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ON DOMINATING EVEN SUBGRAPHS IN CUBIC GRAPHS∗

ROMAN ČADA† , SHUYA CHIBA‡ , KENTA OZEKI§ , AND KIYOSHI YOSHIMOTO¶

Abstract. It is known that a 3-edge-connected graph has a spanning even subgraph in which
every component contains at least five vertices, and the lower bound is best possible. A natural
question arises of whether we can improve the lower bound by changing the spanning property
with the dominating property. In this paper, we show that a 3-edge-connected cubic graph has a
dominating even subgraph in which every component contains at least six vertices.
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1. Introduction. In this paper, we consider finite graphs without loops. An
even graph is a graph in which every vertex has a positive even degree and a subgraph
H of a graph G is said to be dominating if G − V (H) is edgeless. In this paper, a
cycle is a connected 2-regular graph and a cycle with l vertices is called an l-cycle. A
2-factor is a spanning 2-regular subgraph of a graph. An edge-cut is a minimal set of
edges whose removal increases the number of components of the graph. We call an
edge-cut with l edges an l-cut. An edge-cut is said to be essential if both of the two
new components after deleting it have at least one edge.

For a vertex subset X ⊂ V (G), the set of edges joining X and V (G)−X is denoted
by ∂(X) or simply ∂X. If X consists of one vertex u, then we denote it simply by
∂(u). For a subgraph H of G, we use ∂H instead of ∂(V (H)). For terminology and
notation not defined in this paper, we refer the readers to [5].

In this paper we consider cubic graphs, i.e., 3-regular graphs. A classical result by
Petersen [17] says that a bridgeless cubic graph has a 2-factor. This well-known result
was generalized by Fleischner [10] as follows: a bridgeless graph with minimum degree
at least three has a spanning even subgraph in which every component has at least
three vertices. If we restrict ourselves to simple graphs, then the lower bound on the
order of components is improved to four in [13]. Jackson and Yoshimoto considered
3-edge-connected graphs and showed the following.

Theorem A (Jackson and Yoshimoto [14]). A 3-edge-connected graph with n
vertices has a spanning even subgraph in which each component contains at least
min{5, n} vertices.
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They also gave an infinite family of 3-edge-connected cubic graphs in which every
2-factor contains 5-cycles. Thus the lower bound in the theorem is best possible in
some sense. Kaiser and Škrekovski gave an interesting result, which also generalizes
the Petersen’s theorem.

Theorem B (Kaiser and Škrekovski [15]). Every graph has an even subgraph
which intersects all 3-cuts and 4-cuts.

If a given graph is bridgeless and cubic, then for any u ∈ V (G), ∂(u) is always a
3-cut of the graph, and so the above theorem implies the following.

Corollary C. A bridgeless cubic graph has a 2-factor which intersects all 3-cuts
and 4-cuts.

If a given cubic graph is 3-edge-connected, then for an l-cycle C where l ∈ {3, 4},
∂C is an l-cut of the graph, and so Corollary C implies that a 3-edge-connected cubic
graph has a 2-factor in which every component contains at least five vertices.

Matthews and Sumner [16] conjectured that 4-connected claw-free graphs are
Hamiltonian and Ryjáček [18] showed the Matthews–Sumner conjecture is equivalent
to the conjecture by Thomassen and others [2, 4, 19] that 4-connected line graphs are
Hamiltonian. Fleischner and Jackson [11] showed that the conjecture on line graphs,
and so the Matthews–Sumner conjecture, is equivalent to the conjecture by Ash and
Jackson [3] that an essentially 4-edge-connected cubic graph has a dominating cycle.
Thus it is interesting and important to study the behavior of dominating subgraphs
in cubic graphs. In this paper, we prove the following using Corollary C.

Theorem 1.1. A 3-edge-connected cubic graph has a Hamilton cycle or a domi-
nating even subgraph F such that every component in F contains at least six vertices
and F intersects all essential 3-cuts.

In section 2, we give several preparations for the proof of Theorem 1.1, and in
section 3, the proof will be given. Furthermore, we will give remarks on even subgraphs
of 3-edge-connected cubic graphs and the traveling salesman problem in section 4.

We conjecture that Theorem 1.1 can be generalized as in Theorem A.

Conjecture 1.2. A 3-edge-connected graph with n vertices has a dominating
even subgraph in which each component has at least min{6, n} vertices.

Also it is a natural question to ask about the lower bound “6” in Theorem 1.1
and Conjecture 1.2.

Problem 1.3. What is the maximum integer k such that any 3-edge-connected
graph has a dominating even subgraph in which each component has at least min{k, n}
vertices?

The following example implies that the upper bound must be at most nine.

Fact 1.4. There is an infinite family of 3-edge-connected cubic graphs in which
every dominating even subgraph has a cycle of order at most nine.

Proof. We construct such a cubic graph. Let S be the graph as in Figure 1, where
S has 34 vertices, 49 edges, and 4 “half-edges” whose one end is in S. Later we define
the other ends of the half-edges.

Let m and l be positive integers with 3m = 4l. Let B be l copies of S and A
be m mutually disjoint triangles with three half-edges incident to each vertex of the
triangle. See Figure 2. Since A and B have 3m and 4l half-edges, respectively, and
3m = 4l, we can pair up half-edges in A with half-edges in B. It is easy to pair them
so that the obtained graph G is 3-edge-connected.
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Fig. 1.
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Fig 14

Fig. 2.

We show that any dominating even subgraph F in G has a cycle of order at most
nine. If there is a triangle T in A such that ∂T ∩ F = ∅, then obviously F contains
the 3-cycle T as a component. Suppose ∂T ∩ F 6= ∅ for all triangles T in A. Since
F is an even subgraph, |∂T ∩ F | = 2 for all triangles T in A, and so F contains 2m
edges joining A and B. Since 2m = 8l/3, there is a component S in B such that
|∂S ∩ F | = 4.

Let u1u2 be the edge in the middle of S; see Figure 1. Since F is a dominating
subgraph in G, at least one of the vertices u1 and u2 is contained in F , say, u1.
Let LS be the left component of S − u1u2. Since F is an even subgraph, we have
|∂LS ∩ F | = 2, and hence u1u2 /∈ F and ∂(u1)− {u1u2} ⊂ F . Note that both v1 and
v2 are contained in F . Then by the structure of LS , it is an easy observation that v1
and v2 belong to the same component of F which is different from the one containing
u1, and furthermore the component containing u1 has at most nine vertices. This
completes the proof of Fact 1.4.

