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Školitel: Ing. Roman Mouček, Ph.D.
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Abstract

Currently, there is no common data standard in the experimental electroencephalography/event-
related potential (EEG/ERP) domain. Existing standardization efforts are mainly based on
the conventional approaches and use generic data formats and containers (e.g. HDF5, odML)
popular in the research community. This work draws on the medical/health characteristics of
EEG/ERP data and investigates the feasibility of applying openEHR (an archetype-based
approach for electronic health records representation) to modelling data stored in EEGBase,
a portal for experimental EEG/ERP data management. The work evaluates re-usage of exist-
ing openEHR archetypes and proposes a set of new archetypes together with the openEHR
templates covering the domain. The main goals of the work are to (i) link existing EEGBase
data/metadata and openEHR archetype structures; (ii) propose a new openEHR archetype
set describing the EEG/ERP domain since this set of archetypes currently does not exist in
public repositories.

Apart from that, the work describes common data models (e.g. relational, object-oriented)
and compares their expressive power in order to (i) determine the elements, which these
models have in common; (ii) build a data model hierarchy according to their expressive power.
The work uses the proposed archetypes and their reference models as semantic schemata
to derive a specific data model for each level of the hierarchy. Finally, the work describes
a newly proposed personal electronic health records system for research purposes, which
serves as a first use-case of obtained results.



Abstrakt

V současné době neexistuje obecný datový standard v oblasti experimentální elektroencefalo-
grafie a metody evokovaných potenciálů (EEG/ERP). Stávající snahy o vytvoření takového
standardu jsou z většiny založeny na konvenčních přístupech a využívají generické datové
formáty a kontejnery (např. HDF5, odML) oblíbené ve vědecké komunitě. Tato práce
využívá medicínských/zdravotních charakteristik EEG/ERP dat a prozkoumává vhodnost
použití openEHR (způsob reprezentace elektronických zdravotních záznamů založených
na archetypech) k modelování dat uložených v EEGBase, portálu pro zprávu experimentál-
ních EEG/ERP dat. Práce vyhodnocuje opětovné použití existujících openEHR archetypů
a navrhuje sadu nových archetypů spolu s openEHR šablonami pokrývajícími danou oblast.
Hlavními cíli práce jsou (i) propojení existujících EEGBase dat/metadat se strukturami
archetypů; (ii) návrh nových archetypů popisujících EEG/ERP doménu, jelikož tyto v
současné době neexistují ve veřejných repozitářích.

Krom výše uvedeného, práce popisuje stávající běžné datové modely (např. relační,
objektově orientovaný) a porovnává jejich vyjadřovací sílu za účelem (i) vymezení prvků,
které mají tyto modely společné; (ii) vystavění hierarchie datových modelů v závislosti na
jejich vyjadřovací síle. Práce využívá navržených archetypů a jejich referenčních modelů
jako sémantických schémat k odvození specifických datových modelů pro jednotlivé vrstvy
hierarchie. V závěru práce popisuje nově navržený systém osobní zdravotní knížky pro
výzkumné účely, který slouží jako první případ užití získaných výsledků.
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Chapter 1

Introduction

The domain of neuroscience is currently one of the most progressive fields in health care
research (as witnessed in, e.g., the Horizon 2020 Societal Challenges list). There has been
a rapid expanse in electroencephalography (EEG)/event-related potential (ERP) data re-
sources, e.g. data from clinical EEG/ERPs, experimental EEG/ERPs, neuro-rehabilitations,
assistive systems based on EEG/ERPs, household BCI (Brain-Computer Interface) devices;
necessitating the need for stricter requirements on the data formats and storages used. Never-
theless, there is still paucity of matured data formats and standards in the experimental and
clinical EEG spheres. Moreover, many existing software solutions have been designed only
for internal purposes of the user group in which the software solution has been developed.

The EEGBase portal [33] (developed at the University of West Bohemia) is a software tool
focused on annotation, storage, management and sharing of EEG/ERP experiments. EEGBase
partially implements a selection of existing standardization efforts and uses semantic web
technologies. Its uses are most applicable to EEG/ERP settings. This close relation imposes
a limitation not only in the case of stored experiment types but also for stored experiment
metadata which could be considered as stand-alone experiments (stand-alone medical reports).
The main objective of this work is to utilize EEG/ERP health data characteristics to extend
the interoperability potential of neuroinformatics databases like EEGBase.

The vast majority of advanced health institutions archive medical health records elec-
tronically. However, these electronic health records (EHR) are very often unstructured and
therefore require a significant effort to facilitate machine readability, which consequently
hinders use and exchange of such records between institutions. The standardization of
communication protocols and structured data models describing health domains increases
overall data interoperability, unambiguity and readiness for further analysis. Since these
abilities are important for most, if not all, forms of health data, a standardized data structure
is considered to be essential for its usability.
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The standards supporting health data interoperability are based on (i) the explicit de-
scription of data meaning, (ii) terminology and structure separation, and (iii) controlled
vocabularies integration. The openEHR [34] approach provides a multi-model, single source
EHR framework. openEHR data models (archetypes) stored in the openEHR CKM (Clinical
Knowledge Manager) public repository have direct application in clinical and non-clinical
medical data. While the CKM contains hundreds of archetypes describing many medical
domains (suitable for metadata), it lacks one for EEG, hence a set of new archetypes covering
the EEG (EEG/ERP respectively) domain is proposed in this work. These archetypes are de-
rived from the EEGBase data/metadata structure as well as from other common well-known
EEG data formats. The terminology is mainly based on a controlled vocabulary taken from
the odML terminology for electrophysiology.

openEHR archetypes by design are technologically independent constraint-based mod-
els. This work also considers generic, technologically dependent, data modelling concepts
including relational model, object-oriented model, RDF, etc. Expressive powers of these
concepts are evaluated, compared against each other and organized into a hierarchy. Then,
a domain specific data model of each level of the hierarchy is proposed according to created
archetypes.

The work is organized as follows: The context is described in part II: Work Context,
Materials and Methods. Description and comparison of existing common data formats,
models and concepts are described in part III: Data Modelling. Part IV: Electronic Health
Records describes the application of EEG/ERP data health characteristics to development of
a new set of openEHR archetypes. Finally, part V: Results evaluates these archetypes against
selected criteria and EEGBase data, describes their benefits and application within recently
proposed experimental EHR system, specifies their position in the semantic hierarchy, and
discusses their application in clinical sphere.
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Chapter 2

Electroencephalography / Event-Related
Potentials

To ease a better understanding of the characteristics of the electrophysiological data, which
is examined in this work, a brief domain background is provided in this chapter, describing
how the neuronal synapses emerging and what event-related potentials are and how they
can be evoked. The chapter concludes by providing a high level overview of the laboratory
experimental set-up.

2.1 Brain activity, neurons, synapses

The human nervous system is divided into two parts – Central Nervous System (CNS)
and Peripheral Nervous System (PNS). The CNS contains brain and spinal cord; The PNS
contains all other remaining parts (i.e. nerves and ganglia outside the spinal cord and the
brain). The majority of nervous system is composed of neurons, these are electrically
excitable cells consisting of a cell body, an axon, and network of dendrites (Figure 2.1).
Enzymes and genetic material are contained in the cell body. An electrical impulse travels
along the axon and activates neuron transmitters that stimulate dendrites of the neighbour
neuron at synapses. Neurons have two states: (i) receiving the signal - charging and (ii)
sending the signal - discharging. Overall electrical charge of the human brain can be detected
and measured non-invasively via electrodes placed on the scalp in a process known as
electroencephalography (EEG).
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2.2 Electroencephalography

During the electroencephalography experiment, pairs of electrodes are attached to the scalp.
Then, a voltage difference between paired electrodes, the potential, is measured and recorded
over time and brain excitation movement can be observed. A rhythmic fluctuation of this
potential difference is observable as series of peaks in the brain wave signal. An output of
the measurement is represented as a set of waveforms; i.e. one waveform for each channel
(pair of electrodes) [8].

The non-invasiveness of the EEG facilitates its use, however obtained data are very rough.
Skull bones thickness, a distance between electrode and an active part of the brain adds
a significant volume of noise into the output data. The brain signal is muffled on the skull
surface and as the electrodes are not positioned directly in the excitation epicentre, they are
scanning a signals from wider area of brain at once. For these reasons the signal must first be
processed in order to be analysed for research.

EEG measurement time range could variate from milliseconds (e.g. brain reaction on an
evoked single event) to days and more (e.g. long-term epilepsy monitoring; brain activity
monitoring in patients in comma). In our neuroinformatics lab we are focusing only on
short-term recordings, specifically on the Event-Related Potentials (ERP) method.

Figure 2.1 A structure of the typical mammalian neurons [42, Figure 21-1]
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2.3 Event-Related Potentials

ERP1 method is based on an evocation of cognitive or motor event and subsequent observation
of the brain response for the purpose of determining a brain waveform pattern - the cognitive
component. The history of the ERP method begins in the mid 1930s, but the modern ERP
and cognitive component discovery came thirty years later. In 1964, neurophysiologist Grey
Walter discovered the first cognitive component, the Cognitive Negative Variation (CNV),
that is evoked approximately half a second before the subjects realize the movement that
they are supposed to do. More recently, significant components have been discovered and
a labelling system reflecting their characteristics is being used to mark them. The components
are marked by letters according to the electrical polarity: P (positive), N (negative) and C
(polarity is not stable). The letter is followed by a number specifying a delay between
stimulus and occurred component (e.g. N1 – negative component emerges 100 milliseconds
after the stimulus; P3 – positive component emerges 300 milliseconds after the stimulus).
Each component has a relationship to a specific stimulus type, e.g., acoustic or visual. Stimuli
components could be evoked by more then one stimulus type (e.g. P1 is evoked by an acoustic
as well as a visual stimulus). Two frequently discussed components and also components
that we are focused on in our neuroinformatics group are N2 and P3. N2 is a negative
component emerging approximately 200 milliseconds after visual and/or auditory stimulus.
A measurement protocol is focused on frequently repeated non-target stimulus (N2a) and
non-frequently repeated target stimulus. A component emerging after the target stimulus
means that the brain reacts on a mismatch in the pattern of frequently used stimuli. P3
is a positive component emerging 300 milliseconds after auditory or visual stimuli. The
component is evoked after an unexpected event (type P3a) or an expected, but not a frequent
event (type P3b). A full list of particular components and their detailed descriptions can be
found in, e.g., [43].

EEG data processing for the purpose of ERP examination consists of the following:

• Measured sample (single waveform) is divided into epochs, i.e. periods delimited by
a short time before and after the time-point the stimulus had been occurred

• More epochs extracted from various resource channels (paired electrodes), but captur-
ing same event, are averaged

• Various filters for reducing signal artefacts (e.g. subject’s blinking) are applied on
averaged epochs

• Filters for reducing noise in the signal are reduced
1Sometimes also Evoked Response Potential
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2.4 EEG / ERP Laboratory

The fact that EEG/ERP measurement is (i) non-invasive and (ii) realizable with a relatively
low cost equipment gives researches an opportunity to perform EEG/ERP experiments in the
environment of small experimental laboratories, a typical set-up is shown in Figure 2.2. Our
neuroinformatics laboratory specialises in the analysis of EEG/ERP experiments and was
established at the University of West Bohemia under the Department of Computer Science
and Engineering (http://neuroinformatics.kiv.zcu.cz/) in 2003. Currently, our laboratory is
equipped with a soundproof cabin (to screen out the measured subject from environmental
disturbing effects), BrainProducts GmhB software and hardware equipment (32 channels
EEG recorder BrainAmp, BrainVision recording software), own solution of hardware stimu-
lator, PresTi Presentation software for scripting experimental (stimuli) protocols, computer
for playing experimental protocols, computer for recording EEG data, USB adapter for
synchronizing protocol with recording, electrode EEG caps, and real-size car simulator.

Figure 2.2 Basic laboratory set-up utilized in the experimental EEG/ERP measurements [49]



Chapter 3

Neuroinformatics

Neuroinformatics is a scientific field combining neuroscience and informatics that aims to
answer complex questions, which usually require sophisticated mathematical apparatus from
data aggregated from diverse resources.

3.1 Aims of neuroinformatics

Answering complex neuroscience questions such as how to cure and prevent brain diseases
and dysfunctions like Asperger syndrome, anorexia, epilepsy, Parkinson’s disease, etc. re-
quires deep knowledge from various neuroscience sub-fields. However, those sub-fields (e.g.
moleculular neuroscience, neuroimmunology/neurovirology, neuropharmacology, neuroge-
netics, developmental neuroscience, cellular neuroscience etc.) are largely siloed, mutually
independent and an interaction between researchers from different sub-fields is often in-
sufficient. A common characteristic for all sub-fields is gathering a significant amount of
data. This data is stored in diverse formats from domain-specific terminologies across the
sub-fields. This fact negatively influences data interoperability and sharing abilities and is
detrimental to the elimination of notional gaps between sub-fields. The neuroinformatics do-
main is supposed to provide at least a partial solution to mentioned problems. Neuroscientist
Dr Marja-Leena Linne characterises neuroinformatics in her lectures as an "Integration of
information across all levels and scales of nervous system – from genes to behaviour.".

A development in the neuroinformatics domain has three specializations and an intersec-
tion of these specializations represents the aim of neuroinformatics (Figure 3.1):

• Development of tools and databases for management and sharing data

• Development of tools for analysis and modelling (signal processing)
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• Development of computational models of nervous system

Figure 3.1 Neuroinformatics development directions (https://www.incf.org/about)

This work presented in this thesis is positioned in the first development branch, i.e. data
management and sharing.

3.2 International Neuroinformatics Coordinating Facility

To coordinate the development in various neuroinformatics centres on the international level,
International Neuroinformatics Coordinating Facility (INCF) has been established in 2005 in
Stockholm. During the 1st INCF Workshop on Sustainability of Neuroscience Databases
[30] the following recommendations at the INCF were proposed:

1. establishes a moderated web-based infrastructure with specific issues for discussion by
the community

2. engages peer-reviewed journals in the process of identifying domain-specific minimal
information recommendations for the sharing and sustainability of neuroscience data

3. identifies specific types of data/databases and a set of researchers who are generating
and disseminating these data to form a special interest group that will develop the
minimal information standards for that data/database

4. identifies specific types of models/tools and a set of researchers who are generating
and disseminating these theoretical/computational models to form a special interest
group that will develop the minimal information standards (in appropriate exchange
formats, I/O, GUIs, etc.) for those models/tools
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5. investigates existing neuroscience data/tools/models/clearinghouses and examines how
they can engage in coordinating dissemination activities

6. examines how to serve as an accreditation body

7. can facilitate grass-roots recognition of need for data/database sustainability

This work contributes to points three and five.

3.3 Neuroinformatics data and metadata

There are two main data management challenges common to any domain:

• How to store the data?

• Where to store the data?

The first question is mainly related to a logical structure of the data and data annotation by
metadata. The second question is related to the less abstract physical structure and more the
technological solution.

Even though both challenges are partially dependent and they have to respect each other,
there is an effort to separate them as possible. Format developers are working to develop
a universal data container for the content of any structure, whilst data scientists are proposing
suitable data structure without deep consideration of further technical implementation. This
work is focused mainly on the first challenge, however, it discusses also the influences on the
second one.

3.3.1 Data vs metadata

Common categories of metadata are structural and descriptive (sometimes also administrative,
e.g., creation date, file type [53]). Structural metadata describes the structure in which data is
stored (typically a table header) and descriptive metadata describes (or identifies) the nature
and origin of data. In the case of EEG recordings, we can consider raw brain waveforms
as data. The structure in which this data is stored (commonly binary data representation)
is described by structural metadata. Descriptive metadata contains information about data
acquisition and in most cases, provides the knowledge necessary to provide the correct
technical data interpretation, e.g., the number of electrodes, electrode impedance or event
timestamps. In the case of the BrainVision format (described in section 3.3.2), this metadata
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is included in the respective output files (.vmrk and .vhdr files). Unless stated otherwise, the
metadata discussed is hereafter considered as descriptive.

Metadata related to the whole experiment (environmental conditions, subject state, etc.)
is important for the context interpretation of the recording. Let us consider that the recording
workflow is described by a scenario, and each scenario has its own metadata set related to
the scenario raw data. With each new metadata set, like scenario metadata, the answer for
the question "How to store the data/metadata?" becomes more ambiguous. These metadata
sets are stored independently of each other (as they are related to different data) and cannot
be easily aggregated. Moreover, if we consider an example when the EEG experiment is
extended with a blood pressure (BP) measurement, then the BP measurement is a part of the
metadata set related to the whole experiment, i.e. BP is included in the semantic context of the
experiment. The BP measurement output is defined by two numerical values representing the
systolic and diastolic blood pressures. Both values (data) have their metadata: e.g. units (mm
Hg), measurement date and time or recording device. Even though the BP (meta)data is a part
of the EEG experiment metadata set, it is also an autonomous fully-fledged measurement
output. This example shows that the definition of what data and metadata are and where the
border between data and metadata is, is a matter of perspective.

Consider the following, if data is a potential analysis input, then metadata could be
considered an analysis input filter and/or an analysis parameter. The BP data and metadata
from the previous example could be analysed separately or could serve as an input filter for
the next EEG/ERP data analysis. Since EEG/ERP and BP recordings are logically separated
for the next analysis, they have to be also separated structurally to achieve an efficient
computational process. (Deeply embedded BP recording data in the EEG/ERP experiment
metadata structure would be hard to process independently).

Generally, metadata can be divided into concepts according to what they are referring to.
Many of those concepts are identical for differently focused systems and thus those systems
should implement the same metadata set. The concept determination and metadata reference
frames are taken into consideration for the proposal of a data description further in the work.

