ON DOMINATING EVEN SUBGRAPHS IN CUBIC GRAPHS*

ROMAN ČADA ${ }^{\dagger}$, SHUYA CHIBA \ddagger, KENTA OZEKI ${ }^{\S}$, AND KIYOSHI YOSHIMOTO『

Abstract

It is known that a 3-edge-connected graph has a spanning even subgraph in which every component contains at least five vertices, and the lower bound is best possible. A natural question arises of whether we can improve the lower bound by changing the spanning property with the dominating property. In this paper, we show that a 3-edge-connected cubic graph has a dominating even subgraph in which every component contains at least six vertices.

Key words. even subgraph, dominating subgraph, 2-factor, cubic graph
AMS subject classifications. 05C38, 05C69
DOI. 10.1137/16M1066622

1. Introduction. In this paper, we consider finite graphs without loops. An even graph is a graph in which every vertex has a positive even degree and a subgraph H of a graph G is said to be dominating if $G-V(H)$ is edgeless. In this paper, a cycle is a connected 2-regular graph and a cycle with l vertices is called an l-cycle. A 2 -factor is a spanning 2 -regular subgraph of a graph. An edge-cut is a minimal set of edges whose removal increases the number of components of the graph. We call an edge-cut with l edges an l-cut. An edge-cut is said to be essential if both of the two new components after deleting it have at least one edge.

For a vertex subset $X \subset V(G)$, the set of edges joining X and $V(G)-X$ is denoted by $\partial(X)$ or simply ∂X. If X consists of one vertex u, then we denote it simply by $\partial(u)$. For a subgraph H of G, we use ∂H instead of $\partial(V(H))$. For terminology and notation not defined in this paper, we refer the readers to [5].

In this paper we consider cubic graphs, i.e., 3 -regular graphs. A classical result by Petersen [17] says that a bridgeless cubic graph has a 2 -factor. This well-known result was generalized by Fleischner [10] as follows: a bridgeless graph with minimum degree at least three has a spanning even subgraph in which every component has at least three vertices. If we restrict ourselves to simple graphs, then the lower bound on the order of components is improved to four in [13]. Jackson and Yoshimoto considered 3 -edge-connected graphs and showed the following.

Theorem A (Jackson and Yoshimoto [14]). A 3-edge-connected graph with n vertices has a spanning even subgraph in which each component contains at least $\min \{5, n\}$ vertices.

[^0]They also gave an infinite family of 3-edge-connected cubic graphs in which every 2 -factor contains 5 -cycles. Thus the lower bound in the theorem is best possible in some sense. Kaiser and Škrekovski gave an interesting result, which also generalizes the Petersen's theorem.

Theorem B (Kaiser and Škrekovski [15]). Every graph has an even subgraph which intersects all 3-cuts and 4-cuts.

If a given graph is bridgeless and cubic, then for any $u \in V(G), \partial(u)$ is always a 3 -cut of the graph, and so the above theorem implies the following.

Corollary C. A bridgeless cubic graph has a 2-factor which intersects all 3-cuts and 4-cuts.

If a given cubic graph is 3 -edge-connected, then for an l-cycle C where $l \in\{3,4\}$, ∂C is an l-cut of the graph, and so Corollary C implies that a 3 -edge-connected cubic graph has a 2 -factor in which every component contains at least five vertices.

Matthews and Sumner [16] conjectured that 4-connected claw-free graphs are Hamiltonian and Ryjáček [18] showed the Matthews-Sumner conjecture is equivalent to the conjecture by Thomassen and others $[2,4,19]$ that 4 -connected line graphs are Hamiltonian. Fleischner and Jackson [11] showed that the conjecture on line graphs, and so the Matthews-Sumner conjecture, is equivalent to the conjecture by Ash and Jackson [3] that an essentially 4-edge-connected cubic graph has a dominating cycle. Thus it is interesting and important to study the behavior of dominating subgraphs in cubic graphs. In this paper, we prove the following using Corollary C.

Theorem 1.1. A 3-edge-connected cubic graph has a Hamilton cycle or a dominating even subgraph F such that every component in F contains at least six vertices and F intersects all essential 3-cuts.

