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Co-advisor: Ing. Tomáš Kroupa, Ph.D.
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Abstract

Aim of this dissertation was to analyze influence of spatial distribution of fibers in the
unidirectional carbon fiber composite on overall behavior of the material. The dependency
of homogenized material properties of a composite lamina on its degree of irregularity are
investigated, proved and described.

Because the real composite material has irregular microstructure, its fiber distribu-
tion in different areas of the composite material made of multiple layers of prepreg was
determined. Images of the composite cross-section were obtained by scanning electron
microscopy and fibers identified by algorithms proposed for automatic fiber detection
written in programming language Python. The results of the algorithms were compared
to ground truth data obtained in another application using OpenCV designed for manual
fiber identification.

Degree of irregularity of the analyzed microstructure was evaluated by a proposed
parameter, which expresses deviation of the analyzed 2D geometry from idealized regular
hexagonal fiber distribution. The parameter is suitable for evaluating both, the non-
periodic geometry of the real composite cross-section or geometries of periodic unit cells
used for finite element analyses. The periodic unit cells were created in an algorithm
proposed for generating geometries of unit cells with random fiber distribution.

An automatic tool for performing all steps leading to results of finite element anal-
ysis was build in Python. Finite element analysis is performed in Abaqus/CAE and the
results depicted using ploTRA, library of functions written in Python. Micromodels with
proposed unit cells are built, periodical boundary conditions were prescribed and chosen
combination of linear or nonlinear material models assigned to the composite substituents
by scripts. The loadings were defined in accordance of the type of performed analysis and
the results of finite element analysis were processed.

Homogenized material parameters of 200 proposed micromodels with geometries of
different degrees of irregularity were identified. A dependence between the parameter
evaluating the cross-section irregularity and the range of the resulting homogenized pa-
rameters, i.e. degree of material anisotropy, was quantified.
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Abstrakt

Ćılem této dizertace bylo analyzovat, jaký vliv má rozložeńı uhĺıkových vláken v jed-
nosměrovém kompozitu na celkové chováńı materiálu. Je zkoumána a popsána závislost
homogenizovaných parametr̊u kompozitové laminy na stupni nepravidelsosti jej́ı struk-
tury.

Protože skutečný kompozitńı materiál má nepravidelnou mikrostrukturu, je zjǐstěno
rozložeńı vláken v r̊uzných částech řezu kompozitu složeného z v́ıce vrstev prepregu. Fo-
tografie řezu kompozitu byly poř́ızeny pomoćı skenovaćı elektronové mikroskopie a vlákna
identifikována algoritmem v programovaćım jazyce Python. Algoritmus byl navržen za
účelem automatické detekce vláken. Výsledky byly srovnány s Ground Truth daty źıskanými
v aplikaci, která využ́ıvá OpenCV a je určena pro manuálńı detekci vláken.

Stupeň nepravidelnosti zkoumané mikrostruktury byl vyč́ıslen navrženým parame-
trem, který vyjadřuje odchylku analyzované 2D geometrie od pravidelného šestiúhelńıkové-
ho rozložeńı vláken. T́ımto parametrem lze ohodnotit jak neperiodickou mikrostrukturu
skutečného řezu kompozitem, tak geometrie periodických jednotkových buněk použitých
v konečnoprvkové analýze. Periodické buňky byly vytvořeny pomoćı algoritmu, který byl
navržen za účelem generováńı buněk s náhodným rozložeńım vláken.

V rámci práce vznikl automatický nástroj, který vykoná veškeré kroky vedoućı k
vyjádřeńı výsledk̊u konečnoprvkové analýzy, ty jsou ř́ızeny pomoćı skript̊u. Analýzy
prob́ıhaly v Abaqus/CAE a výsledky byly vykresleny v ploTRA, což je knihovna funkćı
napsaná v jazyce Python. Mikromodely s navrženými jednotkovými buňkami byly ses-
taveny a byly jim předepsány periodické okrajové podmı́nky. Dále byly složkám kompoz-
itu přǐrazeny zvolené kombinace lineárńıch a nelineárńıch materiálových model̊u. Zat́ıžeńı
bylo definováno podle typu prováděné analýzy. Nakonec byly výsledky konečnoprvkové
analýzy zpracovány.

Byly identifikovány homogenizované materiálové parametry 200 navržených mikro-
model̊u s r̊uznými stupni nepravidelnosti geometrie. Byla kvantifikována závislost mezi
parametrem určuj́ıćım tento stupeň nerovnoměrnosti a intervalem, ve kterém se nacháźı
výsledné homogenizované materiálové parametry, tedy mı́rou anizotropie daného ma-
teriálu.
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Abstrait

L’objectif de cette these était d’analyser l’influence de la répartition spatiale des fibres
dans le composite de fibre de carbone unidirectionnel sur le comportement global du
matériau. La dépendance des propriétés de matériau homogénéisé d’une lame composite
sur son degré d’irrégularité est étudiée et décrite.

Parce que un matériau composite réel a une microstructure irréguliere, la distribution
des fibres dans les zones différentes constituées de couches multiples de pré-imprégnés
a été determinée. Les images des sections transversales du composite ont été obtenues
par la microscopie électronique a balayage. Ensuite, les fibres ont été identifiées par
des algorithmes écrites en langage de programmation Python lequel a été conçu pour la
détection automatique des fibres. Les résultats des algorithmes ont été comparés aux
données de vérité obtenues dans une autre application utilisant OpenCV conçue pour
l’identification manuelle des fibres.

Le degré d’irrégularité de la microstructure analysée a été évalué par un parametre
donné exprimant la déviation de la 2D géométrie analysée de la disposition réguliere
hexagonale de fibres. Ce parametre est adapté pour l’évaluation de la géométrie non
périodique du coupe transversale aussi bien que la géométrie des cellules particulieres
périodiques utilisées pour la méthode des éléments finis. Les cellules périodiques ont été
créées par un algorithme proposé pour générer des cellules unitaires avec une distribution
de fibres aléatoire.

Un outil automatique pour effectuer toutes les étapes menant aux résultats acquises
par méthode des éléments finis a été construit en Python. Les analyses par éléments
finis sont effectuée dans Abaqus/CAE et les résultats sont représentés a l’aide de ploTRA,
bibliotheque de fonctions écrites en Python. Des micromodeles avec des cellules unitaires
proposées ont était construites ainsi que les conditions limites ont été prescrites. De plus,
les composants de composites ont été également attribués a la combinaison de modeles
de matériaux linéaires et non linéaires. Les chargements du materiau ont été définis en
fonction du type d’analyse effectuée. Enfin, les résultats obtenues par l’analyse MÉF ont
été traités.

Des parametres de matériaux homogénéisés de 200 micromodeles proposés avec des
différents degrés d’irrégularité de géométrie ont été identifiés. Une dépendance entre le
parametre déterminant cette irrégularité et l´interval des parametres homogénéisés finaux.
C’est-a-dire que le degré d’anisotropie du matériau a été quantifié.
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Notation

List of Latin Symbols

a, b, c [m] unit cell dimensions
Aint [m2] area of intersection
Aid [m2] area of analyzed geometry
Areg [m2] area of regular geometry
An [−] coefficients of relative motion of nodes
c [m] fiber center positions
C [Pa] material stiffness matrix
dR [m] distance of fibers
dy, dz [m] dimensions of basic regular geometry
Eii [Pa] Young’s modulus
Em [Pa] Young’s modulus of matrix
E0

11 [Pa] initial Young’s modulus of fiber
F [−] physical quantity
Fx [N] tensile force
g [−] shape parameter of Young’s modulus of fibers
ḡ [−] fiber grow rate
Gij [Pa] shear modulus
lseed [m] seed length
∆l [m] gage length extension
L [−] number of intensity values of image (image matrix)
m, n [pixel] image width and height
nel [−] number of elements within fiber circumference
nf [−] number of fibers
N [−] diagonal matrix with integers n1, n2 and n3

p [pixel] kernel size
pγ [−] normalized histogram
PA, PA [Pa] shape parameters of matrix hardening function
PK , n [Pa, −] shape parameters of matrix hardening function
q [−] number of segments representing fiber in image
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r1, r2 [−] residuals
Rf [m] fiber radius
RA [m] circle radius for determining degree of irregularity
Ki,j [−] kernel element
S [−] least square fitting method residual
S

[
Pa−1

]
material compliance matrix

t [−] number of boundary points
tcol
ij [s] collision time of pair of fibers i and j

∆t [s] time increment
Tσ [−] stress transformation matrix
Tε [−] strain transformation matrix
ui [m] displacement in direction i
Vf [−] fiber volume ratio
v [m · s−1] fiber velocities
X [−] matrix of pixel intensities
XDC [−] matrix of intensities of blurred image
x123 = [x1, x2, x3]T [m] point coordinates in coordinate system (123)
XCLAHE [−] matrix of equalized image ans subimage
XBIN [−] binary image
XWS [−] matrix representing segmented image
(xyz) [−] cartesian global coordinate system
(123) ≡ (x1x2x3) [−] cartesian local coordinate system of micromodel
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List of Greek Symbols

α [−] intensity of image pixel
β [−] list of boundary points of segmented image
γ [−] contrast limit of CLAHE method
ε [−] strain
εe, εp [−] elastic and plastic strains
εp [−] equivalent plastic strain
η [−] coefficients of mutual influence
µ [−] Chentsov’s coefficients
νij [−] Poisson’s ratio
νm [−] Poisson’s ratio of matrix
ρ

[
kg ·m−3

]
density

ϕ, ψ, θ [◦] rotation angles about axes
σred [Pa] equivalent stress
σ1, σ2, σ3 [Pa] principle stress components
σy [Pa] yield stress
σ0

y [Pa] initial yield stress
σmax [Pa] arithmetic mean of strengths
σ̃max [Pa] median of strengths
σ [Pa] stress
Υ [−] degree of irregularity
φ [m] distance between fiber center positions
Φ [−] yield function
Ψ [J ·m3 · kg−3] Helmholz free energy

Abbreviations

CLAHE – contrast limited adaptive histogram equalization
FEA – finite element analysis
GT – ground truth data
LSQ – least square fitting method
OAT – one-at-a-time method
RVE – representative volume element
RANSAC – random sample consensus
SEM – scanning electron microscope
UC – unit cell
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Introduction

Unidirectional fiber-reinforced composites have advantageous properties arising also
from varying characteristics in different directions. To understand the given compos-
ite material, many analyses have to be performed in order to predict its behavior and
fully advantage from it. To predict overall mechanical properties of composite materi-
als, a homogenization procedure can be used to relate the constituent properties and
the macroscopic behavior. Geometry of a micromodel – representative volume element
– used for the homogenization process has to be periodical, capable of repeating. The
representative volume element serves to build a fully three-dimensional model and is usu-
ally approximated by a geometry with regularly distributed fibers in its cross-section.
In general, manufacturing of unidirectional composite materials in general leads to fiber
distribution differing from the idealized regular geometry.

The aim of this work is to investigate the influence of spatial fiber distribution on
the effective composite material properties. Specific goals set in the author’s dissertation
theses:

1. Analysis of the influence of specimen width, tab material and length on convenient
cyclic tensile test process

2. Tensile tests of epoxy resin and utilization of obtained data for improvement of the
material model of matrix of the composite material

3. Produce a unit cell geometry according to the real morphology of a microstructure
and analyze the influence of the irregularity of fiber distribution in the composite
cross-section on the macroscopic behavior of the material

The dissertation is divided into five chapters followed by conclusions, appendices,
authors bibliography and references. The first chapter summarizes selected published
works of other authors, which are dedicated to the related fields of research as the topic
of this work.

Second chapter deals with experimental tensile tests, which equip the author by ex-
perimental data necessary for analyses of the examined composite material. Additional
tensile tests and analysis of the tensile test configurations for specific material type and
orientation are performed in Appendix A.

In the third chapter, the composite material is subjected to image processing analy-
sis. Images of the composite cross-section are obtained by scanning electron microscopy
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and enclosed in Appendix B. Degree of irregularity described by proposed parameter is
evaluated for microstructure in the images. Algorithms for automatic detection of fibers
from the images of cross-section are built.

The fourth chapter states material models which will be further used for the composite
substituents, fiber and matrix, and for analysis of material anisotropy. One of the material
model was proposed with respect to behavior of epoxy resin. Data obtained from cyclic
tensile tests of the specimens made of epoxy resin and cured for different time periods are
in Appendix C.

In the last and the most comprehensive chapter a homogenization approach using a
periodic geometry and periodic boundary conditions is proposed. Transition from the
microstructure to the macroscopic response is executed using analyses in finite element
software. The chapter describes the procedure of building a micromodel and defining pa-
rameters for finite element analyses and acquisition of the results. Used micromodels are
subjected to several sensitivity analyses, which prove the suitability of chosen material
models and geometric properties. Results of the finite element analyses are summarized at
the end of the chapter. Degree of anisotropy of several micromodels is identified and the
results of different micromodel cross-section geometries are compared. Homogenized ma-
terial properties are identified for numerous micromodels with cross-sections distributed
on a wide interval of degree of irregularity. Anisotropic properties are depicted in form
of a dependency on the parameter evaluating the degree of irregularity. The results illus-
trate the effects of the fiber spatial distribution in terms of the overall properties. From
these findings, elastic properties and response to mechanical loading can be obtained for
the design of composite structures with the knowledge, how precise the results are for a
composite material with known degree of irregularity.

In the conclusions, the results of the work are summarized and the consequences of
the analyses are discussed. The direction of future author’s work is delineated.

5



Chapter 1

Current State

Hmogenization process is crucial, when identifying the overall behavior of composites,
which are characterized by being consisted of phases of different material properties.
Homogenization may be done analytically or numerically by using finite element method
(FEM).

1.1 Analytical Homogenization

In case of the analytical homogenization, the resulting effective parameters are de-
scribed by partial differential operators mainly with constant coefficients. It is necessary
to solve a boundary value problem on a periodic cell when defining the coefficients, a
so-called cell problem.

One of the methods of homogenization of a material with a periodic substructure is a
homogenization using an asymptotic expansion (AEH – Asymptotic Expansion Homog-
enization) [8, 9, 10], which leads to explicit equations. Advantage of this method is the
degree of freedom reduction and the ability to ensure the deformation and stress state on
the microscopic level at a given macroscopic equilibrium state. Such procedure is called
a localization.

If the material does not have a periodic microstructure, there are preferable methods
being used for homogenization, for example a G-convergence method [11] is suitable for
symmetric tasks, for non-symmetric tasks a H-convergence method is suitable [12].

In [13] authors introduce a homogenization method based on a two-scale approach.
The homogenized parameters are identified by solving a task with periodic boundary
conditions applied on a representative volume element, which represents a mesoscale and
is further divided into subdomains (approximately of inclusions size). The subdomains
represent the microscale. The solution of this method is a sum of a smooth mesoscale
component and microscale correction component.

A mean-field theory [14] is used in [15], where scaling is shown on crystallic materials,
which are considered as a multilevel structure. An elastoplasticity problem is processed
by a continuous description and its origin is explained by dislocations. A microscopic
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elastoplastic medium has a dimension of crystals, mesoscopic medium has a dimension
of distances between individual dislocation planes and a macroscale id on the material
dimension level.

Several approaches based on homogenization of locally periodic structures with strong
heterogeneities are summarized in [16]. The solution is based on asymptotic analysis
of partial differential equations with oscillating coefficients. The strong heterogeneities
are represented by coefficients are dependent on the scale, for example elasticity in case
of phononic materials or permeability in case of fluid-saturated porous media. Herein
a homogenized model of phononic material is stated, which is the a bi-phase material
with a periodic structure and big contrast at the elastic coefficients of the phases. These
materials have the ability to suppress transmission of elastic waves at certain frequencies.

A Mori-Tanaka homogenization method [17] was formulated in 1973 and deals with
the average stress designation in matrix of materials with inclusions. It is shown in the
work, that the average stress in the matrix is uniform and independent of the position of
the domain, where the average behavior is examined. The actual stress in matrix consists
of average stress and the locally fluctuating stress. The average stress vanishes in the
matrix. To consider effects of interaction among inclusions, average elastic energy is used.
The Mori-Tanaka homogenization method is used for instance in [18] and [19].

1.2 Numerical Homogenization

In case of the numerical homogenization a repeating (periodic) volume of a hetero-
geneous microstructure (RVE – representative volume element) is built. These volume
elements represented by a unit cell are modelled with the use of finite element method
(FEM). After applying a load corresponding to the real material loading we obtain the
response. The required homogenized material parameters can be identified by minimizing
the difference of load/response dependencies obtained numerically and experimentally.

Results of two RVE types built on the base of square and hexagonal approximation of
fiber distribution in case of a unidirectional composite are compared in [20]. A differen-
tial quadrature element method (DQEM) is used, where the continuity of displacements
between neighboring elements and tensile force reciprocity has to be maintained. The
proposed method allows the eight-node grid (3 elements in case of the square fiber distri-
bution and 4 in case of the hexagonal fiber distribution) to model the unit cell, whereas
much more elements are required for geometric description of the unit cell in the case
of finite element analysis. The DQEM method leads to the same Young’s modulus and
Poisson’s ratio in case of both types of RVE. Admittedly there are differences at stress
and strain decomposition in the cross-section of the volume elements as well as the strain
boundary curves decompositions.

An algorithm for automatical building of 3D finite element models of fiber compos-
ited with high volume fraction of fibers was proposed in [21]. Geometry of a unit cell
results by moving the fibers in a composite cross-section from their regular hexagonal
distribution. The model also considers the random strength distribution within fibers by
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a randomly distributed corruptible (damagable) layers, which are planes with different
strengths whose normals are identical to the fiber direction. In mentioned work, the ef-
fect of strength distribution of fibers on mechanical response and overall strength of the
composite is investigated.

