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ON DOMINATING EVEN SUBGRAPHS IN CUBIC GRAPHS*

ROMAN CADAT, SHUYA CHIBA!, KENTA OZEKI$, AND KIYOSHI YOSHIMOTOY

Abstract. It is known that a 3-edge-connected graph has a spanning even subgraph in which
every component contains at least five vertices, and the lower bound is best possible. A natural
question arises of whether we can improve the lower bound by changing the spanning property
with the dominating property. In this paper, we show that a 3-edge-connected cubic graph has a
dominating even subgraph in which every component contains at least six vertices.
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1. Introduction. In this paper, we consider finite graphs without loops. An
even graph is a graph in which every vertex has a positive even degree and a subgraph
H of a graph G is said to be dominating if G — V(H) is edgeless. In this paper, a
cycle is a connected 2-regular graph and a cycle with [ vertices is called an [-cycle. A
2-factor is a spanning 2-regular subgraph of a graph. An edge-cut is a minimal set of
edges whose removal increases the number of components of the graph. We call an
edge-cut with [ edges an [-cut. An edge-cut is said to be essential if both of the two
new components after deleting it have at least one edge.

For a vertex subset X C V(G), the set of edges joining X and V(G)— X is denoted
by 9(X) or simply 0X. If X consists of one vertex u, then we denote it simply by
O(u). For a subgraph H of G, we use OH instead of O(V(H)). For terminology and
notation not defined in this paper, we refer the readers to [5].

In this paper we consider cubic graphs, i.e., 3-regular graphs. A classical result by
Petersen [17] says that a bridgeless cubic graph has a 2-factor. This well-known result
was generalized by Fleischner [10] as follows: a bridgeless graph with minimum degree
at least three has a spanning even subgraph in which every component has at least
three vertices. If we restrict ourselves to simple graphs, then the lower bound on the
order of components is improved to four in [13]. Jackson and Yoshimoto considered
3-edge-connected graphs and showed the following.

THEOREM A (Jackson and Yoshimoto [14]). A 3-edge-connected graph with n
vertices has a spanning even subgraph in which each component contains at least
min{5,n} vertices.
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They also gave an infinite family of 3-edge-connected cubic graphs in which every
2-factor contains 5-cycles. Thus the lower bound in the theorem is best possible in
some sense. Kaiser and Skrekovski gave an interesting result, which also generalizes
the Petersen’s theorem.

TuEOREM B (Kaiser and Skrekovski [15]).  Every graph has an even subgraph
which intersects all 3-cuts and 4-cuts.

If a given graph is bridgeless and cubic, then for any u € V(G), d(u) is always a
3-cut of the graph, and so the above theorem implies the following.

COROLLARY C. A bridgeless cubic graph has a 2-factor which intersects all 3-cuts
and 4-cuts.

If a given cubic graph is 3-edge-connected, then for an l-cycle C' where [ € {3, 4},
0C' is an [-cut of the graph, and so Corollary C implies that a 3-edge-connected cubic
graph has a 2-factor in which every component contains at least five vertices.

Matthews and Sumner [16] conjectured that 4-connected claw-free graphs are
Hamiltonian and Ryjacek [18] showed the Matthews—Sumner conjecture is equivalent
to the conjecture by Thomassen and others [2, 4, 19] that 4-connected line graphs are
Hamiltonian. Fleischner and Jackson [11] showed that the conjecture on line graphs,
and so the Matthews—Sumner conjecture, is equivalent to the conjecture by Ash and
Jackson [3] that an essentially 4-edge-connected cubic graph has a dominating cycle.
Thus it is interesting and important to study the behavior of dominating subgraphs
in cubic graphs. In this paper, we prove the following using Corollary C.

THEOREM 1.1. A 3-edge-connected cubic graph has a Hamilton cycle or a domi-
nating even subgraph F such that every component in F contains at least six vertices
and F intersects all essential 3-cuts.

In section 2, we give several preparations for the proof of Theorem 1.1, and in
section 3, the proof will be given. Furthermore, we will give remarks on even subgraphs
of 3-edge-connected cubic graphs and the traveling salesman problem in section 4.

We conjecture that Theorem 1.1 can be generalized as in Theorem A.

CONJECTURE 1.2. A 3-edge-connected graph with n vertices has a dominating
even subgraph in which each component has at least min{6,n} vertices.

Also it is a natural question to ask about the lower bound “6” in Theorem 1.1
and Conjecture 1.2.

PROBLEM 1.3. What is the maximum integer k such that any 3-edge-connected
graph has a dominating even subgraph in which each component has at least min{k, n}
vertices?

The following example implies that the upper bound must be at most nine.

Fact 1.4. There is an infinite family of 3-edge-connected cubic graphs in which
every dominating even subgraph has a cycle of order at most nine.

Proof. We construct such a cubic graph. Let S be the graph as in Figure 1, where
S has 34 vertices, 49 edges, and 4 “half-edges” whose one end is in S. Later we define
the other ends of the half-edges.

Let m and [ be positive integers with 3m = 4I. Let B be [ copies of S and A
be m mutually disjoint triangles with three half-edges incident to each vertex of the
triangle. See Figure 2. Since A and B have 3m and 4l half-edges, respectively, and
3m = 4l, we can pair up half-edges in A with half-edges in B. It is easy to pair them
so that the obtained graph G is 3-edge-connected.
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Fic. 1.

Fic. 2.

We show that any dominating even subgraph F' in G has a cycle of order at most
nine. If there is a triangle T' in A such that 0T N F = , then obviously F' contains
the 3-cycle T' as a component. Suppose T N F # () for all triangles T in A. Since
F' is an even subgraph, |07 N F'| = 2 for all triangles T in A, and so F' contains 2m
edges joining A and B. Since 2m = 8l/3, there is a component S in B such that
[0S NF| =4.

