Submitted 22 June 2016
Accepted 21 November 2016
Published 02 January 2017

Corresponding author
Aaron Meurer, asmeurer@gmail.com

Academic editor
Nick Higham

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.103

© Copyright
2017 Meurer et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

SymPy: symbolic computing in Python

Aaron Meurer’, Christopher P. Smith’, Mateusz Paprocki’, Ondtej Certik’,
Sergey B. Kirpichev’, Matthew Rocklin’, AMiT Kumar®, Sergiu Ivanov’,

Jason K. Moore®, Sartaj Singh’, Thilina Rathnayake'’, Sean Vig',

Brian E. Granger'’, Richard P. Muller”’, Francesco Bonazzi'*, Harsh Gupta",
Shivam Vats", Fredrik Johansson'®, Fabian Pedregosa'’, Matthew J. Curry'®'"*,
Andy R. Terrel”*?, Stépan Roucka®, Ashutosh Saboo®, Isuru Fernando'’,
Sumith Kulal”, Robert Cimrman®® and Anthony Scopatz'

! Department of Mechanical Engineering, University of South Carolina, Columbia, SC, United States
?Polar Semiconductor, Inc., Bloomington, MN, United States
* Continuum Analytics, Inc., Austin, TX, United States
*Los Alamos National Laboratory, Los Alamos, NM, United States
® Faculty of Physics, Moscow State University, Moscow, Russia
¢ Department of Applied Mathematics, Delhi Technological University, New Delhi, India
7Université Paris Est Créteil, Créteil, France
Mechanical and Aerospace Engineering, University of California, Davis, CA, United States
? Mathematical Sciences, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
19 Department of Computer Science and Engineering, University of Moratuwa, Katubedda, Moratuwa, Sri Lanka
1 University of Illinois at Urbana-Champaign, Urbana, IL, United States
12 California Polytechnic State University, San Luis Obispo, CA, United States
13 Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, United States
'* Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
> Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
1®INRIA Bordeaux-Sud-Ouest—LFANT project-team, Talence, France
7 INRIA—SIERRA project-team, Paris, France
¥ Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
' Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM, United States
%0 Sandia National Laboratories, Albuquerque, NM, United States
21 Fashion Metric, Inc, Austin, TX, United States
22NumFOCUS, Austin, TX, United States

% Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague,
Praha, Czech Republic

%4 Department of Computer Science, Department of Mathematics, Birla Institute of Technology and Science,
Goa, India

** Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
26 New Technologies—Research Centre, University of West Bohemia, Plzen, Czech Republic

ABSTRACT

SymPy is an open source computer algebra system written in pure Python. It is built
with a focus on extensibility and ease of use, through both interactive and programmatic
applications. These characteristics have led SymPy to become a popular symbolic library
for the scientific Python ecosystem. This paper presents the architecture of SymPy, a
description of its features, and a discussion of select submodules. The supplementary
material provide additional examples and further outline details of the architecture and
features of SymPy.

Subjects Scientific Computing and Simulation, Software Engineering
Keywords Python, Computer algebra system, Symbolics

How to cite this article Meurer et al. (2017), SymPy: symbolic computing in Python. Peer] Comput. Sci. 3:e103; DOI 10.7717/peerj-
cs.103

https://peerj.com
mailto:asmeurer@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.103
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

'This paper assumes a moderate familiarity
with the Python programming language.

INTRODUCTION

SymPy is a full featured computer algebra system (CAS) written in the Python (Lutz, 2013)
programming language. It is free and open source software, licensed under the 3-clause
BSD license (Rosen, 2005). The SymPy project was started by Ondtej Certik in 2005, and
it has since grown to over 500 contributors. Currently, SymPy is developed on GitHub
using a bazaar community model (Raymond, 1999). The accessibility of the codebase and
the open community model allow SymPy to rapidly respond to the needs of users and
developers.

Python is a dynamically typed programming language that has a focus on ease of use
and readability." Due in part to this focus, it has become a popular language for scientific
computing and data science, with a broad ecosystem of libraries (Oliphant, 2007). SymPy is
itself used as a dependency by many libraries and tools to support research within a variety
of domains, such as SageMath (The Sage Developers, 2016) (pure and applied mathematics),
yt (Turk et al., 2011) (astronomy and astrophysics), PyDy (Gede et al., 2013) (multibody
dynamics), and SfePy (Cimrman, 2014) (finite elements).

Unlike many CAS’s, SymPy does not invent its own programming language. Python
itself is used both for the internal implementation and end user interaction. By using
the operator overloading functionality of Python, SymPy follows the embedded domain
specific language paradigm proposed by Hudak (1998). The exclusive usage of a single
programming language makes it easier for people already familiar with that language to use
or develop SymPy. Simultaneously, it enables developers to focus on mathematics, rather
than language design. SymPy version 1.0 officially supports Python 2.6, 2.7 and 3.2-3.5.

SymPy is designed with a strong focus on usability as a library. Extensibility is important
in its application program interface (API) design. Thus, SymPy makes no attempt to
extend the Python language itself. The goal is for users of SymPy to be able to include
SymPy alongside other Python libraries in their workflow, whether that be in an interactive
environment or as a programmatic part in a larger system.

Being a library, SymPy does not have a built-in graphical user interface (GUI). However,
SymPy exposes a rich interactive display system, and supports registering display formatters
with Jupyter (Kluyver et al., 2016) frontends, including the Notebook and Qt Console,
which will render SymPy expressions using MathJax (Cervorne, 2012) or BIgX.

The remainder of this paper discusses key components of the SymPy library. Section
‘Overview of capabilities’ enumerates the features of SymPy and takes a closer look at some
of the important ones. The Section ‘Numerics’ looks at the numerical features of SymPy
and its dependency library, mpmath. Section ‘Physics Submodule’ looks at the domain
specific physics submodules for performing symbolic and numerical calculations in classical
mechanics and quantum mechanics. Section ‘Architecture’ discusses the architecture of
SymPy. Section ‘Projects that Depend on SymPy’ looks at a selection of packages that depend
on SymPy. Conclusions and future directions for SymPy are given in ‘Conclusion and
Future Work’. All examples in this paper use SymPy version 1.0 and mpmath version 0.19.

Additionally, the Supplemental Information 1 takes a deeper look at a few SymPy topics.
Section S1 discusses the Gruntz algorithm, which SymPy uses to calculate symbolic limits.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 2/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

Zimport * has been used here to aid the
readability of the paper, but is best to
avoid such wildcard import statements
in production code, as they make it unclear
which names are present in the namespace.
Furthermore, imported names could
clash with already existing imports from
another package. For example, SymPy, the
standard Python math library, and NumPy
all define the exp function, but only the
SymPy one will work with SymPy symbolic
expressions.

3The three greater-than signs denote the
user input for the Python interactive
session, with the result, if there is one,
shown on the next line.

Sections 52-S9 of the supplement discuss the series, logic, Diophantine equations, sets,
statistics, category theory, tensor, and numerical simplification submodules of SymPy,
respectively. Section S10 provides additional examples for topics discussed in the main
paper. Section S11 discusses the SymPy Gamma project. Finally, Section S12 of the
supplement contains a brief comparison of SymPy with Wolfram Mathematica.

The following statement imports all SymPy functions into the global Python namespace.”
From here on, all examples in this paper assume that this statement has been executed’:

>>> from sympy import x

All the examples in this paper can be tested on SymPy Live, an online Python shell that
uses the Google App Engine (Ciurana, 2009) to execute SymPy code. SymPy Live is also
integrated into the SymPy documentation at http://docs.sympy.org.

OVERVIEW OF CAPABILITIES

This section gives a basic introduction of SymPy, and lists its features. A few features—
assumptions, simplification, calculus, polynomials, printers, solvers, and matrices—are
core components of SymPy and are discussed in depth. Many other features are discussed
in depth in the Supplemental Information 1.

Basic usage

Symbolic variables, called symbols, must be defined and assigned to Python variables before
they can be used. This is typically done through the symbols function, which may create
multiple symbols in a single function call. For instance,

>>> x, y, z = symbols('x y z')
creates three symbols representing variables named x, y, and z. In this particular instance,
these symbols are all assigned to Python variables of the same name. However, the user is
free to assign them to different Python variables, while representing the same symbol, such
asa, b, ¢ = symbols('x y z').In order to minimize potential confusion, though, all
examples in this paper will assume that the symbols x , y , and z have been assigned to
Python variables identical to their symbolic names.

Expressions are created from symbols using Python’s mathematical syntax. For instance,
the following Python code creates the expression (x? —2x +3)/y. Note that the expression
remains unevaluated: it is represented symbolically.