The following question is also natural.

Problem 1.5. Does a 3-edge-connected cubic graph have a dominating even sub-
graph F such that every component in F contains at least six vertices and F intersects
all essential 3-cuts and 4-cuts?

2. Preparations. First, we give some additional notation. The set of all the
neighbors of a vertex x ∈ V (G) is denoted by NG(x) or simply N(x) and its cardinality
by dG(x) or d(x). For a subgraph H of G, we denote NG(x) ∩ V (H) by NH(x) and
its cardinality by dH(x). For simplicity, we denote |V (H)| by |H| and “ui ∈ V (H)”
by “ui ∈ H.” Similarly G− V (H) is denoted by G−H.
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Fig. 4. Reduction of 2-cell.
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Fig. 5. Reduction of 1-cell.

Recall that an edge-cut is said to be essential if both of the two new components
after deleting it have at least one edge. This definition directly implies the following
fact, which will be implicitly used in our proofs.

Fact 2.1. For a 2-edge-connected cubic graph G and for a k-cut T , both of the
following hold:

• If k = 2, then T is always an essential cut.
• If k = 3 and T = ∂S for some S ⊆ V (G) with |S| ≥ 2 and |V (G) − S| ≥ 2,

then T is an essential cut.

An i-cell is the union of two 5-cycles in a cubic graph which have i common
edges. See Figure 3(a), (b). We call a 5-cycle a 0-cell. In the proof of Theorem 1.1,
we will construct a dominating even subgraph from a 2-factor of a cubic graph which
is obtained by reducing those cells. Hence we define reductions for those cells first.

Let D be a 2-cell in G, and let u1u2 · · ·u6u1 be the 6-cycle and w the remaining
vertex in D. See Figure 4. Let G′ be the graph obtained from G by contracting all of
the paths u1u6, u2wu5, u3u4 and removing the edges u6u5 and u5u4. We denote this
reduction by G′ = G|D.

Let D be a 1-cell in G and u1u2 · · ·u8u1 the 8-cycle of D. See Figure 5. Let G′

be the graph obtained from G by removing the edge u2u6 and contracting both of the
edges u1u2 and u7u6. We denote by G′ = G|D this reduction.
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Fig. 6. Reduction of 5-cycle.

Let D = u1 · · ·u5u1 be a 5-cycle without chord. Let u′i ∈ V (G − C) which is
adjacent to ui for 1 ≤ i ≤ 5. See Figure 6. Let G′ be the graph obtained from G
by removing the edges u1u5, u5u4, u4u3 and identifying u1, u4 and u3, u5, respectively.
We denote by G′ = G|u2

D this reduction.
We say that a 5-cycle C is good in G if there is an essential 3-cut T in G such

that |T ∩ ∂C| ≥ 2. If C has exactly one chord and |G| ≥ 8, then C is always good
because ∂C is an essential 3-cut. If a 2- or 1-cell contains a good 5-cycle, then the
cell is also called good. A cell which is not good is called bad. Notice that in a bad
cell, every 5-cycle is bad.

We need the following fact in the proof of Theorem 1.1.

Fact 2.2. Let i ∈ {2, 1, 0}. If a 3-edge-connected cubic graph G has a bad i-cell
D, then G|D or G|u2

D is 3-edge-connected.

This fact is obtained from the following two lemmas.

Lemma 2.3. Let D = u1u2u3u4u5u1 be a 5-cycle of a 3-edge-connected cubic
graph. If there is an essential 3-cut T such that T ∩ E(D) 6= ∅, then D is good.

Proof. Suppose D is bad and there is an essential 3-cut T such that T ∩E(D) 6= ∅.
Since D is bad and G is 3-edge-connected, D has no chord. Let u′i ∈ NG−C(ui) for
1 ≤ i ≤ 5. Since T is an essential edge-cut of a cubic graph and G is 3-edge-connected,
no pair of edges in T is adjacent, and so T∩E(D) contains two independent edges, say,
u1u2, u4u5. Then (T − {u1u2, u4u5}) ∪ {u1u

′
1, u5u

′
5} is an essential 3-cut containing

two edges in ∂D, a contradiction.

Lemma 2.4. For k ∈ {2, 3} and a k-edge-connected cubic graph G, the following
hold:

1. Let D be a 2-cell and u1u2 · · ·u6u1 be the 6-cycle in D. See Figure 4. If G|D is
not k-edge-connected, then G has an essential k-cut containing {u1u2, u5u6}
or {u2u3, u4u5}.

2. Let D be a 1-cell and u1u2 · · ·u8u1 be the 8-cycle in D. See Figure 5.
If G|D is not k-edge-connected, then G has an essential k-cut containing
{u1u8, u4u5, u2u6} or {u3u4, u7u8, u2u6}.

3. Let D = u1u2 · · ·u5u1 be a 5-cycle and u′j be the vertex in G − D which is
adjacent to uj for 1 ≤ j ≤ 5. See Figure 6. If G|u2D is not k-edge-connected,
then G has an essential k-cut containing {u1u

′
1, u4u

′
4} or {u3u

′
3, u5u

′
5}.

Proof. Let G′ = G|D or G′ = G|u2D, respectively, T be a minimum edge-cut of
G′, and D′ be the subgraph in G′ corresponding to D. Let S ⊂ V (G′) such that
∂S = T and u1 ∈ S. Suppose |T | ≤ k − 1. Since G is k-edge-connected, T is not an
edge-cut of G, and so T = ∂S divides D′. For a vertex u ∈ V (D), we denote a vertex
in G−D adjacent to u by u′ if it exists.



ON DOMINATING EVEN SUBGRAPHS IN CUBIC GRAPHS 895

1. Since |T ∩ D′| = 1, by symmetry, we may suppose T ∩ D′ = {u1u2}. Since
T is a minimum cut, no pair of edges in T is adjacent, and so {u′1, u′6} ⊂ S.
Thus ∂(S ∪ {u6}) is an essential k-cut containing {u1u2, u5u6} of G.

