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Abstrakt

Holografie je speciální zobrazovací metoda umožňující záznam vysoce realistic-
kého 3-D obrazu. Navíc má nespočet technických aplikací, například v mikrosko-
pii nebo nedestruktivním testování.

Holografie je dvoustupňovým procesem. Skládá se ze záznamu hologramu a
jeho rekonstrukce. Digitální holografie usiluje o využití digitálních prostředků,
jako jsou elektronické obrazové snímače nebo počítače, v jednom kroku nebo
v obou krocích. Počítačem generovaná obrazová holografie je odvětvím digitální
holografie. Jejím cílem je tvorba digitálního hologramu syntetické scény výpo-
četními prostředky. Může být chápána jako rozšíření počítačové grafiky, která ze
syntetické scény tvoří digitální obraz.

Tato práce pojednává o jednom z nejdůležitějších problémů digitální hologra-
fie, o výpočtu šíření koherentního světla volným prostorem. Konkrétně analyzuje
dvě široce používané metody výpočtu šíření světla mezi dvěma rovnoběžnými
rovinami – konvoluční metodu a metodu rozkladu do úhlového spektra. Nejdůle-
žitější část práce analyzuje jejich korektní diskretizaci. Navíc důkladně analyzuje
konvoluční metodu, ukazuje její omezení a navrhuje způsoby, jak se jim vyhnout.

Práce také pojednává o vlivu zaokrouhlovacích chyb při výpočtu šíření světla.
Dále navrhuje metodu založenou na vyhledávacích tabulkách, která urychluje
výpočet šíření světla mezi rovnoběžnými rovinami nebo mezi množinou bodových
zdrojů světla a rovinou. Tato metoda navíc značně omezuje diskutovaný vliv
zaokrouhlovacích chyb. Metoda najde využití především v počítačem generované
obrazové holografii.



Abstract

Holography is a lensless imaging method capable of producing ultra-realistic 3-D
images. In addition, it has many technical applications, for example in microscopy
or non-destructive testing.

Holography is a two-step process. It consists of hologram recording and holo-
gram reconstruction. Digital holography tries to utilize digital devices such as
electronic sensors or computers in one or both steps. Computer generated display
holography is a special branch of digital holography. It tries to make a digital
hologram of a synthetic scene computationally. It can be thought as an extension
of computer graphics, which tries to make a digital image of a synthetic scene.

This thesis discusses one of the most fundamental part of digital holography
– calculation of coherent light propagation in free space. In particular, it ana-
lyses two widely used methods for calculation of light propagation between par-
allel planes – the convolution method and the angular spectrum decomposition
method. The most important part of the thesis analyses their proper discretisa-
tion. In addition, it analyses the convolution method, shows its limitations and
suggests a way how to overcome them.

Additionally, the thesis discusses influence of rounding errors in light propaga-
tion calculations. It also suggests a look-up table based method that accelerates
calculation of light propagation between parallel planes or between a point cloud
and a plane. Moreover, the method also reduces rounding errors significantly. The
method is especially applicable in computer generated display holography.
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Chapter 1

Introduction

1.1 Areas of holography

Holography is a lensless imaging method introduced independently by Dennis
Gabor [1, 2] in the USA and Yuri Nikolaevich Denisyuk [3] in the USSR. It
became practical after invention of laser in early 1960’s; and became a hot
research topic when Emmett Norman Leith and Juris Upatnieks demonstrated
first three-dimensional holographic images [4], see Figure 1.1.

Holography gained its popularity thanks to ultimate quality of three-dimen-
sional images it produced. However, it became soon obvious that holography

Figure 1.1: Toy Train, Emmett N. Leith and Juris Upatnieks, March 1964, one of
several variants of the first widely seen hologram (Upatnieks collection). Taken

from [5, page 114].



14 Chapter 1

has many applications, not just plain imaging ones. In holographic microscopy,
a hologram (i.e. a product of holography) of a specimen is made first, and the
hologram is inspected under a microscope instead of the original specimen; this
allows, e.g., to study short-living biologic specimens, particles in aerosol, etc.
Holography can be used for imaging in presence of distorting medium, such as
the Earth’s atmosphere. Holographic interferometry and vibrometry allows to
inspect, e.g., small movements of real objects or to inspect quality of surface
shape. Thanks to high resistance of holograms to damage it is possible to use
them for information storage; moreover, holograms allow to store large amount
of data into a tiny piece of a recording material. It is also possible to encrypt data
by optical means. Holography is closely connected to optical computing, e.g., it
is possible to calculate the two-dimensional Fourier transform by optical means
and to store it as a hologram. Holograms can be used as optical elements – they
can emulate conventional optical elements, they can be used to correct their
aberrations or can alter light in a way hardly possible by conventional optical
elements. Holograms can be used as security elements thanks to their distinct-
ive look and their comparatively difficult production. In short, holography is a
general method with wide range of applications; this was acknowledged with the
Nobel prize in physics to D. Gabor in 1971. For more details on applications
and history of holography see, e.g., [5, 6, 7, 8].

Classical holography shares the same inconvenience with classical photo-
graphy. In order to make a photograph (or a hologram), it is usually necessary
to chemically process a recording medium such as a silver halide photographic
film. This lead in the end of the 20th century to the biggest revolution in pho-
tography since its invention – photography became digital. This means that a
photosensitive recording material (a film) in a camera was replaced by a photo-
sensitive electronic element (a sensor) that captures incoming light. Data pro-
duced by a sensor are then processed and viewed using a computer; even mak-
ing photographic prints relies on principles different from classical photographic
ones.

Holography, especially in technical (non-imaging) applications, tries to un-
dergo the same process. Digital holography (DH) also replaces a photosensitive
recording material (a film) by a photosensitive electronic element (a sensor).
The recorded pattern (a digital hologram, see Figure 1.2) is then computation-
ally processed. In classical holography, it is necessary to illuminate a hologram
in a special way in order to see the recorded image. In digital holography, this
process is usually simulated using a computer. Calculations are performed with
the digital hologram, i.e. data produced by the sensor, in order to obtain an
image that would be seen as if a classical hologram was properly illuminated.
Such a calculated image (called reconstructed image) can be then displayed on
a common electronic display.

It is also possible to evaluate the reconstructed image computationally, for
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Figure 1.2: A digital hologram (left) and its numerical reconstruction (right).
Taken from [9, pages 46–47].

example to count particles that were captured by the hologram. It is possible
to process the reconstructed image, for example to denoise it or to enhance its
contrast. Moreover, it is possible to evaluate and process the digital hologram
itself, not just the reconstructed image. Computational processing of digital
holograms then allows things impossible in classical holography (or at least
very difficult). Finally, it is also possible to make a “hardcopy” of the digital
hologram – to “print” it so that the hardcopy behaves in the same way as a
properly captured classical hologram. For more details on digital holography
and its applications see, e.g., [9, 10, 11, 12, 13].

Digital holography still requires a physical object to be recorded, a sensor,
light sources, etc., just like classical holography. However, sometimes it is im-
possible or inconvenient to make a hologram – for example if the physical object
does not exist.

The same problem also exists in common imaging – sometimes it is neces-
sary to make an image of a thing that does not exist. There are many examples:
visualisations of CAD/CAM models, drawing maps, production of motion pic-
ture special visual effects and so on. Computer graphics is often employed to
synthesize such images – its input is a mathematical description, its output are
image data that are in essence the same as data produced by a sensor of a di-
gital camera. If desired, computer graphics can create photorealistic images, i.e.
images indistinguishable from the images captured in the real world.

It follows that the same could be done in holography as well; we talk about
computer generated holography (CGH). Its goal is to produce a digital hologram
from a mathematical input (whereas computer graphics creates an image from
the same input).

There are many applications of computer generated holography. For instance,
it is possible to prepare a computer generated hologram that is subsequently
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used to test shape of an aspheric lens; computer generated hologram can be
used as an optical element such as a diffuser; computer generated holograms
can enhance anti-counterfeiting properties of security holograms; and so on.

Finally, it is possible to make a computer generated hologram for display
purposes; then we talk about computer generated display holography (CGDH).
The ultimate goal of computer generated display holography is to produce a
hologram that, when properly displayed, fools an observer so that he or she has
sense of reality.

Computer graphics reached this level – in specific scenarios – in the end of
the 20th century. For example in motion picture production, computer graphics
is used whenever it is cheaper than capturing real subjects; and it is taken for
granted that the result will look real.

Classical display holography (i.e. making holograms of real objects using
photosensitive recording materials) reached this level – in specific scenarios –
in the beginning of the 21st century. Modern ultra-fine panchromatic recording
materials are able to create a breathtaking illusion of reality, see, e.g., [14, 15]
and Figure 1.3.

Computer generated display holography is very far from this level. Many
algorithms that are taken for granted in computer graphics, such as shading or
hidden surface elimination, still do not have “standard” counterpart in computer
generated display holography. Output devices for computer graphics, such as
electronic displays or printers, reached such a high level of fidelity that there is
hardly any reason to improve them. Computer generated display holography still
does not have any reasonably affordable and acceptable quality output devices.
In short, it can be said that computer generated display holography looks like
computer graphics in 1960’s – some basic building blocks have been developed,
but a lot of hard work is still waiting to be done.

1.2 Objectives of the thesis

This thesis deals with ideas and algorithms applicable in digital holography or
computer generated display holography (DH / CGDH). Strictly speaking, it has
no single goal, it does not offer any solution to any specific problem. Instead,
it is composed of several loosely connected articles that discuss some problems
that I feel were not well understood. Let me explain that.

Holography is a method of lensless image capture briefly introduced in
Chapter 2. It is essentially composed of two interconnect parts – hologram cap-
ture and hologram reconstruction. DH / CGDH tries to mimic one or the other
part computationally. One of the most important tasks in DH / CGDH is cal-
culation of coherent light propagation in free space. There are many ways how
to calculate it, see for example [6, 12, 16, 17]. Each method has its pros and
cons; each of them works best in specific conditions and fails in another. Un-



Introduction 17

Figure 1.3: A full colour Denisyuk hologram of the 15th anniversary Fabergé
Easter egg by Andreas Sarakinos, Hellenic Institute of Holography, Greece, 2015.
Recorded in-situ on BB-panchromatic glass plate, size approximately 25×25 cm2.

fortunately, it is quite difficult to tell if a result of a calculation is correct in
absence of a reference result. Thus, the thesis mostly discusses modifications of
some standard methods so that their result can be then taken as “the reference
result”.

“Reference methods”, however, tend to be very slow or memory intensive.
Therefore it is often difficult to compare a result of a “fast method” with the
reference result, because the reference result would take too long to calculate.
Thus, I developed methods that can provide reference results within reasonable
time and memory restrictions.

I restricted my research to calculations based on scalar theory of monochro-
matic coherent light [6, Chapter 3], because DH / CGDH usually does not re-
quire more elaborate mathematical model of light. As a reference mathematical
description of light propagation in free space, I picked the Rayleigh-Sommerfeld
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diffraction formula of the first kind,

𝑈(𝑥, 𝑦, 𝑧0) = − 1
2𝜋

∫︁∫︁
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0 .

(1.1)

see [18, Eq. 3.2-78] or [19, Eq. 2]. The meaning of the variables in Eq. (1.1) is
not important now, the formula is shown just to get an idea how difficult is the
calculation. Anyway, 𝑈 is a complex value describing the electromagnetic field at
a specific point, 𝑥, 𝑦, 𝑧0, 𝜉, 𝜂 are the spatial coordinates, 𝑘 is the wave number,
Ω is an area in the plane 𝑧 = 0 and j2 = −1. The formula calculates propagation
of coherent light from the area Ω to the point (𝑥, 𝑦, 𝑧0), see Figure 1.4.
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and illuminating the point (x, y, z0)

Figure 1.4: The Rayleigh-Sommerfeld diffraction formula (1.1) calculates propa-
gation of coherent light from the area Ω to the point (𝑥, 𝑦, 𝑧0).

First of all, Eq. (1.1) is directly derived from the Maxwell’s equations de-
scribing monochromatic coherent light in free space [6, Chapter 3], thus it can
be regarded as physically correct. Second, it is mathematically consistent, unlike
for example the Fresnel-Kirchhoff diffraction formula [6, Chapter 3.5]. Third, it
is mathematically equivalent to the method “angular spectrum decomposition”
[19], which is used in DH / CGDH very often. Fourth, other methods of light
propagation used in DH / CGDH, such as the Fresnel approximation or the
Fraunhofer approximation, can be easily derived from the Rayleigh-Sommerfeld
formula [6, Chapter 4]. Finally, as the Rayleigh-Sommerfeld formula is just a
definite double integral in the complex domain, it can be easily calculated nu-
merically.

The definite double integral in the Rayleigh-Sommerfeld formula can be ap-
proximated by double summation. However, as it is usually necessary to evaluate
it at many points (𝑥, 𝑦, 𝑧0), a straightforward calculation at every point would
be very slow. However, Eq. (1.1) can be rewritten as a convolution and efficiently
calculated using the fast Fourier transform.

“The convolution method” imposes some restrictions on the calculation. It
can be often found in literature that the spatial coordinates 𝑥 and 𝜉 (𝑦 and
𝜂, respectively) have to be discretised equally; that the area spanned by the
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coordinates 𝑥, 𝑦 has to be the same as the rectangular area Ω spanned by the
coordinates 𝜉, 𝜂; and that the calculation requires certain amount of additional
memory (“zero padding”). Sadly, actual details, such as the amount of addi-
tional memory, are given differently by different authors. Therefore, I rigorously
examined the convolution method, derived its actual requirements and designed
a method how to use it in various circumstances that were difficult before. The
method is described in detail in Chapter 3.

There are other ways how to evaluate the Rayleigh-Sommerfeld formula than
“the convolution method”. As I mentioned, Eq. (1.1) is mathematically equi-
valent with “the angular spectrum decomposition” that expresses the formula
using the Fourier transform. It is therefore tempting to use the discrete Four-
ier transform (especially the fast Fourier transform) to evaluate it numerically.
Surprisingly, although the methods are equivalent in the continuous domain,
their numerical evaluation differs a lot. The conventional wisdom says that the
discrete convolution methods can be used just for long propagation distances
(𝑧0 large in Eq. (1.1)), while methods based on the Fourier transform, such
as the angular spectrum decomposition, should be used for short propagation
distances, see for example [16]. There are some ad hoc tricks that, e.g., tweak
the angular spectrum decomposition method so that it can be used for large
propagation distances as well, see for example [20, 21]. However, the authors of
such methods do not discuss physical meaning of the trick and its implications.
Moreover, if two mathematically equivalent formulas lead to two numerical al-
gorithms with completely different properties, it indicates hidden assumptions
in the discretisation process. I closely examined the discretisation of both “the
convolution method” and “the angular spectrum decomposition” and found the
hidden problem. Then I created a method how to discretise both methods so
that they are still equivalent and can be used for any propagation distance.
The methods are described in Chapters 4 and 5. I consider them my biggest
theoretical contribution to DH / CGDH.

In numerical calculations, it is necessary to use limited precision numbers,
such as single precision or double precision IEEE 754 floating point numbers. The
conventional wisdom says that double precision calculations are preferred in light
propagation calculations. However, algorithms of computer generated display
holography often utilize special hardware such as a GPU (graphics processing
unit, “a graphics card”) that favours single precision calculations. After all,
hardware for single precision calculations is simpler and consumes less power;
and in most situations, single precision calculations are good enough. I therefore
examined influence of limited precision in light propagation calculation; the
results are given in Chapter 6. I do not consider this result a fundamental one;
on the other hand, I think it is very practical.

I have found that methods introduced in Chapters 4 and 5 tend to be slow
in extreme situations. I have also found that many methods of light propaga-
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tion calculation start to be unreliable for long propagation distances in a lim-
ited precision environment. Therefore, I designed look-up tables that solve both
problems. The method is described in Chapter 7, additional details are given in
Appendices A, B and C.

Chapter 8 concludes the thesis and describes my current and future work
in computer generated display holography. Finally, Chapter 9 summarizes my
activities in holography.

As the thesis is composed of several individual journal or conference articles,
it does not contain any general, comprehensive “state of the art”. I have written
and presented one as a part of my state doctoral examination. It is available upon
request at the Department of Computer Science and Engineering, University of
West Bohemia, Pilsen, Czech Republic.
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Chapter 2

3-D displays and holography

2.1 “Holography” around us

A realistic 3-D illusion is often called “a hologram”, stunning displays are often
called “holographic”. However, if we search for the hologram on the Internet,
the results are quite confusing, see Figure 2.1.

First of all, most found images are fakes, i.e. they are just a result of image
retouching, see Figure 2.2. Not only they are not photographs of real devices –
current physics just does not have tools to make such displays. Most remaining
images are real photographs of devices that have nothing to do with holography.
It just happened that the term “hologram” is so fancy that it is often used in

Figure 2.1: Google search results for the word “hologram”, 2016/10/26.
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Figure 2.2: Description of the search results from Figure 2.1. Just two results,
depicted by green border, are related to holography.

advertising new display technologies even if they utilize completely different
principles.

In this particular search, just two images are related to holography. The
one in the upper part of the screen is a sticker with a diffractive structure; this
particular one is, strictly speaking, not a hologram too. So the only real hologram
on this screen is partly displayed in the last row of images, see Figure 2.2.

The aim of this chapter is thus to clarify what is a hologram. Besides that, we
will show examples of technologies often inappropriately called “holographic”.
In the next section, we will introduce principle of holography.

If we ask “what is a hologram”, most people recall sci-fi movies and ima-
gine something like “futuristic display”. However, illusions such as the one in
Figure 2.3 cannot be produced with current knowledge of physics.

A lot of manufacturers advertise their products as “holographic”, for ex-
ample Microsoft HoloLens. Campaigns are often accompanied by pictures such
as Figure 2.4. Again, it is just a fake image. In particular, HoloLens is an aug-
mented reality system that requires a user to wear special goggles. Images such
as this one just give an impression what the user sees. Indeed, anyone without
the goggles does not see the illusion.

Strictly speaking, HoloLens technology uses optical elements (waveguides)
that have something to do with holography. As “hologram” sounds better than
“waveguide”, the name HoloLens emerged.
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Figure 2.3: Star Wars: A New Hope (directed by G. Lucas, 1977).

Figure 2.4: Microsoft HoloLens: visualization of augmented reality.
Taken from [22].

Then there is a broad variety of stage illusions – the whole stadium sees that
“a hologram” appeared on the stage, see Figure 2.5. Here, common technologies
such as rear projection to a transparent screen, or projection to a screen and
its reflection from a semi-transparent mirror are utilized. It follows that these
illusions are just 2-D images that appear to be present on the stage. For details,
see for example [23].

Exactly the same principle, often called (a bit imprecisely) “Pepper’s ghost”
[26], is utilized in small to medium sized displays that show an object seemingly
floating in the air. Such displays, often in a shape of a pyramid, just reflect
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Figure 2.5: Kagamine Rin & Len at a Hatsune Miku concert, 2010/3/9. The
technology was developed by Crypton Future Media. Taken from [24].

Figure 2.6: DreamocTM HD3 display by RealfictionTM [25].

an image produced by an ordinary 2-D display by a semi-transparent mirror,
see Figure 2.6. However, if the object displayed rotates, changes, etc., the ob-
server is fooled enough to believe he or she sees a perfect 3-D illusion. For details,
see for example [27].

There are, of course, technologies that provide true 3-D illusion, such as the
rotating display [28], see Figure 2.7. Despite that authors of such displays often
do not claim they are holographic (as they are not), they are coined as such in
newspapers, on TV, etc.

One of the most promising technologies for 3-D display is based on G.
Lippmann’s idea of “integral display”, see for example [29, 30]. It is often called
“light field display” as well, although light field is just a theoretical concept not
related to any display technology. Similarly to a holographic display, it is a flat
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high-speed
projector

spinning
mirror

synchronized
motor

Figure 2.7: 360∘ rotating 3-D display. Taken from [28].

elemental
images

array of
microlenses

Figure 2.8: Sketch of an integral display (left) and an example of elemental
images (right). Please note that in reality, there is usually no gap between the

microlenses and elemental images. The elemental images are taken from
http: // web. media. mit. edu/ ~gordonw/ SyntheticLightFields .

display that can provide goggles-free 3-D illusion. Contrary to a holographic
display, it does not rely on wave optics principles and it seems that affordable
integral displays could be built with current technology.

Basic idea of integral display is simple. A display can be thought as a window
to another world. The window can be imaginarily split to many elementary areas.

http://web.media.mit.edu/~gordonw/SyntheticLightFields
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Each area must provide a view to the world behind; if a viewer looks through
that area, he or she “looks through a keyhole”. This is technically achieved by
combination of “an elemental image” – a photograph virtually captured from
the centre of the elementary area – and a microlens that virtually moves the
elementary image far away and magnifies it, see Figure 2.8. An eye located close
to the microlens then sees the same image as “looking through a keyhole”. A
viewer located far away from the array of elemental image-microlens pairs then
sees through many keyholes at once, exactly as if he or she looks through an
ordinary window.

Finally, we should not forget attempts to display a 3-D illusion that really
floats in space, can be observed from anywhere and are closest to “sci-fi holo-
grams”. There are several attempts how to make such an illusion; one of them
uses lasers to make points in the air glow, see Figure 2.9 or for example [31].
However, as the glowing points can be seen from anywhere, such displays cannot
show opaque objects as every surface is always visible.

Figure 2.9: Burton Inc. 3-D plasma volumetric display, 2011/11/15.
Taken from [32]

2.2 Principle of holography

Let us think for a while how to provide a perfect illusion, visually indistinguish-
able from the real world.

Recall that our eyes respond just to light that enters their pupils. Thus, in
order to see an object, some light must be reflected off its surface, and some
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objectvirtual image
of the object

mirror

observer

Figure 2.10: An observer sees an object thanks to rays of light leaving the object
and entering the observer’s eyes. Apparent position of the object is given by light

rays, not the object itself.

light rays must find their way to the retina.
A light ray need not travel in a straight line – for example a mirror changes

its direction abruptly. A mirror does not bend light rays arbitrarily. It bends
them so that they appear to originate from the “mirror image” of their source.
Thus, an observer looking towards the mirror sees the original object behind the
mirror surface, see Figure 2.10. Strictly speaking, the observer sees the virtual
image of the original object. If the mirror is perfect, it is hard to tell if we are
looking at the original object or its virtual image. Anyone who ever visited a
mirror maze can confirm that.

In order to create a perfect illusion, it is necessary to “freeze light” somehow
– to make a hypothetical display, a surface that emits exactly those light rays
that were leaving the mirror in Figure 2.10. As the light rays are exactly the
same, the observer cannot tell if he or she watches the original object or its
virtual image.

The points of the hypothetical display could emit light themselves such as
CRT or OLED displays. Or, such as in LCD displays, some backlight could be
provided. In this case, the task of the hypothetical display is to bend light rays
from the light source so that light rays produced are the same as the light rays
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virtual image
of the object

observer

hypothetical
display

light source
Figure 2.11: An observer watching “a hypothetical display” sees a perfect illusion,

such as when watching the object in a mirror.

formed by the original object, see Figure 2.11.
In order to make such a hypothetical display, two questions have to be

answered: how to capture complete information about light rays leaving the
object, and how to replicate them. Both questions were first answered by D.
Gabor in his seminal papers [1, 2], where he proposed a new method for lens-
less image capture. He called the image formed by the process the hologram
and the process the wavefront reconstruction; the process was later renamed to
holography.

Recall that the hypothetical display has to bend rays coming from the back-
light. Light diffraction does exactly this. A light ray passing through a fine
locally periodic structure of stripes splits to several new rays called diffracted
rays, see Figure 2.12. Their direction depends on stripes’ distance 𝑑, wavelength
of light 𝜆2 (the presence of the subscript will be useful later) and direction of
the original ray. If a structure, called a diffractive structure, forms several rays
at once (it depends on stripes’ properties), they are numbered by integer 𝑚, and
they are called diffraction orders. Diffraction order 𝑚 = 0 is just the directly
transmitted ray. In particular, angles 𝜃in of the incoming ray and 𝜃out, 𝑚 of the
𝑚-th diffracted ray are related in the grating equation, see for example [7]:

sin 𝜃out, 𝑚 = 𝑚
𝜆2
𝑑

+ sin 𝜃in. (2.1)
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Figure 2.12: Diffraction of light ray at different gratings.

Please note that all rays lie in a single plane. For simplicity, we assume that
the stripes of the diffractive structure are perpendicular to the incoming ray.

For now, let us just remember the most important fact: fine stripes bend a
ray a lot, rough stripes bend a ray a little.

Thus, to make an illusion of a point floating behind the display surface,
the diffraction pattern has to vary its properties. Somewhere it is necessary
to bend the backlight a lot, thus the structure has to be fine. Somewhere else
the backlight rays are almost in the right direction, therefore the structure can
be rough, see Figure 2.13. It is easy to see that the structure has to look like
concentric circles and their density grows from their common centre.

Now it is time to substitute some real-world numbers to the grating equa-
tion (2.1). Wavelength of visible light is between 0.4 and 0.7 𝜇m; let us take

laser

diffraction pattern
diffracted rays,

diffraction order m = +1

observer

reconstruction
light

virtual
image

Figure 2.13: Diffraction at a specific structure creates an illusion of a point.
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𝜆2 = 0.5 𝜇m (green-cyan) as an example. If the stripes are just 10 𝜇m apart
(that is, one cycle from opaque through transparent to opaque is 10 𝜇m), then
the ray deflection is only 2.87∘ for diffraction order 𝑚 = 1 (we are usually in-
terested in this diffraction order). This is not too impressive – when watching
a common display, the field of view is about 30∘. Such a big deflection angle
would require stripe width about 1 𝜇m.

Besides the original two questions, a new one appears: how to fabricate
such a fine pattern? Luckily, there is a phenomenon that gives an answer: light
interference. If two lights are mutually coherent (for example coherence of laser
light is quite good), they interfere and create a pattern of bright and dark stripes
that can be recorded by a fine photographic film. For example, let us imagine
a wide beam of laser light illuminating a screen (or a photographic film) and a
dust particle in between. Light (we call it reference light) scatters on the dust
particle and the particle starts to behave as a point light source. The screen
is thus illuminated by two light sources – from the laser unit and from the
dust particle. These two lights interfere and create exactly the pattern we want,
see Figure 2.14.

laser

dust
particle

scattered
light

interference
pattern on a screen

reference light

Figure 2.14: Laser light illuminates a dust particle. The scattered light interferes
with the laser light and creates an interference pattern on a screen.

To explain why, we need to understand light interference quantitatively. If
two “coherent” light beams illuminate a screen, they form an interference pat-
tern that locally looks like a set of straight stripes. Their width 𝑑 depends on
angles of the forming light beams and their common wavelength 𝜆1 (the pres-
ence of the subscript will be useful in a while). It is described by the interference
equation (2.2), see also Figure 2.15. Please note that for simplicity, we assume
that both beams lie in a single plane. In this case, the stripes of the interference
pattern are perpendicular to that plane.

𝑑 = 𝜆1
sin 𝜃𝐴 − sin 𝜃𝐵

. (2.2)

For example, if two green-cyan (𝜆1 = 0.5 𝜇m) mutually coherent beams meet
at angles 𝜃𝐴 = 45∘, 𝜃𝐵 = −45∘, they form the interference pattern where stripes
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Figure 2.15: Interference of two mutually coherent light beams.

are 𝑑 = 0.35 𝜇m apart.
It it worth mentioning that it is quite tricky to define coherence. For now,

let us just say that if lights interfere, they are coherent, and vice versa. This
is not a very useful definition, indeed, but we will not need rigorous theory of
coherence for our purposes.

Now it is straightforward to combine principles of interference and diffrac-
tion. We know that two lights 𝐴, 𝐵 of wavelength 𝜆1 interfere and make a
pattern of certain density described by the interference equation (2.2). We also
know that light “in” of wavelength 𝜆2 passing through a pattern of certain dens-
ity is diffracted; this is described by the grating equation (2.1). We can combine
both equations together and get the sine-theta equation (the name is the same
as in [7]):

sin 𝜃out, 𝑚 = 𝑚
𝜆2
𝜆1

(︀
sin 𝜃𝐴 − sin 𝜃𝐵

)︀
+ sin 𝜃in. (2.3)

Again, for simplicity we assume that all light rays involved in the equation
lie in a single plane.

Now, imagine a simple experiment. Let us illuminate a photographic film
by two beams of the wavelength 𝜆2 = 𝜆. Let their angles of incidence be 𝜃𝐴

and 𝜃𝐵. An interference pattern is created and recorded by the film, see again
Figure 2.15. Then, let us illuminate the film by a light ray of the same wavelength
𝜆1 = 𝜆 at an angle 𝜃𝐵, i.e. 𝜃in = 𝜃𝐵. Substitution to the sine-theta equation
reveals that the first order diffracted ray (𝑚 = 1) leaves the film at an angle 𝜃𝐴,
see Figure 2.16. That is, the pattern encoded the ray direction somehow, and
we are able to reconstruct it.

It is now very easy to describe holography; in fact, we have described it
right now. Let us call light leaving an object as the object wave (the term wave
is used because interference and diffraction rely on wave nature of light). Let
us put a photographic film somewhere so that it is illuminated by the object
wave. Let us illuminate the film with additional light called the reference wave.
If the reference wave and the object wave are coherent, the interference pattern
is formed are recorded by the film. This recording is called the hologram.

The hologram is subsequently illuminated by an illumination wave. If the
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Figure 2.16: Diffraction of light 𝐵 at the structure recorded in Figure 2.15.

illumination wave is a replica of the reference wave, diffracted light perfectly
reconstructs the object wave. Thus, holography is sometimes called the wavefront
reconstruction.

To see why holography works, let us examine a simple case. Let the object
wave be light leaving a point in the space. Also for simplicity, let us assume
that reference rays are mutually parallel. Both lights share the same wavelength
𝜆ref. We can imagine that the hologram is split to tiny elementary areas so that
each area is illuminated by a single ray from the object and a single reference
ray. Each elementary area thus records a simple interference pattern. Its density
changes across the hologram area because the angle between the object and the
reference ray varies slightly, see Figure 2.17a. Indeed, the angles of rays should
be called 𝜃obj and 𝜃ref now instead of 𝜃𝐴 and 𝜃𝐵 in the sine-theta equation (2.3).

Subsequently, we illuminate the hologram by the illumination wave of wave-
length 𝜆ill; in the sine-theta equation, we should rename 𝜃in to 𝜃ill to make it

photographic
film

object
rays

reference
rays

hologram
diffracted
rays

illum.
rays

virtual image

hologram

illum.
rays

diffracted
rays

real image

angle between
ref. and obj.
raysobject
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area
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a) b) c)

observer

Figure 2.17: Principle of holography. a) hologram recording, b) rays of order
𝑚 = 1 diffracted by the hologram form the virtual image, b) in this case, rays of

order 𝑚 = −1 form the real image.
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clear. Thus, the sine-theta equation, after renaming the symbols, becomes

sin 𝜃out, 𝑚 = 𝑚
𝜆ill
𝜆ref

(︀
sin 𝜃obj − sin 𝜃ref

)︀
+ sin 𝜃ill. (2.4)

If the illumination wave is a replica of the reference wave (𝜃ref = 𝜃ill, 𝜆ref =
𝜆ill), the object wave is perfectly reconstructed for diffraction order 𝑚 = 1, as

sin 𝜃out, 1 = 𝜆ref
𝜆ref

(︀
sin 𝜃obj − sin 𝜃ref

)︀
+ sin 𝜃ref = sin 𝜃obj.

That is, if an observer looks towards the hologram, he or she sees the vir-
tual image of the original point, see Figure 2.17b. As a general object can be
decomposed to many point light sources, the same would apply for a general
object.

We can also notice an additional detail. If we use the reference light at
normal incidence to the hologram (𝜃ref = 𝜃ill = 0) and substitute 𝑚 = −1 to the
sine-theta equation, we get 𝜃out, −1 = −𝜃obj. That is, if we place a sheet of paper
to a certain distance from the hologram, a bright point appears. At this place,
a real image of the original point was formed, see Figure 2.17c. This means that
holography is able to make an illusion both in front or behind the hologram
surface.

Let us conclude this short introduction. In order to watch a hologram, it is
necessary to have a diffractive structure and to illuminate it in a proper way. The
diffractive structure (the hologram) can be made by illuminating a photographic
film by light reflected off an object and auxiliary (reference) light.

Computer generated display holography tries to make the hologram com-
putationally, for example by simulating the hologram recording process. Digital
holography tries to reconstruct images encoded by the hologram, for example
by simulating the hologram illumination process. In either case, it is absolutely
necessary to understand propagation of light including phenomena such as in-
terference or diffraction.
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Chapter 3

Reference calculation of light
propagation

The article Reference calculation of light propagation between parallel planes of
different sizes and sampling rates [33] published in Optics Express, included in
this chapter from page 43, discusses enhancements of “the convolution method”
of light propagation calculation. To make the article shorter, it was necessary
to omit some details, especially in its first sections. As this chapter starts the
technical part of the thesis, it is convenient to include them right here, before
the article itself.

3.1 Preliminaries

Light can be described as the electromagnetic field. The idea of electromagnetic
field declares that each point x in the space possesses two time-dependent vec-
torial properties: the electric field E(x, 𝑡) and the magnetic field H(x, 𝑡). These
fields are not independent; their dependency is described by the Maxwell’s equa-
tions.

The Maxwell’s equations is a set of four vectorial differential equations. Their
solution can be very difficult; therefore, simplifications are usually employed. In
digital holography / computer generated display holography, we usually assume
simple free space, i.e. there is no free electric charge, there is no electric current or
external magnetic force and the environment is linear, isotropic, homogeneous,
nondispersive and nonmagnetic.