>>> (x*%2 - 2%x + 3)/y
(xx*x2 - 2*%x + 3)/y

List of features

Although SymPy’s extensive feature set cannot be covered in depth in this paper, bedrock
areas, that is, those areas that are used throughout the library, are discussed in their own
subsections below. Additionally, Table 1 gives a compact listing of all major capabilities
present in the SymPy codebase. This grants a sampling from the breadth of topics and
application domains that SymPy services. Unless stated otherwise, all features noted in
Table 1 are symbolic in nature. Numeric features are discussed in Section ‘Numerics.’

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 3/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://live.sympy.org
http://docs.sympy.org
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

Table 1 SymPy features and descriptions.

Feature (submodules)

Description

Calculus (sympy . core, sympy.calculus,
sympy.integrals, sympy.series)

Category Theory (sympy.categories)

Code Generation (sympy.printing, sympy.codegen)

Combinatorics & Group Theory (sympy.combinatorics)

Concrete Math (sympy.concrete)

Cryptography (sympy . crypto)

Differential Geometry (sympy .diffgeom)

Geometry (sympy . geometry)

Lie Algebras (sympy . liealgebras)
Logic (sympy . logic)

Matrices (sympy.matrices)

Matrix Expressions (sympy.matrices.expressions)

Number Theory (sympy.ntheory)

Plotting (sympy . plotting)

Algorithms for computing derivatives, integrals, and limits.

Representation of objects, morphisms, and diagrams. Tools
for drawing diagrams with Xy-pic (Rose, 1999).

Generation of compilable and executable code in a variety
of different programming languages from expressions
directly. Target languages include C, Fortran, Julia,
JavaScript, Mathematica, MATLAB and Octave, Python,
and Theano.

Permutations, combinations, partitions, subsets, various
permutation groups (such as polyhedral, Rubik, symmetric,
and others), Gray codes (Nijenhuis & Wilf, 1978), and
Prufer sequences (Biggs, Lloyd & Wilson, 1976).

Summation, products, tools for determining whether
summation and product expressions are convergent,
absolutely convergent, hypergeometric, and for determining
other properties; computation of Gosper’s normal form
(Petkovsek, Wilf & Zeilberger, 1997) for two univariate
polynomials.

Block and stream ciphers, including shift, Affine,
substitution, Vigenere’s, Hill’s, bifid, RSA, Kid RSA,
linear-feedback shift registers, and Elgamal encryption.
Representations of manifolds, metrics, tensor products, and
coordinate systems in Riemannian and pseudo-Riemannian
geometries (Sussman & Wisdom, 2013).

Representations of 2D geometrical entities, such as lines and
circles. Enables queries on these entities, such as asking the
area of an ellipse, checking for collinearity of a set of points,
or finding the intersection between objects.

Representations of Lie algebras and root systems.

Boolean expressions, equivalence testing, satisfiability, and
normal forms.

Tools for creating matrices of symbols and expressions.
Both sparse and dense representations, as well as
symbolic linear algebraic operations (e.g., inversion and
factorization), are supported.

Matrices with symbolic dimensions (unspecified entries).
Block matrices.

Prime number generation, primality testing, integer
factorization, continued fractions, Egyptian fractions,
modular arithmetic, quadratic residues, partitions,
binomial and multinomial coefficients, prime number
tools, hexidecimal digits of 7, and integer factorization.

Hooks for visualizing expressions via matplotlib (Hunter,
2007) or as text drawings when lacking a graphical back-

end. 2D function plotting, 3D function plotting, and 2D

implicit function plotting are supported.

(continued on next page)

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103

4/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

Table 1 (continued)

Feature (submodules)

Description

Polynomials (sympy . polys)

Printing (sympy.printing)

Quantum Mechanics (sympy . physics.quantum)

Series (sympy.series)

Sets (sympy . sets)

Simplification (sympy.simplify)

Solvers (sympy.solvers)

Special Functions (sympy . functions)

Statistics (sympy.stats)

Tensors (sympy . tensor)

Vectors (sympy . vector)

Polynomial algebras over various coefficient domains.
Functionality ranges from simple operations (e.g.,
polynomial division) to advanced computations

(e.g., Grobner bases (Adams & Loustaunau, 1994) and
multivariate factorization over algebraic number domains).
Functions for printing SymPy expressions in the terminal
with ASCII or Unicode characters and converting SymPy
expressions to ITEX and MathML.

Quantum states, bra—ket notation, operators, basis sets,
representations, tensor products, inner products, outer
products, commutators, anticommutators, and specific
quantum system implementations.

Series expansion, sequences, and limits of sequences. This
includes Taylor, Laurent, and Puiseux series as well as
special series, such as Fourier and formal power series.

Representations of empty, finite, and infinite sets (including
special sets such as the natural, integer, and complex
numbers). Operations on sets such as union, intersection,
Cartesian product, and building sets from other sets are
supported.

Functions for manipulating and simplifying expressions.
Includes algorithms for simplifying hypergeometric
functions, trigonometric expressions, rational functions,
combinatorial functions, square root denesting, and
common subexpression elimination.

Functions for symbolically solving equations, systems of
equations, both linear and non-linear, inequalities, ordinary
differential equations, partial differential equations,
Diophantine equations, and recurrence relations.

Implementations of a number of well known special
functions, including Dirac delta, Gamma, Beta, Gauss
error functions, Fresnel integrals, Exponential integrals,
Logarithmic integrals, Trigonometric integrals, Bessel,
Hankel, Airy, B-spline, Riemann Zeta, Dirichlet eta,
polylogarithm, Lerch transcendent, hypergeometric,
elliptic integrals, Mathieu, Jacobi polynomials, Gegenbauer
polynomial, Chebyshev polynomial, Legendre polynomial,
Hermite polynomial, Laguerre polynomial, and spherical
harmonic functions.

Support for a random variable type as well as the ability to
declare this variable from prebuilt distribution functions
such as Normal, Exponential, Coin, Die, and other custom
distributions (Rocklin & Terrel, 2012).

Symbolic manipulation of indexed objects.

Basic operations on vectors and differential calculus with
respect to 3D Cartesian coordinate systems.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103

5/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

4In SymPy, +/z is defined on the usual
principal branch with the branch cut along
the negative real axis.

>SymPy assumes that two expressions
A and B commute with each other
multiplicatively, that is, A- B= B- A, unless
they both have commutative=False.
Many algorithms in SymPy require special
consideration to work correctly with
noncommutative products.

For historical reasons, this algorithm
is distinct from the sympy.logic
submodule, which is discussed in Section
S3. SymPy also has an experimental
assumptions system which stores
facts separate from objects, and uses
sympy . logic and a SAT solver for
deduction. We will not discuss this system
here.

Assumptions
The assumptions system allows users to specify that symbols have certain common
mathematical properties, such as being positive, imaginary, or integer. SymPy is careful to
never perform simplifications on an expression unless the assumptions allow them. For
instance, the simplification V12 =t holds if t is nonnegative (t > 0), but it does not hold
for a general complex ¢.*

By default, SymPy performs all calculations assuming that symbols are complex valued.
This assumption makes it easier to treat mathematical problems in full generality.

>>> t = Symbol('t')
>>> sqrt(t**2)
sqrt(txx2)

By assuming the most general case, that t is complex by default, SymPy avoids performing
mathematically invalid operations. However, in many cases users will wish to simplify
expressions containing terms like V2.

Assumptions are set on Symbol objects when they are created. For instance Symbol ('t ',
positive=True) will create a symbol named t that is assumed to be positive.

>>> t = Symbol('t', positive=True)
>>> sqrt(t**2)
t

Some of the common assumptions are negative, real, nonpositive, integer, prime
and commutative.” Assumptions on any SymPy object can be checked with the is_
assumption attributes, like t.is_positive.

Assumptions are only needed to restrict a domain so that certain simplifications can be
performed. They are not required to make the domain match the input of a function. For
instance, one can create the object y ", f(n) as Sum(f(n), (n, @, m)) without setting
integer=True when creating the Symbol object n.

The assumptions system additionally has deductive capabilities. The assumptions use
a three-valued logic using the Python built in objects True, False, and None. Note that
False is returned if the SymPy object doesn’t or can’t have the assumption. For example,
both I.is_real and I.is_prime return False for the imaginary unit I.

None represents the “unknown” case. This could mean that given assumptions
do not unambiguously specify the truth of an attribute. For instance, Symbol('x",
real=True).is_positive will give None because a real symbol might be positive or
negative. None could also mean that not enough is known or implemented to compute the
given fact. For instance, (pi + E).is_irrational gives None—indeed, the rationality of
7T + e is an open problem in mathematics (Lang, 1966).