The numerical methods may also include methods based on the modelling of cells,
which have multiscale features. A 3 dimensional elastoplastic block model consisting of 8
cells, which is able to simulate behavior of particle and fiber composites is used in [22].

1.3 Mixture Approach

Formulae based on the mixture theory use composite constituents with weights re-
lated to their volume fractions to determine the macroscopic elastic constants. Hill [23]
considers the composite as one spherical element. Single fiber is surrounded by matrix in
the shape of a cylinder and the substituents are embedded. Elastic behavior of two solid
phases firmly bonded together (both isotropic) is considered. The shape of the inclusions
is not restricted, it may be fibrous, spherical, etc. and they can form any concentrations
in the composite, which is in the work called a mixture. The overall parameters of the
mixture are expressed by their bounds as functions of the parameters of the mixture
constituents.

Bounds of effective elastic moduli for a multiphase material were also formulated by
Hashin and Shtrikman. A variational principle involving elastic polarization tensor in [24]
shows a good result for experimental results. Such bounds of effective moduli should be
a good estimation when the ratios between the phases are not too large.

Hashim and Rosen [25] formulate the functions determining bounds of elastic moduli
for materials which are reinforced by circular fibers. The exact homogenized parameters
are considered to be the parameters obtained for hexagonal fiber distribution and the
approximate parameters from random fiber distribution.

Different variations of equations for approximation of the effective (reduced) mate-
rial parameters of reinforced materials are proposed in different works. They differ in
assumptions for the material of the constituents and also in assumptions for the spatial
distribution of the reinforcements and their geometries. A set of equations for a variety
of fiber geometries were formed by Halpin and Tsai and are reviewed in [26].

1.4 Morphology of a Microstructure

Overall properties of heterogeneous microstructures such as man-made composite ma-
terials or biological tissues can be obtained by transition from local material properties
(properties of the phases) to those of a homogenized mixture [27]. This can be exam-
ined in the context of statistical geometry [28, 29, 30] or by evaluating images of the
microstructure manually [31] or by automatic geometry evaluation using computer vision
tools [32].
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The work [30] presents a review of basic concepts and hypotheses associated with
quantification of microstructure morphology. Several statistical descriptors suitable for
the microstructure characterization of a two-phase random heterogeneous media of arbi-
trary phase geometry are examined. One method uses the principle of so-called ensemble
where each member of the ensemble is described by a random stochastic function that
equals to one when point lies in given phase and zero otherwise [28, 29]. Another method
uses the approach found in statistical mechanics of liquids where the particulate composite
is described only by the centers of fibers using a fundamental function and statistical mo-
ments [33]. This approach, however, is only applicable to composite having inclusions of
identical shape. The work is concluded with numerical analysis with the objective to iden-
tify a number of particles within RVE required for a sufficiently accurate representation
of the behavior of real composite using FEM based on the extended Hashin-Shtrikman
variational principle [34].

Work [35] compares transverse elastic properties of two microstructures of fiber rein-
forced composites – periodic (hexagonal) and random. The analyses of high volume frac-
tions and high Young’s modulus contrast between fibers and matrix identified by finite
element simulations showed that the microstructure strongly affects the effective prop-
erties (unlike microstructures with low fiber volume fractions and low Young’s modulus
contrasts).

In [31], images of tissue samples obtained by transmission electron microscopy (TEM)
are processed. Spatial arrangement of a cluster of smooth muscle cells in the tissue is
assessed in order to choose proportions and orientations of ellipsoids approximations.
The ellipsoids are used in a 3D reconstruction (micromodel) of the cells in the tissue and
homogenized material properties of the micromodel of the examined tissue are further
identified. Delauny triangulation method was used to assess anisotropy of the cells center
distributions in the image. Triangulation method is the simplest method to evaluate
spatial distribution of 2D geometric objects (2D images of 3D objects).

Groups of potential microstructures were created in [32], to classify images of examined
microstructure. A support vector machine (SVM) was trained to classify the microstruc-
tures on microstructural signatures, which were created by processing a large and diverse
microstructural image data sets.

When determining the geometry of a unit cell, which represents the micromodel, thus it
influences the identified homogenized material parameters, it is crucial to know the volume
ratio of fiber and matrix (in case of a biphase composite material). The volume ratio
significantly influences the results of numerical analyses [36] as well as the homogenized
characteristics obtained from the simplified relations. Unfortunately, the volume ratios
given by the manufacturer may not be in all cases corresponding with the real volume
ratios. For example volume ratio of fibers in case of a composite specimen manufactured
by a transfer molding method usually varies by 10% [37].

There are a several standard methods for designation of the real fiber volume ratio.
The matrix material may be removed by a matrix digestion, where the matrix is cauterized
by a mordant or by an ignition loss, where the matrix material is incinerated (burnt).
The remaining fibers are weighed and the volume ratio of fibers is identified from the
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weight ratio. Other methods benefit on divergent thermal conductivity of fiber and matrix
material or different coefficients of thermal expansions. It is also possible to obtain the real
volume ratio of fibers from an image of the composite cross-section. This optical method
allows to allocate the fibers and the outcome may include also the real fiber distribution.

The fiber distribution is commonly approximated by a hexagonal distribution when
building the unit cell. Both, the idealized fiber distributions as well as the real fiber
distribution obtained from images of the composite cross-section are considered in [38].
[39] examines the effect of fiber distribution in composite cross-section on local stresses
and failure initiation.

[40] develops a computational model to explicitly determine transversely isotropic
elastic constants of a unidirectional composite as a function of microstructure parameters.
A standard finite element homogenization technique of a periodic representative volume
element is used. Different shapes of fiber layout patterns in the RVE cross-section are
analyzed.

1.5 Material Models

Composite materials exhibit highly anisotropic and non-linear behavior, therefore dif-
ferent material models are used to simulate their overall behavior. Different approaches
are used to calibrate the material parameters of such models.

In case of anisotropic material, both the normal and shear components of strain affect
both the normal and shear components of stress. In case of orthotropic material, the
normal and shear components are decoupled, normal stresses only cause normal strains
and shear stresses only cause shear strains. Furthermore, individual shear stresses are
decoupled from each other.

If the latter formulations are used to determine overall properties of the composite
material, it is crucial to know material properties of all substituents. Not all these data
are always available from the manufacturer. There are several publications reporting
the properties for specific materials used for the composite. [41] for example lists the
material parameters for four types of epoxy matrices and four types of fibers made of
glass and carbon. Also overall properties of the unidirectional laminae of carbon and
glass fiber composites are listed. Typical stress/strain curves for the considered laminae
under variety of uniaxial loadings are shown.

Material parameters of the composite substituents can be accessed using experimental
tests. There are several types of tests, which can be performed, typically tensile tests,
pressure tests, bending test or shear tests.

In the proposed work, behavior of a composite material made of unidirectional carbon
fibers with high stiffness and epoxy matrix is examined. To do so, tensile tests are
performed on specimens with different orientations of fibers according to the loading
direction. The material exhibits nonlinear behavior, when loaded in the direction of
fibers. Therefore the fiber may be considered as nonlinear. Typically, the fibers are
modelled as orthotropic material with the plane of isotropy perpendicular to the fiber
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axis. Due to the extremely small dimensions of fibers in the transverse direction, ranging
several micrometers, it is difficult to obtain the material parameters for this substituent
on its own.

The matrix behavior may be observed from tensile tests performed on specimens with
fiber oriented perpendicularly to the direction of loading force. To perform tests on spec-
imens made of the epoxy resin is also a way to obtain the matrix material specifications.
The matrix may be considered as material with viscoelastic elastoplastic behavior. Dam-
age behavior can be also observed from cyclic tests.

[42] presents an approach to tune the nine parameters of a compliance matrix relating
Green-Lagrange strain and Cauchy stress for purposes of linear finite element method.
The orthotropic materials are used for simulations in computer graphics and the work
describes a method for tuning the material parameters by parametrizing six Poisson’s
ratios by a one-dimensional parameter family similar to relationships between parameters
of isotropic material.

Transversely isotropic hyperelastic material models are used in [43] to simulate bi-
ological tissues. To characterize the used material, the hyperelastic model is fitted to
experimental data. Strain energy functions with pseudo-invariants are included into the
response to the transversely isotropic models to identify the material parameters using
uniaxial and biaxial mechanical tests.

Overall behavior of composite materials with phases having different properties can
be obtained by different approaches. Common indicator of majority of the approaches
is the knowledge of properties of the constituents of the considered material. Also the
geometry of the microstructure is beneficial to be investigated before the homogenization
approach is chosen.
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Chapter 2

Tensile Tests

To understand the mechanical behavior of a material and obtain data for material
specifications, quality assurance and structural design and analysis, mechanical tests need
to be performed. Mechanical testing is the way to determine how real materials behave
when they are subjected to loads. The usual procedure is to place specimens of the
material in testing machines, apply the loads, and measure the resulting deformations (i.e.,
changes in length, deflections, rotations or changes in diameter). There can be either static
or dynamic loading applied according to the capability of the testing machines and desired
material properties. The experimental test methods differ also by type of load applied to
the specimen. Among the basic experimental methods, tensile tests, compressive tests,
bending tests, shear tests or torsional tests are counted.

For oncoming analyses of a composite material using micromodel in finite element
software, the behavior of composite material needs to be tested. Static tensile tests
were performed to obtain experimental data for material specification for finite element
analysis.

The tensile test methods described for instance in [44] are designed to produce tensile
properties in the test direction such as:

• ultimate tensile strength

• ultimate tensile strain

• tensile chord modulus of elasticity

• Poisson’s ratio

• transition strain

Tensile tests in this work were performed on testing machine Zwick/Roell Z050 on con-
tinuous fiber reinforced composite material with high modulus carbon fibers and epoxy
resin – SE84LV-HSC-450-400-35 and Hexply 913C-HTS(12k)-5-40. The thin flat stripes
(coupons) of material having a constant rectangular cross-section and different fiber ori-
entations θ (Fig. 2.1) were cut from plates by abrasive water jet. Water jet was chosen
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Figure 2.1: Geometry of specimen for simple tensile tests with local coordinate system (123)
and global coordinate system (xyz).

because apart from other cutting and finishing techniques, such as laser cutting, cut-
ting with rotary tools and cutting with blades, water jet does not affect the composite
structure by potential heat. Some composite laminates can delaminate when being cut,
especially poorly bonded resin to reinforcement. Water jet has positive results from the
delamination point of view. Disadvantage of the water jet cutting technique is moisture
absorption of the composite material.

2.1 Standards

Because a physical property of a material is often affected by the precise method of
testing, norms and requirements for ensuring repeatable experiments and reliable out-
coming data are established in technical standards. One type of a technical standard is
a standard test method. It describes a definitive procedure that produces a test result.
Standard test methods order uniform test conditions for determination of the desired
material properties based upon general principles.

Factors that influence the tensile response and should therefore be reported include the
following: material, methods of material preparation and lay-up, specimen preparation,
specimen conditioning, environment of testing, specimen alignment and gripping, speed
of testing, time at temperature, void content, and volume percent reinforcement.

Two international standards and one Czech standard were an inspiration (Tab. ??)
for specimen manufacturing and tensile tests in this work:

• ISO 527–5 Plastics – Determination of tensile properties – Part 5: Test conditions
for unidirectional fiber-reinforced plastic composites [45]

• ASTM D 3039/D 3039 M Standard Test Method for Tensile Properties of Polymer
Matrix Composite Material [44]

• ČSN EN 2561 Aerospace series – Carbon fibre reinforced plastics – Unidirectional
laminates – Tensile test parallel to te fibre direction [46]
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Table 2.1: Tensile test configuration given by stndards.

ISO ASTM ČSN

specimen width 15± 0.5 mm 15 mm ±1% 15± 0.5 mm
specimen length 250 mm 250 mm 250± 1 mm
thickness 1± 0.2 mm 1 mm ±4% 1± 0.2 mm

tab length > 50 mm
56 mm

65± 15 mm
minimum Lmin = F tuh

2F su
1

tab thickness 0.5 to 2 mm 1.5 mm ±1% 0.5 to 1 mm
gage length 50± 1 mm – –
dist. betw. tabs 150± 1 mm – –
dist. betw. grips 136 mm – –

tab material

cross-ply or fabric glass continuous E-glass glass fabric/epoxy
fiber/resin laminate polymer matrix mat. 2 laminate ±45◦

material under test material under test –
emery or sand paper emery cloth –

– incorporated steel –

test speed 2 mm/min 2 mm/min 3 mutual disp. of
grips 2 mm/min

1 F tu – ultimate tensile strength of coupon material in MPa, h – coupon thickness, F su –
shear strength of adhesive coupon material or tab material (the lowest) in MPa

2 woven or unwoven in a [0/90] laminate configuration, tab material applied at 45◦ to the
force direction to provide a soft interface

3 The strain rate should be selected so as to produce failure within 1 to 10 min.

Standard test method ASTM D 3039/D 3039 M also defines three-part failure mode
codes for recording the mode and location of failure of the tested specimen. Failure modes
and locations are shown in (Fig. 2.2) and (Tab. 2.2) [44].

If a significant fraction of failures in a sample population occurs within one specimen
width of the tab or grip, the force introduction into the tested material is supposed to be
reexamined. The concerned factors should include the tab alignment, tab material, tab
angle, tab adhesive, grip type, grip pressure and grip alignment.

2.2 Experiments

Simple tensile tests were performed on specimens (Fig 2.3) cut from a plate 1.8 mm
thick made of 8 layers of prepregs SE84LV-HSC-450-400-35 with the same fiber orientation
θ. One layer of the unidirectional prepreg was 0.21 mm thick made of high-modulus
continuous fibers and epoxy (polymer) resin. The specimen were 150 mm long, 10 mm
wide and the gage length was 60 mm. Parameters of the fiber material specified by the
manufacturer are in Tab. 2.3.
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Figure 2.2: Failure modes and locations.

Table 2.2: Identification codes for failures of specimen loaded by tension.

first character second character third character
failure mode code failure area code failure location code
angled A inside grip/tab I bottom B
edge delamination D at grip/tab A top T
grip/tab G < width from grip/tab W left L
lateral L gage G right R
multi-mode M multiple areas M middle M
long. splitting S various V various V
explosive X unknown U unknown U
other O

Specimens with constant rectangular cross-section were clamped in the grips of the
testing machine. Aluminium or friction emery cloth tabs were placed between serrated
wedge grips of the testing machine and the specimen to transfer the force into the specimen
and provide necessary friction in order to avoid slipping during the test. The aluminium
tabs were bonded by a two component epoxy adhesive Araldite AV 138 with Hardener
HV 998 [47]. Emery cloth tabs were held in place by the pressure of the grip and enclosed
between the specimen and grips with the rough side oriented towards the specimen.

The specimen were monotonically loaded in tension by test speed of 2 mm/min defined
by the testing machine crosshead. The loading force increased up until failure while
recording extension of the gage length (Fig. 2.3) and loading force.

Data obtained from the test – loading force Fx, gage length extension (displacement)
∆l and time t were exported into *.TRA data files. Experimental data were processed by a
library of functions named ploTRA programmed in Python 2.7 by Ing. Tomáš Kroupa Ph.D.
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Figure 2.3: Fractured specimens with different fiber orientations θ.

at the Department of Mechanics of University of West Bohemia in Pilsen. Data for further
analysis were averaged for each group of fiber orientation θ in sense of strain εx.

Configuration of tab materials and specimen number for the groups of specimen with
different fiber orientation are in Tab. 2.4.

Table 2.3: Parameters of prepreg SE84LV-HSC-450-400-35 fibers specified by the manufacturer.

E11 [GPa] 230.00
E22 = E33 [GPa] 15.00
ν12 [−] 0.28
G12 = G13 [GPa] 4.50
G23 = E22

2(1+ν23)
[GPa] 5.77

Only one tensile test for fiber orientation θ = 0◦ produced successful failure mode
according to ASTM D 3039/D 3039 M. The remaining specimens failed inside tabs or the
tabs were detached before the specimens failed.

Therefore, further simple and cyclic tensile tests were performed to find the suitable
combination of tab material and geometry and specimen geometry to produce failures
of the specimens in the gage area. The tensile tests were performed by loading the

Table 2.4: Configuration of specimen and tabs for simple tensile tests.

specimen tabs
fiber orientation θ [◦] # of samples material length [mm]
0 1 aluminium 25
15, 30, 45, 60, 75, 90 10 emery cloth 25
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Figure 2.4: Stress-strain dependencies obtained by simple tensile tests (grey) with averaged
data for every fiber orientation θ (green).

unidirectional high-modulus long-fiber composite Hexply 913C-HTS(12k)-5-40 in the fiber
direction (Appendix A).

The specimen with fiber orientation θ = 0◦ is fractured by explosive failure mode
along the whole specimen length caused by fiber failures. Specimen with nonzero fiber
orientations θ were fractured by angled failure mode caused by matrix failure (Fig 2.3).

17



Chapter 3

Morphology of Composite
Microstructure

All methods of manufacturing fiber reinforced composites result in a non-regular fiber
distribution in the composite cross-section. The irregularity of the microstructure influ-
ences the homogenized material properties of the resulting lamina. Deviation of local
fiber volume fraction Vf in the composite also affects the material behavior.

For modelling the composite material on a microscale level, the real fiber distribution
in the matrix is crucial for example for analysis of homogenized material properties. It
is also important for instance for further manufacturing of the composite. In this part of
work, a new parameter describing the degree of irregularity of a microstructure is proposed
and two methods for determining real fiber volume ratio and fiber center positions are
used.

