+ c

ˆ T2

T1

ˆ
|u3| |∇u| |∇∇hu| dxdt.

Lemma 5 now yields the following estimate
ˆ
|u3| |∇u| |∇∇hu| dx

≤
∥∥∥∥∥∥∥‖u3‖Lp3

3

∥∥∥
L
p2
2

∥∥∥∥
L
p1
1

∥∥∥∥∥∥∥‖∇u‖
L

2p3/(p3−2)
3

∥∥∥
L

2p2/(p2−2)
2

∥∥∥∥
L

2p1/(p1−2)
1

‖∇∇hu‖2

≤
∥∥∥∥∥∥∥‖u3‖Lp3

3

∥∥∥
L
p2
2

∥∥∥∥
L
p1
1

‖∂1∇u‖
1
p1
2 ‖∂2∇u‖

1
p2
2 ‖∂3∇u‖

1
p3
2 ‖∇u‖

1−
(

1
p1

+ 1
p2

+ 1
p3

)
2 ‖∇∇hu‖2
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≤
∥∥∥∥∥∥∥‖u3‖Lp3

3

∥∥∥
L
p2
2

∥∥∥∥
L
p1
1

‖∂3∇u‖
1
p3
2 ‖∂3u‖

1−
(

1
p1

+ 1
p2

+ 1
p3

)
2 ‖∇∇hu‖

1+ 1
p1

+ 1
p2

2

+

∥∥∥∥∥∥∥‖u3‖Lp3
3

∥∥∥
L
p2
2

∥∥∥∥
L
p1
1

‖∂3∇u‖
1
p3
2 ‖∇hu‖

1−
(

1
p1

+ 1
p2

+ 1
p3

)
2 ‖∇∇hu‖

1+ 1
p1

+ 1
p2

2 = A+B.

We now use (4.2.9) and the Hölder inequality gives

ˆ T2

T1

Adt

≤
ˆ T2

T1

∥∥∥∥∥∥∥‖u3‖Lp3
3

∥∥∥
L
p2
2

∥∥∥∥
L
p1
1

‖∂3u‖
3
4−

3
4p1
− 3

4p2
− 1
p3

2 ‖∇u‖
1
4−

1
4p1
− 1

4p2
2 ‖∇∇hu‖

1+ 1
p1

+ 1
p2

2 ‖∂3∇u‖
1
p3
2 dt

≤ ||u3||Lβ(T1,T2;Lp̄)||∂3u||
3
4−

3
4p1
− 3

4p2
− 1
p3

L∞(T1,T2;L2) ||∇u||
1
4−

1
4p1
− 1

4p2

L2(T1,T2;L2)||∇∇hu||
1+ 1

p1
+ 1
p2

L2(T1,T2;L2)||∂3∇u||
1
p3

L2(T1,T2;L2)

≤ cε
1
4−

1
4p1
− 1

4p2 L(T2)
3
4−

3
4p1
− 3

4p2 J(T2)1+ 1
p1

+ 1
p2

≤ c+ cε
1
4−

1
4p1
− 1

4p2 J(T2)2.

For the last inequality we used (4.3.2). In the same way

ˆ T2

T1

Bdt ≤ cε
1
4−

1
4p1
− 1

4p2 L(T2)
1
p3 J(T2)

7
4 + 1

4p1
+ 1

4p2
− 1
p3

≤ cε
1
4−

1
4p1
− 1

4p2 J(T2)
7
4 + 1

4p1
+ 1

4p2
+ 1

3p3 ≤ c+ cε
1
4−

1
4p1
− 1

4p2 J(T2)2.

We can conclude that

J(T2)2 ≤ c+ cε
1
4−

1
4p1
− 1

4p2 J(T2)2. (4.3.4)

Choosing now ε su�ciently small, we can derive from (4.3.2) and (4.3.4) that
J(T2) + L(T2) is bounded independently of T2 ∈ (T1, T

∗) and the proof follows
immediately.

4.3.2 Proof of Theorem 38

Proof. We proceed exactly in the same way as in the proof of Theorem 36 up
to the condition (4.3.3). It has been proved in [116] that

ˆ
uj∂juk∆hukdx ≤ c

ˆ
|∇u3| |∇hu|2 dx+ c

ˆ
|∇u3| |u| |∇∇hu| dx.