In such environment, it can be found [6, Section 3.2] that each component 𝐸𝑥,
𝐸𝑦, 𝐸𝑧 of the electric field E (we assume the Cartesian coordinate system) and
𝐻𝑥, 𝐻𝑦, 𝐻𝑧 of the magnetic field H must satisfy the same differential equation

𝜕2

𝜕𝑥2 𝑢(x, 𝑡) + 𝜕2

𝜕𝑦2 𝑢(x, 𝑡) + 𝜕2

𝜕𝑧2 𝑢(x, 𝑡) = 𝑛2

𝑐2
𝜕2

𝜕𝑡2
𝑢(x, 𝑡)

(the wave equation), where 𝑡 is time, 𝑐 is the velocity of light in vacuum, 𝑛 is
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the refractive index of the medium and 𝑢 stands for any of 𝐸𝑥, 𝐸𝑦, 𝐸𝑧, 𝐻𝑥, 𝐻𝑦,
𝐻𝑧. We usually solve the wave equation for the symbol 𝑢 and do not care what
physical quantity it stands for. This simplification is called the scalar theory of
light

There are many solutions of the wave equation. The solution called the mono-
chromatic wave is

𝑢(x, 𝑡) = 𝐴(x) cos
[︀
𝜑(x) − 2𝜋𝜈𝑡

]︀
,

where 𝐴(x) and 𝜑(x) are the amplitude and phase at a point x and 𝜈 is the
time frequency of the field oscillation. Now, the problem is to find functions 𝐴

and 𝜑.
The monochromatic wave can be compactly described as

𝑢(x, 𝑡) = ℜ[︀
𝑈(x) exp(−j 2𝜋𝜈𝑡)

]︀
, (3.1)

where j 2 = −1, ℜ(·) is the real part of a complex number and the complex
function 𝑈(x) = 𝐴(x) exp[ j 𝜑(x)] is called the complex amplitude or the phasor.

Substitution to the wave equation reveals that the complex amplitude 𝑈

must satisfy the Helmholtz equation

𝜕2

𝜕𝑥2 𝑈(x) + 𝜕2

𝜕𝑦2 𝑈(x) + 𝜕2

𝜕𝑧2 𝑈(x) + 𝑘2𝑈(x) = 0,

where
𝑘 = 2𝜋

𝜈

𝑐/𝑛
= 2𝜋

𝜆
.

The number 𝑘 is called the wave number, 𝜆 = 𝑐/(𝑛𝜈) is the wavelength.
In DH / CGDH, we are usually interested in perfect monochromatic waves

of prescribed wavelength 𝜆. Thus, we are looking for the phasor 𝑈 from the
Helmholtz equation. Please note that the phasor has no direct physical meaning.
To get it, it is necessary to multiply it with the time-varying term and extract the
real part, see Eq. (3.1). However, the value of |𝑈 |2 is equal, up to a multiplicative
factor, to the light intensity, see [6, Section 4.1.1].

The Rayleigh hypothesis (see for example [34]) states that once 𝑈(x) is
known in a single plane, say 𝑧 = 0, its value is given in the whole space. In fact,
the same statement is given by the Rayleigh-Sommerfeld diffraction formula of
the first kind (1.1), repeated here for convenience:

𝑈(𝑥, 𝑦, 𝑧0) = − 1
2𝜋

∫︁∫︁

Ω
𝑈(𝜉, 𝜂, 0)

(︂
j 𝑘 − 1

𝑟

)︂ exp(j 𝑘𝑟)
𝑟

𝑧0
𝑟

d𝜉d𝜂

𝑟 =
√︁

(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + 𝑧2
0 .

We assume that the phasor 𝑈(𝜉, 𝜂, 0) is zero outside the area Ω lying in the
plane 𝑧 = 0 and that 𝑧0 > 0. If we define 𝑈(𝜉, 𝜂, 0) = 0 outside Ω, we can
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rewrite the formula to

𝑈(𝑥, 𝑦, 𝑧0) = − 1
2𝜋

∫︁∫︁ ∞

−∞
𝑈(𝜉, 𝜂, 0)

(︂
j 𝑘 − 1

𝑟

)︂ exp(j 𝑘𝑟)
𝑟

𝑧0
𝑟

d𝜉d𝜂

𝑟 =
√︁

(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 + 𝑧2
0 .

(3.2)

If we define the Fourier transform of a function 𝑔(𝑥, 𝑦) as

ℱ{︀
𝑔(𝑥, 𝑦)

}︀
= 𝐺(𝑓𝑥, 𝑓𝑦) =

∫︁∫︁ ∞

−∞
𝑔(𝑥, 𝑦) exp

[︀−j 2𝜋(𝑥𝑓𝑥 + 𝑦𝑓𝑦)
]︀
d𝑥d𝑦,

where 𝑓𝑥 and 𝑓𝑦 are the spatial frequencies, and its inverse as

ℱ−1{︀
𝐺(𝑓𝑥, 𝑓𝑦)

}︀
= 𝑔(𝑥, 𝑦) =

∫︁∫︁ ∞

−∞
𝐺(𝑓𝑥, 𝑓𝑦) exp

[︀
j 2𝜋(𝑥𝑓𝑥 + 𝑦𝑓𝑦)

]︀
d𝑓𝑥d𝑓𝑦,

it is possible to rewrite (3.2) to

𝑈(𝑥, 𝑦, 𝑧0) = ℱ−1
{︁

ℱ{︀
𝑈(𝑥, 𝑦, 0)

}︀
exp

(︁
j 𝑘𝑧0

√︁
1 − 𝜆2𝑓2

𝑥 − 𝜆2𝑓2
𝑦

)︁}︁
, (3.3)

which is valid for every 𝑧0, see [19] for the proof of equivalence.
Equation (3.2) leads to the convolution method of light propagation calcula-

tion, equation (3.3) leads to the angular spectrum decomposition and others.

3.2 Light propagation between parallel planes

Basic task of digital holography is a digital hologram reconstruction. This, for
example, means simulation of the hologram illumination by coherent light and
subsequent simulation of light propagation to a virtual screen. Virtual screen
captures, indeed, the real image produced by the hologram.

First part of the process is easy. A digital hologram is usually given as an
ordinary digital image, i.e., it is given as a 2-D signal (array of samples) ℎ[𝑚, 𝑛]
of the function ℎ(𝑥, 𝑦),

ℎ[𝑚, 𝑛] = ℎ(𝑚Δ𝑥, 𝑛Δ𝑦), 𝑚, 𝑛 ∈ Z, Δ𝑥 > 0, Δ𝑦 > 0.

The function ℎ(𝑥, 𝑦) usually represents transmittance (real or complex) of the
hologram at a particular point. Any light passing through the hologram is then
locally attenuated, which is mathematically expressed as multiplication. Spe-
cifically, if the hologram lying in the plane 𝑧 = 0 is illuminated from behind
(from “negative 𝑧 half-space”) with light described by the phasor 𝐿(𝑥, 𝑦, 𝑧),
then light phasor just after passing the hologram is given as

𝑈(𝑥, 𝑦, 0) = 𝐿(𝑥, 𝑦, 0)ℎ(𝑥, 𝑦).

If the planes of the hologram and the screen are parallel to each other, it is
possible to use either Equation (3.2) or (3.3) to calculate the light phasor in the
plane 𝑧 = 𝑧0.
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As as explained in Section 1.2, it is useful to have a realiable reference
algorithm that calculates light propagation numerically. It is wiser to prefer
the Rayleigh-Sommerfeld formula (3.2) over the angular spectrum decomposi-
tion (3.3), as the latter one requires more elaborate mathematics. While it is
possible to approximate the Fourier transform by the discrete Fourier trans-
form, the consequences of the approximation are not obvious. Specifically, if we
change the continuous transforms in (3.3) to the discrete approximations, we
get some result. If we were able to calculate the result in the continuous domain
and discretise (sample) the result, it is not clear if it was the same as the result
of the discrete calculation.

The Rayleigh-Sommerfeld diffraction formula (3.2) can be rewritten using
convolution. Recall that convolution of functions 𝑓 , 𝑔 is the function 𝑐

𝑐(𝑥) = 𝑓(𝑥) ⊗ 𝑔(𝑥) =
∫︁ ∞

−∞
𝑓(𝜉)𝑔(𝑥 − 𝜉)d𝜉,

or in two dimensions

𝑐(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ⊗ 𝑔(𝑥, 𝑦) =
∫︁ ∞

−∞
𝑓(𝜉, 𝜂)𝑔(𝑥 − 𝜉, 𝑦 − 𝜂)d𝜉d𝜂.

Thus, Equation (3.2) leads to

𝑈(𝑥, 𝑦, 𝑧0) = 𝑈(𝑥, 𝑦, 0) ⊗ 𝐾RS(𝑥, 𝑦, 𝑧0),

where
𝐾RS(𝑥, 𝑦, 𝑧0) = − 1

2𝜋

(︂
j 𝑘 − 1

𝑟

)︂ exp(j 𝑘𝑟)
𝑟

𝑧0
𝑟

𝑟 =
√︁

𝑥2 + 𝑦2 + 𝑧2
0 .

(3.4)

Convolution has a very useful property – it can be calculated using the
Fourier transform:

𝑐(𝑥) = 𝑓(𝑥) ⊗ 𝑔(𝑥) = ℱ−1
{︁

ℱ{︀
𝑓(𝑥)

}︀ℱ{︀
𝑔(𝑥)

}︀}︁
,

and similarly in higher dimensions. We will utilize it later.
In the discrete domain, we can define the discrete convolution:

𝑐[ ] = 𝑓 [ ] ⊗𝑑 𝑔[ ],

where

𝑐[𝑛] =
∞∑︁

𝑚=−∞
𝑓 [𝑚]𝑔[𝑛 − 𝑚],

and similarly in higher dimensions. Here, signals 𝑓 [ ], 𝑔[ ] and 𝑐[ ] contain samples
of functions 𝑓(𝑥), 𝑔(𝑥) and 𝑐(𝑥), that is 𝑓 [𝑚] = 𝑓(𝑚Δ), 𝑔[𝑚] = 𝑔(𝑚Δ), 𝑐[𝑛] =
𝑐(𝑛Δ), where 𝑚, 𝑛 are integer and Δ is a common sampling distance. Please
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note that an infinite number of samples is assumed here. Also note that we
assume correct sampling according to the Nyquist-Shannon sampling theorem.

It is important to emphasise that the discrete convolution is a good counter-
part of the continuous convolution: if we calculate the continuous convolution
𝑐(𝑥) = 𝑓(𝑥) ⊗ 𝑔(𝑥) and sample 𝑐(𝑥), we get the same result as if we sampled
functions 𝑓 and 𝑔 first and calculated 𝑐[ ] = 𝑓 [ ] ⊗𝑑 𝑔[ ].

Unfortunately, the discrete convolution requires signals of infinite extent. On
the other hand, there is the discrete cyclic convolution that works with finite
extent signals:

𝑐′[ ] = 𝑓 [ ] ⊗ 𝑔[ ],

where

𝑐′[𝑛] =
𝐶−1∑︁

𝑚=0
𝑓 [𝑚]𝑔[(𝑛 − 𝑚) mod 𝐶].

Here we assume that signals 𝑓 [ ], 𝑔[ ] and 𝑐′[ ] contain 𝐶 samples each and that
they are numbered from 0 to 𝐶 − 1. Please note that we are using the same
symbol ⊗ for both the continuous and the discrete cyclic convolution. As they
use continuous or discrete operands, respectively, it is clear which one is actually
used. The discrete convolution ⊗𝑑 is used mostly in proofs.

The discrete cyclic convolution has the same useful property as the continu-
ous convolution:

𝑐′[ ] = 𝑓 [ ] ⊗ [ ] = IDFT
{︁

DFT
{︀
𝑓 [ ]

}︀ ⊙ DFT
{︀
𝑔[ ]

}︀}︁
, (3.5)

where DFT{·} and IDFT{·} stand for the discrete Fourier transform and its in-
verse, respectively, and ⊙ is the Hadamard (element-wise) product. The discrete
transforms are defined by equations

DFT
{︀
𝑔[ ]

}︀
= 𝐺[ ]

𝐺[𝑚] =
𝐶−1∑︁

𝑛=0
𝑔[𝑛] exp

(︂
−j 2𝜋

𝑚𝑛

𝐶

)︂
,

𝑚 ∈ {0, 1, 2, . . . , 𝐶 − 1},

and

IDFT
{︀
𝐺[ ]

}︀
= 𝑔[ ],

𝑔[𝑛] = 1
𝐶

𝐶−1∑︁

𝑚=0
𝐺[𝑚] exp

(︂
j 2𝜋

𝑚𝑛

𝐶

)︂
,

𝑛 ∈ {0, 1, 2, . . . , 𝐶 − 1},

and similarly in higher dimensions. Calculating the cyclic convolution using the
discrete Fourier transform has a unique property: the discrete Fourier trans-
form can be calculated for all indices as once with computational complexity
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𝒪(𝐶 log 𝐶). The algorithm for fast evaluation of the discrete Fourier transform
is usually called the fast Fourier transform.

While the discrete convolution ⊗𝑑 is a good counterpart of the continuous
convolution, there is no reason to expect the same from the discrete cyclic con-
volution. In the following paragraphs, we will explore how to utilize the discrete
cyclic convolution (as it can be calculated fast) to approximate the continuous
convolution (as this is what we need).

Here it is worth emphasising an important fact: we will be talking about
convolutions only. The fact that the discrete cyclic convolution can be calculated
fast will not be important. We will not expect anything from the discrete Fourier
transform – we are not interested if it is a good approximation of the continuous
Fourier transform, or if it is not. The discrete transform is just “a black box”
that makes our lives easier, are we are not interested in how it works.

Utilizing the discrete cyclic transform

Let us review our task for clarity. We know light phasor 𝑈(𝑥, 𝑦, 0) in the rect-
angular area Ω in the plane 𝑧 = 0; we assume 𝑈(𝑥, 𝑦, 0) = 0 outside Ω. We
want to calculate light propagation to the plane 𝑧 = 𝑧0; in particular, we will
be interested in 𝑈(𝑥, 𝑦, 𝑧0) in a rectangular area Ω′ in 𝑧 = 𝑧0 only.

For simplicity, let us work in 2-D, i.e. with coordinates 𝑥, 𝑧 only; generaliz-
ation to 3-D is straightforward. Let us denote light phasor in 𝑧 = 0 as 𝑠(𝑥); the
letter 𝑠 stands for the source. We are interested in light phasor in 𝑧 = 𝑧0; let us
denote it 𝑡(𝑥), the letter 𝑡 stands for the target. Clearly,

𝑡(𝑥) = 𝑠(𝑥) ⊗ 𝑝(𝑥), (3.6)

where 𝑝(𝑥) is some function describing light propagation, for example the func-
tion 𝐾RS from Equation (3.4).

It is possible to use the discrete convolution ⊗𝑑 to approximate the result at
𝑥 = 𝑛Δ:

𝑡(𝑛Δ) = 𝑡[𝑛] =
∞∑︁

𝑚=−∞
𝑠[𝑚] 𝑝[𝑛 − 𝑚], (3.7)

where again 𝑠[𝑚] = 𝑠(𝑚Δ), 𝑝[𝑛 − 𝑚] = 𝑝((𝑛 − 𝑚)Δ).
As we assume 𝑠(𝑥) = 0 outside Ω, the sum need not be infinite. Without

loss of generality, let us assume that 𝑠(𝑥) = 0 for 𝑥 < 0 and for 𝑥 > (𝑀 − 1)Δ,
i.e., the only 𝑠[𝑚] ̸= 0 must satisfy 0 ≤ 𝑚 ≤ 𝑀 − 1. Thus,

𝑡[𝑛] =
𝑀−1∑︁

𝑚=0
𝑠[𝑚] 𝑝[𝑛 − 𝑚].

Without loss of generality, let us assume that we want to calculate 𝑡(𝑥) in an
area Ω′: 0 ≤ 𝑥 ≤ (𝑁 − 1)Δ, i.e., we want to calculate samples 𝑡[𝑛] for 0 ≤ 𝑛 ≤
𝑁 −1. Clearly, if we want to calculate 𝑡[0], we need values 𝑝[−(𝑀 −1)], . . . , 𝑝[−1],



Reference calculation of light propagation 41

𝑝[0]. It is also clear that calculation of 𝑡[𝑁−1] requires values 𝑝[(𝑁−1)−(𝑀−1)],
. . . , 𝑝[𝑁 − 2], 𝑝[𝑁 − 1]. Thus, to calculate 𝑡[𝑛] for every 𝑛, we need just values
𝑝[−(𝑀 − 1)], . . . , 𝑝[𝑁 − 1], that is (𝑀 + 𝑁 − 1) samples of 𝑝(𝑥).

It follows we can define signal 𝑝′[ ] with 𝐶 samples numbered from 0 to 𝐶 −1:

𝑝′[𝑚] =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝑝[𝑚] for 0 ≤ 𝑚 ≤ 𝑁 − 1,

𝑝[𝑚 − 𝐶] for 𝐶 − (𝑀 − 1) ≤ 𝑚 ≤ 𝐶 − 1,

arbitrary elsewhere.

(3.8)

As the cases must be disjunctive, it follows 𝐶 ≥ 𝑀 + 𝑁 − 1. There is no
other restriction on 𝐶 value. For example, for 𝑀 = 3, 𝑁 = 4 and 𝐶 = 8 we have

𝑝′[𝑚] =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝑝[𝑚] for 0 ≤ 𝑚 ≤ 3,

𝑝[𝑚 − 8] for 6 ≤ 𝑚 ≤ 7,

0 elsewhere

that is
𝑚 0 1 2 3 4 5 6 7

𝑝′[𝑚] 𝑝[0] 𝑝[1] 𝑝[2] 𝑝[3] 0 0 𝑝[−2] 𝑝[−1]

We can also define signal 𝑠′[ ] with 𝐶 samples by zero-padding the signal 𝑠[ ]:

𝑠′[𝑚] =

⎧
⎨
⎩

𝑠[𝑚] for 0 ≤ 𝑚 ≤ 𝑀 − 1,

0 for 𝑀 ≤ 𝑚 ≤ 𝐶 − 1,

that is for our example numbers 𝑀 = 3, 𝑁 = 4 and 𝐶 = 8

𝑚 0 1 2 3 4 5 6 7
𝑠′[𝑚] 𝑠[0] 𝑠[1] 𝑠[2] 0 0 0 0 0

Now it is possible to calculate the discrete cyclic convolution

𝑡′[︀𝑛
]︀
=

𝐶−1∑︁

𝑚=0
𝑠′[︀𝑚

]︀
𝑝′[︀(𝑛 − 𝑚) mod 𝐶

]︀
. (3.9)

If we subsitute 𝑛 = 0, we get

𝑡′[︀0
]︀
=

𝐶−1∑︁

𝑚=0
𝑠′[︀𝑚

]︀
𝑝′[︀(−𝑚) mod 𝐶

]︀

=
𝑀−1∑︁

𝑚=0
𝑠
[︀
𝑚

]︀
𝑝
[︀−𝑚]

= 𝑡[0].

(it is helpful to use the example 𝑠′[ ] and 𝑝′[ ] tables above to see that). Close
inspection of other values of 𝑛 in (3.9) reveals that 𝑡′[𝑛] = 𝑡[𝑛] for all 0 ≤ 𝑛 ≤
𝑁 − 1.

We can conclude that to calculate 𝑁 samples of the target 𝑡(𝑥) of light
propagating from 𝑀 samples of the source 𝑠(𝑥), it is necessary
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1. to choose any value 𝐶 ≥ 𝑀 + 𝑁 − 1,

2. to prepare the signal 𝑠′[ ] by zero-padding the signal 𝑠[ ] to 𝐶 samples,

3. to pre-calculate 𝐶 samples of the signal 𝑝′[ ],

4. to calculate the discrete cyclic convolution 𝑡′[ ] = 𝑠′[ ] ⊗ 𝑝′[ ], for example
by using the fast Fourier transform, see Equation 3.5,

5. to extract 𝑁 samples of 𝑡′[ ], i.e. to define the result 𝑡[𝑛] = 𝑡′[𝑛] for 0 ≤
𝑛 ≤ 𝑁 − 1.

3.3 Reference calculation of light propagation
between parallel planes of different sizes
and sampling rates

The article Reference calculation of light propagation between parallel planes of
different sizes and sampling rates [33], which is reprinted in this section, extends
ideas introduced in Section 3.2.

First of all, it discusses a method that allows (within some constraints) dif-
ferent sampling distances in the source and the target areas. Second, it discusses
how to make the calculation less memory intensive. Recall that for the calcula-
tion of propagation from the source of size 𝑀 × 𝑀 samples to the target of size
𝑀 ×𝑀 samples, it is necessary to use auxiliary signals of sizes 2𝑀 ×2𝑀 samples,
i.e., four times larger than the source and the target themselves. Third, it men-
tions that a proper choice of the convolution kernel (𝑝(𝑥) in Equation (3.6))
allows to calculate off-axis propagation. Finally, it mentions that size of the
auxiliary signals (number 𝐶 from Equation (3.8)) can be chosen such that the
calculation of the fast Fourier transform is effective. In conclusion, it describes
the method that can be used as “the reference” under variety of situations.

The article does not discuss some details that should be emphasised here.
First, the convolution kernel 𝑝[ ] introduced in Equation (3.7) was supposed

to be “full”, i.e. we supposed that all of its 𝑀 + 𝑁 − 1 samples are non-zero.
This, however, need not be true. In practice, the function 𝑝(𝑥) can have small
support, i.e. just most samples of 𝑝[ ] are zero. If we take this into account, the
calculation can be more effective.

Second, the method assumes correct sampling of the continuous functions
involved, especially of the convolution kernel 𝑝(𝑥). This assumption is thoroughly
discussed in Chapter 4. An alternative interpretation of the discretisation process
is provided in Chapter 5.
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1. Introduction 

A fundamental tool of digital holography, or computer generated holography, is a numerical 

simulation of coherent light propagating in free space. We will use, as usual, scalar 

approximation of the vectorial nature of light, and will not consider time-dependent behavior 

of the light [1]. One of the most usual tasks is to calculate light propagation between two 
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parallel planes; the Rayleigh-Sommerfeld integral [1], its mathematical equivalent angular 

spectrum [1,2] or their various approximations are used most often. 

Those equations need to be discretized for numerical calculation, i.e. one has to both 

sample and spatially restrict optical fields involved. The discretization itself leads to various 

errors well described in literature [3,4]. The calculation tries to avoid those errors while trying 

to work as fast as possible. 

It is, however, often hard to decide what is an error of discretization itself, what is an 

inherent error of a given fast method and what is just an error of a particular implementation. 

The goal of this article is to describe the reference numerical calculation of light propagation 

between parallel planes that has just one “error”, the discretization. Any other method can be 

then compared to this one. As we will assume fine sampling that does not lead to aliasing 

errors, we have to deal with a large amount of data. We will try to handle it as fast as possible 

while retaining the accuracy of the calculation. 

The proposed method focuses on off-axis light propagation between two rectangular areas 

that share neither size nor sampling, or, between a spatial light modulator (SLM) and a camera 

sensor. Reference calculation is described, e.g., in [5], off-axis propagation, e.g., in [6,7]; 

different samplings are treated in [8] by coordinate system change, in [9] by shifted 

convolution kernel, in [10] by scaled Fourier transform; different sizes of SLM and sensor is 

solved in [10,11] using tiling while decreasing memory demands. This article solves all the 

requirements in a unified way by using the convolution approach and tiling; in contrast to 

references given, it deals with optimization too. 

2. One-dimensional case 

We are going to show all the principles in a one-dimensional case before showing the full 2D 

version. This means that we will calculate light propagation between two line segments 

instead of two rectangular areas. We will call them Source and Target. 

 

Fig. 1. One-dimensional light propagation. Description of (a), (b), (c) is given in the text below. 

In linear optics it is assumed that light sources do not influence each other and that every 

single point ( )t x  of Target (e.g. a camera sensor) is affected by the shining of all points ( )s x  

of Source (e.g. a SLM, see Fig. 1a). As mentioned in the introduction, we will assume scalar 

approximation of coherent light, i.e. the light source can be completely described by 

amplitude A  and phase  , or complex amplitude exp( j )A  , where 2j 1  . 

Light changes both amplitude and phase by propagation. This change can by described by 

multiplication with some complex number p . Light propagation is space invariant; therefore, 

it is just the mutual position of points on Source and Target that matters, not their absolute 

positions. It follows that the calculation will have a convolution form: 

 ( ) ( ) ( )d
Source

t x s p x      (1) 

In the equation there is no distance along z  axis between Source and Target because it is a 

constant and can be a part of the function p . 
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We can discretize the equation by equidistant splitting of Source and Target into M  and 

N  basic elements [ ]s m  ( 0 1m M   ) and [ ]t n  ( 0 1n N   ), i.e. by uniform sampling. 

Therefore, the element [ ]t n  receives from the element [ ]s m  light with complex amplitude 

[ ] [ ]s m p n m , see Fig. 1b. Equation (1) can be written in discrete form: 

 
1

0

[ ] [ ] [ ] for 0 1, 0 1.
M

m

t n s m p n m m M n N




          (2) 

To compute all elements [ ]t n , we have to know numbers [ ]p n m  for 

( 1) 1M n m N      , i.e. 1M N   different values. We can obtain them in different 

ways, some of which will be mentioned in section 3. For now, let us assume we know them. 

The calculation of all elements [ ]t n  is most often done by rewriting Eq. (2) as a cyclic 

convolution and subsequent use of the discrete Fourier transform. The cyclic convolution has 

a form: 

 
1

0

[ ] [ ] [( ) mod ] for 0 1, 0 1,
C

m

t n s m p n m C m C n C




          (3) 

where 1C M N    and [ ] 0s m   for 1M m C    (i.e., the s  is zero-padded to the size 

C ). Notice that the important values of [ ]t n  are those for 0 n C M   ; the others are 

damaged by the cyclic behavior of indices in arithmetic (mod )C . It is also worth mentioning 

that in cyclic convolution it is usually assumed that M N . The proof of validity for the case 

M N  consists just in the expansion of equations for [ ]t n . Finally, C  is an arbitrary 

number bigger than or equal to 1M N  . By choosing a suitable C , we can speed up the 

computation significantly, because 

 ( ( ) ( )),t s p IDFT DFT DFT   (4) 

where t , s  and p  are C-dimensional vectors (arrays) of complex numbers, DFT is a discrete 

Fourier transform of a vector, IDFT is an inverse discrete Fourier transform of a vector and 

  is the Hadamard product (element by element product). The speedup is expected due to the 

fact that the calculation of DFT , or IDFT , can be done in time ( log )O C C  [12]. Choosing a 

suitable C  is important because the actual calculation time is highly sensitive to its character. 

Let us assume that the sampling rate of Target is twice as fine as the sampling rate of 

Source. Then the subset of even samples from Target has the same sampling rate as Source. 

Consequently, we can easily calculate the propagation of Source to even samples of Target. 

Obviously, we can do the same with odd samples. It means we can split the calculation of 

light propagation into two calculations; they are denoted in Fig. 1c by black and magenta 

arrows. It follows that the same principle can be applied when the sampling rate of Target is 

 -times finer than the sampling rate of Source, where   is a natural number; we have to split 

Target into   “interleaved tiles”, i.e. the calculation has to be split into   calculations. 

The same situation appears when Source has  -times finer sampling than Target. The 

idea can be generalized: if the sampling rates of Source and Target are in a ratio :  , where 

  and   are coprime natural numbers (i.e.   elements of Source have the same size as   

elements of Target), we can split the calculation into    independent calculations. More 

precisely, we have to  -times calculate the propagation for the sampling rate ratio 1:  and 

sum the results. Usually we do not care about the exact value of the sampling rate; therefore, 

we can choose such   and   that approximate the desired sampling fairly well. 
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It follows from Eq. (3) that the vectors s  and t  have to be padded to size C . This means 

that for M N , approximately 50% of elements are held in memory uselessly; in 2D 

convolution, it is as much as 75%. Therefore, for big M  and N  we can expect a lack of 

memory very soon, especially when using special hardware for DFT  calculation, e.g. GPU. 

For example a naive approach to propagation of a microscopic Source to an extended detector 

Target could require hundreds of gigabytes. 

We need two memory spaces of size 1C M N    for the calculation of Eq. (4); in 

practice a restriction may appear: that just two spaces of size P C  are available. Let us 

assume, for example, that 512M  , 1024N   and 1024P  . We cannot make the 

calculation directly because 1535C  ; but we can split Target in the middle into two parts 

(let us call them “common tiles”) with 512N   elements and make two calculations. For 

them, we need only two spaces of size at least 1 1023M N   , and therefore we are not 

limited by 1024P  . The same idea would apply if 1024M  , 512N   and 1024P  : we 

would calculate the light propagation of both small parts of Source to Target and sum the 

results. As in the “different sampling” case, even this idea can be generalized: Source can be 

split into S  parts, Target into T  parts and then we have to calculate S T  propagations. 

3. Two-dimensional case 

The extension of equations from section 2 to the 2D case is straightforward: instead of sums 

we just put double sums there. For calculation of light propagation of a part of Source to a part 

of Target, it is necessary to carefully calculate the convolution kernel, i.e. 2D array p . A 

practical aid is the fact that its element [0,0]p  describes light propagation from element 

[0,0]s  of a particular part of Source to element [0,0]t  of a particular part of Target. The 

equations for sampling rates, samples counts and offsets are simple but technically 

demanding, so we will not show them here. 

We should, however, mention the calculation of convolution kernel values. The Rayleigh-

Sommerfeld equation [2] for the light propagation from the plane 0z   to point [ , , ]x y z  is: 

 
1 exp( j )

( , , ) ( , ,0) d d
2

kr
U x y z U

z r
   







 


  

where ( , , )U x y z  is a complex amplitude of light in a point [ , , ]x y z , 2 /k    is a 

wavenumber (   is a wavelength), and r  is the distance between points [ , , ]x y z  and [ , ,0]  . 

This equation can be written in a convolution form: 

 

2 2 2

2 2 22 2 2

exp( j )1
( , , ) ( , ,0) j

2

k x y zz
U x y z U x y k

x y zx y z

    
    

       

  (5) 

where   is the 2D convolution operator, ( )( , ) ( , ) ( , )d df g x y f g x y     



    . 

The simplest method of convolution kernel discretization (the expression on the right side 

of the convolution operator in Eq. (5)) is a plain sampling, i.e. its calculation for a particular 

x , y  ( z  is a constant). Alternatively, we can assume that a sample of Source in fact 

expresses – using some pixel spread function – the shining of a particular non-zero-area 

element of Source and alter the kernel accordingly. If we take non-zero area of Target 

(sensor) elements into account, we can pre-filter the kernel. If Source is a mathematical model 

of a real display, we can even measure the kernel. The proposed method therefore does not 

depend on particular features of the kernel; its only assumption is the description of light 
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propagation as a convolution. In our implementation, we did not deal with advanced methods 

of kernel calculation, however, and we have chosen plain sampling. 

4. Theoretical time of computation 

The calculation works with arrays of size 
x yC C C  samples. It consists of three DFT 's 

(more precisely, two forward and one backward), calculation of the convolution kernel p  

with complexity ( )O C  and the Hadamard product of the same complexity. For a large C , 

only times spent on DFT 's matter. The time of calculation using the fast Fourier transform is 

therefore proportional [12] to 

 ( 's count) logC CDFT   (6) 

In the following analysis, we will assume light propagation from a square area of size M M  

samples to a square area N N  samples. For the convolution calculation, we will assume 

memory space ( ) ( )C M N M N    . Time of calculation is then given by: 

 2 2 2

basic ( , ) 3( ) log( ) 6( ) log( )t M N M N M N M N M N       

Let us begin with the case that Source and Target share the sampling. Then we can also split 

Target into T T  common tiles of size ( / ) ( / )N T N T . It follows that we calculate 

( )SourceDFT  once and calculate ( )pDFT  and ( ( ) ( ))Source pIDFT DFT DFT  T T -

times, while we assume the array sizes for DFT  as ( / ) ( / )C M N T M N T    . Using Eq. 

(6), we get time of calculation 

  
2

2

common tiles ( , , ) 1 2 2 log
N N

t M N T T M M
T T

   
      

   
 

Let us assume that M N  and watch the speedup 

 basic

common tile

1

s

( , )
( , , )

( , , )

t N N
Ns T

t N N T





  

of tiled calculation versus direct calculation. The graph of 
1( , , )s N T  shows that tiled 

calculation starts to be faster for 2T   and 1/ 4  , while for bigger T  it is faster for even 

smaller  . Figure 2a shows the graph for 1024N  ; for different N  it does not change very 

much. 

 

Fig. 2. The ratio of direct calculation time to (a) tiled calculation for given ratio ω of Source to 

Target side sizes (for Target side size N = 1024), and (b) tiled calculation for given ratio τ of 

Target to Source and sampling rates (for Source side size M = 1024). FFTW library was used 
for time measurement. 
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A more interesting result arises when Source and Target have different sampling rates. Let 

us assume that Target has  -times finer sampling than Source, i.e. N M . For direct 

calculation, Source must have the same sampling rate as Target, i.e. it must have M M   

samples too. We can increase number of samples by interpolation or just by interleaving 

current ones by a suitable amount of zeros. By substituting ) )( (M M M MC        into 

Eq. (6), we get time of calculation 

 
2 2 2

upscaled ( , ) 6( ) log( ) 24 log(2 )t M M M M M M M           

If we split Target into    interleaved tiles, we have to calculate    light propagations 

from Source to a part of Target of size M M  samples. By substituting 

) )( (M MC M M    into Eq. (6), we get time of calculation 

          
22 2 2

interleaved tiles ( , ) 1 2 2 log 1 2 8 log 2t M M M M M M M         

The speedup 

 
   

upscaled

2

interleaved tile

2

s
2

( , )
( , )

(

3 log(2 )

1 2 log, ) 2

t M
s M

t M

M

M






 


   

is bigger than 1 for 1  , i. e., tiled calculation is always faster; a graph of 
2 ( , )s M   

dependent on   for 1024M   is in Fig. 2b. Again, a different M  leads to a similar graph. 

One can see in Fig. 2 that measured speedups are scattered around theoretical curves. A 

discussion of this fact is contained in the following section. 