3.1 Quantification of Degree of Irregularity

For further analyses, it was crucial to define a parameter quantifying the irregularity
of fiber distribution in cross-section perpendicular to fiber direction in unidirectional com-
posite. The proposed parameter, designated as Υ, was designed to quantify deviation of
fiber distribution in a composite cross-section from idealized hexagonal fiber distribution
having the same fiber volume fraction Vf .

The aim of the presented work is to investigate, prove and describe a dependency
of resulting homogenized characteristics (properties) of a composite lamina on Υ. Such
dependency could be useful for instance during processes of construction. The ability
to predict deviations of particular properties of a lamina with known microstructure
from properties of a material with idealized cross-section geometry would provide useful
information.

Parameter Υ expresses the degree of irregularity related to hexagonal fiber distribution
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Figure 3.1: Hexagonal (left) and irregular (right) fiber distribution with a circle (yellow) of
diameter RA covering a red area of fibers Areg

int (left) and Aiint (right).

with fiber volume ratio Vf of the identified geometry

Υ = 100 · Areg

Aid

nf∑
i=1

∣∣∣∣Aiint − A
reg
int

Areg
int

∣∣∣∣, (3.1)

where Areg = 4·dy ·dz is area of the basic repeatable geometry for regular fiber distribution
(Fig. 3.1 – left), and Aid = Y · Z is area of the analyzed rectangular geometry. For a
geometry with regular fiber distribution, the dimensions Y and Z are multiples of dy
and dz, respectively. Number of fibers in the analyzed geometry is nf and Areg

int is area
of intersection of fibers with a circle having diameter RA and center in fiber center in a
geometry with regular hexagonal fiber distribution (Fig. 3.1 – left).

The diameter RA was chosen as the distance of neighboring fibers in the regular
distribution, and Aiint is area of fibers covered by a circle of diameter RA and center in
the center of the i-th fiber (Fig. 3.1 – right) in the analyzed geometry (Fig. 3.1 – top).

The geometry for which Υ is evaluated can be obtained either from real microstructure,
where no periodicity can be found, or a periodical microstructure built for finite element
analysis. In case of the periodical microstructure, nf is the number of original fibers. In
the latter case, where the structure cannot be repeated, nf is number of fibers which have
center in the area for which Υ is quantified.
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3.2 Preparation of Specimen for Microscopy

Five specimens were cut by water jet from five carbon/epoxy composite plates with
unidirectional long-fiber layers. The plates were 4.3 mm, 3.0 mm, 1.1 mm, 0.9 mm, and
0.8 mm thick. Each plate was made from different number of prepreg layers and cured in
autoclave. Specimens having a size of 5 mm × 10 mm were cut with cross-section having
one side perpendicular to the fiber direction.

The specimens were embedded in resin and their cross-section perpendicular to the
fiber direction was polished on a polishing machine (Fig. 3.2).

Figure 3.2: Composite specimen embedded in resin.

3.3 SEM Images of Composite Cross-section

Images of different parts of the polished composite cross-section (see Appendix B,
Figs. B.1a, B.2a, B.3a, B.4a and B.5a) were taken by scanning electron microscope (SEM).
The monochromatic images were taken with 2 different magnifications of 1000 and 4000.
In case of magnification 1000 theresolution was 1 pixel ≈ 0.16 µm (Figs. B.1b, B.1c, B.1d,
B.2b, B.2c, B.2d, B.3b, B.3c, B.3d, B.4b, B.4c, B.4d, B.5b, B.5c and B.5d) and in case of
4000 it was 1 pixel ≈ 0.064 µm (Figs. B.1e, B.1f, B.1g, B.2e, B.2f, B.2g, B.3e, B.3f, B.3g,
B.4e, B.4f, B.4g, B.5e, B.5f and B.5g).

3.4 Automatic Detection of Fibers in SEM Images

An algorithm was proposed with the aim to detect fiber areas in images of unidirec-
tional long–fiber composite cross–section (Fig. B.1 – B.5). An application for Ground
Truth data (GT) and two algorithms for automatic fiber detection were built with coop-
eration with Ing. Lukáš Bureš and Ing. Ivan Pirner from the Department of Cybernetics
using a library of programming functions which is aimed at real-time computer vision –
OpenCV (Open Source Computer Vision). The codes were written in Python.
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Figure 3.3: Monochromatic image of composite cross-section with magnification of 4000.

3.4.1 Image Preprocessing

The principle of proposed algorithms is shown for image (Fig. 3.3). Matrix X(m× n)
of integer pixel intensities (with a number of possible intensity values L) represents the
monochromatic image.

X was blurred by discrete convolution with kernel Ki,j = 1
p2

, where i, j = 1, ..., p,

XDC
k,l =

p∑
i=−p

p∑
j=−p

Ki,jXk−i,l−j, (3.2)

which causes that an element of the resulting image XDC (Fig. 3.4a) has intensity value
equal to the average value of its neighbouring pixels in the input image [48, 49].

Contrast of the image was adjusted and fiber edges enhanced by contrast limited adap-
tive histogram equalization (CLAHE). It computes several histograms, each corresponding
to a distinct section of the image XDCsub(msub × nsub) and limits the amplification (con-
trast) by redistributing part of the histogram exceeding certain value γ equally among all
histogram bins [50]. The equalized image section elements are defined as

XCLAHEsub
i,j = floor

(L− 1)

XDCsub
i,j∑
n=0

pγ

 , (3.3)

where function floor() rounds down to the nearest integer and pγ is the normalized his-
togram of XDCsub with a bin for each possible intensity

pγ =
number of pixels with intensity α

total number of pixels
, (3.4)

21



where α = 0...L− 1 [51]. To ensure continuity between the subimages a bilinear interpo-
lation is applied and matrix XCLAHE represents the equalized image (Fig. 3.4b).

The grayscale image XCLAHE was transformed to binary image XBIN (Fig. 3.4c) by
Otsu’s method, a clustering–based image thresholding. Otsu’s algorithm assumes that the
image contains foreground and background pixels and it calculates the optimum global
threshold which separates pixels into the two classes [52].

3.4.2 Image Segmentation

Marker–based image segmentation was performed using watershed algorithm which
views the grayscale image XCLAHE as a topographical surface, where high and low inten-
sities denote peaks and valleys, respectively. Water with different label in every isolated
valley rises until all peaks are under water. To avoid merging the water from different
valleys, barriers are built in locations of merging and denote the segmentation result.
Oversegmentation caused by noise is prevented by labelling different regions of the image
before segmentation — the regions of background and foreground (all fiber areas sepa-
rately) are labelled each with different integer and the remaining area is labelled with
zero (Fig. 3.4d).

After applying the watershed algorithm markers of segmented image XWS have labels
XWS
i,j = –1 for boundary regions and XWS

i,j = s, s = 255, 254, ..., q for the number of
segments q which represent the fibers in the image [48]. Each set of boundary points is
represented by a list β = [βk], k = 1, ..., t of t pairs of element positions in the matrix
XWS (Fig. 3.4e).

3.4.3 RANSAC Algorithm

Two algorithms were applied on the preprocessed and segmented image XWS. The
first one is the iterative method RANSAC (RANdom SAmple Consensus) which is a
learning technique to estimate parameters of a model by random sampling of data which
can contain both, the so-called inliers (data whose distribution can be explained by some
set of model parameters) and the so-called outliers (data that do not fit the model).

The proposed algorithm serves to approximate the points classified as boundary points
of segments in XWS by circles (Fig. 3.5a) with a minimum of effect of the inaccurately
classified points [53].

The algorithm consists of several iteratively repeated steps:

1. Randomly select 3 points from β and interpolate a circle containing these 3 points.

2. Test all other points of the input set.

(a) Calculate the distance of all points from the circle.

(b) Points closer to the circle than 5 pixels consider as inliers.

3. If the number of inliers is larger than in the best so far found model, save the new
model.
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4. If maximum number of iterations (given) is not exceeded and minimal number of
inliers (given) is not identified, return to step 1.

5. Select the circle designated by the best model (Fig. 3.4f).

3.4.4 Least Squares Fitting Method

Least squares fitting method (LSQ) was the second algorithm applied. It was used
to find the center positions of fibers in the preprocessed and segmented image XWS

(Fig. 3.5b). The best fiber center position found by minimizing sum of squared resid-
uals [54, 55]

S =
t∑

k=1

(
φ− φ (βk, c)

)2
, (3.5)

where

φ =

∑t
k=1 φ (βk, c)

t
(3.6)

and φ (βk, c) is the distance between fiber center position c and the k-th pixel in β. When
the fiber center position cid is identified, the fiber radius is obtained as

Rf =
t∑

k=1

φ (βk, cid)

t
. (3.7)

3.4.5 Ground Truth Data

In the context of computer vision, ground truth data includes a set of images, and
a set of labels on the images. The labels are added either by a human or automatically
by image analysis, depending on the complexity of the problem. The collection of labels,
such as interest points, corners, feature descriptors, shapes, and histograms, form a model
or serve as validation of some method on a test set [56].

In this work the test set of images consists of nine monochromatic images of composite
cross-section (Figs. B.3e, B.3f, B.3g, B.4e, B.4f, B.4g, B.5e, B.5f, B.5g), and the labels
are fiber center positions and fiber radii.

The ground truth data were acquired in a proposed application, which enables the an-
notator to display the monochromatic image (Fig. 3.3) in three different modes – original,
with improved contrast by adaptive histogram equalization, and in false color. At least
three points on the boundary have to be marked and subsequently the center position c
and radius of the fiber Rf are obtained by least square method.

3.4.6 Results of Fiber Detection Algorithms

The proposed methods, RANSAC and LSQ, were applied with parameters listed in
Tab. 3.1 to estimate fiber center positions and radii in 9 images (Figs. B.2e, B.2f, B.2g,
B.3e, B.3f, B.3g, B.4b, B.4c, B.4d). The results were compared with GT data in graphical
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(Fig 3.5) and numerical terms (Tab. 3.2). Figs. 3.5a and 3.5b show the detected fibers by
the proposed algorithms and the fibers from GT data. Figs. 3.5c, 3.5d and 3.5e depict
the representation of the distribution of identified fiber radii.

Both proposed methods identify the searched radii of fibers Rf systematically smaller
than the GT data, therefore the identified volume ratios Vf on a subimage (Figs. 3.5a,
3.5b) are smaller. The average fiber volume fraction over all identified cross-section images
is smaller compared to GT data by 20.1% in case of LSQ method and 19.3% in case of
RANSAC method data (Tab. 3.2). While the averaged fiber radii over all images are
the same for both, LSQ and RANSAC methods, the difference in identified fiber volume
fraction can be explained by more identified fibers in case of the RANSAC method. The
two proposed methods for visual fiber detection applied on 9 images provide slightly
different data. We can state that the RANSAC method provides better results than LSQ
method compared to the GT data.

Table 3.1: Parameters of testing images and identification methods.

designation unit value meaning
m pixel 1024 image width
n pixel 883 image height
L – 256 no. of intensity values
p pixel 5 kernel size
γ – 40 CLAHE limit
msub, nsub pixel 8 image section size

Table 3.2: Identified image data.

image
GROUND TRUTH LEAST SQUARE RANSAC
Vf Rf Υ Vf Rf Υ Vf Rf Υ
[%] [µm] [–] [%] [µm] [–] [%] [µm] [–]

B.3e 68.4 3.39 16.71 57.2 3.32 17.40 56.9 3.33 16.03
B.3f 67.6 3.51 13.53 55.8 3.30 15.13 56.0 3.34 17.55
B.3g 71.7 3.45 15.88 60.8 3.31 16.23 61.2 3.30 15.73
B.4e 67.4 3.51 19.31 51.4 3.28 23.09 51.9 3.30 22.50
B.4f 67.0 3.56 22.69 50.3 3.34 22.94 51.2 3.25 24.06
B.4g 66.1 3.73 22.42 52.1 3.45 21.04 52.5 3.44 25.88
B.5e 70.7 3.48 12.53 54.4 3.26 15.46 55.1 3.29 14.80
B.5f 52.8 3.51 26.90 42.5 3.31 28.55 42.9 3.33 29.62
B.5g 64.2 3.49 18.00 51.8 3.25 19.18 52.7 3.24 21.33

mean values 66.2 3.51 18.66 52.9 3.31 19.89 53.4 3.31 20.83
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(a) Blurred image XDC. (b) Equalized image XCLAHE .

(c) Binary image XBIN. (d) Labelled image.

(e) Segmented image XWS. (f) Inliers/sets of points of a fiber boundary.

Figure 3.4: Images during processing by RANASAC algorithm.
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(a) Image with GT (green) and RANSAC de-
tected (red) fibers and shrinked area (yellow).

(b) Image with GT (green) and LSQ detected
(red) fibers and shrinked area (yellow).
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(c) Fiber radii histogram - GT data.
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(d) Fiber radii histogram - RANSAC data.
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(e) Fiber radii histogram - LSQ data.

Figure 3.5: Results of RANSAC and LSQ fiber detection algorithms and GT data.

26



Chapter 4

Material Models

Before pursuing an approach to the micromechanics of the heterogeneous media such
as the analyzed unidirectional long-fiber composite material, basic material behavior de-
scriptions have to be introduced first. Material models used in the following work are
described by the listed constitutive relationships. Even the basic relationships expressing
material behavior have certain assumptions or boundaries of applicability. It is appropri-
ate to state these limits to ensure full capability to model actual behavior.

4.1 Linear Elasticity

A homogeneous linear elastic continuum is considered in rectangular Cartesian coor-
dinate system (123) which can also be written as (x1x2x3). Relationship between stress

σ123 = [σ11, σ22, σ33, τ23, τ13, τ12]T (4.1)

and strain
ε123 = [ε11, ε22, ε33, γ23, γ13, γ12]T (4.2)

in such continuum is expressed by Hooke’s law

σ123 = Cε123, (4.3)

where C is symmetric stiffness matrix (6× 6) (a fourth order tensor of elastic moduli, in
general), σii are normal components of of Cauchy stress tensor τij are shear components
of Cauchy stress tensor (Fig. 4.1), εii are components of infenitisimal strain tensor and
γij are engineering shear strains.

In this case, the Cauchy stress is equivalent to second Piola-Kirchoff stress, which
relates forces in reference configuration to areas in reference configuration [57].

The strain components can be derived from displacement ui along given direction xi
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Figure 4.1: Stress cube showing all positive stress components.

defined as

ε11 =
∂u1

∂x1

, (4.4)

ε22 =
∂u2

∂x2

, (4.5)

ε33 =
∂u3

∂x3

, (4.6)

ε23 =
1

2

(
∂u2

∂x3

+
∂u3

∂x2

)
, (4.7)

ε13 =
1

2

(
∂u1

∂x3

+
∂u3

∂x1

)
, (4.8)

ε12 =
1

2

(
∂u1

∂x2

+
∂u2

∂x1

)
(4.9)

and relations between engineering shears and shear components of strain tensor are

γij = 2 · εij. (4.10)

The generalized Hooke’s law (4.3) can be expressed in an inverse form

ε123 = Sσ123, (4.11)

where S is a symmetric compliance matrix, which can be related to the stiffness matrix

S = C−1. (4.12)
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4.1.1 Isotropic Material

Properties of isotropic material are identical in all directions. The compliance matrix
has the same form in any Cartesian coordinate system

S =



1
E
− ν
E
− ν
E

0 0 0
− ν
E

1
E
− ν
E

0 0 0
− ν
E
− ν
E

1
E

0 0 0

0 0 0 2(1+ν)
E

0 0

0 0 0 0 2(1+ν)
E

0

0 0 0 0 0 2(1+ν)
E


. (4.13)

It is possible to express the material behavior by two independent parameters, for instance
E and ν [58].

4.1.2 Transversely Isotropic Material

Transversely isotropic material has three planes of symmetry and one of them is also
the plane of isotropy (same elastic parameters in all directions). If the plane of isotropy is
plane (23), then the main direction of anisotropy is identical to axis x1 and the compliance
matrix is

S =



1
E11

− ν21
E22

− ν21
E22

0 0 0

− ν12
E11

1
E22

− ν32
E33

0 0 0

− ν13
E11

− ν23
E22

1
E33

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12


, (4.14)

where for the Young’s moduli are E22 = E33, shear moduli are G12 = G13, and Poisson’s
ratios are ν12 = ν13, ν23 = ν32 and

G23 =
E22

2(1 + ν23)
. (4.15)

The transversely isotropic material can be expressed by 5 independent material constants
E11, E22, G12, ν12 a ν23 [58].
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4.1.3 Anisotropic Material

In case of an anisotropic material, there is no plane of symmetry of elastic properties
and the compliance matrix [59] has 21 independent elements

S =



1
E11

− ν21
E22

− ν31
E33

η1,23
G23

η1,13
G13

η1,12
G12

− ν12
E11

1
E22

− ν32
E33

η2,23
G23

η2,13
G13

η2,12
G12

− ν13
E11

− ν23
E22

1
E33

η3,23
G23

η3,13
G13

η3,12
G12

η23,1
E11

η23,2
E22

η23,3
E33

1
G23

µ23,13
G13

µ23,12
G12

η13,1
E11

η13,2
E22

η13,3
E33

µ13,23
G23

1
G13

µ13,12
G12

η12,1
E11

η12,2
E22

η12,3
E33

µ12,23
G23

µ12,13
G13

1
G12


, (4.16)

where ηk,ij are coefficients of mutual influence of the first kind

ηk,ij =
εkk
γij

, (4.17)

ηkl,i are coefficients of mutual influence of the second kind

ηkl,i =
γkl
εii

(4.18)

and µkl,ij are Chentsov’s coefficients

µkl,ij =
γkl
γij
. (4.19)

4.2 Nonlinear Elasticity

Nonlinear elastic material is a material whose stress-strain dependency is not linear
and there is no permanent deformation after unloading. The stress-strain curve for 1D
example is identical for both, the loading and the unloading process (Fig. 4.2).