In section 2, we give several preparations for the proof of Theorem 1.1, and in section 3, the proof will be given. Furthermore, we will give remarks on even subgraphs of 3-edge-connected cubic graphs and the traveling salesman problem in section 4.

We conjecture that Theorem 1.1 can be generalized as in Theorem A.
CONJECTURE 1.2. A 3-edge-connected graph with n vertices has a dominating even subgraph in which each component has at least $\min \{6, n\}$ vertices.

Also it is a natural question to ask about the lower bound " 6 " in Theorem 1.1 and Conjecture 1.2.

Problem 1.3. What is the maximum integer k such that any 3-edge-connected graph has a dominating even subgraph in which each component has at least $\min \{k, n\}$ vertices?

The following example implies that the upper bound must be at most nine.
FACT 1.4. There is an infinite family of 3-edge-connected cubic graphs in which every dominating even subgraph has a cycle of order at most nine.

Proof. We construct such a cubic graph. Let S be the graph as in Figure 1, where S has 34 vertices, 49 edges, and 4 "half-edges" whose one end is in S. Later we define the other ends of the half-edges.

Let m and l be positive integers with $3 m=4 l$. Let B be l copies of S and A be m mutually disjoint triangles with three half-edges incident to each vertex of the triangle. See Figure 2. Since A and B have $3 m$ and $4 l$ half-edges, respectively, and $3 m=4 l$, we can pair up half-edges in A with half-edges in B. It is easy to pair them so that the obtained graph G is 3 -edge-connected.

Fig. 1.

FIG. 2.

We show that any dominating even subgraph F in G has a cycle of order at most nine. If there is a triangle T in A such that $\partial T \cap F=\emptyset$, then obviously F contains the 3 -cycle T as a component. Suppose $\partial T \cap F \neq \emptyset$ for all triangles T in A. Since F is an even subgraph, $|\partial T \cap F|=2$ for all triangles T in A, and so F contains $2 m$ edges joining A and B. Since $2 m=8 l / 3$, there is a component S in B such that $|\partial S \cap F|=4$.

Let $u_{1} u_{2}$ be the edge in the middle of S; see Figure 1. Since F is a dominating subgraph in G, at least one of the vertices u_{1} and u_{2} is contained in F, say, u_{1}. Let L_{S} be the left component of $S-u_{1} u_{2}$. Since F is an even subgraph, we have $\left|\partial L_{S} \cap F\right|=2$, and hence $u_{1} u_{2} \notin F$ and $\partial\left(u_{1}\right)-\left\{u_{1} u_{2}\right\} \subset F$. Note that both v_{1} and v_{2} are contained in F. Then by the structure of L_{S}, it is an easy observation that v_{1} and v_{2} belong to the same component of F which is different from the one containing u_{1}, and furthermore the component containing u_{1} has at most nine vertices. This completes the proof of Fact 1.4.

The following question is also natural.
Problem 1.5. Does a 3-edge-connected cubic graph have a dominating even subgraph F such that every component in F contains at least six vertices and F intersects all essential 3 -cuts and 4-cuts?
2. Preparations. First, we give some additional notation. The set of all the neighbors of a vertex $x \in V(G)$ is denoted by $N_{G}(x)$ or simply $N(x)$ and its cardinality by $d_{G}(x)$ or $d(x)$. For a subgraph H of G, we denote $N_{G}(x) \cap V(H)$ by $N_{H}(x)$ and its cardinality by $d_{H}(x)$. For simplicity, we denote $|V(H)|$ by $|H|$ and " $u_{i} \in V(H)$ " by " $u_{i} \in H$." Similarly $G-V(H)$ is denoted by $G-H$.

Fig. 3.

Fig. 4. Reduction of 2-cell.

Fig. 5. Reduction of 1-cell.

Recall that an edge-cut is said to be essential if both of the two new components after deleting it have at least one edge. This definition directly implies the following fact, which will be implicitly used in our proofs.

FACT 2.1. For a 2-edge-connected cubic graph G and for a k-cut T, both of the following hold:

- If $k=2$, then T is always an essential cut.
- If $k=3$ and $T=\partial S$ for some $S \subseteq V(G)$ with $|S| \geq 2$ and $|V(G)-S| \geq 2$, then T is an essential cut.