Until now we have assumed that Target has more samples than Source. That led to saving 

nearly one-third of all DFT 's. In the opposite situation this does not hold any more; however, 

the results of the analysis are similar, although not so outstanding. The analysis of general 

situations, where the ratio of sampling rates or sizes is a general fraction, leads to the 

following results: speedup is greater when the nominator and denominator of the sampling 

rate ratio are big too; splitting of Source and Target of the same sampling rate into common 

tiles in a complicated ratio leads rather to slowdown if we do not mind memory restrictions. 

5. Implementation notes 

The implementation of the proposed method is simple, although due to a number of variables 

quite demanding. The first step is to estimate the ratio of Source and Target sampling rates, 

and to split them into interleaved tiles of common sampling. In case we have enough memory 

to calculate light propagations between these tiles, we can calculate them (but see later). In 

another case, we are facing a still unresolved problem. 

Let us assume that two memory spaces of size C  are available. The interleaved tiles 

created by splitting Source and Target due to the requirement of common sampling have to be 

split into x yS S  common tiles of size x yM M , and x yT T  common tiles of size x yN N  

(due to integer division one row and one column may be smaller) so that: 

 ( 1)( 1)x x y yM N M N C      

while the time of the calculation has to be as short as possible. We cannot trust the theoretical 

time complexity of DFT  ( log )O C C  when searching for optimum; algorithms of DFT  for 

special array sizes (e.g. power of 2) are usually faster than for comparable (e.g. prime) array 

sizes. For example, FFTW library used in our implementation calculates DFT of special array 

sizes up to 6 × faster than for comparable prime sizes. This is the first expected reason for 

scattered look of the measured data in Fig. 2. One can see in Fig. 2b that measured speedups 
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are bigger than theoretical ones. This behavior starts to appear for 512M   in our 

implementation. We expect this behavior appears due to a following fact. When calculating a 

propagation without any tiling, we have to increase Source side size τ-times, so DFT has to 

work with a big array. Using interleaved tiling, DFT works with smaller arrays that fit into 

cache memory more easily, and therefore bigger speedup can be expected. 

Implemented heuristic suggests splitting in this way. First, we have measured calculation 

times [ ]time i  of one-dimensional DFT 's of array sizes i . From these times we have picked 

“friendly-size” ones that satisfy condition [ - ] [ ]time friendly size time i  for all measured 

-i friendly size . Two-dimensional DFT  is separable, so it is expected that a two-

dimensional array of friendly-size side sizes will be “friendly” too. Next, we have measured 

calculation times for those arrays. The propagation itself is then calculated in 2D “friendly-

size” arrays. In case we need to split into common tiles due to memory restrictions, we choose 

tiles of maximum width (tiles are then in fact horizontal stripes); height of Source and Target 

tiles is chosen to be approximately equal and as big as possible. We have compared this 

heuristic to the optimal solution found using brute force; it suggests at most approximately 

1.7  worse tiling. 

A topic that has not been discussed yet is the precision of the proposed algorithm 

compared to the precision of direct calculation without any tiling. We have tried to propagate 

the Source to the Target of the same size (for several different sizes) using different tiling 

schemes. We have found that the relative difference of the calculated complex amplitudes is 

in the order of 10
10

 or smaller; the difference was calculated as the absolute value of complex 

amplitudes differences. This difference is so small that we have not tried to find where it 

comes from. 

6. Conclusion 

A method for reference calculation of light propagation between two rectangular areas of 

parallel planes has been presented. These areas do not have to have either the same sampling 

rate or the same size, see Fig. 3. The calculation can be split into tiles to meet memory 

restrictions given; on the other hand, saving memory often leads to worse calculation times. 

We have shown that in the case of a simple sampling rates ratio, the proposed method actually 

speeds up the calculation up to 2  by splitting the areas into interleaved tiles compared to 

zero-padding and direct calculation. We have shown as well that if one area is much bigger 

than the other, it is faster to split the bigger one into common tiles. A still unresolved problem 

is how to split the calculation into common tiles (due to memory restrictions) to get the fastest 

calculation. We have, however, proposed suboptimal heuristic to address this problem. 

 

Fig. 3. Speckle simulation: an example of algorithm output. A patch of size 0.1 × 0.1 mm2 with 

a random phase (a) and a Gaussian intensity (b) was sampled to a 1024 × 1024 array of 
complex amplitudes. Intensity of the off-axis propagation to the distance 5 mm is shown in the 

subimage (c), size of the subimage is 4.7 × 1.6 mm2. A naive approach to the convolution 

would require approx. 28 GiB of memory while proposed algorithm can work on a common 
PC. 
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Chapter 4

Filtering in light propagation
calculations – the convolution
method

This chapter presents the article Memory-efficient reference calculation of light
propagation using the convolution method [35] published in Optics Express; it
starts on page 57. The motivation for this article is a strange behaviour of the
convolution method of light propagation calculation. Let us demonstrate it first.

Imagine there are two coherent point light sources in the plane 𝑧 = 0 sep-
arated 0.1 mm apart, let us assume their wavelength 𝜆 = 650 nm. They should
create an interference pattern. The interference equation (2.2) predicts that in
the plane 𝑧 = 50 mm, the fringes should be 0.325 mm apart:

𝑑 = 𝜆

sin 𝜃𝐴 − sin 𝜃𝐵
= 650 nm

sin(0.05/50) − sin(−0.05/50) ≈ 0.325 mm.

To verify the result, let us prepare the source area in the plane 𝑧 = 0. Let
us choose its size, for instance 4 × 4 mm2, and sampling distances, for instance
10 𝜇m in both 𝑥 and 𝑦 directions. Most samples of the source area will be
zero; just two of them, representing two point light sources, will be nonzero, for
instance one. The result, calculated by the method presented in Chapter 3, is
shown in in Figure 4.1. It confirms the theoretical calculation.

Please note that the source area was sampled by 401×401 samples. We have
chosen the target area of the same size, i.e., it is also sampled by 401 × 401
samples.

It is indeed possible to choose different sampling distance to verify the res-
ult of the interference equation. Any smaller sampling distance should improve
accuracy of discretisation. If we choose, for instance, 2 𝜇m (i.e. both the source
and the target are sampled by 2001 × 2001 samples), the calculated target area
looks virtually the same. Thus, everything makes us believe that the calculation
is correct.
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Figure 4.1: Interference pattern created by two point light sources separated
0.1 mm apart, 𝜆 = 650 nm. The interference equation predicted fringes period
0.325 mm, which is confirmed. Please note that the points in the source plane

have been emphasized to make them clearly visible in this figure.

As a second experiment, let us try to simulate light diffraction on sinusoidal
amplitude diffraction grating illuminated at normal incidence with a plane wave,
𝜆 = 650 nm again. The linear amplitude grating should create diffraction max-
ima; angles of diffracted light rays are given by the grating equation (2.1) from
page 28, repeated here for convenience:

sin 𝜃out, 𝑚 = 𝑚
𝜆

𝑑
+ sin 𝜃in,

where 𝑑 is the period of the grating.
Thus, the 𝑚-th diffracted ray should cross the plane 𝑧 = 𝑧0 at a distance

𝐷 = 𝑧0 tan 𝜃out, 𝑚 from the undiffracted ray.
Let us choose 𝑑 = 30 𝜇m, 𝜃𝑖𝑛 = 0 (normal incidence) and 𝑚 = ±1. It follows

that

𝐷 = 𝑧0 tan asin 𝑚
𝜆

𝑑
+ sin 𝜃in = ±50 × 10−3 tan asin 650 × 10−9

30 × 10−6 ≈ ±1.08 mm.

Let us choose size of the diffraction grating 1 × 1 mm2. If we choose the
sampling distance 10 𝜇m again, it is perfectly possible to correctly sample the
diffraction grating profile, see Figure 4.2. Please note that the source area is
4 × 4 mm2 again, as we have discovered that in such case, propagation to the
target area of size 4 × 4 mm2 in the plane 𝑧 = 50 mm should be correct.

The result of the propagation calculation is in Figure 4.4. We notice that
the plus-minus first diffraction orders are at expected positions.

Theoretical analysis of sinusoidal gratings predicts that the plus-minus first
diffraction orders should have just one quarter of the intensity of undiffracted
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Figure 4.2: The source area with 1 × 1 mm2 sinusoidal amplitude diffraction
grating of period 𝑑 = 30 𝜇m. The magenta grid depicts individual samples,
sampling distance Δ = 10 𝜇m . Note that the the Nyquist-Shannon limit requires

at least two samples per period; we have three.
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Figure 4.3: The source area with 1 × 1 mm2 sinusoidal amplitude diffraction
grating of period 𝑑 = 30 𝜇m. The magenta grid depicts individual samples. Note
that the sampling frequency Δ = 2 𝜇m allows to capture the sinusoidal profile

more precisely.

light, see for example [6, Section 4.4.3]. Figure 4.4 reveals that it approximately
holds; undiffracted light is the central square. However, the analysis also predicts
there should be no higher diffraction orders, but we can clearly see the plus-
minus second ones near the target boundary.

If we choose finer sampling distance, for instance 2 𝜇m again, the result is
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Figure 4.4: Propagation of the diffraction grating from Figure 4.2 (sampling
distance 10 𝜇m) to 𝑧 = 50 mm. The magenta numbers depict diffraction orders.

the target (z = 50 mm) intensity of the target, x = 0

–2
–2

–1

0

1

2

–1 0
x [mm]

y 
[m

m
]

1 2 –2
0

0.25

0.5

0.75

1

–1 0
y [mm]

no
rm

al
iz
ed

 i
nt

en
si
ty

1 2

10

1.
08

 m
m

Figure 4.5: Propagation of the diffraction grating from Figure 4.3 (sampling
distance 2 𝜇m) to 𝑧 = 50 mm. Note that there are no higher diffraction orders.

much closer to the theoretical prediction, see Figures 4.3 and 4.5.
The conventional wisdom attributes the wrong result to aliasing (under-

sampling) of the convolution kernel, see for example [16, 20, 21]. Indeed, if we
compare the convolution kernels used for sampling distances Δ = 10 𝜇m and
Δ = 2 𝜇m, see Figure 4.6, we notice that the one for Δ = 10 𝜇m shows aliasing
artifacts – the convolution kernel, in this simple case, should resemble concentric
circles.

Most authors thus analyse frequency content of the functions involved in the
calculation (such as the convolution kernel), and low-pass filter them if necessary.
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Figure 4.6: Convolution kernels for on-axis propagation of the source to the
target at a distance 50 mm for two different sampling distances. Common size
of the source and target areas is 4 × 4 mm2. Please note that just one quadrant

of the symmetrical kernel is shown; the others are mirror images.
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Figure 4.7: Propagation of the diffraction grating from Figure 4.2 (sampling
distance 10 𝜇m) to 𝑧 = 50 mm. Simple low-pass filtering of the convolution
kernel was used. Please note that the higher diffraction orders are missing. The

convolution kernel is shown in Figure 4.8.

This process usually gives very good results, see Figure 4.7.
However, there are unanswered questions. First of all: low-pass filtering elim-

inates an artifact of discretisation. But, what is the physical meaning of this
operation? Second: why was the result of calculation of point light sources in-
terference correct for both sampling distances, and why it is not correct in one
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Figure 4.8: Interference pattern created by two point light sources separated
0.1 mm apart, 𝜆 = 650 nm. The interference equation predicted fringes period
0.325 mm, which is confirmed. However, there is no reason for the black bor-
der around the pattern. Please note that just one quadrant of the symmetrical

convolution kernel is shown.

case of the diffraction calculation?
These are not just academic questions. For example, if we use low-pass fil-

tering of the convolution kernel to recalculate the interference pattern of two
point light sources (see Figure 4.1), we get rather strange result, see Figure 4.8.
Recall that point light sources illuminate the whole space; there is no reason for
the interference pattern to be limited by a square. Thus, it seems that low-pass
filtering eliminates some artifact, but introduces another.

These questions are answered in the following article.
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1. Introduction

Calculation of coherent light propagation in a free space is a fundamental tool in Fourier optics
[1, 2], digital holography [3], computer generated holography (e.g. [4–8]) and other areas of
optics. A very important and common task is the calculation of light propagation between two
parallel planes; however, the general case of light propagation between tilted planes is also
important in applications [9–11].

The problem is often given in this way: there is an area Σ in a plane z = 0 containing an
image called the source that is lit by a coherent light, mostly by a plane wave. The task is to
calculate the light field in a plane z = z0 in an area called the target.

In this task, we usually assume validity of the scalar approximation of the light [1]. A good
approximation of the correct solution is then given by, e.g., a Rayleigh-Sommerfeld integral of
the first kind. In this article, let us assume this approximation as the reference one.

The Rayleigh-Sommerfeld solution cannot usually be used in an analytic calculation due
to its complexity. Sometimes it is possible to get some results by using its mathematically
equivalent form, the angular spectrum decomposition [12]. It is, however, most usual to restrict
the calculation to the paraxial approximation in either the near (Fresnel) or far (Fraunhofer)
region.

It is possible to evaluate the “reference” Rayleigh-Sommerfeld integral numerically using
computers; thanks to its form of convolution, the calculation leads to the use of three fast Fourier
transforms (FFT). The reason for the use of the aforementioned forms or approximations lies
in the number of FFT’s: the angular spectrum decomposition leads to two FFT’s; the Fresnel or
Fraunhofer approximation lead to just one FFT or fast fractional Fourier transform [13].

The implementations of these faster algorithms are unfortunately not straightforward, as the
discretization of their equations leads to various problems. Correct implementation of the an-
gular spectrum decomposition is especially tricky [14]; even Fresnel and Fraunhofer approxi-
mations have to be discretized carefully [2, 15, 16].

It is therefore wise to verify fast algorithms by comparing them with a reference method
based on the carefully discretized Rayleigh-Sommerfeld integral [17, 18]. The discretization
process must consider both correct sampling of the source and sampling of the illumination
light field and the Rayleigh-Sommerfeld convolution kernel. It is also necessary to consider
the inverse operation to the sampling, i.e. the reconstruction. All of these considerations often
lead to sampling distances smaller than the wavelength of light, and therefore to huge memory
demands. This article studies the discretization process and suggests a method to avoid huge
memory demands and consequent time demands of large arrays FFT’s.

The structure of the article is as follows. Section 2 shows a naive method of discretization; the
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example given will show an illuminated amplitude diffraction grating with a sine transmittance
profile. We will show that the naive discretization leads to “wrong” results; we will explain the
“wrong” result in a physical way and show that a fine sampling leads to the correct result (and
to huge memory demands). In Section 3, we will show how to lower memory demands by a
simple 1D example. In Section 4 we will remove certain simplifications introduced in Section 3,
and in Section 5 we will discuss the general 2D algorithm. Finally, in Section 6 we will present
the time and memory demands of the algorithm and in Section 7 we will give conclusions.

In the rest of the article we will assume SI units. Absolute value of a complex amplitude
is electric field amplitude, unit volt/m. For conversion of a complex amplitude to an intensity
value, see e.g. [1, 2]. Please also note that 1D examples should not be interpreted physically as
propagation integrals were derived for 3D space; they just demonstrate main ideas of the final
algorithm.

2. Effect of naive discretization

Both theoretical analysis and experiments show that an amplitude diffraction grating with a
sine transmittance profile illuminated by a plane wave (let us call it the source) creates just
three diffraction maxima in the far field – the directly transmitted wave and the plus-minus first
diffraction order [1]. Sampling of the source is easy in this case; it is necessary to use a sampling
frequency at least 2× higher than the frequency of the pattern. Let us choose the perpendicular
illumination and set its complex amplitude at z = 0 to be 1. Let us choose a sampling whose
samples coincide with maxima and minima of the transmittance of the grating, i.e. the samples
will be progressively . . . ,0,1,0,1,0,1, . . . (this is exactly at the Nyquist limit, see also the end of
the section), and let us calculate the diffraction pattern using the Rayleigh-Sommerfeld integral.
It is given as

U(x,y,z0) =
−1
2π

∫∫

Σ
U(ξ ,η ,0)

∂
∂ z

exp(jkr)
r

dξdη (1)

where U(x,y,z0) is the calculated complex amplitude at a point [x,y,z0] of the target, U(ξ ,η ,0)
is the complex amplitude at a point [ξ ,η ,0] of the source (i.e. the product of the complex
amplitude of incoming light and the transmittance of the grating), Σ is the extent of the source,
j2 = −1, k = 2π/λ is the wave number and r = ((x − ξ )2 +(y− η)2 + z2

0)
−1/2 is the distance

between points [x,y,z0] and [ξ ,η ,0].
Let us discretize the calculation by replacing the double integral with a double sum. The

result shown in Fig. 1(a) differs a lot from the theoretical result. Where is the problem? (Note
that Fig. 1 displays diffraction at sine grating of finite rectangular area in a finite distance,
therefore the diffraction maxima have rectangular shape.)

Fig. 1. Light diffraction at sine grating 5 × 5 mm2 of period 50 cycles/mm illuminated
perpendicularly by a plane wave with λ = 650 nm at a distance z0 = 0.5 m. a) Discretization
using Δ = 10 μm. b) Discretization using Δ = 10/12 μm = 0.83 μm.
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When talking about discretization, let us discuss the direction of varying transmittance only
(i.e. perpendicular to the grating stripes). The other direction is not important in this case.

The replacement of the integral by the sum means, in fact, that the original continuous
function U(ξ ,η ,0) is replaced by an array of Dirac pulses; in other words, by ideal point
light sources arranged in a periodic lattice with spacing Δ. Light originating from a lattice of
sources of equal complex amplitude interferes and creates m-th diffraction maximum in angle
θm = arcsinmλ/Δ (see e.g. [19]), where m is an integer. In our case, every second sample is
zero; that is, we are working in fact with a lattice with spacing 2Δ. This lattice creates diffrac-
tion maxima of equal intensities for all m, and the first diffraction maximum of this lattice
coincides with the first diffraction maximum of the original sine grating, because its period is,
thanks to sampling distance, equal to 2Δ. The result presented in Fig. 1a is therefore physi-
cally correct – although not for a sine grating, but for another experiment. The problem is that
the discretization process did not take into account how to reconstruct the original continuous
function U(ξ ,η ,0) from the samples of the source, i.e. if there is zero transmittance between
samples, if the samples represent a sine profile, a rectangular profile, etc. If we took this into
account, the diffraction maxima created by the lattice would be attenuated somehow and the
result would correspond with the original continuous situation.

A simple solution is easy. In the continuous situation, two close enough point light sources of
the same complex amplitude do not create any interference pattern, i.e. at least one destructive
interference. In the discretized situation, two point light sources of the same complex amplitude
in adjacent samples can interfere destructively if the sampling distance is too big. Therefore,
the sampling of the source has to represent the source correctly, and, moreover, the effect of the
discretization has to be hidden – it must be such that the first-order destructive interference of
adjacent point light sources created by the discretization (assume they have the same complex
amplitude for now) has to lie out of the target area; note that in numerical calculations we are
dealing with finite areas only. Mathematically, for any point T of the target and any adjacent
samples S1, S2 of the source, the inequality |T − S1| − |T − S2| < λ/2 must hold as the den-
sity of the samples has to resemble continuous nature of the source. The same idea could be
expressed in terms of correct sampling of the propagation integral kernel (e.g. [2, 14, 18]), but
this explanation based on point light sources is perhaps more intuitive. It is interesting to note
that this simple explanation based on point light source model has not been explicitly published
yet (as far as I know). Also note that advanced solutions exist that do not need finer sampling,
e.g. [13, 15]; the purpose of this paragraph is to provide simple insight and a starting point for
the following sections.

The result of the simple solution is presented in Fig. 1b. It was necessary to work with 12×
finer sampling, i.e. with an array 122 = 144× bigger. This results in noticeably higher memory
and time demands. In the following text we will present a way to discretize correctly without
increasing memory demands.

At the end of the section it is worth noting that the sampling of the sine grating in the example
above was not done “correctly”, as the Nyquist limit (in its simplest form) requires a sampling
frequency higher than double the maximum frequency contained in a signal. We have used
exactly double the maximum frequency, and moreover, we did not consider that the source is
spatially limited. However, had we used the mathematically precise method, the result would
be the same and the discussion would not be as clear.

3. Simplified solution

In search of a memory-efficient algorithm, let us start with the solution presented in the last
section, i.e. the sampling finer than requested by the Nyquist limit. For the sake of clarity, let
us introduce two simplifications: let the source and the target be one-dimensional objects in the
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xz plane (this will be relaxed in Section 5) and let us suppose they are unbounded (this will be
relaxed in Section 4).

Let the object source represented by samples source[i], i ∈ Z (let the sample source[0] be
located at the point [0,0]) be perpendicularly illuminated by a plane wave of wavelength λ (see
Fig. 2). We will consider transmittance of the source to be complex, i.e. any source illuminated
by any light can be converted to this scenario.

Fig. 2. Geometry of the simplified 1D case. Samples with index 0 are depicted as full
circles, the others as empty circles.

Let us calculate complex amplitudes of propagated light in the “plane” z = z0 > 0 in the
unbounded area target represented by samples target[ j], j ∈ Z (let the sample target[0] be
located at the point [x0,z0]). The samples source[i] are samples of the complex function U(x,0);
the samples target[ j] represent the function U(x,z0) (see Eq. (1)). If the sampling distance is
equal in both the source and the target, let us call it Δ, the following holds:

target[ j] =U( jΔ+ x0,z0) = Δ
∞

∑
i=−∞

U(iΔ,0) h
(
( j − i)Δ+ x0,0,z0

)
=

= Δ
∞

∑
i=−∞

source[i] hx0,z0,1[ j − i] =

= Δ
(
source[ ]⊗hx0,z0,1[ ]

)
[ j]

(2)

where ⊗ is the discrete convolution and the array hx0,z0,1[ ] represents the Rayleigh-Sommerfeld
convolution kernel (impulse response) defined as

hx0,z0,ups[ j] = h( jΔ/ups+ x0,0,z0) (3)

and according to (1)

h(x,y,z) = − 1
2π

∂
∂ z

exp(jkr)
r

=
−z
2π

(
jk − 1

r

)
exp(jkr)

r2 , r =
√

x2 + y2 + z2 (4)

Equation (2) is a discretization of the integral (1), i.e. we have changed the integral to the
sum and the differential to the difference Δ. As we will be interested just in the structure of the
target, we will omit the constant term Δ.

Let us suppose that the source is sampled correctly, such that the structure of U(x,0) is fully
acquired, but not fine enough for the propagation calculation. Please note that this “correct
sampling” is not the same as sampling that obeys the sampling theorem; for example, piecewise
constant signal cannot be sampled correctly according to the basic formulation of the sampling
theorem as it has infinite frequency extent. However, if we know that the signal is piecewise
constant with “steps” at known locations, then we can express the signal precisely using just
one sample per constant part of the signal.
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For the propagation calculation, we have to use a ups-times finer sampling, ups ∈ Z, ups ≥ 1.
Let us call the preliminary upsampled array sourceups[ ]. To obtain this array, let us put (ups−1)
zero samples between every two original samples of the source (see Fig. 3 top):

sourceups[ j] =

{
source[ j/ups] if ( j/ups) ∈ Z
0 otherwise

The final upsampled array sourcefin
ups[ ] is calculated using convolution with a kernel filter[ ],

i.e. sourcefin
ups[ ] = sourceups[ ]⊗filter[ ]. The convolution kernel filter[ ] has to be chosen accord-

ing to the nature of the function U(x,0): a rectangular kernel provides a piecewise constant
interpolation (which is suitable if U(x,0) represents a pixelated spatial light modulator), a win-
dowed sinc kernel provides a good interpolation in terms of frequency content (which is suitable
if U(x,0) is a general continuous function), a triangular kernel provides a piecewise linear in-
terpolation (which is faster than a windowed sinc kernel and can provide acceptable results),
etc. (see Fig. 3). Examples of kernel implementations will be shown at the end of Section 4.

The main idea of the method to be derived exploits the fact that the length of the filter[ ] array
is much smaller than the length of the array source[ ] and target[ ]. For simplicity, let us assume
the length of the filter[ ] array to be odd. Let us write it as 2× fwh+1, where fwh ∈ Z, fwh ≥ 0.

Thanks to associativity of the convolution, the following holds:

targetups[ ] =
(
sourceups[ ]⊗filter[ ]

)
⊗hx0,z0,ups[ ] = sourceups[ ]⊗

(
filter[ ]⊗hx0,z0,ups[ ]

)
=

= sourceups[ ]⊗hfin
x0,z0,ups[ ]

where targetups[ ] represents the target sampled with a period Δ/ups and hfin
x0,z0,ups[ ] is the prop-

agation kernel convolved by the array filter[ ]. Specifically,

targetups[ j] =
∞

∑
i=−∞

sourceups[ j − i] hfin
x0,z0,ups[i] =

=
∞

∑
i=−∞

sourceups[ j − i]
fwh

∑
k=−fwh

filter[k] hx0,z0,ups[i− k]

However, we need the final result ups-times downsampled, i.e. target[ j] = targetups[ups× j].
Moreover, the sample sourceups[i] is zero for i/ups �∈ Z. We can therefore omit these samples
from the sum. It follows that

target[ j] = targetups[ups× j] =
∞

∑
i=−∞

sourceups[ups× ( j − i)] hfin
x0,z0,ups[ups× i] =

=
∞

∑
i=−∞

source[ j − i] hfin
x0,z0,1

[i]
(5)

where hfin
x0,z0,1

[ ] is a filtered propagation kernel:

hfin
x0,z0,1

[i] =
fwh

∑
k=−fwh

filter[k] hx0,z0,ups[ups× i− k] (6)

The propagation calculation leads to two discrete convolutions: in the first one (5), we work
with sampling period Δ, in the second one (6), with sampling period Δ/ups.
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The aforementioned equations worked with an infinite extent of the indices in order to avoid
array boundary effects. In the following section, we will adjust the indices extent but the struc-
ture of the result will remain the same. The section will also explain the advantage of the
presented method, which can be briefly described as follows.

The discrete convolution can be calculated indirectly using FFT or directly using the defi-
nition Eq. (2). The first way is advantageous if the convolution kernel is large; we will use it,
therefore, for Eq. (5). The second way is better in the opposite case; we will therefore use it for
Eq. (6). Here we will also use a nice property of direct calculation: the samples hfin

x0,z0,1
[i] can be

calculated with minimum memory demands.

4. Practical 1D solution

Let us assume that the source is sampled using M samples and the target is sampled using N
samples. If we want to use FFT for the target[ ] calculation, we have to work with cyclic con-
volution. This means that the arrays source[ ] and target[ ] have to be zero-padded to C samples,
C ≥ M+N −1 (see [17]). Then:

target[ j] =
C−1

∑
i=0

source[i mod C] hfin
x0,z0,1

[( j − i) mod C]

The array source[ ] contains correct values for sample indices 0,1, . . . ,M − 1, the array
target[ ] for indices 0,1, . . . ,C −M. The array hfin

x0,z0,1
[ ] has to be then calculated as:

hfin
x0,z0,1

[i] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fwh

∑
k=−fwh

filter[k] hx0,z0,ups[ups× i− k] if 0 ≤ i < N

fwh

∑
k=−fwh

filter[k] hx0,z0,ups[ups× (i−C)− k] if N ≤ i <C

It is worth noting that in the calculation of the sample hfin
x0,z0,1

[i], it is possible to use the

samples hx0,z0,ups[ ] calculated before, specifically for hfin
x0,z0,1

[i−1]. It is therefore convenient to
save the samples hx0,z0,ups[ ] in a temporary buffer of size 2 × fwh+ 1 samples, and to replace

part of them in the calculation of hfin
x0,z0,1

[i] with new values. The number of these new samples
depends on the filter type.

To calculate the filter[ ] array, we have to choose the number of samples of the source[ ] array
that contribute to the calculation of the interpolated sample in the sourcefin[ ] array, or in other
words, in the hfin

x0,z0,1
[i] array. This user-defined number specifies all the parameters needed: the

size of the filter[ ] array, the interpolation type, and the number of the samples shared in the
calculation of the neighbouring samples of the hfin

x0,z0,1
[ ] array.

It is practical to use separable kernels when working with 2D arrays. We can discuss them
right now, when working with 1D arrays. For clarity, some examples are given in Fig. 3. To
make things simpler, we will show pure interpolation kernels in both the Fig. 3 and the fol-
lowing text, i.e. they do not preserve signal energy. For propagation calculation it is, however,
appropriate to normalize the filter, i.e. the sum of its coefficients equals 1.

Piecewise constant interpolation. It is suitable if the source is split to rectangular pixels of
non-zero area. In this case it is appropriate for ups to be odd, due to symmetry. Then the
interpolation process adds an even number of samples between every two samples of the
source[ ] array. Therefore, fwh = (ups − 1)/2 and the kernel is given as: filter[i] = 1 for
−fwh ≤ i ≤ fwh.
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Fig. 3. Examples of interpolation convolution kernels (filters) for ups = 3. The windowed
sinc filter shown is the normalized Lanczos filter for a = 2.

Piecewise linear interpolation. It is suitable if the source represents a continuous function
and it does not contain fine details. We need two neighbouring original samples for the
calculation of the interpolated one, i.e. fwh = ups − 1, filter[i] = 1 − |i|/(fwh+ 1) for
−fwh ≤ i ≤ fwh.

Windowed sinc interpolation. It is suitable if the source represents a continuous function and
we care about good replication of its frequency content. Choice of the number of the
original source[ ] samples has to be a compromise. The more samples are included, the
better is the frequency content replication; on the other hand, too large kernels perform
badly in the spatial domain. A Lanczos filter is considered a reasonable compromise.
It considers 2a neighbouring samples, where usually a = 2 or a = 3 [20]. Then fwh =
a×ups−1 and a preliminary kernel is defined as filterprel[i] = lanczos(a× i/(fwh+1),a),
where lanczos(x,a) = asin(πx)sin(πx/a)/(π2x2) for −fwh ≤ i ≤ fwh. The final kernel
has to be adjusted before use: the coefficients contributing to the same sample calculation,
i.e. the coefficients ups samples apart, have to sum to 1 [21]. Mathematically, filter[i] =
filterprel[i]/∑k filterprel[i+ k ×ups] for all allowed values of k.
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5. Final 2D solution

Generalization of the aforementioned ideas is straightforward; instead of 1D cyclic convolu-
tions (or FFT’s), we have to use 2D versions. For simplicity, let us assume the sampling periods
in both x and y directions to be the same, let us call them Δ.

To propagate the source sampled by Mx × My samples to the target sampled by Nx × Ny

samples, let us create the arrays source[, ] and target[, ] of size Cx ×Cy, Cx ≥ Mx +Nx − 1,
Cy ≥ My +Ny − 1. It is convenient to choose the numbers Cx and Cy so that the FFT of these
arrays runs fast, e.g. powers of 2. The samples of the source must be stored in the array source[, ]
at indices from [0,0] to [Mx −1,My −1]. After the calculation, the correct samples are located
in the array target[, ] at indices from [0,0] to [Nx −1,Ny −1].

As the next step, we have to choose the parameter ups. The way to do it is as follows. Let
us assume for a while that we work with the original lattice, i.e. ups = 1. In the propagation
calculation, we have to calculate (4) for every vector T − S, where S is a 3D position of a
sample in the source and T is a 3D position of a sample in the target. In (4) we have to use
r = |T − S| (see its application in (2)). Let S1 and S2 be positions of adjacent samples in the
source and these samples have the same value; they represent two point light sources of the
same complex amplitude. Let us calculate r1 = |T − S1| and r2 = |T − S2|. If |r1 − r2| = λ/2,
then the contributions from S1 and S2 cancel each other at the point T , i.e. in this direction
there is the first diffraction minimum. As we have shown in Section 2, we need to exclude the
first diffraction minimum from the target. To make this happen, we have to refine the sampling,
i.e. increase the parameter ups until |r1 − r2| < λ/2. If a more precise result is needed, we
can refine further. Numerical experiments have shown that higher ups than those leading to
|r1 − r2| < λ/5 did not have any significant impact. The adjacent points S1, S2 and the point T
have to be chosen as “the worst case”, i.e. the angle between T −S1 (or T −S2) and the z axis
has to be as big as possible.

As the next step, we have to calculate the array hfin
x0,y0,z0,1

[, ], where [x0,y0,z0] is the position
of the sample target[0,0]. We assume the position of the sample source[0,0] to be [0,0,0]. For
the calculation, we need the numbers hx0,y0,z0,ups[i, j] = h(iΔ/ups+ x0, jΔ/ups+ y0,z0) (see (3)
for comparison). Thanks to separability of the filters, we can calculate them for one upsampled
row only, convolve them with filter[ ] and downsample, i.e. to use the procedure described in
Section 4. We need to calculate 2× fwh+1 of such rows, convolve them by columns and down-
sample; this procedure leads to one row of the array hfin

x0,y0,z0,1
[, ]. The other rows are calculated

in the same way.
Finally, we can calculate the propagation itself:

target[, ] = IFFT
(
FFT(source[, ])�FFT(hfin

x0,y0,z0,1
[, ]

)

where FFT and IFFT are fast Fourier transform and inverse fast Fourier transform, respec-
tively, and � is the Hadamard product (element-wise product). The propagation calculation is
complete now. Examples of the propagations are shown in Fig. 4.

It is worth adding three remarks:

• The same result can be obtained using the basic method, i.e. using upsampling, interpo-
lation of the source, and convolution with a common Rayleigh-Sommerfeld propagation
kernel. The upsampled array sourceups[, ] would have ups−1 zero samples between orig-
inal samples in every row (column), and additionally fwh zero samples to the sides in
order to correctly calculate the convolution with an interpolation kernel filter[, ] of size
(2 × fwh+ 1)× (2 × fwh+ 1) samples. The size of the array sourceups would then be(
2× fwh+1+ups× (Mx −1)

)
×

(
2× fwh+1+ups× (My −1)

)
samples, sampling pe-

riod Δ/ups. This means that the physical size of the source increases a bit for fwh ≥ 1;
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Fig. 4. Examples of diffraction by grating with vertical strips; grating size 5 × 5 mm2,
sampling period 10 μm, samples in each row 1, 0, 1, 0, . . . (i.e. 50 slits/mm). Propagation
distance 500 mm, illumination at normal incidence, λ = 650 nm. The left images show right
halves of the diffraction patterns (compare with Fig. 1); the graphs to the right show the
intensity relative to the central intensity. The interpolation used is a) none, b) rectangular
filter, c) triangular filter, d) Lanczos filter, a = 2, e) Lanczos filter, a = 3.

this is the reason why the article never mentions the exact physical sizes of the source
and the target. The additional borders are an interpolation artifact. However, their effect
is negligible for big arrays.