Helmholz free energy per unit mass is a thermodynamic potential that measures work
obtainable from a closed thermodynamic system at a constant temperature and can have
a form

Ψ =
1

ρ

(
E0

11ε
2
11

2
+
E0

11gε
3
11

6

)
, (4.20)

where E0
11 is initial Young’s modulus and g is a shape parameter and ρ is density.

Stress can be expressed from (4.20) as

σ11 = ρ
∂Ψ

∂ε11

= E0
11ε11 +

E0
11gε

2
11

2
(4.21)

and Young’s modulus as

E11 =
∂σ11

∂ε11

= E0
11 + E0

11gε11. (4.22)
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Figure 4.2: Stress-strain dependency of 1D material with nonlinear elastic behavior.

Young’s modulus (4.22) expressed as a function of strain component

E11 (ε11) = E0
11 (1 + gε11) (4.23)

is used in this work for characterization of nonlinear elastic behavior of fibers.

4.3 Plasticity

Theory of plasticity concerns materials, which after being subjected to a loading, ex-
hibit permanent (or plastic) deformations when completely unloaded. The short summary
of theory below is restricted to description of materials for which the permanent deforma-
tions do not depend on the strain rate [60, 61]. Materials whose behavior can be described
by the theory of plasticity are called plastic materials.

Stress-strain curve of 1D elastoplastic material with linear elastic behavior loaded by
pure tension is in Fig. 4.3. In the phase of loading, where so-called equivalent stress is
smaller than initial yield stress σ0

y, the behavior is linear elastic and given by the uniaxial
elastic law

σ = Cεe, (4.24)

where εe is the reached elastic strain. If the material is unloaded before reaching the yield
stress, it returns to the original state.

At σ0
y the slope of the stress-strain curve changes, plastic yielding (evolution of plastic

strain εp) is given by a function of equivalent plastic strain and strain is a sum of elastic
and plastic (permanent) part

ε = εe + εp. (4.25)

After exceeding the value of σ0
y, yield stress is changing (hardening in case of Fig. 4.3).

After unloading, permanent plastic strain remains (the unstressed state differs from the
initial unstressed state).

Behavior of the unloading and reloading process, where σ ∈ 〈0; σy〉, is considered to
be linear elastic. Reloading from the unstressed state has a constant plastic strain until
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Figure 4.3: Stress-strain dependency for 1D material with plastic behavior.

Figure 4.4: Hardening curve defined by hardening function.

reaching the new (current) yield limit σy. With every exceeding of the current yield stress
σy, the equivalent plastic strain εp grows.

Elastic domain at a state with yield stress σy with yield function

Φ (σ, σy) = σred − σy ≤ 0, (4.26)

where σred is equivalent stress, is the yield criterion in general form. Plastic flow is present
when (4.26) is not satisfied and it is necessary find another physically admissible state
when Φ = 0. That means identifying a new combination of εp, εp and εe.

Evolution of the yield stress hardening is accompanied by the evolution of the equiv-
alent plastic strain. Hardening law describes this phenomenon. Yield stress is given by a
function

σy = σy (εp) . (4.27)

Hardening function (4.27) defines a hardening curve (Fig. 4.4).

4.3.1 Von Mises Yield Criterion

The yield criteria in general form (4.26) describing plastic yielding is given by a certain
yield criteria, i.e. for isotropic materials Tresca, von Mises, Mohr-Coulomb and Drucker-
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Prager.
According to von Mises yield criterion [62], plastic yielding begins when equivalent

stress σred reaches the yield stress σy, which denotes the limit of elastic behavior and the
start of plastic deformation. The equivalent stress σred is defined in terms of principal
stress components σ1, σ2 and σ3 as

σred =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
. (4.28)

4.3.2 Isotropic Hardening

Isotropic hardening is a type of evolution of the yield surface in coordinate system of
the principal stress components (σ1σ2σ3), a uniform (isotropic) expansion of the initial
yield surface with no translation.

For multiaxial plasticity model with von Mises yield surface, isotropic hardening cor-
responds to the increase in radius of the von Mises cylinder in principal stress space
(Fig. 4.5).

Figure 4.5: Example of isotropic hardening, stress-strain dependency for 1D material and
hardening curve.

A work hardening function was proposed for purposes of capturing plastic behavior of
epoxy resin, which was subjected to experimental tensile tests (Appendix C). The tensile
tests were performed in order to obtain response of a separate composite phase (matrix)
to mechanical loading. The work hardening function has form

σy = σ0
y +

PEεp(
1 +

(
PEεp

PA+PKεp

)n) 1
n

, (4.29)

where PE, PA, PK and n are material shape parameters.
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Chapter 5

Micromodel

Micromodel of a composite material is used to simulate material behavior on a mi-
croscale level, where material parameters of individual phases and their distribution are
taken into account. Micromodel in this work was built in Abaqus/CAE and it was used
to identify parameters of material models of fibers and matrix according to data obtained
from simple tensile tests and to analyze influence of fiber spatial distribution in composite
cross-section e.g. on homogenized material properties.

The micromodel is used to simulate response in a specific place of the structure when
the load is known or to calculate homogenized material properties. Advantage of a mi-
cromodel is its ability to describe effects of a loading state on the microscale level. It is
also possible to include the influence of inclusions or defects (failures, voids, etc.) on the
microscopic level.

The unidirectional longfiber composite can be considered as an heterogeneous material
with a periodically repeated microstructure. The smallest volume that is repeated in the
structure is usually called representative volume element (RVE) or unit cell (UC). The
representative volume element is used to create the micromodel geometry in finite element
software.

5.1 Micromodel Analysis Description

Several analyses were performed on the micromodel built in finite element software
Abaqus/CAE. First, material parameters of two combinations of material models (linear
elastic models for fibers and matrix or nonlinear elastic model for fibers and elaastoplastic
model for matrix) of the phases (fibers and matrix) of micromodel with regular structure
were identified in optimization process performed in optiSLang. Combination of material
parameters of phases providing the best matching response to loading compared with the
experiments performed in section 2.2 was identified.

When the material parameters of the proposed material models of the micromodel with
regular structure were found, homogenized material properties of regular and different
number of irregular micromodels with different degrees of irregularity were calculated.
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Analysis of influence of the geometrical irregularity has been performed on the pro-
posed micromodel by calculating the homogenized linear elastic material parameters for
different geometries of the unit cells. Influence of deviation of the material parameters
of phases on the homogenized properties of the micromodel was analyzed. Homogenized
properties of unit cells with regular fiber distribution were calculated for material param-
eters of the phases differing from the values obtained using optimization process by up
to 10 %. Each parameter was separately variated from values obtained by micromodel
calibration to the experimental data.

Stress-strain dependencies corresponding to experimental tensile tests were calculated
for a micromodel with proposed nonlinear elastic material model of fibers and elasto-
plastic material model of matrix. The stress/strain dependencies obtained from micro-
model with regular fiber distribution were compared to the dependencies given by the
experimental tensile tests.

Influence of deviation of material parameters of the micromodel with nonlinear mate-
rial models on the micromodel response was analyzed. Stress/strain dependencies were
calculated for micromodels with material parameters of the phases differing from the
values obtained using identification process by up to 10 % to evaluate the influence of
individual parameters change on the response of the micromodel to loadings defined by
experimental tensile tests. The material parameters were variated from the calibrated
values one at a time.

The process of the finite element analysis on the proposed micromodel is described in
Fig. 5.1.
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input
• micromodel geometry

– cross-section size

– fiber center positions

– fiber radii

• element size

build model from given geometry

generate mesh

apply periodical boundary conditions

type of test

assign material parameters

• fibers – transversely isotropic,
nonlinear elastic

• matrix – isotropic elastoplastic
with von Mises plasticity

assign material parameters

• fibers – transversely isotropic
elastic

• matrix – isotropic elastic

transform stress σ123 = Tσ (θ)σxyz
(xyz) = (123)

transform stress
σ123 = Tσσxyz

load UC by σ123

FEA

load UC by σ123

FEA

(xyz) = (123)
transform strain
εxyz = T−1

ε ε123

homogenized linear elastic material
properties

transform strain εxyz = T−1
ε (θ) ε123

force/displacement dependencies

tensile test homogenized properties

–

+

–

+

Figure 5.1: Flowchart of algorithm for computing homogenized material properties and ob-
taining force/displacement dependencies of given material.
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5.2 Cross-section

Different cross-section geometries of a micromodel with ideally circular fibers with
same fiber radii Rf and volume ratio Vf were proposed. All proposed geometries respect
periodicity, which ensures the possibility to repeat the volume element in all directions
(1, 2 and 3) even in deformed state.

The fiber volume ratio has been chosen with respect to results of the analysis of the
real composite cross-section. In section 3.4.6, the mean fiber volume ratio given by ground
truth data is Vf = 66 % (fibers and their radii were identified manually, and the data are
considered as reliable). Image processing algorithm proposed in [1] identified the fiber
volume fraction as Vf = 58 % and [2] as Vf = 62 %.

The fiber volume ratio for the unit cells was chosen Vf = 60 %. The higher fiber
volume fraction resulting from the image processing has been determined on images in
central areas of laminae. Areas at boundaries of the laminae have visibly smaller volume
ratios as in Fig. 5.2, where the fiber volume ratio given by GT data is Vf = 43 %. Fiber
radii was set as Rf = 0.5 for all geometries. The value has no unit, while the problem is
scalable and the fiber diameter 2Rf = 1 is a convenient reference value.

Figure 5.2: Images of composite cross-section with detected fibers in the inter-lamina area.

5.2.1 Unit Cell with Regular Fiber Distribution

Two possible approximations of fiber distribution in two-phase composite material
can be used, square and hexagonal pattern (Fig. 5.3). In this work, for the regular fiber
distribution approximation, hexagonal geometry was chosen. The SEM images of the
composite cross-section (Figs. B.1, B.2, B.3, B.4, B.5) show that the fiber distribution
has stronger resemblance to the hexagonal rather than to the square pattern (Fig. 5.4 -
right). The smallest representative volume element for hexagonal fiber distribution with
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Figure 5.3: Square (left) and hexagonal (right) fiber distributions with unit cells.

Figure 5.4: Image of composite cross-section with magnification of 4000 and a basic unit cell
(yellow) used for hexagonal fiber distribution approximation and the smallest (blue) and largest
(green) fiber.

periodical structure, which can be repeated along the directions of the cartesian coordinate
system axes 1, 2 and 3 is a basic unit cell and has dimensions 2 ·dy×2 ·dz (Fig. 5.4 – left).

In the cross-section of unit cell with regular fiber distribution, fiber centers are posi-
tioned according to hexagonal (honeycomb) distribution (Fig. 5.3). The unit cell height
and width of the rectangular basic element of unit cell (Fig. 5.4) respects the aspect ratio

dz =
√

3 · dy (5.1)

and it can be shown that

Vf =
π ·R2

f

2 · dy · dz
. (5.2)

Unit cell with regular fiber distribution represents the ideal regularity, therefore the
parameter expressing the degree of irregularity is Υ = 0. Geometry with area of 56
fibers laying inside the cell area was proposed, twelve fibers are duplicated to ensure the
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Figure 5.5: Geometry of regular unit cell with 56 fibers (blue) and 12 repeated (yellow) fibers.

periodicity of the unit cell. The unit cell was formed by repeating an elementary cell
(Fig. 5.4). Dimensions of the regular unit cell b× c = 8dz×14dy were chosen to obtain an
area with side ratio 8

√
3 : 14 = 1 : 0.99 as similar to square as possible while having similar

number of fibers as in SEM images with magnification of 4000. Using (5.2), parameters
of the unit cell respect relationship

Vf =
56 · π ·R2

f

14dy · 8dz
. (5.3)
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5.2.2 Unit Cells with Irregular Fiber Distribution

Geometries of all irregular unit cells were proposed with the same fiber volume fraction
Vf = 60 % and volume radii Rf = 0.5 (same as the unit cell with regular fiber distribution
above). There are 56 fibers in all unit cells, only the number of duplicated fibers (due to
periodicity of the geometry) varies.

Clustered Unit Cell

To obtain an extremely irregular fiber distribution in a unit cell a so-called clustered
unit cell was proposed. The clustered unit cell (Fig. 5.6) with 56 fibers fully inside the
cell was proposed by decreasing the fiber distance to dR = 2πRf

360
(Fig. 5.4) in regular unit

cell (Fig. 5.5). A nonzero fiber distance is desired to avoid problems with meshing 1 in
real material, however, the fibers can touch. A geometry with no fibers overlapping the
unit cell area and with border areas without fibers was attained (Fig. 5.6). The aspect
ratio of regular unit cell sides b× c = 8 · dz× 14 · dy is respected and the resulting degree
of irregularity Υ = 61.69.

Figure 5.6: Geometry of clustered unit cell.

Unit Cell with Stripe of Fibers

Another example of a unit cell imitating an extremely irregular fiber distribution is a
unit cell with stripe of fibers. A unit cell with 56 fibers, where 4 of them are overlapping
the geometry area was proposed (Fig. 5.7) by enlarging the width of the regular unit cell
(Fig 5.5) and rearranging a horizontal row of fibers. The unit cell has areas without fibers
along two opposing sides. The distance between neighbouring fibers is dR = 2πRf

360
and the

resulting degree of irregularity is Υ = 66.94.

1Fibers should not be connected.
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Figure 5.7: Geometry of unit cell with fibers arranged in a stripe.

Unit Cells with Random Fiber Distribution

The unit cell with random distribution of fibers was built in Python by an algorithm
for simulating chaotically colliding billiard balls in 2D [63]. The algorithm was created
by Ing. Vladimı́r Lukeš Ph.D. at the Department of Mechanics of University of West Bo-
hemia in Pilsen for [3] and augmented by author for purposes of the proposed dissertation.
Each circle (fiber in this case) moves along a straight line until it collides with another
component. Collisions are processed in a non-decreasing order of time. The defined fiber
volume fraction is ensured by termination criterion in the iterative process. Periodicity
of the volume element is ensured by a component disappearing at a boundary and reap-
pearing at the opposite side (Fig. 5.8). Principle of the algorithm for generating unit cells
with random fiber distribution is depicted in Fig. 5.9.

Figure 5.8: Parts of fiber on the area boundaries in accordance with periodic boundary con-
ditions.

One hundred geometries having area 14dy × 8dz were produced by the proposed al-
gorithm (example in Fig. 5.10). Minimum fiber distance dR = 2πRf

360
was used to avoid

problems with meshing of the geometry (low-quality mesh). The cells were produced
with different alternations to obtain geometries spread in interval of degree of irregularity
Υ ∈ 〈0; 66.94〉 including the geometries with regular fiber distribution
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input
• geometry size

• number of fibers nf

• fiber volume fraction Vf

• min. fiber spacing

• fiber radii Rf

• fiber radii grow rate ḡ

generate fibers

• with random positions ccur

• random initial velocity v

• zero radii
Rcur

f = 0 → V cur
f = 0

V cur
f <

(
Vf + V spacing

f

)

output

• fiber positions c

• fiber labels
(original/duplicated)

dual fibers

• find overlapping fibers

• duplicate overlapping fibers

• mark the original dual fibers as master

predict collision

• find collision time tcolij for all pairs of

fibers ij (including dual fibers)

• collision time ∆t = min
(
tcolij

)nf

i,j=1

move and grow fibers

cnew = ccur + ∆t · v
Rnew

f = Rcur
f + ∆t · ḡ

collision of nodes
assign new velocities v to the pair of
fibers colliding at ∆t

+ –

Figure 5.9: Flowchart of algorithm for generating unit cell geometry.
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Figure 5.10: Geometry of a unit cell with random fiber distibution - 56 fibers (blue), 10
duplicated fibers (yellow).

5.3 Mesh

Micromodels consisted of one layer of linear hexahedral elements (type C3D8), and
linear wedge elements (type C3D6). The number of hexahedral-shaped elements is domi-
nating. To ensure periodicity, the opposite surfaces have identical surface meshes. Volume
of the unit cell is a× b× c, where a is the thickness, b is the width and c is the height.

The micromodel was created by an automatic meshing of the 2D geometry of the
cross-section of the unit cell and then by expanding along the direction of fibers by using
bottom-up meshing technique [64].

Edges of the unit cell and fiber/matrix edges were seeded with a seed length lseed. Seed
length defines the approximate resulting element size of the mesh.

Thickness of the micromodel was set equal to the seed length a = lseed to ensure
elements with shape as close to cube as possible. Therefore thicknesses of all unit cells is
equal to the element size of built micromodel, while it consists of one layer of elements.

5.4 Periodic Boundary Conditions

The unit cell represents the repeated part of the periodic material (or structure). It
means that any physical quantity F such as material properties (density, Young’s mod-
uli, Poisson’s ratios, shear moduli and other elasticity constants etc.) or state variables
(displacement vectors, stress and strain tensors, etc.) must be periodic functions of the
spatial coordinates. Therefore, for unit cell having the shape of rectangular cuboid, we
can write

F(x123) = F(x123 + N [a,b, c]T), (5.4)
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where x123 = [x1, x2, x3]T are point coordinates, N is a diagonal matrix 3× 3

N =

n1 0 0
0 n2 0
0 0 n3

 (5.5)

with arbitrary integer values n1, n2 and n3 on the diagonal and [a, b, c]T is a constant
vector of unit cell dimensions.

In order to ensure its periodicity even after deformation (after applying loads) the
relative motion (displacements) of all pairs of corresponding nodes on opposite sides (of
the unit cell) must be constant. In case of three-dimensional finite element analysis with
elements having only displacement degrees of freedom (i.e. no rotations) the following
three categories of constraints must be prescribed – namely the constraints for

• nodes on the surface but not on the edges or at corners,

• nodes on the edges but not at corner, and

• nodes at the corners.