Let ujug be the edge in the middle of S; see Figure 1. Since F' is a dominating
subgraph in G, at least one of the vertices u; and wug is contained in F, say, u;.
Let Lg be the left component of S — ujus. Since F' is an even subgraph, we have
|0Ls N F| =2, and hence ujug ¢ F and 9(u1) — {ujuz} C F. Note that both v, and
v are contained in F. Then by the structure of Lg, it is an easy observation that vy
and v belong to the same component of F' which is different from the one containing
uy, and furthermore the component containing w; has at most nine vertices. This
completes the proof of Fact 1.4. ]

The following question is also natural.

PROBLEM 1.5. Does a 3-edge-connected cubic graph have a dominating even sub-
graph F such that every component in F' contains at least six vertices and F' intersects
all essential 3-cuts and 4-cuts?

2. Preparations. First, we give some additional notation. The set of all the
neighbors of a vertex « € V(G) is denoted by N¢(x) or simply N (z) and its cardinality
by dg(z) or d(x). For a subgraph H of G, we denote Ng(x) NV (H) by Ng(x) and
its cardinality by dg(x). For simplicity, we denote |V (H)| by |H| and “u; € V(H)”
by “u; € H.” Similarly G — V(H) is denoted by G — H.
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Fic. 5. Reduction of 1-cell.

Recall that an edge-cut is said to be essential if both of the two new components
after deleting it have at least one edge. This definition directly implies the following
fact, which will be implicitly used in our proofs.

Fact 2.1. For a 2-edge-connected cubic graph G and for a k-cut T', both of the
following hold:
o If k=2, then T is always an essential cut.
o Ifk =3 and T = 39S for some S C V(G) with |S| > 2 and |[V(G) — S| > 2,
then T is an essential cut.

An i-cell is the union of two 5-cycles in a cubic graph which have ¢ common
edges. See Figure 3(a), (b). We call a 5-cycle a 0-cell. In the proof of Theorem 1.1,
we will construct a dominating even subgraph from a 2-factor of a cubic graph which
is obtained by reducing those cells. Hence we define reductions for those cells first.

Let D be a 2-cell in G, and let ujus - - - uguy be the 6-cycle and w the remaining
vertex in D. See Figure 4. Let G’ be the graph obtained from G by contracting all of
the paths ujug, uswus, usus and removing the edges ugus and usuys. We denote this
reduction by G’ = G|D.

Let D be a 1-cell in G and ujus - - - ugu; the 8-cycle of D. See Figure 5. Let G’
be the graph obtained from G by removing the edge usug and contracting both of the
edges ujug and uyug. We denote by G’ = G|D this reduction.
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Fic. 6. Reduction of 5-cycle.

Let D = uy---usu; be a 5-cycle without chord. Let u}, € V(G — C) which is
adjacent to u; for 1 < ¢ < 5. See Figure 6. Let G’ be the graph obtained from G
by removing the edges ujus, usug, uguz and identifying uq, u4 and ug, us, respectively.
We denote by G’ = G|, D this reduction.

We say that a 5-cycle C' is good in G if there is an essential 3-cut T' in G such
that [T NOC| > 2. If C has exactly one chord and |G| > 8, then C is always good
because OC is an essential 3-cut. If a 2- or 1-cell contains a good 5-cycle, then the
cell is also called good. A cell which is not good is called bad. Notice that in a bad
cell, every 5-cycle is bad.

We need the following fact in the proof of Theorem 1.1.

FacT 2.2. Let i € {2,1,0}. If a 3-edge-connected cubic graph G has a bad i-cell
D, then G|D or G|, D is 3-edge-connected.

This fact is obtained from the following two lemmas.

LEMMA 2.3. Let D = wjususzugqusuy be a 5-cycle of a 3-edge-connected cubic
graph. If there is an essential 3-cut T such that T N E(D) # 0, then D is good.

Proof. Suppose D is bad and there is an essential 3-cut T such that TNE(D) # (.
Since D is bad and G is 3-edge-connected, D has no chord. Let u], € Ng_c(u;) for
1 <4 < 5. Since T is an essential edge-cut of a cubic graph and G is 3-edge-connected,
no pair of edges in T is adjacent, and so TNE(D) contains two independent edges, say,
uytin, ugus. Then (T — {ujug, ugus}) U {uiu}, usus} is an essential 3-cut containing
two edges in 0D, a contradiction. |

LEMMA 2.4. For k € {2,3} and a k-edge-connected cubic graph G, the following
hold:

1. Let D be a 2-cell and ujusg - - - uguy be the 6-cycle in D. See Figure 4. If G|D is
not k-edge-connected, then G has an essential k-cut containing {ujus, usug}
or {ugug, ugus}.

2. Let D be a 1-cell and ujus---uguy be the 8-cycle in D. See Figure 5.
If G|D s not k-edge-connected, then G has an essential k-cut containing
{urug, ugus, usugt or {usug, urug, ustg}.

3. Let D = uqug---usuy be a 5-cycle and u; be the vertex in G — D which is
adjacent to u; for1 < j <5. See Figure 6. If G|y, D is not k-edge-connected,
then G has an essential k-cut containing {uiu}, usuly} or {usuf, usus}.

Proof. Let G’ = G|D or G' = G|, D, respectively, T be a minimum edge-cut of
G’, and D’ be the subgraph in G’ corresponding to D. Let S C V(G’) such that
0S =T and uy € S. Suppose |T| < k — 1. Since G is k-edge-connected, T' is not an
edge-cut of G, and so T' = 9§ divides D’. For a vertex u € V(D), we denote a vertex
in G — D adjacent to u by v’ if it exists.
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1. Since |T'N D’| = 1, by symmetry, we may suppose T'N D" = {ujuz}. Since
T is a minimum cut, no pair of edges in T is adjacent, and so {u},us} C S.
Thus 9(S U {ue}) is an essential k-cut containing {ujus, usus} of G.