3.3.2 Formats

Although there is no common and widely accepted universal format for electrophysiology
data/metadata, the current standardization initiatives/efforts and major projects and outcomes
are presented.
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Open metaData Markup Language

open metaData Markup Language (odML) [23] developed by the G-Node (German Neu-
roinformatics Node) is an explicit specification of the metadata exchange format, which is
generic enough to store textual metadata from any scientific discipline. The model allows
to construct a tree-like structure from the Sections. For each Section, a set of properties
and values could be defined, as shown in Figure 3.2. In addition to this generic format the
odML terminology for electrophysiology was established. The usage of the odML structure
together with the terminology for electrophysiology provides a machine-readable metadata
set limiting the ambiguity of the used terms.

Figure 3.2 odML data model

NIX format

G-Node’s follow-up project, NIX [66], extends odML by solving the related data storage issue.
NIX defines a generic data model to represent data and metadata with flexible back-ends and
provides an open standardized data format. The current authors’ implementation combines
the odML structure for metadata and the HDF5 [20] container for data, i.e. NIX defines
a standard schema for HDF5 files to represent the generic model (Figure 3.3 and 3.4). The
basic NIX structure defines data (typically time series) as n-dimensional DataArrays. Each
DataArray is related to its data Source (e.g. channel specification) and has its Dimension. The
data can be annotated by Tags to define its specific parts (e.g. time points or time intervals).
All parts of the structure can be also annotated by additional odML metadata sections.
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Figure 3.3 Description of an analogue signal (e.g. EEG) in NIX (https://github.com/G-
Node/nix/wiki/The-Model)

Neurodata Without Borders data format

The increasing popularity of HDF5 is reflected in the Neurodata Without Borders (NWB)
project, which established a new data format based just on HDF5. The NWB data format
defines detailed data model which is much stricter than NIX [68]. NWB as a standalone
format was proposed to avoid an additional mapping layer between NWB strict models and
current solutions like NIX.

There are seven main NWB characteristics [68]:

1. Data is represented by time series classes; metadata is stored as their subclasses

2. Time series and processed data are stored with labels (HDF5 attributes) that identify
its structure and content

3. Files are organized/separated by different kinds of data (recorded data, analysis results,
stimuli, etc.)
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Figure 3.4 Definition of the NIX data format (https://github.com/G-Node/nix/wiki/Model-
Definition)

4. Information about intervals are linked directly to the time series

5. Compatibility with HDFView is ensured

6. Format features expressed in the specification language are human and machine read-
able

7. Additional extensibility is supported via specification language

Since NWB is still in its early phase of development, it will not be further considered.

EEG BrainVision data format

The EEG BrainVision data format [7] developed by Brain Products GmbH1 organizes raw
data and metadata from recordings into three files: (i) a textual INI2-like header file containing
descriptive metadata, (ii) a textual INI-like marker file containing event timestamps, and (iii)

1http://www.brainproducts.com/
2Configuration/Initialization files with .INI extension known mainly from Microsoft platforms (MS DOS,

Windows)
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a binary representation of raw brain waveforms. The header file describes technical metadata,
e.g., number of channels, channel resolution, data format, information about binary/ASCII
data representation, or sampling interval. Metadata related to a subject or experiment itself is
not included. A mind-map of this structure is shown in Figure 3.5.

Figure 3.5 Structure of the BrainVision EEG data format

European Data Format

European Data Format (EDF) and its extension EDF+ is another standardization effort and
data format for EEG, sleep recording, ECG, ElectroMyoGraphy (EMG) and evoked potentials.
EDF+ can save annotations and analysis results [35], [36]. Just as the BrainVision format,
EDF+ is strictly focused on the recording itself. EDF+ organizes recording content into
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Header records and Data records sections. The Header records section includes both file
and recording metadata, e.g. the data format version, patient’s ID, start time of the recording
or number of channels in the recording. The Data records section contains consecutive data
for all channels. A mind-map of this structure is shown in Figure 3.6.

Figure 3.6 Structure of EDF+ data format

3.3.3 Ontologies and terminologies

odML terminology for electrophysiology

As the odML format is proposed to be generic and domain independent, it can serve also
for a terminology specification storage. The authors provide a terminology for describing
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experimental electrophysiology domain3. As the domain of experimental EEG measurements
is composed of both measurement and analysis, the terminology covers both parts. EEGBase
(section 3.3.4) implements this terminology, and moreover it contributed to the terminology
extension [69]. As a standalone terminology, the odML terminology for electrophysiology
suffers with the absence of term referencing/dereferencing ability.

Neural ElectroMagnetic Ontologies

Neural ElectroMagnetic Ontologies4 (NEMO) project, founded by National Institutes of
Health in Oregon, is fully focused on EEG and MagnetoEncephaloGraphy (MEG) domains.
The NEMO project deals with raw EEG data and data analysis provision, data storage
tools, and ontology describing the data. Moreover, NEMO provides an analysis toolkit
for ERP. However, the NEMO ontology resource, like many other existing ontological
resources, suffers with lack of terms for accurately annotating the electrophysiological data
[40]. Moreover, NEMO is no longer a sustained project.

NIF Standardized Ontology and NeuroLex

NeuroLex project5, supported by NIF (section 3.3.4), is a lexicon of neuroscience terms,
which aims to provide a unified terminology. NeuroLex draws on the NIF Standardized
Ontology (NIFSTD), which includes a set of modular ontologies providing a comprehensive
collection of terminologies (approx. 60000 concepts) to describe neuroscience data and
resources.

The Ontology for Biomedical Investigations

The Ontology for Biomedical Investigations (OBI)6 is an integrated ontology for the descrip-
tion of life-science and clinical investigations.

Systematized Nomenclature of Medicine - Clinical Terms

Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT)7 [65] is one of the
most comprehensive existing multilingual clinical healthcare terminology providing scientifi-
cally validated clinical content. SNOMED-CT is organized in systematic collections of terms,

3https://github.com/G-Node/odml-terminologies/tree/master/v1.0
4http://nemo.nic.uoregon.edu/wiki/
5http://neurolex.org/
6http://obi-ontology.org/
7http://www.snomed.org/snomed-ct
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where the terms are labelled by unique codes, definitions, synonyms, etc. SNOMED-CT is
implemented in the national health care service systems in significant number of countries
including the UK, USA, Australia, Canada, and Sweden. SNOMED-CT describes clinical
content of electronic health records (EHR) and covers clinical findings, symptoms, diagnoses,
procedures, body structures, organisms and other etiologies, substances, pharmaceuticals,
devices and specimens. Therefore, its ability to describe, e.g., experimental laboratory device
set-ups or protocols, is limited due to lack of terms.

Ontology for Experimental Neurophysiology

Ontology for Experimental Neurophysiology [40] (OEN) provides a formal explicit repre-
sentation of experimental neurophysiological data/metadata. The OEN development was
initialized under the INCF Program on Standards for Data Sharing (section 3.2) as the answer
to insufficient ontological resources in the domain. The OEN is purposed with a view to
provide a controlled vocabulary to standardize descriptions of domain resources. OEN
development is divided into two branches: (i) neurological concepts and (ii) devices and
methods. The development of a terminology describing neurophysiological concepts (e.g.
action potential, synaptic plasticity) is difficult as these concepts transverse multiple ontology
branches. Within the project it was informed by a strategy using web-based surveys and
detailed literature analyses. The development of the devices and methods branch firstly aims
for describing specific lab devices and methods enriching odML terminology descriptions
and drawing on the EEGbase data (Section 3.3.4). Determined terms from various resources
(EEGBase, odML terminology for electrophysiology, Neurolex, etc.) are mapped with
existing ontology resources (e.g. NEMO, OBI) and predefined terms are incorporated in the
OEN using the Minimum Information to Reference an External Ontology Term (MIREOT)
principle [15].

OEN has a potential to become a referential terminology for other data format projects
including this one, however, the project has been suspended in its early development stage
when some of the involved researches left the group, and its future is uncertain. For that
reason, a referential terminology for this work is odML terminology for electrophysiology as
a substitution for OEN.

3.3.4 Databases

The most common way to store neuroinformatics data and metadata is via dedicated databases.
Their functionality is usually beyond a simple provision of persistence storage. The neuroin-
formatics databases, which aim is data sharing, should be able to share data or provide an
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interface for processing tools. Data format plays a lead role in case of data sharing since the
proprietary and closed third-party solutions could force valuable datasets to be excluded on
a inter-system level. Regardless of type of data, requirement of specific software for reading
the data builds a barrier between the shared data and scientists whom the data are intended
for. Efficiency of data sharing is closely related also to data structures and descriptions
used. Separately readable experiment metadata is beneficial for data search portals like
Neuroscience Information Framework (NIF).

EEGBase

EEGBase [33], the portal for experimental data management and sharing, has been proposed
and developed within the software and hardware infrastructure [50] of our laboratory. EEG-
Base strongly emphasises an effective separation of data and metadata and their storing in
commonly-known well-described formats.

The EEGBase data is stored in the BrainVision EEG format. The EEGBase metadata
related to the experiment is stored in the odML structure and can be easily serialized into
the XML format. In addition to the stored data and metadata, EEGBase also contains
experimental scenarios describing the recording work-flow and used stimulation. The
EEGBase scenarios are most often designed in the Presentation® software tool (developed
by Neurobehavioral Systems, Inc.8. However, the scenarios we diverse, ranging from
a flashing light to a pre-scripted computer game level and it is hard to predict a specific
format the scenario is stored in. Therefore, EEGBase handles scenarios as multimedia
attachments of the particular experiment. An example of the EEGBase experiment (from the
project investigating developmental coordination disorders in children) structure is shown
in Figure 3.7. From the perspective of storage technologies, EEGBase uses combination of
relational database (for data) and noSQL database (for metadata).

A list of other portal solutions follows, but for their insufficient features and/or support,
EEGBase as a live project with contributing community serves as the main resource for this
work.

CARMEN Portal

CARMEN (Code Analysis, Repository & Modelling for e-Neuroscience) project of the UK
Neuroinformatics Node represents a concept of a virtual laboratory intended for experiments
in the domain of neuroscience. Its main idea is to accompany the experimenters for whole
research process, i.e. from recording to analysis. Apart from the storage for experimental

8http://www.neurobs.com/
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Figure 3.7 An example of the EEGBase experiment structure consisting of the data, metadata
and scenario sections. This example also illustrates that even in such a relatively simple
structure there is no clearly defined border between data and all metadata.

data, CARMEN provides a persistent storage of services. Thus, collaborators can upload
their routines as web services, share them and execute them on the server side. CARMEN
structure is shown in Figure 3.8.

However, as promising CARMEN project appears, the latest update in version 2 is dated
to October 2014, and even though there is no official statement, the latest update announced
the termination of the project.

G-Node data management and data sharing platform

G-Node data management and data sharing platform is a portal developed by the German
Neuroinformatics Node [27]. The platform provides basic storage and sharing abilities and
access to an international neuroinformatics discussion forum. Similar to CARMEN project,
the lack of support and updates as well as a very small community participating to data
sharing might announce the upcoming end of project effectiveness.
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Figure 3.8 A structure of the CARMEN portal [70]

J-Node

A software infrastructure of Japanese INCF Node (J-Node) provides a set of specialized
platforms.

• Visiome Platform

• Brain Machine Interface Platform

• Invertebrate Brain Platform

• Neuro-Imaging Platform

• Dynamic Brain Platform

• Cerebellar Platform

• Brain Transcriptome Database

• Comprehensive Brain Science Network Platform

• Mouse Phenotype Database

• Brain Science Dictionary

• ViBrism Database

• Kanphos Database
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• Simulation Platform

• Riken BSI Research Database Portal

Each platform provides a dedicated solution for particular research domain including a storage
for experiments, methods, articles, etc. However, as the J-Node platforms are heterogeneous
with absence of any common data standard, these will not be considered further.

Neuroscience Information Framework

The neuroscience Information Framework (NIF) [45] established under the National Institutes
of Health (NIH) Blueprint for Neuroscience Research, is a dynamic inventory of the resources
in neuroscience. The NIF provides a search engine working over the registered web-based
resources: data, materials, and tools. The searching abilities of the engine depends on the
level of resource registration into NIF Resource registry. There are three registration levels
[11]:

1. Only resource URL is registered by NIF; search engine is able to find the resource but
cannot access any dynamic content.

2. The resource provides a web-service allowing NIF to query the resource metadata
automatically [32].

3. Final step allows NIF to access resource data directly; data are mapped on the NIFSTD
and resource provides Content-Based Query Interface; NIF creates a virtual federated
database from registered resources.

NIFSTD is proposed to describe neuroscience resources not data. Therefore, NIF is not
considered further.

3.3.5 Data format features

Currently, there is no set of data format desired features, i.e. desiderata, specified. The
only feature that is common between current formats is machine readability. Some of the
formats also provide a mechanism to annotate data by controlled terminologies/ontologies
(e.g. NIX). To specify a comprehensive desiderata for EEG/ERP data format, the work of
Mo and colleagues [47] was used. The authors reviewed a set of features in the domain of
computable electronic health record-driven phenotypes and proposed a subset of those that
are most important [47]:

1. Recommendations for clinical data representation to support phenotype
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(a) Structure clinical data into queryable forms

(b) Recommend a common data model, but also support customization for the vari-
ability and availability of electronic health records data among sites

2. Recommendations for phenotype representation models

(a) Support both human-readable and computable representations

(b) Implement set operations and relational algebra

(c) Represent phenotype criteria with structured rules

(d) Support defining temporal relations between events

(e) Use standardized terminologies, ontologies, and facilitate reuse of value sets

(f) Define representations for text searching and natural language processing

(g) Provide interfaces for external software algorithms

(h) Maintain backward compatibility

As the EEG/ERP data have health data qualities, the specified desiderata have a potential
to be useful also in this domain; each particular desideratum was evaluated as relevant/irrele-
vant for the EEG/ERP data format (Table 3.1).

Both desiderata from the first category, originally proposed for clinical data and electronic
health records data, can be applied on experimental data and experiment metadata instead.
These desiderata are related with the content of chapters 4 and 5.

Relevant desiderata from the second category (considered as Recommendations for EEG
experiment representation models), i.e. (d), (e), (g), and (h), are related with the content of
chapters 6 and 7.

How the proposed solution meets the desiderata is discussed in chapter 8.
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Table 3.1 Relevance of computable phenotypes desiderata for a purpose of EEG/ERP data
format

Desideratum Relevance Comment
Structured data in
queryable form

Relevant Relevant also for data with experimental prove-
nance (e.g. EEG/ERP)

Common and flexible
data model

Relevant Relevant also for data with experimental prove-
nance (e.g. EEG/ERP)

Human-readable and
computable representa-
tion

Relevant Relevant for EEG experiment metadata

Set operations and rela-
tional algebra

Irrelevant Computable representations of data processing al-
gorithms, where set operations and relational alge-
bra are useful and which would be a part of data
description, are not in the scope of this work.

Structured rules Irrelevant Computable representations of data processing al-
gorithms, where structured rules are useful and
which would be a part of data description, are not
in the scope of this work.

Temporal relations Partially
relevant

Date/time of data acquisition has to be specified in
data format. However, temporal relations could be
handled by superior systems/processing algorithms,
e.g., in order to construct time-series from multiple
experiments.

Standardized nomencla-
ture

Relevant Relevant for interoperability of shared data.

Text searching & NLP Irrelevant NLP is not in the scope of this work, thus it will not
be discussed further.

External interfacing Relevant Data format has to be accessible computationally
regardless the domain.

Backward compatibility Relevant Historical data should be processable regardless the
domain.
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Data Modelling



Chapter 4

Data models and storages

An aim of the thesis is to present an innovative approach to data/metadata description in
the EEG/ERP domain. Existing data modelling concepts and logics (relational algebra,
object-oriented concept, description logic) are described in this chapter.

4.1 (Entity-)Relational model

A relational model consists of:

• a collection of time-varying tabular relations,

• relationships ensuring the entity and reference integrity,

• relational algebra.

4.1.1 Elements

Relational model (R model) is composed of the following elements [14]:

Domain A domain is a set of values of similar type. A domain is "simple" if all of its values
are atomic.

Relation Let D1, D2,..., Dn, be n (n > 0) domains (not necessarily distinct). The Cartesian
product x{Di: i = 1,2, ...,n} is the set of all n-tuples <t1, t2,...,tn> such that ti ∈ Di for all i.
A relation R is defined on these n domains if it is a subset of this Cartesian product. Such
a relation is said to be of degree n.
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Attribute For each tuple component we associate not only its domain, but also its distinct
index. This we call an attribute. The n distinct attributes of a relation of degree n distinguish
the n different uses of the domains upon which that relation is defined. A tuple then becomes
a set of pairs (A:v), where a is an attribute and v is a value drawn from the domain of A,
instead of a sequence (v1, v2, ...,vn).

A relation then consists of a set of tuples, each tuple having the same set of attributes.

4.1.2 Relationships between relations

If a collection of time-varying tabular relations meets following criteria:

• all domains are simple

• no two tuples are duplicated

• row order is irrelevant

• column order is irrelevant

• attributes are atomic values

than a collection of data represented by these relations is called relational database.
The relationships between the relations are handled by an apparatus of Primary and

Candidate keys. K is a candidate key of relation R if it is a collection of attributes of R with
the following time- independent properties:

1. No two rows of R have the same K-component.

2. If any attribute is dropped from K, the uniqueness property (1) is lost.

One candidate key is selected as the primary key for each relation. A set of all primary keys
is called a primary domain. No primary key is allowed to be null, i.e. entity integrity.

Suppose an attribute a of a compound (multi-attribute) primary key of a relation R is
defined on a primary domain D. Then, at all times, for each value v of a in R there must exist
a base relation (say S) with a simple primary key (say B) such that v occurs as a value of B
in S, i.e. reference integrity.

Finally, a list of unique attribute names is called a schema for relation R with degree n.
The ER model describes a concept in a tabular manner, where the table is a relation,

the column is an attribute and the row is a tuple representing data. A relation is defined as
a Cartesian product of domains. Entity-Relational Model (ER model) [12] describes the
real-world concepts by entities and a relationship between them as their Cartesian product.
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When the entities are expressed by R model, we can say, that ER model extends semantic
abilities of R model. ER model also allows us to define cardinalities over the relationships.