2. Since T divides V (D′), |T ∩D′| = 2. By symmetry, we have four cases.
If T ∩D′ = {u1u3, u5u7}, then ∂S is also a (k− 1)-cut of G, a contradiction.
If T ∩ D′ = {u1u3, u4u5}, then ∂(S ∪ {u2, u6}) is a (k − 1)-cut of G, a
contradiction.
If T ∩ D′ = {u1u8, u3u4}, then ∂(S − {u1, u3}) is a (k − 1)-cut of G, a
contradiction.
If T ∩D′ = {u1u8, u4u5}, then since {u1, u3} ⊂ S, ∂(S ∪{u2}) is an essential
k-cut containing {u1u8, u4u5, u2u6} of G.

3. Since T = ∂S divides D′, |T ∩ D′| = 1. By symmetry, we may suppose
T ∩D′ = {u1u2}. Since {u′1, u′4} ⊂ S and G is k-edge-connected, ∂(S − u1)
is an essential k-cut containing {u1u

′
1, u4u

′
4} of G.

Proof of Fact 2.2. If D is a 5-cycle and G|u2
D is not 3-edge-connected, then by

Lemma 2.4, D is good. If D is a 2- or 1-cell and G|D is not 3-edge-connected, then
there exist a 5-cycle C in D and an essential 3-cut T of G such that |D ∩ T | ≥ 2 by
Lemma 2.4. Thus by Lemma 2.3, D is good.

3. Proof of Theorem 1.1. Let G be a 3-edge-connected cubic graph. We may
assume that G is not Hamiltonian; otherwise we are done. First we define a sequence
of bad cells in G which will be reduced.

Let

D1 = {D1, D2, . . . , Dp}

be a maximal set of mutually disjoint 2-cells in G such that Di+1 is bad in Gi for
each 0 ≤ i ≤ p − 1, where G0 = G and Gi = Gi−1|Di for 1 ≤ i ≤ p. If there is no
bad 2-cell in G, then we define D1 = ∅ and p = 0. We denote the subgraph in Gi

corresponding to Di by D′i. See Figure 7. Notice that G −
⋃

l≤i Dl = Gi −
⋃

l≤i D
′
l

and, by Fact 2.2, each Gi is 3-edge-connected for every 0 ≤ i ≤ p. By the maximality
of D1, obviously the following claim holds.

Claim 3.1. There is no 2-cell in G−
⋃

l≤p Dl = Gp−
⋃

l≤p D
′
l which is bad in Gp.

Let

D2 = {Dp+1, Dp+2, . . . , Dp+q}

u1
u2

u3

w

u6 u5 u4

Di+1

Di

Di+1

D'i

Gi−1 Gi

Fig 12

Fig. 7.
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be a maximal set of mutually disjoint 1-cells in G−
⋃

1≤l≤p Dl such that Di+1 is bad
in Gi for each p ≤ i ≤ p+ q− 1, where Gi = Gi−1|Di for p+ 1 ≤ i ≤ p+ q. If there is
no bad 1-cell in G−

⋃
1≤l≤p Dl, then we define D2 = ∅ and q = 0. The subgraph in Gi

corresponding to Di is denoted by D′i. In this case also, G−
⋃

l≤i Dl = Gi −
⋃

l≤i D
′
l

and, by Fact 2.2, each Gi is 3-edge-connected for any 0 ≤ i ≤ p + q.

Claim 3.2. There is no 1-cell in G −
⋃

l≤p+q Dl = Gp+q −
⋃

l≤p+q D
′
l which is

bad in Gp+q and there is no 2-cell C in Gp+j −
⋃

i≤p+j D
′
i which is bad in Gp+j for

any 0 ≤ j ≤ q.

Proof. By the maximality of D2, we have the first statement. If there is 1 ≤ j ≤ q
such that Gp+j −

⋃
i≤p+j D

′
i contains a 2-cell C which is bad in Gp+j , then obviously

C is bad in Gp+j−1 also, and so C is bad in Gp. This contradicts Claim 3.1.

Let D0 be a maximal set of mutually disjoint bad 5-cycles in G−
⋃

i≤p+q Di. For
D1∪D2∪D0, we define a vertex subset R∗ of G, whose vertices may not be contained
in a dominating even subgraph of G which is constructed later.

First, for each cell Di in D1 ∪ D2 ∪ D0, we define pairs of vertices in Di.
1. Let Di be a 2-cell in D1 and u1u2u3u4u5u6u1 be the 6-cycle in Di. See

Figure 3(a). The pairs of Di are {u1, u3} and {u4, u6}.
2. Let Di be a 1-cell in D2 and u1u2 · · ·u8u1 be the 8-cycle in Di. See

Figure 3(b). We define the pair of Di by {u8, u4}.
3. For a 5-cycle Di = u1u2 · · ·u5u1 in D0, the pair is defined by arbitrary two

adjacent vertices in Di, e.g., {u1, u2}. See Figure 3(c).
Let P0 be the set of all the pairs for all Dl ∈ D1 ∪ D2 ∪ D0. For each pair

{ui, uj} ∈ P0, let Eui,uj = ∂({ui, uj}) ∩ ∂Dl, where {ui, uj} ⊂ Dl ∈ D1 ∪ D2 ∪ D0.
Obviously 0 ≤ |Eui,uj

| ≤ 2. Let

P = {{ui, uj} ∈ P0 : |Eui,uj
| = 2} and Q =

⋃
{ui,uj}∈P

Eui,uj
.

We define a bipartite graph H on the partite sets P and Q by defining the adjacency
relation so that {ui, uj} ∈ P and e ∈ Q are adjacent if and only if e ∈ Eui,uj

. Since
each element in Q is adjacent to at most two pairs in P, for any S ⊂ P,

2|S| = |EH(S, N(S))| ≤ |EH(N(S),P)| ≤ 2|N(S)|.

Thus by Hall’s theorem, there is a matching M in H covering P. Let ϕ : P → Q
be the injection defined by M , i.e., for each {ui, uj} ∈ P, the pair is adjacent to
ϕ({ui, uj}) ∈ Q by M . Let

R∗ = {uk : uk ∈ {ui, uj} is the end of the edge ϕ({ui, uj}) for some {ui, uj} ∈ P}.

Notice that there are no edges connecting two vertices in R∗, except for those con-
necting u1 and u6 or connecting u3 and u4 for some 2-cell in D1.