The mesh has to be periodic as well, i.e., the opposite sides must be discretized with equal
surface (2D) mesh.

The first category of constraints can be written for each pair of corresponding nodes
(Fig. 5.11) A and B (on the two sides perpendicular to axis 1) as a set of three equations

uB1 − uA1 = a · ε11, (5.6)

uB2 − uA2 = a · ε12 = a
γ12

2
, (5.7)

uB3 − uA3 = a · ε13 = a
γ13

2
. (5.8)

The strain tensor and strain vector components (infinitesimal strain as defined in chapter
4) on the right-hand side represent the homogenized (or effective) strains of the material
(unit cell). The equations can be obtained analogously for the latter two degrees of
freedom, and for the two remaining pairs of opposite sides. All these equations are linearly
independent.

The second category of constraints can be written for the first degree of freedom for
all corresponding quaternions of nodes A, B, C and D (belonging to 4 mutually parallel
edges) as

uB1 − uA1 = a · ε11, (5.9)

uC1 − uD1 = a · ε11, (5.10)

uA1 − uD1 = b · γ12

2
, (5.11)

uB1 − uC1 = b · γ12

2
, (5.12)
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Figure 5.11: Representative volume element and nodes on opposite sides.

where a and b are dimensions of the unit cell along the two perpendicular edges (Fig. 5.12).
These four equations, however, are not linearly independent. After rewriting the set of
equation in matrix form 

−1 1 0 0
0 0 1 −1
1 0 0 −1
0 1 −1 0

 ·

uA1
uB1
uC1
uD1

 =


a · ε11

a · ε11

b · γ12
2

b · γ12
2

 . (5.13)

it can be shown that the coefficient matrix is singular (matrix rank is three), and the
system of 4 equations can be reduced (e.g. by Gauss elimination) to a system of 3 linearly
independent equations (any subset of the original set, e.g. (5.10), (5.11) and (5.12)). The
equations can be obtained and reduced analogously for the latter two degrees of freedom
and for for the two remaining combinations of mutually parallel edges.

The third category of constraints can be written for all 8 corner nodes A, B, C, D,
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Figure 5.12: Representative volume element and nodes on opposite edges.

K, L, M and N (Fig. 5.13) of the unit cell for the first degree of freedom as

uA1 − uB1 = a · ε11, (5.14)

uN1 − uM1 = a · ε11, (5.15)

uK1 − uL1 = a · ε11, (5.16)

uD1 − uC1 = a · ε11, (5.17)

uA1 − uK1 = b · γ12

2
, (5.18)

uB1 − uL1 = b · γ12

2
, (5.19)

uD1 − uN1 = b · γ12

2
, (5.20)

uC1 − uM1 = b · γ12

2
, (5.21)

uK1 − uN1 = c · γ23

2
, (5.22)

uL1 − uM1 = c · γ23

2
, (5.23)

uA1 − uD1 = c · γ23

2
, (5.24)

uB1 − uC1 = c · γ23

2
. (5.25)

Similarly to the second category of constrains, this set of 12 equations can be reduced to
7 by eliminating for example (5.15), (5.17), (5.19), (5.20) and (5.22). The equations can
be obtained and reduced analogously for the latter two degrees of freedom.

To implement the periodical boundary conditions on the micromodel in Abaqus the
so-called linear multi-point constraints can be used. A linear multi-point constraint is
defined as a linear combination of selected nodal degrees of freedom that is equal to zero.
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Figure 5.13: Representative volume element and nodes at corners.

For N nodal values it can be written generally in form of

A1u
P
i + A2u

Q
j + . . . + ANu

R
k = 0, (5.26)

where u is displacement, the superscripts P , Q and R represent nodal ID, the subscripts
i, j and k represent the selected degree of freedom (1, 2 or 3), and An (n = 1 . . . N) are
the coefficients that define the relative motion of given nodes [64].

Therefore, six additional reference points (nodes) designated as e11, e22, e33, g23, g13
and g12 must be created assuming that their displacement 2 (first degree of freedom) values
represent one component of the strain vector on right-hand side of the above introduced
equations, i.e. ε11, ε22, ε33, γ23, γ13 and γ12, respectively. Then, each constraint equation
ties the two corresponding degrees of freedom of nodes on the surface of the unit cell and
one auxiliary node [65]. For example, the equation (5.8) is represented as

A1 = 1, i ∼ B, P = 3,
A2 = −1, j ∼ A, Q = 3,
A3 = −a

2
, k ∼ g13, R = 1.

(5.27)

2The corresponding force/reaction degree of freedom then represents one corresponding component of
the Cauchy stress vector (as defined in chapter 4) multiplied by the volume of the unit cell.
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5.5 Material Model Calibration

Two sets of material models were used in micromodels proposed in this work. The first
set was designed to simulate overall elastic behavior of the analyzed composite material.
Phases of the first micromodel were therefore both modelled as linear elastic materials.

The second set was designed for obtaining numerical response to loading in terms of
stress/strain behavior. While the real composite material exhibits significant nonlinear
behavior, non-linear material models were used for both phases.

In previous author’s work a micromodel with nonlinear material models and with the
basic unit cell (Fig. 5.4 – left) was proposed to simulate simple tensile tests [4] and to
identify initial failure and damage of substituents [5]. The micromodel with the basic
unit cell and nonlinear material parameters was used in [6] to determine the response
of the micromodel to tensile cyclic loading. Micromodel with linear material models
and irregular fiber distribution was proposed in [3] to compare homogenized material
parameters with results of asymptotic homogenization method.

5.5.1 Linear Material Model Calibration

Micromodel designed for simulating the composite material in the elastic range con-
sisted of elements of matrix with linear elastic isotropic material (section 4.1.1) and ele-
ments of fibers with linear elastic transversely isotropic material (section 4.1.2).

Material parameters were obtained by optimization process in optiSLang by minimiz-
ing a residual (using a gradient based algorithm) defined as

r1 =
∑
θ

(
1− Enum (θ)

Eexp (θ)

)2

, (5.28)

where θ = {0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦} are orientations of tensile loadings (fiber orien-
tation of specimen),

Enum (θ) =
σnum (εnum, θ)

εnum
(5.29)

is Young’s modulus of numerical stress/strain dependency obtained by FEA and Eexp (θ)
is experimentally obtained Young’s modulus, which was enumerated on strain interval
ε ∈ 〈0.05 %; 0.25 %〉. The strain interval is the interval given in ISO standard [66] for
determining Young’s modulus. Eexp was defined by linear regression of data points on
the strain interval of elastic part of the diagram.

Results of numerical analysis were obtained by loading a unit cell with regular fiber
distribution (Fig. 5.5) built in Abaqus/CAE. Identified parameters are shown in Tab. 5.1.
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Figure 5.14: Young’s moduli of experimentally (green) and numerically (red) obtained data.

Table 5.1: Material parameters of micromodel for identification of homogenized material prop-
erties.

fibers

Ef
11 [GPa] 177.23

Ef
22 = Ef

33 [GPa] 18.00
νf

12 = νf
13 [–] 0.22

νf
23 [–] 0.40
Gf

12 = Gf
13 [GPa] 51.15

Gf
23 =

Ef
22

2(1+νf23)
[GPa] 6.44

matrix
Em [GPa] 2.98
νm [–] 0.38
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5.5.2 Nonlinear Material Model Calibration

Micromodel for simulating the elastoplastic behavior of the composite material con-
tained isotropic elastoplastic material model assigned to elements of matrix and trans-
versely isotropic nonlinear elastic material assigned to elements of fibers.

Elastic parameters of matrix material were Em and νm and Von Mises plasticity (4.28)
was used with isotropic hardening and work hardening function (4.29) with parameters
σ0
y, PE, PA, PK and n (described in section 4.3.2).

Fibers were modeled as transversely isotropic elastic material and the Young’s modulus
in fiber direction E11 was proposed in a form of a function of strain in fiber direction (4.23)
due to nonlinear behavior of the composite along fiber direction (Fig. 2.4). The material
model of fibers was implemented to Abaqus/CAE by user’s subroutine UMAT written in
Fortran.

Parameters of the material models were obtained by optimization process similar to
the one in section 5.5.1. The residual was defined as

r2 =
∑
θ

∑
i

(
εnum

(
θ, σθi

)
− εexp

(
θ, σθi

)
εexp

max (θ)

)2

. (5.30)

The strain was evaluated for 20 values of stress σθi for given fiber orientation (Fig. 5.15)
linearly spaced on interval σθi ∈ 〈0; σexp

max (θ)〉. Identified material parameters of the model
are summarized in Tab. 5.2 and stress/strain dependencies obtained from micromodel with
the identified parameters is shown in Fig. 5.16.

Figure 5.15: Principle of r2 calculation using experimentally (green) and numerically (red)
obtained stress/strain dependencies.
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Figure 5.16: stress/strain dependencies obtained numerically (red) and experimentally (green).

Table 5.2: Material parameters of micromodel for numerical tensile test dependencies.

fibers matrix
E0

11 [GPa] 179.47 Em [GPa] 3.3
Ef

22 = Ef
33 [GPa] 16.88 νm [–] 0.33

νf
12 = νf

13 [–] 0.25 σ0
y [MPa] 23.14

νf
23 [–] 0.40 PE [GPa] 9.82
Gf

12 = Gf
13 [GPa] 55.44 PA [MPa] 119.82

Gf
23 =

Ef
22

2(1+νf23)
[GPa] 6.03 PK [MPa] 764.49

g [–] 9.93 n [–] 0.86
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5.6 Coordinate Systems

Micromodels were built in local Cartesian coordinate system (123). Axis 1 is identical
to the axis of fibers and axes 2 and 3 are perpendicular to axis 1 (Fig. 5.17). Loading
is defined in global coordinate system (xyz). If the global and local coordinate systems
are rotated, the stress vector expressing the loading state was transformed to the local
coordinate system of the micromodel (section 5.6.1).

Figure 5.17: Rotated coordinate systems.

The loaded micromodel deformed and the strain was given in the coordinate system
(123). If the global coordinate system (xyz), where loading was defined is rotated, the
strain obtained by numerical analysis in (123) was transformed back to system (xyz)
(section 5.6.2).

5.6.1 Stress Transformation

If right-handed rotation of coordinate system about one axis is considered (Fig. 5.17),
relationship between stresses defined in the two different coordinate systems is given by
the stress-transformation law

σ123 = Tσσxyz, (5.31)

where the transformation matrix Tσ depends on the axis about which the coordinate
systems are rotated.
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Rotation about axis 1

If the global coordinate system, where loading stress is defined is rotated about axis
1 of the local coordinate system (Fig. 5.17 – left), stress (123) is calculated as

σ11

σ22

σ33

τ23

τ13

τ12

 =


1 0 0 0 0 0
0 cos2 ϕ sin2 ϕ 2 sinϕ cosϕ 0 0
0 sin2 ϕ cos2 ϕ −2 sinϕ cosϕ 0 0
0 − sinϕ cosϕ sinϕ cosϕ cos2 ϕ− sin2 ϕ 0 0
0 0 0 0 cosϕ − sinϕ
0 0 0 0 sinϕ cosϕ




σxx
σyy
σzz
τyz
τxz
τxy

 . (5.32)

Rotation about axis 2

If global coordinate system is rotated about axis 2 of local coordinate system (Fig. 5.17 –
middle), stress in (123) is defined as
σ11

σ22

σ33

τ23

τ13

τ12

 =


cos2 ψ 0 sin2 ψ 0 −2 sinψ cosψ 0

0 1 0 0 0 0
sin2 ψ 0 cos2 ψ 0 2 sinψ cosψ 0

0 0 0 cosψ 0 sinψ
sinψ cosψ 0 − sinψ cosψ 0 cos2 ψ − sin2 ψ 0

0 0 0 − sinψ 0 cosψ




σxx
σyy
σzz
τyz
τxz
τxy

 . (5.33)

Rotation about axis 3

If global coordinate system is rotated about axis 3 of the local coordinate system
(Fig. 5.17 – right), stress in (123) is defined as

σ11

σ22

σ33

τ23

τ13

τ12

 =


cos2 θ sin2 θ 0 0 0 2 sin θ cos θ
sin2 θ cos2 θ 0 0 0 −2 sin θ cos θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− sin θ cos θ sin θ cos θ 0 0 0 cos2 θ − sin2 θ




σxx
σyy
σzz
τyz
τxz
τxy

 . (5.34)

5.6.2 Strain Transformation

The micromodel loaded by stress σ123 is deformed and strain ε123 is obtained. If
the global coordinate system (xyz), where loading state is defined, is rotated from local
coordinate system (123), where strain is obtained, strain in (xyz) is given by the strain-
transformation law

εxyz = [Tε]
−1 ε123, (5.35)

where the transformation matrix Tε differs for each axis of (123) about which the coor-
dinate systems are rotated.
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Rotation about axis 1

Inverse transformation of strain between coordinate systems rotated about axis 1
(Fig. 5.17 – left) is given as

εxx
εyy
εzz
γyz
γxz
γxy

 =


1 0 0 0 0 0
0 cos2 ϕ sin2 ϕ − sinϕ cosϕ 0 0
0 sin2 ϕ cos2 ϕ sinϕ cosϕ 0 0
0 2 sinϕ cosϕ −2 sinϕ cosϕ cos2 ϕ− sin2 ϕ 0 0
0 0 0 0 cosϕ sinϕ
0 0 0 0 − sinϕ cosϕ




ε11

ε22

ε33

γ23

γ13

γ12

 .
(5.36)

Rotation about axis 2

Inverse transformation of strain between coordinate systems rotated about axis 2
(Fig. 5.17 – middle) is given as

εxx
εyy
εzz
γyz
γxz
γxy

 =


cos2 ψ 0 sin2 ψ 0 sinψ cosψ 0

0 1 0 0 0 0
sin2 ψ 0 cos2 ψ 0 − sinψ cosψ 0

0 0 0 cosψ 0 − sinψ
−2 sinψ cosψ 0 2 sinψ cosψ 0 cos2 ψ − sin2 ψ 0

0 0 0 sinψ 0 cosψ




ε11

ε22

ε33

γ23

γ13

γ12

 .
(5.37)

Rotation about axis 3

Inverse transformation of strain between coordinate systems rotated about axis 3
(Fig. 5.17 – right) is given as

εxx
εyy
εzz
γyz
γxz
γxy

 =


cos2 θ sin2 θ 0 0 0 − sin θ cos θ
sin2 θ cos2 θ 0 0 0 sin θ cos θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

2 sin θ cos θ −2 sin θ cos θ 0 0 0 cos2 θ − sin2 θ




ε11

ε22

ε33

γ23

γ13

γ12

 . (5.38)

The following relationship is valid for transformation matrices

[Tε (θ)]−1 = [Tε (−θ)] = [Tσ (θ)]T . (5.39)

The relations for ϕ and ψ can be written analogically [59].
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5.7 Definition of Loading

The unit cell was loaded by stress (section 5.4) in local coordinate system (123) of the
micromodel. The load state in (123) of the micromodel was calculated from the load as
defined in global coordinate system (xyz).

5.7.1 Homogenized Material Properties

To obtain homogenized material properties of the micromodel (lamina), the unit cell
is loaded according to uniaxial stress (pure tension or pure shear) defined in global coor-
dinate system (xyz) by stresses

σ1
xyz = [1, 0, 0, 0, 0, 0]T MPa,

σ2
xyz = [0, 1, 0, 0, 0, 0]T MPa,

σ3
xyz = [0, 0, 1, 0, 0, 0]T MPa,

σ4
xyz = [0, 0, 0, 1, 0, 0]T MPa,

σ5
xyz = [0, 0, 0, 0, 1, 0]T MPa,

σ6
xyz = [0, 0, 0, 0, 0, 1]T MPa.

If local coordinate system (123) is not equal to the global coordinate system (xyz), stress
σi123 is given by corresponding equation defined in section 5.6.1 equations (5.32) – (5.34).

Loads corresponding to σi123 are applied to appropriate reference points created during
applying periodic boundary conditions described in section 5.4. The stresses σi123 are
applied one at a time in a particular loading step.

5.7.2 Tensile Tests

If the unit cell is loaded according to experimental tensile tests, stress in the global
coordinate system is given by σxyz = [σxx, 0, 0, 0, 0, 0]T, which corresponds to uniaxial
tension, where

σxx =
Fx
A
, (5.40)

Fx is the loading force and A is the specimen cross-section. The unit cell is loaded by
σ123 calculated using (5.34), where θ is the fiber orientation of the specimen (Fig. 2.1).
The unit cell is loaded in 10 steps up to strength given by averaging the experiments for
particular fiber orientation (Fig. 2.4). The corresponding loads are again applied to the
reference points.
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5.8 Acquisition of FEA Results

Results of FEA are evaluated from strain values obtained from the reference points
(section 5.4). The strains were enumerated in local coordinate system by FEA of the
micromodel and then transformed to global coordinate system and further processed to
obtain data needed for the given analysis.

5.8.1 Homogenized Material Properties

To evaluate the material properties of a lamina, the generalized Hooke’s law (4.3)
was assumed with compliance matrix S of anisotropic material (4.16). Response of the
micromodel to load defined by 6 different stresses σixyz (section 5.40) in 6 steps was
obtained by FEA. Components of strain in εi123 in local coordinate system (123) were
obtained from the displacement (first degree of freedom) value of the particular additional
reference node used for applying periodical boundary conditions (in section 5.4).