2. Since T divides V/(D'), |T N D’| = 2. By symmetry, we have four cases.

If TN D" = {ujus,usur}, then 4S5 is also a (k — 1)-cut of G, a contradiction.
If TNnD = {ujus,ugus}, then 9(S U {uz,us}) is a (kK — 1)-cut of G, a
contradiction.

If TNnD' = {ujus,usus}, then (S — {us,us}) is a (k — 1)-cut of G, a
contradiction.

If TND' = {uyus, usus}, then since {us,uz} C S, I(SU{uz}) is an essential
k-cut containing {uus, ugus, ugue} of G.

3. Since T = 95 divides D', [T N D’| = 1. By symmetry, we may suppose
TND = {ujus}. Since {uf,u)} C S and G is k-edge-connected, (S — u1)
is an essential k-cut containing {uju}, uquj} of G. O

Proof of Fact 2.2. If D is a 5-cycle and G, D is not 3-edge-connected, then by
Lemma 2.4, D is good. If D is a 2- or 1-cell and G|D is not 3-edge-connected, then
there exist a 5-cycle C' in D and an essential 3-cut T of G such that |[D N T| > 2 by
Lemma 2.4. Thus by Lemma 2.3, D is good. a0

3. Proof of Theorem 1.1. Let G be a 3-edge-connected cubic graph. We may
assume that G is not Hamiltonian; otherwise we are done. First we define a sequence
of bad cells in G which will be reduced.

Let

Dy ={D1,Ds,...,D,}

be a maximal set of mutually disjoint 2-cells in G such that D;; is bad in G; for
each 0 < i < p—1, where Gy = G and G; = G;_1|D; for 1 < i < p. If there is no
bad 2-cell in G, then we define D; = (§ and p = 0. We denote the subgraph in G;
corresponding to D; by Dj. See Figure 7. Notice that G — J,«; D; = Gi —U,<; D;
and, by Fact 2.2, each G; is 3-edge-connected for every 0 < i < p. By the maximality
of Dy, obviously the following claim holds.

CramM 3.1. There is no 2-cell in G —J,<, Di = Gp—U,<,, D which is bad in Gy.

Let
Dy ={Dpt1, Dpt2, ..., Dpyq}

Fic. 7.
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be a maximal set of mutually disjoint 1-cells in G —J; <i<p Di such that D; 4 is bad
in G; for each p <i <p+qg—1, where G; = G;_1|D; for p+1 <i < p+q. If there is
no bad 1-cell in G —J,;<, Di, then we define D = () and g = 0. The subgraph in G;
corresponding to D; is denoted by D}. In this case also, G — J,«; Di = G; — U,<; D;
and, by Fact 2.2, each G; is 3-edge-connected for any 0 < i < p + q. B
CrAmM 3.2. There is no 1-cell in G — U<y, Di = Gpirg — Uj<py g D1 which is

bad in Gpiq and there is no 2-cell C in Gpi; —J D} which is bad in Gpyj for
any 0 <7 <gq.

i<p+j

Proof. By the maximality of Dy, we have the first statement. If thereis 1 < j <gq
such that G4 j — ;<4 ; D; contains a 2-cell C' which is bad in G4, then obviously
C is bad in Gp4j_1 also, and so C is bad in G,. This contradicts Claim 3.1. |

Let Dy be a maximal set of mutually disjoint bad 5-cycles in G —J, <p+q Di- For
D1 UDyUDy, we define a vertex subset R* of G, whose vertices may not be contained
in a dominating even subgraph of G which is constructed later.
First, for each cell D; in Dy U Dy U Dy, we define pairs of vertices in D;.
1. Let D; be a 2-cell in Dy and wjususuqusugu; be the 6-cycle in D;. See
Figure 3(a). The pairs of D; are {uy,uz} and {u4, ug}.
2. Let D; be a 1-cell in Dy and wjusg---ugu; be the 8-cycle in D;. See
Figure 3(b). We define the pair of D; by {us, u4}.
3. For a 5-cycle D; = ujusg - --usuy in Dy, the pair is defined by arbitrary two
adjacent vertices in D;, e.g., {u1,uz}. See Figure 3(c).
Let Py be the set of all the pairs for all D; € Dy U Dy U Dy. For each pair
{ui,uj} € Po, let By, o, = 0({us, u;}) N 0Dy, where {u;,u;j} C Dy € Dy UDy U Dy.
Obviously 0 < [Ey, ;| < 2. Let

P = {{ui,u;} € Py : |Ey, ;| =2} and Q = U By ;-
{ui,u; P

We define a bipartite graph H on the partite sets P and Q by defining the adjacency
relation so that {u;,u;} € P and e € Q are adjacent if and only if e € E,, ,,. Since
each element in Q is adjacent to at most two pairs in P, for any S C P,

28| = |En(S, N(S))| < [Ea(N(S), P)| < 2|N(S)].

Thus by Hall’s theorem, there is a matching M in H covering P. Let ¢ : P — Q
be the injection defined by M, i.e., for each {u;,u;} € P, the pair is adjacent to
©({u;,u;}) € Q by M. Let

R* = {uy : ug € {u;,u;} is the end of the edge p({u;, u;}) for some {u;,u;} € P}.