An i-cell is the union of two 5 -cycles in a cubic graph which have i common edges. See Figure 3(a), (b). We call a 5 -cycle a 0 -cell. In the proof of Theorem 1.1, we will construct a dominating even subgraph from a 2 -factor of a cubic graph which is obtained by reducing those cells. Hence we define reductions for those cells first.

Let D be a 2 -cell in G, and let $u_{1} u_{2} \cdots u_{6} u_{1}$ be the 6 -cycle and w the remaining vertex in D. See Figure 4. Let G^{\prime} be the graph obtained from G by contracting all of the paths $u_{1} u_{6}, u_{2} w u_{5}, u_{3} u_{4}$ and removing the edges $u_{6} u_{5}$ and $u_{5} u_{4}$. We denote this reduction by $G^{\prime}=G \mid D$.

Let D be a 1 -cell in G and $u_{1} u_{2} \cdots u_{8} u_{1}$ the 8 -cycle of D. See Figure 5. Let G^{\prime} be the graph obtained from G by removing the edge $u_{2} u_{6}$ and contracting both of the edges $u_{1} u_{2}$ and $u_{7} u_{6}$. We denote by $G^{\prime}=G \mid D$ this reduction.

Fig. 6. Reduction of 5-cycle.

Let $D=u_{1} \cdots u_{5} u_{1}$ be a 5 -cycle without chord. Let $u_{i}^{\prime} \in V(G-C)$ which is adjacent to u_{i} for $1 \leq i \leq 5$. See Figure 6 . Let G^{\prime} be the graph obtained from G by removing the edges $u_{1} u_{5}, u_{5} u_{4}, u_{4} u_{3}$ and identifying u_{1}, u_{4} and u_{3}, u_{5}, respectively. We denote by $G^{\prime}=\left.G\right|_{u_{2}} D$ this reduction.

We say that a 5 -cycle C is good in G if there is an essential 3 -cut T in G such that $|T \cap \partial C| \geq 2$. If C has exactly one chord and $|G| \geq 8$, then C is always good because ∂C is an essential 3 -cut. If a 2 - or 1 -cell contains a good 5 -cycle, then the cell is also called good. A cell which is not good is called bad. Notice that in a bad cell, every 5 -cycle is bad.

We need the following fact in the proof of Theorem 1.1.
Fact 2.2. Let $i \in\{2,1,0\}$. If a 3-edge-connected cubic graph G has a bad i-cell D, then $G \mid D$ or $\left.G\right|_{u_{2}} D$ is 3-edge-connected.

This fact is obtained from the following two lemmas.
Lemma 2.3. Let $D=u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}$ be a 5-cycle of a 3-edge-connected cubic graph. If there is an essential 3 -cut T such that $T \cap E(D) \neq \emptyset$, then D is good.

Proof. Suppose D is bad and there is an essential 3-cut T such that $T \cap E(D) \neq \emptyset$. Since D is bad and G is 3 -edge-connected, D has no chord. Let $u_{i}^{\prime} \in N_{G-C}\left(u_{i}\right)$ for $1 \leq i \leq 5$. Since T is an essential edge-cut of a cubic graph and G is 3-edge-connected, no pair of edges in T is adjacent, and so $T \cap E(D)$ contains two independent edges, say, $u_{1} u_{2}, u_{4} u_{5}$. Then $\left(T-\left\{u_{1} u_{2}, u_{4} u_{5}\right\}\right) \cup\left\{u_{1} u_{1}^{\prime}, u_{5} u_{5}^{\prime}\right\}$ is an essential 3-cut containing two edges in ∂D, a contradiction.