4.1.3 Relational algebra

Relational algebra [14] extends semantics of ER models and defines queries on them. Basic
set of relational algebra’s operators includes:

Set operators Relational algebra supports set operators of union, intersection and differ-
ence. As the operators are binary operators applicable over two relations, both relations
have to be of the same domain. The outcome of the operation is a new relation of the same
domain.

Selection; THETA-SELECT Theta-select operator is a binary operator applicable above
relations and attributes: <, ≤, =,≥, >, ̸=. If binary operator is “=”, then the theta-select
operator is called SELECT.

Projection Projection is a relation created as a subset of the original projection where all
redundant rows are dropped.

Join; THETA-JOIN Theta-join is a union of attributes of two relations into single one.
Theta-join is conditioned by a binary operator above two attributes (from distinct relations).
If the binary operator is “=”, theta-join is called EQUI-JOIN. If the redundant rows are
dropped from final EQUI-JOIN, it is known as a NATURAL-JOIN (e.g. JOIN based on
foreign keys in relational databases).

Division Given relations R(A, B1) and S(B2) with B1 and B2 defined on the same domain(s),
then, R[B1 + B2]S is the maximal subset of R[A] such that its Cartesian product with S[B2]
is included in R. This operator is the algebraic counter-part of the universal quantifier.

4.1.4 ER model construction and graphical representation

The ER model has strictly specified element properties and abilities but there is no formal
specification of the model representation. However, a set of conventions exists.

Running example: One laboratory with name is involved in n projects. Each project with
name and identifier (ID) engages in at least one experiment. Each experiment with name
and ID consists of n recordings. One experiment can be realized only in one project. One
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recording with a date and ID could serve to more than one experiment. Experiments and
projects have supervisors with names and surnames.

We can consider subjects as entities, predicates as relationships and objects as attributes.
Pronouns and numerals specify cardinalities. Such classification creates a basic skeleton of
the model from the natural language.

A list of the entities and their attributes follows:

• Laboratory (name, supervisor, projects)

• Project (project_id, name, supervisor, experiments)

• Experiment (experiment_id, name, supervisor, recordings)

• Recording (recording_id, date)

• Supervisor (name, surname)

The attributes project, experiment, and recording, are sets of entities related to different
relation and together with the attribute supervisor breach the condition of attribute atomicity.
To prevent this, the attribute supervisor is substituted by atomic supervisor’s ID; relational
algebra operator NATURAL-JOIN allows us to keep the relationship persistent and to fix the
atomicity in case of un-atomic attributes.

• Laboratory (name, supervisor_id, projects)

• Project (project_id, name, supervisor_id, experiments)

• Experiment (experiment_id, name, supervisor_id, recordings)

• Recording (recording_id, date)

• Supervisor (supervisor_id, name, surname)

Attributes in bold represent candidate keys, which are identical to selected primary keys.
The primary key for the Laboratory relation is composed of two attributes. For simplicity
of next examples, explicit identifier laboratory_id will be added to the Laboratory relation
and set as the primary key. The real-world concept in the running example is limited to one
laboratory. This limitation influences the uniqueness of the identifiers. These are unique for
the concept only and as the concept reflects close-world assumption, it cannot be guaranteed
there is no other experiment with the same identifier within different laboratory.

Relationships and cardinalities are specified in [subject-predicate-object] triples as:
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• ONE Laboratory is involved in MANY Projects

• ONE Project involves MANY Laboratories

• ONE Project engages MANY Experiments

• ONE Experiment is engaged by ONE Project

• ONE Experiment consists of MANY Recordings

• ONE Recording belongs to MANY Experiments

• ONE Projects contains MANY Recordings

• ONE Supervisor has MANY Projects

• ONE Project has ONE Supervisor

• ONE Experiment has ONE Supervisor

• ONE Supervisor has MANY Experiments

When redundant and transitive rules are merged/dropped, following schematic list of rela-
tionships are left (an exclamation mark notes that the attribute is mandatory):

• Laboratory m! . . . . . . . . . . . . n Project

• Project 1! . . . . . . . . . . . . n Experiment

• Experiment m! . . . . . . . . . . . . n Recording

• Experiment n. . . . . . . . . ...1! Supervisor

• Project n. . . . . . . . . ...1! Supervisor

A graphical representation of a common ER model (derived from the set of relation-
ships and relations) with stereotype notation; notation for entities/relations, attributes, and
relationships is shown in Figure 4.1.

An overview of the running example is shown in Figure 4.2. To meet the criteria of
attribute atomicity, m:n relationships need to be decomposed into decomposition tables that
provide mapping of keys in 1:n cardinality.

The created model is specific in description of its entities. However, some attributes
are common for multiple entities, e.g., supervisor, director. Both could be generalised as
a person since they represent a human being with name and surname. Additional flag can
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Figure 4.1 Entity, attribute and relationship graphical stereotype; the empty diamond rep-
resents optional occurrence of the related foreign key, filled arrow represents mandatory
occurrence of exactly one related foreign key.

explicitly annotate particular person type, e.g., value=1 means director; value=2 means
supervisor etc. For an illustrative purpose, Laboratory could be generalized as a Research
Centre which includes laboratories, faculties, universities, private sector research centres etc.

• Research centre (research_centre_id, name, director_id, flag)

• Person (person_id, name, surname, flag)

Adequate relationship to this generalization is

• Research centre m!. . . . . . . . . . . . n! Person

A loss of expressiveness is obvious. We cannot restrict that research centre has just one
director; faculty has n! students, laboratories has n stuff etc. A more suitable solution would
adapt an object orient data model.

4.1.5 Structured Query Language

Structured Query Language (SQL) is a standard language for managing, i.e. storing, manipu-
lating, and retrieving data in relational databases. SQL draws on the expressiveness of the
ER model, relational algebra operators included. Thus, SQL could also support set, aggrega-
tive and comparative operators over queried data. SQL statements can SELECT, INSERT,
DELETE and UPDATE data according to restrictions specified in WHERE clause. Particular
RDB implementations support various SQL extensions including procedural extensions, but
those are not related to the expressiveness of ER models.

4.2 Object-oriented model

Semantics of the Object-Oriented (OO) concept is not formally specified, however, it is
designed to handle some of limitations of the ER concept. OO constructs missing in relational
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Figure 4.2 An example of the ER diagram; m:n relationships were decomposed into decom-
position tables; dashed relationships representing original m:n relationships are visualized
for the illustrative purposes only.

algebra (e.g. inheritance) significantly increase the expressive power of the model. There is
no formal definition of the OO concept nor consensus of its constituent, however, following
core features [38] are included in most of the OO model implementations (programming
languages, databases, etc.).

4.2.1 The core

Object The object is an abstract representation of a real-world entity. Any real world
bordered domain can be expressed as a finite set of mutually connected objects. No two
completely equal objects can exist within the same domain as no two rows in same relation



4.2 Object-oriented model 34

can be identical. Even though the object characteristics are identical, the object identifier
(OID), a mandatory identifier for each object, is unique and thus each object in a specific
domain is unique as well. OID construction approaches can be divided into two groups:

• Logical OIDs

– Instance identifier and class identifier: OID contains information of the class;
valid until object reclassification

– Instance identifier only: class membership is not implicitly specified

• Physical OIDs

– OID contains information depending on physical storage (e.g. memory address):
object is persistent, but it is not possible to migrate it to the other physical storage

A nested collection of objects representing a real-world entity is a complex object, e.g.,
an experiment containing a collection of objects representing recordings. The collection
implements one of the following orthogonal constructors (each constructor can be used for
any object) [62]:

• Set; unordered complex object

• List; ordered complex object

• Tuple; complex object with predefined structure

Attributes Attributes define characteristics/state of the object. A state of the object in time
t is defined by values of the attributes. The attribute can be an object or a value/literal.

Methods The behaviour of objects is defined by methods. Methods provide read/write
access to attributes and thus those change the state of the object. Methods are encapsulated
in the object and they are evoked from outside.

Class A class defines attributes, methods and an initial state of the object.

Inheritance Inheritance is an ability of the class (superclass) to derive another class
(subclass) that has the same attribute and method sets and can be extended further by
additional attributes and methods. The inheritance is:

• single: each class is a descendant of exactly one superclass; from structural perspective,
single inheritance enables building of tree-like structures
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• multiple: each class is a descendant of one or more superclasses; from structural
perspective, multiple inheritance enables building of rooted graph-like structures (a
class lattice [38])

An inheritance process from the root to the leaves is called specialization, and from the
leaves to the root, generalization.

4.2.2 OO model example

Inheritance and complex objects ensure structural abilities similar to those of relationships
between relations in ER models. For the running example, the following class candidates
were determined:

• Class Laboratory (name, director, list of projects)

• Class Project (id, name, supervisor, list of experiments)

• Class Experiment (id, name, supervisor, list of recordings)

• Class Recording (id, date, name)

• Class Supervisor (id, name, surname)

Implementation of generalization/inheritance concept into the class candidates leads to
creation of new generalized classes:

• Class Research centre (name, director)

• Class Laboratory extends Research centre (list of projects)

• Class Project (id, name, supervisor, list of experiments)

• Class Experiment (id, name, supervisor, list of recordings)

• Class Recording (id, date, name)

• Class Person (name, surname)

• Class Supervisor extends Person (id)

• Class Director extends Person (id)
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4.2.3 Unified Modelling Language

Unified Modelling Language (UML) was developed as a response to the increasing popularity
of OO programming languages and complex development methodologies. The first UML
version was developed in 1995 as a combination of OMT1 [64], and OOSE2 [31]. In 1997,
the Object Management Group (OMG)3 accepted UML 1.1 as a standard. The current
version, UML 2.0, was released in 2009. Figure 4.3 shows the evolution of UML. Only UML
2.0 version is considered hereafter.

Figure 4.3 Evolution of the UML (http://vinci.org/rlv/d/uml/history.html)

UML is a modelling language for graphical representation of all aspects of the software
development process including designing of software structure and behaviour. UML contains
14 basic diagrams which, together, create a complex software model independent on its
further implementation. UML is primarily focused on the OO concept, however, also ER
models can be represented via UML. Generation of the specific source code from the UML
description can be partially automated by tools like Eclipse IDE UML to Java Generator
plug-in.

The diagrams can be divided into the following groups [63]:

• Structure diagrams

1Object Modelling Technique
2Object-Oriented Software Engineering
3http://www.omg.org/
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– Class diagram

* defines static structure of the system

* defines data model, specific classes with all attributes, methods, relationships,
inheritance and encapsulation

– Component diagram

* defines division of the system into smaller parts with the delimited functions

* describes how the classes are divided into components

– Composite structure diagram

* defines internal structure of classes and how the methods and functions
cooperate together

– Deployment diagram

* defines how the components will be physically distributed in an information
technology (IT) environment

– Object diagram

* defines state of the objects in a specified system state/time

– Package diagram

* defines how the system is divided into packages

– Profile diagram

* defines stereotypes, tagged values and constraints for platforms/domains

• Behaviour diagrams

– Activity diagram

* defines process activities

– State machine diagram

* defines a progress of process activities

– Use case diagram

* defines how the system is supposed to be used, who the actors are, and what
role the actors have

– Communication diagram

* defines how objects communicate together during specified activity
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– Sequence diagram

* defines how the system works in various activities (what is happening inside
the system between classes or components)

– Timing diagram

* defines system behaviour on the time line

The class diagram will be further discussed as the only representative diagram that describes
a data model.

Apart from the diagrams, UML also specifies exchange formats (e.g. CORBA IDL4,
XMI5 ) and a language for expression restrictions, which cannot be represented graphically
(OCL6).

UML describes itself as a UML model as well (Figure 4.4).

Figure 4.4 UML Kernel (http://www.omg.org/spec/ODM/1.0/PDF/)

4.2.4 UML Class diagram construction

The following section evaluates the class diagrams for the purpose of data modelling, there-
fore, some constructs are not considered (e.g. encapsulation).

UML supports the following graphical syntax for core features:

Class Class is represented by rectangles labelled by a class name at the top.

4Interface Definition Language
5XML Metadata Interchange
6Object Constraint Language
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Attribute Attributes are listed in the middle part of a class rectangle. Initial symbol +/-
/# defines encapsulation of the attribute (public, private and protected access restrictions)
followed by an attribute name. A data type (i.e. primitive or complex object) of the attribute
is specified after colon.

Method Methods described by the same graphical notation that of the attributes are listed
in the last part of the class rectangle (Figure 4.5).

Figure 4.5 An example of a class represented by the UML Class Diagram

Inheritance / generalization Generalization is illustrated as an arrow descendant -> parent
(Figure 4.6).

Figure 4.6 An example of class generalization in the UML Class Diagram

Association / aggregation / composition Association - a binary or ternary operator, repre-
senting an alternative to the relationships in the ER model; generally associated with two or
three (ternary operator) classes (Figure 4.7).
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Figure 4.7 An example of class association in the UML Class Diagram

Aggregation - a binary operator providing a semantically stronger relationship, where
class A is a component of a class B, with class A is in the relationship. Multiplicity
(cardinality) can be specified over the relationships (Figure 4.8). While ER model supports
cardinality definition as 1:1, 1:n, and n:m relationships; UML supports multiplicity specifying
concrete number of class instances allowed to be define (infinity is marked as a symbol *),
e.g. 1 – 0..*; 1..5 – 1..*.

Figure 4.8 An example of class aggregation in the UML Class Diagram (empty diamond in
the relationship)

Composition - a binary operator defining that an instance of a first class cannot exist with-
out the existence of instance of a second class. Composition is stricter form of aggregation.
Multiplicity can be specified over the relationships (Figure 4.9).

Figure 4.9 An example of class composition in the UML Class Diagram (filled diamond in
the relationship)

Other relationships supported by the UML Class diagram (e.g. dependency and re-
alization) and advanced constructs (e.g. multiple inheritance/classification, stereotypes,
parametrized classes) are out of the scope of this work. Our running example can be
represented through the aforementioned elements and operators (Figure 4.10).
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Figure 4.10 An example of the UML Class diagram

4.2.5 Object-relational databases

Object-Relational Databases (ORDB) are RDBs extended by additional OO features. Table
attributes in the ORDB can be of complex object type, e.g., arrays. Not all OO model features,
e.g., generalization, are supported in ORDBs.

4.2.6 Object-oriented database

Object-Oriented Databases (OODB) are based on OO core features. They provide inher-
itances, associations, aggregations etc. OODBs are not widely used and remain a more
experimental concept.

4.3 eXtensible Markup Language

Extensible Mark-up Language (XML) is mainly proposed for a structured data exchange
purpose. XML does not represent a modelling concept but a technological implementation.
It is described here for its diverse expressive power.

XML is derived from the W3C’s SGML (Standard Generalized Mark-up Language).
Dependencies of the mark-up language family based on SGML are shown in Figure 4.11.
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Figure 4.11 Family of SGML-based languages [26]

A template for a pre-defined XML structure can be specified by XML Schema Definition
(XSD) or Document Type Definition (DTD). XML document can be validated accordingly to
XSD or DTD afterwards. DTD is an older standard, which is no longer commonly used today
and it is not discussed further. XSD supports pre-defined data types, multiplicity, inheritance,
encapsulation, and substitution.

XML describes structured data, thus it can describe tabular structures and ER models.
The abilities of XSD allow to describe also OO model. While XML describes instances, i.e.
data, XSD describes classes.

Only XML in version 1.1 is considered further (a difference between versions 1.0 and 1.1
is in the character sets used [16].

There are four basic XSD elements:

Entity Entity is defined as a pair [declaration-specification]. Declaration is an element in
XSD document referring to a specification, i.e. a sequence of attributes and/or elements.

Attributes XSD supports defining attributes in two different constructs: attribute and
element.

Relationships Relationships are represented by nested elements.

Cardinality Cardinality is specified in an attribute section of each element as a minimal
occurrence number (minOccur) and maximal occurrence number (maxOccur).
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4.4 XML within relational databases

RDB, ORDB, and OODB store data and metadata in their inner representation. However,
there can be various situations when keeping specific subset of data in its original format,
e.g., XML-based experiment protocol in EEGBase, is convenient.

XMLType is an extended data type in Oracle 9i database and all later versions. It operates
over a Character Larger Object (CLOB) type but it is adapted to XML files, i.e. it supports
XML validation and direct querying XML data. XMLType exists in three modifications
according to knowledge of an XML structure: structured, unstructured, and binary storage
type. Analogously to the large objects types (CLOB, Binary Larger Object (BLOB)), there
can be only one XMLType column per table.

4.4.1 Structured XMLType

Structured XMLType, sometimes called Object-Relational, is designated for frequently
repeated XML documents of the same schema. XSD must be specified in advance prior to
table creation [39]. Within this type, data in XML can be managed through the database
system. Only one schema per table can be registered.

4.4.2 Unstructured XMLType

Unstructured XMLType does not require XSD in advance (if XSD is available, it could be
used for XML validation). It supports querying an XML document by XPath queries in the
database. Multiple XML documents of various schemata can be stored in one database table.

4.4.3 Binary XMLType

Binary XMLType uses XSD and pre-parses XML as the structured XMLType does but it
does not require a schema registration in advance. XML document is parsed and stored
in a special binary format. Various documents of different schemata can be stored in one
column.

Table 4.1 compares all three types. Implementation of XMLType into EEGBase is
evaluated in [55] .
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Table 4.1 Comparison of the various XMLType datatypes in Oracle 11g

Test Structured Unstructured Binary
More than one XMLType per table permitted No No No
Schema required before table creation Yes No No
Pre-parsed schema Yes No No
XMLType data is post-parsed No No Yes
XPath query Yes Yes Yes
More than one schema per table permitted No No Yes
Universality No Limited Yes
Suitability for one XML schema Yes No Yes
Suitability for multiple XML schemata No No Yes
Suitability for non-schema XML No Yes Yes

4.5 Ontology-based model

Ontologies and ontological modelling provide advanced semantics for Linked Data, a core of
a semantic web concept introduced by Wide Web Consortium (W3C) in 2001. The main idea
of the semantic web is to extend current HTTP abilities and to provide unified modelling and
querying resources over the existing internet infrastructure.