Notice that there are no edges connecting two vertices in R*, except for those con-
necting u; and ug or connecting usz and u4 for some 2-cell in D;.
Let
Dg = {Dp+q+1a Dp+q+27 ey Dp+q+r} C DO

be a maximal subset of Dy such that for p+¢<i<p+q+r—1,

1. D;41 is bad in Gy, where u; € R* N D;, and G; = G;-1|y, D;, and

2. D;y1 intersects neither the 3-cycle nor the 4-cycle in Gj.
If there is no such 5-cycle, then we define D3 = () and r = 0. We denote by D/ the
subgraph in G; corresponding to D; € D3. Notice that each D; has no chord since
D; is bad in G;_; and each G, is 3-edge-connected for any p+¢q¢ < i <p+ g+ 71 by
Fact 2.2.
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CrAamM 3.3. If there exist 0 < j < r —1 and i € {2,1,0} such that Gpiqt; —
Ui<prgrj DI = Dptgrj+1 contains an i-cell C which is good in Gpigij, then C is
good in Gpygyj+1 also.

Proof. Since C' is good in Gp4q+j, there exist an essential 3-cut 1" of G4+, and
a 5-cycle Cy in C such that [T NOC;| > 2. Let Hy and Hy be the two components in

Gp+q+j —T. Since C C Gp+q+j - Ui§p+q+j D; — Dp+q+j+1a the 5—cycle Dp+q+j+1 is
contained in Hy — C or Hy — C, and so both T" and C exist in Gp4q4r41 also. Thus

C is good in Gpygirii- d
Cram 3.4.
1. I]; Gprati — Uicpiqr; Di has a bad 5-cycle, then the 5-cycle is bad in Gpiq
also.

2. There is neither a 2- nor a 1-cell C' in Gpiqrj — Ujcpyqry Di which is bad
in Gpyqrj for any 0 <j <r. -

Proof. Claim 3.3 implies the first statement immediately. By Claim 3.3, if there
is 0 < j < r such that Gpiq45 — Ui§p+q+j D] contains a 2- or 1-cell C' which is bad
in Gpig+j, then C is bad in Gpygyj—1, and so C' is bad in Gpiq. This contradicts
Claim 3.2. d

Let
So=0and ;= | J Dj

1<i<i

for 1 <i<p-+q+r. We call a vertex in 5; a yellow vertex.

We extend R*. Let D; € Dy and ujususuqusugu; be the 6-cycle. See Figure 3(a).
We define R(D;) = {us,us}. Let D; € Dy and ujususugusugurugu; be the 8-cycle.
See Figure 3(b). We define R(D;) = {ua,ug}. Let

Ry=R'U |J RD)(cV(G)

1<i<p+q
and

Ri=Ro— |J V(D)) (c V(&)

1<i<i

for 1 <i<p+qg+r. We call a vertex in R; a red vertex. By the definition of S; and
R;, there is no vertex in GG; which is both red and yellow. Notice that
(1) R — Ri+1U(R*ﬂDi+1)UR(Di+1) for0<i<p+qg-—1,
' Rit1U (R* N Djt1) forp+g<i<p+q+r-—1
For Theorem 1.1, it is enough to show that for all 0 < i < p+ g+ r, G; has an
even subgraph F; such that the following hold:
1. F; intersects all essential 3-cuts in G;.
2. Every component of F; contains at least five vertices. Especially if a 5-cycle
C'is a component of F;, then C contains a yellow vertex, i.e., CN.S; # ().
3. Every vertex in G; — F; is red, ie., G; — F; C R;, and |D; — F;| < 1 for
1+1<Ii<p+qg+r.
Indeed by the second condition, any component in Fy contains at least six vertices
as Sy = 0. Although (R* N V(D,)) @] R(DZ) C Ry (1 << p) and R(D,) C Ry
(p+1 < i < p+¢) may not be independent, since |D;—Fy| < 1forall 1 <1< p+qg+r,
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we have Gy — Fy(C Rp) is independent, i.e., Fy is dominating G = Gy. Therefore Fy
is a desired even subgraph.

We construct F; inductively. First we show the existence of F),444,. Notice that
G is 3-edge-connected for every 0 < i < p+q—+r by Fact 2.2 as we reduced bad cells.

CrLAM 3.5. There is a 2-factor Fpyqqr i Gpyqrr Such that
1. Fptq4r intersects all 3-cuts and 4-cuts in Gpiqir and
2. each 5-cycle C in Fpyqir contains a yellow vertex, i.e., C' N Spiqir # 0.

Proof. Since Gpyq4r is a 3-edge-connected cubic graph, by Corollary C, Gp4q+4r
has a 2-factor Fj;4, which intersects all 3-cuts and 4-cuts. We choose Fj, {41, such
that the number of components is as small as possible.

Suppose Fjpiq+r contains a 5-cycle C' without a yellow vertex. If C' is good in
Gptq+r, then there is an essential 3-cut T' such that |T'NIC| > 2, and Fp4q4r does
not intersect the 3-cut 7', a contradiction. Therefore C' is bad in Gpyg4r. Since C
has no yellow vertex, C' C Gpyq4r — Sptq+r, and so the 5-cycle C exists in G4, and,
by Claim 3.4, C'is bad in G4 also.

Suppose C ¢ Dy. By the maximality of Dy, there is a bad 5-cycle D € Dy
intersecting C. If |[E(CND)| <2, then CUD is a 2- or 1-cell in Gp4. Since both C
and D are bad in Gpyq, C U D is bad in Gp44. This contradicts Claim 3.2.

If |[E(CND)| =3, then D is a 5-cycle in Gpyq+r also. However, Fpi 4, does not
contain the vertex in D — C' as C is a component of F,4,. This is a contradiction.

Therefore C € Dy. Since C is bad in Gpyq4r and C ¢ D3, C intersects a 3- or a
4-cycle C1 in Gpiqr. Since C is bad, C has no chord, and so C; —C # 0. If C; — C
is a vertex w, then w is not contained in Fj, 44, as C'is a component of the 2-factor
Fytg+r. This is a contradiction.