The strain was transformed to global coordinate system (xyz) by the appropriate
relationship (5.36) or (5.37) or (5.38). The homogenized material parameters of the unit
cell were obtained from particular steps of the analysis using (4.3) as

σxyz = σ1
xyz

FEA−−→ εxyz = ε1
xyz


Ex = σxx

εxx
,

νxy = − εyy
εxx
,

νxz = − εzz
εxx
,

(5.41)

σxyz = σ2
xyz

FEA−−→ εxyz = ε2
xyz


Ey = σyy

εyy
,

νyx = − εxx
εyy
,

νyz = − εzz
εyy
,

(5.42)

σxyz = σ3
xyz

FEA−−→ εxyz = ε3
xyz


Ez = σzz

εzz
,

νzx = − εxx
εzz
,

νzy = − εyy
εzz
,

(5.43)

σxyz = σ4
xyz

FEA−−→ εxyz = ε4
xyz

{
Gyz = τyz

γyz
, (5.44)

σxyz = σ5
xyz

FEA−−→ εxyz = ε5
xyz

{
Gxz = τxz

γxz
, (5.45)

σxyz = σ6
xyz

FEA−−→ εxyz = ε6
xyz

{
Gxy = τxy

γxy
. (5.46)

The additional constants µ and η defined in (4.17), (4.18) and (4.19) were not calculated.

5.8.2 Tensile Tests

Response of the micromodel to loading defined according to uniaxial stress (pure
tension) in global coordinate system (xyz) was evaluated in 10 steps. The strain ε123
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evaluated in local coordinate system of the micromodel was transformed to global coordi-
nate system (xyz), whose axis x is the direction of loading according to the experimental
tensile tests. The strain εxyz was obtained using (5.38) and the resulting stress/strain
dependencies σx (εx) were plotted as graphs.

5.9 Micromodel Sensitivity Analyses

Analyses performed for purposes of investigating the influence of geometrical or pa-
rameter variations of the micromodels on results of FEA and time consumption were
performed on unit cells with regular fiber distribution. The results of the analyses were
used to validate the chosen mesh fineness and material models for the further computa-
tions.

First, homogenized material parameters were identified for a basic unit cell and com-
pared with the parameters of a unit cell consisted of 4× 7 basic unit cells. The computa-
tional time for obtaining the homogenized parameters was compared for both unit cells.
Then a sensitivity of the identified material parameters on mesh fineness was determined.
The results of the mesh fineness analysis were used for defining the element size in all
oncoming analyses. Last, the influence of material parameters variation on FEA results
was investigated for validating the chosen material models.

5.9.1 Influence of Regular Unit Cell Size

Homogenized material properties of a basic unit cell (Fig. 5.18 – left) consisting of two
fibers and three duplicated were compared with properties of the unit cell a (Fig. 5.18 –
right) consisting of 56 fibers (and 12 duplicated) made of 4× 7 of the basic unit cell. The
basic unit cell is the smallest 3D cuboid representative volume element of the hexagonal
fiber distribution approximation.

The bigger unit cell consists of 11284 elements (7416 – fibers, 3868 – matrix) and the
basic one of 395 elements (260 – fibers, 135 – matrix). Both micromodels with linear
material models have the same fiber volume fraction Vf , same thickness a and the same
quality of mesh.

The computational time for analysis of material properties in global coordinate system
(xyz) in case of the basic unit cell was 15 times shorter in terms of FEA (1 s – basic unit
cell, 15 s – unit cell a). In terms of the whole procedure shown in Fig. 5.1 and performed
automatically by a set of scripts written in Python, the analysis time for the basic unit
cell is 9 times shorter (21 min – basic unit cell, 193 min – unit cell a). The analysis was
performed on computer with CPU type Intel Core i7 950 @ 3.07 GHz and 14 GB RAM.

The extreme values of homogenized material properties of the basic unit cell were
nearly identical to parameters of unit cell a (Tab. 5.3). Only in case of maximum value
of Young’s moduli in the plane perpendicular to fiber direction the value varied by 1.2 %
which can be considered as a numerical error.

We can state, that in the case of unit cells with regular fiber distribution, there is
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Figure 5.18: Micromodels of unit cells with 2 fibers (left) and 56 fibers (right) with regular
fiber distribution.

negligible influence of the number of basic cell repetitions on homogenized material prop-
erties of the unit cell. From the point of view of computational time, it is beneficial to
use the basic unit cell.

Table 5.3: Selected material properties of unit cell a and basic unit cell and comparison of
their extreme values of homogenized properties.

unit cell a basic unit cell
extremes extremes deviation

Eyy,zz
7.946 GPa 7.946 GPa 0.0 %
7.951 GPa 7.950 GPa 1.2 %

Gyz
2.666 GPa 2.666 GPa 0.0 %
2.667 GPa 2.667 GPa 0.0 %

νyz
0.490 0.490 0.0 %
0.491 0.491 0.0 %
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5.9.2 Influence of Mesh Fineness

Mesh fineness has considerable impact on accuracy of finite element analysis [67].
Hence the influence of mesh fineness of proposed micromodel with linear material models
on accuracy of finite element analysis solution was investigated. The sensitivity of fiber
volume fraction of the micromodel geometry on the element size was also examined. The
element size was defined by the mesh seeding parameter

lseed =
2πRf

nel

, (5.47)

where nel is the number of elements within the fiber circumference. The seeding parameter
also defines the thickness of the micromodel a = lseed.

Mesh element size has influence on the resulting fiber volume fraction Vf of the mi-
cromodel. A circle in the plane 23 defines the mesh points on the edge of fibers and
matrix. The resulting volume of mesh belonging to fiber is smaller than the volume of
circle determining the fiber-matrix interface polygon. The circle is circumscribed circle of
this polygon (Fig. 5.19).

Figure 5.19: Part of micromodel with mesh for nel = 12 elements.

The radius Rf of circles defining the fiber area in micromodel geometry was responding
to relationship (5.2) for chosen fiber volume fraction Vf = 60 %, therefore the resulting
fiber volume fraction of the micromodel was always smaller. The desired fiber volume frac-
tion Vf = 60 % is an asymptotic value of a function of prescribed fiber volume fraction of
the micromodel depending on parameter nel (5.47) defining the mesh fineness (Fig. 5.20).

Elastic material models and loading by uniaxial stress (pure tension or pure shear) is
used to determine homogenized material properties of micromodels with different mesh
fineness. Inadequate mesh element size caused significant error in the homogenized ma-
terial properties identified by finite element analysis (Fig. 5.21).

The performed analyses resulted in suitable mesh fineness defined by the number of
elements within the fiber circumference nel = 36. For mentioned value, the identified
homogenized material properties may be considered as settled (Fig. 5.21). The chosen
mesh fineness with seeding parameter given as

lseed =
2πRf

36
= 0.09
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Figure 5.20: Dependency of fiber volume ratio of the micromodel on parameter nel defining
the mesh element size (red point corresponds to nel = 36).
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Figure 5.21: Dependency of homogenized properties of the micromodel on parameter nel

defining the mesh element size (red point corresponds to nel = 36).

is a compromise between CPU time consumption and accuracy of results. The fiber
volume ratio of the micromodel with given mesh is Vf = 59.7 % (Fig. 5.18 – right). Chosen
mesh fineness was used in the following analyses in case of both types of micromodels –
the micromodel with linear material models (section 5.5.1) designed for determining the
homogenized material properties of lamina and the micromodel with non-linear material
models (section 5.5.2) designed for calculation of numerical stress-strain dependencies.

With given mesh fineness, the model mesh consisted of approximately 12 thousand
elements. The exact number of elements and types for micromodels with regular fiber
distribution (Fig. 5.5), with clustered fibers (Fig. 5.6) and fibers aligned in a stripe of
fibers (Fig. 5.7) are summarized in Tab. 5.4.

5.9.3 Sensitivity of Homogenized Properties

Micromodel with linear material models and regular fiber distribution was subjected to
analysis of influence of material parameter variation using a one-at-a-time method (OAT).
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Table 5.4: Numbers of elements and their types for micromodels with different geometries.

elements
micromodel geometry

regular cluster stripe random
Fig. 5.5 Fig. 5.6 Fig. 5.7 Fig. 5.10

all 11284 12182 12396 12217
C3D8 10788 11634 11814 11401
C3D6 496 548 582 816

The influence of material parameter variation on homogenized material properties of the
micromodel was investigated. The finite element analyses were performed with material
parameters of phases of the micromodel variating in range ±10 % of the values identified
in section 5.5.1 (Tab. 5.1). The material parameters were variated with a step of 1 %.
Values of homogenized material properties defined using the identified material parameters
of micromodel are listed in Tab. 5.5.

Table 5.5: Homogenized material properties of regular unit cell with identified material pa-
rameters.

parameter value
Exx 107.02 [GPa]
Eyy 7.95 [GPa]
Ezz 7.95 [GPa]
νxy 0.28 [–]
νxz 0.28 [–]
νyz 0.49 [–]
Gxy 4.02 [GPa]
Gxz 4.01 [GPa]
Gyz 2.67 [GPa]
νyx 0.02 [–]
νzx 0.02 [–]
νzy 0.49 [–]

Effect of the OAT material parameter variations on homogenized properties are coded
in Tab. 5.6. Code 0 designates that the homogenized parameter is not affected by the
change of given parameter. Codes +L and −L mean that the homogenized material
is linearly dependent on the material parameter with a positive or negative constant
of proportionality, respectively. Codes +Q and −Q significate that there is quadratic
dependence of the homogenized property on the parameter with a positive or negative
coefficient, respectively.

The analyzed dependencies of one at a time change of material parameter of the
proposed micromodel on the resulting homogenized material properties are depicted in
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Table 5.6: Coded effects of one-at-a-time material parameter change on homogenized material
properties (0 – no influence, L – linear dependence, Q – quadratic dependence ).

Ef
11 Ef

22 Ef
33 νf

12 νf
13 νf

23 Gf
12 Gf

13 Gf
23 Em νm

Exx L 0 0 −L −L 0 0 0 0 L Q
Eyy L L L −L L −L 0 0 L L Q
Ezz L L L L −L −L 0 0 L L Q
νxy 0 0 0 L −L 0 0 0 0 0 L
νxz 0 0 −L −L L 0 0 0 0 0 L
νyz L L −L −L −L L 0 0 −L −Q L
Gxy 0 0 0 0 0 0 L L 0 L −L
Gxz 0 0 0 0 0 0 L L 0 L −L
Gyz L L L L 0 −L 0 0 L L Q
νyx −L L L L −L −L −L 0 L L L
νzx −L L L −L L −L −L 0 L L L
νzy L −L L −L −L L 0 0 −L −Q L

Figs. 5.22 to 5.29. For easy comparison, the scales defining the homogenized properties
have the same scale for all variating material parameters. Red point in the dependence
signifies the homogenized property (Tab. 5.5) of a micromodel with identified material
parameters.
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Figure 5.22: Sensitivity of homogenized material properties to variation of Young’s modulus
of fibers Ef
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Figure 5.23: Sensitivity of homogenized material properties to variation of Young’s modulus
of fibers Ef
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Figure 5.24: Sensitivity of homogenized material properties to variation of Young’s modulus
of fibers Ef
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Figure 5.25: Sensitivity of homogenized material properties to variation of Poisson’s ratio
fibers νf
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Figure 5.26: Sensitivity of homogenized material properties to variation of Poisson’s ratio of
fibers νf
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Figure 5.27: Sensitivity of homogenized material properties to variation of Poisson’s ratio of
fibers νf
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Figure 5.28: Sensitivity of homogenized material properties to variation of shear modulus of
fibers Gf
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Figure 5.29: Sensitivity of homogenized material properties to variation of shear modulus of
fibers Gf

13.
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Figure 5.30: Sensitivity of homogenized material properties to variation of shear modulus of
fibers Gf

23.
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Figure 5.31: Sensitivity of homogenized material properties to variation of Young’s modulus
of matrix Em.
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Figure 5.32: Sensitivity of homogenized material properties to variation of Poisson’s ratio of
matrix νm.
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5.9.4 Sensitivity of Stress/Strain Dependencies

Micromodel with regular fiber distribution and nonlinear material models was sub-
jected to analysis of sensitivity of stress/strain dependencies to material parameter varia-
tion using the OAT method. The material parameters were variated in range ±10 % with
a step of 1 % of the values identified in section 5.5.2 and shown in Tab. 5.2.

Results of selected material parameter variations are depicted in Figs. 5.33 to 5.39.
Performed analysis gives the information, which stress/strain dependency in terms of fiber
orientation θ (Fig. 2.1) is influenced by variation of each material parameter.

All the material parameters have certain influence on the resulting numerically ob-
tained stress/strain dependencies. But the numerically obtained stress/strain depen-
dencies do not significantly change with a particular parameter variation, therefore the
proposed material models were assumed to be appropriately sensitive. Suitability of the
proposed material models is also proven by the fact, that only a single combination of
material parameters of the micromodel phases was found during the calibration process
(section 5.5.2). The optimization process always converged to the same minimum of the
objective function (5.30). The ability of the micromodel to simulate experimentally ob-
tained stress/strain dependencies (Fig. 5.16) also supports the claim that the material
models were proposed appropriately.
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Figure 5.33: Force/displacement dependencies for variating parameter of fiber E0
11 in case of

unit cell a.
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Figure 5.34: Force/displacement dependencies for variating parameter of fiber Ef
22 in case of

unit cell a.
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Figure 5.35: Force/displacement dependencies for variating parameter of fiber g in case of unit
cell a.
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Figure 5.36: Force/displacement dependencies for variating parameter of matrix Em in case
of unit cell a.
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Figure 5.37: Force/displacement dependencies for variating parameter of matrix νm in case of
unit cell a.
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Figure 5.38: Force/displacement dependencies for variating parameter of matrix PE in case of
unit cell a.
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Figure 5.39: Force/displacement dependencies for variating parameter of matrix σ0
y in case of

unit cell a.
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Figure 5.40: Geometries of unit cells subjected to comparison of homogenized material prop-
erties in rotated global coordinate systems (xyz).

5.10 Degree of Anisotropy Analysis

Homogenized material properties of unit cells with different geometries were identified
to express the degree of anisotropy of proposed micromodels. The homogenized properties
were calculated in rotated coordinate systems, extremes of the identified parameters in
the plane perpendicular to fibers in case of unit cells with different degrees of irregularity
were compared with values of a regular unit cell to obtain the information about isotropy
of the unit cells in the plane.

To analyze influence of the degree of irregularity of the micromodel geometry on the
homogenized material properties, parameters of two hundred unit cells were identified.
The unit cells were proposed to create as widest interval of parameter evaluating the
degree of irregularity as possible. Homogenized material parameters of the rotated unit
cells subjected to analysis of the degree of anisotropy were included to the graphs of
influence of degree of anisotropy on homogenized material properties.

5.10.1 Comparison of Regular and Irregular Cells

Goal of this analysis was to determine degree of anisotropy (section 4.1.3) of micro-
models with different geometries. Homogenized material parameters in different directions
of the composite material Υ were determined and the influence of degree of irregularity of
the unit cell geometry on the homogenized material parameters in the plane perpendicular
to fibers was investigated to verify whether it is a plane of isotropy.

Homogenized material properties were identified for 4 unit cells – 1 with regular and 3
with irregular fiber distribution (Fig. 5.40). The analyzed unit cells have different degrees
of irregularity Υ differing. The homogenized parameters were identified in global coordi-
nate system (xyz) rotated about axis of local coordinate system (123). Micromodels were
loaded in global coordinate system (xyz) rotated about (123) by angles ϕ, ψ, θ ∈ 〈0◦; 360◦〉
with a step of 5◦.

Unit cell a has a regular fiber distribution, therefore the Υ = 0. Geometry of unit cell
b was generated by the algorithm for unit cells with random fiber distribution (Fig. 5.9).
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Unit cell c was obtained by rotation of the cluster geometry (Fig. 5.6). Unit cell d is
the unit cell with stripe of fibers created in section 5.2.2 and has the highest degree of
irregularity Υ.

Table 5.7: Material properties of unit cell a.

unit cell a
mean value extremes deviation

Eyy,zz 7.9486 GPa
7.946 GPa –0.03 %
7.951 GPa 0.03 %

Gyz 2.6662 GPa
2.666 GPa –0.01 %
2.667 GPa 0.03 %

νyz 0.4905
0.490 –0.1 %
0.491 0.1 %

Υ 0.0

Table 5.8: Homogenized material properties of micromodels b, c and d and their deviation
from mean values of micromodel a (Tab. 5.7) and degrees of irregularity of the unit cells.

unit cell b unit cell c unit cell d
extremes deviation extremes deviation extremes deviation

Eyy,zz
8.025 GPa 1.0 % 7.340 GPa –7.7 % 7.052 GPa –11.3 %
8.197 GPa 3.1 % 8.923 GPa 12.3 % 10.544 GPa 32.7 %

Gyz
2.717 GPa 1.9 % 2.402 GPa –9.9 % 2.294 GPa –14.0 %
2.751 GPa 3.2 % 3.064 GPa 15.0 % 3.260 GPa 22.3 %

νyz
0.483 –1.5 % 0.437 –10.9 % 0.372 –24.2 %
0.493 0.5 % 0.536 9.3 % 0.558 13.8 %

Υ 17.84 61.69 66.94

Unidirectional composite is considered to be transversely isotropic material [27] –
Young’s modulus, shear modulus and Poisson’s ratio in plane yz rotated in 23 should be
constant. Homogenized material properties of unit cell a are depicted for global coordinate
system (xyz) rotated about axis 1 (Fig. 5.43), axis 2 (Fig. 5.41) and axis 3 (Fig. 5.42).
Unit cell a may be designated as a transversely isotropic material (section 4.1.2), since
the plane perpendicular to fiber direction is a plane of isotropy (section 4.1.1). Material
properties deviate from the mean values at most 0.1 % (Tab. 5.7). This corresponds with
common fact that a plane having at least 3-fold symmetry may be considered as a plane
of isotropy [68]. Geometry of the unit cell a with hexagonal fiber distribution has even 6
axes of symmetry (two 3-fold symmetry planes).