Let
D3 = {Dp+q+1, Dp+q+2, . . . , Dp+q+r} ⊂ D0

be a maximal subset of D0 such that for p + q ≤ i ≤ p + q + r − 1,
1. Di+1 is bad in Gi, where ui ∈ R∗ ∩Di, and Gi = Gi−1|uiDi, and
2. Di+1 intersects neither the 3-cycle nor the 4-cycle in Gi.

If there is no such 5-cycle, then we define D3 = ∅ and r = 0. We denote by D′i the
subgraph in Gi corresponding to Di ∈ D3. Notice that each Di has no chord since
Di is bad in Gi−1 and each Gi is 3-edge-connected for any p + q ≤ i ≤ p + q + r by
Fact 2.2.
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Claim 3.3. If there exist 0 ≤ j ≤ r − 1 and i ∈ {2, 1, 0} such that Gp+q+j −⋃
l≤p+q+j D

′
l − Dp+q+j+1 contains an i-cell C which is good in Gp+q+j, then C is

good in Gp+q+j+1 also.

Proof. Since C is good in Gp+q+j , there exist an essential 3-cut T of Gp+q+j and
a 5-cycle C1 in C such that |T ∩ ∂C1| ≥ 2. Let H1 and H2 be the two components in
Gp+q+j − T . Since C ⊂ Gp+q+j −

⋃
i≤p+q+j D

′
i −Dp+q+j+1, the 5-cycle Dp+q+j+1 is

contained in H1 − C or H2 − C, and so both T and C exist in Gp+q+r+1 also. Thus
C is good in Gp+q+r+1.

Claim 3.4.
1. If Gp+q+j −

⋃
i≤p+q+j D

′
i has a bad 5-cycle, then the 5-cycle is bad in Gp+q

also.
2. There is neither a 2- nor a 1-cell C in Gp+q+j −

⋃
i≤p+q+j D

′
i which is bad

in Gp+q+j for any 0 ≤ j ≤ r.

Proof. Claim 3.3 implies the first statement immediately. By Claim 3.3, if there
is 0 ≤ j ≤ r such that Gp+q+j −

⋃
i≤p+q+j D

′
i contains a 2- or 1-cell C which is bad

in Gp+q+j , then C is bad in Gp+q+j−1, and so C is bad in Gp+q. This contradicts
Claim 3.2.

Let
S0 = ∅ and Si =

⋃
1≤l≤i

D′l

for 1 ≤ i ≤ p + q + r. We call a vertex in Si a yellow vertex.
We extend R∗. Let Di ∈ D1 and u1u2u3u4u5u6u1 be the 6-cycle. See Figure 3(a).

We define R(Di) = {u2, u5}. Let Di ∈ D2 and u1u2u3u4u5u6u7u8u1 be the 8-cycle.
See Figure 3(b). We define R(Di) = {u2, u6}. Let

R0 = R∗ ∪
⋃

1≤l≤p+q

R(Dl) (⊂ V (G))

and

Ri = R0 −
⋃

1≤l≤i

V (Dl) (⊂ V (Gi))

for 1 ≤ i ≤ p + q + r. We call a vertex in Ri a red vertex. By the definition of Si and
Ri, there is no vertex in Gi which is both red and yellow. Notice that

Ri =

{
Ri+1 ∪ (R∗ ∩Di+1) ∪R(Di+1) for 0 ≤ i ≤ p + q − 1,

Ri+1 ∪ (R∗ ∩Di+1) for p + q ≤ i ≤ p + q + r − 1.
(1)

For Theorem 1.1, it is enough to show that for all 0 ≤ i ≤ p + q + r, Gi has an
even subgraph Fi such that the following hold:

1. Fi intersects all essential 3-cuts in Gi.
2. Every component of Fi contains at least five vertices. Especially if a 5-cycle

C is a component of Fi, then C contains a yellow vertex, i.e., C ∩ Si 6= ∅.
3. Every vertex in Gi − Fi is red, i.e., Gi − Fi ⊂ Ri, and |Dl − Fi| ≤ 1 for

i + 1 ≤ l ≤ p + q + r.
Indeed by the second condition, any component in F0 contains at least six vertices
as S0 = ∅. Although (R∗ ∩ V (Di)) ∪ R(Di) ⊂ R0 (1 ≤ i ≤ p) and R(Di) ⊂ R0

(p+1 ≤ i ≤ p+q) may not be independent, since |Dl−F0| ≤ 1 for all 1 ≤ l ≤ p+q+r,
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we have G0 − F0(⊂ R0) is independent, i.e., F0 is dominating G = G0. Therefore F0

is a desired even subgraph.
We construct Fi inductively. First we show the existence of Fp+q+r. Notice that

Gi is 3-edge-connected for every 0 ≤ i ≤ p+ q+ r by Fact 2.2 as we reduced bad cells.

Claim 3.5. There is a 2-factor Fp+q+r in Gp+q+r such that
1. Fp+q+r intersects all 3-cuts and 4-cuts in Gp+q+r and
2. each 5-cycle C in Fp+q+r contains a yellow vertex, i.e., C ∩ Sp+q+r 6= ∅.

Proof. Since Gp+q+r is a 3-edge-connected cubic graph, by Corollary C, Gp+q+r

has a 2-factor Fp+q+r which intersects all 3-cuts and 4-cuts. We choose Fp+q+r such
that the number of components is as small as possible.

Suppose Fp+q+r contains a 5-cycle C without a yellow vertex. If C is good in
Gp+q+r, then there is an essential 3-cut T such that |T ∩ ∂C| ≥ 2, and Fp+q+r does
not intersect the 3-cut T , a contradiction. Therefore C is bad in Gp+q+r. Since C
has no yellow vertex, C ⊂ Gp+q+r −Sp+q+r, and so the 5-cycle C exists in Gp+q and,
by Claim 3.4, C is bad in Gp+q also.

Suppose C /∈ D0. By the maximality of D0, there is a bad 5-cycle D ∈ D0

intersecting C. If |E(C ∩D)| ≤ 2, then C ∪D is a 2- or 1-cell in Gp+q. Since both C
and D are bad in Gp+q, C ∪D is bad in Gp+q. This contradicts Claim 3.2.

If |E(C ∩D)| = 3, then D is a 5-cycle in Gp+q+r also. However, Fp+q+r does not
contain the vertex in D − C as C is a component of Fp+q+r. This is a contradiction.