Basic implications between the facts are used to deduce assumptions. Deductions are
made using the Rete algorithm (Doorenbos, 1995).° For instance, the assumptions system
knows that being an integer implies being rational.

>>> 1 = Symbol('i', integer=True)
>>> i.is_rational
True

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103

6/27

http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

”The measure parameter of the simplify
function lets the user specify the Python
function used to determine how complex
an expression is. The default measure
function returns the total number of
operations in the expression.

Table 2 Some SymPy simplification functions.

expand expand the expression

factor factor a polynomial into irreducibles

collect collect polynomial coefficients

cancel rewrite a rational function as p/q with common factors canceled
apart compute the partial fraction decomposition of a rational function
trigsimp simplify trigonometric expressions (Fu, Zhong ¢ Zeng, 2006)
hyperexpand expand hypergeometric functions (Roach, 1996; Roach, 1997)

Furthermore, expressions compute the assumptions on themselves based on the assump-
tions of their arguments. For instance, if x and y are both created with positive=True,
then (x + y).is_positive will be True (whereas (x - y).is_positive will be None).

Simplification

The generic way to simplify an expression is by calling the simplify function. It must be
emphasized that simplification is not a rigorously defined mathematical operation (Moses,
1971). The simplify function applies several simplification routines along with heuristics
to make the output expression “simple”.”

It is often preferable to apply more directed simplification functions. These apply very
specific rules to the input expression and are typically able to make guarantees about the
output. For instance, the factor function, given a polynomial with rational coefficients in
several variables, is guaranteed to produce a factorization into irreducible factors. Table 2
lists common simplification functions.

Examples for these simplification functions can be found in Section S10.

Calculus
SymPy provides all the basic operations of calculus, such as calculating limits, derivatives,
integrals, or summations.

Limits are computed with the 1imit function, using the Gruntz algorithm (Gruntz,
1996) for computing symbolic limits and heuristics (a description of the Gruntz algorithm
may be found in Section S1). For example, the following computes lim,_, xsin(%) =1.
Note that SymPy denotes co as oo (two lower case “0”s).

>>> limit(x*sin(1/x), x, 00)

1

As a more complex example, SymPy computes
sinh(x)

1—cos(x)
hm (Ze sin(x) — 1) atan’(x) =e
x—0

>>> limit ((2xexp((1-cos(x))/sin(x))-1)**x(sinh(x)/atan(x)**2), x, @)
E

Derivatives are computed with the diff function, which recursively uses the various
differentiation rules.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 7127

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

>>> diff(sin(x)*exp(x), Xx)
exp(x)*sin(x) + exp(x)*cos(x)

Integrals are calculated with the integrate function. SymPy implements a combination
of the Risch algorithm (Bronstein, 2005b), table lookups, a reimplementation of Manuel
Bronstein’s “Poor Man’s Integrator” (Bronstein, 2005a), and an algorithm for computing
integrals based on Meijer G-functions (Roach, 1996; Roach, 1997). These allow SymPy to
compute a wide variety of indefinite and definite integrals. The Meijer G-function algorithm
and the Risch algorithm are respectively demonstrated below by the computation of

_log(s)+y

N

o0
f e log(t) dt =
0

and

dx =log (log(x) + 1) +

2 2 2
—2x? (log(x) +1) "’ + (ex + 1)
/ x(exz—l—l)z(log(x)—i—l)

e"2+1.

>>> s, t = symbols('s t', positive=True)

>>> integrate(exp(-s*t)*log(t), (t, @, 00)).simplify()

-(log(s) + EulerGamma)/s

>>> integrate((-2xx**2x(log(x) + 1)*exp(x*x2) +

.o (exp(xxx2) + 1)**%2)/(xx(exp(x**2) + 1)**x2x(log(x) + 1)), x)
log(log(x) + 1) + 1/(exp(x**2) + 1)

Summations are computed with the summation function, which uses a combination
of Gosper’s algorithm (Gosper, 1978), an algorithm that uses Meijer G-functions (Roach,
19965 Roach, 1997), and heuristics. Products are computed with product function via a
suite of heuristics.

>>> i, n = symbols('i n')
>>> summation(2**i, (i, @, n - 1))
2*%xn - 1
>>> summation(i*factorial(i), (i, 1, n))
nxfactorial(n) + factorial(n) - 1
Series expansions are computed with the series function. This example computes the
power series of sin(x) around x = 0 up to x°.

>>> series(sin(x), x, 0, 6)
X = x**x3/6 + x*x5/120 + O(x**6)

Section S2 discusses series expansions methods in more depth. Integrals, derivatives,
summations, products, and limits that cannot be computed return unevaluated objects.
These can also be created directly if the user chooses.

>>> integrate(x**x, x)
Integral (xx*x, x)

>>> Sum(2**i, (i, @, n - 1))
Sum(2**i, (i, @, n - 1))

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 8/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

8In a dense representation, the coefficients
for all terms up to the degree of each
variable are stored in memory. In a
sparse representation, only the nonzero
coefficients are stored.

“Many Python libraries distinguish the
str form of an object, which is meant to
be human-readable, and the repr form,
which is mean to be valid Python that
recreates the object. In SymPy, str(expr)
== repr(expr). In other words, the string
representation of an expression is designed
to be compact, human-readable, and valid
Python code that could be used to recreate
the expression. As noted in Section ‘“The
core’, the srepr function prints the exact,
verbose form of an expression.

Polynomials

SymPy implements a suite of algorithms for polynomial manipulation, which ranges from
relatively simple algorithms for doing arithmetic of polynomials, to advanced methods for
factoring multivariate polynomials into irreducibles, symbolically determining real and
complex root isolation intervals, or computing Grobner bases.

Polynomial manipulation is useful in its own right. Within SymPy, though, it is mostly
used indirectly as a tool in other areas of the library. In fact, many mathematical problems in
symbolic computing are first expressed using entities from the symbolic core, preprocessed,
and then transformed into a problem in the polynomial algebra, where generic and efficient
algorithms are used to solve the problem. The solutions to the original problem are
subsequently recovered from the results. This is a common scheme in symbolic integration
or summation algorithms.

SymPy implements dense and sparse polynomial representations.” Both are used in the
univariate and multivariate cases. The dense representation is the default for univariate
polynomials. For multivariate polynomials, the choice of representation is based on
the application. The most common case for the sparse representation is algorithms for
computing Grobner bases (Buchberger, F4, and F5) (Buchberger, 1965; Faugere, 1999;
Faugere, 2002). This is because different monomial orderings can be expressed easily in this
representation. However, algorithms for computing multivariate GCDs or factorizations,
at least those currently implemented in SymPy (Paprocki, 2010), are better expressed
when the representation is dense. The dense multivariate representation is specifically a
recursively-dense representation, where polynomials in K[xg,x),...,X,] are viewed as a
polynomials in K[xg][x;]...[x,]. Note that despite this, the coefficient domain K, can be
a multivariate polynomial domain as well. The dense recursive representation in Python
gets inefficient as the number of variables increases.

Some examples for the sympy . polys submodule can be found in Section S10.

Printers

SymPy has a rich collection of expression printers. By default, an interactive Python session
will render the str form of an expression, which has been used in all the examples in this
paper so far. The str form of an expression is valid Python and roughly matches what a

user would type to enter the expression.’

>>> phi@ = Symbol('phi@')
>>> str(Integral(sqrt(phi@), phi@))
'"Integral(sqrt(phi@), phi@)'

A two-dimensional (2D) textual representation of the expression can be printed with
monospace fonts via pprint. Unicode characters are used for rendering mathematical
symbols such as integral signs, square roots, and parentheses. Greek letters and subscripts
in symbol names that have Unicode code points associated are also rendered automatically.

>>> pprint(Integral(sqrt(phi® + 1), phi0))

\/ 0o + 1 d(go)

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103

9/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103/supp-2
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

108ee Section S4 for an in depth discussion
on the Diophantine submodule.

Alternately, the use_unicode=False flag can be set, which causes the expression to be
printed using only ASCII characters.

>>> pprint(Integral(sqrt(phi@ + 1), phi@), use_unicode=False)
/

I

[

| \/ phie + 1 d(phi)
I

/

The function latex returns a ¥IEX representation of an expression.

>>> print(latex(Integral(sqgrt(phi@ + 1), phi®@)))
\int \sqrt{\phi_{0} + 1}\, d\phi_{0}

Users are encouraged to run the init_printing function at the beginning of
interactive sessions, which automatically enables the best pretty printing supported by
their environment. In the Jupyter Notebook or Qt Console (Pérez ¢ Granger, 2007), the
ITEX printer is used to render expressions using MathJax or BIEX, if it is installed on the
system. The 2D text representation is used otherwise.