If C1 —C contains an edge ww’, then there is a component Cy in F 4,4, containing
the edge ww’. Since the symmetric difference C=CACACyisa cycle, the subgraph
(Fptgrr —CUC)UC is a 2-factor of Gpyg4r in which the number of components is
less than Fj444,. This contradicts the choice of Fj,444+r. Thus C contains a yellow
vertex. |

Suppose G411 has a desired even subgraph F;, 1 for 1 <i+1 <p+ g+ r. Since
Gi+1 has no vertex which is both yellow and red and F;;1 contains every vertex which
is not red in G11, we have ;. D} C Fiy1.

CLAIM 3.6. If F; is an even subgraph of G; obtained from F; 11 by replacing edges
in Di, with edges in Dy, i.e.,

E(Fiy1) — E(Diy) = E(F;) — E(Dji11),

then the following holds:

1. F; intersects all essential 3-cuts in G;.

2. Every component C of F; intersecting no edge of D;y1 contains at least five
vertices. FEspecially if C is a 5-cycle, then C contains a yellow vertez, i.e.,
cnsS; #0.

3. Every vertex in G;—F;—D;y1 isred, i.e., Gi—F;—D;11 C R;, and |D;—F;| <
1 forj>i+2.

Proof.
1. Let T be any essential 3-cut of G;. Since D;11 is bad in Gy, TNE(D;11) =0 b

Lemma 2.3. This implies 7" is an essential 3-cut of Gi1 and TNE(D; ;)
Thus Fiy1 — E(D;,,) = F; — E(D;11) intersects T

by
0.
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2. Obviously C is a component of F;1; also. Thus |C] > 5 and C contains a
yellow vertex in S;1 — V(Dj ) = S; if |C| = 5.

3. Since Gi—Di+1 = Gi+1—D§+1, we have Gi_Di+1_Fi = Gi+1—Dg+1—FZ'+1 -
Ri+1 C R; by (1) For j >+ 2,

Dj — Fz = Dj — Fz’—‘,—la

and so we have |D; — F;| = |D; — F; 14| < 1. a

In the remaining part of this paper, we will construct a desired even subgraph
F; of G; from Fjy; by replacing edges in Dj_ ; with edges in D;;1. From the above
claim, it is enough to show that F; satisfies the following:
Al. Every component C' containing an edge of D;y; in F; contains at least five
vertices. Especially if C is a 5-cycle, then C contains a yellow vertex, i.e.,
CcnNS; #0.
A2. A vertex in D;y1 — F; is red, i.e., D;y1 — F; C R;, and |D¢+1 — Fz| <1
We divide our argument into the following three cases:
.0<i<p-1.
2.p+q<i<p+gq+r—1.
3.p<i<p+qg—1
The first case is easier than the other cases. If there is a vertex in G; — D1
which is adjacent to u € D;41, then we denote the vertex by u'.
1.0<i:<p—1,ie, Di+1 € D,.
Since V(Dj,,) C Fiy1 and F 1 is an even subgraph, |Fi;1 NdDj, | is 2 or 4.
If the subgraph induced by V(D;41) contains an edge that is not in F(D;1), then
|0D;11] = 3. This implies D;;1 contains a good 5-cycle, i.e., D;y1 is good in G;.
This contradicts our assumption. Therefore, both {u;,u3} and {u4, ug} contain a red
vertex.
Case 1. |Fiy1 NOD; | = 4.
Since Dj,; C Fiy1, by symmetry, we may suppose

/ / ! ! /
Fit1 N 0D = {uiug, uauy, ugw', uzus },

and then F;;; contains the edge usus. See Figure 8. Let F; be the even subgraph
obtained from Fj;i; by replacing

wiurug and w'uguzuly by ujuiugug and wwususuzuly.
Since every component C containing an edge of D;y; in F; contains at least six

vertices, Al holds. Since us € R(D;4+1) C R;, A2 holds.
Case 2. |Fi 1 NOD; | = 2.

ui u Us

Fic. 8.
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u: u:
ui us Ui us
ui u Us ui u U3
> >
(a) Us Us (b) Us Us
Fic. 9.

Since Dj, ; C Fiy1, Fiy1 NODj , does not contain the edge upw’. Thus by
symmetry, we may suppose

!/ . ! ! ! /
Fip1NoD;  is {ujug, uzuz} or {ujug, usuy}.

See Figure 9. If the intersection is {ujug, usus}, then the even subgraph F; obtained
from F;;1 by replacing
U U2U3 DY UgU UosWUsU4 U3
is a desired even subgraph because both Al and A2 hold as V(D;+1) C F;.
Suppose Fip1 N OD;; = {uiug,usuy}. For the pair {ui,us}, if uz is red, i.e.,
ug € R;, then the even subgraph F; obtained from F;;; by replacing

UGUL U Uz Uy DY UGUGUL U W5 ULUY

is a desired even subgraph because both A1 and A2 hold. Similarly if u; € R;, then
the even subgraph F; obtained from F;,; by replacing

UGl U2uzly by UgueUswustzusUy

is a desired even subgraph.

2.p+q<i<p+q+r—1,ie, Dy, € Ds.

In this case, D;11 = ujug - - - usu; is a 5-cycle. By symmetry, we may suppose ug
is red, i.e., ug € R;. Since V(Dj, ;) C Fiy1, |[Fip1 NOD; 4] is 2 or 4.

Case 1. |Fiy1 NOD; | = 2.

Notice that F; 1 NdD;j,, does not contain upuy because V(Dj, ;) C Fiy1. Hence
by symmetry, we have the following three cases:

Fi1N 0D, is {uiuy, usug}, {ugu}, ugus} or {ugul, ugus}.

(i) Suppose F;1NOD;, | = {uiu}, uzus}. See Figure 10(a). As V/(Dj,,) C Fiy1,
F;11 contains the path ujujususuf. Let F; be the even subgraph in G; which
is obtained from F;y; by replacing

uyu Uz Uy by uhusuzuoul usuy.

Obviously Al holds. Since V(D;41) C F;, A2 holds.