Therefore C ∈ D0. Since C is bad in Gp+q+r and C /∈ D3, C intersects a 3- or a
4-cycle C1 in Gp+q+r. Since C is bad, C has no chord, and so C1 −C 6= ∅. If C1 −C
is a vertex w, then w is not contained in Fp+q+r as C is a component of the 2-factor
Fp+q+r. This is a contradiction.

If C1−C contains an edge ww′, then there is a component C2 in Fp+q+r containing

the edge ww′. Since the symmetric difference C̃ = C4C14C2 is a cycle, the subgraph
(Fp+q+r −C ∪C2)∪ C̃ is a 2-factor of Gp+q+r in which the number of components is
less than Fp+q+r. This contradicts the choice of Fp+q+r. Thus C contains a yellow
vertex.

Suppose Gi+1 has a desired even subgraph Fi+1 for 1 ≤ i + 1 ≤ p + q + r. Since
Gi+1 has no vertex which is both yellow and red and Fi+1 contains every vertex which
is not red in Gi+1, we have

⋃
l≤i+1 D

′
l ⊂ Fi+1.

Claim 3.6. If Fi is an even subgraph of Gi obtained from Fi+1 by replacing edges
in D′i+1 with edges in Di+1, i.e.,

E(Fi+1)− E(D′i+1) = E(Fi)− E(Di+1),

then the following holds:
1. Fi intersects all essential 3-cuts in Gi.
2. Every component C of Fi intersecting no edge of Di+1 contains at least five

vertices. Especially if C is a 5-cycle, then C contains a yellow vertex, i.e.,
C ∩ Si 6= ∅.

3. Every vertex in Gi−Fi−Di+1 is red, i.e., Gi−Fi−Di+1 ⊂ Ri, and |Dj−Fi| ≤
1 for j ≥ i + 2.

Proof.
1. Let T be any essential 3-cut of Gi. Since Di+1 is bad in Gi, T∩E(Di+1) = ∅ by

Lemma 2.3. This implies T is an essential 3-cut of Gi+1 and T ∩E(D′i+1) = ∅.
Thus Fi+1 − E(D′i+1) = Fi − E(Di+1) intersects T .
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2. Obviously C is a component of Fi+1 also. Thus |C| ≥ 5 and C contains a
yellow vertex in Si+1 − V (D′i+1) = Si if |C| = 5.

3. Since Gi−Di+1 = Gi+1−D′i+1, we have Gi−Di+1−Fi = Gi+1−D′i+1−Fi+1 ⊂
Ri+1 ⊂ Ri by (1). For j ≥ i + 2,

Dj − Fi = Dj − Fi+1,

and so we have |Dj − Fi| = |Dj − Fi+1| ≤ 1.

In the remaining part of this paper, we will construct a desired even subgraph
Fi of Gi from Fi+1 by replacing edges in D′i+1 with edges in Di+1. From the above
claim, it is enough to show that Fi satisfies the following:

A1. Every component C containing an edge of Di+1 in Fi contains at least five
vertices. Especially if C is a 5-cycle, then C contains a yellow vertex, i.e.,
C ∩ Si 6= ∅.

A2. A vertex in Di+1 − Fi is red, i.e., Di+1 − Fi ⊂ Ri, and |Di+1 − Fi| ≤ 1.
We divide our argument into the following three cases:
1. 0 ≤ i ≤ p− 1.
2. p + q ≤ i ≤ p + q + r − 1.
3. p ≤ i ≤ p + q − 1.

The first case is easier than the other cases. If there is a vertex in Gi − Di+1

which is adjacent to u ∈ Di+1, then we denote the vertex by u′.
1. 0 ≤ i ≤ p− 1, i.e., Di+1 ∈ D1.
Since V (D′i+1) ⊂ Fi+1 and Fi+1 is an even subgraph, |Fi+1 ∩ ∂D′i+1| is 2 or 4.

If the subgraph induced by V (Di+1) contains an edge that is not in E(Di+1), then
|∂Di+1| = 3. This implies Di+1 contains a good 5-cycle, i.e., Di+1 is good in Gi.
This contradicts our assumption. Therefore, both {u1, u3} and {u4, u6} contain a red
vertex.

Case 1. |Fi+1 ∩ ∂D′i+1| = 4.
Since D′i+1 ⊂ Fi+1, by symmetry, we may suppose

Fi+1 ∩ ∂D′i+1 = {u1u
′
6, u1u

′
1, u2w

′, u3u
′
3},

and then Fi+1 contains the edge u2u3. See Figure 8. Let Fi be the even subgraph
obtained from Fi+1 by replacing

u′1u1u
′
6 and w′u2u3u

′
3 by u′1u1u6u

′
6 and w′wu5u4u3u

′
3.

Since every component C containing an edge of Di+1 in Fi contains at least six
vertices, A1 holds. Since u2 ∈ R(Di+1) ⊂ Ri, A2 holds.

Case 2. |Fi+1 ∩ ∂D′i+1| = 2.

u1
u2

u3

wu1 u2 u3
u1

u2
u3

wu1 u2 u3

u6 u5 u4 u6 u5 u4

u1
u2

u3

wu1 u2 u3

u6 u5 u4

Fig 8a

(a) (b)

Fig 8b

Fig. 8.
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u1
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u3

wu1 u2 u3
u1

u2
u3

wu1 u2 u3

u6 u5 u4 u6 u5 u4

u1
u2

u3

wu1 u2 u3

u6 u5 u4

Fig 8a

(a) (b)

Fig 8b

Fig. 9.

Since D′i+1 ⊂ Fi+1, Fi+1 ∩ ∂D′i+1 does not contain the edge u2w
′. Thus by

symmetry, we may suppose

Fi+1 ∩ ∂D′i+1 is {u1u
′
6, u3u

′
3} or {u1u

′
6, u3u

′
4}.