4.5.1 Linked Data

Current World Wide Web (WWW) creates a web from documents identified by URL and
interconnected by hyper-links. Linked Data interconnects data; i.e. every resource (data) is
identified by the URI/IRI7 and thus resources with the same URI have same definition/mean-
ing. Linked Data specifies four basic rules8:

• Use URIs as names for things.

• Use HTTP URIs so that everyone can look up those names.

• When user looks up a URI, provide useful information, using the standards (RDF
(Resource Description Framework), SPARQL (SPARQL Protocol and RDF Query
Language)).

• Include links to other URIs so that they can discover more things.

7RFC 3986: https://www.ietf.org/rfc/rfc3986.txt
8 http://www.w3.org/DesignIssues/LinkedData.html
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Searching results across Linked Data web are not only presented as textual/numeric docu-
ments but also as a set of identified data. The inventor of Linked Data, Sir Tim Berners-Lee,
is likening data to relationships9. Linked data can forms a massive collection of a logically
connected information10.

Resource Description Framework

The simplest representation of a relationship between two data resources is a key-value pair.
A set of key-value pairs creates a list or dictionary-like dataset with unified relationships.
Diverse relationship types can be specified by triples [source - relationship - target]. A set
of triples can create a graph structure where the sources are represented by graph nodes,
relationships stand for named edges and targets stand for graph nodes or leaves. Such triples
enable a description of any relationship between two resources and link data together, i.e.
create Linked Data structures.

Resource Description Framework (RDF), developed by W3C, provides a framework
for modelling graphs based on triple statements. RDF uses a natural language terminology
and names the triple elements as subject, predicate and object. Based on the Linked Data
recommendations, subjects and predicates are the resources identified by URI. The objects
are resources identified by URI or literals, i.e. specific values.

The predicates alternate the relationships in ER models and the associations in OO
models including extended abilities. Apart from the user-defined predicates, RDF supports
the following predefined ones:

• rdf:ID

• rdf:type

• rdf:resource

• rdf:Property

• rdf:Bag

• rdf:Seq

• rdf:Alt

• rdf:Description

9http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html
10Information is a collection of data interpreted by its logical context
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The rdf prefix labels a namespace the predicates are taken from. In the case of W3C RDF the
namespace is "http://www.w3.org/1999/02/22-rdf-syntax-ns#". Descriptions of the individual
predicates can be found in the official RDF and RDF Schema specification11. Various RDF
serializations exist, e.g., Turtle, RDF/XML.

RDF Schema

RDF Schema (RDFS) extends RDF of a set of pre-defined predicates and objects including
the object Class and the predicate subClassOf known as the OO model elements. It is
important to note, that there is a difference between the meaning of the class in the OO
model and in RDF. A class in the RDF is a set of individuals with a set of properties those
individuals have in common. A subclass of such class is a subset of those individuals. An
OO model class specifies the properties of an instance/individual in advance and serves
as a template for the instance creation. OO model subclass inherits all previously defined
properties and, alternatively, add additional ones. The term of inheritance is lost in RDF
classes.

RDFS supports following primitives (their definition can be found in the official specifi-
cation12):

• rdfs:Class

• rdfs:label

• rdfs:comment

• rdfs:domain

• rdfs:range

• rdfs:subClassOf

• rdfs:subPropertyOf

• rdfs:Container

• rdfs:Literal

• rdfs:Property
11https://www.w3.org/TR/rdf-schema/
12https://www.w3.org/TR/rdf-schema/
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SPARQL Protocol and RDF Query Language SPARQL Protocol and RDF Query Lan-
guage is an RDF graph alternative to SQL. In contrary to SQL, SPARQL only supports data
retrieval, and not data modification. Query results can be retrieved in a tabular structure
(SELECT), graph structure (CONSTRUCT), single result RDF (DESCRIBE), and boolean
type (ASK) answering a question whether the query has a solution or not. SPARQL supports
its own SPARQL algebra based on the relational algebra and thus supports set, aggregative
and comparative operators [25].

4.5.2 Ontologies

The term ontology has a philosophical background and various meanings, however, the
following definitions are relevant for the ontology meaning in the field of data modelling.

• An ontology is an explicit specification of conceptualization. – Thomas Robert Gruber
(1994)

• Ontologies are defined as a formal specification of shared conceptualization. – Willem
Nico Borst (1997).

The ontologies can be divided into three non-disjunctive groups [67]:

• Terminological and lexical ontologies; extended thesauruses

• Information ontologies; extended database schemata

• Knowledge ontologies; logical theories representing knowledge

Terminological and lexical ontologies will be named as terminologies, hereafter. By the term
ontology the information ontology is meant.

Open World Assumption

A key factor influencing ontology development is the Open World Assumption (OWA).
Close World Assumption (CWA)-driven approaches (e.g. ER model, OO model) consider
explicitly described elements only. Basically, what is not described, does not exist. This
approach enables a "negative" constraint: e.g., patients with no diabetes are those who have
no diabetes diagnosis in their health records. If there is no such a health record in the
database, patient can be classified as non-diabetic. The same example does not work in
OWA-driven approaches, which consider that everything what is not explicitly eliminated,
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could exist. For instance, there can potentially be a health record declaring patient’s status
unless a class closure is explicitly specified.

OWA is a logical consequence of the basic ontology philosophy, where existing described
domain should not be described again. Therefore, it is impossible to propose all-describing
ontology and only minimalistic stand-alone ontologies, generic enough to be useful from
any domain, should be developed. Such ontologies can be eventually extended for particular
needs and/or connected to other ontologies, but they should not contain elements for which
their reinventing would be initiated.

Given by the fact, that it is quite easy to prove that some element exists but difficult, or
impossible, to prove it does not, OWA approach force the developers to greatly change their
way of thinking over data models.

Web Ontology Language

Web Ontology Language (OWL) supports constructs based on the predicate logic to creation
of computable ontologies. The current version, OWL 213, provides sets of classes, properties,
individuals and data values. OWL ontologies are composed from the following entities [17],
[28]:

• Classes

• Object properties

• Data properties

• Datatypes

• Annotation properties

• Individuals

Classes There are two types of classes:

1. Primitive

2. Defined

Primitive classes are defined by necessary conditions only, i.e. by their super-classes. Defined
classes can be defined by necessary conditions and by sufficient conditions, i.e. by equivalent
classes. Defined classes can be specified implicitly, i.e. by their definition only. Such classes

13https://www.w3.org/TR/owl2-overview/
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cannot be referenced and serve mostly for computational purposes only. Named classes
(explicitly specified Defined classes), have asserted referenceable names/URIs. As it was
aforementioned, classes serve as the containers for individuals. Class axioms support set
operators: union, intersection, and complement; and definition of disjoint classes. A number
of individuals asserted to the class can be restricted from a zero occurrence to infinity, precise
number included (similar to the multiplicity property in OO models).

Object properties Object properties create relationships between two objects, i.e. relation-
ships which can be established between two individuals of two classes. Object property has
domain (subject) and range (subject) specified in its statement. Object properties support
definition of equivalent property, sub-property, disjoint with other property and inverse
property. Following characteristics can be added to object properties:

• Functional property: For each instance x, property P can acquire only unique value y;
P(x,y1) and P(x,y2) cannot exist, e.g., hasHusband(Woman, Man).

• Inverse functional property: The object value x can be the value of property P for
a single instance x, where distinct instances x1 and x2 can exist; P(y,x1), P(y,x2), e.g.,
hasBiologicalMother(Child, Woman).

• Transitive property: If pair (x,y) and (y,z) are both instances of transitive property P,
then also (x,z) is an instance of property P, e.g., Pizza hasIngredient(Pizza, Herb Sea-
soning) and hasIngredient(Herb Seasoning, Basil), then hasIngredient(Pizza, Basil).

• Symmetric property: If the pair (x,y) is an instance of a symmetric property P, then also
(y,x) is an instance of P, e.g., hasBrother(Vaclav, Bob), then hasBrother(Bob, Vaclav).

• Asymmetric property: If the pair (x,y) is an instance of an asymmetric property P,
then (y,x) cannot be an instance of P, e.g., if hasChild(Theresa, Hermione), then
hasChild(Hermione, Theresa) cannot exist.

• Reflexive property: Property P relates all elements to themselves P(x,x), e.g., isE-
qual(number,number) for all real numbers.

• Irreflexive property: No elements can be related to itself with irreflexive property P,
e.g., notEqual(x,x); an example of the asymmetric property is also irreflexive

Data properties Data properties create relationships between individuals and their values
and data types. Object properties support definitions of equivalent property, sub-property,



4.5 Ontology-based model 50

disjoint with other property and inverse property. Functional characteristics can be asserted
to the data property.

Datatypes OWL supports a basic set of predefined datatypes including all XSD datatypes.

Annotation properties Annotation properties allow us to assign a textual annotation to
class or individual, e.g., human readable label, comment, version info, compatibility, etc.

Individuals Individuals (also Instances or Members) are specific data elements asserted
to one or more classes. Each individual has a URI, thus its existence is unambiguous. An
individual can specify a set of other individuals to which it is or it is not equal. Literals are
asserted to individuals via Data properties.

Dialects The number of OWL features and options provides us a powerful resource to build
complex ontologies facilitating automatic non-trivial inference computation. However, high
complexity of ontologies increases probability of inconsistency and may cause difficulties in
the inference computations. To separate the risk-potential constructs from the safe ones and
to categorize ontologies according to their complexity, three OWL dialects are specified.

1. OWL Lite: The simplest dialect designed mainly for building classification hierarchies.
Constraints are limited to IntersectionOf operator only, cardinalities are restricted to
values 0/1. OWL Lite is a subset of OWL DL.

2. OWL DL: The full description logic-based dialect designed to provide maximal expres-
siveness retailing the computational abilities and completeness. The dialect supports
all aforementioned elements and full cardinalities. Both OWL DL and OWL Lite
require separation of classes, instances, properties and values. OWL DL is a subset of
OWL Full.

3. OWL Full: The dialect supports all OWL constructs without any constraints. OWL
Full allows us to augment or redefined the pre-defined constructs. The owl:class
and owl:Data/ObjectTypeProperty are not defined as subclasses of rdf:class and
rdf:Property as they are in OWL Lite/Full, but as equivalent classes. Thus, the classes,
instances, properties, and values are not strictly separated. For instance, one resource
with a URI can stand for a class and for a property in the same time. OWL Full
supports "unlimited" expressiveness, but its computational abilities are not guaranteed.

As the OWL DL supports rich expressiveness with preserved computability, only this dialect
will be considered hereafter.
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Profiles Aside from the dialects, OWL 2 is also divided into the profiles (Figure 4.12) [48].
The profiles, likewise the dialects, reduce OWL 2 expressiveness in order to meet better
computational abilities (reasoning) for different application scenarios.

Figure 4.12 Venn diagram of the OWL 2.0 profiles (http://www.w3.org/TR/2009/WD-owl2-
overview-20090327/)

• OWL EL: Suitable for a large number of classes/properties

• OWL QL: Suitable for simple ontologies with large number of individuals

• OWL RL: Suitable in the case when both scalable reasoning and rich expressive power
are needed

Running example As the OWL supports a wide collection of constructs, its graphical
representation becomes complicated for simple ontologies. For that reason, only fragments
of the example ontology are shown. The ontology is designed for the demonstration purpose
only in terms of its re-usability. Figure 4.13 shows the classes, object properties, domains
and ranges. Figure 4.14 shows the class Laboratory and asserted class axioms. The ontology
example was designed in the ontology editor Protégé14.

Serialization The OWL 2 can be serialized into five standardized machine-readable for-
mats. Table 4.2 shows a list of formats/syntaxes together with their main benefits. OWL 2
structure and its connection to the serialization formats are shown in Figure 4.15.

Semantic reasoners Semantic reasoners are generalized OWA-driven inference engines
which infer logic non-trivial consequences within the ontology. Computed inferences can be

14http://protege.stanford.edu/
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Figure 4.13 A laboratory ontology example visualized by OntoGrap
(https://protegewiki.stanford.edu/wiki/OntoGraf); The graph shows classes, object
properties, domains and ranges.

Table 4.2 Overview of the OWL syntaxes

Syntax Usage
RDF/XML commonly known universal serialization; suitable for exchange
OWL/XML suitable for processing by XML tools
Functional Syntax follows the ontology structure, not abstract syntax
Manchester Syntax human-friendly format
Turtle human-friendly format

further stored as the new ontologies. To obtain CWA results, inferences can be queried by
SPARQL including SPARQL algebra.

Reasoners provide mainly the following services:

1. Realisation

2. Classification

3. Satisfiability

4. Entailment

5. Consistency
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Figure 4.14 An example of Laboratory class from the example ontology; Class hierarchy is
shown on the left side; the right side shows explicitly defined class axioms on white back-
ground and axioms automatically inferred by semantic reasoner on the yellowish background.

A list of the available reasoners, including Fact++15, Hermit16, Pellet17, and ELK18, and
their descriptions is provided by the OWL group at the University of Manchester19.

Semantic Web Rule Language Semantic Web Rule Language (SWRL) [29] is designed
to specify rules in the expressive power of OWL DL constructs. SWLR rules are readable
and intuitive to write. However, not all semantic reasoners support SWRL. SWRL rules are
substitutable by common OWL DL constructs.

15http://owl.man.ac.uk/factplusplus/
16http://www.hermit-reasoner.com/
17https://github.com/stardog-union/pellet
18https://www.cs.ox.ac.uk/isg/tools/ELK/
19http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
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Figure 4.15 The structure of OWL 2.0 (http://www.w3.org/TR/2009/WD-owl2-overview-
20090327/)

Open Biomedical Ontologies

Open Biomedical Ontologies (OBO)20 provide a set of biomedical controlled vocabularies.
OWL is primarily designed to provide a computable ontology, describing any domain in
a generic (top-down) approach. OBO is designed to provide an ontology describing biological
domain in a specific (bottom-up) approach. OBO does not support automatic reasoning.
Transformation mechanisms between OBO and OWL (or vice versa) exist but losses of
expressiveness are unavoidable. While OWL is popular with computer scientists, OBO is
more popular with computational biologists. Since the OBO usage is very narrow, it is not
considered further.

20http://www.obofoundry.org/
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4.5.3 Semantic web

The current WWW can be perceived as a decentralized knowledge-base composed from
hyper-linked documents. The semantic web can be considered as an extension of WWW
using aforementioned concepts. The semantic web architecture is shown in Figure 4.16.

Figure 4.16 An architecture of the Semantic Web [54]

A bottom layer specifies the identifiers in a URI syntax and codeset. The second layer
specifies standardized serialization format as the XML for RDF (third layer) graphs, names-
paces and XML schemata. Above the RDF graphs, taxonomy extensions (RDFS), ontologies
(OWL), rule languages (SWRL or Rule Interchange Format (RIF)) and SPARQL are speci-
fied. The unifying logic layer deals with automatic deduction of information from ontologies
and includes semantic reasoners. The proof layer is designed for verification of the deduced
expressions. The thrust layer ensures trustworthiness of returned data.

It is important to mention, that not all layers are fully implemented (e.g. Trusts) so far
and thus the overall architecture is theoretical.
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4.6 NoSQL databases

The noSQL (not-only SQL) databases represent a specific storage category, which is not
based, unlike RDBs, on the table structure. Main purpose of the noSQL DBs is to provide
a data storage system suitable for a huge amount of unstructured data, data which cannot
be structured or data which could be structured but tabular representation is not convenient
(OO model, RDF). Three major representatives within a wide variety of NoSQL database
concepts are:

• Key-value repositories based on associative arrays, where a unique key is related to an
arbitrary value, i.e. dictionary concept

• Document databases providing a repository for encapsulated data in the standard
formats like XML, JSON etc.

• Graph databases adapted to graph-structured data, e.g. RDFs

NoSQL databases will be discussed and used further in this work.



Chapter 5

Mapping between the models of various
levels of expressiveness

This chapter describes relationships between features and elements of the data models
described in chapter 4, it discusses differences in their mutual expressive power and highlights
incomparable elements/features. Consequently, it proposes a set of mapping rules for
preserving maximal compatibility and interoperability across the models within the same
domain.

5.1 Spoken word to ER model

From a perspective of ER model, a spoken word has nearly unlimited expressive power.
Therefore, initial assumption is that only simple grammar sentences are considered and those
are from strictly specified domain, where word unambiguity is ensured. Correct identification
of nouns, adjectives, verbs and numerals (implicit and explicit) is helpful in case of ER model
design. Also position of nouns in the sentence is crucial, i.e. subjects and objects. Precise
determination of [subject-predicate-object] triples is key for almost any data model design.
Table 5.1 shows the basic relationships.

Table 5.1 Relationships between spoken word and ER model elements

Spoken word ER model
Noun (Subject) Entity/Attribute
Noun (Object) Attribute
Verb (Predicate) Relationship
Numeral Cardinality
Other Dependency, constraint, etc.
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5.2 ER model to spoken word

Reverse relationships from Table 5.1 can be used to construct simple sentences. Those
sentences should be meaningful (semantically, not grammatically) without any additional
semantics, otherwise the model is probably poorly proposed, i.e. entities and relationships
could be identified in unsuitable way.

5.3 ER model to OO model

Mapping between ER model and OO model is straight as the OO concept fully supports all
elements/features supported by ER concept. Table 5.2 shows OO model equivalents for ER
model elements/features.