(ii) Suppose Fiy1NOD;, | = {ui1u}, uzuz}. See Figure 10(b). Then Fj; contains
the path wjujusuguy as V(D] ;) C Fiy1. Let F; be the even subgraph in G
which is obtained from F;,; by replacing

uyu Uz Uy by Ul usug usuzUY.

Obviously both Al and A2 hold.
(ili) Suppose Fj11 NOD;, | = {uiu},usus}. See Figure 10(c). Let F; be the even
subgraph in G; which is obtained from Fj;; by replacing
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U, u: U3 Ui U3 125! Uu> Uus, ui us
> >
U4 Us U4 Us
(a) u's u's u's u's (b) u's u's U's u's

ULy Us
©) “u\ u's
Fic. 10.
UL 1NIL Ui U3 Uz
ui
. u'
U4 Us
u's u's U's u's s
(a) (b) (c)
Fic. 11.

u'1u1u21L3ué by u’1u1U5U4U3ug.

Since the component in F; containing an edge in D;y; contains at least six
vertices, Al holds. As D;y1 — F; = {us} C R;, A2 holds.
Case 2. |Fiy1 NOD; | = 4.
As V(Dj,,) C Fiy1, Fiy1 N 0D}, is not {uiu},uiul, ugus, uzuz}y. Thus by
symmetry, we have two cases.
(i) Suppose
Fi41NOD;,, = {uiuly, uguy, uguy, ugus},

and then usus € F;11. See Figure 11(a). Let F; be the even subgraph in G;
which is obtained from F;,; by replacing

uyuiu) by ujususuiul.

Since V(D;4+1) C F;, A2 holds.

The component continuing ujususuiu) of F; contains at least six vertices.
Suppose C' = uguzuwubug is a 5-cycle and C' N S; = 0. See Figure 11(b).
Then C = CUD;1; is a 1-cell in G; — Ujgi D; Since D;11 € D3, D;yq is
bad in GG;. Suppose that C is good and let T be an essential 3-cut such that
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U713 Ui us
>
(a) Us Us
ul 1 ' '
4 Us Uua Uus

Fia. 12.

|TNAC| > 2. Since D;41 is bad, TNIC C IC — {usuq,uzus} by Lemma 2.3.

Since T is an essential 3-cut of G;41 also and F;41 contains C' as a component,

F; 11 does not intersect T', a contradiction. See Figure 11(c). Thus both D;14

and C are bad, and so C is a bad 1-cell in G;. This contradicts Claim 3.4.
(ii) Suppose

!/ !/ ! ! i
Fii1 NOD; ;= {uyuy, uruy, uguy, usus },

and then usuz € F;y1. See Figure 12(a).
Let F; be the even subgraph in G; which is obtained from F;,; by replacing

!/ !/ !/ !/ / /! /! !
uyuiuy and usuguss by uyuaususty and ujuiusus.

Since V(D;41) C F;, A2 holds.

Let C and C5 be the components in F; containing ujus and ugusuy, respectively.
Suppose C; or Cy contains at most five vertices, and then C; # Cs. Since D;yq
intersects neither the 3-cycle nor the 4-cycle, C; or Cs is a 5-cycle.

Suppose C; = ujusufwuiu; is a 5-cycle and C;NS; = . See Figure 12(b). Then
671 = C1UD;yq is a 1-cell in G;. By Claim 3.4, 671 is good. Since D;y; is bad, C;
is good, and so there is an essential 3-cut 7" in G; such that |T N 0Cy| > 2, and by
Lemma 2.3 T NOC; C 9C; — {uyug,usus}. Thus T is an essential 3-cut of G;i1.
Since Fj41 contains the path ujujwulug, F;y1 does not intersect T', a contradiction.
See Figure 12(c).

Suppose Cy = uguzuqujubus is a 5-cycle and CoNS; = . See Figure 12(d). Then
6‘; = CoUD;yq is a 2-cell in G;. By Claim 3.4, CN'Q is good, and so, as in the above case,
G, has an essential 3-cut T such that [TNICs| > 2, and TNOCy C IC —{ujus, ugus}.
Hence T is an essential 3-cut of G;11. Since Fj;1 contains the path ugusugubuluy,
F; 11 does not intersect T, a contradiction. See Figure 12(e).

3.p<i<p+q—1,i.e., Di+1 € Ds.

Since V(Dj, ) C Fiy1, |[Fix1 N 0D ] is 0, 2, 4, or 6.

Case 1. |Fi41 N 0D | =0.

In this case, the 6-cycle ujusuqusurug is contained in Fjy, and replacing it with
the 8-cycle ujususususugurug, we obtain the even subgraph F; in G;. Obviously,
both Al and A2 hold.

Case 2. |Fi+1 n 8D;+1| = 2.
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Fia. 14.

Since V(Dj, ;) C Fiy1 and Fjy; is an even subgraph, by symmetry we have two
cases. If Fiy1 NOD;,; = {uruy,ugug}, then F;y; contains the path uguiuzusususy.
See Figure 13(a). Then the even subgraph F; obtained from F;;; by replacing

uéuzgul U3'UJ4’U,5U7U{7 by u'gusul U2U3U4U5UGU7U/7

is a desired even subgraph because both A1l and A2 hold. Similarly, we can show the
case of Fy 11 NOD;, | = {uyus, usug} since ug € R(Diy1) C R;. See Figure 13(b).
Case 3. |Fiy1 NOD; | = 4.
By symmetry, we have four cases:
(i) Fiy1 NOD;, | = {uruy, ugug, uyul, uzus}.
Since V(Dj,,) C Fjt1, Fi;1 contains the paths ugu; and uzugusur. See
Figure 14(a). Let P; and P, be the two paths obtained from the cycles in
Fiy1 intersecting Dj,, by removing edges in E(Dj ;) and isolated vertices.
By symmetry, we may suppose us € P;. If uy € P, or ug € Py, then the even
subgraph F; obtained from F;; by replacing

ujugugug and uhuzususuruy by ubuzugug and uhuztgusueuotl U}

is a desired even subgraph because both Al and A2 hold. See Figure 14(a).
In the case of u; € P, let F; be the even subgraph obtained from F;;; by
replacing

URU3UAUsUTUL DY ULUZULUS UGUTUY.