Homogenized material properties of the unit cells with irregular fiber distributions in
global coordinate systems (xyz) rotated about axis 1 are depicted in Fig. 5.44 for UC b,
Fig. 5.45 for UC c and Fig. 5.46 for UC d.
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Extreme values of material properties of unit cells with irregular fiber distributions
were compared to mean values of homogenized material properties of unit cell with regular
fiber distribution (Tab. 5.8). Extreme values of b deviated in range of −1.5 % to +3.2 %,
in case of c the deviations were −10.9 % to +15.0 % and in case of d −24.2 % to
+32.7 %. The extreme values of homogenized material properties in yz deviated more
with increasing degree of irregularity Υ. The micromodels with irregular fiber distribution
are not transversely isotropic.

Dependencies of homogenized material properties on angle ϕ (Fig. 5.43 to 5.46) are
all 180◦ periodic.

Examples of distribution of equivalent Von Mises stress in the four analysed unit cells
are shown in Appendix D. The contours are plotted for all types of uniaxial stress. It is
evident how the degree of irregularity influences the peak values of Von Mises stress, hence
the onset of potential non-linear response if modeled (plasticity, damage or strength). The
maximum value of equivalent stress increases with increasing value of Υ.
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Figure 5.41: Homogenized material properties of unit cell a (regular) in coordinate systems
rotated about axis 2.
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Figure 5.42: Homogenized material properties of unit cell a (regular) in coordinate systems
rotated about axis 3.
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Figure 5.43: Homogenized material properties of unit cell a (regular) in coordinate systems
rotated about axis 1.
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Figure 5.44: Homogenized material properties of unit cell b (random) in coordinate systems
rotated about axis 1.
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Figure 5.45: Homogenized material properties of unit cell c (cluster) in coordinate systems
rotated about axis 1.
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Figure 5.46: Homogenized material properties of unit cell d (stripe) in coordinate systems
rotated about axis 1.
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5.10.2 Random and Manualy Created Cells

Homogenized material properties for 200 micromodels with linear material parameters
with different degrees of irregularity were identified. The unit cells had geometries with
degrees of irregularity covering the interval Υ ∈ 〈0; 66.9〉 (Fig. 5.47).

Half of the unit cells were created by the algorithm proposed for generating geometries
of unit cells with random fiber distribution (Fig. 5.9). The empty intervals of Υ values
were filled by creating additional 100 unit cell geometries manually (e.g. by increasing
spaces between selected fibers of cluster unit cell or moving slightly chosen fibers of regular
unit cell).
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Figure 5.47: Histogram of Υ of cells created by algorithm for generating irregular geometries
and manually.

It can be assumed, that the proposed parameter Υ evaluating the degree of irregularity
of given geometry affects all identified homogenized material properties except the Young’s
modulus in fiber direction. Therefore the geometry of the micromodel cross-section has
an influence on results of FEA.

All homogenized material properties have a single value for micromodel having geom-
etry with Υ = 0. In contrast, the micromodels of highly irregular geometry near the value
of Υ = 66.9 have dispersed homogenized properties and are highly anisotropic in the yz
(23) plane. Yellow dots in Fig. 5.48 are homogenized material parameters of rotated cells
a, b, c and d (section 5.10.1).

We can state, that a material with low value of Υ, can be with small inaccuracies
modelled by a unit cell with regular fiber distribution (a). On the other hand, properties
of material with high degree of irregularity expressed by Υ can not be obtained by ap-
proximating the material geometry by a unit cell with a regular uni cell without assuming
the possible inadequacy.
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Figure 5.48: Dependency of homogenzed material properties on the value of Υ (blue - cells
generated by algorithm, red - hand made cells, yellow - cells analyzed in section 5.10.1), where
unit cell a has Υ = 0, b has Υ = 17.84, c has Υ = 61.69 and d has Υ = 66.94.
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Conclusions

The main result of this work is a quantification of influence of cross-section degree
of irregularity on overall behavior and anisotropy of a unidirectional composite. Several
steps were performed in order to obtain the analyses results.

Algorithms for automatic fiber detection from images of the composite cross-section
were built in Python. The images were obtained by scanning electron microscopy. The
identified fiber volume fractions were mostly smaller compared to fiber volume fraction
given by ground truth data.

One of the main benefits of this dissertation is a script for generating periodical geome-
tries of unit cells with random fiber distribution in the cross-section. The script enables
to obtain a periodic geometry similar to a cross-section of a unidirectional composite.

Geometry of unit cell is then built, periodical boundary conditions are prescribed and
given combination of linear or nonlinear material models is proposed for the composite
substituents of the micromodel. Material parameters of the micromodel were calibrated
according to experimental tensile tests. The loadings are chosen with respect to the
type of chosen analysis and the results of analysis evaluated, eventually compared to the
experimentally obtained data.

A parameter Υ evaluating the degree of irregularity of the cross-section geometry was
proposed. It is suitable for evaluating both, the non-periodic geometry of the real com-
posite and the periodic unit cells built for micromodel. Homogenized material parameters
of 200 proposed micromodels with geometries spread on the largest found interval of the
parameter Υ were identified. A dependence between the parameter Υ and the range of
the resulting homogenized parameters was observed. The increasing value of the degree
of irregularity evaluated by Υ leads to a wider interval of homogenized material param-
eters. The degree of irregularity of fiber distribution in the composite cross-section has
therefore considerable influence on the overall material behavior and the commonly used
approximation by regular fiber distribution can lead to significant inaccuracies in the
results.

A tool for analyses of the unidirectional carbon fiber composite considering the irreg-
ularities in its cross-section was created. It enables automatic evaluation of the composite
geometry from images. Micromodels with geometries with parameters of the identified
material geometry are automatically built and finite element analysis performed to iden-
tify overall properties or to obtain response of the micromodel in form of stress-strain
dependencies in chosen rotated coordinate system. All listed parts of the created auto-
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matic tool for performing all the steps leading to results of finite element analysis is driven
by scripts built in Python. Finite element analysis is performed in Abaqus/CAE and the
results depicted using ploTRA, library of functtions written in Python.

In addition, experimental analysis of the influence of specimens width, tab material
and length on convenient tensile test process in case of specimens loaded in fiber direc-
tion was performed. The analysis resulted in a specific combination of specimen width
and tabs material and length. Tensile tests of epoxy resin were also performed and the
observed elastoplastic behavior was considered during material models assignment when
the micromodels of the composite material were built.

All goals set in the authors dissertation theses were fulfilled in this work.
In future work the material model for matrix could be expanded by the damage of

viscoelastic behavior, which would enable more accurate simulation of the cyclic tensile
tests. Another option is to consider interface layer between fiber and matrix. It can be
modelled using cohesive contact or an additional layer of interface material could be added.
The used approach could be applied in case of modelling particle composites with the
objective of obtaining the microstructure morphology influence on material anisotropy.
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Appendix A

Tensile Test Configuration Analysis

A.1 Specimen Preparation

In previous author’s work, failures during simple tensile tests (2.2) and cycling tensile
testing ocurred in the tab area. The failures of unidirectional long-fiber composite with
high-modulus carbon fibers loaded in fiber direction were caused by detachment of tab
before the load reached the specimen reached the specimen strength or the specimen failed
inside the tabs. According to ASTM standard test method D 3039/D 3039 M [44], the
force introduction into the tested material are supposed to be reexamined (section 2.1).

Therefore, specimens (Fig. 2.2, Tab. 2.2) with failure modes marked with first character
G – grip/tab, failure areas marked with second character I – inside grip/tab and failure
locations marked with third character A – grip/tab should be eliminated. In this work
the aim was to produce the biggest possible fraction of failures in gage section (second
character G) in a sample population subjected to simple tensile tests or cyclic tensile
tests. 60 specimen configurations were proposed to find the best combination of specimen
geometries and tab materials and geometries (Tab. A.1).

Table A.1: Specimens and tabs properties.

specimen width [mm] 5, 10, 15, 20, 25
tab length [mm] 36, 56, 76
tab material aluminium, steel, tested material, glass fiber textile

First, plates for each set of tab geometry and material configuration were cut from
a composite laminate made of eight layers of unidirectional composite material Hexply
913C-HTS(12k)-5-40. Tab material of required length was glued to the plates with an
epoxy adhesive Spabond 345 with slow hardener. This adhesive combination was cho-
sen for its high shear strength (38 MPa on steel) and the possibility of curing at room
temperature [69].

The tabs were applied using a steel clamping device (Fig. A.1) developed to attain
even and a thin layer of adhesive between the tabs and composite. After a minimum of
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Figure A.1: Plates with steel clamping device and adhesive.

28 days of curing at room temperature the plates with applied tabs (examples of used
tab materials – Fig. A.2a, examples of cut lengths – Fig. A.2b) were cut by water jet into
desired specimen widths (Fig. A.4).

There were 180 specimens manufactured in this part of work – three specimens for
each combination of specimen width (5 types), tab material (4 types) and tab length (3
types) configuration. Designation of the specimens is depicted in Fig. A.3. One specimen
from each configuration group was subjected to simple tensile test and two to cyclic tensile
test. Specimens were made of material 0.66 mm thick, distance between tabs was 100
mm.

A.1.1 Simple Tensile Tests

Specimens were loaded by simple tension with speed of 2 mm/min defined for the
testing machine crosshead. The tensile force increased until the specimen failed. Data
obtained from the test – loading force, gage length (50 mm) extension and time – were
exported into *.TRA data files. Data were processed by a library of functions ploTRA in
Python. Specimens which were subjected to simple tensile tests and reached their strength
are sorted in Tabs. A.2, A.3 and A.4 according to used tab material.
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(a) Plates with all tab materials. (b) Plates with different tab lengths.

Figure A.2: Plates before specimen cutting.

Figure A.3: Designation of specimens.

Figure A.4: Specimens with 76 mm, 56 mm and 36 mm long tabs made of steel.
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Table A.2: Geometrical and material parameters of specimens subjected to simple tensile tests
with tabs made of glass fiber textile.

specimen
width Fmax σmax

[mm] [N] [MPa]

G S LT1 1 24.9 24067.3 1462.1
G S LT1 2 19.9 18823.3 1431.0
G S LT1 3 15.5 16378.4 1601.0
G S LT1 4 10.0 9605.0 1461.2
G S LT1 5 5.0 5025.2 1538.2
G S LT2 1 25.0 20138.2 1221.5
G S LT2 2 20.4 17501.9 1299.9
G S LT2 3 15.0 14675.3 1484.3
G S LT2 4 10.0 10668.1 1621.2
G S LT2 5 5.0 4802.3 1469.9
G S LT3 1 25.0 21397.9 1299.4
G S LT3 2 20.0 15399.5 1166.6
G S LT3 3 15.0 15962.1 1612.3
G S LT3 4 10.0 10500.8 1592.6
G S LT3 5 4.9 5098.3 1566.9

A.1.2 Cyclic Tensile Tests

Specimens were cyclically loaded and unloaded with test speed of 5 mm/min defined
by the testing machine crosshead. Each loading part of a cycle ended when the extension
of gage length reached a prescribed value. This value was ∆l = 0.01mm in the first
cycle and increased in every following cycle by 0.01 mm up to the specimen failure. After
reaching this value, unloading started until the force dropped to 100 N (to avoid buckling).
The loading/unloading process on a time scale is shown in Fig. A.5. Specimens which
were subjected to cyclic tensile tests and were loaded until failure are sorted in Tabs. A.5,
A.6 and A.7 according to tab material.
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Figure A.5: Data for specimen G C LT2 5 obtained from cyclic tensile test and processed by
ploTRA.
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Table A.3: Geometrical and material parameters of specimens subjected to simple tensile tests
with tabs made of aluminium.

specimen
width Fmax σmax

[mm] [N] [MPa]

A S LT1 1 24.9 25897.6 1573.3
A S LT1 2 20.0 17008.1 1285.9
A S LT1 3 15.0 11394.9 1151.0
A S LT1 4 10.0 8891.5 1348.6
A S LT1 5 4.8 3174.1 997.8
A S LT2 1 24.9 18962.5 1153.9
A S LT2 2 20.1 20111.2 1516.0
A S LT2 3 15.0 15263.8 1545.9
A S LT2 4 10.8 11795.5 1656.3
A S LT2 5 5.0 4533.1 1370.9
A S LT3 1 25.0 19280.2 1166.6
A S LT3 2 20.0 19966.5 1515.6
A S LT3 3 15.0 14536.5 1464.4
A S LT3 4 10.0 9881.0 1497.1
A S LT3 5 5.0 4754.8 1440.9

Table A.4: Geometrical and material parameters of specimens subjected to simple tensile tests
with tabs made of steel.

specimen
width Fmax σmax

[mm] [N] [MPa]

S S LT1 1 25.1 23598.5 1425.1
S S LT1 2 20.0 16248.7 1229.1
S S LT1 3 15.0 11651.7 1174.6
S S LT1 4 10.0 7632.9 1154.2
S S LT1 5 5.0 4113.5 1239.1
S S LT2 1 25.1 19186.9 1156.8
S S LT2 2 20.1 19340.0 1459.3
S S LT2 3 15.1 14400.1 1449.7
S S LT2 4 10.1 10496.0 1576.1
S S LT2 5 5.1 3877.5 1161.1
S S LT3 1 25.1 23140.6 1396.9
S S LT3 2 19.9 15409.6 1172.1
S S LT3 3 15.0 9748.5 983.4
S S LT3 4 10.1 10190.1 1531.7
S S LT3 5 4.9 3959.1 1219.2
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Table A.5: Geometrical and material parameters of specimens subjected to cyclic tensile tests
with tabs made of glass fiber textile.

specimen
width Fmax σmax

[mm] [N] [MPa]

G C LT1 1 25.0 19845.9 1205.2
G C LT1 2 25.1 23871.3 1439.3
G C LT1 3 19.9 21240.9 1615.6
G C LT1 4 19.9 18158.1 1380.4
G C LT1 5 15.0 16042.4 1621.5
G C LT1 6 15.0 14573.8 1472.1
G C LT1 7 10.0 10118.8 1531.6
G C LT1 8 10.0 9777.4 1481.4
G C LT1 9 5.0 5169.3 1572.7
G C LT1 10 5.0 5180.0 1579.2
G C LT2 1 25.0 25697.4 1560.5
G C LT2 2 25.0 18595.3 1127.4
G C LT2 3 20.1 19989.2 1508.3
G C LT2 4 20.4 14967.3 1112.7
G C LT2 5 14.9 11928.5 1210.5
G C LT2 6 15.0 14553.2 1474.0
G C LT2 7 10.0 9743.8 1482.3
G C LT2 8 10.0 9387.0 1425.1
G C LT2 9 5.0 4891.7 1494.3
G C LT2 10 5.0 5271.9 1604.0
G C LT3 1 24.9 22723.4 1382.2
G C LT3 2 24.9 23168.8 1409.8
G C LT3 3 20.0 17569.1 1330.3
G C LT3 4 20.0 16789.5 1275.1
G C LT3 5 15.0 15187.7 1536.2
G C LT3 6 15.0 14893.9 1505.4
G C LT3 7 10.0 9971.7 1510.9
G C LT3 8 10.1 10456.1 1576.4
G C LT3 9 5.0 5313.2 1610.1
G C LT3 10 4.9 4118.6 1286.7
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Table A.6: Geometrical and material parameters of specimens subjected to cyclic tensile tests
with tabs made of aluminium.

specimen
width Fmax σmax

[mm] [N] [MPa]

A C LT1 1 25.0 22820.9 1382.0
A C LT1 2 25.1 26753.8 1616.3
A C LT1 3 20.1 13333.9 1004.6
A C LT1 4 20.1 18455.2 1393.9
A C LT1 5 15.0 10174.1 1028.4
A C LT1 6 15.0 10920.2 1100.9
A C LT1 7 10.0 8293.7 1259.1
A C LT1 8 10.0 8704.2 1316.2
A C LT1 9 4.9 2786.0 865.0
A C LT1 10 4.8 1553.7 494.6
A C LT2 1 25.0 20690.6 1253.5
A C LT2 2 25.0 23539.1 1425.5
A C LT2 3 20.0 16973.5 1283.9
A C LT2 4 20.0 18687.8 1413.6
A C LT2 5 15.0 15619.1 1581.9
A C LT2 6 15.0 16497.5 1666.4
A C LT2 7 10.0 8752.2 1326.1
A C LT2 8 10.0 10191.3 1541.1
A C LT2 9 5.0 5428.3 1631.9
A C LT2 10 5.0 4865.6 1468.5
A C LT3 1 25.0 19078.4 1156.7
A C LT3 2 25.0 18730.3 1134.7
A C LT3 3 20.1 15208.4 1149.3
A C LT3 4 20.0 17342.2 1311.8
A C LT3 5 15.0 11083.6 1119.6
A C LT3 6 15.0 10690.7 1077.7
A C LT3 7 10.0 7453.1 1129.3
A C LT3 8 10.0 8449.5 1276.4
A C LT3 9 5.0 5004.5 1504.5
A C LT3 10 5.0 4536.3 1369.2

104



Table A.7: Geometrical and material parameters of specimens subjected to cyclic tensile tests
with tabs made of steel.

specimen
width Fmax σmax

[mm] [N] [MPa]

S C LT1 1 25.1 20137.6 1216.1
S C LT1 2 25.0 22698.3 1374.0
S C LT1 3 20.1 17754.4 1340.3
S C LT1 4 20.1 16827.7 1266.0
S C LT1 5 15.0 11811.2 1193.1
S C LT1 6 15.0 12250.7 1234.1
S C LT1 7 10.0 8815.8 1330.4
S C LT1 8 10.1 7183.7 1083.0
S C LT1 9 5.0 3966.9 1199.7
S C LT1 10 5.0 4539.8 1375.7
S C LT2 1 25.1 24749.8 1491.6
S C LT2 2 25.2 19599.5 1179.8
S C LT2 3 20.1 18445.1 1391.8
S C LT2 4 20.2 17387.7 1307.4
S C LT2 5 15.1 15489.3 1557.3
S C LT2 6 15.1 13485.0 1355.8
S C LT2 7 10.1 9262.1 1390.8
S C LT2 8 10.1 9811.2 1479.2
S C LT2 9 5.1 4586.5 1370.6
S C LT2 10 5.1 4603.9 1373.1
S C LT3 1 25.1 19348.5 1169.8
S C LT3 2 25.5 20171.7 1197.6
S C LT3 3 19.9 17810.4 1359.5
S C LT3 4 19.9 17921.1 1363.1
S C LT3 5 15.1 12734.6 1281.2
S C LT3 6 15.0 13024.1 1314.7
S C LT3 7 10.1 9864.2 1481.2
S C LT3 8 10.1 9156.6 1380.5
S C LT3 9 5.0 3830.4 1153.8
S C LT3 10 5.0 4301.8 1298.4
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A.2 Configuration Analysis

A.2.1 The Failure Mode Aspect

All the tested specimens were captured right after end of the test in the test machine
by a digital camera and failure modes were subsequently determined from the obtained
images. Specimens, which reached their strength failed by longitudinal splitting failure
mode – L (Fig. A.6a) or explosive failure mode – X (Fig. A.6b), or the combination of the
explosive and longitudinal splitting modes – M (Fig. A.6c) ocurred (Fig. 2.2). The initial
failure area was impossible to determine with the available technologies, due to the fast
sequence of failures. Record of the test by a camera with high frequency image capture
would be necessary to determine the initial failure. While the cracking of specimens was
brittle and the initial failure caused further failures, the failure was mostly multiple –
M. In case of pure longitudinal splitting mode, the specimens failed mainly in the gage
area – G.