Other printers such as MathML are also available. SymPy uses an extensible printer
subsystem, which allows extending any given printer, and also allows custom objects to
define their printing behavior for any printer. The code generation functionality of SymPy
relies on this subsystem to convert expressions into code in various target programming

languages.

Solvers

SymPy has equation solvers that can handle ordinary differential equations, recurrence
relationships, Diophantine equations,'” and algebraic equations. There is also rudimentary
support for simple partial differential equations.

There are two functions for solving algebraic equations in SymPy: solve and solveset.
solveset has several design changes with respect to the older solve function. This
distinction is present in order to resolve the usability issues with the previous solve
function API while maintaining backward compatibility with earlier versions of SymPy.
solveset only requires essential input information from the user. The function signatures
of solve and solveset are

solve(f, *symbols, **flags)
solveset(f, symbol, domain=S.Complexes)
The domain parameter can be any set from the sympy.sets module (see Section S5 for
details on sympy . sets), but is typically either S.Complexes (the default) or S.Reals; the
latter causes solveset to only return real solutions.

An important difference between the two functions is that the output API of solve
varies with input (sometimes returning a Python list and sometimes a Python dictionary)
whereas solveset always returns a SymPy set object.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 10/27

http://dx.doi.org/10.7717/peerj-cs.103/supp-1
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

U Similar to the polynomials submodule,
dense here means that all entries are
stored in memory, contrasted with a sparse
representation where only nonzero entries
are stored.

Both functions implicitly assume that expressions are equal to 0. For instance,
solveset(x - 1, x) solves x —1=0 for x.

solveset is under active development as a planned replacement for solve. There
are certain features which are implemented in solve that are not yet implemented in
solveset, including multivariate systems, and some transcendental equations.

Some examples for solveset and solve can be found in Section S10.

Matrices

Besides being an important feature in its own right, computations on matrices with
symbolic entries are important for many algorithms within SymPy. The following code
shows some basic usage of the Matrix class.

>>> A = Matrix([[x, x + y], Ly, x11)
>>> A

Matrix([

[x, x + yl,

Ly, x11)

SymPy matrices support common symbolic linear algebra manipulations, including
matrix addition, multiplication, exponentiation, computing determinants, solving
linear systems, singular values, and computing inverses using LU decomposition, LDL
decomposition, Gauss-Jordan elimination, Cholesky decomposition, Moore—Penrose
pseudoinverse, or adjugate matrices.

All operations are performed symbolically. For instance, eigenvalues are computed by
generating the characteristic polynomial using the Berkowitz algorithm and then finding
its zeros using polynomial routines.

>>> A.eigenvals()
{x = sart(yx(x + y)): 1, x + sqrt(yx(x + y)): 1}

Internally these matrices store the elements as Lists of Lists (LIL) (Jones et al., 2001),
meaning the matrix is stored as a list of lists of entries (effectively, the input format used to
create the matrix A above), making it a dense representation.“ For storing sparse matrices,
the SparseMatrix class can be used. Sparse matrices store their elements in Dictionary of
Keys (DOK) format, meaning that the entries are stored as a dict of (row, column) pairs
mapping to the elements.

SymPy also supports matrices with symbolic dimension values. MatrixSymbol represents
a matrix with dimensions m x n, where m and n can be symbolic. Matrix addition and
multiplication, scalar operations, matrix inverse, and transpose are stored symbolically as
matrix expressions.

Block matrices are also implemented in SymPy. BlockMatrix elements can be any
matrix expression, including explicit matrices, matrix symbols, and other block matrices.
All functionalities of matrix expressions are also present in BlockMatrix .

When symbolic matrices are combined with the assumptions submodule for
logical inference, they provide powerful reasoning over invertibility, semi-definiteness,

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 11/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

orthogonality, etc., which are valuable in the construction of numerical linear algebra
systems (Rocklin, 2013).
More examples for Matrix and BlockMatrix may be found in Section S10.

NUMERICS

While SymPy primarily focuses on symbolics, it is impossible to have a complete symbolic
system without the ability to numerically evaluate expressions. Many operations directly
use numerical evaluation, such as plotting a function, or solving an equation numerically.
Beyond this, certain purely symbolic operations require numerical evaluation to effectively
compute. For instance, determining the truth value of e+ 1 > 7 is most conveniently done
by numerically evaluating both sides of the inequality and checking which is larger.

Floating-point numbers
Floating-point numbers in SymPy are implemented by the Float class, which represents
an arbitrary-precision binary floating-point number by storing its value and precision
(in bits). This representation is distinct from the Python built-in float type, which is a
wrapper around machine double types and uses a fixed precision (53-bit).

Because Python float literals are limited in precision, strings should be used to input
precise decimal values:

>>> Float(1.1)

1.10000000000000

>>> Float(1.1, 30) # precision equivalent to 30 digits
1.10000000000000008881784197001

>>> Float("1.1", 30)

1.10000000000000000000000000000

The evalf method converts a constant symbolic expression to a Float with the specified
precision, here 25 digits:

>>> (pi + 1).evalf(25)
4.141592653589793238462643

Float numbers do not track their accuracy, and should be used with caution within
symbolic expressions since familiar dangers of floating-point arithmetic apply (Goldberg,
1991). A notorious case is that of catastrophic cancellation:

>>> cos(exp(-100)).evalf(25) - 1
0

Applying the evalf method to the whole expression solves this problem. Internally,
evalf estimates the number of accurate bits of the floating-point approximation for each
sub-expression, and adaptively increases the working precision until the estimated accuracy
of the final result matches the sought number of decimal digits:

>>> (cos(exp(-100)) - 1).evalf(25)
-6.919482633683687653243407¢e-88

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 12/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

The evalf method works with complex numbers and supports more complicated
expressions, such as special functions, infinite series, and integrals. The internal error
tracking does not provide rigorous error bounds (in the sense of interval arithmetic) and
cannot be used to accurately track uncertainty in measurement data; the sole purpose is
to mitigate loss of accuracy that typically occurs when converting symbolic expressions to
numerical values.

The mpmath library

The implementation of arbitrary-precision floating-point arithmetic is supplied by the
mpmath library (Johansson & The mpmath Development Team, 2014). Originally, it was
developed as a SymPy submodule but has subsequently been moved to a standalone
pure-Python package. The basic datatypes in mpmath are mpf and mpc, which respectively
act as multiprecision substitutes for Python’s float and complex. The floating-point
precision is controlled by a global context:

>>> import mpmath

>>> mpmath.mp.dps = 30 # 30 digits of precision
>>> mpmath.mpf("0.1") + mpmath.exp(-50)
mpf('0.100000000000000000000192874984794")

>>> print(_) # pretty-printed
0.100000000000000000000192874985

Like SymPy, mpmath is a pure Python library. A design decision of SymPy is to keep it
and its required dependencies pure Python. This is a primary advantage of mpmath over
other multiple precision libraries such as GNU MPFR (Fousse et al., 2007), which is faster.
Like SymPy, mpmath is also BSD licensed (GNU MPEFR is licensed under the GNU Lesser
General Public License (Rosen, 2005)).

Internally, mpmath represents a floating-point number (—1)*x -2 by a tuple (s,x,y,b)
where x and y are arbitrary-size Python integers and the redundant integer b stores the bit
length of x for quick access. If GMPY (Horsen, 2015) is installed, mpmath automatically
uses the gmpy.mpz type for x, and GMPY methods for rounding-related operations,
improving performance.

Most mpmath and SymPy functions use the same naming scheme, although this is not
true in every case. For example, the symbolic SymPy summation expression Sum(f(x),
(x, a, b)) representing Zz:a f(x) is represented in mpmath as nsum(f, (a, b)),
where f is a numeric Python function.

The mpmath library supports special functions, root-finding, linear algebra, polynomial
approximation, and numerical computation of limits, derivatives, integrals, infinite series,
and solving ODEs. All features work in arbitrary precision and use algorithms that allow
computing hundreds of digits rapidly (except in degenerate cases).

The double exponential (tanh-sinh) quadrature is used for numerical integration by
default. For smooth integrands, this algorithm usually converges extremely rapidly, even
when the integration interval is infinite or singularities are present at the endpoints
(Takahasi & Mori, 1974; Bailey, Jeyabalan ¢ Li, 2005). However, for good performance,

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 13/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

singularities in the middle of the interval must be specified by the user. To evaluate slowly
converging limits and infinite series, mpmath automatically tries Richardson extrapolation
and the Shanks transformation (Euler-Maclaurin summation can also be used) (Bender
& Orszag, 1999). A function to evaluate oscillatory integrals by means of convergence
acceleration is also available.