Lemma 2.4. For $k \in\{2,3\}$ and a k-edge-connected cubic graph G, the following hold:

1. Let D be a 2-cell and $u_{1} u_{2} \cdots u_{6} u_{1}$ be the 6 -cycle in D. See Figure 4. If $G \mid D$ is not k-edge-connected, then G has an essential k-cut containing $\left\{u_{1} u_{2}, u_{5} u_{6}\right\}$ or $\left\{u_{2} u_{3}, u_{4} u_{5}\right\}$.
2. Let D be a 1-cell and $u_{1} u_{2} \cdots u_{8} u_{1}$ be the 8 -cycle in D. See Figure 5. If $G \mid D$ is not k-edge-connected, then G has an essential k-cut containing $\left\{u_{1} u_{8}, u_{4} u_{5}, u_{2} u_{6}\right\}$ or $\left\{u_{3} u_{4}, u_{7} u_{8}, u_{2} u_{6}\right\}$.
3. Let $D=u_{1} u_{2} \cdots u_{5} u_{1}$ be a 5-cycle and u_{j}^{\prime} be the vertex in $G-D$ which is adjacent to u_{j} for $1 \leq j \leq 5$. See Figure 6. If $\left.G\right|_{u_{2}} D$ is not k-edge-connected, then G has an essential k-cut containing $\left\{u_{1} u_{1}^{\prime}, u_{4} u_{4}^{\prime}\right\}$ or $\left\{u_{3} u_{3}^{\prime}, u_{5} u_{5}^{\prime}\right\}$.
Proof. Let $G^{\prime}=G \mid D$ or $G^{\prime}=\left.G\right|_{u_{2}} D$, respectively, T be a minimum edge-cut of G^{\prime}, and D^{\prime} be the subgraph in G^{\prime} corresponding to D. Let $S \subset V\left(G^{\prime}\right)$ such that $\partial S=T$ and $u_{1} \in S$. Suppose $|T| \leq k-1$. Since G is k-edge-connected, T is not an edge-cut of G, and so $T=\partial S$ divides D^{\prime}. For a vertex $u \in V(D)$, we denote a vertex in $G-D$ adjacent to u by u^{\prime} if it exists.
4. Since $\left|T \cap D^{\prime}\right|=1$, by symmetry, we may suppose $T \cap D^{\prime}=\left\{u_{1} u_{2}\right\}$. Since T is a minimum cut, no pair of edges in T is adjacent, and so $\left\{u_{1}^{\prime}, u_{6}^{\prime}\right\} \subset S$. Thus $\partial\left(S \cup\left\{u_{6}\right\}\right)$ is an essential k-cut containing $\left\{u_{1} u_{2}, u_{5} u_{6}\right\}$ of G.
5. Since T divides $V\left(D^{\prime}\right),\left|T \cap D^{\prime}\right|=2$. By symmetry, we have four cases.

If $T \cap D^{\prime}=\left\{u_{1} u_{3}, u_{5} u_{7}\right\}$, then ∂S is also a $(k-1)$-cut of G, a contradiction. If $T \cap D^{\prime}=\left\{u_{1} u_{3}, u_{4} u_{5}\right\}$, then $\partial\left(S \cup\left\{u_{2}, u_{6}\right\}\right)$ is a $(k-1)$-cut of G, a contradiction.
If $T \cap D^{\prime}=\left\{u_{1} u_{8}, u_{3} u_{4}\right\}$, then $\partial\left(S-\left\{u_{1}, u_{3}\right\}\right)$ is a $(k-1)$-cut of G, a contradiction.
If $T \cap D^{\prime}=\left\{u_{1} u_{8}, u_{4} u_{5}\right\}$, then since $\left\{u_{1}, u_{3}\right\} \subset S, \partial\left(S \cup\left\{u_{2}\right\}\right)$ is an essential k-cut containing $\left\{u_{1} u_{8}, u_{4} u_{5}, u_{2} u_{6}\right\}$ of G.
3. Since $T=\partial S$ divides $D^{\prime},\left|T \cap D^{\prime}\right|=1$. By symmetry, we may suppose $T \cap D^{\prime}=\left\{u_{1} u_{2}\right\}$. Since $\left\{u_{1}^{\prime}, u_{4}^{\prime}\right\} \subset S$ and G is k-edge-connected, $\partial\left(S-u_{1}\right)$ is an essential k-cut containing $\left\{u_{1} u_{1}^{\prime}, u_{4} u_{4}^{\prime}\right\}$ of G.