So it follows from (4.3.3) that

J(T2)2 ≤ c+ c

ˆ T2

T1

ˆ
|∇u3| |∇hu|2 dxdt+ c

ˆ T2

T1

ˆ
|∇u3| |u| |∇∇hu| dxdt.

(4.3.5)
It is possible to prove easily (see also [116]) that

ˆ T2

T1

ˆ
|∇u3| |∇hu|2 dxdt ≤ cεJ(T2)2. (4.3.6)
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Further,

ˆ T2

T1

ˆ
|∇u3| |u| |∇∇hu| dxdt ≤

ˆ T2

T1

‖∇u3‖p ‖u‖r ‖∇∇hu‖2 dt, (4.3.7)

where r = 2p/(p− 2).
We will now estimate the right hand side of (4.3.7). Suppose that the num-

bers α, γ1, γ2, γ3 satisfy all conditions from Lemma 4. Suppose further that the
following conditions are satis�ed:

r

r − αγ1r
α−1 + 1

∈ [2, 6] , (4.3.8)

r

r − αγ2r + 1
∈ [2, 6] , (4.3.9)

r

r − αγ3r + 1
∈ [2,∞) , (4.3.10)

r

αr − r − αγ3r + 1
∈ [2,∞) , (4.3.11)

r + αr − 3αγ3r + 3

r
≥ 1

2
, (4.3.12)

γ3 ≤
3αr + 2r + 10

10αr
, (4.3.13)

γ3 <
αr + 2

2αr
. (4.3.14)

By the use of Lemma 5 and (4.3.8) - (4.3.11) we have immediately the following
three inequalities:

‖∂2u‖ r
r−αγ2r+1

≤ ‖∇∂2u‖
3(2γ2αr−r−2)

2r
2 ‖∂2u‖

5r−6αγ2r+6
2r

2 , (4.3.15)

‖∂1u‖ r
r− α

α−1
γ1r+1

≤ ‖∇∂1u‖
3(2αγ1r−αr−2α+r+2)

2r(α−1)

2 ‖∂1u‖
5αr−5r−6αγ1r+6α−6

2(α−1)r

2 (4.3.16)

and ∥∥∥∥‖∂3u‖
L

r
r−αγ3r+1
23

∥∥∥∥
L

r
αr−r−αγ3r+1
1

≤ ‖∂2∂3u‖
2γ3αr−r−2

2r
2 ‖∂3∂3u‖

2γ3αr−r−2
2r

2 ‖∂1∂3u‖
3r−2αr+2αγ3r−2

2r
2 ‖∂3u‖

2αr+r−6αγ3r+6
2r

2 .
(4.3.17)

Consequently, assuming that

1

β
+
αr − 2αγ3r + 2

8r (α+ 1)
+

3αr − 2αγ3r − 6α+ 4r − 4

4r(α+ 1)
+

2αγ3r − r − 2

4r(α+ 1)
= 1,

(4.3.18)
it follows from Lemma 4, the inequalities (4.3.15) - (4.3.17) and by the use of
the Hölder inequality that

ˆ T2

T1

‖∇u3‖p ‖u‖r ‖∇∇hu‖2 dt
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≤
ˆ T2

T1

‖∇u3‖p ‖∇hu‖
−αr+6α+6αγ3r

2r(α+1)

2 ‖∂3u‖
3αr+2r−10αγ3r+10

4r(α+1)

2

· ‖∂3u‖
αr+2−2αγ3r

4r(α+1)

2 ‖∇∇hu‖
3αr−2αγ3r−6α+4r−4

2r(α+1)

2 ‖∂3∇u‖
2αγ3r−r−2

2r(α+1)

2 dt

≤ ‖∇u3‖Lβ(T1,T2;Lp) ‖∇hu‖
−αr+6α+6αγ3r

2r(α+1)

L∞(T1,T2;L2) ‖∂3u‖
3αr+2r−10αγ3r+10

4r(α+1)

L∞(T1,T2;L2)

· ‖∂3u‖
αr+2−2αγ3r

4r(α+1)

L2(T1,T2;L2) ‖∇∇hu‖
3αr−2αγ3r−6α+4r−4

2r(α+1)

L2(T1,T2;L2) ‖∂3∇u‖
2αγ3r−r−2

2r(α+1)

L2(T1,T2;L2)

≤ Cε
αr+2−2αγ3r

4r(α+1) J(T2)
2αr+4αγ3r+4r−4

2r(α+1) L(T2)
3αr−6αγ3r+6

4r(α+1)

≤ Cε
αr+2−2αγ3r

4r(α+1) J(T2)2.