Table 5.2 OO model equivalents for ER model elements/features

ER model OO model
Entity Class
Attribute Attribute
Relationship Association
Cardinality Multiplicity

5.4 OO model to ER model

As OO model has stronger expressive power than ER model, some elements/features must be
simplified (and thus, some expressiveness is lost) for backward mapping (Table 5.3). The
set of OO model elements/features was selected according to those supported by UML class
diagram.

5.5 OO model to XSD

XSD supports various ways to express same or similar concepts (e.g. attributes) and that
makes the XSD expressive power slightly stronger than that of OO model. There is no
semantic difference if an attribute is defined as an XML attribute or an XML element. However,
an additional user-defined rule precisely specifying how those two ways should be used,
could draw on this ability and extend the expressiveness; e.g. XML elements could carry
attributes directly related to described data model and XML attributes could describe the
external context. Ambiguous mapping proposals are seen in Table 5.4 and 5.5.
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Table 5.3 Mapping of OO model into ER model elements/features

OO model ER diagram
Class Entity
Attribute Attribute
Encapsulation N/A
Methods N/A

Multiplicity

Cardinality; multiplicity has to be simplified as follows
(? substitutes any natural number but 1 or 0)
• 1 ->1
• ? –>n (restriction NOT NULL)
• * ->n
• 0..? ->n
• ?..? –>n

Association Relationship
Aggregation Relationship with loss of the “is part of” information
Composition Relationship; the entity of a composite class has to carry

a foreign key referring to a component class entity
Dependency N/A
Specialization/Generalization N/A

Table 5.4 Mapping of OO model into XSD elements

OO model XSD
Class Complex type
Complex attribute Element / Sequence type / Complex content / Complex type
Primitive attribute Element / Attribute / Simple content / Simple type
Multiplicity Minimal occurrence / Maximal occurrence
Generalization/Specification Extension
Association Group
Aggregation/Composition Extension / Group / Group attribute

5.6 XSD to OO model

Adequately to previous section, inverse mapping from XSD to OO model elements is
proposed in Table 5.5.

Not all available XSD 1.1 elements are described in Table 5.5. More elements can be
found in W3C recommendation1. Their usage is very specific and therefore, they are not to
be described here.

1https://www.w3.org/TR/xmlschema11-1/



5.7 ER model to RDF/OWL 60

Table 5.5 Mapping of XSD elements into OO model elements

XSD OO model
Complex type Class/Attribute
Sequence N/A
All Multiplicity 1
Choice Multiplicity 0..*
Occurrence Multiplicity ?..?
Element Attribute/Class
Attribute Attribute
Simple content Attribute
Complex content Attribute
Extension Generalization/Specialization
Group Aggregation/Composition/Association/Generalization
Attribute group Aggregation/Composition
Element any N/A
Element anyAttribute N/A
Substitution N/A (Dependency/Association/Generalization)

5.7 ER model to RDF/OWL

The relationship between two relations in ER model can be considered as a [subject-predicate-
object] triple. In the same manner, the columns of one table/relation can be assigned to the
relation as a triple column-"assigned_to_relation"-table (Table 5.6).

Table 5.6 RDF/OWL equivalents for ER model elements/features

ER model RDF/OWL
Entity rdf:class
Attribute rdf:resource
Relationship rdf:property
Cardinality owl:cardinality

Detail information about the transformation is provided in, e.g. [44]. It is important
to realize that the outcome graph reflects only the structure of ER model and no implicit
semantics. Additional semantics can be achieved with pre-defined ontology, which can be
included into mapping process. There are some tools, which transform relational database
schema into RDF graph or provide SPARQL endpoint over the data in relational database
with the ontology support including D2RQ2, whose architecture is shown in Figure 5.1.

2http://d2rq.org/
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Figure 5.1 D2RQ Architecture [5]

The main purpose of D2RQ is to provide an interface allowing users to query the RDB by
SPARQL. During the creation process of the virtual RDF graph the additional ontology can
be included and linked by proprietary D2RQ mapping. This ontology must fully correspond
with RDB model and has to be created manually. D2RQ platform is separated into three
parts:

• D2RQ mapping language

• D2RQ Engine

• D2R Server

The mapping language is designed for a specification of the relationships between ER
model and the ontology. The engine processes the mapping and queries connected to
repositories. And finally, server provides a user interface (SPARQL, HTML and RDF based).

EEGBase implements D2RQ [57] in combination with Apache Jena3 and OWL API4.
D2RQ is used for a construction of Jena-based RDF graph, which is serialized by OWL API.

5.8 OO model to RDF/OWL

Even though both, OO model and RDF/OWL, support the concept of classes, it is important
to realize that the meaning of them is different. While OO model classes can be considered
as templates for instances carrying data modelled in advance, RDF/OWL classes can be

3https://jena.apache.org/
4http://owlapi.sourceforge.net/
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considered as sets of individuals. This is reflected also in the absence of inheritance/gener-
alization feature. However, as the arbitrary predicate can be constructed, the possibility of
user-defined predicates representing OO model relationships is ensured. Table 5.7 shows the
potential equivalents between OO model and RDF/OWL elements.

Table 5.7 Mapping of OO model into RDF/OWL

OO model RDF/OWL
Class rdf:class
Attribute rdf:class
Encapsulation N/A
Methods N/A
Multiplicity owl:restriction (minQualifiedCardinality, maxQualifiedCar-

dinality, someValuesFrom, allValuesFrom,cardinality)
Association owl:objectProperty, owl:equivalentClass, rdfs:subClassOf
Aggregation owl:objectProperty, owl:equivalentClass, rdfs:subClassOf
Composition owl:objectProperty, owl:equivalentClass, rdfs:subClassOf,

owl:Union
Dependency owl:objectProperty, owl:equivalentClass
Specialization/Generalization owl:objectProperty, owl:equivalentClass, rdfs:subClassOf

EEGBase implements a transformation of the OO model into RDF graph using JenaBean5.
The solution is based on the Object-Relation Mapping (ORM) framework Hibernate. The
transformation rules are in-scripted into Java Beans as Java annotations. The main disadvan-
tage of the solution is its double transformation: from RDB to OO model by Hibernate and
from OO model to RDF graph by JenaBeans.

5.9 XML and XSD to RDF/XSD

RDF provides the rdf:XMLLiteral datatype within which whole XML can be stored as
a literal. However, this approach does not append the content of the XML into the queryable
RDF graph.

A potential transformation of XML supported by XSD into OWL/RDF graph is realized
via incremental extension of the outcome graph by progressive passing of XSD (i.e. a main
graph structure) and XML (i.e. creation of the individuals).

XSD element equivalents in RDF/OWL elements are adequate to OO model to RDF/OWL
mapping. UIRs can be created from the XSD namespaces, element names and element paths

5http://code.google.com/p/jenabean/
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within the XSD. As XSD describes a structure of XML, the mapping also refers to classes
and property definitions. Table 5.8 shows the potential mapping relationships.

Table 5.8 Mapping of XSD elements into RDF/OWL elements

XSD RDF/OWL
Complex type rdf:class, owl:equivalentClass, rdfs:subClassOf
Sequence N/A
All owl:allValuesFrom
Choice owl:cardinality, owl:someValuesFrom
Occurrence owl:minQualifiedCardinality, owl:maxQualifiedCardinality,

owl:someValuesFrom
Element rdf:class
Attribute rdf:class
Simple content owl:dataProperty, owl:literal
Complex content rdf:class
Extension owl:objectProperty
Group owl:objectProperty, owl:union, owl:equivalentClass
Attribute group owl:objectProperty, owl:union, owl:Intersection
Element any N/A
Element anyAttribute N/A
Substitution N/A (alternative – Dependency/Association/Generalization)

XML elements carrying data could be asserted to pre-created classes as individuals of
those classes. URIs of these individuals could be constructed from the logical path from the
XML root to the individual element. RDF and RDFS uses the same datatype set as XSD
does, therefore, the literals can be used as they are.

A practical use-case of such transformation is the experiment protocols in EEGBase. As
the exported RDF graph reflects the EEGBase RDB structure, protocols are kept in XML
files and thus exported as string literals. Decomposition of these XML files supported by
valid XSD would extend the RDF graph of the protocol content.

5.10 RDF/OWL to models with less expressiveness

As RDF/OWL could acquire a very high complexity and expressiveness in its OWL2 DL
dialect, backward mapping is a matter of manual work and thus no mapping proposal is
presented here.
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5.11 Semantic hierarchy

Described data modelling concepts provide various features ensuring various levels of
expressiveness that are not always mutually transformable. Thus, a hierarchy of the concepts
can be constructed, where the expressiveness grows with higher levels. In such a structure
each level carries as much information from the lower level as possible. While bottom-
up steps lever the expressive power of its predecessor, top-down steps may be associated
with a loss of information [58]. Figure 5.2 shows the hierarchy composed on basis of
the mentioned concepts apart from XSD since it cannot be considered as fully-fledged
standalone modelling concept even though its expressiveness slightly differs from the other
concepts. The figure shows that ER model uses only a terminology from the dictionary
level, OO model uses terminology, attributes, relationships and cardinalities from the ER
model level etc. Despite the fact, that the ontology is the most distant from the simple
key-value dictionary/terminology, the ontology rid of the properties/predicates is essentially
a terminology. An important ability of all layers is their potential to be expressed by triples
[subject, predicate, object]; a dictionary which is composed of pairs implicitly uses one
predicate in common. Therefore, all layers can be serialized into an RDF graph and queried
in a unified way using the same terminology.
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Figure 5.2 Semantic hierarchy of data models: Blue boxes represent discussed models; White
boxes show the features carried from the lower model to a model with stronger expressive
power



Part IV

Electronic Health Records



Chapter 6

Electroencephalography recording as an
Electronic Health Record

This chapter evaluates the data/metadata as records with medical/health characteristics. Since
the other electrophysiological examinations, e.g., ECG, are considered as a routine medical
records, and thus, they are described in details within various medical/clinical terminologies
(e.g. SNOMED-CT), EEG/ERP can be deliberate in the same way. However, there is a lack
of EEG/ERP descriptions in these terminologies/standards.

6.1 Computable health and medical records

There are various types of records which differ in their intended usage but not necessarily in
their content [22], [52], [21].

Electronic Medical Records (EMR) mostly stand for an electronic alternative of paper
medical records. In general, EMR system is an electronic equivalent to a medical record file
cabinet. EMRs are stored at one place, i.e. General Practice (GP), managed by the physician
of that GP and they are not supposed to be shared or integrated into any complex system. The
institution/GP is responsible for the privacy and security. A collection of patient’s EMRs can
be consider as a patient’s state history in the field of that the institution/GP is operating in.

Electronic Health Records (EHR) are intended to cope a more complex role over
various institutions a thus provide information about patient state across multiple domains.
Essentially, EHRs describe symptoms, diagnosis, laboratory tests, clinical examination
findings, prescriptions, treatments and procedures, referrals, etc., gathered from all levels
of health care systems (e.g. primary care, secondary care, mortality register, etc.) [61].
EHRs are designed to be shared inter-institutionally. EHRs are structured, semi-structured
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and unstructured. The sharing ability and potential utilization for research purposes (e.g.
EHR-driven phenotyping) are also eased by implementing controlled clinical terminologies
and ontologies, standardized data formats, communication protocols etc.

Personal Health Records (PHR) represent health records fully maintained by patient.
Patient can gather health data from his/her physicians (textual EMRs, x-ray images, etc.),
household medical devices (glucometer, sphygmomanometer, etc.), smart phone application-
s/trackers (heart rate, sleep data, activity statistics, etc.) and others. PHR carries information
about patient’s health history for patient’s personal usage.

According to these concepts typical user groups of overlaying information systems can be
determined (Figure 6.1). Patient is a user of the personal (typically user-centric) system and
owns his/her PHRs. A physician is a user of the EMR/EHR (typically data-centric) system
and maintains patient’s data. There can also be a situation when patient has read access to his
data in EMR/EHR systems (e.g. IZIP1), or the physician has access to data in PHRs granted
by the patient (e.g. Microsoft HealthVault2). Apart from patients and physicians, a third user
group consists of third-parties involved into health care processes. Typical representatives of
this group are insurance companies providing expense information based on the interventions
recorded in EHRs.

Figure 6.1 Abstract graphical representation of health systems user groups [56]

1http://www.izip.cz/
2https://www.healthvault.com/
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6.2 Overview of clinical/medical standards

Standards implemented over structured EHRs and EHR systems can leverage data unambigu-
ity, interoperability and ability for scientific purposes. There are two main representatives:
HL7 and openEHR. For the deeper context, also ISO/CEN 13606 and Czech national Dasta
standard are described.

6.2.1 CEN/ISO 13606

The European standard CEN/ISO 13606 [51] is designed to achieve semantic interoperability
in the electronic health record communication3. The standard is based on the so-called
Dual Model architecture which consists of the OO generic reference models (RMs) and
specific archetypes defined as constraint-based models of domain entities. RMs contain
entities for representing any information of EHR. Archetypes define a clinical concept, i.e.
knowledge. While RMs are immutable, archetypes are mutually independent and they are
being developed in particular needs. According to the official CEN/ISO 13606 website4,
RMs contain:

1. a set of primitive types

2. a set of classes defining the EHR building blocks; any annotation in an EHR must be
an instance (so-called entity) of one of these classes; CEN/ISO 13606 defines six types
of entities: folder, composition, section, entry, cluster, and element

3. a set of auxiliary classes describing the context information; these are supposed to be
attached to the EHR annotations (e.g. versioning information)

4. a set of classes describing demographical data

Archetypes are composed from header, definition and ontology sections. The header section
contains metadata about the archetype. The definition section contains a description of the
clinical concept according to RM used. The description section constraining the entities on5:

• range of attributes of primitive types

• existence of attributes

• cardinality of attributes

3http://www.en13606.org/the-ceniso-en13606-standard
4http://www.en13606.org/the-ceniso-en13606-standard/reference-model
5http://www.en13606.org/the-ceniso-en13606-standard/archetype-model
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• occurrences of objects

• attributes of complex objects

The ontology section binds the entities with terminologies and definitions.
Archetype Definition Language (ADL) for archetype manipulation is a formal computable

language for expressing and serializing archetypes.

6.2.2 openEHR

openEHR6 is an open domain-driven platform for developing flexible e-health systems. This
platform, with respect CEN/ISO 13606, presents a set of generic RMs as an abstract specifica-
tion of elements/processes in the health sphere (EVALUATION, ACTION, OBSERVATION,
INSTRUCTION, ADMINISTRATION ENTRY). The RM also defines the structure of (i)
archetype sets (COMPOSITION, SECTION) and (ii) datapoints (CLUSTER, ELEMENT,
TREE). Data types are also defined by openEHR RM (Figure 6.2).

Figure 6.2 openEHR RM elements [4]

Above the RM, the archetypes, abstract representations describing particular domains
or their parts, are modelled (e.g. ECG or blood pressure). While RM is only an OO-based

6http://openehr.org/
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abstract model, which can be expressed, e.g., by UML (Unified Modelling Language),
openEHR archetypes can be expressed in the machine-readable ADL (Figure 6.3). The
archetype structure consists of five mandatory sections: archetype ID, concept, language,
definition, and ontology and four optional sections: specialization, description, invariants,
and revision history. While some sections represent an archetype metadata set, the core of the
archetype is specified in definition and ontology sections. The definition section describes
the domain the archetype is focused on. Each attribute (so-called datapoint in the openEHR
terminology) is denoted by its internal code/ID. These IDs are paired with their real names,
binding codes, and definitions in the ontology part. The binding sub-part refers to the terms
used from an external resource (ontology, terminology, etc.), typically SNOMED-CT or
odML terminology in the case of this work. The revision history part of the archetype carries
archetype metadata dealing with the changes in structure of a once-approved archetype. Each
archetype has its life-cycle state specified in its metadata set according to its phase in the
publishing process. [59]

Figure 6.3 ADL Archetype Structure [2]

Archetypes should be designed in a general way to enhance their re-usability. Afterwards,
the archetypes are usually implemented via templates, the third layer of the openEHR
multilayer approach, which allows users to define more restrictions, connect two or more
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archetypes together, and reduce the datapoint set of the archetype. To maximize re-usability
of the existing archetypes, public repositories called Clinical Knowledge Managers (CKMs)7

were built. Since no EEG archetype exists in the CKM so far, there was an opportunity to
create it. [59]

openEHR also includes grammar specifications of a querying language, the Archetype
Query Language (AQL). AQL is developed for searching clinical data found in archetype-
based EHRs, however no current formal implementation of a query engine exists.

Even though openEHR is not matured in some ways (e.g. in the quality of development
tools), it has been successfully deployed at various places in the UK, Australia, and Russia.
Moreover, with respect to its active community and openness, the framework has a chance of
becoming more widespread in the future. [59]

6.2.3 Health Level Seven

Health Level Seven (HL7)8 [18] set of standards operates on the seventh level of the com-
munication ISO/OSI model9, i.e. the application level. A primary purpose of HL7 is to
standardize communication process between various health care systems. HL7 handles a data
format as well as a content of clinical, administrative, financial and logistical data. Currently,
two supported versions exist: HL7v2.x and HL7v3. The differences between version two
and three are significant and thus neither backward compatibility is supported.

HL7 version 2.x

HL7v2.x messages use a proprietary textual format. Its syntax is similar to a Comma Sepa-
rated Values (CVS)) principle. Higher subversions of the HLv2.x are backward compatible.
An example of the HL7v2.3 message shown in Listing 6.1 is taken from the Priority Health
website10.