A wide array of higher mathematical functions is implemented with full support
for complex values of all parameters and arguments, including complete and incomplete
gamma functions, Bessel functions, orthogonal polynomials, elliptic functions and integrals,
zeta and polylogarithm functions, the generalized hypergeometric function, and the Meijer
G-function. The Meijer G-function instance G?:(S) (O; %, -1, —%\x) is a good test case
(Toth, 2007); past versions of both Maple and Mathematica produced incorrect numerical
values for large x > 0. Here, mpmath automatically removes an internal singularity and
compensates for cancellations (amounting to 656 bits of precision when x = 10,000),
giving correct values:

>>> mpmath.mp.dps = 15
>>> mpmath.meijerg(L[],[0]1]1, [[-0.5,-1,-1.5],[1]1, 10000)
mpf('2.4392576907199564e-94")

Equivalently, with SymPy’s interface this function can be evaluated as:

>>> meijerg([[1,[01]1, [[-S(1)/2,-1,-S(3)/2]1,[11, 10000).evalf()
2.43925769071996e-94

Symbolic integration and summation often produce hypergeometric and Meijer G-
function closed forms (see Section ‘Calculus’); numerical evaluation of such special
functions is a useful complement to direct numerical integration and summation.

PHYSICS SUBMODULE

SymPy includes several submodules that allow users to solve domain specific physics
problems. For example, a comprehensive physics submodule is included that is useful for
solving problems in mechanics, optics, and quantum mechanics along with support for
manipulating physical quantities with units.

Classical mechanics
One of the core domains that SymPy suports is the physics of classical mechanics. This is
in turn separated into two distinct components: vector algebra and mechanics.

Vector algebra

The sympy.physics.vector submodule provides reference frame-, time-, and space-
aware vector and dyadic objects that allow for three-dimensional operations such as
addition, subtraction, scalar multiplication, inner and outer products, and cross products.
The vector and dyadic objects both can be written in very compact notation that make it easy
to express the vectors and dyadics in terms of multiple reference frames with arbitrarily
defined relative orientations. The vectors are used to specify the positions, velocities,
and accelerations of points; orientations, angular velocities, and angular accelerations of

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 14/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

reference frames; and forces and torques. The dyadics are essentially reference frame-aware
3 x 3 tensors (Tai, 1997). The vector and dyadic objects can be used for any one-, two-,
or three-dimensional vector algebra, and they provide a strong framework for building
physics and engineering tools.

The following Python code demonstrates how a vector is created using the orthogonal
unit vectors of three reference frames that are oriented with respect to each other, and the
result of expressing the vector in the A frame. The B frame is oriented with respect to the
A frame using Z-X-Z Euler Angles of magnitude 7, 7, and 7, respectively, whereas the C
frame is oriented with respect to the B frame through a simple rotation about the B frame’s
X unit vector through 7.

>>> from sympy.physics.vector import ReferenceFrame
>>> A, B, C = symbols('A B C', cls=ReferenceFrame)
>>> B.orient(A, 'body', (pi, pi/3, pi/4), 'zxz')

>>> C.orient(B, 'axis', (pi/2, B.x))
>>> v = 1%¥A.x + 2xB.z + 3%C.y

>>> v

A.x + 2%B.z + 3xC.y

>>> v.express(A)

A.x + 5xsqrt(3)/2*A.y + 5/2xA.z
Mechanics

The sympy.physics.mechanics submodule utilizes the sympy.physics.vector
submodule to populate time-aware particle and rigid-body objects to fully describe

the kinematics and kinetics of a rigid multi-body system. These objects store all of the
information needed to derive the ordinary differential or differential algebraic equations
that govern the motion of the system, i.e., the equations of motion. These equations of
motion abide by Newton’s laws of motion and can handle arbitrary kinematic constraints
or complex loads. The submodule offers two automated methods for formulating the
equations of motion based on Lagrangian Dynamics (Lagrange, 1811) and Kane’s Method
(Kane ¢ Levinson, 1985). Lastly, there are automated linearization routines for constrained
dynamical systems (Peterson, Gede ¢ Hubbard, 2014).

Quantum mechanics
The sympy.physics.quantum submodule has extensive capabilities to solve problems
in quantum mechanics, using Python objects to represent the different mathematical
objects relevant in quantum theory (Sakurai & Napolitano, 2010): states (bras and kets),
operators (unitary, Hermitian, etc.), and basis sets, as well as operations on these objects
such as representations, tensor products, inner products, outer products, commutators,
and anticommutators. The base objects are designed in the most general way possible to
enable any particular quantum system to be implemented by subclassing the base operators
and defining the relevant class methods to provide system-specific logic.

Symbolic quantum operators and states may be defined, and one can perform a full
range of operations with them.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 15/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

>>> from sympy.physics.quantum import Commutator, Dagger, Operator
>>> from sympy.physics.quantum import Ket, qapply
>>> A, B, C, D = symbols('A B C D', cls=Operator)
>>> a = Ket('a')
>>> comm = Commutator(A, B)
>>> comm
[A,B]
>>> gapply(Dagger(commxa)).doit()
-<a|*(Dagger (A)*Dagger (B) - Dagger(B)*Dagger(A))
Commutators can be expanded using common commutator identities:
>>> Commutator(C+B, A*D).expand(commutator=True)
-[A,BI*D - [A,C]*D + Ax[B,D] + Ax[C,D]
On top of this set of base objects, a number of specific quantum systems have been
implemented in a fully symbolic framework. These include:

e Many of the exactly solvable quantum systems, including simple harmonic oscillator
states and raising/lowering operators, infinite square well states, and 3D position and
momentum operators and states.

e Second quantized formalism of non-relativistic many-body quantum mechanics (Fetter
¢ Walecka, 2003).

e Quantum angular momentum (Zare, 1991). Spin operators and their eigenstates
can be represented in any basis and for any quantum numbers. A rotation operator
representing the Wigner D-matrix, which may be defined symbolically or numerically, is
also implemented to rotate spin eigenstates. Functionality for coupling and uncoupling
of arbitrary spin eigenstates is provided, including symbolic representations of Clebsch-
Gordon coefficients and Wigner symbols.

e Quantum information and computing (Nielsen ¢~ Chuang, 2011). Multidimensional
qubit states, and a full set of one- and two-qubit gates are provided and can be
represented symbolically or as matrices/vectors. With these building blocks, it is possible
to implement a number of basic quantum algorithms including the quantum Fourier
transform, quantum error correction, quantum teleportation, Grover’s algorithm, dense
coding, etc. In addition, any quantum circuit may be plotted using the circuit_plot
function (Fig. 1).

Here are a few short examples of the quantum information and computing capabilities
in sympy . physics.quantum. Start with a simple four-qubit state and flip the second qubit
from the right using a Pauli-X gate:

>>> from sympy.physics.quantum.qubit import Qubit
>>> from sympy.physics.quantum.gate import XGate
>>> q = Qubit('Q101")

>>> q

[0101>

>>> X = XGate(1)

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

. H

Figure 1 The circuit diagram for a three-qubit quantum Fourier transform generated by SymPy.

>>> gapply (X*q)
[0111>

Qubit states can also be used in adjoint operations, tensor products, inner/outer products:

>>> Dagger(q)

<0101 |

>>> ip = Dagger(q)*q
>>> ip

<0101]0101>

>>> ip.doit()

1

Quantum gates (unitary operators) can be applied to transform these states and then
classical measurements can be performed on the results:

>>> from sympy.physics.quantum.qubit import measure_all
>>> from sympy.physics.quantum.gate import H, X, Y, Z
>>> ¢ = H(Q)*H(1)*Qubit('00")

>>> ¢

H(@)*H(1)*| 00>

>>> q = qapply(c)

>>> measure_all(q)

[(|e0>, 1/4), (|01>, 1/4), (10>, 1/4), (|11>, 1/4)]

Lastly, the following example demonstrates creating a three-qubit quantum Fourier
transform, decomposing it into one- and two-qubit gates, and then generating a circuit
plot for the sequence of gates (see Fig. 1).

>>> from sympy.physics.quantum.qgft import QFT

>>> from sympy.physics.quantum.circuitplot import circuit_plot

>>> fourier = QFT(0,3).decompose()

>>> fourier
SWAP(@,2)*H(0)*C((0),S(1))*H(1)*C((0),T(2))*C((1),S5(2))*H(2)

>>> ¢ = circuit_plot(fourier, nqubits=3)

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 17/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

128ome internal classes, such as those used in
the polynomial submodule, do not follow
this rule for efficiency reasons.