• The proposed method with propagation kernel filtering is nothing else than a calcula-
tion rearrangement. The article [17] that describes the propagation calculation with large
source and target or with different sampling periods of source and target is therefore
fully compatible with the proposed method; is is sufficient to replace the calculation of
propagation kernels.

• The calculation rearrangement leads to different rounding errors in numerical calculation
and thus to differences between the basic and the proposed method. The differences are
negligible, though. As it is hard to tell which method gives a more precise result, we will
not discuss the numerical aspects of the proposed method.

6. Time and memory requirements

The motivation to create the proposed method was to calculate reference propagation using a
small amount of memory. Let us compare its memory and time demands with the basic method.
In this section, we will assume square arrays for simplicity, i.e. Mx = My = M, Nx = Ny = N.

The basic method, as we have shown in the last section, upsamples the array source[, ] to the

array sourceups with
(
2× fwh+1+ups× (M −1)

)2
samples and calculates propagation to the

array targetups. There is no need to introduce additional zero borders due to interpolation, i.e.

the target will have
(
1+ ups × (N − 1)

)2
samples. The propagation will be calculated in the
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arrays with
(
2× fwh+1+ups×(M+N −2)

)2
samples, which gives the memory requirements

of the basic method.
The proposed method uses the original arrays source[, ] and target[, ], so the propagation will

be calculated in arrays with (M +N − 1)2 samples. The memory demands are, however, a bit
higher, as we have to take account of temporary memory used in the calculation of the filtered
propagation kernel hfin

x0,y0,z0,1
[, ]. It is 2× fwh+1 samples for “row convolution” and 2× fwh+

1 rows with M +N − 1 samples for “column convolution”; together (2 × fwh+ 1)(M +N)
samples. Typically, fwh = a × ups, where a is small (in our examples at most 3), and ups is
much smaller than M+N. Therefore, it is possible to ignore this amount in further discussion.

By comparing the memory demands, we conclude that the propagation calculation using
the proposed method takes approximately

(
2 × fwh+ 1+ ups × (Mx +Nx − 2)

)2
/(M +N −

1)2 ≈ ups2-times less memory. Common experiments in computer generated holography with
centimetre-sized fields using a sampling period of about 10 μm off-axis propagated to a dis-
tance in the order of tens of centimetres require the ups parameter up to 20. We can therefore
say that the proposed method has about 100-times less memory demands than the basic method.

On the other hand, the time of the computation does not fall so quickly. This is because the
calculation consists not just of a convolution calculation using the FFT, which is very fast in
the proposed method, but of a convolution kernel calculation as well that is approximately as
slow as in the basic method. More precisely, the FFT works with arrays approximately ups2-
times smaller than in the basic method, which means it is approximately ups2-times faster. The
convolution kernel calculation requires calculating the array hx0,y0,z0,ups[, ] (the same as in the
basic method), filtering it by rows and by columns using a filter of width 2 × fwh+ 1, where
again fwh = a × ups, and downsampling the result. The analysis shows that the convolution
kernel calculation in the proposed method is approximately 4a2-times slower than in the basic
method, where a is again a small number. It is not worth making a precise analysis, as the speed
of the FFT, the Rayleigh-Sommerfeld convolution kernel and its filtering are hard to compare
theoretically. It is more useful to measure the calculation times (see Fig. 5). The graph to the
right shows that the speedup of the proposed method is not as big as its memory savings; this
is mainly because the calculation of the convolution kernel dominates in the total time of the
calculation.

Fig. 5. Time of the calculation comparison. The graphs to the left and in the middle show
the dependency of the time of propagation calculation for N = M = 500 on the upsampling
factor ups; the vertical scale used defines the time of the basic method for ups = 1 to be
1. Besides the complete time of the calculation, the times of the FFTs and the propagation
kernel calculation times are shown. The rightmost graph shows the ratio of the proposed
and the basic method calculation times; e.g. a value of 4 means that the proposed method
is 4× faster for a given ups.
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7. Conclusions

In Section 2 we have shown and explained in terms of physics that in the discretization of the
light propagation between parallel planes it is necessary to take into account both the correct
sampling of the source and the opposite procedure, the reconstruction. We have shown that the
correct result can be obtained using upsampling; we have shown in Section 5 how fine this
upsampling should be. We have demonstrated in Section 6 that in typical tasks in computer
generated holography the upsampling can be approximately 10×, which leads to 100× slower
calculation and 100× bigger memory demands.

In Sections 3 to 5 we have derived a procedure based on filtration of the propagation kernel
by the “interpolation” kernel that is used for interpolated upsampling of the source. Thanks to
the properties of the interpolation kernel (small support, separability), the proposed method is
faster and cuts the memory demands to approximately those values which would be needed
if no upsampling was used. It can thus be said that the proposed method has approximately
100× smaller memory demands than the basic method of the same precision. As the method
just rearranges the calculation, the result is mathematically the same.
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Chapter 5

Filtering in light propagation
calculations – the angular
spectrum method

This chapter presents the article Discrete calculation of the off-axis angular
spectrum based light propagation [36] presented at the 9th International Sym-
posium on Display Holography (ISDH 2012), 25–29 June 2012, MIT Media Lab,
Cambridge Massachusetts USA; it starts on page 88.

Until now, we have discussed just the convolution method of light propaga-
tion calculation between parallel planes. We have proved that careful discretisa-
tion of the formulation in the continuous domain leads to correct results for any
propagation distance. However, calculation of the convolution kernel for very
small propagation distances is time consuming as it is necessary to properly fil-
ter highly oscillatory function 𝐾RS(𝑥, 𝑦, 𝑧0), see below. On the other hand, long
propagation distances do not require full precision of the Rayleigh-Sommerfeld
diffraction formula (1.1). Approximations such as the Fresnel approximation
(see [6, Section 4.2]) often provide good enough results, and can be calculated
more efficiently, see for example [12].

Thus, the angular spectrum decomposition method is usually preferred for
small propagation distances.

For convenience, let us repeat that the convolution method describes light
propagation as convolution (see Sections 3.1 and 3.2)

𝑈(𝑥, 𝑦, 𝑧0) = 𝑈(𝑥, 𝑦, 0) ⊗ 𝐾RS(𝑥, 𝑦, 𝑧0)

= ℱ−1
{︁

ℱ{︀
𝑈(𝑥, 𝑦, 0)

}︀ℱ{︀
𝐾RS(𝑥, 𝑦, 𝑧0)

}︀}︁
,

where
𝐾RS(𝑥, 𝑦, 𝑧0) = − 1

2𝜋

(︂
j 𝑘 − 1

𝑟

)︂ exp(j 𝑘𝑟)
𝑟

𝑧0
𝑟

𝑟 =
√︁

𝑥2 + 𝑦2 + 𝑧2
0 .
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The angular spectrum decomposition method is based on the fact that the
Fourier transform of the function 𝐾RS(𝑥, 𝑦, 𝑧0) is known in the closed form:

ℱ{︀
𝐾RS(𝑥, 𝑦, 𝑧0)

}︀
= 𝐻RS(𝑓𝑥, 𝑓𝑦, 𝑧0) = exp

(︁
j 𝑘𝑧0

√︁
1 − 𝜆2𝑓2

𝑥 − 𝜆2𝑓2
𝑦

)︁
. (5.1)

Please note that in signal processing, the function 𝐾RS would be called the
impulse response and the function 𝐻RS the transfer function.

It is then tempting to discretise the calculation to

target[ ] = IDFT
{︁

DFT
{︀
source[ ]

}︀ ⊙ 𝐻RS[ ]
}︁

, (5.2)

where ⊙ is the Haramard (element-wise) product, source[ ] is a discrete signal
representing a finite area in the plane 𝑧 = 0

source[𝑚, 𝑛] = 𝑈(𝑚Δ𝑥, 𝑛Δ𝑦, 0),

for 0 ≤ 𝑚 ≤ 𝑀 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1, Δ𝑥 and Δ𝑦 are the sampling distances in
the spatial domain. The discrete signal 𝐻RS[ ] contains samples of the transfer
function 𝐻RS(𝑓𝑥, 𝑓𝑦, 𝑧0), i.e.

𝐻RS [𝑚, 𝑛] = 𝐻RS(𝑚Δ𝑓𝑥 , 𝑛Δ𝑓𝑦 , 𝑧0)

for suitable range of indices 𝑚, 𝑛, where Δ𝑓𝑥 and Δ𝑓𝑦 are appropriately chosen
sampling distances in the frequency domain. The conventional wisdom says that
the discrete signal target contains samples of light field in the plane 𝑧 = 𝑧0, i.e.

target[𝑚, 𝑛] ?= 𝑈(𝑚Δ𝑥, 𝑛Δ𝑦, 𝑧0).

We will refer the method of light propagation described by Equation (5.2) as
the plain angular spectrum decomposition method. Let us inspect it closer.

First of all, we should notice that the transfer function 𝐻RS( ) is radially
symmetric and oscillatory – the higher the propagation distance 𝑧0, the faster
oscillations. In other words, a small propagation distance leads to a function
that oscillates slowly, i.e. it is less prone to aliasing. This makes us believe that
the discrete calculation should behave well for small propagation distances.

On the other hand, we have seen in Chapter 4 that the discrete calculation
should be described as

targetext [ ] = IDFT
{︁

DFT
{︀
sourcepad [ ]

}︀ ⊙ DFT
{︀
𝐾fil

RS [ ]
}︀}︁

,

where sourcepad [ ] is a properly zero-padded discrete signal source[ ], 𝐾fil
RS [ ] con-

tains samples of a properly filtered impulse response 𝐾RS(𝑥, 𝑦, 𝑧0) and targetext [ ]
is a discrete signal, whose part contains samples of the function 𝑈(𝑥, 𝑦, 𝑧0).

We should therefore ask: should we use zero padding in the plain angular
spectrum decomposition method as well? How many zero samples should we
add? Should we assume

DFT
{︀
𝐾fil

RS [ ]
}︀ ?= 𝐻RS [ ] ?
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What shall we do if there are aliasing artifacts in the signal 𝐻RS [ ] ?
The article Discrete calculation of the off-axis angular spectrum based light

propagation, included in this section from page 88, analyses the angular spectrum
decomposition method thoroughly and gives answers.

As the article is not easy to follow (because the reasoning is tricky), I in-
cluded the supplementary material to the article – an interactive tutorial. There
I provided many examples of light propagation calculation – intensity images
of propagation results, convolution kernels in both intensity and phasor visual-
izations (in both spatial and frequency domains). In total, it contains 10 short
descriptions (about a paragraph each) and about 150 images. The reader is
encouraged to download it from the publisher’s website (see https://dx.doi.
org/10.1088/1742-6596/415/1/012040). For convenience, I selected the most
instructive images and included them on following pages.

Please follow the texts below Figures 5.1–5.15. They should illustrate prob-
lems that are discussed in the article starting on page 88.

https://dx.doi.org/10.1088/1742-6596/415/1/012040
https://dx.doi.org/10.1088/1742-6596/415/1/012040
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Selected images from the supplementary tutorial, part one
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Figure 5.1: Propagation to various distances (normalized intensity images).

In the tutorial, we will study light (plane wave, 𝜆 = 650 nm) diffracted at the
amplitude diffraction grating (3 × 3 mm2) composed of opaque and transparent
vertical stripes 20 𝜇m wide (i.e period is 40 𝜇m). The diffraction patterns at
distances 50 mm, 100 mm, 200 mm and 300 mm distance should look like these
images. We will be interested in just a small area (3 × 3 mm2) depicted with a
magenta box.

In the first part of the tutorial, we will study propagation to the distance
300 mm only. In the second part, we will study propagation to the distance
50 mm only. To make the images of the second part easier to analyse, the
period of the diffraction grating was changed to 20 𝜇m. Thus, the propagation
looks approximately like the image above for 𝑧0 = 100 mm.
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filtered convolution (correct) plain angular spectrum decomp.
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Figure 5.2: Propagation to 𝑧0 = 300 mm (normalized intensity images).

Angular spectrum decomposition is mathematically equivalent to the convo-
lution with the Rayleigh-Sommerfeld convolution kernel. However, a straight-
forward implementation (we call it the plain angular spectrum decomposition
here) provides incorrect results, especially in larger distances. Please note that
while the reference (correct) image above is described as the filtered convolution,
see Chapter 4, there was no filtering involved as the convolution kernel was well
sampled. To see why are the results different, we should inspect the convolution
kernels and the transfer functions, see Figures 5.3 and 5.4.
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Figure 5.3: Kernel of the filtered convolution method (reference), 𝑧0 = 300 mm.

These images show the convolution kernel used for the Figure 5.2 left, i.e. for
the filtered convolution method. For convenience, it is shown as both intensity
(top left) and complex phasor (bottom left) image. The right column shows
the discrete Fourier transform of the kernel, both as squared absolute value
(“intensity”) and complex phasor visualisations. Please note there are no values
on the axes as they are not important here.

First of all, we should note that the kernel is well sampled in the spatial
domain (bottom left) as we do not see any aliasing artifacts. This is verified in
the visualisation of the Fourier transform – the top right image shows that the
kernel is frequency limited.

As the convolution kernel is correct, any other method of propagation calcu-
lation should work with similar functions, either in the spatial or the frequency
domain. Please also note that the intensity of the convolution kernel in the spa-
tial domain (top left) is nearly flat. This is expected: if a point light source
located at the origin illuminates an area 3 × 3 mm2 at a distance 300 mm, the
intensity should be nearly constant.
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Figure 5.4: Kernel of the plain angular spectrum method, 𝑧0 = 300 mm.

These images show the functions used for the Figure 5.2 right, i.e. for the plain
angular spectrum decomposition method. Recall that in the angular spectrum
decomposition methods we calculate the transfer function directly, i.e. the Four-
ier transform of the impulse response (“the convolution kernel in the spatial
domain”).

First of all, we should note that the transfer function (right column) is not
well sampled as we see aliasing artifacts, see bottom right image – recall that
the transfer function should look like a set of concentric circles. The top right
image is perfectly flat, indeed, as |𝐻RS(𝑓𝑥, 𝑓𝑦, 𝑧0)| = 1 for 𝜆2(𝑓2

𝑥 +𝑓2
𝑦 ) ≤ 1, which

is satisfied here.
It is then no surprise that the inverse discrete Fourier transform of the trans-

fer function (the left column) looks completely different from the correct convo-
lution kernel shown in Figure 5.3.
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filtered convolution (correct) band limited angular spectrum
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Figure 5.5: Propagation to 𝑧0 = 300 mm (normalized intensity images).

A popular improvement of the plain angular spectrum metod, called the band-
limited angular spectrum method, was proposed by Matsushima and Shimobaba
[20]. It simply evaluates the local frequency of the transfer function and makes
the transfer function zero if the local frequency exceeds the sampling frequency,
see Figure 5.6.

The methods usually gives surprisingly good results. These two images are
virtually the same, the only slight difference is hardly visible near the right edge
(please note that contrast of the insets was adjusted). We should, however, ask:
what are consequences of band limitation?
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Figure 5.6: Kernel of the band-limited angular spectrum method, 𝑧0 = 300 mm.

These images show the functions used for the Figure 5.5 right, i.e. for the band-
limited angular spectrum method. The right column (the transfer functions)
shows how the band limitation works. At every point, the local frequency is
evaluated. If it is too high, the altered transfer function is set to zero.

We say that a function 𝑔(𝑥) is spatially limited in the spatial domain if there
exists 𝑎 ∈ R such that 𝑔(𝑥) = 0 for |𝑥| > 𝑎. We say that the function 𝑔(𝑥) is
frequency limited if its Fourier transform is spatially limited in the frequency
domain, i.e. there exists 𝐴 ∈ R such that ℱ{𝑔(𝑥)} = 𝐺(𝑓𝑥) = 0 for |𝑓𝑥| > 𝐴.
Similarly, we say that the function 𝐺(𝑓𝑥) is frequency limited if its inverse Fourier
transform is spatially limited in the spatial domain.

The analysis in the article that follows shows that the correct convolution
kernel should be spatially limited in the spatial domain, not in the frequency do-
main, which is the case of the band-limited angular spectrum method. Compare
these images with Figure 5.3 to see how the correct convolution kernel should
look like. As the kernels in the spatial domain look very different (check the
intensity image!), it is clear that it is possible to construct such an input field
so that the propagation result will be visibly wrong.
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Figure 5.7: Kernel of the filtered (101-tap windowed sinc) angular spectrum
method, 𝑧0 = 300 mm.

To calculate the precise kernel in the frequency domain, it is necessary to in-
corporate its spatial limitation in the spatial domain somehow, as discussed in
the following article. This can be done using digital low-pass filtering (frequency
limiting in the frequency domain means spatial limiting in the spatial domain).
Compare these images with Figures 5.3 and 5.6. The kernel in the frequency
domain looks almost correct now! It is not perfect, of course, as the digital filter
used is not perfect as well. (And moreover, the filter in this method is a 101-tap
windowed sinc finite impulse response filter, which is quite slow.)

Compare also (intensity) pictures of the kernel in the spatial domain to
the reference method in Figure 5.3. It should be clearly seen how the spatial
limitation works: in the reference method, the kernel is sharply limited by the
image boundary, in the proposed method the spatial limitation manifests itself
as the decay near the image boundary.
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Figure 5.8: Kernel of the filtered (21-tap windowed sinc) angular spectrum
method, 𝑧0 = 300 mm.

It is also instructive to see what what happens if we use shorter (21-tap finite
impulse response) digital low-pass filter to calculate the kernel in the frequency
domain. As expected, the boundary of non-zero area in the frequency domain
is not as wavy as in the reference (Figure 5.3) or 101-tap method (Figure 5.7).
This weaker frequency limitation manifests itself as more gradual spatial lim-
itation, see the intensity picture of the kernel in the spatial domain (top left).
However, the inside of the image looks good. This can be especially seen in the
complex phasor picture (bottom left). It follows that to avoid boundary errors,
it is possible to extend the arrays used in the calculation somehow so that the
boundary errors will not be visible in area of the final result.
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filtered convolution (correct) band limited angular spectrum
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Figure 5.9: Propagation to 𝑧0 = 300 mm (normalized intensity images).

These pictures compare the results obtained by different calculation methods.
The top row was already presented in Figure 5.5 and the images are repeated
for convenience. The bottom row shows results obtained with kernels presented
in Figures 5.7 and 5.8.

An artifact of the transfer function frequency limitation can be slightly seen
in the bottom right image near the left edge. However, if we take into account
damaged boundary of the kernel in the spatial domain (see Figure 5.8), it can
be avoided by slightly larger zero padding.
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Selected images from the supplementary tutorial, part two

filtered convolution (correct) proposed method

–1

0

1

–1 0
x [mm]

y 
[m

m
]

1

–1

0

1

–1 0
x [mm]

y 
[m

m
]

1

10 10

filtered angular spectrum (21 taps) band limited angular spectrum
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Figure 5.10: Propagation to 𝑧0 = 50 mm (normalized intensity images).

Let us switch to a small propagation distance, 𝑧0 = 50 mm. We have seen that
some problems with angular spectrum were solved by applying digital low-pass
filtering. But what happens if the frequencies in the transfer function are so
small that the filtering does not filter out anything?

In following figures, we will discuss differences between the methods. Please
note that “filtered angular spectrum” (top left) is the final method explained
in the first part of this tutorial. As it still differes from the reference image, it
is necessary to enhance it; the enhanced method is shown in the bottom right
picture.
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Figure 5.11: Kernel of the plain angular spectrum method, 𝑧0 = 50 mm.

Let us begin with the method that is actually not present in Figure 5.10 – the
plain angular spectrum method shown also in Figure 5.4. We can see that the
transfer function (right column) is almost well sampled, only the left edge of
the bottom right image seems to be aliased a bit. Images in the spatial domain
confirm that. It is thus reasonable to use some low-pass filtering, although we
should expect that the convolution kernel will look almost the same.
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Figure 5.12: Kernel of the filtered (21-tap windowed sinc) angular spectrum
method, 𝑧0 = 50 mm.

These images show the convolution kernel used in the top left result in Fig-
ure 5.10 – the filtered angular spectrum method introduced in Figures 5.7 and
5.8. Please note that the transfer function (right column) is low-pass filtetred,
which is clearly seen as the decay in the top right image.

From the signal processing perspective, everything looks well – with a small
catch. The impulse response (left column) should represent light radiating from
a single point (or “a sample”, to be precise) to a distance 50 mm. There is,
however, no clear reason why it should be limited to a square with wavy intensity
near the edges.
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Figure 5.13: Kernel of the band-limited angular spectrum method, 𝑧0 = 50 mm.

The band-limited angular spectrum method (top right in Figure 5.10) shows
virtually the same behaviour as the filtered angular spectrum in Figure 5.12
with the same small catch.
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Figure 5.14: Kernel of the filtered convolution method (correct), 𝑧0 = 50 mm.

These pictures show correct convolution kernel used for the bottom left image in
Figure 5.10 – the filtered convolution method. Let us discuss why it is so much
different from Figures 5.12 and 5.13.

The discrete calculation replaces the continuous light field with discrete point
light sources. This change is barely visible in a far distance but makes a huge
difference in a close distance. To overcome it, we have to assume that one sample
of the input light field behaves as an elementary light area. In the calculation,
we have to convolve the kernel in the spatial domain with a filter that describes
the elementary light area. This filter acts in fact as an additional low-pass filter
that was not incorporated in the filtered angular spectrum method.

Now it is clear that the impulse response should look like light radiating from
the elementary area. As we calculate light diffraction on a grating with square
transmittance profile, we have chosen very small rectangle (10 × 10 𝜇m) as the
elementary area. The propagation distance 𝑧0 = 50 mm is very big compared to
the elementary area size. Therefore, we should expect that the impulse response
should look like a far field propagation – which is the case.
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Figure 5.15: Kernel of the proposed method, 𝑧0 = 50 mm.

These pictures finalize explanation of the proposed method that was used in the
bottom right image in Figure 5.10.

We know that the filtered angular spectrum method in fact spatially limits
somehow the kernel in the frequency domain. As the propagation distance gets
smaller, this boundary gets larger until it is bigger than the frequency range
we operate in. But this “frequency range” limitation is something artificial that
stems from the numerical calculation only – it is not present in the continuous
formulas. It means we should consider even the values of the kernel outside the
frequency range we operate in.

As explained in the following article, the filtered convolution calculation can
be done in two steps: first, calculate the propagation with finer sampling period
in the spatial domain (i.e. bigger frequency range), and second, downsample the
result. (These steps can be performed at once, there is no need to use bigger
arrays in the calculation.) The downsampling in the spatial domain folds several
frequency bands into one – and it is exactly what we should do. Please note that
frequency band folding is in fact aliasing. Thus, while the conventional wisdom
recommends to avoid aliasing, we are intentionally adding it.
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Comparison of the kernels shown in Figures 5.11–5.15 confirms that this
unexpected step is correct. The propagation result (bottom right image in Fig-
ure 5.10) reveals that the method is still not perfect but it is far more precise
than the other angular spectrum based methods.

One may generally ask if aliasing is a friend or a foe. It depends. If we
are interested in the real and the imaginary part of the final result, than alias
is definitely bad. However, low-pass filtered (i.e. alias free) version does not
contain high frequencies at all so it is questionable what version is better. The
only correct solution is to use finer sampling in the spatial domain. On the other
hand, if we are interested in the intensity only (and we often are), we can ignore
aliasing of the real and imaginary parts if we are sure that the intensity picture
is not aliased.

For example, if the complex signal is [1 j 1 j 1 j 1 j . . .], then its twice
downsampled (i.e. aliased) version is, e.g., [1 1 1 1 . . .]. The squared absolute
values (“intensities”) of both signals are, however, the same – all ones. On the
other hand, “proper” downsampling should be preceded by a low-pass filtering.
Its result should look like [(1 + j )/2 (1 + j )/2 (1 + j )/2 . . .]; now we can see
that the intensities are damaged.

A more mathematical discussion is contained in the following article, as well
as formal introduction of the method.
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Abstract. Light propagation in a free space is a common computational task in many
computer generated holography algorithms. A solution based on the angular spectrum
decomposition is used frequently. However, its correct off-axis numerical implementation is
not straightforward. It is shown that for long distance propagation it is necessary to use digital
low-pass filtering for transfer function calculation in order to restrict source area illumination
to a finite area. It is also shown that for short distance propagation it is necessary to introduce
frequency bands folding in transfer function calculation in order to simulate finite source area
propagation. In both cases it is necessary to define properly interpolation filters that reconstruct
continuous nature of the source area out of its sampled representation. It is also necessary to
zero-pad properly source area sampling in order to avoid artifacts that stem from the periodic
nature of the fast Fourier transform.

1. Introduction
To calculate coherent light propagation in a free space, scalar approximation is used frequently.
A common task is such a calculation where complex amplitudes of light are given in the area
source in a plane z = 0 and we look for complex amplitudes in the area target in a plane z = z0,
z0 > 0. A common procedure leads to the Rayleigh-Sommerfeld integral of the first kind [1], or
to its mathematically equivalent form, the angular spectrum decomposition [2]. Approximations
of these formulas are used frequently, namely Fresnel and Fraunhofer approximations. However,
these approximations are used in paraxial regime while in computer generated holography an
off-axis solution is often needed (e. g. [3]); therefore we will not discuss them.

The problem has to be solved numerically in computer generated holography. This
leads to discretization of signals. Discretization of the Rayleigh-Sommerfeld solution is not
straightforward [4, 5] and discretization of the angular spectrum decomposition is tricky [6, 7].
Onural [6] describes the discretization process in general and shows that it leads to formation
of signal copies in spatial domain that can be filtered out. However, he does not discuss
implementation issues. Matsushima [7] deals with the implementation and solves a troublesome
aliasing problem by local frequency estimation; however, he does not analyse the effect of hard
frequency clipping.

This article focuses on reference calculation of light propagation between parallel planes using
angular spectrum decomposition. We will point out what makes the discretization difficult
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and how to overcome the problems so that the method provides the same results as the
Rayleigh-Sommerfeld method. We will deal with both large propagation distances discussed
by Matsushima [7] and small propagation distances that were not discussed in literature yet.
We will explain the meaning of “large” and “small” distance later.

Structure of the article is as follows. At first we will precisely show how to discretize the
propagation calculation based on convolution (i. e. based on Rayleigh-Sommerfeld integral). We
will show that it is necessary to introduce spatial limitation of a convolution kernel for successful
discretization. This leads to frequency limitation of the transfer function used in the angular
spectrum decomposition method. We will show that the frequency limited transfer function can
be calculated using digital signal processing methods. At last we will deal with the case where
this frequency limitation is actually useless due to small propagation distance. We will show
that, in this case, we have to deal with exact nature of sampling and reconstruction of signals
involved. We will show that the choice of reconstruction leads to introduction of artificial alias.

2. How to read the article
The mathematical explanation presented may be unpleasant to follow. Readers are therefore
encouraged to go through the presentation packed as a “multimedia” attachment to this article.
It shows pictures containing various problems that appear when calculating the propagation
numerically. I have decided to attach these pictures as a separate media for two reasons. The
first one is: the pictures show mainly problems with aliasing. It is therefore needed to control
the display of these images precisely which is not possible in a PDF reader or in printed media.
The second one is: separate media gives the opportunity to show much more images than any
printed media allows. I should note that the presentation does not contain any information not
covered by the article.

3. Convolution discretization
Let us assume that we know complex amplitudes u(x, y, 0) of monochromatic coherent light
of wavelength λ in the area source (xsmin ≤ x < xsmax, ysmin ≤ y < ysmax, z = 0) and
we want to calculate complex amplitudes u(x, y, z0) in the area target (xtmin ≤ x < xtmax,
ytmin ≤ y < ytmax, z = z0 > 0). The solution is given by the Rayleigh-Sommerfeld integral of
the first kind:

u(x, y, z0) =
−1

2π

∞∫∫

−∞

u(ξ, η, 0)
∂

∂z

exp( jkr)

r
dξ dη (1)

where r =
√

(x− ξ)2 + (y − η)2 + z20 , k = 2π/λ, j2 = −1 and u(ξ, η, 0) = 0 for [ξ, η, 0] 6∈ source.
The second term of the multiplication inside the integral depends on (x − ξ) and (y − η) only,
which means that the integral can be rewritten as the convolution with the Rayleigh-Sommerfeld
kernel h(x, y, z):

u(x, y, z0) = u(x, y, 0)⊗h(x, y, z0) =

∞∫∫

−∞

u(ξ, η, 0)h(x− ξ, y − η, z0) dξ dη (2)

h(x, y, z) =
−1

2π

∂

∂z

exp( jkr)

r
=
−z
2π

(
jk − 1

r

)
exp( jkr)

r2

r =
√
x2 + y2 + z2

The kernel h(x, y, z) can be interpreted easily: the value h(xd, yd, zd) describes the change of
the complex amplitude of light travelling from the point [xs, ys, zs] to the point [xs + xd, ys +
yd, zs + zd].
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To calculate u(x, y, z0) in the area target using (1) we have to know the kernel h(x, y, z0) for
xtmin − xsmax ≤ x < xtmax − xsmin, similarly for y. The value h(x, y, z0) is not important for
other x, y because in this case u(x, y, 0) = 0. We will use this fact in a while.

We discretize (1) easily by changing integrals to sums and differentials to differences. The
sums will have finite extent of the indices thanks to (in fact) finite domain of the integration.
Therefore their calculation will be easy, although the computational complexity will be high.

To reduce computational complexity, let us rewrite the equation (2):

u(x, y, z0) = u(x, y, 0)⊗h(x, y, z0) = F−1
{
F{u(x, y, 0)} · F{h(x, y, z0)}

}
(3)

where F and F−1 are 2-D Fourier and inverse Fourier transform respectively. We will try to use
the discrete Fourier transform (DFT) implemented as the fast Fourier transform (FFT) after
discretization.

The discrete Fourier transform can be defined if the original continuous functions are periodic
before discretization (sampling); then we take into account one period of functions up(x, y, z0),
up(x, y, 0) and hp(x, y, z0) derived from functions u(x, y, z0), u(x, y, 0) and h(x, y, z0). We can
define the DFT another way if the functions to be transformed are spatially limited; in this case
we can assume just one period of the functions up(x, y, z0), up(x, y, 0) a hp(x, y, z0). Both ways
lead to the same results. This means that the results of the DFT can be interpreted in both
ways. We will choose the way that will be more suitable in a particular situation.

Let us briefly give a hint what is the meaning of the functions up(x, y, 0), up(x, y, z0) and
hp(x, y, z0) before we define them precisely. Their period in x direction is equal to the sum
of widths of the source and the target (similarly in y). One period of the function up(x, y, 0)
is composed of values of u(x, y, 0) in the way that one corner of the source is translated to
the origin. The meaning of the function up(x, y, z0) is similar. The hp(x, y, z0) is restricted
and shifted version of the function h(x, y, z0). The meaning of the value hp(0, 0, z0) is the
change of the complex amplitude of light travelling from the point [xsmin, ysmin, 0] to the point
[xtmin, ytmin, z0], see fig. 1.
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Figure 1. Geometry of the problem in xz slice. Left image: original setup. Red line in
the source area denotes the complex amplitudes to be propagated, blue line in the same plane
defines zero value. It should be clear that we need to know the values of a propagation kernel
contained in a green wedge only. Right image: setup prepared for discretization. Source and
target are shifted to the z axis, blue and red lines in the source plane show both zero padding and
periodicity. The green wedge shows one period (fundamental area) of the function hp(x, y, z0).

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012040 doi:10.1088/1742-6596/415/1/012040

90 Chapter 5



Let us define the functions precisely. The function hp(x, y, z0) is defined in “the fundamental
area” xsmin − xsmax ≤ x < xtmax − xtmin (similarly for y) as:

hp(x, y, z0) = h(x+ xtmin − xsmin, y + ytmin − ysmin, z0) (4)

Definition outside the fundamental area depends on situation: it can be either zero or the
function can be made periodic. However, as we will see, the values outside the fundamental area
are not important, which means that the periodic nature of the function is not harmful.

Let us define the function up(x, y, 0) in the fundamental area 0 ≤ x < (xtmax − xtmin) +
(xsmax − xsmin) (similarly for y; notice that the size of the area is the same as for hp(x, y, z0))
as:

up(x, y, 0) =





u(x+ xsmin, y + ysmin, 0) for 0 ≤ x < xsmax − xsmin,
0 ≤ y < ysmax − ysmin

0 elsewhere in the fundamental area

and again let us make it periodic.
Let us calculate up(x, y, z0) = up(x, y, 0)⊗ hp(x, y, z0). If we consider the function up(x, y, 0)

to be periodic and the function hp(x, y, z0) to be zero outside the fundamental area, we can
easily prove that up(x, y, z0) will contain correct result of the propagation from the source to
the target in the area 0 ≤ x < xtmax − xtmin (similarly for y); the values of hp(x, y, z0) are
meaningless for other x, y as they are damaged by periodicity of the function up(x, y, 0). The
proof easily follows from the geometry of the problem.

If we consider the function up(x, y, 0) to be spatially limited and the function hp(x, y, z0) to
be periodic, we get the same result. If we consider both functions to be periodic, the meaning of
the result remains the same; however, we are in fact in the world of discrete Fourier transform.

The form of the discrete calculation follows from the aforementioned ideas. The area source
is discretized by Mx ×My samples, the area target by Nx × Ny samples. For simplicity let us
assume such parameters so that the sampling period ∆ is the same in both directions x and y
and in both source and target areas. Its value is then e. g. ∆ = (xsmax − xsmin)/Mx.