Listing 6.1 An example of the HL7v2.3 message

MSH| ^ ~ \ & |CERNER | | P r i o r i t y H e a l t h | | | | ORU^R01 |
Q479004375T431430612 | P | 2 . 3 |

PID | | | 0 0 1 6 7 7 9 8 0 | | SMITH^CURTIS | | 1 9 6 8 0 2 1 9 |M
| | | | | | | | | | 9 2 9 6 4 5 1 5 6 3 1 8 | 1 2 3 4 5 6 7 8 9 |

PD1 | | | | 1 2 3 4 5 6 7 8 9 0 ^ LAST^FIRST^M^^^^^ NPI |

7http://www.openehr.org/ckm/
8http://www.hl7.org/
9https://www.iso.org/standard/20269.html

10http://www.priorityhealth.com/provider/manual/office-mgmt/data-exchange/hl7/hl7-samples
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OBR| 1 | 3 4 1 8 5 6 6 4 9 ^HNAM_ORDERID|000002006326002362 |648088^ B a s i c
M e t a b o l i c P a n e l | | | 2 0 0 6 1 1 2 2 1 5 1 6 0 0 | | | | | | | | | 1 6 2 0 ^ Hooker ^

Ro be r t ^L | | | | | | 2 0 0 6 1 1 2 2 1 5 4 7 3 3 | | | F
| | | | | | | | | | | 2 0 0 6 1 1 2 2 1 4 0 0 0 0 |

OBX | 1 |NM| GLU^ Glucose Lvl | 5 9 | mg / dL |65 −99^65^99 |L | | | F
| | | 2 0 0 6 1 1 2 2 1 5 4 7 3 3 |

HL7 version 3

HL7v3 goes further and it aims to cover all workflows in the health care domain. It draws on
an OO principle and presents the Reference Information Model (RIM). EHR messages are
designed according to RIM and stored in XML files. The main part of HL7v3 is the Clinical
Document Architecture (CDA) [18]. CDA defines a specification of messages construction
respecting RIM. RIM and CDA messages can be considered as the equivalents to RM
and archetypes in ISO/CEN 13606 or openEHR. An openEHR community defines various
weaknesses in CDA [9] and proposes their archetypes in a way to eliminate those limitations.
A transformation between HL7 CDAs and ISO/CEN 13606 (openEHR perspectively) is
a subject worth of investigation in, e.g. [46]. The mapping without loss of precision is not
guaranteed, however some mappings are defined.

HL7 is mainly designed for a data transfer between institutions, while CEN/ISO 13606
and openEHR are focused on the explicit specification of the clinical content and work-
flow. Moreover, their design is proposed for user-centric systems, unlike that of HL7. The
openEHR concept and features can help in the context of problems related to data/metadata
separation.

HL7, mainly in the version 2, is internationally implemented in various countries over
whole world including Australia, UK, China, USA etc.

Currently, HL7 does not support publicly available repository of the domain-based
constraint models, and thus, there is no explicit definition of the EEG/ERP domain available.

6.2.4 DASTA

DASTA11, in contrary to aforementioned standards, is not a big player on the field of
EHR standards. However, it is the only representative of the Czech national data standard
respected by the Ministry of Health and national health care system. DASTA, which was
established in 1997, is an open data standard for the communication between information
systems. It also includes controlled vocabulary for annotating EHRs by clinical codes. The

11http://www.dastacr.cz/
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vocabulary contains a set of Lists of Values (LOV) covering clinical, laboratory, statistical
and administrative domains. Besides the LOVs, DASTA also includes tools and documents.
DASTA does not support predefined generic models like RMs or RIM.

Currently, there is no detailed EEG/ERP domain description in DASTA LOVs.



Chapter 7

EEG/ERP domain in openEHR concept

This chapter describes the development process of the new openEHR archetypes describing
the experiments in EEG/ERP domain. The content is mostly taken from [59].

7.1 Experimental EEG/ERP domain in EHR standards

Since most data and metadata collected during experimental work in the EEG/ERP domain
could be classified as health data, it is beneficial to apply some recommendations and
frameworks, designed primarily for clinical health data and Electronic Health Records
(EHR), to them:

• a unified and explicitly defined concept controlled by higher authorities,

• a unified data description regardless of the institution in which the data has been
acquired (e.g. in a hospital or experimental laboratory),

• knowledge of the concept that makes data sharing simplified and data interpretation
unambiguous,

• predefined data structures validated by domain experts in a ready-to-use form that
could be used within the data structures describing the EEG/ERP experiment,

• an implicit logical separation of data and metadata,

• analytical tools and storage solutions driven by a unified concept,

• a middle-ware for potential mapping between existing formats.
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HL7 is mainly designed for data transfer between institutions, whilst CEN/ISO 13606
and openEHR are focused on the explicit specification of clinical content and work-flow.
Moreover, their design is proposed also for user-centric systems (unlike HL7). The openEHR
concept and features could be helpful in the context of problems related to data/metadata
separation.

7.2 Design of EEG archetypes and templates

Firstly, it is convenient to mention, that the purpose of the work is not to compete with the
existing proposals and solutions, but to be in line with them and their current potentials.

The design procedure of a basic EEG/ERP archetype set can be described in the following
steps:

1. the concepts and their sub-parts are determined within the EEGBase experiment
structure, NIX structure and EDF+ attributes,

2. the same and/or similar concepts are aggregated,

3. the redundant and unimportant attributes are eliminated,

4. the determined concepts and their semantically most suitable openEHR RMs are
matched (when this is not possible, the concept is separated into smaller pieces and
matched with the RM Cluster),

5. the archetypes corresponding to the determined concepts are implemented in ADL,

6. the archetypes are bound with external terminology,

7. the templates covering the EEGBase experiment structure are implemented.

7.2.1 Concepts determination

Figure 7.1 shows an example of the concepts determined from the EEGBase experiment
structure. Since the experiment context is superior to the experiment itself from the hierarchi-
cal perspective, it should be a responsibility of the system which implements the archetypes
to link it properly with external archetypes/data (e.g. subject’s/experimenter’s demographical
information or information related to the project are not described inside the new archetypes).
The subject’s overall characteristics and state were composed from other health records
which were not directly connected to the EEG experiment. Therefore, the red boxes in the
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figure are not further considered in the archetypes design. The NIX and EDF+ attributes
were processed in the same way.

Figure 7.1 The concepts determined from the EEGBase experiment structure (blue boxes -
metadata related to the recording itself; purple box - the binary file representing raw brain
waveforms; orange boxes - data and metadata related to the experiment/trial scenario; green
boxes - the experiment metadata; red boxes - the context of the experiment and the description
of the tested subject).

7.2.2 Concepts aggregation and attributes elimination

During this phase the attributes of the same concepts, but of various data representations
(EEGBase, NIX, EDF+), were aggregated. The following rules were applied:

• if two or more attributes are identical, then only one is kept,
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• single attributes are kept,

• if two or more attributes are semantically identical (i.e. they have the same meaning
but different representation), then only one is kept following the resource priority: 1.
NIX; 2. EEGBase; 3. EDF+

• unimportant attributes or attributes with no explicit meaning (e.g. the attributes related
to specific resource structures like IDs) are removed

The final attribute set is shown in Figure 7.2.

Matching concepts with openEHR reference models

When the processes of the concepts determination and aggregation were completed, the
matching of concepts characteristics with the characteristics of openEHR RMs was necessary.
openEHR presents five RMs representing the medical entry types (Observation, Evaluation,
Action, Instruction and Administrative Entry), two RMs expressing the entry structure
(Composition and Section) and three RMs characterizing the data structure (Element, Cluster
and Structure). Because of the evident EEGBase metadata diversity (recording metadata,
experiment metadata, scenario metadata, etc.), the final model had to be composed of
multiple archetypes. As an alternative to a data container, openEHR provides so-called RM
Composition; a Report Composition archetype exists in the current CKM. This archetype is
perfectly suitable also for EEG/ERP experiment data and metadata. The following archetypes
are then connected to the Report archetype via an inner reference solution - a so-called slot
(Figure 7.3).

1. Problem/Diagnosis (Evaluation RM)

2. Medication order (Instruction RM)

3. Experiment scenario (Cluster RM)

4. EEG/ERP Result (Observation RM)

The Problem/Diagnosis archetype (Figure A.8), Evaluation RM, that already exists in
the CKM was included for the specification of various diagnoses, which are closely related
to the EEG/ERP experiment itself and not to the subject’s overall health status (e.g. sleep
deprivation induced for purposes of the experiment).
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Figure 7.2 The merged recording metadata concept (green - EEGBase/BrainVision attributes;
red - NIX attributes). This metadata set contains the attributes taken from the EEGBase and
NIX structures. The attributes are aggregated according to the predefined set of rules. No
attribute from EDF+ is used.

The Medication order archetype (Figure A.7), Instruction RM, that is also stored in CKM
serves for the description of the medication or other substances that are prescribed/adminis-
tered to the subject for the purpose of the experiment only, i.e. it excludes the medication
prescribed to the subject for any other reasons, the long-term medication included.

The Cluster RM archetype is the simplest archetype structure that serves for the tree-like
data structure description without any reference to a specific clinical work-flow. Since the



7.2 Design of EEG archetypes and templates 80

Figure 7.3 The newly proposed (green) and existing (blue) archetypes connected into Com-
position RM.

Experiment scenario has no semantic nor structural relations to other specific RMs (Medical
Entry RMs), it is designed as a cluster.

Finally, data acquisition, i.e. data and recording metadata, corresponds to the data
and protocol part of the Observation RM (its characteristics and structure can be seen in
Figure 7.4). The Observation RM also covers information about time events and the subject’s
state (it differs from the Problem/Diagnosis archetype). Therefore, the EEG/ERP Result
archetype could include the whole recording concept and become the most complex of all
the proposed archetypes.

Figure 7.4 Definition of Observation RM [3]: Protocol attribute describes the way the
observation was realized (e.g. used hardware/software). Events attribute represents the series
of time events during the observation, i.e. a set of events represents the observation history.
Each event has its Data attribute, i.e. the observation results, and its State attribute describing
the subject’s state related to the observation (e.g. the subject’s position - standing/sitting).

Besides the selected concepts and archetypes corresponding to them, two more archetypes
describing Software (Figure A.9) and Stimulus (Figure A.17 and A.18), also missing in the
CKM, were determined as necessary. The base for these archetypes was taken from the
odML electrophysiological terminology.

Since the odML structure can be expressed in a tree-like form, the Cluster RM could
be used for any odML structure without any loss of expressive power. Figure 7.5 displays
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the transformation rules (dotted lines) and transformations of odML sections into openEHR
clusters. The odML structure manipulates four basic elements: the root section, section,
property, and value. Each part also has its attribute set. The root section represents one
archetype and its attribute set was directly mapped to the archetype metadata set. Each
odML section/subsection can be represented as a datapoint of the type cluster/nested cluster
in the archetype body. odML Section attributes were transformed into cluster metadata.
Datapoints were then constructed from odML properties and their values specify, e.g., data
types, definitions, units, or enumerations. Enumerations were transformed into the archetype
body as predefined internal codes of the datapoints. While odML has no predefined datatype
set, the datatypes used were manually compared and paired (Table 7.1) with the openEHR
datatype set (according to the odML terminology data meaning and nature).

Table 7.1 odML and openEHR datatypes pairs

odML terminology openEHR datatype notes
Person N/A slot for the demographic archetype instances
Date date time
Text text
Int count
String text
Float quantity
Binary multimedia
URL URI
Datetime date time
Time date time in case of start and end time presence at

once, those times are merged in an interval
of datetimes

Boolean boolean
2-tuple N/A substituted by cluster containing two

text/quantity/count types

The mapping could be used for any odML "sections to cluster" archetype transformation.
Therefore, the possibility of the further extension of the EEG/ERP archetype composition
according to odML sections is ensured. Since the odML format is used for NIX metadata as
well as for EEGBase experiment metadata, there is a possibility that new archetypes will be
needed in the future. As the odML terminology is machine-readable, the proposed mapping
could be used for the development of a tool for automatic odML to ADL transformation. All
newly proposed archetypes are presented in detail in section 7.3.
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Figure 7.5 Mapping of the odML structure to the openEHR archetype based on Cluster RM.
The left side of the figure shows the archetype sections: the sections in square brackets are
optional; the sections without brackets are mandatory. The right side of the figure shows the
odML data model [23] with relations (the light blue lines) between odML elements. The
dashed lines show the relations/transformation rules between models. The middle part of the
figure refers to the additional steps necessary for the transformation.

7.2.3 Binding archetypes with external terminologies

Referencing terms in odML terminology for electrophysiology

It is also critical to bind archetype datapoints with external terminologies. The odML termi-
nology for electrophysiology represents a comprehensive controlled vocabulary. Furthermore,
since odML is used within NIX and EEGBase and parts of the terminology serve as a base
for recently proposed archetypes (described in Section 7.3), it is suitable to bind archetype
terms to the odML terminology. However, the odML terms have no explicitly defined refer-
enceable (and dereferenceable) IDs. Since the terminology is stored in a public repository
(https://github.com/G-Node/odml-terminologies) as a set of XML files, a particular term (the
XML element the term is being kept in) of the odML terminology can be referenced. This
reference can be labelled with a unique ID. These IDs/pointers were created in four steps:

1. the file containing the root section corresponding to the particular concept was local-
ized,

2. the XPath (the language for addressing parts of an XML document [13]) query to the
specific XML element containing the searched term was constructed,

3. the paths obtained in step 1 and 2 were aggregated into one string,

4. a short unique alias (that serves as an identifier to the string created in step 3) was
assigned.
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As a running example, the term Reference, representing a reference electrode, was
selected. The reference electrode term is located (from the structural point of view) in the
Electrode section with the property Usage and value Reference.

All odML terminology XML files are available in a public repository and accessible
via the Uniform Resource Locator (URL). In our example, the URL pointing to the file
containing the Electrode section is shown in Listing 7.1.

Listing 7.1 The URL of the Electrode section

h t t p : / / p o r t a l . g−node . o rg / odml / t e r m i n o l o g i e s / v1 . 0 / e l e c t r o d e /
e l e c t r o d e . xml

The pointer to the reference electrode can be expressed as it is shown in Listing 7.2;
the hash separates the section name Electrode from the file URL. The colon separates the
property name Usage from the section name and the slash separates the property name Usage
from the enumerated item.

Listing 7.2 Step 1: Pointer to the Reference term in the Electrode odML section

h t t p : / / p o r t a l . g−node . o rg / odml / t e r m i n o l o g i e s / v1 . 0 / e l e c t r o d e /
e l e c t r o d e . xml# E l e c t r o d e : Usage / R e f e r e n c e

The diagram in Figure 7.6 shows the pointer string construction.

Figure 7.6 The syntax diagram describing the pointer string construction.

In the second step, an XPath string querying the element with the searched term from
the selected XML file is constructed. Listing 7.3 shows the XPath query for the running
example.

Listing 7.3 Step 2: the XPath query for the term Reference within the electrode odML section

odML[ @vers ion = " 1 " ] / s e c t i o n / p r o p e r t y / name [ t e x t ( ) =" Usage " ] / . . / v a l u e [
t e x t ( ) =" R e f e r e n c e " ]

Within the third step, the XPath query (step 2) and the pointer string (step 1) are merged
together. The final string (Listing 7.4) contains the path to the particular file and the XPath
query to the particular element. Thus the pointer string can be automatically dereferenced by
a machine.
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Listing 7.4 Step 3: The merged pointer string and XPath query

h t t p : / / p o r t a l . g−node . o rg / odml / t e r m i n o l o g i e s / v1 . 0 / e l e c t r o d e /
e l e c t r o d e . xml # /odML[ @vers ion = " 1 " ] / s e c t i o n / p r o p e r t y / name [ t e x t ( )
=" Usage " ] / . . / v a l u e [ t e x t ( ) =" R e f e r e n c e " ]

The string from step 3 is not suitable for direct usage inside the archetype. When this
string is used as an external terminology code inside the binding section of the archetype,
existing tools and libraries like the Ocean Informatics Archetype Editor or openEHR Java
libraries evaluate the archetype as invalid. For that reason, aliases were created. Each alias
consists of the prefix ODMLID, a 3-digit section number and a 3-digit term number. The list
of aliases, section numbers, XPath queries, pointer strings, etc. are kept in a separate table,
which is a supplemental resource for the archetypes and templates. In our running example,
the alias bound with the particular internal archetype code is ODMLID007013.

Mapping of the terms from odML terminology for electrophysiology to Unified Medi-
cal Language System Meta-thesaurus

Even though there is no natively supported referencing/dereferencing system for the terms
from the odML terminology for electrophysiology, previous section 7.2.3 introduced the
system which enables that. However, since the odML terminology is not widely accepted
in the medical community, also mapping to existing respected controlled terminologies is
useful.

Unified Medical Language System (UMLS) [6] is a unified interface over many controlled
medical terminologies including SNOMED-CT, International Classification of Disease 10th
Revision (ICD-10), and Clinical Terms Version 3/Read Codes (RCD). UMLS maps semanti-
cally equal terms and their codes from various terminologies internally and defines its own
codding system overlaying these mapping structures. Thus, UMLS Concept Unique Identifier
(CUI) refers to a single term/definition within the meta-thesaurus including many contex-
tual references. Thanks to the mapping structures, UMLS also provides information about
concept relations. UMLS meta-thesaurus provides a Representational State Transfer (REST)
Application Programming Interface (API). Apart from that, there are UMLS searching tools
using Natural Language Processing (NLP) including MetaMap1 [1].

The complexity of UMLS makes the meta-thesaurus non-trivial to use. Provided REST
API enables to search for a term with a knowledge of that term, its CUI or its code in a native
coding system. UMLS release version can be also specified as well as a subset of resources
included in the search. Searching according to a specific term, which is the only way to

1https://metamap.nlm.nih.gov/
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search odML terms, also allows users to specify how strict the results can be, i.e. approximate
match, and exact match. The approximate match option might cause significant number of
results, e.g., there is 898 results for the odML term electrode. A search with the exact match
option returns four results only.

MetaMap is an NLP tool originally proposed for recognizing UMLS concepts in a free
text. Nevertheless, since it supports many of setting parameters it can be utilized for reducing
the number of ambiguous search results mentioned above. In case of the electrode, MetaMap
with appropriate parameters specified returns two results: general definition of electrode and
electrode as a device component. That way, all the odML terms were annotated by CUIs.