ARCHITECTURE

Software architecture is of central importance in any large software project because it
establishes predictable patterns of usage and development (Shaw ¢ Garlan, 1996). This
section describes the essential structural components of SymPy, provides justifications
for the design decisions that have been made, and gives example user-facing code as
appropriate.

The core

A computer algebra system stores mathematical expressions as data structures. For example,
the mathematical expression x + y is represented as a tree with three nodes, +, x, and y,
where x and y are ordered children of +. As users manipulate mathematical expressions
with traditional mathematical syntax, the CAS manipulates the underlying data structures.
Symbolic computations such as integration, simplification, etc. are all functions that
consume and produce expression trees.

In SymPy every symbolic expression is an instance of the class Basic,'” the superclass of
all SymPy types providing common methods to all SymPy tree-elements, such as traversals.
The children of a node in the tree are held in the args attribute. A leaf node in the expression
tree has empty args.

For example, consider the expression xy + 2:

>>> x, y = symbols('x y')

>>> expr = xxy + 2

By order of operations, the parent of the expression tree for expr is an addition. It is of
type Add. The child nodes of expr are 2 and x*y.

>>> type(expr)
<class 'sympy.core.add.Add'>
>>> expr.args
(2, xxy)

Descending further down into the expression tree yields the full expression. For example,
the next child node (given by expr.args[0]) is 2. Its class is Integer, and it has an empty
args tuple, indicating that it is a leaf node.

>>> expr.args[0]

2

>>> type(expr.args[0])

<class 'sympy.core.numbers.Integer'>
>>> expr.args[0].args

O

Symbols or symbolic constants, like e or 77, are other examples of leaf nodes.

>>> exp(1)
E
>>> exp(1).args

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 18/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

13The dotprint function from the
sympy.printing.dot submodule
prints output to dot format, which can
be rendered with Graphviz to visualize
expression trees graphically.

4expr. func is used instead of type (expr)
to allow the function of an expression to
be distinct from its actual Python class. In
most cases the two are the same.

O

>>> x.args
O

A useful way to view an expression tree is using the srepr function, which returns
a string representation of an expression as valid Python code'’ with all the nested class

constructor calls to create the given expression.

>>> srepr(expr)
"Add(Mul(Symbol('x"'), Symbol('y')), Integer(2))"

Every SymPy expression satisfies a key identity invariant:

expr.func(*expr.args) == expr

This means that expressions are rebuildable from their args.'* Note that in SymPy the
== operator represents exact structural equality, not mathematical equality. This allows
testing if any two expressions are equal to one another as expression trees. For example,
even though (x+ 1)? and x2 +2x + 1 are equal mathematically, SymPy gives

>>> (X + 1)*%2 == x*%2 + 2%x +]
False

because they are different as expression trees (the former is a Pow object and the latter is
an Add object).

Another important property of SymPy expressions is that they are immutable. This
simplifies the design of SymPy, and enables expression interning. It also enables expressions
to be hashed, which allows expressions to be used as keys in Python dictionaries, and is
used to implement caching in SymPy.

Python allows classes to override mathematical operators. The Python interpreter
translates the above x*y + 2 to, roughly, (x.__mul__(y)).__add__(2) . Both x and
y, returned from the symbols function, are Symbol instances. The 2 in the expression is
processed by Python as a literal, and is stored as Python’s built in int type. When 2 is
passed to the __add__ method of Symbol, it is converted to the SymPy type Integer(2)
before being stored in the resulting expression tree. In this way, SymPy expressions can be
built in the natural way using Python operators and numeric literals.

Extensibility

While the core of SymPy is relatively small, it has been extended to a wide variety of
domains by a broad range of contributors. This is due, in part, to the fact that the same
language, Python, is used both for the internal implementation and the external usage by
users. All of the extensibility capabilities available to users are also utilized by SymPy itself.
This eases the transition pathway from SymPy user to SymPy developer.

The typical way to create a custom SymPy object is to subclass an existing SymPy class,
usually Basic, Expr, or Function. As it was stated before, all SymPy classes used for
expression trees should be subclasses of the base class Basic. Expr is the Basic subclass
for mathematical objects that can be added and multiplied together. The most commonly
seen classes in SymPy are subclasses of Expr, including Add, Mul, and Symbol. Instances of

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 19/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

15Gee Section S3 for more information on
the sympy . logic submodule.

Expr typically represent complex numbers, but may also include other “rings”, like matrix
expressions. Not all SymPy classes are subclasses of Expr. For instance, logic expressions,
such as And(x, y) , are subclasses of Basic but not of Expr.'”

The Function class is a subclass of Expr which makes it easier to define mathematical
functions called with arguments. This includes named functions like sin(x) and log(x) as
well as undefined functions like f (x). Subclasses of Function should define a class method
eval, which returns an evaluated value for the function application (usually an instance
of some other class, e.g., a Number), or None if for the given arguments it should not be
automatically evaluated.

Many SymPy functions perform various evaluations down the expression tree. Classes
define their behavior in such functions by defining a relevant _eval_ * method. For
instance, an object can indicate to the diff function how to take the derivative of itself by
defining the _eval_derivative(self, x) method, which may in turn call diff on its
args. (Subclasses of Function should implement the fdiff method instead; it returns the
derivative of the function without considering the chain rule.) The most common _eval_
* methods relate to the assumptions: _eval_is_ assumption is used to deduce assumption
on the object.

Listing 1 presents an example of this extensibility. It gives a stripped down version of
the gamma function I'(x) from SymPy. The methods defined allow it to evaluate itself on
positive integer arguments, define the real assumption, allow it to be rewritten in terms
of factorial (with gamma(x).rewrite(factorial)), and allow it to be differentiated.
self. func is used throughout instead of referencing gamma explicitly so that potential
subclasses of gamma can reuse the methods.

Listing 1: A minimal implementation of sympy . gamma.
from sympy import Function, Integer, factorial, polygamma

class gamma(Function):
@classmethod

def eval(cls, arg):
if isinstance(arg, Integer) and arg.is_positive:
return factorial(arg - 1)

def _eval_is_real(self):
x = self.args[0]
noninteger means real and not integer
if x.is_positive or x.is_noninteger:
return True

def _eval_rewrite_as_factorial(self, z):
return factorial(z - 1)

def fdiff(self, argindex=1):
from sympy.core.function import ArgumentIndexError
if argindex == 1:
return self.func(self.args[@])*xpolygamma (@, self.args[0])
else:
raise ArgumentIndexError (self, argindex)

The gamma function implemented in SymPy has many more capabilities than the above
listing, such as evaluation at rational points and series expansion.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 20/27

http://dx.doi.org/10.7717/peerj-cs.103/supp-1
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

Performance

Due to being written in pure Python without the use of extension modules, SymPy’s
performance characteristics are generally poorer than that of its commercial competitors.
For many applications, the performance of SymPy, as measured by clock cycles, memory
usage, and memory layout, is sufficient. However, the boundaries for when SymPy’s pure
Python strategy becomes insufficient are when the user requires handling of very long
expressions or many small expressions. Where this boundray lies depends on the system at
hand, but tends to be within the range of 10*~10° symbols for modern computers.

For this reason, a new project called SymEngine (The SymPy Developers, 2016a) has been
started. The aim of this poject is to develop a library with better performance characteristics
for symbolic manipulation. SymEngine is a pure C++ library, which allows it fine-grained
control over the memory layout of expressions. SymEngine has thin wrappers to other
languages (Python, Ruby, Julia, etc.). Its aim is to be the fastest symbolic manipulation
library. Preliminary benchmarks suggest that SymEngine performs as well as its commercial
and open source competitors.

The development version of SymPy has recently started to use SymEngine as an optional
backend, initially in sympy.physics.mechanics only. Future work will involve allowing
more algorithms in SymPy to use SymEngine as a backend.

PROJECTS THAT DEPEND ON SYMPY

There are several projects that depend on SymPy as a library for implementing a part of
their functionality. A selection of these projects are listed in Table 3.

CONCLUSION AND FUTURE WORK

SymPy is a robust computer algebra system that provides a wide spectrum of features both
in traditional computer algebra and in a plethora of scientific disciplines. It can be used in
a first-class way with other Python projects, including the scientific Python stack.

SymPy supports a wide array of mathematical facilities. These include functions for
assuming and deducing common mathematical facts, simplifying expressions, performing
common calculus operations, manipulating polynomials, pretty printing expressions,
solving equations, and representing symbolic matrices. Other supported facilities
include discrete math, concrete math, plotting, geometry, statistics, sets, series, vectors,
combinatorics, group theory, code generation, tensors, Lie algebras, cryptography, and
special functions. SymPy has strong support for arbitrary precision numerics, backed by
the mpmath package. Additionally, SymPy contains submodules targeting certain specific
physics domains, such as classical mechanics and quantum mechanics. This breadth of
domains has been engendered by a strong and vibrant user community. Anecdotally, many
of these users chose SymPy because of its ease of access. SymPy is a dependency of many
external projects across a wide spectrum of domains.