The area source is discretized by samples u0[m,n] = up(m∆, n∆, 0), the convolution kernel
is discretized by samples h[m,n] = hp(m∆, n∆, z0) for m ∈ {0, 1, . . . ,Mx +Nx−2} (similarly n,
see [4]). We consider functions up(x, y, 0) and hp(x, y, z0) to be periodic. Then we can calculate

uz0 [ ] = IDFT
{
DFT{u0[ ]} ·DFT{h[ ]}

}
(5)

to get the array uz0 [ ] that contains complex amplitudes of the area target in the first Nx ×Ny

elements. In the equation (5), DFT and IDFT stands for forward and backward 2-D discrete
Fourier transform, respectively, and · stands for elementwise product (Hadamard product).

We can summarize the results as follows. For the discrete calculation of light propagation,
we have to use a convolution kernel spatially limited to a certain area. The source has to be
zero-padded to span the same area. The result of their convolution contains correct values in
the area of the size proportional to the size of the target .

4. Angular spectrum discretization for large propagation distances
The equation (1) can be written in the equivalent form called the angular spectrum
decomposition [2]:

u(x, y, z0) = F−1{U(fx, fy, 0) ·H(fx, fy, z0)}
where

U(fx, fy, 0) = F{u(x, y, 0)}

H(fx, fy, z0) = exp
(
− j 2πz0

√
λ−2 − f2x − f2y

)

9th International Symposium on Display Holography (ISDH 2012) IOP Publishing
Journal of Physics: Conference Series 415 (2013) 012040 doi:10.1088/1742-6596/415/1/012040

Filtering in light propagation calculations – the angular spectrum method 91



and fx, fy are Fourier domain variables.
It follows from (3) that

u(x, y, z0) = u(x, y, 0)⊗h(x, y, z0) = F−1
{
U(fx, fy, 0) · F{h(x, y, z0)}

}
,

that is H(fx, fy, z0) = F{h(x, y, z0)}. It seems that the propagation calculation should be
advantageous using the angular spectrum decomposition compared to convolution with the
Rayleigh-Sommerfeld kernel because we have one Fourier transform less – the transform of
the kernel is known in the analytic form.

In the following paragraphs, we will talk about various limitations of functions in both spatial
and Fourier (frequency) domain. A function f(x, y) defined in spatial domain is spatially limited
if it is zero outside a bounded area in the plane (x, y); it is frequency limited if F{f(x, y)} is
zero outside a bounded area in the plane (fx, fy). Similarly, a function F (fx, fy) defined in
frequency domain is spatially limited if it is zero outside a bounded area in the plane (fx, fy);
it is frequency limited if F−1{F (fx, fy)} is zero outside a bounded area in the plane (x, y).

We know from the previous section that we have to introduce certain functions to discretize
the calculation. We have to define the periodic function up(x, y, 0) based on the function u(x, y, 0)
and to calculate its (discrete) Fourier transform; we will follow this procedure exactly. We also
need to spatially restrict the function h(x, y, z0), and to make its periodic form alternatively.
However, we do not know the Fourier transform of the function hp(x, y, z0) in the analytic form.

Fortunately we can use digital signal processing tools. If the signal is spatially limited in one
domain (in our case spatial domain), it is frequency limited in the other domain (in our case
frequency domain). We can calculate frequency limited signal using low-pass filter l(fx, fy). Let
us assume the function hp(x, y, z0) to be spatially limited (i. e. not periodic). For propagation
calculation, we have to use the transfer function Hp(fx, fy, z0) = H(fx, fy, z0)⊗ l(fx, fy).

It follows from properties of the Fourier transform that the function Hp(fx, fy, z0) has to
be spatially unlimited. This does not matter even in numerical calculation. Since the function
up(x, y, 0) is periodic, then Up(fx, fy, 0) is spatially limited; and we need to calculate the product
Up(fx, fy, 0)Hp(fx, fy, 0). It also follows that the value of the function Hp(fx, fy, z0) can be
arbitrary outside the important area, and therefore we can use its periodic form to introduce
discrete calculation correctly.

We cannot limit the frequency content of the function H(fx, fy, z0) sharply using digital low-
pass filtering; the frequency limitation is approximate. In the spatial domain it means that the
transition between zero and non-zero part is gradual instead of sharp. This does not matter
either. All we need to do is to enlarge the fundamental area of the functions up() and hp(),
i. e. zero-padding of the array up[ ] will be larger than defined in section 3, so that the gradual
transition will not affect the target area.

We will face a problem in a practical implementation. The function H(fx, fy, z0) is frequency
unlimited – the local frequency [1, 7] in the point [fx, fy] grows without bound as this point
approaches a circle of a radius λ−1 centered in the origin. Moreover, if the propagation distance
z0 is large, then the local frequency will be large as well everywhere except in the origin.
Therefore it is impossible to sample the function H(fx, fy, z0) correctly and then the low-pass
filtering will not work properly.

However, we can use the same procedure as described by Matsushima [7] who realizes the
aliasing problem. He evaluates local frequency when sampling the function H(fx, fy, z0), and
if the local frequency is bigger than a half of the sampling frequency, he sets the function
H(fx, fy, z0) to be zero. He solves the aliasing problem this way, on the other hand he
introduces a spatial limitation of the function H(fx, fy, z0). It follows that the propagation
kernel F−1{HMatsushima(fx, fy, z0)} is then spatially unlimited which is not correct. It should
be however emphasised that even though it gives remarkably good results.
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The solution is easy. We can sample the function H(fx, fy, z0) using higher sampling
frequency than desired and use Matsushima’s procedure to avoid alias. Then we can filter
it using l(fx, fy) and downsample the result to get a correct sampling frequency. As the cutoff
frequency of the filter l(fx, fy) is derived from the sizes of the arrays used in the calculation, it
is guaranteed that no aliasing appears when downsampling.

It follows from practical experiments that it is sufficient to sample the function H(fx, fy, z0)
using sampling frequency twice as high as desired, and to use sinc low-pass filter with Hamming
window as l(fx, fy). The size of the filter should be chosen carefully – a long filter filters high
frequencies well, but takes long to evaluate. Evaluation with a short filter is faster but slow
attenuation of high frequencies has to be compensated with bigger zero-padding of the array
u0[ ].

5. Discretization for short propagation distances
To calculate the propagation numerically (either using convolution approach or angular spectrum
approach), we have to calculate (discrete) Fourier transform of the function up(x, y, 0). Its result
is the function Up(fx, fy, 0) limited to the area A = (−1/(2∆), 1/(2∆))× (−1/(2∆), 1/(2∆)), or
its periodic form. We also need to calculate the function Hp(fx, fy, z0) in the same area, and
then to calculate F−1{Up(fx, fy, 0)Hp(fx, fy, z0)}.

We can naturally ask a question: what happens if the propagation distance z0 is so small that
the low-pass filtering of the function H(fx, fy, z0) will not have any significant effect inside the
area A? It is not easy to find the answer. Let us start with one more look into the convolution
based approach described by the equation (2).

The convolution kernel h(x, y, z0) is a spatially unlimited function that is in fact frequency
limited if we ignore evanescent waves. We can easily show that its local frequency grows as
the point [x, y] moves away from the origin. The smaler is z0 the faster is the growth. It can
therefore easily happen that the function hp(x, y, z0) cannot be properly sampled using sampling
period ∆ for small propagation distances.

Physical meaning of wrong sampling is easy. Discretization is based on change of integrals
to sums in the equation (1). It means that we change a continuous light field in the source to a
number of point light sources. This replacement cannot be observed from a big distance or in
on-axis case but makes a big difference close enough or in off-axis case.

We have to assume (especially in small propagation distances) that one sample of the
function u(x, y, 0) represents behaviour of the light field in a small neighbouring area. Let
us denote the result of the sampling of the function u(x, y, 0) by the function us(x, y, 0) =
u(x, y, 0) comb(x/∆) comb(y/∆), where comb(x) is the sampling function with period of samples
1 (see [1]). Then we can describe the reconstruction of the continuos form using convolution
with a reconstruction kernel r(x, y):

u(x, y, 0) ≈ ur(x, y, 0) = us(x, y, 0)⊗ r(x, y)

where ur(x, y, 0) is a continuos function reconstructed from the discrete samples. The function
ur(x, y, 0) is more or less similar to the function u(x, y, 0) depending on the shape of a
reconstruction kernel r(x, y) and size of the sampling period ∆.

We can therefore express the propagation as

u(x, y, z0) ≈ us(x, y, 0)⊗
(
r(x, y)⊗h(x, y, z0)

)

It is possible to put big parenthesses in the equation thanks to associativity of the convolution.
It follows that we should not use the function h(x, y, z0) for discrete propagation calculation,
but we shoud use its filtered version r(x, y)⊗h(x, y, z0) instead.
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It is most common to demand for one sample of the function u(x, y, 0) to influence its close
neighbourhood only. For example, the kernel r(x, y) = rect(x/∆) rect(y/∆), where rect(x) is a
rectangular pulse of unity width and height centered in the origin, implies the function u(x, y, 0)
to be approximated with a piecewise constant function. We can construct other kernels as
well that provide piecewise bilinear approximation, piecewise bicubic approximation and so
on. In either case, the kernel r(x, y) acts as a low-pass filter. If we use the filtered function
h(x, y, z0)⊗ r(x, y) for construction of the function hp(x, y, z0) in the equation (4), we get the
result of the propagation calculation as precise as the function ur(x, y, 0) resembles the function
u(x, y, 0). Practical implementation of the procedure is described in [5].

We can repeat the analysis for the angular spectrum decomposition as well. We should
not use the function H(fx, fy, z0) for construction of the function Hp(fx, fy, z0); we should use
the Fourier transform of the filtered propagation kernel, the function F{h(x, y, z0}⊗ r(x, y)} =
H(fx, fy, z0)F{r(x, y)}. If we choose convenient kernel r(x, y), we will know analytic form of its
Fourier transform and calculation of the product will be simple. This step limits high frequencies
that were caused by the discretization process.

It remains to solve the last, but important detail. In the beginning of the section we have
stated that the calculations in frequency domain are done inside the area A. It is however
possible that the support of the function Hp(fx, fy, z0) will not fit into the area A even if it was
filtered with both filters l(fx, fy) and r(x, y). If we reject the values of the function Hp(fx, fy, z0)
outside of A despite that fact, it means that the final function u(x, y, z0) was filtered by a third,
still unjustified low-pass filter.

We can explain this final low-pass filter. It would be appropriate if the kernel r(x, y) represents
a perfect sinc low-pass filter limiting the frequency content of the function u(x, y, z0) to a range
described by the area A. Then the kernel r(x, y) has to be be spatially unlimited. If we do not
care, the analysis is finished.

If we would rather keep the kernel r(x, y) spatially limited (which is physically more natural),
we have two choices to choose from. The first one is simple – we can use such a sampling period
∆/s, s ∈ N for the calculation so that the area A covers the support of Hp(fx, fy, z0) now. This
leads to increase of time and memory demands of the calculation, of course. Moreover, if we
demand sampling of the target to be ∆, we have to downsample the result; we have to admit
that a lot of values were calculated needlessly.

The second one is a bit strange at first sight. Signal downsampling in spatial domain
can be described easily in frequency domain – the frequencies f and f + n/∆ merge due to
downsampling, where f is frequency fx or fy from the range (−1/(2∆), 1/(2∆)) and n ∈ Z.
This effect is called aliasing. We want to avoid it usually; however, if we are decided to sample
the target with an insufficient sampling period, we have to accept aliasing. It is worth to note
that aliasing needs not be harmful. If we are interested in intensities |u(x, y, z0)|2 only, aliasing
in the real or imaginary part of the function u(x, y, z0) may be harmless. For example, if
u(x, y, z0) = cosx+ j sinx, then the intensity is always 1 regardless sampling period used, while
intensity of “correctly sampled” (i. e. low-pass filtered) version can be either 1 or 0 which is not
correct.

The procedure in the second case is obvious: we will perform the downsampling process in
frequency domain. Let us calculate the function Hp(fx, fy, z0) in the area (−s/(2∆), s/(2∆))×
(−s/(2∆), s/(2∆)), assume it is zero outside this area, and calculate

Ha(fx, fy, z0) =
∑

nx,ny

Hp(fx +
nx
∆
, fy +

ny
∆
, z0)

for [fx, fy] ∈ A and all suitable nx, ny. To calculate the propagation, we have to use the function
Ha(fx, fy, z0).
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6. Conclusion
The analysis shows how to numerically calculate the propagation of light using the angular
spectrum decomposition method. Unlike the procedures described in the literature, it defines
low-pass filters l(fx, fy) and r(x, y) that are needed to introduce for correct discretization. Then
we can choose either more precise, slower calculation or faster, less precise by choosing their
parameters. The analysis also shows that it is worth introducing aliasing of the transfer functions
in certain situations. The results are shown in figures 2 and 3. The images may display wrong
due to resampling; the reader is encouraged to look at the images in the multimedia attachment.
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Figure 2. Light (λ = 650 nm) diffracted by a grating (3 × 3 mm2) composed of vertical
slits (slits distance 40 µm). Off-axis propagation to a distance of 300 mm, size of each image
3× 3 mm2. Lower half of each image is overexposed to show the details. a) Reference Rayleigh-
Sommerfeld calculation. b) Angular spectrum based calculation without any modification.
Notice that aliasing errors destroy the image completely. c) Angular spectrum based calculation
with Matsushima’s kernel filtering. Notice different brightness of fine stripes compared to the
reference image. d) Angular spectrum based calculation with l(fx, fy) sinc kernel of length 50.

a b c d

Figure 3. Light (λ = 650 nm) diffracted by a grating (3×3 mm2) composed of vertical slits (slits
distance 20 µm). Off-axis propagation to a distance of 50 mm, size of each image 3× 1.5 mm2.
a) Reference Rayleigh-Sommerfeld calculation. b) Angular spectrum based calculation without
any modification. Notice that the right half is much darker than in the reference image. c)
Angular spectrum based calculation with Matsushima’s kernel filtering. Notice that the image
is the same as without any modification because aliasing did not occur. d) Angular spectrum
based calculation with introduced aliasing. Notice that the image is almost the same as the
reference one.
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Chapter 6

Propagation calculations in a
limited precision environment

The article Safe range of free space light propagation calculation in single pre-
cision [37] published in Optics Express, included in this chapter from page 98,
discusses another general problem of numerical light propagation calculation –
limited precision of floating point numbers. It discusses influence of rounding
errors, and, more importantly, when to expect problems.

Motivation to solve these problems came from [38], where the authors pro-
posed a method to overcome errors induced by limited precision of real num-
bers in FPGA environment. Thus, the problem with limited precision exists.
However, we have observed a contradiction in practice. On the one hand, the
conventional wisdom recommends using IEEE 754 double precision numbers for
light propagation calculations. On the other hand, many researchers working
with GPU use single precision only and do not report any problem.

Therefore we decided to analyse influence of rounding errors rigorously. The
following article reveals interesting facts:

∙ Calculation in single precision can provide wrong results in very realistic
scenarios.

∙ There is a simple formula that shows if single (or any other) precision
calculation is safe.

∙ Many researchers use the Fresnel approximation in light propagation cal-
culation. This approximation behaves well even in limited precision calcu-
lations.
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1. Introduction

It is a well known fact that double precision computer calculations usually provide more precise
results than single precision ones [1]. It is also “conventional wisdom” that many calculations
in wave optics (such as free space light propagation) are more reliable using double precision.
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The question whether to use single or double precision numbers is quite unimportant in CPU
calculations as they are often internally performed in higher than single precision and the final
result is rounded to the requested one.

The question, however, is rather important in GPU calculations as current GPUs favour single
precision calculations over double precision ones (see [2] or other list of GPU parameters). It
is of utmost importance today as many researchers, especially in computer generated (digital)
holography, utilize GPU calculations whenever possible (see e.g. [3, 4]). We will focus our
attention to one of the most fundamental task in digital holography, Fourier optics and wave
optics – calculation of light propagation in free space to a certain distance. As far as we know,
no one analysed range of distances where it is safe to use single precision, where it is better to
switch to double precision and what to do if we want to avoid double precision calculations.

In Sec. 2 we will show that single precision calculations can lead to significant problems even
in realistic scenarios. In Sec. 3 we will point out the problem origin; as most readers are likely
not computer scientists, an overview of important facts about floating-point representation is
given there as well. Sec. 4 gives basic analysis of the problem and tells when it is safe to use
single precision in on-axis calculations; Sec. 5 adds a few notes to an off-axis generalization.
Sec. 6 shows that parabolic (Fresnel) approximations can save single-precision calculations in
most cases. Finally, Sec. 7 supplements the discussion with reference to aliasing and phase
quantization; Sec. 8 concludes the article.

2. The problem demonstration

Let us perform the most basic calculation in scalar wave optics: let us calculate an interference
pattern on the plane z = 0 of two mutually coherent, monochromatic, equally bright point light
sources. Simply written:

I(x,y,0) =
∣∣∣∣
exp( j2πr0/λ )

r0
+

exp( j2πr1/λ )
r1

∣∣∣∣
2

, (1)

where I(x,y,0) is the light intensity at a point [x,y,0], r0 and r1 are the distances between the
point [x,y,0] and the particular point light source, j2 = −1 is the imaginary constant, and λ is
the wavelength.

Let us place the light sources (for instance) to the points [±0.001z0,0,z0], set λ = 500 nm
and calculate the pattern for various z0 in both single and double precision. Figure 1 shows the
result. The patterns for z0 = 10 mm are basically the same regardless precision used. It is clear
that for z0 = 100 mm, the pattern calculated in single precision contains noise introduced by
limited precision, but its quality is generally acceptable. The pattern for z0 = 1000 mm in single
precision loosely reminds the correct one, but its quality is generally not acceptable. Finally,
for z0 = 10000 mm, the single precision result is completely useless.

This demonstration naturally leads to several questions. What is the source of such be-
haviour? Where is the boundary between acceptable and unacceptable calculations? What do
we mean by “acceptable”? Is it possible to improve the calculation without switching to higher
precision? Let us try to answer them all.

3. Origin of the problem

Let us begin by reviewing the basic facts about floating-point numbers. We decided to include
this short section written in a form of tutorial as we do not know any suitable, short enough
reference that would explain all the necessary concepts. Readers familiar with theory of floating
point calculations and their limitations can skip this section.

A floating-point number x is usually (according to the IEEE 754 standard for floating-point
arithmetic) internally expressed as x = s×m× 2e−p−1, where 1-bit number s (sign) is equal
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Fig. 1. Interference pattern (normalized intensity) of two point light sources located at
[±0.001z0,0,z0] in the plane z = 0. The first row shows calculation in single precision, the
second row in double precision. Each column stands for a particular z0. The bottom row
of graphs shows the normalized intensity values; for better clarity, only a segment of each
image is shown.

to +1 or −1, m (mantissa or significand) is a p-bit unsigned integer and e (exponent) is a
q-bit signed integer. Most often, significand m ≥ 2p−1 (number x is then called a normalized
number), or in other words, the most significant bit of m is usually 1. The IEEE 754 standard
defines p = 24 for single precision, p = 53 for double precision. As log10 224−1 ≈ 6.9, we can
say single precision corresponds to about 7 significant decimal digits; double precision to about
16 decimal digits.

If the basic arithmetic operations (+, −, ×, /, mod,
√

) are performed according to the
IEEE 754 standard, their results are the same as if they were calculated exactly and correctly
rounded to the requested precision; the numerical error is therefore bounded [1]. As an example
(we will recall it later in Sec. 4), let us see what happens in the addition operation.

When calculating (for instance) 25165824+ 1 in single precision, we need to understand
how the operands are internally expressed. Because 25165824 = 224+223, it cannot be directly
represented by a 24-bit unsigned integer; instead, it is expressed as m1×21, where m1 = 223 +
222. The second operand can be also expressed in the normalized form as 1 = m2×2−23, where
m2 = 223. The exact sum is equal to 25165825 = 224 + 223 + 1. Unfortunately, this number
cannot be expressed by a 24-bit unsigned integer as it contains 25 significant bits. So the least
significant bits (in this case one bit) must be cut off and the result must be altered in such a way
the “rounding error” is the smallest. The altered 24-bit value is then used as a significand in the
approximate floating-point value of the result, i.e. (223 + 222)× 21. It is clear that size of the
rounding error is comparable with the unit at the least significant binary digit of the result.
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Single precision Double precision

Fig. 2. Maximum z0 according to inequality (2) as a function of n for λ = 500 nm, i.e.
the maximum distance for which (z2

0 +(λ/n)2)1/2 6= z0 holds. For example, if we want
to calculate in single precision (left graph) and to resolve about 100 values in the first
fringe, z0 should be at most about 0.1 m. “Safe region” is then below the black line. For
convenience, Fresnel zones for different xmax are shown as magenta horizontal lines, see
Sec. 6 for details. The Fresnel approximation is valid near the z axis (|x|< xmax, |y|< xmax)
for z0 bigger than the value depicted.

The real numerical problem appears when operands of floating-point operations are results of
other floating-point operations, i.e. they are rounded versions of their “true values”. Operation
by operation, the numerical error accumulates without any bound.

The most numerically sensitive operations are subtraction and modulo. It is easy to see why.
For example, both t1 = 8192× 8192 = 213× 213 = 226 and t2 = 8191× 8193 = (213− 1)×
(213 + 1) = 226− 1 are evaluated as 226 = 67108864 in single precision, because significand
is only 24 bits long; hence difference of their floating-point values is 0. The true difference
value is of course t1 − t2 = 67108864− 67108863 = 1. Generally, if the “true value” t1 is
approximated by a floating-point number x1 = t1 + ε1 (ε1 is the rounding error), other “true
value” t2 is approximated by x2 = t2 + ε2, then subtraction of floating-point approximations is
x1− x2 = t1− t2 + ε1− ε2 + ε3, where ε3 is the rounding error of the subtraction. Naturally,
if t1 ≈ t2, then the subtraction result is strongly influenced by rounding errors, i.e. the relative
error of the result is big.

The same problem (often called cancellation [1]) appears in the modulo operation, as
a mod b = a− ba/bcb. The “hidden subtraction” inside the modulo operation damages the
result, especially if a is just a floating-point approximation of a certain true value and b� a; in
this case, ba/bc ≈ a/b, therefore ba/bcb≈ a and cancellation appears.

A short look at Eq. (1) reveals origin of strange behaviour in single precision calculations.
The complex exponential can be written as exp( j2πr/λ ) = cos(2πr/λ )+ j sin(2πr/λ ), so it is
necessary to evaluate trigonometric functions of a very large argument, because usually r� λ .
The trigonometric function evaluation begins with range reduction [5] of its argument, which
is basically (mod 2π) operation; therefore it is very sensitive to cancellation due to rounding
errors of the argument. Let us analyse when to expect strong cancellation problems.

4. On-axis analysis

The function exp( j2πr/λ ) is a periodic function with respect to r. We know that a periodic
function evaluation starts with range reduction operation, in this case by (2πr/λ mod 2π). It
follows that when 2πr/λ � 2π , this operation evaluated in floating-point arithmetic cuts many
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Fig. 3. Visualization of the phasor exp( j2πr/λ )/r for various distances z0 calculated in
single and double precision. The lateral extent of each pair (single/double precision) is the
same; it was chosen so that all images contain approximately the same number of fringes.
It is not a fault that all double precision images look similar to each other; they really do.

significant digits of r. An extreme cancellation appears when 2πr/λ and e.g. 2πr/λ +π are
expressed by the same floating point number; in this case, sine or cosine of both numbers is the
same.

In order to capture fine details of exp( j2πr/λ ), the argument must be evaluated in floating-
point arithmetic in such a way that its value differs for r0 and r1 = r0 +λ/n where n ≥ 2. In
other words, we need at least two different results per period in the same way as alias-free
sampling requires at least two samples per period.
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For simplicity, let us place the first point of evaluation to [0,0,z0], z0 > 0, therefore r0 = z0.
Let us place the second point of evaluation to [x1,0,z0] in such a way that r1 = (x2

1 + z2
0)

1/2 =
r0 +λ/n = z0 +λ/n. It is easy to see that x2

1 = 2z0λ/n+(λ/n)2.
Let us continue. We need to evaluate r1 = (x2

1 + z2
0)

1/2. It is absolutely necessary to hold
inequality x2

1 + z2
0 6= z2

0 in floating-point evaluation; we have seen in Sec. 3 that floating-point
summation may violate it under certain circumstances. If we assume x1 < z0, then the inequality
will hold if

x2
1 > 2−p+1z2

0,

where p is again number of significand (mantissa) bits, in case of single precision p = 24. After
substitution,

2z0λ/n+(λ/n)2 > 2−p+1z2
0.

It is easy to solve the quadratic inequality for z0; the square root in the result can be then
approximated by a Taylor series (assuming 2−p� 1) and we get final simple result:

z0 < λ2p/n. (2)

For λ = 500 nm, p = 24 (single precision) and n = 2 we get approximately z0 < 4.19 m. For
p = 53 (double precision) we get approximately z0 < 2.25×109 m.

It is worth explaining meaning of this value. First of all, by setting n = 2 we calculated upper
limit of z0; beyond it, the evaluated value of exp( j2πr/λ ) has no significant digits. We also
explored just one source of rounding error, the range reduction operation; other operations also
contribute to the overall error, however their contribution is very small. We have found that the
upper limit is slightly less than the calculated one, about 0.95×λ2p/n. See Sec. 7 for further
details.

Second, we are usually interested in evaluation of exp( j2πr/λ ) in a non-zero area, but this
analysis is valid for points only on z axis. We should therefore generalize the analysis to an
off-axis case; see Sec. 5. It would be definitely possible to show just off-axis analysis as it is
more practical; however, its derivation is more complicated and the idea can be seen in on-axis
analysis more clearly.

Finally, although evaluation near the upper limit theoretically captures the correct structure
of the function exp( j2πr/λ ), the error is usually unacceptably big as the result has about one
significant digit. For practical calculations, we should set n� 2, see Fig. 2 for a dependency of
z0 on n and Fig. 3 for actual evaluation of the function exp( j2πr/λ ). See also Sec. 7 for further
details.

5. Off-axis analysis

We are usually interested in evaluation of the function exp( j2πr/λ ) in a non-zero area. Without
loss of generality, we can analyse the function evaluation on the xz plane only.

Let us again place the first point of evaluation to [x0,0,z0], i.e. r0 = (x2
0 + z2

0)
1/2, and the

second point of evaluation to [x1,0,z0] such that r1 = (x2
1 + z2

0)
1/2 = r0 +λ/n. By setting a =

x0/z0 and applying the same procedure as in Sec. 4, we get simple rule:

z0 < λ
2p

n
√

1+a2
. (3)

The estimation of the upper z0 seems to be reliable, see Fig. 4 for the visualization of the case
a = 1 (i.e. 45◦ inclination), λ = 500 nm; inequality (3) predicts the calculation to be right for
approximately z0 < 2.1 m.
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Fig. 4. Visualization of the phasor of off-axis calculation exp( j2πr/λ )/r for various dis-
tances z0 in single and double precision. The center of each image is set to [z0,0,z0], i.e.
a = 1 (see inequality (3)). The color coding is the same as in Fig. 3.

For paraxial calculations where x0/z0� 1, the result of inequality (2) is virtually the same
as of inequality (3). In practical estimations, we can use inequality (2) even for off-axis cal-
culations provided that we ask for “high enough” n; one should, however, ask if the scalar
approximation of light is reliable in highly off-axis cases.

6. Fresnel approximation

The analysis and examples given clearly show that single precision calculations should be used
with the utmost care; on the other hand, double precision calculations are good enough for most
practical cases. Still, single precision calculation are attractive in massively parallel systems
such as GPUs as single precision circuits naturally occupy less space on a chip, consume less
power etc. It would be then desirable to avoid single precision problems without going to double
precision.

A simplistic approach would be to use double precision for the calculation of r and the range
reduction. Unfortunately, switching between single and double precision tends to be slow as
GPU architectures are not optimized for such a weird task. Moreover, we still need double
precision for a substantial part of the calculation.

We have seen that the precision problem arises when z0 is big. On the other hand, in a big
distance, we can use paraxial parabolic (Fresnel) approximation

exp( j2π
√

x2 + y2 + z2
0/λ )≈ exp( j2πz0/λ )exp

(
jπ

x2 + y2

z0λ

)
(4)

provided that x,y� z0, or more precisely (according to [6]) z0� [π(x2 + y2)2
max/4λ ]1/3.

It is worth noting that there are no cancellation problems in Eq. (4). First of all, there is no
summation of a large z0 and small x, y in the argument of exp() function; recall that the most
serious error appears when floating-point value of x2 + y2 + z2

0 is almost the same as floating-
point value of z2

0. In Eq. (4), arguments dependent on z0 and x, y are separated to separate
exponential functions, i.e. their arguments are range reduced independently. There is no other
modulo or subtraction operation prone to cancellation in Eq. (4). Visualization of the calculation
in Fig. 5 therefore shows no significant sign of numerical problems except, of course, slightly
different pattern due to z0 quantization in single precision (i.e. z0 in single precision 6= z0 in
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Fig. 5. Comparison of the phasor exp( j2πr/λ )/r for various distances z0 in single and
double precision and in the Fresnel approximation in single precision. The lateral extent
was chosen so that the images contain approximately the same number of fringes. The
color coding is the same as in Fig. 3. The phase in the center of the image for Fresnel
approximation, z0 = 10000mm is different from double precision calculation because such
a big 2πz0 cannot be represented in single precision well enough.

double precision). For convenience, Fig. 2 also shows various “Fresnel approximation safe”
zones.

In an off-axis case, where the area of interest is located around a point [x0,y0,z0], it is possible
to use parabasal parabolic approximation that approximates

√
(x+ x0)2 +(y+ y0)2 + z2

0 ≈ r0 +
xx0 + yy0

r0
+

x2 + y2

2r0
,

where r0 = (x2
0 + y2

0 + z2
0)

1/2, provided that x,y� r0.
The only problem remains if it is necessary to evaluate exp( j2πr/λ ) over a large area, i.e. we

cannot use parabolic approximation. It should be possible to use partial quadratic approxima-
tion of the square root [7], but we did not verify it.

7. Additional notes

We have mentioned in Sec. 4 that setting n= 2 in inequality (2) leads to an approximate value of
the upper limit of z0; beyond that limit, information about structure of the function exp( j2πr/λ )

#220529 - $15.00 USD Received 6 Aug 2014; revised 22 Jan 2015; accepted 26 Jan 2015; published 4 Feb 2015 
© 2015 OSA 9 Feb 2015 | Vol. 23, No. 3 | DOI:10.1364/OE.23.003260 | OPTICS EXPRESS 3267 

Propagation calculations in a limited precision environment 105



0

0

cos 2�r /λ

r  mod λ (for r  = (x2  + z0
2)1/2,  z0  = 3.99999 m,  λ  = 500 nm)
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Fig. 6. A closer look at calculation exp( j2πr/λ )/r for z0 = 3.99999 in single and double
precision. The upper graph shows “range reduction” of the argument, i.e. (2πr/λ ) mod 2π ,
which is basically the same as 2π(r mod λ ). The lower graph shows the real part of
exp( j2πr/λ ). The distance z0 was chosen so that the transition between “correct” and
“wrong” calculations can be easily seen; in this case, the transition appears near x = 9 mm.

is lost. Let us try to find experimentally an example of precise z0 where the effect of “informa-
tion loss” can be seen.

Figure 6 shows evaluation of the function for z0 = 3.99999 m. The upper part shows the
result of range reduction in both single and double precision. It is clear that for x < 9 mm
the evaluation performs “well” – at least in a way that single precision calculation returns two
distinct values in a single cycle. In other words, the value of r is quantized to just two levels in
each cycle.

The lower part of the figure shows the result of cos(2πr/λ ). It is no surprise that for x <
9 mm, the single precision result contains the same frequency as the double precision one.
The effect for x > 9 mm would be normally called aliasing [8] as a high frequency content
is misinterpreted as a low frequency content. In this case, aliasing is a direct consequence of
quantization of floating point numbers.

The sampling theorem [6] states that the signal can be recovered if we have more than two
samples per cycle. It is then worth asking if e.g. calculation for z = 2.2 m (see Fig. 7) is good
enough. Let us then try to calculate (in single precision) a complex optical field on the plane
z = z0 of a single point source located at the origin and calculate the back-propagation (in
double precision) to the plane z = 0. Figure 7 shows the results for various z0; we have used
the filtered Rayleigh-Sommerfeld convolution [9] for propagation calculation. It is clearly seen
that even optical fields heavily damaged by errors of evaluation in single precision, but in the
“safe zone of single precision”, perform very well. Naturally, optical fields for z0 beyond its
upper limit are irreparably damaged.

This result is by no means surprising. Floating-point calculations lead to quantization of the
argument of exp( j2πr/λ ), and therefore to phase quantization of the optical field. The effects
of phase quantization are shown in e.g. [10]; it is known that even coarsely quantized phase
does not completely damage information “stored” in an optical field.
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z0 = 464 mm z0 = 1000 mm z0 = 2154 mm z0 = 4641 mm z0 = 10000 mm
xy extent 

4.79 mm × 4.79 mm
xy extent 

6.91 mm × 6.91 mm
xy extent 

9.97 mm × 9.97 mm
xy extent 

14.4 mm × 14.4 mm
xy extent 

20.7 mm × 20.7 mm

Fig. 7. Upper row: phasor of the optical field in the plane z= z0 of a single point light source
located at the origin. The lateral extent was chosen so that the images contain approximately
the same number of fringes. Please note that fringes are damaged for z0 = 4641 mm and
z0 = 10000 mm due to single precision calculation, not due to incorrect sampling rate.
Lower row: normalized intensity of the light field backpropagated to the plane z0 = 0. The
images should contain just a single bright dot. Naturally, the last two images are damaged
as the optical field was calculated incorrectly.

8. Conclusions

We have shown that unwary use of single precision floating-point numbers in calculations of
free space light propagation can lead to significant errors or even completely pointless results,
such as those presented in Sec. 2. The errors stem from the calculation of (r mod λ ), where
r is a distance; serious precision problems can appear for approximately r > 106λ , the results
are pointless for approximately r > 107λ . We have also shown that in certain cases, Fresnel ap-
proximation or similar one can significantly improve range where single precision calculations
remain valid. For example, wrong results shown in Sec. 2 can be fixed using Fresnel approxi-
mation or at least predicted using analysis in Sec. 5. We have also shown that double precision
calculations are safe in most practical situations.