Current archetype binding system supports 1:1 mapping only. Therefore, it is not possible
to link multiple external terms with one internal code, i.e. to specify synonyms. Therefore,
current version of the archetypes includes the mapping to the odML terms only.

7.3 Proposed archetypes

7.3.1 EEG/ERP Result archetype

The EEG/ERP Result archetype is based on the Observation RM, covers the EEG recording
and uses the attributes from NIX, EEGBase (the BrainVision EEG format) and EDF+. These
attributes are divided into data and protocol parts and turned into the archetype’s datapoints.
Figure 7.7 shows the final archetype structure.

The protocol part (Figure A.3) describes the metadata important for data interpretation
and recording reproduction. The protocol describes recording conditions and the way the
recording was conducted. The Hardware and Electrode slots are connected with the Device
archetype (designed by openEHR developers together with the Device details archetype;
Figures A.11 and A.12) and describe the used hardware and electrodes, respectively. The
Software slot is connected to the newly created archetype Software of the type Cluster. The
structure of the Software archetype is taken from the odML terminology for electrophysiology
section of the identical name (Figure 7.8). Finally, the Environment slot is connected to the
Environment (Figure A.14) archetype existing in the CKM. Crucial cardinalities (e.g. at least
one electrode per recording is required) are explicitly specified in the archetype body.

The Person’s state part (Figure A.4) is natively supported by the Observation RM. The
state is restricted only to the subject’s position and textual description. The complex subject’s
state characteristics can be expressed by the Problem/Diagnosis archetype of the Evaluation
RM within the same Report Composition.
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Figure 7.7 EEG/ERP Result archetype (Observation RM) structure: The archetype contains
all attributes (Protocol, Data, Events, State) supported by Observation RM to cover recording
conditions, results, time specifications and subject’s position.

The Events part, also natively supported by the Observation RM, represents events as
time intervals when the recording was done.

Finally, the Data part (Figure A.2) is composed of two major branches. The Data
Array branch allows the storage of binary data (e.g. in a BrainVision .eeg file) as complex
structures compatible with NIX. The datapoint structure is designed primarily according to
NIX and extended with some EEGBase (BrainVision) attributes. The Results branch provides
a summary of recording results. As this part is based on the EEGBase experiment attributes,
it contains the attributes closely related to the EEG/ERP experiments only (e.g. statistics of
stimuli events).

7.3.2 Experiment scenario archetype

The Experiment scenario archetype (Figure 7.9 and A.5) based on the RM Cluster is derived
from the EEGBase experiment attributes dealing with a scenario description. The stimulus
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Figure 7.8 Software archetype (Cluster RM) structure: The archetype contains basic software
information identical to that of the odML terminology for electrophysiology.

slot is connected to the Stimulus archetype (not presented for the huge amount of datapoints),
which is derived from the odML section of the identical name. While odML distinguishes
between various stimuli types, the archetype aggregates all datapoints into one structure and
a particular stimulus can be determined using templates (see section 7.3.5).

Figure 7.9 Experiment scenario archetype (Cluster RM) structure: The archetype contains
general information about the scenario, the original scenario files as a multimedia attachment,
information about software in which the scenario was built (via Software archetype), and
information about used stimulus, if needed (via Stimulus archetype).

7.3.3 Problem/Diagnosis archetype

The Problem/Diagnosis archetype based on the Evaluation RM is used as published in the
CKM. The archetype is designed to describe a single health issue that impacts the physical,



7.3 Proposed archetypes 88

mental and/or social well-being of the subject. In the EEG/ERP experiment, it allows us to
specify the experimental condition of the subject only. While health issues are described
in an unstructured format, additional information (e.g. date/time of resolution, severity) is
structured.

7.3.4 Medication order archetype

The Medication order archetype based on the Instruction RM is used as published in the
CKM. The archetype is designed to describe a single item administered to the subject. In
the EEG/ERP experiment, it allows us to specify the medications given to the subject for the
purpose of the experiment only. Besides the item identification, the archetype allows us to
specify the medication order in more than 20 datapoints.

7.3.5 openEHR templates

Since archetypes are mainly used via templates, some testing templates covering the selected
types of EEG/ERP experiments were created. As these templates are too large to visualize,
only template for the developmental coordination disorder in children experiment is shown
in Figures 8.1, 8.2, 8.3, and 8.4.

Also the templates focusing directly on stimuli were proposed according to the odML
terminology. These templates reduce the original set of the Stimulus archetype datapoints to
a subset according to the particular stimulus type characteristics (e.g. Movie, Pulse or Ramp).
As in case of experiment templates a graphical representation is too large to be presented
here.
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Chapter 8

Results

This chapter presents the results of the thesis as follows: (i) a summary of the archetypes
created in chapter 7; (ii) an example of the real experiment taken from EEGBase expressed
in archetype-based structure; (iii) a position of the proposed archetypes in the semantic
hierarchy; (iv) an evaluation of the results against the selected desiderata.

8.1 Summary of created archetypes

Chapter 7 described a creation process of openEHR archetype composition describing
experiments in EEG/ERP domain. Within that process five new archetypes were created
and six were reused. Table 8.1 presents a list of all the used and proposed archetypes.
Figures of all proposed archetypes visualized in Ocean Informatics Archetype Editor1 and
corresponding odML sections where necessary are shown in Appendix 1, Figures A.1 - A.30.
New archetypes were passed to the incubator within the CKM.

Aside from the archetypes, templates for various EEG/ERP experiments from EEGBase
(e.g. developmental coordination disorder in children or driver’s attention) and templates for
particular stimuli were also designed. All templates were created and visualized in Ocean
Informatics Template Designer2. However, only one template is presented here in Figures
8.1, 8.2, 8.3, and 8.4 due to size of templates graphical representations.

1http://openehr.org/downloads/archetypeeditor
2http://openehr.org/downloads/modellingtools
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Table 8.1 List of the archetypes covering the EEG/ERP domain

Archetype Reference Model Status
Report Composition CKM
Medication Order Instruction CKM
Problem/Diagnosis Evaluation CKM
EEG/ERP Result Observation New
Experiment Scenario Cluster New
Software Cluster New
Stimulus Cluster New
Device Cluster CKM
Device details Cluster CKM
Environment Cluster New
Environmental Conditions Cluster CKM

8.2 Exemplary EEG/ERP experiment described in an arch-
etype-driven way

To present how the archetypes cover the domain, an exemplary experiment from EEGBase
focused on a developmental coordination disorder in children, was manually mapped on the
archetype datapoints. Figures 8.1, 8.2, 8.3, and 8.4 illustrate the simplified experiment, using
one software, one part of hardware set-up, one electrode definition, and one data tag. Figures
show the experiment content inserted into the form generated from the template specified
over the new archetypes.

The experiment focused on the developmental coordination disorder in children was
selected as a one of the most complex experiments in EEGBase containing a binary pro-
tocol/scenario, separated experiment results, and wide spectrum of odML sections in its
metadata set. As it is seen, the used archetype set and corresponding template cover the
experiment data and metadata.

8.3 openEHR archetypes in the semantic hierarchy

The components of the openEHR solution, i.e. reference models, archetypes, templates, and
external terminologies, overlay multiple layers of the semantic hierarchy.
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Archetype ID openEHR­EHR­COMPOSITION.report.v1
Template ID d1609eb0­e949­490e­9028­28583584a87c
MetaDataSet:Sample Set Template metadata sample set

DEVELOPMENTAL COORDINATION DISORDER
Purpose
Simplified example of an experiment Developmental Coordination Disorder in Children

REPORT
Collapse All    Show Annotations

[+/­]other_context [1]

Report ID  804

[+/­] Trial protocol [0..*]

name [1] 

description
The experimental protocol is based on auditory stimulation using the stimuli representing animals and their sounds: 
bleating goat (80% probability of occurrence), barking dog (5%), meowing cat (5%), meowing dog (5%), and barking 
cat (5%); 600 stimuli are used in total during the experimental session. The tested subjects were children of younger 
school age from elementary schools in Pilsen. They were preliminary divided into three groups based on the level of 
their developmental coordination disorder identified by a motor test. During the experimental session, children were 
asked to reply to each target stimulus (dog or cat sound) by pressing one button for sounds of barking dog or 
meowing cat, and the other button for sounds of barking cat or meowing dog.

scenario.zip

[+/­] Software [0..*]

Name [1]  PreSti Presentation

Developer  PreSti 

duration  20

[+/­] Experiment [0..*]

  AUDITORY ERP PROTOCOL IN CHILDREN WITH 
DEVELOPMENTAL COORDINATION DISORDER

Figure 8.1 Web form generated from the template dedicated to experiments focused on
the developmental coordination disorder in children. The form contains part of real trial
protocol/scenario data from EEGBase.
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Archetype ID openEHR­EHR­COMPOSITION.report.v1
Template ID d1609eb0­e949­490e­9028­28583584a87c
MetaDataSet:Sample Set Template metadata sample set

DEVELOPMENTAL COORDINATION DISORDER
Purpose
Simplified example of an experiment Developmental Coordination Disorder in Children

REPORT
Collapse All    Show Annotations

[+/­]other_context [1]

[+/­] Experiment [0..*]

[+/­] data [1]

[+/­] Event

[+/­]data [1]

[+/­] Results

Total test results of MABC­2  93

Standard score  14

Percentile  19

Definition  Developmental Coordination Disorder

[+/­] DataArray [0..*]

[+/­] Tags

Channel   0

Position   13853

Definition   S1

Name  Mk3 

Type  Stimulus 

Type   Brain Vision

Data.zip

[+/­]state [1]

Description   Myopia

position  sitting 

[+/­]protocol [1]

Figure 8.2 Web form generated from the template dedicated to experiments focused on the
developmental coordination disorder in children. The form contains part of real experiment
data from EEGBase. For a demonstration purpose, one data tag is shown.
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8.3.1 Dictionary

odML terminology and/or the selected UMLS terms reside at the very bottom of the hierarchy
as the dictionary. This serves for any model in the hierarchy derived from the archetypes.

8.3.2 Entity-relational model

From the perspective of openEHR solution, ER model lies at the lower level of the semantic
hierarchy. However, as the archetypes do not contain any encapsulation, methods, nor
dependencies, the loss of expressiveness can potentially influence only multiplicity and
generalization/specialization features. OO model multiplicity can be simplified according to
rules specified in Table 5.3. As the generalization/specification is not supported, openEHR
multi-layer approach has to be simplified, thus, three basic approaches can be determined:

1. Reference model - centric: The reference model is completely represented by the ER
diagram. No archetype is modelled directly as a table nor any datapoint as a column.
Thus, the archetypes are mapped on a "network of foreign keys" carried by reference
model tables. Then, EHR data values are stored in one or few "data tables" and the
EHR is reconstructed from the relationships between reference model tables. Such an
approach is flexible and any type of archetype and its data can be stored in that database.
Another advantage is its constant number of tables and immutable model structure.
However, the potential number of relationships and unstructured data values in data
tables would decrease the performance of the database. Additional implementation of
templates would bring even more relationships and queries composing (i.e. select) and
decomposing (i.e. insert, update, delete) data according to particular template would
be extremely complex.

2. Archetype-centric: For each archetype a set of tables corresponding to particular
reference model (e.g. for Observation RM it is data, protocol, etc.) is created. The
tables represent archetypes and their values are fragments of stored EHRs. openEHR
templates are represented as the views, virtual tables, where the relationships between
various archetype tables are handled by additional auxiliary table. Stored data is well
structured and in case of a small amount of archetypes used, the performance of the
database is not negatively affected. However, with each newly added archetype the
database structure must be changed and new tables added. Also the datapoins with
a cardinality higher than one must be stored in a separate table. Thus, in case of
a complex EHR system, the amount of tables would be unmanageable and that would
have an negative impact on sustainability.
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3. Template-centric: Relational tables are designed according to a specific template. This
approach is thrifty with relationships. However, information about archetype structures
is completely lost, i.e. data related to a specific archetype cannot be recognized and
selected from the template data, because all data is part of one template. Moreover, for
each template a new set of tables must be created which could cause data redundancy
(e.g. Device archetype would be part of more than one template and thus information
about device is scattered across many tables).

Overall complexity, efficiency and flexibility of ER model strongly depends on the chosen
approach and granularity. Since this section discusses the models for experimental EEG/ERP
data, the second approach was selected. Due to the size of the diagram, only a section is
shown in Figure 8.5. The first approach would be useful in case of complex openEHR-
driven system, where the significant amount of archetypes used is expected (e.g. the system
described in section 9.1). The third approach was not fitting for its information loss.

The outcome of the transformation of openEHR model into ER model is a model with
a unified terminology and specified table structures and relationships between them. There
are two main drawback of the created model:

1. Data model suffers from loss of information when compared to original openEHR
model.

2. Data model is not flexible in the matter of structural changes. The lack of flexibility
disrupts one of the desiderata described in section 8.4.

8.3.3 Object-oriented model

Reference models are natively designed as the OO models. Archetypes can be considered
as the classes inherited from the classes of RM and thus they represent a part of RM OO
model. Templates, natively described in XML, semantically stand slightly above the OO
model (described in section 4.3). However, they can also be considered as the classes derived
from the archetypes. There is an important difference in the RM classes - archetype classes
relationships and archetype classes - template classes relationships. While one archetype
class is inherited from one RM, some template classes might require multiple inheritance
if the templates cover more than one archetype. Since multiple inheritance is not being
supported by many OO-driven technologies, templates can be expressed as classes containing
collections of instances of various archetype classes.



8.4 Evaluation of openEHR archetypes with the selected desiderata 96

8.3.4 Ontology

Similarly to the components of openEHR solution, ontology structure can be decomposed
to generic conceptual structure (RM), specific classes definition (archetypes) and additional
logic specification (templates). A comparable approach is used and discussed in [60].

Regarding to a conceptual structure, a reference model can be translated to OWL as
follows:

• For each class in the RM a new OWL class is created

• For each relationship in the RM a new OWL Object property is created

• For each cardinality related to the relationship a new OWL restriction is created

• For each attribute in the RM classes a new OWL Datatype property is created

A transformation of RM and ADL archetype structures into OWL is discussed in [19],
[37], [24], or [41].

A transformation of an archetype ontology section into OWL requires a proper mapping
to external resources (where possible) in order to sustain the main ontology philosophy, i.e.
re-usability. A derivation of a proper ontological description from the current terminological
resources is in the scope of the OEN project [10], [40]. As it was described in section 3.3.3,
selected resources, including odML terminology, are processed by Ontofox3 tool which
utilizes the MIREOT principle. Ontofox searches for the provided terms in the selected
ontology, extracts the minimum information needed to reference these terms and serializes
the output into a new RDF graph.

Finally, the additional logic based on the openEHR templates, best practices, consultations
with domain experts, etc., must be added manually. OEN development is still in the scope of
future work.

8.4 Evaluation of openEHR archetypes with the selected
desiderata

The abilities of openEHR to meet the desiderata for computable representations of EHR-
driven phenotypes were evaluated in [61]. The desiderata for EEG data format create a subset
of original phenotyping desiderata, therefore, the evaluation is similar.

3http://ontofox.hegroup.org/
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8.4.1 Structured data in queryable form

The main goal of openEHR is to provide a framework in order to keep stored EHRs structured.
Therefore, the desideratum on structured data is supported from the nature of openEHR
philosophy. openEHR also specifies proprietary archetype query language (AQL) developed
for searching clinical data found in archetype-based EHRs. The AQL grammar is specified,
however, there is a lack of AQL-based search engines. Additionally, since there is no
technological restriction on openEHR-based systems, the technologies with implemented
query engines (relation databases supporting SQL queries, noSQL databases, etc.) can be
used, and thus the data is in a queryable from.

8.4.2 Common and flexible data model

As described above, openEHR implementation does not rely on a specific technology.
Therefore, the desideratum on a common and flexible data model depends on the abili-
ties of openEHR as well as the abilities of implemented underlying technologies. Generally,
openEHR supports a common and flexible data model.

8.4.3 Human readable and computable representations

openEHR archetypes support both human readable and computable representations. In-
dividual archetypes are defined in machine-readable ADL and individual templates are
stored as XML. Provided XSD allows automated template validation and transformation into
human-readable forms via Extensible Stylesheet Language Transformations (XSLT)4.

8.4.4 Standardized and re-usable terminology

openEHR archetypes support a binding mechanism to pair internal codes with external stan-
dardized controlled clinical terminology/ontologies (e.g. SNOMED-CT, odML terminology
for electrophysiology, OEN). Additionally, the CKM repository supports archetype sharing
and re-usability.

8.4.5 External data and interfacing

openEHR provides a Java-based API for archetype interfacing and handling. Via this API,
also external data and libraries can be potentially implemented.

4https://www.w3.org/TR/xslt
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8.4.6 Backwards compatibility

openEHR archetypes in ADL are backward compatible (ADL v2 to v1.4). Backward compat-
ibility is also increased by binding with external controlled terminologies. Finally, ADL as
a plain-text mark-up language enables archetypes to be stored in a revision control systems
(e.g. git, svn), which can facilitate the tracking of changes during archetype development.

Table 8.2 shows a summary how openEHR archetypes met the desiderata.

Table 8.2 The ability of openEHR archetypes to meet the selected desiderata for EEG/ERP
data format

Desideratum Evaluation
Structured data in queryable form Supported
Common and flexible data model Not ensured
Human-readable and computable representation Supported
Standardized nomenclature Supported
External interfacing Supported
Backward compatibility Supported
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Archetype ID openEHR­EHR­COMPOSITION.report.v1
Template ID d1609eb0­e949­490e­9028­28583584a87c
MetaDataSet:Sample Set Template metadata sample set

DEVELOPMENTAL COORDINATION DISORDER
Purpose
Simplified example of an experiment Developmental Coordination Disorder in Children

REPORT
Collapse All    Show Annotations

[+/­]other_context [1]

[+/­] Experiment [0..*]

[+/­] data [1]

[+/­]protocol [1]

[+/­] Software [0..*]

Name [1]   BrainVision Recorder 

Version   1.2

Description
The BrainVision Recorder is used to control EEG amplifiers and record EEG signals.