See Figure 9. If the intersection is {u1u
′
6, u3u

′
3}, then the even subgraph Fi obtained

from Fi+1 by replacing
u1u2u3 by u6u1u2wu5u4u3

is a desired even subgraph because both A1 and A2 hold as V (Di+1) ⊂ Fi.
Suppose Fi+1 ∩ ∂D′i+1 = {u1u

′
6, u3u

′
4}. For the pair {u1, u3}, if u3 is red, i.e.,

u3 ∈ Ri, then the even subgraph Fi obtained from Fi+1 by replacing

u′6u1u2u3u
′
3 by u′6u6u1u2wu5u4u

′
4

is a desired even subgraph because both A1 and A2 hold. Similarly if u1 ∈ Ri, then
the even subgraph Fi obtained from Fi+1 by replacing

u′6u1u2u3u
′
4 by u′6u6u5wu2u3u4u

′
4

is a desired even subgraph.
2. p + q ≤ i ≤ p + q + r − 1, i.e., Di+1 ∈ D3.
In this case, Di+1 = u1u2 · · ·u5u1 is a 5-cycle. By symmetry, we may suppose u2

is red, i.e., u2 ∈ Ri. Since V (D′i+1) ⊂ Fi+1, |Fi+1 ∩ ∂D′i+1| is 2 or 4.
Case 1. |Fi+1 ∩ ∂D′i+1| = 2.
Notice that Fi+1 ∩ ∂D′i+1 does not contain u2u

′
2 because V (D′i+1) ⊂ Fi+1. Hence

by symmetry, we have the following three cases:

Fi+1 ∩ ∂D′i+1 is {u1u
′
4, u3u

′
5}, {u1u

′
4, u3u

′
3} or {u1u

′
1, u3u

′
3}.

(i) Suppose Fi+1∩∂D′i+1 = {u1u
′
4, u3u

′
5}. See Figure 10(a). As V (D′i+1) ⊂ Fi+1,

Fi+1 contains the path u′4u1u2u3u
′
5. Let Fi be the even subgraph in Gi which

is obtained from Fi+1 by replacing

u′4u1u2u3u
′
5 by u′4u4u3u2u1u5u

′
5.

Obviously A1 holds. Since V (Di+1) ⊂ Fi, A2 holds.
(ii) Suppose Fi+1∩∂D′i+1 = {u1u

′
4, u3u

′
3}. See Figure 10(b). Then Fi+1 contains

the path u′4u1u2u3u
′
3 as V (D′i+1) ⊂ Fi+1. Let Fi be the even subgraph in Gi

which is obtained from Fi+1 by replacing

u′4u1u2u3u
′
3 by u′4u4u5u1u2u3u

′
3.

Obviously both A1 and A2 hold.
(iii) Suppose Fi+1 ∩ ∂D′i+1 = {u1u

′
1, u3u

′
3}. See Figure 10(c). Let Fi be the even

subgraph in Gi which is obtained from Fi+1 by replacing
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u'4 u'5

u3

u'4 u'5

u1 u2 u3

u4 u5

u'4 u'5

u3

u'4 u'5

u3

u4 u5

u'4 u'5

Fig 5

(a)

(c)

u1 u2 u3

u'4 u'5

u1 u2 u3

u4 u5

u'4 u'5(b)

Fig. 10.

u'2

Di+1

C
u'3

w

u1
u2

u3

u4u5
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u'3

w
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u2
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Fig10

(a) (b)

Cu1 u2 u3

u'4 u'5

u1 u2 u3

u4 u5

u'4 u'5
(c)

Fig. 11.

u′1u1u2u3u
′
3 by u′1u1u5u4u3u

′
3.

Since the component in Fi containing an edge in Di+1 contains at least six
vertices, A1 holds. As Di+1 − Fi = {u2} ⊂ Ri, A2 holds.

Case 2. |Fi+1 ∩ ∂D′i+1| = 4.
As V (D′i+1) ⊂ Fi+1, Fi+1 ∩ ∂D′i+1 is not {u1u

′
4, u1u

′
1, u3u

′
3, u3u

′
5}. Thus by

symmetry, we have two cases.
(i) Suppose

Fi+1 ∩ ∂D′i+1 = {u1u
′
4, u1u

′
1, u2u

′
2, u3u

′
3},

and then u2u3 ∈ Fi+1. See Figure 11(a). Let Fi be the even subgraph in Gi

which is obtained from Fi+1 by replacing

u′4u1u
′
1 by u′4u4u5u1u

′
1.

Since V (Di+1) ⊂ Fi, A2 holds.
The component continuing u′4u4u5u1u

′
1 of Fi contains at least six vertices.

Suppose C = u2u3u
′
3wu

′
2u2 is a 5-cycle and C ∩ Si = ∅. See Figure 11(b).

Then C̃ = C ∪ Di+1 is a 1-cell in Gi −
⋃

j≤i D
′
j . Since Di+1 ∈ D3, Di+1 is

bad in Gi. Suppose that C is good and let T be an essential 3-cut such that
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Fig. 12.

|T ∩∂C| ≥ 2. Since Di+1 is bad, T ∩∂C ⊂ ∂C−{u2u1, u3u4} by Lemma 2.3.
Since T is an essential 3-cut of Gi+1 also and Fi+1 contains C as a component,
Fi+1 does not intersect T , a contradiction. See Figure 11(c). Thus both Di+1

and C are bad, and so C̃ is a bad 1-cell in Gi. This contradicts Claim 3.4.
(ii) Suppose

Fi+1 ∩ ∂D′i+1 = {u1u
′
4, u1u

′
1, u2u

′
2, u3u

′
5},

and then u2u3 ∈ Fi+1. See Figure 12(a).
Let Fi be the even subgraph in Gi which is obtained from Fi+1 by replacing

u′4u1u
′
1 and u′2u2u3u

′
5 by u′4u4u3u2u

′
2 and u′1u1u5u

′
5.

Since V (Di+1) ⊂ Fi, A2 holds.
Let C1 and C2 be the components in Fi containing u1u5 and u2u3u4, respectively.

Suppose C1 or C2 contains at most five vertices, and then C1 6= C2. Since Di+1

intersects neither the 3-cycle nor the 4-cycle, C1 or C2 is a 5-cycle.
Suppose C1 = u1u5u

′
5wu

′
1u1 is a 5-cycle and C1∩Si = ∅. See Figure 12(b). Then

C̃1 = C1 ∪ Di+1 is a 1-cell in Gi. By Claim 3.4, C̃1 is good. Since Di+1 is bad, C1

is good, and so there is an essential 3-cut T in Gi such that |T ∩ ∂C1| ≥ 2, and by
Lemma 2.3 T ∩ ∂C1 ⊂ ∂C1 − {u1u2, u5u4}. Thus T is an essential 3-cut of Gi+1.
Since Fi+1 contains the path u1u

′
1wu

′
5u3, Fi+1 does not intersect T , a contradiction.