Obviously Al holds. Since us € R(D;1+1) C R;, A2 holds.
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Fia. 15.

(ii) Fiy1 NOD;, = {uzuy, ugug, usuy, usu} }.
Then F;;; contains the paths ugujus and wgusuy. See Figure 14(b). Then
the even subgraph F; obtained from F;;; by replacing

uguguiuguy and ujususuzuy by ugugulusuguly and uyugusuguruy

is a desired even subgraph because both A1 and A2 hold.

(ili) Similarly we can show the case that Fi1NID;,, = {uruy, ugug, usu}, usug}.
See Figure 14(c).

(iv) Fip1N0D; = {uruy, uau’, ususy, usug}.
Suppose first that uqug € E(G). Then, F;1; contains either the paths uyugu
and uzugqus, or the paths ujugusuz and usuz, or uiuz and usuguguy. See
Figure 15 for the case of the paths urugu; and usuqus. Let P; and P be the
two paths obtained from the cycles in Fji; intersecting Dj,; by removing
edges in E(Dj, ) and isolated vertices. By symmetry, we may suppose u3 €
P,. If uy € Py or us € Py, then the even subgraph F; obtained from F;;; by
replacing the paths inside Dj_

by urusugsus and ujusugus

is a desired even subgraph because both Al and A2 hold. See Figure 15(a).
In the case of u7 € Py, let F; be the even subgraph obtained from Fj 1 by replacing
the paths inside Dj,
by ujugusug and urugus.

See Figure 15(b). Obviously A1l holds. Since us € R(D;+1) C R;, A2 holds.

Therefore, we may assume that ugug € E(G). Since there are components in Fj 1
containing urusuy and usugqus, both u}y and ug exist. Thus |E,, 4| = 2, and so one
of uy and wg is in R;. By symmetry, we may suppose uqy € R;. Let F; be the even
subgraph obtained from F;;; by replacing

UhUzULUsUE DY UsU3ULUGUS U .-

See Figure 14(d). Obviously A2 holds.

Suppose the component C; of F; containing urugu; is a 5-cycle and C; N .S; = .
Let Cy = uyugururujuy and Co = ujuguguruguy. See Figure 16(a). Then C' = C1UC,
is a 2-cell in G;. By Claim 3.2, C' is good in G;. Since D;4; is bad, Cs is bad, and
so C1 is good. Thus there is an essential 3-cut T such that |T'N ACy| > 2. Since Cy
is bad, T N 9C, C 9Cy — {uyus, urug}. Hence T is an essential 3-cut of G;41. Since
F;11 contains C; as a component, F;; does not intersect T, a contradiction. See
Figure 16(b).

Case 4. |Fi+1 n 8D;+1| = 6.
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u:

C1 us CZ Ua

Fic. 17.

In this case, F;y; contains all the edges in aDQH. Let P, P, and P35 be the
three paths obtained from the cycles in Fj1; intersecting Dj ; by removing edges in
E(Dj, ). By symmetry, we may suppose uy € Pi. It is easy to confirm that for all
the following cases, both A1 and A2 hold.

(i) The ends of P; are uy and usg.

(a) If the ends of P are u; and us, then let F; be the even subgraph obtained
from F; 1, by replacing the cycles in Fj; intersecting D, with the cycle

U7P1U8U1PQU3U4P3U5UGU7.

See Figure 17(a).
(b) If the ends of P, are u; and uy, then let F; be the even subgraph obtained
from Fj ;1 by replacing the cycles in Fy; intersecting Dj_ ; with the cycle

’LL7P1U8’LL1P2U4'LL3P3U5'LL6U7.

See Figure 17(b).
(c) If the ends of Py are u; and us, then let F; be the even subgraph obtained
from F; 1 by replacing the cycles in Fi; intersecting D ; with the cycle

U7P1USU1P2U5U4P3U3U2UGU7.

See Figure 17(c).
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Notice that by symmetry, we finished showing all the cases where there is a
path joining u; and w; 41 for any i by the case (i).

The ends of P; are u7 and u;.

In this case, the ends of P, are ug and uy4; otherwise there is a path joining
u; and u; 41 for some i. Let F; be the even subgraph obtained from Fjy; by
replacing the cycles in Fj ; intersecting Dj ; with the cycle

U7P1U1USPQU4U5P3U3’U2’U6U7.

See Figure 17(d).

The ends of P; are u; and us.

If the ends of P, are ug and uy4, then let F; be the even subgraph obtained
from Fji; by replacing the cycles in Fj,; intersecting Dj, ; with the cycle

U7P1U3U2U1P3U5U4P2U8U7.

See Figure 17(e).
If the ends of P, are ug and us, then let F; be the even subgraph obtained
from Fji; by replacing the cycles in Fj,; intersecting Dj, ; with the cycle

U7P1U3U2U1P3U4U5P2U8U7.

See Figure 17(f).

The ends of P; are u7; and u4.

If the ends of P, are ug and us, then let F; be the even subgraph obtained
from Fj;; by replacing the cycles in Fj,; intersecting Dj,; with the cycle

U7P1U,4U5P2’U,8U1P3U3UQU6U7.

See Figure 17(g). The case that the ends of P, are ug and ug is the same as
case (iil). See Figure 17(f).

The ends of P; are u; and us.