SymPy expressions are immutable trees of Python objects. Unlike many other CAS’s,
SymPy is designed to be used in an extensible way: both as an end-user application and
as a library. SymPy uses Python both as the internal language and the user language. This

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 21/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

Table 3 Selected projects that depend on SymPy.

Project name Description

SymPy Gamma An open source analog of Wolfram | Alpha that uses SymPy
(The SymPy Developers, 2016b). There is more information
about SymPy Gamma in Section S11.

Cadabra A CAS designed specifically for the resolution of problems
encountered in field theory (Peeters, 2007).

GNU Octave Symbolic Package An implementation of a symbolic toolbox for Octave using
SymPy (The Symbolic Package Developers, 2016).

SymPy.jl A Julia interface to SymPy, provided using PyCall (The
SymPy.jl Developers, 2016).

Mathics A free, online CAS featuring Mathematica compatible
syntax and functions (The Mathics Developers, 2016).

Mathpix An iOS App that detects handwritten math as input and
uses SymPy Gamma to evaluate the math input and
generate the relevant steps to solve the problem (Mathpix,

Inc., 2016).

IKFast A robot kinematics compiler provided by OpenRAVE
(Diankov, 2010).

SageMath A free open-source mathematics software system, which

builds on top of many existing open-source packages,
including SymPy (The Sage Developers, 2016).

PyDy Multibody Dynamics with Python (Gede et al., 2013).

galgebra A Python package for geometric algebra (previously
sympy . galgebra) (Bromborsky, 2016).

yt A Python package for analyzing and visualizing volumetric
data (Turk et al., 2011).

SfePy A Python package for solving partial differential equations

(PDEs) in 1D, 2D, and 3D by the finite element (FE)
method (Zienkiewicz, Taylor & Zhu, 2013; Cimrman, 2014).

Quameon Quantum Monte Carlo in Python (7he Quameon
Developers, 2016).
Lcapy An experimental Python package for teaching linear circuit

analysis (The Lcapy Developers, 2016).

permits users to access the same methods used by the library itself in order to extend it for
their needs.

Some of the planned future work for SymPy includes work on improving code
generation, improvements to the speed of SymPy using SymEngine, improving the
assumptions system, and improving the solvers submodule.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Google Summer of Code provided financial support to students who contributed to SymPy.
Ondiej Certik was supported by the Los Alamos National Laboratory. The Los Alamos
National Laboratory is operated by Los Alamos National Security, LLC, for the National
Nuclear Security Administration of the US Department of Energy under Contract No.

Meurer et al. (2017), Peerd Comput. Sci., DOl 10.7717/peerj-cs.103 22/27

https://peerj.com
http://sympygamma.com/
http://dx.doi.org/10.7717/peerj-cs.103/supp-1
http://cadabra.science/index.html
https://github.com/cbm755/octsympy
https://github.com/jverzani/SymPy.jl
https://mathics.github.io/
http://mathpix.com/
http://openrave.org/docs/latest_stable/openravepy/ikfast/
http://openrave.org/
http://www.sagemath.org/
http://www.pydy.org/
https://github.com/brombo/galgebra
http://yt-project.org/
http://sfepy.org/
http://quameon.sourceforge.net/
http://lcapy.elec.canterbury.ac.nz/
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

DE-AC52-06NA25396. Richard P. Muller was supported by Sandia National Laboratories.
Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94A185000. Francesco Bonazzi was supported by Deutsche Forschungsgemeinschaft
(DEG) via the International Research Training Group 1524 “Self- Assembled Soft Matter
Nano-Structures at Interfaces.” The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
Google Summer of Code.

Los Alamos National Laboratory: No. DE-AC52-06NA25396.
Sandia National Laboratories: DE-AC04-94AL85000.
International Research Training Group 1524.

Competing Interests

Christopher P. Smith is an employee of Polar Semiconductor, Inc., Bloomington,
Minnesota, United States; Mateusz Paprocki and Matthew Rocklin are employees of
Continuum Analytics, Inc., Austin, Texas, United States; Andy R. Terrel is an employee of
Fashion Metric, Inc, Austin, Texas, United States.

Author Contributions

e Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondrej Certik, Sergey B.
Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj
Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco
Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J.
Curry, Andy R. Terrel, Stépan Roucka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman and Anthony Scopatz wrote the paper, performed the computation
work, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The source for the paper is at https://github.com/sympy/sympy-paper. The source code
for SymPy is at https://github.com/sympy/sympy.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.103#supplemental-information.

REFERENCES

Adams WW, Loustaunau P. 1994. An introduction to Grobner bases. Vol. 3. Boston:
American Mathematical Society.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 23/27

https://peerj.com
https://github.com/sympy/sympy-paper
https://github.com/sympy/sympy
http://dx.doi.org/10.7717/peerj-cs.103#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.103#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

Bailey DH, Jeyabalan K, Li XS. 2005. A comparison of three high-precision quadrature
schemes. Experimental Mathematics 14(3):317-329.

Bender CM, Orszag SA. 1999. Advanced mathematical methods for scientists and
engineers. 1st edition. Berlin Heidelberg: Springer.

Biggs N, Lloyd EK, Wilson RJ. 1976. Graph theory, 1736-1936. Oxford: Oxford
University Press.

Bromborsky A. 2016. Geometric algebra/calculus modules for SymPy galgebra. Available
at https:// github.com/brombo/ galgebra.

Bronstein M. 2005a. pmint—The Poor Man’s Integrator. Available at http:// www-
sop.inria.fr/ cafe/ Manuel. Bronstein/ pmint .

Bronstein M. 2005b. Symbolic integration I: transcendental functions. New York:
Springer—Verlag.

Buchberger B. 1965. Ein Algorithmus zum Auffinden der Basis Elemente des Restk-
lassenrings nach einem nulldimensionalen Polynomideal. PhD thesis, University of
Innsbruck, Innsbruck, Austria.

Cervone D. 2012. MathJax: a platform for mathematics on the Web. Notices of the AMS
59(2):312-316.

Cimrman R. 2014. SfePy—write your own FE application. Proceedings of the 6th
european conference on Python in science (EuroSciPy 2013). 65-70. Available at
http:// arxiv.org/ abs/ 1404.6391.

Ciurana E. 2009. Google app engine. In: Developing with Google App Engine. FirstPress
(En ligne), Berkeley: Apress.

Diankov R. 2010. Ikfast: the robot kinematics compiler. Available at http:// openrave.org/
docs/latest_stable/ openravepy/ikfast/ .

Doorenbos RB. 1995. Production matching for large learning systems. PhD thesis,
University of Southern California.

Faugere JC. 1999. A new efficient algorithm for computing Grobner bases (F4). Journal
of Pure and Applied Algebra 139(1-3):61-88.

Faugere JC. 2002. A new efficient algorithm for computing Grobner bases without
reduction to zero (F5). In: ISSAC’02: proceedings of the 2002 international symposium
on symbolic and algebraic computation. New York: ACM Press 75-83..

Fetter A, Walecka J. 2003. Quantum theory of many-particle systems. Mineola: Dover
Publications.

Fousse L, Hanrot G, Lefévre V, Pélissier P, Zimmermann P. 2007. MPFR: a multiple-
precision binary floating-point library with correct rounding. ACM Transactions on
Mathematical Software 33(2): DOI 10.1145/1236463.1236468.

FuH, Zhong X, Zeng Z. 2006. Automated and readable simplification of trigonomet-
ric expressions. Mathematical and Computer Modelling 55(11-12):1169-1177
DOI10.1016/j.mcm.2006.04.002.

Gede G, Peterson DL, Nanjangud AS, Moore JK, Hubbard M. 2013. Constrained multi-
body dynamics with Python: from symbolic equation generation to publication. In:
ASME 2013 international design engineering technical conferences and computers and

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 24/27

https://peerj.com
https://github.com/brombo/galgebra
http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint
http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint
http://arxiv.org/abs/1404.6391
http://openrave.org/docs/latest_stable/openravepy/ikfast/
http://openrave.org/docs/latest_stable/openravepy/ikfast/
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1016/j.mcm.2006.04.002
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

information in engineering conference, New York: American Society of Mechanical
Engineers, VO7BT10A051-VO7BT10A051.

Goldberg D. 1991. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys (CSUR) 23(1):5-48.