While the analysis of computer arithmetic may seem to be rather technical and unrelated to
optics, we believe the opposite is true. There are many approximations that are used in optics,
e.g. scalar approximation of light, Fresnel approximation of light propagation, etc. Applica-
bility of such “classical” approximations are widely studied using “classical” tools such as
mathematical analysis; results are obvious for practical optics calculations. As most calcula-
tions today are performed with computer approximation of arithmetic, we believe that analysis
of computer arithmetic issues should belong to standard mathematical toolbox of an optician.
This is especially true because GPU calculations are so popular today and limited precision
numbers are usually necessary in massively parallel calculations.

Acknowledgements

This work was supported by the European Regional Development Fund (ERDF), project
“NTIS – New Technologies for the Information Society”, European Centre of Excellence,
CZ.1.05/1.1.00/02.0090, and by Ministry of Education, Youth, and Sport of Czech Republic
– University spec. research – 1311.

#220529 - $15.00 USD Received 6 Aug 2014; revised 22 Jan 2015; accepted 26 Jan 2015; published 4 Feb 2015 
© 2015 OSA 9 Feb 2015 | Vol. 23, No. 3 | DOI:10.1364/OE.23.003260 | OPTICS EXPRESS 3269 

Propagation calculations in a limited precision environment 107





109

Chapter 7

Double look-up table for light
propagation calculations

Chapters 3, 4 and 5 described advanced methods for light propagation calcula-
tions. Main contributions of the chapters and the articles within are, however,
not the methods themselves, but the reasoning behind them. Although the meth-
ods are correct, they tend to be slow.

Chapter 6 described problems with light propagation calculations in a lim-
ited precision environment. It showed that serious problems can be expected in
certain (realistic) cases with single precision calculations, which are favoured on
GPU’s.

To overcome both problems, I have proposed a method that pre-calculates
two look-up tables in the double precision (or higher), and the subsequent light
propagation calculations do not require high precision. The method takes ad-
vantage of the radial symmetry of the functions used in light propagation calcula-
tions. The proposed double look-up table method was designed for two scenarios,
both widely used in digital holography / computer generated display holography.

The first one is the same as discussed in Chapters 3, 4 and 5 – propagation of
light between parallel planes. There, the lengthy calculation of the convolution
kernel is accelerated by utilizing its symmetry. It should be, however, noted that
the double-lookup method does not directly provide exactly the same result as
the reference method described in Chapter 4 as the filtered kernel is not radially
symmetric, see for example left column of Figure 5.14 on page 85. The almost
rectangular shape of the convolution kernel in the spatial domain is caused by
frequency filtering of some function using a separable filter. If we had used a
nonseparable low-pass filter, it would be possible to get a perfectly radially sym-
metric function in the spatial domain. However, the difference between results
of the reference method and the double look-up table method is acceptable in
practice.

The second scenario for the double look-up table method is calculation of
light propagation from a cloud of point light sources to a plane. This, in fact, is
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a starting point of many methods of computer generated holography.
The method was presented at the 10th International Symposium on Display

Holography (ISDH 2015), 28 June–3 July 2015, Russian Academy of Sciences,
St. Petersburg, Russia. The organizer surprisingly requested just a four pages
long summary [39] to the proceedings (for the first time in history of this confer-
ence). The short summary is included here for convenience as Appendix A. In
this chapter, I included the full version of the article that I intended to publish
there.

The full version of the article had to be distributed with supplementary ma-
terial – full derivation of some import formulas, time measurement of the method
and some additional scripts. The derivation is included here as Appendix B, the
measurement as Appendix C.



Double lookup table method for fast light propagation

calculations

Petr Lobaz

July 28, 2015

Abstract

A method of rapid and robust calculation of radially symmetric functions is
presented. It can be used for fast computer generated hologram calculation,
light propagation calculation, etc. It is suitable for CPU, GPU or hardware
implementation.

1 Introduction

In computer generated holography and digital holography, it is often necessary
to evaluate radially symmetric functions of two variables. They include most
notably convolution kernels for free space light propagation calculation, such as
Rayleigh-Sommerfeld or Fresnel convolution kernels, free space transfer function
in angular spectrum propagation method or lens phase shift function [3]. Many
researchers try to accelerate their evaluation, as it takes significant time in the
whole calculation of e.g. a computer generated hologram of a 3-D scene or in
light propagation simulations.

There are several approaches to the acceleration of such evaluation. First
of all, a moderately complicated formula, such as the Rayleigh-Sommerfeld
convolution kernel

KRS(x, y; z0) = − 1

2π

(
jk − 1

r

)
exp(jkr)

r

z0
r

r =
√
x2 + y2 + z20

(1)

can be approximated by a much simpler formula, such as the Fresnel approxi-
mation [3]

KFresnel(x, y; z0) = exp

(
jk
x2 + y2

2z0

)
exp(jkz0)

jλz0
. (2)

These convolution kernels are used to calculate monochromatic light propaga-
tion from a plane z = 0 to a plane z = z0; λ stands for a wavelength, k = 2π/λ is
a wave number, x and y are transverse spatial coordinates and j is the imaginary
constant (j2 = −1). This approach not only accelerates the function evaluation,
but moreover it can improve its numerical behaviour [10]. On the other hand,
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of course, any approximation brings an approximation error, and must be used
with caution.

A completely different acceleration method just precalculates the function
for every x, y and z0 that will be used in subsequent calculations and stores the
values in a 3-D look-up table (LUT); due to radial symmetry in xy coordinates,
only one quadrant or even octant must be actually saved in the look-up table
[5, 1]. Despite of this enhancement, memory requirements of the method are still
excessive as it is often necessary to precalculate the function for many z0 values
and discretization of x and y coordinates must be usually very fine. This is due
to the fact that the evaluated function usually contains high spatial frequencies;
some researchers reduce the look-up table size by taking into account that the
highest spatial frequency usually depends on z0 [15]. Naturally, the method also
does not specify how to precalculate the look-up table efficiently.

One way how to reduce memory requirements is based on separability of cer-
tain functions. For example, the Fresnel convolution kernel (2) can be rewritten
as

KFresnel(x, y; z0) =

[
exp

(
jkx2

2z0

)√
exp(jkz0)

jλz0

]
×
[

exp

(
jky2

2z0

)√
exp(jkz0)

jλz0

]
.

It is easy to see that one does not need a 3-D look-up table; it is sufficient to
create one 2-D look-up table for each of the two factors in the equation above,
as each factor depends on just two variables [14, 2, 6]. Moreover, if the extents
and the sampling distances are the same for x and y coordinates, just one 2-D
look-up table is necessary. Naturally, this technique can be used only if the
function to be evaluated is separable.

Some researchers try to simplify function evaluation by using recurrence
formulas, e.g. [16, 11], i.e. they look for simple formulas how to calculate K(x0+
εx, y0 + εy; z0) using value K(x0, y0; z0) for small εx and εy. It should be noted
that influence of computer arithmetic rounding errors is usually poorly analysed
and that recurrence formulas tend to produce sequential computer code rather
than parallel one.

An original approach to evaluation of radially symmetric function K is based
on computer graphics algorithm for circle rasterization [13]; this method creates
a 2-D array of values K(m∆xy, n∆xy; z0), where ∆xy is a sampling distance in
transverse coordinates and integer indices m, n span the area of interest. The
method calculates K(m∆xy, 0; z0) in a common way and this value is subse-
quently “copied” to samples at the same distance from the point (0, 0; z0). The
biggest drawback of the method is its complicated memory access, thus memory
caching cannot be used efficiently. Recently, authors proposed a method that
overcomes this difficulty using recurrence formulas [12].

Parts of the method we are going to analyse in following sections were inde-
pendently described by other authors [12, 4, 7]. We will discuss these references
after we describe the basic idea of the method in Sec. 2; in short, the method
is also based on a pair of 2-D look-up tables and it can be easily used for
any function that is radially symmetric in the xy plane. Main contributions of
this article are introduction of a new type of a look-up table (we will call it

2
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“rhoLUT”) and a detailed analysis of interpolation in look-up tables to further
reduce their size; it will be discussed mainly in Sec. 3 and 4. Sec. 5 adds details
about the second type of look-up table (“waveLUT”) used by the method. In
Sec. 6 we discuss results of the method and Sec. 7 concludes the article. Some
details of the derivations, results analysis etc. were omitted in this text; they
can be found in the supplementary material.

2 Principle of the method

We explain the method on a basic task in digital holography: monochromatic
light propagation in free space. Let us calculate propagation of light from the
plane z = 0 to the plane z = z0 using Rayleigh-Sommerfeld convolution, i.e.

U(x, y; z0) = U(x, y; 0)⊗KRS(x, y; z0),

where U(x, y, z) is a complex amplitude (phasor) of light at a point (x, y, z),
⊗ stands for convolution and KRS(x, y; z0) is the convolution kernel defined by
Eq. (1). In discrete calculation, x and y coordinates have to be sampled with
sampling period ∆xy in finite areas of planes z = 0 and z = z0. Let us assume
for simplicity that both areas in z = 0 and z = z0 share the same square shape
of the size M∆xy ×M∆xy, where M is an integer number of samples. If we
want to employ fast Fourier transform to calculate the discrete convolution, the
kernel must be sampled by at least (2M −1)× (2M −1) samples with the same
sampling distance ∆xy [8]. Let us further assume that the centres of the square
areas in z = 0 and z = z0 are located at x = 0, y = 0. Then we need to evaluate
KRS(m∆xy, n∆xy; z0) for all integers m ∈ [1−M,M − 1], n ∈ [1−M,M − 1].

It is easy to see that KRS(x, y; z0) depends in fact on r and z0, where z0 is
constant and r = (x2 + y2 + z20)1/2 in this example. Moreover, we can define
ρ(x, y) = (x2 + y2)1/2 and write r = (ρ2 + z20)1/2.

To calculate KRS(m∆xy, n∆xy; z0), it is then necessary to evaluate ρ =
∆xy(m

2 + n2)1/2 and KRS(ρ; z0). It is possible to calculate ρ directly or using
a 2-D look-up table; we call this look-up table “rhoLUT”; its construction is
simple, as x and y are sampled uniformly. In this particular case, it is even
possible to store just one quarter of necessary values, i.e. just for m ∈ [0,M−1],
n ∈ [0,M − 1].

A simple look-up table cannot be constructed for KRS(ρ; z0), as the set of
discrete values of ρ does not have uniform structure. Instead, we must rely
on some interpolation scheme. If we assume that interpolation is sufficiently
precise, we can indeed build a look-up table with values KRS(q∆w; z0) where
∆w is sufficiently small to capture the structure of KRS and integer index q
spans all possible values of ρ, i.e. q ∈ [0, dM

√
2∆xy/∆we], where d·e is the

“round up” (ceil) operation. We denote this look-up table “waveLUT” because
it actually captures wave structure of light.

Even if we calculate KRS(m∆xy, n∆xy; z0) for single z0 and all m, n, the
above mentioned procedure is advantageous. The calculation of ρ is usually
simple and must be done for all m, n anyway, i.e. for (2M − 1)2 samples.
The calculation of KRS(m∆xy, n∆xy; z0) is much more involved, but due to
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waveLUT it is necessary to evaluate it just for M
√

2∆xy/∆w samples of ρ,
which is usually a much smaller number. We assume that look-up operations
and interpolations are fast, which is usually the case.

It is also indeed possible to incorporate some interpolation to rhoLUT, i.e.
to precalculate just values ρ(r, s) = ∆ρ(r

2 + s2)1/2 for r, s in [0, dM∆xy/∆ρe],
where ∆ρ ≥ ∆xy is sufficiently small. In exchange of one more interpolation we
get much smaller rhoLUT table. The scheme of calculation is depicted in Fig. 1.

input: (�, �; �0) output: �RS(�; �0) = �RS(�, �; �0)

rhoLUT

�min � �max
�min

�

�max

�min

�max
waveLUT

�RS()

�min � �max
�min

�

�max

re

im

|�| |�| �

�0

Figure 1: Calculation of radially symmetric function KRS(x, y; z0) using 2-D
look-up tables rhoLUT and waveLUT. Complex value (a+ bj) in the waveLUT
is displayed as a RGB color [a, b, b], where a and b are scaled to fit 0–255 range.

The authors of [7] used a very similar method. Instead of rhoLUT, they
calculated a look-up table directly for r = (x2+y2+z20), so they could not reuse
it for any other z0 coordinate as in the case of rhoLUT. Moreover, sampling
distance of this table was set to ∆xy, and thus keeping this table for every z0
would be memory inefficient.

The authors of [4] use the table we call waveLUT here (they call it BPP phase)
and although they in fact use rhoLUT as well (due to Matlab style of matrix
manipulation, see PFT distance if Fig. 4 of [4]), they do not discuss it explicitly,
nor do they investigate its influence.

The authors of [12] use waveLUT as well, but instead of rhoLUT, they use
recurrence formulas to find values of ρ. They also do not discuss the influence
of interpolation on calculation precision.

3 Introduction of the rhoLUT

The aim of the rhoLUT is to replace the calculation of ρ(x, y) = (x2 + y2)1/2,
x ∈ [0,M∆xy], y ∈ [0,M∆xy], by a look-up operation, optionally followed by
interpolations. Let us define it as a 2-D array

rhoLUT[m,n] = ∆ρ

√
m2 + n2

4
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for integer indices m, n in [0, dM
√

2∆xy/∆ρe]. It is naturally possible to gener-
alize the rhoLUT for other index or xy range, but we want to keep the analysis
simple.

First of all, we should ask if such a look-up table is practical. In a gen-
eral computational environment, such as a modern CPU, it depends on other
circumstances. Floating point operations are provided here with sufficient pre-
cision (usually IEEE 754 double precision or better) and are quite fast; a large
look-up table requiring random access to the main memory may suffer from
high traffic on the bus. On the other hand, clever caching and small look-up ta-
ble can easily outperform direct calculation, as especially square root operation
is significantly slower than memory access.

Once we move towards more special architectures, such as GPUs or even
specially designed FPGAs, reasons to use look-up table become stronger. Ar-
chitecutures designed for massively parallell computing tend to keep computa-
tional cores as simple as possible. This leads to both limited instruction set and
limited precision. Direct calculation forces every core to have addition, multipli-
cation and square root operations; look-up table approach requires just memory
access plus addition and multiplication for interpolations. Limited precision is
even more severe – it is easy to see that calculation of

√
x2 leads to loss of about

half of mantissa bits. Single precision calculation (mantissa length 24 bits) is
thus at the edge of applicability for wave optics calculations [10]; lower preci-
sion arithmetic such as half precision is out of the question. Contrary to direct
ρ calculation, a look-up table precalculated in a high precision environment can
be easily used in limited precision enviromnemt.

Finally, as rhoLUT implementation is very easy, it is often possible to im-
plement both direct calculation and look-up table and to choose the faster
approach either in advance or at runtime. In conclusion, it is advantageous to
implement rhoLUT.

Let us now examine the rhoLUT details – its sampling (or size) and the
interpolation of values.

In the simplest case, sampling distance of the rhoLUT equals sampling dis-
tance in x, y coordinates, i.e. ∆ρ = ∆xy, and ρ calculation for x = m∆xy,
y = n∆xy is trivial:

ρC(x, y) = rhoLUT
[

round(|x|/∆ρ), round(|y|/∆ρ)
]

= rhoLUT
[
|m|, |n|

]
.

We can indeed use the same equation even if ∆ρ 6= ∆xy; now, ρ(x, y) is
approximated by a piecewise constant (“staircase”) function ρC(x, y). It is easy
to see that approximation error is at most ∆ρ

√
2/2 and the structure of the

error is the same in the whole xy plane. This observation is important: in the
next step, we are going to use ρ as an index to the waveLUT. However, local
frequency of the function sampled by the waveLUT, e.g. KRS(ρ; z0), usually
grows as ρ→∞; a small error in ρ will be thus magnified for big x, y. Piecewise
constant approximation must be therefore used with the utmost caution.

As ρ(x, 0) = |x|, it follows that the linear interpolation between rhoLUT
values gives exact results for y = 0. We should then expect that in a general
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case, bilinear interpolation should give quite precise results:

ρB(x, y) = (1− ix)(1− iy)ρ00 + (1− ix)iyρ01 + ix(1− iy)ρ10 + ixiyρ11,

ix =
|x|
∆ρ
−
⌊ |x|

∆ρ

⌋
, iy =

|y|
∆ρ
−
⌊ |y|

∆ρ

⌋
,

ρst = rhoLUT
[
b|x|/∆ρc+ s, b|y|/∆ρc+ t

]
.

It can be easily found that the approximation error ρB(x, y)− ρ(x, y) van-
ishes for x → ∞, y → ∞, and its maximum is ∆ρ(2 −

√
2)/4 ≈ 0.146∆ρ; the

maximum error is located at (x, y) = (∆ρ/2,∆ρ/2), see Fig. 2.

x [mm]0

3

3

y

∆� = 100 �m
0.146∆�

0
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0.100∆�

0.125∆�

x [�m]0

200

200

y

∆� = 100 �m

Figure 2: Visualization of ρB(x, y) − ρ(x, y), i.e. the error introduced by the
rhoLUT with bilinear interpolation. Left graph shows error vanishing, right
graph shows that maximum error is located at (x, y) = (∆ρ/2,∆ρ/2). Notice
there is indeed no error for x, y being integer multiples of ∆ρ.

4 Sampling of the rhoLUT

To select a small enough sampling distance ∆ρ, it is not sufficient to examine
error ρB(x, y)− ρ(x, y) alone – we need to take into account that approximate
value ρB is used in subsequent calculations. Let us assume that we are go-
ing to calculate KRS(ρB; z0) directly, without waveLUT. Effects of waveLUT
approximation error will be discussed afterwards.

There are at least two ways how to analyze effect of error in ρ approximation.
The first one assumes that the error of ρ is multiplied by the local frequency of
KRS(ρ; z0); let us explain why. Local frequency lfRS(ρ; z0) is defined as a first
derivative of the argument of the high frequency component of KRS(ρ; z0) [3]:

lfRS(ρ0; z0) =
∂

∂ρ

r

λ

∣∣∣∣
ρ=ρ0

=
∂

∂ρ

√
ρ2 + z20
λ

∣∣∣∣∣
ρ=ρ0

=
ρ0

λ
√
ρ20 + z20

. (3)
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It tells us how many cycles per unit length can be found in the vicinity of
ρ0. Thus, unit error in ρ results in phase change lfRS(ρ; z0) of KRS(ρ; z0). It is
therefore necessary to analyze the function [ρB(x, y)−ρ(x, y)]× lfRS(ρ(x, y); z0).

The second way leads to the same results and is perhaps more intuitive; let
us derive optimal ∆ρ in this way. Here, only the main steps of the derivation are
presented; see the supplementary material for the full derivation and reasoning.

The evaluation of KRS as defined in Eq. (1) depends on r(ρ, z0) = (ρ2 +
z20)1/2. If we compare r evaluated with exact ρ and with its approximation ρB
(using bilinear approximation), we can observe following facts (see Fig. 3):

• The difference r
(
ρB(x, y), z0

)
−r
(
ρ(x, y), z0

)
approaches 0 as ρ(x, y)→∞.

However, the error decreases quite slowly for ρ ≈ 0. As the most sensitive
term of KRS is exp(j2πr/λ), we can conclude that the overall error of KRS

also vanishes.

• The biggest error can be found in the vicinity of (x, y) = (0, 0). Moreover,
maximum error for 0 < x < ∆ρ, 0 < y < ∆ρ is either the global maximum
of the error, or it is very close to the maximum.

• Although the error of ρ is maximal at (x, y) = (∆ρ/2,∆ρ/2), the error
of r is maximal at a different point. However, the error of r at (x, y) =
(∆ρ/2,∆ρ/2) is a rough approximate (≈ 85%) of the maximum error.

We can thus define estimate of the maximum error of r when using the
rhoLUT with bilinear interpolation as

maxRErr(∆ρ, z0) = 1.2

{
r

[
ρB

(
∆ρ

2
,
∆ρ

2

)
, z0

]
− r

[
ρ

(
∆ρ

2
,
∆ρ

2

)
, z0

]}
, (4)

where factor 1.2 reflects the observation that the error for (x, y) = (∆ρ/2,∆ρ/2)
is approximately 85% of the maximum. Although it is possible to analyze the
error more rigorously, in numerical testing we have found that this approxima-
tion works well (see Sec. 6) and the factor 1.2 being slightly higher than 1/0.85
leads to a slightly pessimistic error estimate.

It can be easily seen in Fig. 4 that in the log-log graph, maxRErr can be
approximated by a line for a wide range of useful errors and ∆ρ. Please note
that r is divided by λ in Eq. (1), and thus an acceptable error must be much
lower than λ. For convenience, there is a thick dashed horizontal line in Fig. 4
at maxRErr = 1 µm, i.e. any acceptable error for visible light calculations must
be well below this line.

The linear approximation in a log-log graph is defined as log(maxRErr) ≈
κ log(∆ρ) + ξ, where κ is a slope and ξ is an intercept. It is easy to measure
that κ ≈ 1.9998 for a wide range of common z0 and acceptable maxRErr. It
is also clear that ξ depends on z0 and this dependence is also linear in the
log-log graph: ξ = ξ0 + ξ1 log(z0), where ξ0 is a value for z0 = 1 and ξ1 is the
dependency factor. It can be easily measured from the graph that ξ0 ≈ −1.9886
and ξ1 ≈ −0.9999.

7
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Figure 3: Visualization of r(ρB(x, y), z0)−r(ρ(x, y), z0), i.e. the error introduced
in evaluation of r = (ρ2 + z20)1/2 by a rhoLUT with bilinear interpolation. The
top graph shows error vanishing, the bottom left shows the error structure, the
bottom right shows that error at (x, y) = (∆ρ/2,∆ρ/2) is a rough approxima-
tion of the maximum error. Notice that each graph has different scale .

The linear approximation allows us to find optimal ∆ρ opt for a chosen
maxRErr:

∆ρ opt(maxRErr, z0) ≈ exp

(
1

κ
log

[
maxRErr

(z0)ξ1 exp(ξ0)

])
for

κ ≈ +1.9998

ξ0 ≈ −1.9886

ξ1 ≈ −0.9999
(5)

Example values of ∆ρ opt for λ = 500 nm can be found in Fig. 5. For
example, propagation to z0 = 1 m can be calculated with rhoLUT prepared
with ∆ρ opt = 0.19 mm if we allow error in r calculation λ/100, which is usually
acceptable. If the sizes of the areas in z = 0 and z = z0 are 50 × 50 mm, the
rhoLUT size should be 264 × 264 samples. For maximum error λ/10, we set
∆ρ opt = 0.6 mm and the rhoLUT size is just 84× 84 samples.

We can approximate further to get some insight to Eq. (5). As κ ≈ 2,
ξ0 ≈ −2 and ξ1 ≈ −1, we can approximate Eq. (5) by

∆ρ opt(maxRErr, z0) ≈ 2.72
√
z0 maxRErr. (6)

We know that for the fixed extent of ρ, the rhoLUT size is proportional
to 1/∆2

ρ (it is a 2-D look-up table). Therefore Eq. (5) actually tells that the
rhoLUT size is inversely related to maxRErr and z0. It is also worth noting that

8
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Figure 4: Approximate value of maximum error in calculation of r using rho-
LUT with bilinear approximation. Useful part of the curves is below the thick
horizontal line for visible light. Please note it is a log-log graph and both axes
are in meters.

Eq. (6) can be easily derived from the Taylor expansion of Eq. (4) with respect
to ∆ρ; in this case, the constant factor changes to ≈ 2.70.

5 The waveLUT

Once we have the approximate ρ value, we can calculate KRS(ρ; z0) using the
waveLUT. We should set small enough ∆w and define

waveLUT[q; z0] = KRS(q∆w; z0).

where q is an integer index. Again, for a particular value ρ0 we can estimate
the value of KRS(ρ0; z0) using piecewise constant approximation

KRS C(ρ0; z0) = waveLUT[round(ρ0/∆w); z0] (7)

or e.g. piecewise linear approximation

KRS L(ρ0; z0) = (1− i)waveLUT
[
bρ0/∆wc; z0

]
+ iwaveLUT

[
bρ0/∆wc+ 1; z0

]
,

i =
ρ0
∆w
−
⌊
ρ0
∆w

⌋
.

(8)
We should discuss following topics: how to deal with interpolation of z0,

how to set ∆w, and what interpolation to use in the ρ direction.
In many applications, only a few values of z0 are necessary or the value of

z0 is not critical. For example, in computer generated holography, it is often
necessary to calculate the propagation of light from a point light source located
at (x0, y0, z0) to a plane z = 0, and it is acceptable to quantize z0 quite coarsely.
In that case, it is possible to choose a suitable quantization step ∆z and to
precalculate the waveLUT for every integer multiple of ∆z in a given range
[zmin, zmax].

9
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Figure 5: Optimal sampling distance ∆ρ opt for the rhoLUT calculated using
Eq. (5) for λ = 500 nm. Please note it is a log-log graph and both axes are in
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It is also possible to set ∆z as an integer multiple of λ. Now, the waveLUT
looks like its visualization in Fig. 1 – notice that the structure in the vertical
(z) direction is very simple. It should be possible to introduce some form of
interpolation in this direction, but we will not discuss it here.

The extent of the waveLUT in the ρ direction is easy to set. Maximum
and minimum values of ρ are given by the rhoLUT (or the geometry of the
problem). For a given maximum value ρmax, we can calculate the local frequency
lfRS(ρmax; z0) using Eq. (3) and set ∆w < 1/[2 lfRS(ρmax; z0)] to have at least
two samples per cycle of KRS(ρ; z0).

Our experiments show that good results are obtained with 8 samples per
cycle, i.e.

∆w opt = 1/[8 lfRS(ρmax; z0)] (9)

and linear interpolation according to Eq. (8). Piecewise constant approximation
(7) leads to much higher phase quantization and subsequently increases noise in
the optical field. However, provided that ρ is precise enough, phase quantization
itself does not destroy properties of the optical field [10]. We have also tested
other interpolation schemes (cubic and various windowed sinc), but experiments
show that for our purposes (computer generated holography), slightly higher
accuracy of the result does not justify slower calculation.

6 Results

We have implemented several tests to measure look-up tables performance, both
in speed and in precision. Here we present results of CPU tests; details on GPU
implementation are in preparation and will be published elsewhere. Please note
that this section presents just summary of the results; the details are presented
in the supplementary material to this article.

As shown in [10], direct calculation of highly oscillatory functions such as
KRS is prone to numerical error in single precision calculations. In short, prob-

10
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lems appear in calculation of cos[2π(x2 + y2 + z20)1/2/λ] for visible light and
z0 ≈ 1 m or bigger. No problems appeared when using a rhoLUT and a wave-
LUT precalculated in double precision. Direct calculation of ρ (i.e. omission
of a rhoLUT) is possible for on-axis propagation calculations; in off-axis cases,
calculation of ρ = (x2 + y2)1/2 in single precision is prone to numerical errors
as well. See Fig. 6 for an example of a correct and incorrect kernel calculation.

On-axis propagation kernel, 
�0 = 2 m, �� extent 10 mm × 10 mm

Part of off-axis propagation kernel (45°), 
�0 = 2 m, �� extent 5 �m × 5 �m

single precision correct calculation single precision correct calculation

Figure 6: Examples of problems in calculation of KRS. “Single precision” shows
influence of rounding errors in IEEE 754 single precision arithmetic, “correct
calculation” shows a correct result calculated in double precision. Calculation
using look-up tables leads to the same correct results. Color coding of complex
values is the same as in Fig. 1.

Tests of ∆ρ and ∆w selection according to Eqs. (5) and (9) confirmed theo-
retical analysis. For example, if we decide to accept error maxRErr = λ/100 in
calculation of r, ∆ρ calculated using Eq. (5) and bilinear interpolation in the
rhoLUT leads to an actual error at most λ/103, i.e. 97% of the desired value.
Other values of maxRErr lead to similar numbers.

We have also measured actual error of calculation of KRS. It was calculated
as the maximum or the average value of |K −K ′|/Kmax, where K is the value
of KRS calculated precisely, K ′ is the value of KRS calculated using look-up
tables and Kmax is the maximum of KRS in the whole calculated area; the error
was evaluated for both real and imaginary parts and the higher (worse) value
is presented here.

Choosing 8 samples per fringe in selection of ∆w according to Eq. (9) and
linear interpolation in the waveLUT leads to maximum error 7.0% (1.1% on
average) in the final propagation kernel; 16 samples per fringe to 1.9% (0.3%
on average); 32 samples per fringe to ≈ 0.46% (0.07% on average). While these
numbers may seem high, it should be noted that the maximum error appears
in the finest fringes and does not affect their frequency; thus, this error has
a negligible impact on the optical field properties. Combination of the rho-
LUT and the waveLUT naturally further increases the error; typical values of
maxRhoErr = λ/100 and 8 samples per fringe lead to the maximum error 8.8%
(2.8% on average), which is perfectly acceptable for our purposes.

Calculation time was tested in realistic geometric scenarios for propagated
areas sampled by 64 × 64 samples to 2048 × 2048 samples. We have prepared
two test cases – one for complicated filtered propagation kernels (see [9]) where

11
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look-up tables should clearly win over direct calculation, and one for simplified
Rayleigh-Sommerfeld kernel (without −1/r term) where even direct calcula-
tion is quite fast. Naturally, larger kernels benefit from look-up tables as their
preparation takes comparatively smaller part of calculation time.

Complicated filtered propagation kernel calculation is accelerated mainly by
utilizing waveLUT; 10× or 100× faster calculation is easily achieved, depending
on the complexity of the kernel. Using waveLUT in simple kernel calculation
leads to about 1.7× faster calculation. These numbers include the waveLUT
calculation, which takes about 1% of the overall time.

Introducing rhoLUT enhances numerical behaviour in single precision envi-
ronment; in double precision environment (CPU), this advantage is not impor-
tant, as ρ can be easily evaluated directly. Unoptimized implementation of the
rhoLUT can actually double calculation time compared to direct ρ calculation
and the waveLUT. A slightly optimized rhoLUT implementation is approxi-
mately as fast as direct ρ calculation – this optimization exploits the fact that
some values used in the rhoLUT interpolation are constant within a single row
(or column) of the rhoLUT. On the other hand, careful rhoLUT implementa-
tion leads to further 20% to 40% speed-up compared to to direct ρ calculation
and the waveLUT. This optimization sets ∆ρ to an integer multiple of ∆xy and
uses integer arithmetic whenever possible.

7 Conclusion

We have introduced a method of calculation of arbitrary radially symmetric
functions using a pair of look-up tables, a rhoLUT and a waveLUT. While using
a waveLUT is always advantageous, using a rhoLUT has its pros and cons. The
rhoLUT enhances numerical behaviour in a limited precision environment (such
as GPU); in a high precision environment, it must be carefully implemented to
improve the speed of calculation. We have also analyzed selection of look-up
tables parameters and their influence on the calculation precision.
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thank Petr Vaněček for collaboration on implementation and testing and Libor
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Chapter 8

Conclusions and future work

This thesis presented several ideas applicable in monochromatic coherent light
propagation calculations. I consider some of them theoretically important, the
others are more practically oriented.

In calculation of light propagation, a weird result is obtained sometimes. It
is usually attributed to aliasing of the convolution kernel, either in the spatial
domain (in the convolution based methods) or in the frequency domain (in the
angular spectrum decomposition based methods). I have shown in Chapters 4
and 5 several theoretically important facts.

∙ Aliasing is not bad per se. The results that are considered wrong are often
physically perfectly correct, although the input data have to be interpreted
differently. For example, sometimes the result should be interpreted as
interference pattern of several point light sources rather than propagation
of a continuous light field.

Moreover, if we are interested in light intensity only, aliased complex amp-
litudes of the calculated light field can provide superb result. On the other
hand, anti-aliasing techniques can damage the intensity information signi-
ficantly.

∙ Two methods of calculation of light propagation between parallel planes,
the convolution method and the angular spectrum decomposition method,
are equivalent in the continuous domain. They are, however, not considered
equivalent in the discrete domain, i.e. in numerical calculations. The con-
volution method is preferred for large propagation distances, while the an-
gular spectrum decomposition is preferred for short propagation distances.
I have shown that this discrepancy stems from improper discretisation of
the methods; they are equivalent in the discrete domain when discretised
properly.

However, using the convolution method for short propagation distances
leads to excessively long calculation times, and the opposite holds for the
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angular spectrum decomposition method. Thus, the common preferences
“angular spectrum for short” and “convolution for long” are still valid.

∙ While using the angular spectrum decomposition method for short pro-
pagation distances is considered safe, I have shown there are still some
limitations. They can be easily explained as follows. Numerical calculation
of the angular spectrum method samples the transfer function inside a
rectangular area of the frequency plane only. It thus assumes it is spatially
limited (has finite support) in the frequency domain. However, a function
spatially limited in the frequency domain is spatially unlimited in the
spatial domain (has infinite support there). At the same time, the input
light field has to be considered periodic due to nature of the discrete
Fourier transform. These two fact combine and say that any sample of
the result is influenced by periodic copies of the input light field.
It should be, however, emphasised that the described influence is usually
negligible, thus for most practical situations the angular spectrum decom-
position can be used as usual.

∙ Many methods of light propagation based on the angular spectrum de-
composition method use techniques to suppress aliasing of the transfer
function. They, however, do not discuss physical meaning of the aliasing
suppression. I have shown that a proper discrete calculation requires spa-
tially limited convolution kernel in the spatial domain, i.e. the impulse
response must have finite support. It means that the transfer function has
to be frequency limited. Thus, suppression of aliasing of the transfer func-
tion can be easily interpreted in terms of limiting support of the impulse
response.

Chapter 3 further discussed the convolution method of calculation of light
propagation between parallel planes. I have shown its limits, have analysed
the zero-padding technique thoroughly and have shown a way how to limit
its memory consumption. Finally, I have described a method how to utilize the
convolution method when the sampling distances of the input and output light
fields are not the same.