See Figure 12(c).
Suppose C2 = u2u3u4u

′
4u
′
2u2 is a 5-cycle and C2∩Si = ∅. See Figure 12(d). Then

C̃2 = C2∪Di+1 is a 2-cell in Gi. By Claim 3.4, C̃2 is good, and so, as in the above case,
Gi has an essential 3-cut T such that |T∩∂C2| ≥ 2, and T∩∂C2 ⊂ ∂C2−{u1u2, u4u5}.
Hence T is an essential 3-cut of Gi+1. Since Fi+1 contains the path u′5u3u2u

′
2u
′
4u1,

Fi+1 does not intersect T , a contradiction. See Figure 12(e).
3. p ≤ i ≤ p + q − 1, i.e., Di+1 ∈ D2.
Since V (D′i+1) ⊂ Fi+1, |Fi+1 ∩ ∂D′i+1| is 0, 2, 4, or 6.
Case 1. |Fi+1 ∩ ∂D′i+1| = 0.
In this case, the 6-cycle u1u3u4u5u7u8 is contained in Fi+1, and replacing it with

the 8-cycle u1u2u3u4u5u6u7u8, we obtain the even subgraph Fi in Gi. Obviously,
both A1 and A2 hold.

Case 2. |Fi+1 ∩ ∂D′i+1| = 2.
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Since V (D′i+1) ⊂ Fi+1 and Fi+1 is an even subgraph, by symmetry we have two
cases. If Fi+1 ∩ ∂D′i+1 = {u7u

′
7, u8u

′
8}, then Fi+1 contains the path u8u1u3u4u5u7.

See Figure 13(a). Then the even subgraph Fi obtained from Fi+1 by replacing

u′8u8u1u3u4u5u7u
′
7 by u′8u8u1u2u3u4u5u6u7u

′
7

is a desired even subgraph because both A1 and A2 hold. Similarly, we can show the
case of Fi+1 ∩ ∂D′i+1 = {u7u

′
7, u5u

′
5} since u6 ∈ R(Di+1) ⊂ Ri. See Figure 13(b).

Case 3. |Fi+1 ∩ ∂D′i+1| = 4.
By symmetry, we have four cases:
(i) Fi+1 ∩ ∂D′i+1 = {u7u

′
7, u8u

′
8, u1u

′
1, u3u

′
3}.

Since V (D′i+1) ⊂ Fi+1, Fi+1 contains the paths u8u1 and u3u4u5u7. See
Figure 14(a). Let P1 and P2 be the two paths obtained from the cycles in
Fi+1 intersecting D′i+1 by removing edges in E(D′i+1) and isolated vertices.
By symmetry, we may suppose u3 ∈ P1. If u7 ∈ P1 or u8 ∈ P1, then the even
subgraph Fi obtained from Fi+1 by replacing

u′1u1u8u
′
8 and u′3u3u4u5u7u

′
7 by u′7u7u8u

′
8 and u′3u3u4u5u6u2u1u

′
1

is a desired even subgraph because both A1 and A2 hold. See Figure 14(a).
In the case of u1 ∈ P1, let Fi be the even subgraph obtained from Fi+1 by
replacing

u′3u3u4u5u7u
′
7 by u′3u3u4u5u6u7u

′
7.

Obviously A1 holds. Since u2 ∈ R(Di+1) ⊂ Ri, A2 holds.
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Fig. 15.

(ii) Fi+1 ∩ ∂D′i+1 = {u7u
′
7, u8u

′
8, u3u

′
3, u4u

′
4}.

Then Fi+1 contains the paths u8u1u3 and u4u5u7. See Figure 14(b). Then
the even subgraph Fi obtained from Fi+1 by replacing

u′8u8u1u3u
′
3 and u′4u4u5u7u

′
7 by u′8u8u1u2u3u

′
3 and u′4u4u5u6u7u

′
7

is a desired even subgraph because both A1 and A2 hold.
(iii) Similarly we can show the case that Fi+1∩∂D′i+1 = {u7u

′
7, u8u

′
8, u4u

′
4, u5u

′
5}.

See Figure 14(c).
(iv) Fi+1 ∩ ∂D′i+1 = {u7u

′
7, u1u

′
1, u3u

′
3, u5u

′
5}.

Suppose first that u4u8 ∈ E(G). Then, Fi+1 contains either the paths u7u8u1

and u3u4u5, or the paths u1u8u4u3 and u5u7, or u1u3 and u5u4u8u7. See
Figure 15 for the case of the paths u7u8u1 and u3u4u5. Let P1 and P2 be the
two paths obtained from the cycles in Fi+1 intersecting D′i+1 by removing
edges in E(D′i+1) and isolated vertices. By symmetry, we may suppose u3 ∈
P1. If u1 ∈ P1 or u5 ∈ P1, then the even subgraph Fi obtained from Fi+1 by
replacing the paths inside D′i+1

by u7u8u4u3 and u1u2u6u5

is a desired even subgraph because both A1 and A2 hold. See Figure 15(a).
In the case of u7 ∈ P1, let Fi be the even subgraph obtained from Fi+1 by replacing

the paths inside D′i+1

by u1u8u4u3 and u7u6u5.

See Figure 15(b). Obviously A1 holds. Since u2 ∈ R(Di+1) ⊂ Ri, A2 holds.
Therefore, we may assume that u4u8 6∈ E(G). Since there are components in Fi+1

containing u7u8u1 and u3u4u5, both u′4 and u′8 exist. Thus |Eu4,u8
| = 2, and so one

of u4 and u8 is in Ri. By symmetry, we may suppose u4 ∈ Ri. Let Fi be the even
subgraph obtained from Fi+1 by replacing

u′3u3u4u5u
′
5 by u′3u3u2u6u5u

′
5.

See Figure 14(d). Obviously A2 holds.
Suppose the component C1 of Fi containing u7u8u1 is a 5-cycle and C1 ∩ Si = ∅.

Let C1 = u1u8u7u
′
7u
′
1u1 and C2 = u1u2u6u7u8u1. See Figure 16(a). Then C = C1∪C2

is a 2-cell in Gi. By Claim 3.2, C is good in Gi. Since Di+1 is bad, C2 is bad, and
so C1 is good. Thus there is an essential 3-cut T such that |T ∩ ∂C1| ≥ 2. Since C2

is bad, T ∩ ∂C1 ⊂ ∂C1 − {u1u2, u7u6}. Hence T is an essential 3-cut of Gi+1. Since
Fi+1 contains C1 as a component, Fi+1 does not intersect T , a contradiction. See
Figure 16(b).