[+/­] Environment [0..*]

Weather   Sunny

[+/­] Environmental conditions [0..*]

Ambient Temperature  23   °C

Description  Sunny Weather 

[+/­] Channels

Resolution  0.1

Name  Fp1 

[+/­] Device [0..*]

[+/­] Device [0..*]

RecordingType  multi electrode

NumberOfChannels  19

DataOrientation  Multiplexed

DataFormat  Binary

[+/­] Dimensions

Figure 8.3 Web form generated from template dedicated to experiments focused on the
developmental coordination disorder in children. The form contains part of real experiment
protocol data from EEGBase (part 1). For a demonstration purpose, one software and one
channel are shown.
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Archetype ID openEHR­EHR­COMPOSITION.report.v1
Template ID d1609eb0­e949­490e­9028­28583584a87c
MetaDataSet:Sample Set Template metadata sample set

DEVELOPMENTAL COORDINATION DISORDER
Purpose
Simplified example of an experiment Developmental Coordination Disorder in Children

REPORT
Collapse All    Show Annotations

[+/­]other_context [1]

[+/­] Experiment [0..*]

[+/­] data [1]

[+/­]protocol [1]

[+/­] Software [0..*]

[+/­] Environment [0..*]

[+/­] Channels

[+/­] Device [0..*]

Device name    BRAIN AMP DC

Description
The BrainAmp DC includes all the outstanding features of the BrainAmp amplifier with the addition of the DC recording 
mode as well as with multiple hardware filtering options. The setup of the amplifier is fully controllable via the 
recording software.

Type   Amplifier

Manufacturer  Brain Products GmbH 

[+/­] Device details [0..*]

Model    AMP0711758DC

Sampling frequency        OR    

Resolution        OR     0.1

[+/­] Device [0..*]

Device name   Ground electrode

Description
A pair of pure tin cup electrodes with a 48" (122 cm) lead wire and a female socket. A spring‑clip back, covered with 
plastic for patient comfort, is used to hold the electrode in place.Device is used as a ground electrode.

Type    E5‑9S EAR ELECTRODE

RecordingType  multi electrode

[+/­] Dimensions

SamplingInterval  1000

   1000

Figure 8.4 Web form generated from the template dedicated to experiments focused on the
developmental coordination disorder in children. The form contains part of real experiment
protocol data from EEGBase (part 2). For a demonstration purpose, one hardware device and
one electrode are shown.
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Figure 8.5 Entity-relational model derived from the openEHR archetype set for EEG/ERP
experiments with archetype-centric approach; light grey - auxiliary tables, dark grey - generic
archetype data, yellow - EEG/ERP Results archetype (RM Observation) tables, violet - Report
archetype (RM Composition) table, green - Problem diagnosis archetype (RM Evaluation)
table, orange - Medication order archetype (RM Instruction) table, blue - various cluster
tables representing stand-alone cluster-based archetypes as well as clusters which stand as
datapoints in other archetypes. The diagram shows only a selection of the original size.
Archetype and Slot tables are shown twice in the diagram for the clarity of the figure and to
avoid intersecting the relationship lines.



Chapter 9

Discussion

This chapter discusses the application of the results as follows: (i) openEHR-driven system
for research use as a first use-case of the proposed archetypes; (ii) potential of the archetypes
in the clinical sphere.

9.1 openEHR-driven Electronic Health Record system

As a follow-up project to the EEGBase an EHR system for research use was proposed and
started being developed. The system is designed to provide universal approach to store
health and medical data, which cannot be stored in EEGBase. Aside from this, the system is
a proof-of-concept for an openEHR-driven storage for EEG/ERP data.

Recently, our research group expanded to other electrophysiology subdomains (e.g. ECG
or EMG). However, EEGBase which effectively stores experimental data and metadata from
the EEG experiments, is not universal to store any types of electrophysiology data/metadata
(section 3.3.1).

9.1.1 EEGBase data/metadata limitations

Storing additional electrophysiology data in EEGBase, including ECG, can be handled in
following ways:

Stand-alone ECG experiment could by stored in EEGBase in a same way as stand-alone
EEG experiments do. Only minor changes in the EEGBase database model are necessary.
Since EEG experiment metadata is stored in a schema-independent noSQL database, ECG
experiment metadata can be stored identically. EEG data is stored in schema-dependent
relational database in the native format for the measurement device. Thus, ECG data in
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a native format for the measurement device can be also stored in the EEGBase data model.
The limitation comes when the ECG experiment is supposed to be part of EEG experiment.

ECG as a part of EEG metadata set can be stored in the noSQL document database with
other EEG metadata in its native, typically binary, format. ECG metadata must be stored as
a part of the same noSQL document as the binary ECG data. Computable abilities of ECG
recording are limited since the recording is a part of the metadata set related to superior EEG
experiment.

9.1.2 Main philosophy

The aforementioned facts established the concept of an EHR-driven system for research use
fulfilling the following requirements:

1. The system is user-centric.

2. The system is designed for a personal and research, not clinical, use.

3. The system is universal to store almost any type of bio-data.

4. Stored data is annotated by controlled ontologies/terminologies.

5. The system supports storage of both medical and "fitness" data.

6. The system supports an analysis interface over the cross-domain data, i.e. a border
between data and metadata is flexible from the perspective of the analysis.

Since openEHR concept addresses many of these challenges, especially point four and six,
the system is proposed as openEHR-driven. The archetype definitions represent a knowledge
core of the system. A user interface and data storage adapt dynamically to the structure of
currently used archetype/template. Abstract architecture of the system is shown in Figure
9.1.

9.1.3 Roles and use-cases

The basic user roles were specified:

1. Subject

2. Researcher

3. Administrator
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Semi-automatic generated UI

Analysis modules

Model

openEHR Reference Models

Terminologies / Ontologies

openEHR Archetypes Custom Archetypes

Templates

NoSQL

Figure 9.1 An architecture of the openEHR-driven EHR information system

Current version of API prototype implements two roles: administrator and subject. The
main use-cases are shown in Figure 9.2.

9.1.4 Architecture and technologies

REST Server

The system is designed as a Java REST server application built on Jersey1 framework running
in Apache Tomcat container2 using openEHR Java libraries 3 handling the archetypes, i.e.
ADL parsing, OET parsing, archetype serialization, etc. An overall architecture is shown in
Figure 9.3, an architecture of the REST server application is shown in Figure 9.4

Persistent storage

The first prototype utilized Elasticsearch4 noSQL database and search engine, which supports
a so-called mapping. The mapping specifies a schema over one or more document types and
thus provides partial validation of inserted documents, e.g., EHRs. An index was created
for each openEHR RM within the database cluster and corresponding node. A mapping
specifying particular document type was created for each archetype in the system and

1https://jersey.java.net/
2http://tomcat.apache.org/
3https://github.com/openEHR/java-libs
4https://www.elastic.co/products/elasticsearch
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Figure 9.2 Typical use-cases of the openEHR-driven EHR information system
(https://github.com/ghessova/SemanticEHR/wiki)

associated with corresponding index. Testing EHRs were inserted as JSON documents and
the data fields were annotated by the archetype datapoint ID.

Elasticsearch provides a great scalability and supports document schema-based validation
via mappings, which is an uncommon feature in the noSQL world. Additionally, new
types, mappings and indices can be added on-the-fly without required outage of the system.
However, the Elasticsearch is designed primarily as a search engine and not as a persistent
storage. Due to that fact, there are some crucial limitations including absence of a transaction
mechanism. Since the data integrity is essential when speaking of sensitive user data, the
current development version utilizes a Mongo DB5 instead of Elasticsearch.

5https://www.mongodb.com/
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Figure 9.3 An overall architecture of the proposed EHR system (https://github.com/ghessova
/SemanticEHR/wiki/Architecture)

Figure 9.4 An architecture of the REST server application at the back-end of the proposed
EHR system (https://github.com/ghessova/SemanticEHR/wiki/Architecture)

Front-end

Currently, two front-end prototypes are implemented:
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1. a server-side prototype where the code is processed on the server side; the solution is
implemented in a free version of Java-based framework Vaadin6.

2. a client-side prototype where the code is processed on the client side, i.e. web browser;
solution is implemented in a JavaScript-based framework Angular JS7.

The client-side front-end is preferred to prevent the hosting server from overburdening.

Mobile client

Mobile client development is still in the phase of architectural proposal. It is designed
as a hybrid mobile application to prevent separate development for various platforms (e.g.
Android, iOS, Windows Phone) utilizing the Ionic8 framework. Since the application is
designed to import data from the third-party resources/applications, there will be an interface
to communicate with Google Fit9, Apple Health10 or Microsoft Health11 platforms.

9.1.5 Development team

There is no active development team at the moment and the project has been suspended.
However, I would like to acknowledge bachelor and master degree students who were
involved in the development and provided a considerable effort and enthusiasm.

• Daniel Horák, Ondřej Byrtus, Jan Schröpfer: Automatically generated client-side
front-end (Angular JS framework)

• Ondřej Pražák, Gabriela Hessová, Patrik Kořínek: REST Server application implemen-
tation (Jersey framework), database implementation (MongoDB)

• Lukáš Rostás, David Herman, Michal Medek: Database implementation (MongoDB),
mobile client architecture proposal

• Ondřej Havlíček: Automatically generated server-side front-end (Vaadin framework)

6https://vaadin.com/home
7https://angularjs.org/
8https://ionicframework.com/
9https://www.google.com/fit/

10https://www.apple.com/ios/health/
11https://www.microsoft.com/microsoft-health
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• Jiří Matyáš: Proposal of a new archetype describing sleep data based on the Sleep as
Android12 application and Sleep Domain Ontology13; prototype of a mobile client for
Android

• Martin Graubner, Markéta Wolfová, Marek L’uptáčik, Adam Barák: Prototype of an
Elasticsearch storage

• Karol Kalaga, Mateusz Łysień: Storing of archetypes in Elasticsearch

9.2 EEG/ERP archetype for clinical purposes

Developed archetypes describing EEG/ERP domain reflect recent data formats used in
electrophysiology and address the absence of such archetypes in the CKMs. The archetypes
serve to conduct a research in EEG/ERP domain and narrow the gap between data retrieved
from experimental EEG/ERP measurements and clinical data. Exemplified usage of these
archetypes is in the experimental EHR system described in Section 9.1.

Potential application of the archetypes in a clinical sphere is limited. The publication and
approval process, where the archetypes are reviewed by clinicians and domain experts, is a
long-term one. However, an incubator for the archetypes within the CKM was created and
further improvement is expected.

12http://sleep.urbandroid.org/cs/
13http://purl.bioontology.org/ontology/SDO



Chapter 10

Conclusion

10.1 Results summary

The main aim of this work was to investigate the potential benefits of EHR description
frameworks utilized to EEG/ERP data/metadata modelling. openEHR, the archetype-based
EHR description framework, was selected and applied to EEGBase portal data and metadata.
The main EEGBase constraint is the strict separation of experiment data and experiment
metadata. This feature may cause serious difficulties with further extension of the metadata
set, especially by complex structures taken from other measurements (e.g. blood pressure
measurement).

The investigation has shown that the experiment data from EEGBase could be mapped as
composition of newly proposed and already existing archetypes. Moreover, the archetypes
have been developed in-line with the already existing EEG formats (NIX, EDF+, and the
BrainVision EEG format), respecting the odML terminology for electrophysiology. Therefore,
the data stored in these structures could be easily mapped into our archetype structures. The
proposed mapping allows us to present the existing data in the form that is typical for the
health domain/health records. Apart from the created archetypes and templates, an algorithm
for referencing/dereferencing odML terms was proposed. Also an alternative for the odML
terminology, a mapping of used terms to UMLS meta-thesaurus, was made.

The archetype publication process, i.e. the process during which the proposed archetype
goes through various lifecycle phases, is currently in progress and an incubator for the
archetypes (the virtual space where the archetypes are accessible to domain experts for
additional comments and modifications) was created within the official openEHR CKM.

For the evaluation of computable abilities of the proposed archetypes a set of desired
features was selected. These desiderata were originally proposed for computable phenotype
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representations, however, their subset is relevant also for the domain of EEG/ERP data
modelling. Proposed solution met all selected criteria.

For testing with real data, the archetype structures were mapped on the most complex
experiment in EEGBase focused on the developmental coordination disorder in children.

Aside from that, the work determined the elements in common data modelling concepts
including relational model, object-oriented model, ontology, etc, compared the expressive
power of the concepts and organized the concepts into a semantic hierarchy. For each
level, a specific model was derived from the reference archetypes. Currently, an ontology
development, at the top level of the hierarchy, stays incomplete. However, this development
is in the scope of the OEN project.

Currently, there is no specific deployment of the proposed archetypes. The implemen-
tation of the whole archetype concept into the EEGBase portal is a challenge from the
architectural point of view. However, the concept of a personal EHR system based on
openEHR (currently under development) implements the EEG/ERP archetypes. The key
benefit of this personal EHR system and/or improved EEGBase is in the granularity of exper-
iment data/metadata and in the existence of the flexible border between data and metadata.
The system design allows researchers to choose which dataset can be used as data (the
analysis input) and which dataset can be used as metadata (analysis attributes and filters).
This approach also enables researchers to do a reverse analysis; e.g., the blood pressure could
be analysed according to the body mass index (BMI) criterion or the BMI could be analysed
according to the blood pressure criterion. Furthermore, all datasets could be processed using
the same software tools (e.g. the tools based on openEHR Java libraries).

The potential use of the developed EEG/ERP archetypes in the clinical domain is beyond
the scope of this work.

10.2 Future work

Proposed models on various levels of semantic hierarchy could unify EEG/ERP data resources
independently on the technology used. However, to achieve unified data access, a single
access point over the resource must be implemented. Such solution provides, e.g., OpenLinks
Virtuoso1. Virtuoso server has potential to provide a federative database composed of various
data resources similar to NIF. Nevertheless, unlike NIF, no ontology would be necessary for
data access and retrieved data would have openEHR archetype structures/annotation.

Ontology development at the top level of a semantic hierarchy is still incomplete. Even
though the OEN development was initialized, currently the project is not in progress and

1https://virtuoso.openlinksw.com/
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future work is desired. OEN has potential to serve as a reference resource suitable for
backward improvement of underlying models in the hierarchy.

Also the development of personal EHR system for research use should continue in the
future to fully address its aims.

Given the fact that openEHR respects CEN/ISO 13606 and that translation rules between
HL7v3 and openEHR exist, the created archetypes can be transformed to HL7v3 models /
CEN/ISO 13606 archetypes and serve in the EHR systems based on HL7v3 / CEN/ISO 13606.
Together with the completion of the archetype publication process, these domain transforma-
tions should be performed in the future. Then, the current gap between experimental and
clinical data descriptions could be reduced.
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List of proposed archetypes, templates
and related odML sections
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Report archetype

Figure A.1 Definition of the Report archetype (Composition RM)
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EEG/ERP experiment results archetype

Figure A.2 Definition of the EEG/ERP experiment results archetype (Observation RM): Data
section
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Figure A.3 Definition of the EEG/ERP experiment results archetype (Observation RM):
Protocol section
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Figure A.4 Definition of the EEG/ERP experiment results archetype (Observation RM): State
section
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Trial/Experiment protocol archetype

Figure A.5 Definition of the Trial/Experiment protocol archetype (Cluster RM), which
corresponds to the odML Protocol section (Figure A.6) specification

Figure A.6 Specification of the odML Protocol section
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Medication order archetype
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Figure A.7 Definition of the Medication order archetype (Instruction RM); the archetype is
designed by openEHR and taken from CKM
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Problem diagnosis archetype

Figure A.8 Definition of the Problem diagnosis archetype (Evaluation RM); the archetype is
designed by openEHR and taken from CKM
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Software archetype

Figure A.9 Definition of the Software archetype (RM Cluster), which corresponds to the
Software section (Figure A.10) in the odML terminology
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Figure A.10 Specification of the odML Software section
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Device and Device Details archetypes

Figure A.11 Definition of the Device archetype (Cluster RM); the archetype is designed by
openEHR and taken from CKM
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Figure A.12 Definition of the Device details archetype (Cluster RM); the archetype is
designed by openEHR and taken from CKM

Figure A.13 Specification of the odML Hardware section, which is expressible by Device
and Device details archetypes (Figure A.11 and A.12)
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Environment and environmental conditions archetypes

Figure A.14 Definition of the Environment archetype (Cluster RM), which corresponds to
the odML Environment section (Figure A.16)
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Figure A.15 Definition of the Environmental conditions archetype (Cluster RM); the
archetype is designed by openEHR and taken from CKM

Figure A.16 Specification of the odML Environment section
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Stimuli archetypes

Figure A.17 Definition of the Stimulus archetype part 1, (Cluster RM), which corresponds to
the union of the various stimuli sections (Figure A.19 - A.30) in the odML terminology
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Figure A.18 Definition of the Stimulus archetype part 2, (Cluster RM), which corresponds to
the union of the various stimuli sections (Figure A.19 - A.30) in the odML terminology
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Figure A.19 Specification of the odML Stimulus section
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Figure A.20 Specification of the odML DC stimulus section
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Figure A.21 Specification of the odML Gabor stimulus section
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Figure A.22 Specification of the odML Grating stimulus section
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Figure A.23 Specification of the odML Movie stimulus section
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Figure A.24 Specification of the odML Pulse stimulus section
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Figure A.25 Specification of the odML Ramp stimulus section
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Figure A.26 Specification of the odML Random dot stimulus section
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Figure A.27 Specification of the odML Sawtooth stimulus section
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Figure A.28 Specification of the odML Sinewave stimulus section
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Figure A.29 Specification of the odML Squarewave stimulus section
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Figure A.30 Specification of the odML White noise stimulus section
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databáze do prostředků sémantického webu dbtransformer. Authorised software.
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