From the failure mode aspect, the specimens configurations were equal. Failures be-
tween tabs did not occur and no tabs were detached, therefore the chosen adhesive may
be considered as suitable for the used materials and test type.

A.2.2 The Specimen Manufacturing Aspect

The 5 mm wide specimens are excessively sensitive to vibrations when cutted by water
jet. The tables were vibrating during the cutting process and these specimens have visibly
uneven edges.

During the manufacturing process, manipulation with the plates (Fig. A.2a) was un-
comfortable for the manufacturer due to the weight of the steel used for the tabs. Fracture
of one plate with steel tabs ocurred during application of the steel tabs. Steel tabs of
thickness 1.6 mm are too heavy for the brittle and 0.6 mm thin unidirectional composite
material.

A.2.3 The Testing Procedure Aspect

During the loading process, tabs made of material under test (carbon/epoxy unidi-
rectional long-fiber composite with fibers oriented in the loading direction) were sliding
between the grips, therefore the loading force did not exceed 1700 N. The tabs made of
material under test are in this case undesirable for used grips.

During the loading process of specimens with aluminium tabs, displacement and force
values unpredictably dropped (Fig. A.7). This may be caused by slipping between the
grips and grip holder when the 1.5 mm thick aluminium tab might have deformed under
the clamping pressure.
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(a) Longitudinal failure mode. (b) Explosive failure mode. (c) Mixed failure mode.

Figure A.6: Three types of typical failures for the tested specimens.
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Figure A.7: Displacement-time, force-time and stress-time dependencies for specimens with
aluminium tabs and simple tensile tests (A S LT3 2).
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A.2.4 The Strength Aspect

The strengths of specimens subjected to simple tensile tests (Tabs. A.2, A.3 and
A.4) and cyclic tensile tests (Tabs. A.5, A.6 and A.7) were averaged in groups with the
same tab material (Tab. A.8), tab lengths (Tab. A.9) and specimen widths (Tab. A.10).
Strength arithmetic means σmax and strength medians σ̃max were determined for each
group of specimens for simple tensile tests and cyclic tensile tests.

The average values of strengths of the specimen groups in this analysis are neither
sensitive to the type of test (simple tensile test vs. cyclic tensile test) nor to the definition
of average value (arithmetic mean σmax vs. median σ̃max). The highest strengths were
reached for 10 mm wide specimen with glass fiber laminate tabs of length 56 mm.

Table A.8: Strengths of specimen groups with same tab materials.

tab material
simple tensile tests cyclic tensile tests

σmax [MPa] σ̃max [MPa] σmax [MPa] σ̃max [MPa]
aluminium 1378.9 1440.9 1276.1 1297.9
steel 1288.6 1229.1 1317.0 1335.4
glass fiber laminate 1455.2 1469.9 1444.0 1481.9

Table A.9: Strengths of groups of specimens with same tab lengths.

tab length [mm]
simple tensile tests cyclic tensile tests

σmax [MPa] σ̃max [MPa] σmax [MPa] σ̃max [MPa]
36 1338.1 1348.6 1299.1 1335.4
56 1409.5 1459.3 1416.3 1425.3
76 1375.0 1440.9 1321.7 1313.3

Table A.10: Strengths of groups of specimens with same width.

specimen width [mm]
simple tensile tests cyclic tensile tests

σmax [MPa] σ̃max [MPa] σmax [MPa] σ̃max [MPa]
5 1333.8 1370.9 1347.3 1374.4

10 1493.2 1531.7 1388.9 1408.0
15 1385.2 1464.4 1351.7 1335.3
20 1341.7 1299.9 1322.6 1335.3
25 1317.3 1299.4 1317.9 1313.8
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Figure A.8: Force/displacement and stress/strain dependencies for specimens with glass fiber
textile tabs and simple tensile tests.
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Figure A.9: Force/displacement and stress/strain dependencies for specimens with glass fiber
textile tabs and cyclic tensile tests.
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Figure A.10: Force/displacement and stress/strain dependencies for specimens with 56 mm
long tabs and simple tensile tests.
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Figure A.11: Force/displacement and stress-train dependencies for specimens with 56 mm
long tabs and cyclic tensile tests.
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Figure A.12: Force/displacement and stress/strain dependencies for 10 mm wide specimens
and simple tensile tests.
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Figure A.13: Force/displacement and stress/strain dependencies for 10 mm wide specimens
cyclic tensile tests.
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Appendix B

SEM Images
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(a) Scheme of image positions in the cross-section of composite specimen number 1 with mag-
nification 200.

(b) Part 1, magnified 1000× (c) Part 2, magnified 1000× (d) Part 3, magnified 1000×

(e) Part 1, magnified 4000× (f) Part 2, magnified 4000× (g) Part 3, magnified 4000×

Figure B.1: Images of cross-section of specimen number 1.
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(a) Scheme of image positions in the cross-section of composite specimen number 2 with mag-
nification 200.

(b) Part 1, magnified 1000× (c) Part 2, magnified 1000× (d) Part 3, magnified 1000×

(e) Part 1, magnified 4000× (f) Part 2, magnified 4000× (g) Part 3, magnified 4000×

Figure B.2: Images of cross-section of specimen number 2.
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(a) Scheme of image positions in the cross-section of composite specimen number 3 with mag-
nification 150.

(b) Part 1, magnified 1000× (c) Part 2, magnified 1000× (d) Part 3, magnified 1000×

(e) Part 1, magnified 4000× (f) Part 2, magnified 4000× (g) Part 3, magnified 4000×

Figure B.3: Images of cross-section of specimen number 3.
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(a) Scheme of image positions in the cross-section of composite specimen number 4 with mag-
nification 70.

(b) Part 1, magnified 1000× (c) Part 2, magnified 1000× (d) Part 3, magnified 1000×

(e) Part 1, magnified 4000× (f) Part 2, magnified 4000× (g) Part 3, magnified 4000×

Figure B.4: Images of cross-section of specimen number 4.
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(a) Scheme of image positions in the cross-section of composite specimen number 5 with mag-
nification 70.

(b) Part 1, magnified 1000× (c) Part 2, magnified 1000× (d) Part 3, magnified 1000×

(e) Part 1, magnified 4000× (f) Part 2, magnified 4000× (g) Part 3, magnified 4000×

Figure B.5: Images of cross-section of specimen number 5.

121



Appendix C

Epoxy

To obtain experimental data for further improvement of material models of car-
bon/epoxy composite (section 5.5), uniaxial cyclic static tests are performed on low-
molecular weight epoxy resin CHS-EPOXY 520 hardened with CHS-P 11. The specimen
were prepared and tests performed according to ASTM standard D638-10. Experimen-
tal data were processed using Python and function library ploTRA. A one-dimensional
elasto-plastic model with damage was proposed and the corresponding material properties
identified using optiSLang.

C.1 Experiments

C.1.1 Specimen Manufacturing

Specimens were manufactured according to standard test method ASTM D638-10:
Tensile Properties of Plastics [70]. The low molecular epoxy resin CHS-EPOXY 520 was
mixed with hardener CHS-P 11 in the weight ratio given by manufacturer – 100:11. Air
bubbles, which ocurred in the viscous mixture when blending the two components, were
removed by placing the liquid mixture (resin) for 10 minutes into a vacuum desiccator.
The presence of the air bubbles is highly undesirable, since they are stress concentrators
in the material and they reduce the effective cross-section.

The resin free from bubbles was poured into a perspex three-part mould. The mould
consisted of two plates and a spacer, which defined the resulting epoxy tab thickness. All
three parts of mould were coated by 4 layers of a separator and bolted together.

Epoxy plate cured in the form at room temperature was detached from the form parts
approximately 10 hours after mixing. Rectangular epoxy plates had dimensions approx-
imately 245 × 135 mm, and its thickness of 3.94 mm was given by the chosen central
(distance) part of mould. Bone-shaped specimens (Fig. C.1) were cut with water jet after
another week of curing at room temperature. The process of specimen manufacturing,
such as the chosen material, separator, curing duration, mould type, air bubbles vacu-
uing, etc. was discussed with Ing. Jan Klesa Ph.D. from the Department of Aerospace
Engineering, CTU.
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Figure C.1: Dimensions of epoxy specimens.

Figure C.2: Cracked specimen.

C.1.2 Cyclic Tensile Tests

Specimens were divided into 3 groups according to their curing time:

• 7 days – red color in graphs

• 152 days – green color in graphs

• 255 days – blue color in graphs

The experimental tests were performed on test machine ZWICK ROELL/Z050 with
clip-on biaxial extensometer BTC-EXACLBI.001. The specimens were subjected to uni-
axial tensile cyclic loading at room temperature. Unloading in each cycle started when
gage area elongation exceeded a multiple of ∆l = 0.02 mm. Loading in the corresponding
cycle started when tensile force decreased under 30 % of force at the start of the unloading.

C.2 Effects of Curing Time

Specimens were subjected to the cyclic tensile loading until failure. The fracture was
always brittle and no necking ocurred. Image of a cracked specimen with rupture is shown
in Fig. C.2.

Experimental data obtained from the cyclic tensile tests are depicted in form of stress-
strain dependencies in Fig. C.3. The data were further processed using Python. Max-
ima− Pmax, and minima− Pmin of the loading cycles and the cross points− Pint (Fig. C.4)
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Figure C.3: Experimentally obtained stress-strain dependencies for 7 days (red), 152 days
(green) and 255 days (blue) cured epoxy.
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Figure C.4: One cycle of the stree-strain dependency and principle of Young’s modulus iden-
tification.

were found. Tangents of the cycles, which can be considered as Young’s moduli E, are
identified as the slope of a line connecting given cycle intersection and minimum points
(Pint and Pmin).

The epoxy showed damage behavior, since the value of Young’s modulus E was a
decreasing function of the reached maximal strain. Young’s modulus is depicted as a
function of strain ε (Fig. C.5 – left), corresponding to the maximum point Pmax of the
particular cycle. In case of the specimens cured for 152 and 255 days, the values of the
cycle tangents slightly increased just before failure.

The material also showed plastic behavior, dependency of strain-plastic strain is shown
in Fig. C.5 – right. The plastic strain εp was evaluated for each cycle as intersection of
the cycle tangent (line through points Pint and Pmin) and the strain axis (σ = 0). The
strain values ε are the strains at the Pmax points, where unloading for each cycle begins.

Model for elasto-plastic and damage behavior of the epoxy resin to simulate one di-
mensional pure tensile, compressive or shear test was proposed in Python. The proposed
material model with identified properties is described in authors work [7].

The experimentally obtained stress-strain dependencies show, that curing of the tested
epoxy significantly changes the material behavior. The specimens from material with
longer curing time had higher values of achieved maximum stresses σmax and maximum
strains εmax. Averaged data within the groups of tested specimens are summarized in
Tab. C.1.

In case of curing of the tested epoxy at room temperature, we can assume, that the
material undergoes significant molecular changes effecting the overall behavior of the resin.
The longer cured material withstands more cycles, it becomes strengthened and ductility
increases.
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Figure C.5: Young’s modulus-strain(left) and plastic strain-strain (right) dependencies of
7 days (red), 152 days (green) and 255 days (blue) cured epoxy.

Table C.1: Averaged data for specimens with different curing times.

curing time number of max. stress max. strain achieved
t [days] specimens σmax [MPa] εmax [%] cycles

7 10 40.50 1.20 14
152 5 59.37 2.77 32
255 3 63.28 3.26 40
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Appendix D

Influence of Irregularity

(a) σ123 = [1, 0, 0, 0, 0, 0]T MPa (b) σ123 = [0, 1, 0, 0, 0, 0]T MPa

Figure D.1: Equivalent von Mises stress on matrix elements of regular unit cell a loaded by
uniaxial stress.
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(a) σ123 = [0, 0, 1, 0, 0, 0]T MPa (b) σ123 = [0, 0, 0, 1, 0, 0]T MPa

(c) σ123 = [0, 0, 0, 0, 1, 0]T MPa

(d) σ123 = [0, 0, 0, 0, 0, 1]T MPa

Figure D.2: Equivalent von Mises stress on matrix elements of regular unit cell a loaded by
uniaxial stress.
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(a) σ123 = [1, 0, 0, 0, 0, 0]T MPa (b) σ123 = [0, 1, 0, 0, 0, 0]T MPa

(c) σ123 = [0, 0, 1, 0, 0, 0]T MPa (d) σ123 = [0, 0, 0, 1, 0, 0]T MPa

Figure D.3: Equivalent von Mises stress on matrix elements of random unit cell b loaded by
uniaxial stress.
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(a) σ123 = [0, 0, 0, 0, 1, 0]T MPa
(b) σ123 = [0, 0, 0, 0, 0, 1]T MPa

Figure D.4: Equivalent von Mises stress on matrix elements of random unit cell b loaded by
uniaxial stress.

(a) σ123 = [1, 0, 0, 0, 0, 0]T MPa (b) σ123 = [0, 1, 0, 0, 0, 0]T MPa

Figure D.5: Equivalent von Mises stress on matrix elements of cluster unit cell c loaded by
uniaxial stress.
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(a) σ123 = [0, 0, 1, 0, 0, 0]T MPa (b) σ123 = [0, 0, 0, 1, 0, 0]T MPa

(c) σ123 = [0, 0, 0, 0, 1, 0]T MPa
(d) σ123 = [0, 0, 0, 0, 0, 1]T MPa

Figure D.6: Equivalent von Mises stress on matrix elements of cluster unit cell c loaded by
uniaxial stress.
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(a) σ123 = [1, 0, 0, 0, 0, 0]T MPa
(b) σ123 = [0, 1, 0, 0, 0, 0]T MPa

(c) σ123 = [0, 0, 1, 0, 0, 0]T MPa (d) σ123 = [0, 0, 0, 1, 0, 0]T MPa

Figure D.7: Equivalent von Mises stress on matrix elements of stripe unit cell d loaded by
uniaxial stress.
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(a) σ123 = [0, 0, 0, 0, 1, 0]T MPa

(b) σ123 = [0, 0, 0, 0, 0, 1]T MPa

Figure D.8: Equivalent von Mises stress on matrix elements of stripe unit cell c loaded by
uniaxial stress.
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[6] Kroupa, T., Srbová, H., Zemč́ık, R. Micromechanical model of substituents of unidi-
rectional fiber reinforced composite and its response to tensile cyclic loading. Materiali
in Tehnologije, 46(1):99–102, 2015. ISSN: 1580-2949.

[7] Kroupa, T., Srbová, H., Klesa, J. One Dimensional Elasto-plastic Material Model
with Damage for Quick Identification of Material Properties. Materiali in Tehnologije,
51(2), April 2017. ISSN 1580-2949.

134



References

[8] Pinho-da-Cruz, J., Oliveira, J. A., Teixeira-Dias, F. Asymptotic homogenisation
in linear elasticity. Part I: Mathematical formulation and finite element modelling.
Computational MAterials Science, 45:1073–1080, 2009. ISSN: 0927-0256.

[9] Bensoussan, A., Lions J. L., Papanicolaou, G. Asymptotic analysis for periodic
structures. American Mathematical Soc., New York, October 26 2011. ISBN-10:
0821853244.

[10] Hassani, B., Hinton, E. Homogenization and Structural Topology. Springer, London,
1998. ISBN-10: 3540762116.

[11] Flodén , L. G-convergence and homogenization of some sequeces of monotone dif-
ferential operators. Mid Sweden University Doctoral Thesis 70, 2009. ISBN 978-91-
86073-36-7.

[12] Ansini, N., Maso, G. D., Zeppieri, C. I. Γ-convergence and H-convergence of linear
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[15] Popov, V. L., Kröner, E. On the role of scaling in the theory of elastoplasticity.
Physical Mesomechanics, 1:103–112, 1998. ISSN: 1029-9599.
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