It should be noted that there are other methods of light propagation calcula-
tions that allow to use different sampling distances of the input and output light
fields, that try to be memory efficient, etc. The enhancements to the convolution
method I proposed aim to create a reliable, reference method that can be used
to test results of other methods.

Chapter 6 described influence of floating point arithmetic in discussed meth-
ods of light propagation. I have shown that calculating the term exp(j 𝑘𝑟), that
is very common in light propagation calculations, is very sensitive to round-
ing errors of floating point arithmetic. (Here, 𝑟 is a distance between points in
space, 𝑘 is the wave number and j 2 = −1). Serious problems have to be expected
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when 𝑟 is in order of meters. Moreover, I have shown that the problems often
disappears when 𝑟 is calculated using the first order (Fresnel) approximation.

Finally, I have proposed a method in Chapter 7 that both accelerates the
calculation of light propagation between parallel planes and limits influence of
rounding errors significantly. Moreover, the method can be used for calculation
of light propagation between a cloud of point light sources and a plane, which
is a base of many methods of computer generated display holography.

Future work

The future work can be divided to three areas: 1. what can be done, 2. what
should be done and 3. what am I currently doing.

1. I have described in Chapter 3 that calculation of light propagation between
parallel planes can be partitioned to smaller tasks; splitting leads to smaller
memory consumption and sometimes to faster calculation. It is, however,
not known how to choose the best partition.

The article presented in Chapter 3 does not address the situation where the
convolution kernel has smaller support than defined by the method. Such a
situation appears for example when propagation distance is small and the
convolution kernel was properly filtered. Taking this into account opens
new possibilities in accelerating the method. For example, overlap-and-
add convolution might result in fast algorithm for very small propagation
distances.

2. There are methods of light propagation calculation based on single Four-
ier transform, especially the methods based on the Fresnel approximation.
Their discretisation should be revisited with tools described in Chapters 4
and 5. Then there are methods that use more sophisticated reasoning such
as the band-limited double-step Fresnel diffraction [40]. Their discretisa-
tion should be revisited as well.

Other widely used algorithm in digital holography / computer generated
display holography is the optical field rotation, see for example [41, 42, 43,
44]. Their reasoning is completely based on the continuous formulation.
As effects of discretisation are not discussed there, it would be more than
useful to explore them.

3. The double look-up method presented in Chapter 7 was implemented on
GPU by Petr Vaněček (co-author of [37] presented in Chapter 6). We are
going to evaluate it and utilize it in light propagation calculations. I have
also derived equations that allow to use the double look-up table method
in calculations based on the angular spectrum decomposition. It should be
well tested before publishing the results.
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I am also working on an algorithm that actually produces a computer
generated display hologram of a synthetic scene. Almost everything from
this thesis is utilized there.
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Chapter 9

Activities

9.1 List of author’s publications

Conference papers (in order of importance)

∙ Lobaz, P. “Discrete calculation of the off-axis angular spectrum based light
propagation”. In: Journal of Physics: Conference Series. Vol. 415. 1. 2013,
p. 012040

∙ Lobaz, P. “Double lookup table method for fast light propagation calcu-
lations”. In: Proceedings of the 10th International Symposium on Display
Holography. 2015, in press

Journal papers (in order of importance)

∙ Lobaz, P. “Memory-efficient reference calculation of light propagation us-
ing the convolution method”. In: Opt. Express 21.3 (Feb. 2013), pp. 2795–
2806. doi: 10.1364/OE.21.002795. Total citations (February 2017): 4
(including 1 self citation).

∙ Lobaz, P. “Reference calculation of light propagation between parallel
planes of different sizes and sampling rates”. In: Opt. Express 19.1 (Jan.
2011), pp. 32–39. doi: 10.1364/OE.19.000032. Total citations (February
2017): 9 (including 3 self citations).

∙ Lobaz, P. and Vaněček, P. “Safe range of free space light propagation cal-
culation in single precision”. In: Opt. Express 23.3 (Feb. 2015), pp. 3260–
3269. doi: 10.1364/OE.23.003260

∙ Lobaz, P. and Kovář, L. “Binarizace počítačem generovaného hologramu
pomocí ditheringu”. In: Jemná mechanika a optika 56.10, 11-12 (2011),
pp. 290, 303–305. issn: 0447-6441

https://doi.org/10.1364/OE.21.002795
https://doi.org/10.1364/OE.19.000032
https://doi.org/10.1364/OE.23.003260
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Conference tutorials (in order of year)

∙ Computer generated display holography. [In English] A tutorial accepted
to Eurographics 2017, April 24–28, Lyon, France.

∙ Computer generated holography for computer graphics. [In English] A tu-
torial presented at the 3DTV Conference 2011, May 15, Antalya, Turkey.
doi: 10.1109/3DTV.2011.5877153.

Details on journals and conferences

Digital holography / computer generated display holography is an interdiscip-
linary subject that requires both physics (physical optics) and computer science
(computer graphics and digital signal processing). Despite that, most results are
usually published in journals or at conferences categorized as “Optics” by the
Web of Science.

Optics Express is an open-access, online journal published by The Optical
Society (OSA), ISSN 1094-4087

∙ Impact Factor: 3.488 (ranked 10th out of 86 journals)
∙ 5 Year Impact Factor: 3.499
∙ EigenFactor Score: 0.24990 (ranked 1st out of 86 journals)
∙ Total Citations: 81,379 (ranked 2nd out of 86 journals) (According to

Optics category rankings in the 2015 JCR, Thomson Reuters, 2015)
∙ One of the most important journals publishing results in digital holo-

graphy / computer generated display holography (together with Ap-
plied Optics and Optics Letters)

Jemná mechanika a optika is a journal published by Fyzikální ústav AV ČR
(Institute of Physics of the Czech Academy of Sciences), ISSN: 0447-6441,
peer reviews since 2002

International Symposium on Display Holography is one out of five con-
ferences specialized in holography, since 1982, indexed in the Scopus data-
base. (The other conferences are Digital holography and 3-D imaging, or-
ganized by OSA – The Optical Society since 2007, Practical holography, or-
ganized by SPIE since 1986, The Holography Conference/Holo-pack.Holo-
print, organized by Reconnaissance International since 1990, HoloExpo,
organized by a group of Russian institutions since 2004)

3DTV Conference is a conference whose objective is to bring together re-
searchers and developers to discuss the development of next generation
3-D immersive and interactive technologies, applications and services. It
originated from the project FP6 3DTV Network of Excellence in 2007.

http://dx.doi.org/10.1109/3DTV.2011.5877153
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Eurographics is a major computer graphics conference organized by the Euro-
graphics Association. It covers the wide field of computer graphics.

9.2 Selected talks

Selected technical talks (in order of year)

∙ Fourier transform and associated transforms in optics. [In Czech] Institute
of Mathematics of the Academy of Sciences of the Czech Republic, 2015.

∙ Holography and computer science. [In Czech] Czech Technical University,
Prague, Czech Republic, 2015.

∙ Computer generated holography: 3D vision and beyond. [In Czech] Series
of six lectures. University of West Bohemia, Pilsen, Czech Republic, 2013.

∙ Computer generated holography: 3D vision and beyond. [In Czech] Come-
nius University in Bratislava, Bratislava, Slovakia, 2013.

∙ Computer generated holography. [In English] Czech Technical University
in Prague, Prague, Czech Republic, 2012.

∙ Computer generated holography for computer graphics. [In English] Uni-
versity of Maribor, Maribor, Slovenia, 2011.

∙ Computer generated holography: 3D vision and beyond. [In English] Uni-
versity of Minho, Braga, Portugal, 2011.

∙ Computer generated holography. [In Czech] The Palacký University, Olo-
mouc, Czech Republic, 2010.

Selected popular talks and exhibitions (in order of year)

∙ Hologramy [Holograms]. [In Czech] A workshop for grammar school teach-
ers on using holography in physics education. At 13th International con-
ference “Dílny Heuréky – Náchod 2014”, Czech Republic.

∙ Holograms. An exhibition of art holograms (concepts by students of Inter-
media art at the University of West Bohemia, holographer P. Lobaz) at
Galerie Září, Prague, Czech Republic, 2014.

∙ Holografie pro střední školy [Holography for grammar schools]. [In Czech].
A seminar and a hands-on course for grammar school teachers held in
Hazuka hotel, Pilsen, Czech Republic, 2014.

∙ Holography. [In Czech] 3D Film Fest Prague, Prague, Czech Republic,
2013.
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∙ Holography. An exhibition and hands-on courses at Dny vědy a techniky
(Days of Science and Technology), Pilsen, Czech Republic, 2013.

∙ Kouzlo? Ne. Holografie [Magic? No. Holography]. Half technical, half artis-
tic exhibition of holography. Muzeum jižního Plzeňska v Blovicích, Blovice,
Czech Republic, 2013.

9.3 Projects

∙ NECPA – Vývoj algoritmů počítačové grafiky a pro CAD/CAM systémy,
LH12181 (1.3.2012–31.12.2015, ZČU/MŠMT a Shandong University,
Jinan, People’s Republic of China)

∙ CPG – Centrum počítačové grafiky, LC06008 a LC06008-prodloužený
(1.3.2006–31.12.2011, NPV II MŠMT)

∙ 3DTV – Integrated Three-Dimensional Television – Capture, Transmission
and Display, FP6-PLT-511568
(1.9.2004–31.8.2008, EUROPEAN COMMISSION)

∙ INTUITION – Network of Excellence on Virtual Reality and Virtual En-
vironments Applications for Future Workspaces, FP6-IST-507248-2
(1.9.2004 – 31.10.2008, EUROPEAN COMMISSION)

∙ Sdílené virtuální světy, CES 128/2004
(12.1.2005–12.1.2007, Cesnet, z.s.p.o.)

∙ Inovace výuky tvorby počítačových her a multimédií, F0823/2010/F1a
(1.1.2010–31.12.2010, FRVŠ MŠMT)

∙ Dovybavení laboratoře pro výuku kognitivních informatických technik,
F0070/2011/Aa (1.1.2011–31.12.2011, FRVŠ MŠMT)

∙ Pokročilé výpočetní a informační systémy, SGS-2013-029 a SGS-2016-013
(1.3.2013–31.12.2018, ZČU)

∙ Zkvalitnění výuky speciálních grafických technik, ilustrace a fotografie,
VS-15-022 (1.4.2015–31.12.2015, ZČU)

∙ NTIS – Nové technologie pro informační společnost,
CZ.1.05/1.1.00/02.0090
(1.12.2010–31.12.2014, MŠMT OP VaVpI Evropská centra excelence)

∙ PUNTIS – Podpora udržitelnosti centra NTIS – Nové technologie pro in-
formační společnost, LO1506 (1.7.2015–30.6.2020, MŠMT LO)
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9.4 Other activities related to holography

∙ Member of OSA – The Optical Society

∙ Member of SPIE

∙ Active member of various online groups specialized in holography

– Holographyforum.org
(www.holographyforum.org/forum)

– FB Holography
(www.facebook.com/groups/Holography)

– FB Holography Forum
(www.facebook.com/groups/holographyforum/)

– FB Голография [Holography]
(www.facebook.com/groups/1734692300124949/)

– FB OSA Holography and Diffractive Optics Technical Group
(www.facebook.com/groups/OSAholography/)

∙ Consulting in both academy (e.g. Brno university of technology, Czech Re-
public; University of Minho, Portugal; Yıldız Teknik Üniversitesi, Turkey;
University of Technology, Iraq) and industry (Optaglio, Czech Republic)

www.holographyforum.org/forum
www.facebook.com/groups/Holography
www.facebook.com/groups/holographyforum/
www.facebook.com/groups/1734692300124949/
www.facebook.com/groups/OSAholography/
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Double lookup table method for fast light

propagation calculations

Petr Lobaz

Dept. of Computer Science and Engineering, University of West Bohemia, Czech Republic

E-mail: lobaz@kiv.zcu.cz

Abstract. A method of rapid and robust calculation of radially symmetric functions is
presented. It is based on observation that f(x, y, z) = f ′(ρ, z), where ρ = (x2 + y2)1/2. The
method stores values of f ′ and ρ in look-up tables. It can be used e.g for fast computer generated
hologram calculation. It is suitable for CPU, GPU or hardware implementation.

1. Introduction
In computer generated holography and digital holography, it is often necessary to evaluate
radially symmetric functions of two variables such as convolution kernels for free space light
propagation calculation, e.g. Rayleigh-Sommerfeld or Fresnel kernels [1]. There are several
approaches how to accelerate their evaluation. First of all, a moderately complicated formula,
such as the Rayleigh-Sommerfeld convolution kernel

KRS(x, y; z0) = − 1

2π

(
jk − 1

r

)
exp(jkr)

r

z0
r
, where r =

√
x2 + y2 + z20 (1)

can be approximated by a simpler formula, such as the Fresnel approximation. Such kernels
are used to calculate light propagation from a plane z = 0 to a plane z = z0; λ stands for
a wavelength, k = 2π/λ is a wave number, x and y are transverse spatial coordinates and j
is the imaginary constant. Among acceleration, a simpler formula can have better numerical
properties [2]. On the other hand, the approximation error must be taken into account.

Other acceleration method pre-calculates the function for every necessary x, y and z0 and
stores the values in a 3-D look-up table (LUT) [3, 4]. Some researchers do not calculate LUT
at points where the function is not properly sampled, thus reduce its size [5]. Certain functions,
e.g. the Fresnel convolution kernel, are separable, i.e. it holds K(x, y; z0) = Kx(x; z0)Ky(y; z0).
In this case, it is sufficient to create one 2-D look-up table for each of the two factors Kx, Ky

[6, 7, 8]. Indeed, this approach is not applicable for non-separable functions.
Some researchers try to accelerate function evaluation by using recurrence formulas,

e.g. [9, 10]. It should be noted that influence of computer arithmetic rounding errors is usually
poorly analysed and that recurrence formulas tend to produce a sequential computer code rather
than a parallel one. An original approach to evaluation of radially symmetric function K is
based on computer graphics algorithm for circle rasterisation [11]. Its biggest drawback is its
complicated memory access, thus memory caching cannot be used efficiently. Recently, authors
proposed a method that overcomes this difficulty using recurrence formulas [12].
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Parts of the method we are going to analyse in following sections were independently described
by other authors [12, 13, 14]. We will discuss these references after we describe the basic idea of
the proposed method in Sec. 2. Detailed analysis is given in Sec. 3 and 4, results in Sec. 5.

2. Principle of the method
For light propagation calculation, KRS(x, y; z0) must be evaluated for a specific z0 in a finite
area of the xy plane. This area should be sampled using sampling distance ∆xy. It is easy to see
that KRS(x, y; z0) depends in fact on r and z0, where z0 is constant. Moreover, we can define
ρ(x, y) = (x2 + y2)1/2 and write r = (ρ2 + z20)1/2 and KRS(x, y; z0) ≡ KRS(ρ; z0).

To calculate KRS(m∆xy, n∆xy; z0), where m, n are integer indices, it is necessary to evaluate

ρ = ∆xy(m
2 + n2)1/2 and KRS(ρ; z0). It is possible to calculate ρ directly or using a 2-D look-

up table; we call this look-up table “rhoLUT”. We can also build a look-up table with values
KRS(q∆w; z0) where ∆w is sufficiently small and integer index q spans all possible values of ρ.
We denote this look-up table “waveLUT” because it actually captures wave structure of light.

The waveLUT improves the calculation speed as the evaluation of KRS or more complicated
functions is usually slow. As any error in calculation of ρ can significantly affect the precision of
the result, the pre-calculated rhoLUT improves numerical behaviour of the calculation.

The authors of [14] used a very similar method. Instead of rhoLUT, they calculated a look-up
table directly for r = (x2 + y2 + z20), so they could not reuse it for other z0 coordinate as in
the case of rhoLUT. Moreover, sampling distance of this table was set to ∆xy, and thus keeping
this table for every z0 would be memory inefficient. The authors of [13] use the table we call
waveLUT here and although they in fact use rhoLUT as well (due to Matlab style of matrix
manipulation), they do not discuss it explicitly, nor do they investigate its influence. The authors
of [12] use waveLUT as well, but instead of rhoLUT, they use recurrence formulas to find values
of ρ. They also do not discuss the influence of interpolation on calculation precision.

3. The rhoLUT analysis
The aim of the rhoLUT is to replace the calculation of ρ(x, y) = (x2 + y2)1/2, x ∈ [0,M∆xy],
y ∈ [0,M∆xy], by a look-up operation, optionally followed by an interpolation. Let us define it

as a 2-D array rhoLUT[m,n] = ∆ρ

√
m2 + n2 for integer indices 0 ≤ m,n < dM∆xy/∆ρe.

No interpolation is necessary for ∆ρ = ∆xy. For ∆ρ 6= ∆xy, either piecewise constant or
piecewise bilinear interpolation can be used. It can be shown that the approximation error
caused by the piecewise constant interpolation is not generally acceptable, as the approximate
value of ρ is used for the KRS calculation, where any error is greatly amplified. Piecewise bilinear
interpolation gives much better results. If we denote ρB(x, y) as a result of the rhoLUT look-up
followed by the piecewise bilinear interpolation, it can be found that the approximation error
ρB(x, y) − ρ(x, y) vanishes for x → ∞, y → ∞, and its maximum is ∆ρ(2 −

√
2)/4 ≈ 0.146∆ρ

located at (x, y) = (∆ρ/2,∆ρ/2).
To select a small enough sampling distance ∆ρ, it is not sufficient to examine error

ρB(x, y) − ρ(x, y) alone, as we need to take into account that approximate value ρB is used
in subsequent calculation of KRS. The most sensitive part of KRS is exp(j2πr/λ), because even
a slight error in r is greatly amplified. It is thus necessary to analyse error r(ρB, z0) − r(ρ, z0).
Analysis reveals that this error is the biggest for ρ close to 0. As we know that ρB(x, y)−ρ(x, y)
is the biggest at (x, y) = (∆ρ/2,∆ρ/2), we can guess that r(ρB, z0) − r(ρ, z0) at this point
estimates maximum error of r. We can thus define estimate of the maximum error of r as

maxRErr(∆ρ, z0) = 1.2

{
r

[
ρB

(
∆ρ

2
,
∆ρ

2

)
, z0

]
− r

[
ρ

(
∆ρ

2
,
∆ρ

2

)
, z0

]}
, (2)

where r(ρ, z0) = (ρ2 + z20)1/2 and factor 1.2 reflects the observation that the error of r for
(x, y) = (∆ρ/2,∆ρ/2) is approximately 85% of the maximum.
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Figure 1. Approximate value of maximum
error in calculation of r.

10–3
10–6

10–5

10–4

10–3

10–2

∆
� 

op
t [

m
]

10–1 110–2 10
�0 [m]

� / 10
� / 32
� / 100
� / 316

maxRErr
� = 0.5 �m

Figure 2. Optimal sampling distance ∆ρ opt

calculated using Eq. (3).

It can be seen in Fig. 1 that in the log-log graph, maxRErr can be approximated by a line
for a wide range of useful errors and ∆ρ. Recall that for visible light, error of r must be well
below 1 µm that is depicted by a thick dashed horizontal line.

A set of lines in a log-log graph is defined as log(maxRErr) = κ log(∆ρ) + ξ0 + ξ1 log(z0),
where κ is the slope and ξ0 and ξ1 define the intercept. We can measure in the graph that for a
wide range of common z0 and acceptable maxRErr, κ ≈ 2, ξ0 ≈ −2 and ξ1 ≈ −1.

The linear approximation allows us to find optimal ∆ρ opt for a chosen maxRErr:

∆ρ opt(maxRErr, z0) = exp

(
1

κ
log

[
maxRErr

(z0)ξ1 exp(ξ0)

])
≈ 2.72

√
z0 maxRErr. (3)

Example values of ∆ρ opt for λ = 500 nm can be found in Fig. 2. Note they are much larger
than λ, thus rhoLUT size is usually small.

4. The waveLUT analysis
Once we have the approximate ρ value, we can calculate KRS(ρ; z0) using the waveLUT. We
should set small enough ∆w and define waveLUT[q; z0] = KRS(q∆w; z0), where q is an integer
index. Again, for a particular value ρ0 we can estimate the value of KRS(ρ0; z0) using piecewise
constant approximation or piecewise linear approximation.

The extent of the waveLUT in the ρ direction is given by the rhoLUT. For a given maximum
value ρmax, we can calculate the local frequency lfRS(ρmax; z0) and set ∆w < 1/[2 lfRS(ρmax; z0)]
to have at least two samples per cycle of KRS(ρ; z0). Our experiments show that good results
are obtained with 8 samples per cycle and a piecewise linear interpolation.

5. Results
As shown in [2], direct calculation of highly oscillatory functions such as KRS is prone to
numerical error in single precision calculations. No problems appeared in single precision
environment when using a rhoLUT and a waveLUT pre-calculated in double precision. See Fig. 3
for an example of both correct and incorrect KRS calculation. Tests also show that selection of
∆ρ and ∆w according to Sections 3 and 4 works as expected.

We have also measured actual error of calculation of KRS. Choosing 8 samples per fringe in
selection of ∆w and linear interpolation in the waveLUT leads to maximum error 7.0% (1.1% on
average). While this number may seem high, it should be noted that the maximum error appears
in the finest fringes and has a negligible impact on the optical field properties. Combination of
the rhoLUT and the waveLUT further increases the error; typical value of maxRhoErr = λ/100
leads to the maximum error 8.8% (2.8% on average), which is still acceptable for our purposes.
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single precision correct calculation

Figure 3. Real part of KRS calculated in IEEE 754
single precision arithmetic and in double precision
arithmetic (“correct calculation”). Calculation using
look-up tables leads to the same correct result.

Calculation time was tested in realistic geometric scenarios. We have prepared two test cases –
one for complicated filtered propagation kernels (see [15]), and one for the Rayleigh-Sommerfeld
kernel. Complicated filtered propagation kernel calculation is accelerated mainly by utilizing
waveLUT; 10× or 100× faster calculation is easily achieved, depending on the complexity of
the kernel. Using waveLUT in simple kernel calculation leads to about 1.7× faster calculation.
These numbers include the waveLUT calculation, which takes about 1% of the overall time.

Introducing rhoLUT enhances numerical behaviour in single precision environment; in double
precision environment, this advantage is not important, as ρ can be easily evaluated directly.
Unoptimized implementation of the rhoLUT can actually double calculation time compared to
direct ρ calculation and the waveLUT. On the other hand, careful rhoLUT implementation that
uses integer arithmetic whenever possible leads to further 20% to 40% speed-up compared to
direct ρ calculation and the waveLUT.

6. Conclusion
We have introduced a method of calculation of arbitrary radially symmetric functions using a pair
of look-up tables, a rhoLUT and a waveLUT. While using a waveLUT is always advantageous,
using a rhoLUT has its pros and cons. The rhoLUT enhances numerical behaviour in a limited
precision environment, but it must be carefully implemented to improve the speed of calculation.
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Double lookup table method
for fast light propagation calculations

Supplementary material to the article
presented at 10th International Symposium on Display Holography,

http://isdh2015.ifmo.ru

Petr Lobaz, Univerisity of West Bohemia, Czech Republic, 2015.

This text analyses errors in propagation calculation using the DoubleLUT ac-
celeration method. Here, LUT stands for a look-up table, “double” stands for
using waveLUT and optionally rhoLUT, see below. The analysis is made for the
Rayleigh-Sommerfeld convolution propagation method only. The analysis is thus
also valid for filtered Rayleigh-Sommerfeld kernels. Moreover, it can be quite
easily adjusted for other methods.

1 Introduction

In a propagation calculation, it is necessary to evaluate a propagation convolu-
tion kernel, for example the Rayleigh-Sommerfeld kernel:

𝐾(𝑥, 𝑦, 𝑧0) = 𝐾(𝑟) = − 1
2𝜋

(︂
j 𝑘 − 1

𝑟

)︂ exp(j 𝑘𝑟)
𝑟

𝑧0
𝑟

,

where 𝑥, 𝑦 are the transverse coordinates, 𝑧0 is a propagation distance, j is
the imaginary constant, 𝑘 is the wave number equal to 2𝜋/𝜆, where 𝜆 is the
wavelength, and 𝑟 is a distance between particular points in the source plane
𝑧 = 0 and the target plane 𝑧 = 𝑧0.

Here, the value of 𝑟 is defined as

𝑟(𝑥, 𝑦, 𝑧0) =
√︁

𝑥2 + 𝑦2 + 𝑧2
0

and can be rewritten as

𝑟(𝜌, 𝑧0) =
√︁

𝜌2 + 𝑧2
0

𝜌(𝑥, 𝑦) =
√︁

𝑥2 + 𝑦2.

It is then indeed possible to evaluate

𝐾(𝑥, 𝑦, 𝑧0) = waveLUT
(︁

rhoLUT(𝑥, 𝑦), 𝑧0
)︁

where
rhoLUT(𝑥, 𝑦) =

√︁
𝑥2 + 𝑦2
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evaluates the value 𝜌 and

waveLUT(𝜌, 𝑧0) = 𝐾

(︂√︁
𝜌2 + 𝑧2

0

)︂

evaluates the final value. It also follows that 𝐾(𝑥, 𝑦, 𝑧0) is radially symmetric in
the plane 𝑥𝑦 for constant 𝑧0.

The heart of the DoubleLUT method is the observation that evaluation of
rhoLUT(𝑥, 𝑦) is quite easy, while evaluation of waveLUT(𝜌, 𝑧0) is much harder due
to complexity of 𝐾(𝑥, 𝑦, 𝑧0).

It is therefore possible to prepare a one dimensional look-up table waveLUT
(single value 𝑧0 is assumed) with pre-calculated values for different 𝜌 values.
The value of 𝜌 can be evaluated directly, or using a two-dimensional look-up
table. As two-dimensional tables occupy a lot of memory, it is desirable to sub-
sample rhoLUT information and to interpolate desired value of 𝜌 from the closest
pre-calculated values.

This analysis compares direct evaluation of 𝜌(𝑥, 𝑦) and interpolated calcula-
tion of 𝜌 using sub-sampled rhoLUT and bilinear interpolation. It also compares
evaluation of 𝑟(𝜌, 𝑧0) for 𝜌 calculated in either way.

Here, general properties of errors are analysed. Detailed analysis of errors for
particular propagation parameters is implemented in the Octave/Matlab script
analyzeBiError RS.m, the other supplementary material to the article.

The script analyzeBiError RS.m shows dependence of errors on 𝑥 and 𝑦.
It can be easily seen there that the maximum error is found in the vicinity of
(0, 0), or more precisely in the area 0 ≤ 𝑥 ≤ Δ, 0 ≤ 𝑦 ≤ Δ, where Δ is the
sampling distance of the rhoLUT. (Please note that this parameter is depicted as
Δ𝜌 in the article and in the script analyzeBiError RS.m). Therefore we will be
mostly interested in errors in this area. However, we are going to analyse limits
for 𝑥 → ∞ and 𝑦 → ∞ as well.

Following sections are actually composed of input and output fields of the
symbolic algebra software Maxima (http://maxima.sourceforge.net/). The
reader is encouraged to use the Maxima software and change parameters to see
different graphs, etc.

The structure of the text is as follows. In Sec. 2, only some assumptions and
definitions are given. Sec. 3 analyses error in 𝜌 induced by bilinear interpolation
in the rhoLUT. Sec. 4 analyses how the error of 𝜌 affects the error of 𝑟 = (𝜌2 +
𝑧2
0)1/2. Its main result is an estimate of sampling distance Δ of the rhoLUT.

Sec. 5 adds a few remarks to the derivations in Sec. 4. However, the main result
is not altered.

2 Maxima assumptions and some definitions

We will need a particular value of a wavelength sometimes. Set some reference
value. Please note that all dimensions here are in meters.
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(%i1) lambda : 500*10^(-9);

(%o1)
1

2000000

Precise 𝜌(𝑥, 𝑦) and 𝑟(𝜌, 𝑧) calculation:

(%i2) rho(x,y) := sqrt(x^2+y^2);

(%o2) 𝜌 (𝑥, 𝑦) :=
√︁

𝑥2 + 𝑦2

(%i3) r(rho,z) := sqrt(rho^2+z^2);

(%o3) r (𝜌, 𝑧) :=
√︁

𝜌2 + 𝑧2

In further derivations, it is wise to state some assumptions. Propagation
distance should be positive:

(%i4) assume(z>0);

(%o4) [𝑧 > 0]

Bilinear interpolation in rhoLUT is done inside “a cell” with “lower left”
corner (𝑥0, 𝑦0) and “upper right” corner (𝑥0+Δ, 𝑦0+Δ). Normalized coordinates
ix, iy in the cell are assumed to be 0 < ix < 1, 0 < iy < 1. Sometimes, we will
call them 𝑎, 𝑏.

(%i5) assume(a>0);

(%o5) [𝑎 > 0]

(%i6) assume(b>0);

(%o6) [𝑏 > 0]

(%i7) assume(Delta>0);

(%o7) [Δ > 0]

Some graphs will be larger than Maxima default. Set the large graph size.

(%i8) extsize:[800,300];

(%o8) [800, 300]
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3 Error of rho using bilinear interpolation

When calculating approximate value of 𝜌, we will use bilinear interpolation
between precise values 𝜌(𝑥0, 𝑦0), 𝜌(𝑥0+Δ, 𝑦0), 𝜌(𝑥0, 𝑦0+Δ) and 𝜌(𝑥0+Δ, 𝑦0+Δ).
We call this area “the cell [𝑥0, 𝑦0]” (note the square brackets).

First, define normalized coordinates inside the cell.

(%i9) ix(x, x0, Delta) := (x - x0) / Delta$

(%i10) iy(y, y0, Delta) := (y-y0) / Delta$

Define bilinear interpolation at (𝑥, 𝑦) inside a cell [𝑥0, 𝑦0]:

(%i11) rhoB(x,y,x0,y0,Delta) :=
rho(x0,y0)*(1-ix(x,x0,Delta))*(1-iy(y,y0,Delta))
+ rho(x0,y0+Delta)*(1-ix(x,x0,Delta))*iy(y,y0,Delta)
+ rho(x0+Delta,y0)*ix(x,x0,Delta)*(1-iy(y,y0,Delta))
+ rho(x0+Delta,y0+Delta)*ix(x,x0,Delta)*iy(y,y0,Delta)$

Define error as a difference between the approximate and the precise values.

(%i12) rhoErrorB(x,y,x0,y0,Delta) := rhoB(x,y,x0,y0,Delta) - rho(x,y)$

Let us show that rhoErrorB is zero at infinity:

(%i13) limit(rhoErrorB(x0+Delta/2,a*x0+Delta/2,x0,a*x0,Delta), x0, inf);

(%o13) 0

(%i14) limit(rhoErrorB(0+Delta/2, y0+Delta/2, 0, y0, Delta), y0, inf);

(%o14) 0

(%i15) limit(rhoErrorB(x0+Delta/2, x0+Delta/2, x0, x0, Delta), x0, inf);

(%o15) 0

For 𝑥 = 0, it holds 𝜌(𝑥, 𝑦) = |𝑦|. It is therefore clear that rhoLUT should be
aligned with axes 𝑥, 𝑦, i.e. it should include 𝜌(0, 0). Otherwise, the error near
the origin will be big:

(%i16) radcan(rhoErrorB(0,0,-Delta/2,-Delta/2,Delta));

(%o16)
Δ√
2

(%i17) float(%);

(%o17) 0.70710678118655 Δ

We will show that rhoLUT containing the cell [0, 0] leads to much smaller 𝜌

error; we are going to show that the maximum error is found at (Δ/2, Δ/2).
First, let us display the rhoErrorB inside the cell [0, 0]:
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(%i18) wxplot2d(makelist(rhoErrorB(0+a,0+b,0,0,1), b, bList),
[a,0,1], [ylabel, "rhoErrorB"],
[legend, makelist(simplode(["b = ", b]), b, bList)],
[gnuplot_preamble,
"set title ’Error of rho at (x0+a,y0+b), [x0,y0]=[0,0], Delta=1’;
set key outside"]),

bList=makelist(b*0.2, b, 0, 5), wxplot_size=extsize;

(%t18)

(%i19) wxplot3d(rhoErrorB(0+a,0+b,0,0,1), [a,0,1], [b,0,1],
[mesh_lines_color, false],
[grid, 40, 40],
[legend, ""],
[gnuplot_preamble, simplode(["set view map; set size ratio -1;"

"set size 1.2;",
"set origin -0.2,-0.06;",
"set colorbox user origin 0.8, 0.1 size 0.05, 0.8;",
"set title ’Error of rho in the cell [0,0] for Delta=1’"])]);

(%t19)

We can easily show that the maximum can be found at (Δ/2, Δ/2):

(%i20) rhoErrorBdiffX(x, y, Delta) :=
’’(diff(rhoErrorB(x, y, 0, 0, Delta), x, 1))$

(%i21) rhoErrorBdiffY(x, y, Delta) :=
’’(diff(rhoErrorB(x, y, 0, 0, Delta), y, 1))$
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(%i22) rhoErrorBdiffX(Delta/2, Delta/2, Delta);

(%o22) 0

(%i23) rhoErrorBdiffY(Delta/2, Delta/2, Delta);

(%o23) 0

Now we can see that the error at (Δ/2, Δ/2) is much smaller than in situation
when rhoLUT did not contain the cell (0, 0):

(%i24) radcan(rhoErrorB(0+Delta/2,0+Delta/2,0,0,Delta));

(%o24) −

(︁√
2 − 2

)︁
Δ

4

(%i25) float(%);

(%o25) 0.14644660940673 Δ

While error of 𝜌 is important, in future we are going to explore the error of
𝑓(𝜌′), where 𝑓 is an arbitrary function and 𝜌′ is an approximate value of 𝜌. We
will assume that the function 𝑓 is “simple”.

Let us make a reasonable assumption: we know that there is no error in 𝜌

at the corners of the interpolation cell, thus 𝑓(𝜌′) is exact there as well. As the
function rhoErrorB is quite “simple”, we can guess that the error of 𝑓(𝜌′) in
the center of the cell is a representative of the maximum error of 𝑓(𝜌′) in the
whole cell.