Case 4. |Fi+1 ∩ ∂D′i+1| = 6.
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Fig. 17.

In this case, Fi+1 contains all the edges in ∂D′i+1. Let P1, P2, and P3 be the
three paths obtained from the cycles in Fi+1 intersecting D′i+1 by removing edges in
E(D′i+1). By symmetry, we may suppose u7 ∈ P1. It is easy to confirm that for all
the following cases, both A1 and A2 hold.

(i) The ends of P1 are u7 and u8.
(a) If the ends of P2 are u1 and u3, then let Fi be the even subgraph obtained

from Fi+1 by replacing the cycles in Fi+1 intersecting D′i+1 with the cycle

u7P1u8u1P2u3u4P3u5u6u7.

See Figure 17(a).
(b) If the ends of P2 are u1 and u4, then let Fi be the even subgraph obtained

from Fi+1 by replacing the cycles in Fi+1 intersecting D′i+1 with the cycle

u7P1u8u1P2u4u3P3u5u6u7.

See Figure 17(b).
(c) If the ends of P2 are u1 and u5, then let Fi be the even subgraph obtained

from Fi+1 by replacing the cycles in Fi+1 intersecting D′i+1 with the cycle

u7P1u8u1P2u5u4P3u3u2u6u7.

See Figure 17(c).
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Notice that by symmetry, we finished showing all the cases where there is a
path joining ui and ui+1 for any i by the case (i).

(ii) The ends of P1 are u7 and u1.
In this case, the ends of P2 are u8 and u4; otherwise there is a path joining
ui and ui+1 for some i. Let Fi be the even subgraph obtained from Fi+1 by
replacing the cycles in Fi+1 intersecting D′i+1 with the cycle

u7P1u1u8P2u4u5P3u3u2u6u7.

See Figure 17(d).
(iii) The ends of P1 are u7 and u3.

If the ends of P2 are u8 and u4, then let Fi be the even subgraph obtained
from Fi+1 by replacing the cycles in Fi+1 intersecting D′i+1 with the cycle

u7P1u3u2u1P3u5u4P2u8u7.

See Figure 17(e).
If the ends of P2 are u8 and u5, then let Fi be the even subgraph obtained
from Fi+1 by replacing the cycles in Fi+1 intersecting D′i+1 with the cycle

u7P1u3u2u1P3u4u5P2u8u7.

See Figure 17(f).
(iv) The ends of P1 are u7 and u4.

If the ends of P2 are u8 and u5, then let Fi be the even subgraph obtained
from Fi+1 by replacing the cycles in Fi+1 intersecting D′i+1 with the cycle

u7P1u4u5P2u8u1P3u3u2u6u7.

See Figure 17(g). The case that the ends of P2 are u8 and u3 is the same as
case (iii). See Figure 17(f).

(v) The ends of P1 are u7 and u5.
If the ends of P2 are u8 and u4, then let Fi be the even subgraph obtained
from Fi+1 by replacing the cycles in Fi+1 intersecting D′i+1 with the cycle

u7P1u5u4P2u8u1P3u3u2u6u7.

See Figure 17(h). The case that the ends of P2 are u8 and u3 is the same as
case (iv). See Figure 17(g).

Now we completed the proof.

4. Closing remarks. The traveling salesman problem (TSP) is used to find a
spanning closed walk of short length in a given graph. The typical method for TSP on
3-edge-connected cubic graphs is as follows. First, we find a 2-factor F in a given 3-
edge-connected cubic graph G and take a certain connected graph T (e.g., a spanning
tree) in the graph G/F obtained from G by contracting all components in F , and
then we obtain a connected subgraph F ∪ T of G. By modifying it suitably, we can
get a spanning closed walk whose length is a certain function on |E(T )|. Since T must
be a connected subgraph of G/F , |E(T )| is at least the number of components of F
minus one, and so the lower number of components in F gives the better bounds.

Aggarwal, Garg, and Gupta [1] used Theorem A to begin with a 2-factor having
at most n/5 components and showed the existence of a spanning closed walk of length
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at most 4n/3 in a 3-edge-connected cubic graph of order n. This result was further
improved to 2-edge connected or connected cubic graphs, graphs of maximum degree
at most 3, or better bounds than 4n/3; see [6, 8, 9].

Because of the above reasons, several researchers have been interested in a 2-factor
in cubic graphs such that the number of 5-cycles is small; see [7]. Instead of using
a 2-factor, we can use an even subgraph satisfying certain conditions on the order
of each component. In fact, such structures have appeared in [8, 9] as intermediate
products, which is called an R-factor in [8]. For those intermediate products, it is
not necessarily dominating, but the dominating property may help us to obtain good
bounds, i.e., we expect that Theorem 1.1 has a potential application to the TSP.

Acknowledgments. The authors would like to thank the referees for valuable
suggestions and comments.
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[8] B. Candráková and R. Lukot’ka, Cubic TSP—a 1.3-Approximation, arXiv:1506.06369v1,
2015.

[9] J. Correa, O. Larré, and A. Soto, TSP tours in cubic graphs: Beyond 4/3, SIAM J. Discrete
Math., 29 (2015), pp. 915–939.

[10] H. Fleischner, Spanning Eulerian subgraphs, the splitting lemma, and Petersen’s theorem,
Discrete Math., 101 (1992), pp. 33–37.

[11] H. Fleischner and B. Jackson, A note concerning some conjectures on cyclically 4-edge-
connected 3-regular graphs, in Graph Theory in Memory of G. A. Dirac, L. D. Andersen,
I. T. Jakobsen, C. Thomassen, B. Toft, P. D. Vestergaard, eds., Ann. Discrete Math. 41,
North-Holland, Amsterdam, 1988, pp. 171–177.

[12] D. Gamarnik, M. Lewenstein, and M. Sviridenko, An improved upper bound for the TSP
in cubic 3-edge-connected graphs, Oper. Res. Lett., 33 (2005), pp. 467–474.

[13] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line
graphs, Discrete Math., 307 (2007), pp. 2775–2785.

[14] B. Jackson and K. Yoshimoto, Spanning even subgraphs of 3-edge-connected graphs, J. Graph
Theory, 62 (2009), pp. 37–47.
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