So it follows from the last inequality and (4.3.5), (4.3.6) and (4.3.7) that

J(T2)2 ≤ c+ cεJ(T2)2 + cε
αr+2−2αγ3r

4r(α+1) J(T2)2.

We can conclude in the same way as in the proof of Theorem 36 that u is regular
on (0, T ].

Notice that the condition (4.3.18) is equivalent to the following condition:

2

β
+

3

p
=

7

4
+

αγ3

2(α+ 1)
+

1

2p(α+ 1)
.

Thus, to complete the proof we will now discuss the following problem. Denote
f(α, γ3) = αγ3

2(α+1) + 1
2p(α+1) . We want to �nd maximum (respectively supremum)

of f on the set of all α, γ1, γ2, γ3 such that α ∈ (1,∞); γ1, γ2, γ3 ∈ (0, 1); γ1 +
γ2 + γ3 = 1 which satisfy conditions (4.1.2) - (4.1.5) and (4.3.8) - (4.3.14). The
analysis of this problem leads, for example, to the following choice of α, γ1, γ2, γ3.
Let ε > 0 be su�ciently small. If, �rstly, r ∈ (19,∞) (which means that
s ∈ (2, 38/17)), we take

α =
12

7
− ε,

γ1 =
5

24
+

5

12r
+

5ε

12− 7ε
,

γ2 =
3

8
− 1

r
,

γ3 =
5

12
+

7

12r
− 5ε

12− 7ε
.

It is possible to verify that α ∈ (1,∞), γ1, γ2, γ3 ∈ (0, 1), γ1 + γ2 + γ3 = 1
and all conditions (4.1.2) - (4.1.5) and (4.3.8) - (4.3.14) are satis�ed. Moreover,
f(α, γ3) = 17

76 − ε (3113p− 1862) /(912p(19− 7ε)). So, the solution is regular if
(4.2.10) is satis�ed.

Secondly, let r ∈ [10, 19] (which means that p ∈ [38/17, 5/2]). We put

α =
2r − 2

r + 2
,

γ1 =
r2 − 2r − 8

4r(r − 1)
+
ε (r + 2)

r − 1
,

87



γ2 =
(r + 2)

2

4r(r − 1)
,

γ3 =
r − 2

2r
− ε(r + 2)

r − 1
.

Again, the conditions (4.1.2) - (4.1.5) and (4.3.8) - (4.3.14) are satis�ed, f(α, γ3) =
1/(2p) − 2ε(p − 1)/(3p) and so the regularity of solution under the condition
(4.2.11) for p ∈ [38/17, 5/2] is proved. For p > 5/2 this fact has been proved in
[100]. The proof of Theorem 38 is complete.

4.3.3 Proof of Theorem 39

Proof. We proceed exactly in the same way as in the proof of Theorem 36 up
to the condition (4.3.3). It is possible to show (see [117], proof of Theorem 2)
that ˆ

uj∂juk∆hukdx ≤ c
ˆ
|∇u3| |∇u| |∇hu| dx.

So it follows from (4.3.3) that

J(T2)2 ≤ c+ c

ˆ T2

T1

ˆ
|∇u3| |∇u| |∇hu| dxdt. (4.3.19)

Using (4.2.13) and the Hölder inequality and then (4.2.14) and (4.2.15) and
Lemma 5 we can estimate the right hand side of (4.3.19):

ˆ
|∇u3| |∇u| |∇hu|

≤
∥∥∥∥∥∥∥‖∇u3‖Lp3
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L
q2
2
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L
q1
1

∥∥∥∥∥∥∥‖∇hu‖Lr33
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L
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2
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L
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≤
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2
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2 ‖∇hu‖
1
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+ 1
r2

+ 1
r3
− 1

2

2 .