If the ends of P, are ug and uy4, then let F; be the even subgraph obtained
from Fi;1 by replacing the cycles in Fj,; intersecting Dj,, with the cycle

U7P1U5U4PQU8U1P3U3UQUGU7.

See Figure 17(h). The case that the ends of P; are ug and ug is the same as
case (iv). See Figure 17(g).

Now we completed the proof.

4. Closing remarks. The traveling salesman problem (TSP) is used to find a
spanning closed walk of short length in a given graph. The typical method for TSP on
3-edge-connected cubic graphs is as follows. First, we find a 2-factor F' in a given 3-
edge-connected cubic graph G and take a certain connected graph T (e.g., a spanning
tree) in the graph G/F obtained from G by contracting all components in F', and
then we obtain a connected subgraph F'UT of G. By modifying it suitably, we can
get a spanning closed walk whose length is a certain function on |E(T')|. Since T must
be a connected subgraph of G/F, |E(T)| is at least the number of components of F
minus one, and so the lower number of components in F' gives the better bounds.

Aggarwal, Garg, and Gupta [1] used Theorem A to begin with a 2-factor having
at most n/5 components and showed the existence of a spanning closed walk of length
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at most 4n/3 in a 3-edge-connected cubic graph of order n. This result was further
improved to 2-edge connected or connected cubic graphs, graphs of maximum degree
at most 3, or better bounds than 4n/3; see [6, 8, 9.

Because of the above reasons, several researchers have been interested in a 2-factor
in cubic graphs such that the number of 5-cycles is small; see [7]. Instead of using
a 2-factor, we can use an even subgraph satisfying certain conditions on the order
of each component. In fact, such structures have appeared in [8, 9] as intermediate
products, which is called an R-factor in [8]. For those intermediate products, it is
not necessarily dominating, but the dominating property may help us to obtain good
bounds, i.e., we expect that Theorem 1.1 has a potential application to the TSP.

Acknowledgments. The authors would like to thank the referees for valuable
suggestions and comments.

REFERENCES

[1] N. AGGARWAL, N. GARG, AND S. GuprTA, A 4/3-Approzimation for TSP on Cubic 3-Edge-
Connected Graphs, arXiv:1101.5586v1, 2011.

[2] B. R. ArLspacH AND C. D. GobDsIL, EDS., Cycles in Graphs, Ann. Discrete Math. 27, North-
Holland, Amsterdam, 1985.

[3] P. AsH AND B. JACKSON, Dominating cycles in bipartite graphs, in Progress in Graph Theory,
A. Bondy and U. S. R. Murty, eds., Academic Press, New York, 1984, pp. 81-87.

[4] J. C. BERMOND AND C. THOMASSEN, Cycles in digraphs—a survey, J. Graph Theory, 5 (1981),
pp. 1-43.

[5] J. A. BoNDY AND U. S. R. MUuRtTY, Graph Theory, Grad. Texts in Math. 244, Springer, New
York, 2008.

[6] S. BoyD, R. SITTERS, S. VAN DER STER, AND L. STOUGIE, The traveling salesman problem on
cubic and subcubic graphs, Math. Program., 144 (2014), pp. 227-245.

[7] B. CANDRAKOVA AND R. LUKOT’KA, Avoiding 5-circuits in 2-factors of cubic graphs, SIAM J.
Discrete Math., 29 (2015), pp. 1387-1405.

[8] B. CANDRAKOVA AND R. LUKOT'KA, Cubic TSP—a 1.3-Approzimation, arXiv:1506.06369v1,
2015.

[9] J. CorRREA, O. LARRE, AND A. SOTO, TSP tours in cubic graphs: Beyond 4/3, STAM J. Discrete
Math., 29 (2015), pp. 915-939.

[10] H. FLEISCHNER, Spanning Eulerian subgraphs, the splitting lemma, and Petersen’s theorem,
Discrete Math., 101 (1992), pp. 33-37.

[11] H. FLEISCHNER AND B. JACKSON, A note concerning some conjectures on cyclically 4-edge-
connected 3-regular graphs, in Graph Theory in Memory of G. A. Dirac, L. D. Andersen,
I. T. Jakobsen, C. Thomassen, B. Toft, P. D. Vestergaard, eds., Ann. Discrete Math. 41,
North-Holland, Amsterdam, 1988, pp. 171-177.

[12] D. GAMARNIK, M. LEWENSTEIN, AND M. SVIRIDENKO, An improved upper bound for the TSP
in cubic 3-edge-connected graphs, Oper. Res. Lett., 33 (2005), pp. 467-474.

[13] B. JACKSON AND K. YOSHIMOTO, Even subgraphs of bridgeless graphs and 2-factors of line
graphs, Discrete Math., 307 (2007), pp. 2775-2785.

[14] B. JACKSON AND K. YOSHIMOTO, Spanning even subgraphs of 3-edge-connected graphs, J. Graph
Theory, 62 (2009), pp. 37-47.

[15] T. KAISER AND R. SKREKOVSKI, Cycles intersecting edge-cuts of prescribed sizes, SIAM J.
Discrete Math., 22 (2008), pp. 861-874.

[16] M. M. MATTHEWS AND D. P. SUMNER, Hamiltonian results in Ki 3-free graphs, J. Graph
Theory, 8 (1984), pp. 139-146.

[17] J. PETERSEN, Die Theorie der reguldren Graphs, Acta Math., 15 (1891), pp. 193-220.

[18] Z. RYJACEK, On a closure concept in claw-free graphs, J. Combin. Theory. Ser. B, 70 (1997),
pp. 217-224.

[19] C. THOMASSEN, Reflections on graph theory, J. Graph Theory, 10 (1986), pp. 309-324.


https://arxiv.org/abs/arXiv:1101.5586v1
https://arxiv.org/abs/arXiv:1506.06369v1

	Introduction
	Preparations
	Proof of Theorem 1.1
	Closing remarks
	References