We don’t claim the maximum error of 𝑓(𝜌′) is in the cell center, it definitely
depends on the function 𝑓 ; we claim that the error in the center is an estimate
of the maximum error of the cell. Therefore we define an estimate of the error at
(𝑥, 𝑦) as the error of the center of the cell [𝑥−Δ/2, 𝑦 −Δ/2]. Such an estimation
neglects the alignment of the rhoLUT with the origin. On the other hand, such
function is smooth and much easier to analyse.

(%i26) maxRhoErrorBXY(x, y, Delta) :=
rhoErrorB(x, y, x-0.5*Delta, y-0.5*Delta, Delta);

(%o26) maxRhoErrorBXY (𝑥, 𝑦, Δ) := rhoErrorB (𝑥, 𝑦, 𝑥 − 0.5Δ, 𝑦 − 0.5Δ, Δ)

As an example, let us draw the estimate of maximum error for various 𝑦

close to 0. Note that both 𝑥 and 𝑦 should not be smaller than Δ/2, as the
corner (𝑥0, 𝑦0) of the cell must be larger than 0.
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(%i27) wxplot2d(makelist(maxRhoErrorBXY(x, y*Delta, Delta)/Delta, y, ylist),
[x, 0.5*Delta, 10*Delta],
[legend, makelist(simplode(["y = ", y, " Delta"]), y, ylist)],
[ylabel, "maxRhoErrorBXY / Delta"],
[gnuplot_preamble,

simplode(["set title ’Estimate maximum rho error at (x,y)"
" for Delta = ", Delta, "’;"])]),

ylist=[0.5, 0.75, 1.0, 1.25, 1.5], Delta = 1;

(%t27)

Let us simplify the analysis even more: let us explore if the error that we
named maxRhoErrorBXY is radially symmetric. If this was true, it would allow
us to reduce the dimensionality of the problem from two dimensions (𝑥, 𝑦) to
one dimension (𝜌 = (𝑥2 + 𝑦2)1/2). The graph below draws maxRhoErrorBXY for
various 𝑥2 + 𝑦2 = const., where horizontal axis is equal to atan(𝑦/𝑥). It is clear
that the function is not perfectly radially symmetric – otherwise the lines would
be perfectly horizontal.

(%i28) wxplot2d(makelist(maxRhoErrorBXY(cos(phi)*rho, sin(phi)*rho, Delta)
/ Delta, rho, rhoList),

[phi, 0, %pi/2], [xlabel, "phi [radians]"],
[ylabel, "maxRhoErrorBXY / Delta"],
[legend,

makelist(simplode(["rho = ", rho/Delta, " Delta"]), rho, rhoList)],
[gnuplot_preamble,

simplode(["set title ’Error in the cener of the cell [x0,y0],",
" x0^2+y0^2=rho^2, w.r.t. to phi=atan(y0/x0), Delta = ", Delta, "’;",
"set format y ’%.0te%+1T’; set key outside"])]),

rhoList=makelist(rho*1e-5, rho, 1, 6), Delta=1e-5, fpprintprec=2,
wxplot_size=extsize;
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(%t28)

However, it is clear from the graph that the error is the biggest for 𝜑 = 0 or
𝜑 = 𝜋/2, i.e. for the cells [𝑥0, 0] or [0, 𝑦0]. If we are looking for an error estimate
at a distance 𝜌 from the origin, we know it will not be larger than the maximum
error in the cell [𝜌 − 𝜖, 0], where 𝜖 is such that the center of this cell is located
at a distance 𝜌 from the origin, i.e. at a point ((𝜌2 − {Δ/2}2)1/2, Δ/2). Let us
define such an estimate:

(%i29) maxRhoErrorB(rho, Delta) :=
maxRhoErrorBXY(sqrt(rho^2-(0.5*Delta)^2), 0.5*Delta, Delta);

(%o29) maxRhoErrorB (𝜌, Δ) := maxRhoErrorBXY
(︂√︁

𝜌2 − (0.5 Δ)2, 0.5 Δ, Δ
)︂

The graph of maxRhoErrorB clearly shows that the error of 𝜌 drops as 𝜌 →
∞. It is also clear that the maximum error is at (𝑥, 𝑦) = (Δ/2, Δ/2), i.e. at
the center of the cell [0, 0]. Note that all the lines begin at 𝜌 = Δ

√
2/2, because

smaller 𝜌 would lead to cells [𝑥0, 𝑦0] with negative 𝑥0, 𝑦0, and our error estimation
functions assume they are positive.

(%i30) wxplot2d(makelist([parametric, trho,
maxRhoErrorB(trho, Delta)/Delta, [trho, Delta*sqrt(2)/2, 1000]],

Delta, Deltalist),
[ylabel, "maxRhoErrorB / Delta"], [xlabel, "rho"],
[x, 1e-6, 1000], [y, 1e-8, 1], [logx], [logy],
[legend,

reverse(makelist(simplode(["Delta = ", Delta]), Delta, Deltalist))],
[gnuplot_preamble,

simplode(["set key outside; set format xy ’%.0te%+1T’;",
"set title ’Estimate of the error at a distance rho"
" from the origin’"])]),

Deltalist=[1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1], wxplot_size=[800,300],
fpprintprec=2;
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(%t30)

In conclusion, bilinear interpolation in rhoLUT works well. If we need to limit
error by 𝑒, it is possible to set Δ = 𝑒/0.146 = 7𝑒, see Eq. (%o25). However, error
is equal to 𝑒 just in the vicinity of the origin and vanishes quickly for large 𝑥, 𝑦.

4 Effect of rho error on error of r

Now we are going to analyse effect how the error in 𝜌 influences calculation
of 𝑟 = (𝑧2 + 𝜌2)1/2. Let us assume first that the error of 𝜌 (denoted as 𝑒) is
constant. It is true for constant interpolation in the rhoLUT, but too restrictive
for bilinear interpolation in the rhoLUT, as then the error 𝑒 vanishes as 𝜌 → ∞.

(%i31) rError(rho, z, e) := ’’(r(rho+e, z) - r(rho, z));

(%o31) rError (𝜌, 𝑧, 𝑒) :=
√︁

𝑧2 + (𝜌 + 𝑒)2 −
√︁

𝑧2 + 𝜌2

Even with constant 𝑒, the error vanishes for large 𝑥, 𝑦:

(%i32) limit(rError(0, z, e), z, inf);

(%o32) 0

(%i33) limit(rError(rho,z,e), z, inf);

(%o33) 0

However, these situations assumed “on axis” case. In the “off-axis” case, i.e.
for 𝜌 = 𝛼𝑧, 𝑧 → ∞ for some constant 𝛼, the error does not vanish. But even
now the overall error is not larger than 𝑒:

(%i34) limit(rError(alpha*z, z, e), z, inf);

(%o34)
𝛼 𝑒√

𝛼2 + 1

(%i35) limit(%, alpha, inf);

(%o35) 𝑒
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(%i36) wxplot2d([limit(rError(alpha*z, z, e), z, inf)],
[alpha, 0, 10], [ylabel, "rError(alpha*z, z, e)"],
[gnuplot_preamble,
"set title ’Off-axis error, z->infinity, rho=alpha*z, e=1’;"]),

e=1;

(%t36)

It would be obviously better if the error vanished. This can be accomplished
if 𝜌 is calculated using bilinear interpolation. Then the error 𝑒 is no longer
constant, but can be estimated by rErrorEstB function.

(%i37) rErrorEstB(rho, z, Delta) := rError(rho, z, maxRhoErrorB(rho, Delta));

(%o37) rErrorEstB (𝜌, 𝑧, Δ) := rError (𝜌, 𝑧, maxRhoErrorB (𝜌, Δ))

Now we can see that the error vanishes in both on-axis and off-axis cases.

(%i38) limit(rErrorEstB(rho, z, Delta), z, inf), ratprint=false;

(%o38) 0

(%i39) wxplot2d(makelist(rErrorEstB(alpha*z + Delta*sqrt(2)/2, z, Delta),
alpha, alphaList),

[z, Delta, 1e3],
[ylabel, "rErrorEstB(alpha*z, z, Delta)"],
[legend, makelist(simplode(["alpha = ", alpha]), alpha, alphaList)],
[logx],
[gnuplot_preamble,

simplode(["set title ’Off-axis error of r (rho=alpha*z)",
" for bilinear rhoLUT, Delta = ", Delta, "’;"])]),

Delta=1, alphaList=[0, 0.5, 1, 2, 4];
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(%t39)

We are mostly interested in a different error analysis. In most cases, 𝑧 =
const. and we are interested how does the error change with 𝜌. First, let us
again assume that the error of 𝜌 is equal to constant 𝑒, which is the case for
constant rhoLUT interpolation. We can see that the error approaches to 𝑒. For
small 𝑧, it is equal to 𝑒 instantly, for large 𝑧 it approaches slowly.

(%i40) limit(rError(rho, z, e), rho, inf);

(%o40) 𝑒

(%i41) wxplot2d(makelist(rError(rho, z, e), z, zlist),
[rho, 1e-3, 100],
[legend, makelist(simplode(["z = ", z]), z, zlist)],
[ylabel, "rError(rho, z, e)"], [logx],
[gnuplot_preamble,

simplode(["set title ’Error of r for z = const., e = ", e, "’;",
"set key outside; set format x ’%.0te%+1T’"])]),

zlist=[1e-3, 1e-2, 1e-1, 1, 1e1], e=1, wxplot_size=extsize;

(%t41)

But again we should invesigate influence of bilinear interpolation in the
rhoLUT, i.e. the error of 𝜌 vanishes for 𝜌 → ∞. Please note that again 𝜌 must be
larger than Δ

√
2/2, as this 𝜌 leads to the estimate of the error in the cell [0, 0].

We can see the overall error vanishes, which is obviously good.

(%i42) limit(rErrorEstB(rho, z, Delta), rho, inf), ratprint=false;
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(%o42) 0

(%i43) wxplot2d(makelist(rErrorEstB(rho, z, Delta), z, zList),
[rho, Delta*sqrt(2)/2, 1000],
[legend, makelist(simplode(["z = ", z]), z, zList)],
[ylabel, "rErrorEstB(rho, z, Delta)"], [logx], [logy],
[gnuplot_preamble,

simplode(["set title ’Error of r for z = const., bilinear rhoLUT,"
" Delta =", Delta, "’;"])]),

zList=[1e-3, 1e-2, 1e-1, 1, 1e1, 1e2], Delta=1;

(%t43)

Just to check: Fig. 3 of the article shows that error of 𝑟 for Δ = 100 𝜇m,
𝑧 = 0.5 m is at most about 2.67 nm. Maximum of the graph below is the same,
which indicates our error analysis is correct.

(%i44) wxplot2d(makelist(rErrorEstB(rho, z, Delta), z, zList),
[rho, Delta*sqrt(2)/2, 1000],
[legend, makelist(simplode(["z = ", z]), z, zList)],
[ylabel, "rErrorEstB(rho, z, Delta)"], [logx], [logy],
[gnuplot_preamble,

simplode(["set format xy ’%.0te%+1T’;",
"set title ’Error of r for z = const., bilinear rhoLUT,",
" Delta = ", Delta, "’;"])]),

zList=[0.5], Delta=100e-6;

(%t44)
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The graphs above show that the error of 𝑟 for 𝜌 = Δ
√

2/2 is a rough ap-
proximate of the maximum error. However, it is just an approximation, slightly
larger 𝜌 leads to a bigger error. Let us draw a single graph for the parameters
of Fig. 3 of the article, i.e. 𝑧 = 0.5 m, Δ = 100 𝜇m. The red line is the error
estimate for 𝜌 = Δ

√
2/2. The blue line is the estimate for variable 𝜌. Purple

vertical lines are located at first integer multiples of Δ. We can see that the error
is actually larger than the red estimate in many rhoLUT cells near the origin.

(%i45) wxplot2d(append(
[rErrorEstB(x, z, Delta), rErrorEstB(Delta*sqrt(2)/2, z, Delta)],
makelist([parametric, n*Delta, t, [t, 0, 1e-7]], n, 1, DeltaLines)),

[x, Delta*sqrt(2)/2, 10000*Delta], [xlabel, "rho"], [logx],
append([legend,
"rErrorEstB(rho, z, Delta)", "rErrorEstB(Delta*sqrt(2)/2, z, Delta)",
simplode(["1*Delta ... ", DeltaLines, "*Delta"])],
makelist("", n, 1, DeltaLines-1)),

append([style, [lines, 2, 1], [lines, 2, 2]],
makelist([lines, 1, 4], col, DeltaLines)),

[ylabel, "rErrorEstB(x, z, Delta)"],
[y,0,2*rErrorEstB(Delta*sqrt(2)/2, z, Delta)],
[gnuplot_preamble,

simplode(["set format x ’%.0te%+1T’; set format y ’%.1te%+1T’; ",
"set key outside;",
"set title ’Error of r for bilinear rhoLUT, z = ",
z, ", Delta = ", Delta, "’"])]),

z=0.5, Delta=100e-6, DeltaLines=15, wxplot_size=extsize;

(%t45)

Following two graphs show error behaviour for Δ = 10 𝜇m and Δ = 1 cm.
Graphs for intermediate Δ are similar. The graphs show ratio of actual error
and the error for 𝜌 = Δ

√
2/2. It is clear that the ratio is limited approximately

by 1.2.
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(%i46) wxplot2d(makelist(
rErrorEstB(rho, z, Delta) /
rErrorEstB(Delta*sqrt(2)/2, z, Delta), z, zlist),

[rho, Delta*sqrt(2)/2, 10000*Delta], [logx],
[legend, makelist(simplode(["z = ", z]), z, zlist)],
[ylabel, "rErrorEstB / (est. max. rErrorEstB)"],
[gnuplot_preamble,
simplode(["set key outside; set format x ’%.0te%+1T’;",
"set title ’Ratio of actual rErrorEstB and the error estimate, ",
"Delta=", Delta, "’;"])]),

zlist=[1e-3, 1e-2, 1e-1, 1, 1e1], Delta=10e-6,
wxplot_size=extsize, fpprintprec=2;

(%t46)

(%i47) wxplot2d(makelist(
rErrorEstB(rho, z, Delta) /
rErrorEstB(Delta*sqrt(2)/2, z, Delta), z, zlist),

[rho, Delta*sqrt(2)/2, 10000*Delta], [logx],
[legend, makelist(simplode(["z = ", z]), z, zlist)],
[ylabel, "rErrorEstB / (est. max. rErrorEstB)"],
[gnuplot_preamble,

simplode(["set key outside; set format x ’%.0te%+1T’;",
"set title ’Ratio of actual rErrorEstB and the error estimate, ",
"Delta=", Delta, "’;"])]),

zlist=[1e-3, 1e-2, 1e-1, 1, 1e1, 1e2], Delta=1e-2,
wxplot_size=extsize, fpprintprec=2;

(%t47)
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In conclusion: maximum error of 𝑟 can be estimated as

1.2 × rError(𝜌, 𝑧, maxRhoErrorB(𝜌, Δ))

for 𝜌 = Δ
√

2/2.

(%i48) maxRErrorEstB(z, Delta) := 1.2*rErrorEstB(Delta*sqrt(2)/2, z, Delta);

(%o48) maxRErrorEstB (𝑧, Δ) := 1.2 rErrorEstB
(︃

Δ
√

2
2 , 𝑧, Δ

)︃

The graph below shows that maxRErrorEstB looks like a linear function in
the log-log graph for wide range of 𝑧 and Δ. Note that the value 𝑟 is used
in the Rayleigh-Sommerfeld convolution kernel, where we can find the term
exp(j 2𝜋𝑟/𝜆). The error of 𝑟 must be therefore much smaller than 𝜆. For conve-
nience, horizontal line in the graph shows error 1 𝜇m, i.e. we are interested just
in the errors well below this line.

This graph is referenced below in the text as Estimate of maximum 𝑟 error
for bilinear rhoLUT.

(%i49) wxplot2d(append(makelist(maxRErrorEstB(z, Delta), z, zlist), [1e-6]),
[Delta, 1e-6, 1e-1], [logx],
[legend,

append(makelist(simplode(["z = ", z]), z, zlist), ["error 1 um"])],
[ylabel, "maxRErrorEstB(z, Delta)"], [logy],
append([style],

makelist([lines, 1, col], col, 1, length(zlist)), [[lines, 2, 1]]),
[gnuplot_preamble,

simplode(["set key outside; set format xy ’%.0te%+1T’;",
"set title ’Estimate of maximum r error for bilinear rhoLUT’;"])]),

zlist=[1e-3, 1e-2, 1e-1, 1, 1e1], wxplot_size=extsize;

(%t49)

Linear approximation in the log-log graph is written as

log(maxRErrorEstB) = 𝜅 log(Δ) + 𝜉(𝑧)

where 𝜅 is the slope and 𝜉(𝑧) the intercept. It also means

maxRErrorEstB = exp(𝜅 log(Δ) + 𝜉(𝑧)) = Δ𝜅 exp(𝜉(𝑧))
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Let us calculate 𝜅, 𝜉 for 𝑧 = 1.
We can estimate 𝜅 for 10−6 < Δ < 10−1 and 𝑧 = 1:

(%i50) kappa : (log(float(maxRErrorEstB(z, DeltaMin)))
- log(float(maxRErrorEstB(z, DeltaMax))))

/ (log(DeltaMin) - log(DeltaMax)),
z=1, DeltaMin=1e-6, DeltaMax=1e-1;

(%o50) 1.999844918722706

Just as an example, we can estimate 𝜉(𝑧) for the reference value Δ = 10−5 m:

(%i51) xi(z) := log(float(maxRErrorEstB(z, 10^(-5)))) - kappa*log(10^(-5));

(%o51) 𝜉 (𝑧) := log
(︁
float

(︁
maxRErrorEstB

(︁
𝑧, 10−5

)︁)︁)︁
− 𝜅 log

(︁
10−5

)︁

In the graph below we can see the values maxRErrorEstB estimated by a
linear function are very close to the real ones.

(%i52) wxplot2d([Delta^kappa * exp(xi(z)), maxRErrorEstB(z, Delta)],
[Delta, 1e-6, 1e-1],
[legend, "estimated maxRErrorEstB", "real maxRErrorEstB"],
[ylabel, "maxRError"],
[logx], [logy], [gnuplot_preamble, "set format xy ’%.0te%+1T’"]), z=1;

(%t52)

For better clarity, let us plot the difference between the linear estimate of
the error and actual maxRErrorEstB. Clearly, difference 0 means the values are
the same. As soon as the difference is much smaller than the wavelength, it can
be regarded as precise enough. For visible light, the difference should be much
smaller than 1 𝜇m.
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(%i53) wxplot2d(
makelist(Delta^kappa * exp(xi(z)) - maxRErrorEstB(z,Delta), z, zlist),
[Delta, 1e-6, 1e-1],
[legend, makelist(simplode(["z = ", z]), z, zlist)],
[ylabel, "difference"], [logx], [y, -1e-6, 1e-6],
[gnuplot_preamble,

simplode(["set format xy ’%.0te%+1T’; set key outside;",
"set title ’Difference of the error estimated as ",
"kappa*log(Delta) + xi(z) and the function maxRErrorEstB’;"])]),

zlist=[1e-3, 1e-2, 1e-1, 1, 1e1], wxplot_size=extsize;

(%t53)

Function 𝜉(𝑧), i.e. the intercept of the line, seems to depend on log(𝑧), see
the graph (%t49) Estimate of maximum 𝑟 error for bilinear rhoLUT – we can see
that the lines are equally spaced when 𝑧 follows a geometric sequence. Therefore
we can estimate

𝜉(𝑧) = 𝜉0 + 𝜉1 log(𝑧),

where
𝜉0 = 𝜉(1)

Let us estimate 𝜉1 for a wide range of 𝑧 values:

(%i54) xi_0 : float(xi(1));

(%o54) −1.988492520317706

(%i55) xi_1 : float((xi(zMin) - xi(zMax)) / (log(zMin) - log(zMax))),
zMin = 1e-3, zMax = 1e1;

(%o55) −0.99988206363115

Again, let us check if the estimate is good by graphing difference between
linear approximation and the function maxRErrorEstB. Again, for visible light,
the difference should be much smaller than 1 𝜇m.
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(%i56) wxplot2d(makelist(
Delta^kappa * exp(xi_0) * z^xi_1 - maxRErrorEstB(z, Delta), z, zlist),

[Delta, 1e-6, 1e-1],
[legend, makelist(simplode(["z = ", z]), z, zlist)],
[ylabel, "difference"], [logx], [y, -1e-6, 1e-6],
[gnuplot_preamble,

simplode(["set format xy ’%.0te%+1T’; set key outside;",
"set title ’Difference of the error est. ",
"kappa*log(Delta) + xi_0 + log(z)*xi_1",
" and the function maxRErrorEstB’;"])]),

zlist=[1e-3, 1e-2, 1e-1, 1, 1e1], wxplot_size=extsize;

(%t56)

In conclusion, for reasonable range of 𝑧 and Δ we can say that the maximum
error of 𝑟 is

log(maxRErrorEstB) = 𝜅 log(Δ) + 𝜉(𝑧)
= 𝜅 log(Δ) + 𝜉0 + 𝜉1 log(𝑧),

which is equivalent to

maxErrorR = Δ𝜅 exp(𝜉0)𝑧𝜉1 .

If we want to limit maxErrorR (by, e.g., 𝜆/100), we must solve the equation for
Δ:

(%i57) DeltaEst(z, maxErrorRPossible) :=
(maxErrorRPossible * z^(-xi_1) * exp(-xi_0))^(1/kappa);

(%o57) DeltaEst (𝑧, maxErrorRPossible) :=(︁
maxErrorRPossible 𝑧−𝜉1 exp(−𝜉0)

)︁1/𝜅

This equation should be calculated for following 𝜅, 𝜉0 and 𝜉1:

(%i58) [kappa, xi_0, xi_1];

(%o58) [1.999844918722706, −1.988492520317706, −0.99988206363115]

The graph below shows various optimal Δ for rhoLUT construction depending
on maximum error of 𝑟 we are willing to accept.
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(%i59) wxplot2d(makelist(DeltaEst(z, lambda/maxerr), maxerr, maxRErrList),
[z, 1e-3, 1e1], [logx], [logy],
[ylabel, "DeltaEst(z, maxRErrorPossible)"],
[legend, makelist(

simplode(["maxRErr = lambda / ", maxerr]), maxerr, maxRErrList)],
[gnuplot_preamble,
simplode(["set title ’Optimum Delta for rhoLUT with bilinear",
" interpolation, lambda = ", lambda*1e9, " nm’;",
"set format xy ’%.0te%+1T’; set key outside; set grid"])]),

lambda=500e-9, maxRErrList=[10, 32, 100, 316], wxplot_size=extsize;

(%t59)

Example values of optimal Δ for various propagation distances 𝑧 and 𝜆 =
500 nm:

(%i60) makelist(float(DeltaEst(z, lambda/100)), z, [1e-3, 1e-2, 1e-1, 1]),
lambda=500e-9;

(%o60)
[6.0402218590023497 × 10−6, 1.9099970269534125 × 10−5,

6.0396600127092595 × 10−5, 1.9098193638187734 × 10−4]

5 Alternative analysis of the r error near the origin

(Some steps in this section are based on ideas of Libor Váša. Thank you!)
This section shows two alternative ways how to derive the estimate value of

Δ. They are shorter than derivation presented in previous sections. However,
their assumptions are less supported by evidence.

Let us analyse the error of 𝑟 with bilinear rhoLUT – the function rErrorB –
again.

(%i61) rErrorB(x, y, x0, y0, Delta, z) :=
r(rhoB(x, y, x0, y0, Delta), z) - r(rho(x, y), z);

(%o61) rErrorB (𝑥, 𝑦, 𝑥0, 𝑦0, Δ, 𝑧) := 𝑟 (rhoB (𝑥, 𝑦, 𝑥0, 𝑦0, Δ) , 𝑧) − 𝑟 (𝜌 (𝑥, 𝑦) , 𝑧)

In the previous text we have shown that the maximum error of 𝑟 can be
found in the vicinity of the origin. In fact, we have estimated it as an multiple
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of the error in the center of the cell [0, 0], i.e. at the point (Δ/2, Δ/2). If we
actually display the 𝑟 error in this cell, we clearly see the error is maximum at
different point (we reflected this fact in previous text by factor 1.2)

(%i62) makelist(
wxplot3d(rErrorB(x, y, x0, y0, Delta, z), [x,0,Delta], [y,0,Delta],
[mesh_lines_color, false], [grid, 40, 40], [zlabel, "rErrorB"],
[legend, false],
[gnuplot_preamble,

simplode(["set view map; set size ratio -1; set size 1.2;",
" set origin -0.2,-0.06;",
"set colorbox user origin 0.78, 0.1 size 0.05, 0.8;",
" set format xy ’%.0te%+1T’;",
"set format cb ’%.1te%+1T’; set key top;",
"set title ’Error of r in the cell [",
x0, ",", y0, "] for Delta = ", Delta, ", z = ", z,
"’"])]), z, zList),

x0=0, y0=0, Delta=100e-6, zList=makelist(10^(2*x), x, -2, 1),
fpprintprec=2$

(%t62)
(%t63)

(%t64)
(%t65)

It is quite difficult to find the extremal point exactly. We can, however, take
an approximate approach, which is not rigorous but leads to remarkably good
results.

We are looking for the maximum difference between 𝑟(rhoB(𝑥, 𝑦, 𝑥0, 𝑦0, Δ), 𝑧)
and 𝑟(𝜌(𝑥, 𝑦), 𝑧). Let us guess that this difference is maximal when difference of
their squares is maximal:

(%i66) rErrorSqBi00(x, y, Delta) :=
’’(r(rhoB(x, y, 0, 0, Delta), z0)^2 - r(rho(x, y), z0)^2);

(%o66) rErrorSqBi00 (𝑥, 𝑦, Δ) :=
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(︃
𝑥

(︂
1 − 𝑦

Δ

)︂
+
(︂

1 − 𝑥

Δ

)︂
𝑦 +

√
2 𝑥 𝑦

Δ

)︃2

− 𝑦2 − 𝑥2

Now we can easily find the extremal point. Note that we are taking into
account just the first cell of the rhoLUT (corner [0, 0]), so we are interested just
in 0 < 𝑥 < Δ, 0 < 𝑦 < Δ:

(%i67) solve([diff(rErrorSqBi00(x, y, Delta), x, 1)=0,
diff(rErrorSqBi00(x, y, Delta), y, 1)=0], [x, y]);

(%o67) [[𝑥 = 0, 𝑦 = 0], [𝑥 = 0, 𝑦 =

(︁√
2 + 2

)︁
Δ

2 ], [𝑥 =

(︁√
2 + 2

)︁
Δ

2 , 𝑦 = 0],

[𝑥 =

(︂(︁
7

√
2 + 10

)︁ √︁
17 − 3 2 5

2
√

5 + 3
√

2 + 6
)︂

Δ

4 ,

𝑦 =

(︁
7

√
2 + 10

)︁ √︁
17 − 3 2 5

2
√

5 Δ +
(︁
3

√
2 + 6

)︁
Δ

4 ],

[𝑥 = −

(︂(︁
7

√
2 + 10

)︁ √︁
17 − 3 2 5

2
√

5 − 3
√

2 − 6
)︂

Δ

4 ,

𝑦 = −

(︁
7

√
2 + 10

)︁ √︁
17 − 3 2 5

2
√

5 Δ +
(︁
−3

√
2 − 6

)︁
Δ

4 ]]

(%i68) float(%);

(%o68) [[𝑥 = 0.0, 𝑦 = 0.0], [𝑥 = 0.0, 𝑦 = 1.707106781186548 Δ],
[𝑥 = 1.707106781186548 Δ, 𝑦 = 0.0],

[𝑥 = 4.469263575571515 Δ, 𝑦 = 4.469263575571515 Δ],
[𝑥 = 0.65205676798813 Δ, 𝑦 = 0.65205676798813 Δ]]

Clearly, the last solution is the one we are looking for. Note that 𝑥 and 𝑦

are just multiples of Δ, i.e. the maximum is found at the same relative position
inside the cell [0, 0]. The color visualisations of the 𝑟 error confirm this. Let us
call the relative positions xCritical and yCritical:

(%i69) xCritical : ’’(part(part(part(’’(%th(1))[5], 1), 2), 1));

(%o69) 0.65205676798813

(%i70) yCritical : ’’(part(part(part(’’(%th(2))[5], 1), 2), 1));

(%o70) 0.65205676798813

It follows it would be better to approximate the maximum error by the error
found at (xCritical × Δ, yCritical × Δ) and not at the point (Δ/2, Δ/2) as
before.
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(%i71) maxRErrorEstBcrit(z, Delta) :=
r(rhoB(xCritical*Delta, yCritical*Delta, 0, 0, Delta), z)
- r(rho(xCritical*Delta, yCritical*Delta), z);

(%o71) maxRErrorEstBcrit (𝑧, Δ) :=
𝑟 (rhoB (xCritical Δ, yCritical Δ, 0, 0, Δ) , 𝑧)

−𝑟 (𝜌 (xCritical Δ, yCritical Δ) , 𝑧)

We can draw behaviour of this estimate in the same way as in the graph
(%t49) Estimate of maximum 𝑟 error for bilinear rhoLUT. We can see it is very
similar.

(%i72) wxplot2d(
append(makelist(maxRErrorEstBcrit(z, Delta), z, zlist), [1e-6]),
[Delta, 1e-6, 1e-1], [logx],
[legend, append(makelist(simplode(["z = ", z]), z, zlist),

["error 1 um"])],
[ylabel, "maxRErrorEstBcrit(z, Delta)"], [logy],
append([style],

makelist([lines, 1, col], col, 1, length(zlist)), [[lines, 2, 1]]),
[gnuplot_preamble,
simplode(["set title ’Alternative estimate of maximum r error",
" for bilinear rhoLUT’;",
"set key outside; set format xy ’%.0te%+1T’"])]),

zlist=[1e-3, 1e-2, 1e-1, 1, 1e1], wxplot_size=extsize;

(%t72)

We can also show the ratio of these two error estimates: values near 1 indicate
they are the same, which is mostly the case. As the values in the graph are bigger
than 1, the former error estimate from the point (Δ/2, Δ/2) is a bit pessimistic.
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(%i73) wxplot2d(makelist(
bfloat(maxRErrorEstB(z, Delta)/maxRErrorEstBcrit(z, Delta)),
z, zlist),

[Delta, 1e-6, 1e-1], [logx],
[legend, makelist(simplode(["z = ", z]), z, zlist)],
[ylabel, "ratio"],
[gnuplot_preamble, simplode([

"set title ’Ratio of maxRErrorEstB and maxRErrorEstBcrit’;",
"set key outside; set format x ’%.0te%+1T’"])]),

zlist=[1e-3, 1e-2, 1e-1, 1, 1e1], wxplot_size=extsize, fpprec=30;

(%t73)

Let us again try to find parameters 𝜅, 𝜉0 and 𝜉1, now for the error estimated
at (xCritical × Δ, yCritical × Δ):

(%i74) kappaCrit : (log(float(maxRErrorEstBcrit(z, DeltaMin)))
- log(float(maxRErrorEstBcrit(z, DeltaMax))))

/ (log(DeltaMin) - log(DeltaMax)),
z=1, DeltaMin=1e-6, DeltaMax=1e-1;

(%o74) 1.999680826343935

(%i75) xiCrit(z) :=
log(float(maxRErrorEstBcrit(z, 1e-5))) - kappaCrit*log(1e-5)$

(%i76) xiCrit_0 : float(xiCrit(1));

(%o76) −2.033290245705118

(%i77) xiCrit_1 :
float((xiCrit(zMin) - xiCrit(zMax)) / (log(zMin) - log(zMax))),

zMin = 1e-3, zMax = 1e1;

(%o77) −1.000089302501926

Compare them to the values found for error estimate at the point (Δ/2, Δ/2)
and the multiplication factor 1.2 – they are very similar:

(%i78) [kappa, xi_0, xi_1];

(%o78) [1.999844918722706, −1.988492520317706, −0.99988206363115]
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At the end we will show that the equation (%o57) for DeltaEst can be also
found using Taylor expansion of rErrorB. First, we take Taylor expansion at
(𝑥, 𝑦) = (xCritical × Δ, yCritical × Δ)

(%i79) assume(maxRErr>0);

(%o79) [maxRErr > 0]

(%i80) float(taylor(rErrorB(xCritical*Delta, yCritical*Delta, 0, 0, Delta, z),
Delta, 0, 2))

, ratprint: false;

(%o80)
0.13138723649657 Δ2

𝑧

Now we can easily solve for Δ:

(%i81) sublist(float(solve(%=maxRErr, Delta)), lambda([x], rhs(x)>0)),
ratprint:false;

(%o81) [Δ = 2.758820287226045
√

𝑧
√

maxRErr]

Just as a matter of interest, let us try to apply the same procedure to 1.2
multiple of the error at (Δ/2, Δ/2). We can see that this estimate is more
conservative, i.e. it chooses smaller Delta than the previous equation.

(%i82) float(taylor(1.2*rErrorB(0.5*Delta, 0.5*Delta, 0, 0, Delta, z),
Delta, 0, 2)),

ratprint: false;

(%o82)
0.13713203435596 Δ2

𝑧

(%i83) sublist(float(solve(%=maxRErr, Delta)), lambda([x], rhs(x)>0)),
ratprint:false;

(%o83) [Δ = 2.70041517962955
√

𝑧
√

maxRErr]

Please note that the equation (%o57), repeated here for convenience

DeltaEst (𝑧, maxErrorRPossible) :=
(︁
maxErrorRPossible 𝑧−𝜉1 exp(−𝜉0)

)︁ 1
𝜅

was supposed to work with values

𝜅 = 1.999844918722706 ≈ 2
𝜉0 = −1.988492520317706
𝜉1 = −0.99988206363115 ≈ −1
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which approximately leads to

DeltaEst (𝑧, maxErrorRPossible) ≈
√︁

maxErrorRPossible 𝑧 exp(−𝜉0)

≈ 2.703
√

𝑧
√

maxErrorRPossible,

that is, we came to virtually the same estimate in a different way.
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