So we get using (4.2.14)

J(T2)2 ≤
ˆ T3

T1
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1
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2 dt

and by the use of the Hölder inequality and (4.2.13) and (4.2.16) we have

J(T2)2 ≤ ‖∇u3‖Lβ(T1,T2;Lp) ‖∇hu‖
1
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+ 1
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r3
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Using now the choice of T1, the de�nition of J(T2) and L(T2) and the fact that
L(T2) ≤ J(T2)4/3 we �nally obtain

J(T2)2 ≤ cε
1
q1

+ 1
q2 J(T2)

1
r1

+ 1
r2

+ 1
r3
− 1

2 + 5
2−

1
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− 1
r3 L(T2)

3
4q1

+ 3
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2 + 1
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1
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1
q1
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q2 J(T2)

2− 1
q1
− 1
q2

+ 4
3

(
3

4q1
+ 3

4q2

)
= cε

1
q1

+ 1
q2 J(T2)2.

Choosing ε su�ciently small we get that J(T2) and consequently L(T2) are
bounded independently of T2 and the proof is complete.

4.3.4 Proof of Theorem 40

Proof. Theorem 40 follows immediately from Theorem 39. Supposing that as-
sumptions in Theorem 40 are satis�ed and moreover p1, p2 ∈ (2,∞] then we
proceed in the following way: if moreover p3 ∈ (2,∞], we put

qi =
2pi
pi − 2

, i = 1, 2, q3 = 2

and
r1 = r2 = 2, r3 =

2p3

p3 − 2
.

If p3 = 2, then we choose ε ∈ (0, 1/4) such that

3

4

( 1

p1
+

1

p2

)
− 1

4
≤ 1

2 + ε

and put

qi =
2pi
pi − 2

, i = 1, 2, q3 = 2 + ε,

r1 = r2 = 2, r3 =
4 + 2ε

ε
.

It is possible to verify that in both cases all the conditions (4.2.12)-(4.2.15) are
satis�ed. Moreover, the veracity of (4.2.16) follows immediately from (4.2.17)
and the choice of q1 and q2. So using Theorem 39 we get the regularity of u.

If we suppose that p3 ∈ (2,∞] and p1, p2 ∈ (1, 2] then by a possible decrease
of β we can suppose without loss of generality that

0 < 2−
( 2

β
+

1

p1
+

1

p2
+

1

p2

)
< min

( 2

3β
,
p1 − 1

2p1
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p2 − 1

2p2
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1

4

)
.

Putting

ε = 2−
( 2

β
+

1

p1
+

1

p2
+

1

p2

)
and

q1 = q2 =
1

2ε
, q3 = 2,

ri =
pi

pi − 2εpi − 1
, i = 1, 2, r3 =

2p3

p3 − 2
,

we can again verify all the conditions (4.2.12)-(4.2.16) and complete the proof
by the use of Theorem 39. We proceed analogically in the remaining cases.
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4.3.5 Proof of Theorem 42

Proof. We proceed in the same way as in the the proof of Theorem 39 up to the
condition (4.3.19). Let q1, q2 ∈ [2,∞) and

1

q1
+

1

q2
=

3p− 3

2p
.

Then by the Hölder inequality
ˆ
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and using also Lemma 5, we have
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p

2 dt.

Firstly, assuming that (4.2.18) holds, we can choose q1 and q2 in such a way
that 1/q1 = 1 − 2/(3β) − 1/p and 1/q2 = 1/2 + 2/(3β) − 1/(2p). Let 1/y =
5(3− 2/β − 3/p)/12. Then we can estimate by the use of the Hölder inequality

ˆ T2

T1

ˆ
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3
2q1 = cε

1
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Secondly, let (4.2.19) hold. Then we simply put q2 = 2 and q1 = 2p/(2p− 3)
and estimate

ˆ T2

T1

ˆ
∇u3∇u∇hudxdt ≤ ||∇2u3||Lβ(0,T ;Lp)||∂3u||
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2q1
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1
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As in the proof of Theorem 36 we can now conclude that J(T2) + L(T2) is
estimated from above independently of T2 and the proof is complete.
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4.4 Conclusions

The global regularity problem we faced above has focused on the use of the
anisotropic Lebesgue space framework, thanks to which results in literature
have been improved (see Theorems 38 - 42). We believe that the tool could
be useful to improve other results in the literature concerning, for example,
other kind of models. Moreover, we would like to mention that since di�erent
generalizations of the Troisi inequality can also be derived, it is not excluded
that some of these generalizations could lead to an even stronger criteria.
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