Gosper RW. 1978. Decision procedure for indefinite hypergeometric summation.
Proceedings of the National Academy of Sciences of the United States of America
75(1):40—42.

Gruntz D. 1996. On computing limits in a symbolic manipulation system. PhD thesis,
Swiss Federal Institute of Technology, Ziirich, Switzerland.

Horsen CV. 2015. GMPY. Available at https:// pypi.python.org/ pypi/ gmpy2.

Hudak P. 1998. Domain specific languages. In: Salas PH, ed. Handbook of programming
languages, vol. III: little languages and tools, chapter 3. Indianapolis: MacMillan,
39-60.

Hunter JD. 2007. Matplotlib: a 2D graphics environment. Computing in Science &
Engineering 9(3):90-95.

Johansson F, The mpmath Development Team. 2014. mpmath: a Python library
for arbitrary-precision floating-point arithmetic. Version 0.19. Available at http:
//mpmath.org/.

Jones E, Oliphant T, Peterson P, The SciPy Development Team. 2001. SciPy: open
source scientific tools for Python. Available at hitp://www.scipy.org/ (accessed on 28
September 2016).

Kane TR, Levinson DA. 1985. Dynamics, theory and applications. New York: McGraw
Hill.

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, FredericJ, Kelley
K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C, The
Jupyter Development Team. 2016. Jupyter Notebooks—a publishing format for
reproducible computational workflows. In: Positioning and power in academic
publishing: players, agents and agendas: proceedings of the 20th international conference
on electronic publishing. Amsterdam: 10S Press, 87.

Lagrange J. 1811. Mécanique analytique. No. v.1. Paris: Ve Courcier.

Lang S. 1966. Introduction to transcendental numbers. In: Addison-Wesley series in
mathematics. Reading: Addison-Wesley Pub. Co.

Lutz M. 2013. Learning Python. Sebastopol: O’Reilly Media, Inc.

Mathpix, Inc. 2016. Mathpix — Solve and graph math using pictures. Available at
http:// mathpix.com/.

Moses J. 1971. Algebraic simplification: a guide for the Perplexed. In: SYMSAC’71:
proceedings of the second ACM symposium on symbolic and algebraic computation.
New York: ACM Press, 282-304 DOT 10.1145/800204.806298.

Nielsen M, Chuang I. 2011. Quantum computation and quantum information. New York:
Cambridge University Press.

Nijenhuis A, Wilf HS. 1978. Combinatorial algorithms: for computers and calculators.
second edition. New York: Academic Press.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 25/27

https://peerj.com
https://pypi.python.org/pypi/gmpy2
http://mpmath.org/
http://mpmath.org/
http://www.scipy.org/
http://mathpix.com/
http://dx.doi.org/10.1145/800204.806298
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

Oliphant TE. 2007. Python for scientific computing. Computing in Science ¢ Engineering
9(3):10-20.

Paprocki M. 2010. Design and implementation issues of a computer algebra system in an
interpreted, dynamically typed programming language. Master’s thesis, University of
Technology of Wroctaw, Poland.

Peeters K. 2007. Cadabra: a field-theory motivated symbolic computer algebra system.
Computer Physics Communications 176(8):550-558.

Pérez F, Granger BE. 2007. IPython: a system for interactive scientific computing.
Computing in Science & Engineering 9(3):21-29.

Peterson DL, Gede G, Hubbard M. 2014. Symbolic linearization of equations of motion
of constrained multibody systems. Multibody System Dynamics 33(2):143—161
DOI10.1007/s11044-014-9436-5.

Petkovsek M, Wilf HS, Zeilberger D. 1997. A = B. Wellesley: AK Peters, Ltd.,
222+.Available at http:// www.math.rutgers.edu/ ~zeilberg/ AeqB.pdf .

Raymond E. 1999. The cathedral and the bazaar. Knowledge, Technology ¢ Policy
12(3):23-49.

Roach K. 1996. Hypergeometric function representations. In: ISSAC’96: proceedings of
the 1996 international symposium on symbolic and algebraic computation. New York:
ACM Press 301-308..

Roach K. 1997. In: ISSAC’97: proceedings of the 1997 international symposium on symbolic
and algebraic computation. New York: ACM, 205-211
DOI 10.1145/258726.2587840-89791-875-4.

Rocklin M. 2013. Mathematically informed linear algebra codes through term rewriting.
PhD thesis, University of Chicago.

Rocklin M, Terrel AR. 2012. Symbolic Statistics with SymPy. Computing in Science and
Engineering 14(3):88-93 DOI 10.1109/MCSE.2012.56.

Rose KH. 1999. XY-pic user’s guide. Available at http:// ctan.org/ tex-archive/ macros/
generic/ diagrams/ xypic/ doc/ xyguide.pdf .

Rosen L. 2005. Open source licensing: software freedom and intellectual property law.
Upper Saddle River: Prentice Hall.

Sakurai J, Napolitano J. 2010. Modern quantum mechanics. Boston: Addison-Wesley.

Shaw M, Garlan D. 1996. Software architecture: perspectives on an emerging discipline.
Pittsburgh: Prentice Hall.

Sussman GJ, Wisdom J. 2013. Functional differential geometry. Cambridge: Mas-
sachusetts Institute of Technology Press.

Tai C-T. 1997. Generalized vector and dyadic analysis: applied mathematics in field
theory. Vol. 9. Hoboken: Wiley-IEEE Press.

Takahasi H, Mori M. 1974. Double exponential formulas for numerical integration.
Publications of the Research Institute for Mathematical Sciences 9(3):721-741.

The Lcapy Developers. 2016. Lcapy, a Python package for linear circuit analysis.
Available at http://lcapy.elec.canterbury.ac.nz/.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 26/27

https://peerj.com
http://dx.doi.org/10.1007/s11044-014-9436-5
http://www.math.rutgers.edu/~zeilberg/AeqB.pdf
http://dx.doi.org/10.1145/258726.2587840-89791-875-4
http://dx.doi.org/10.1109/MCSE.2012.56
http://ctan.org/tex-archive/macros/generic/diagrams/xypic/doc/xyguide.pdf
http://ctan.org/tex-archive/macros/generic/diagrams/xypic/doc/xyguide.pdf
http://lcapy.elec.canterbury.ac.nz/
http://dx.doi.org/10.7717/peerj-cs.103

PeerJ Computer Science

The Mathics Developers. 2016. Mathics, a free, general-purpose online computer
algebra system featuring Mathematica-compatible syntax and functions. Available
at https:// mathics.github.io/ .

The Quameon Developers. 2016. Quameon, quantum Monte Carlo in Python. Available
at http:// quameon.sourceforge.net/.

The Sage Developers. 2016. SageMath, the sage mathematics software system. Available
at http://www.sagemath.org.

The Symbolic Package Developers. 2016. The symbolic package for GNU Octave.
Available at http:// octave.sourceforge.net/symbolic.

The SymPy Developers. 2016a. SymEngine, a fast symbolic manipulation library,
written in C++. Available at https:// github.com/symengine/ symengine.

The SymPy Developers. 2016b. SymPy Gamma. Available at http:// www.sympygamma.
com/.

The SymPy.jl Developers. 2016. SymPy.jl, a package to bring Python’s SymPy function-
ality into Julia via PyCall. Available at https:// github.com/ JuliaPy/SymPy.jl.

Toth VT. 2007. Maple and Meijer’s G-function: a numerical instability and a cure.
Available at http:// www.vttoth.com/ CMS/ index.php/ technical-notes/ 67 .

Turk MJ, Smith BD, Oishi JS, Skory S, Skillman SW, Abel T, Norman ML. 2011. yt:
a multi-code analysis toolkit for astrophysical simulation data. The Astrophysical
Journal Supplement Series 192:9 DOI 10.1088/0067-0049/192/1/9.

Zare R. 1991. Angular momentum: understanding spatial aspects in chemistry and
physics. Hoboken: Wiley.

Zienkiewicz O, Taylor R, Zhu J. 2013. The finite element method: its basis and funda-
mentals. Seventh edition. Oxford: Butterworth-Heinemann.

Meurer et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.103 27127

https://peerj.com
https://mathics.github.io/
http://quameon.sourceforge.net/
http://www.sagemath.org
http://octave.sourceforge.net/symbolic
https://github.com/symengine/symengine
http://www.sympygamma.com/
http://www.sympygamma.com/
https://github.com/JuliaPy/SymPy.jl
http://www.vttoth.com/CMS/index.php/technical-notes/67
http://dx.doi.org/10.1088/0067-0049/192/1/9
http://dx.doi.org/10.7717/peerj-cs.103