Proof of Fact 2.2. If D is a 5 -cycle and $\left.G\right|_{u_{2}} D$ is not 3-edge-connected, then by Lemma $2.4, D$ is good. If D is a 2 - or 1 -cell and $G \mid D$ is not 3-edge-connected, then there exist a 5 -cycle C in D and an essential 3 -cut T of G such that $|D \cap T| \geq 2$ by Lemma 2.4. Thus by Lemma 2.3, D is good.
3. Proof of Theorem 1.1. Let G be a 3-edge-connected cubic graph. We may assume that G is not Hamiltonian; otherwise we are done. First we define a sequence of bad cells in G which will be reduced.

Let

$$
\mathcal{D}_{1}=\left\{D_{1}, D_{2}, \ldots, D_{p}\right\}
$$

be a maximal set of mutually disjoint 2-cells in G such that D_{i+1} is bad in G_{i} for each $0 \leq i \leq p-1$, where $G_{0}=G$ and $G_{i}=G_{i-1} \mid D_{i}$ for $1 \leq i \leq p$. If there is no bad 2-cell in G, then we define $\mathcal{D}_{1}=\emptyset$ and $p=0$. We denote the subgraph in G_{i} corresponding to D_{i} by D_{i}^{\prime}. See Figure 7. Notice that $G-\bigcup_{l \leq i} D_{l}=G_{i}-\bigcup_{l \leq i} D_{l}^{\prime}$ and, by Fact 2.2, each G_{i} is 3-edge-connected for every $0 \leq i \leq p$. By the maximality of \mathcal{D}_{1}, obviously the following claim holds.

Claim 3.1. There is no 2-cell in $G-\bigcup_{l \leq p} D_{l}=G_{p}-\bigcup_{l \leq p} D_{l}^{\prime}$ which is bad in G_{p}.
Let

$$
\mathcal{D}_{2}=\left\{D_{p+1}, D_{p+2}, \ldots, D_{p+q}\right\}
$$

FIG. 7.
be a maximal set of mutually disjoint 1-cells in $G-\bigcup_{1 \leq l \leq p} D_{l}$ such that D_{i+1} is bad in G_{i} for each $p \leq i \leq p+q-1$, where $G_{i}=G_{i-1} \mid D_{i}$ for $p+1 \leq i \leq p+q$. If there is no bad 1-cell in $G-\bigcup_{1 \leq l \leq p} D_{l}$, then we define $\mathcal{D}_{2}=\emptyset$ and $q=0$. The subgraph in G_{i} corresponding to D_{i} is denoted by D_{i}^{\prime}. In this case also, $G-\bigcup_{l \leq i} D_{l}=G_{i}-\bigcup_{l \leq i} D_{l}^{\prime}$ and, by Fact 2.2, each G_{i} is 3-edge-connected for any $0 \leq i \leq p+q$.

CLAIM 3.2. There is no 1-cell in $G-\bigcup_{l \leq p+q} D_{l}=G_{p+q}-\bigcup_{l \leq p+q} D_{l}^{\prime}$ which is bad in G_{p+q} and there is no 2-cell C in $G_{p+j}-\bigcup_{i \leq p+j} D_{i}^{\prime}$ which is bad in G_{p+j} for any $0 \leq j \leq q$.

Proof. By the maximality of \mathcal{D}_{2}, we have the first statement. If there is $1 \leq j \leq q$ such that $G_{p+j}-\bigcup_{i \leq p+j} D_{i}^{\prime}$ contains a 2-cell C which is bad in G_{p+j}, then obviously C is bad in G_{p+j-1} also, and so C is bad in G_{p}. This contradicts Claim 3.1.

Let \mathcal{D}_{0} be a maximal set of mutually disjoint bad 5-cycles in $G-\bigcup_{i \leq p+q} D_{i}$. For $\mathcal{D}_{1} \cup \mathcal{D}_{2} \cup \mathcal{D}_{0}$, we define a vertex subset R^{*} of G, whose vertices may not be contained in a dominating even subgraph of G which is constructed later.

First, for each cell D_{i} in $\mathcal{D}_{1} \cup \mathcal{D}_{2} \cup \mathcal{D}_{0}$, we define pairs of vertices in D_{i}.

1. Let D_{i} be a 2 -cell in \mathcal{D}_{1} and $u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{1}$ be the 6 -cycle in D_{i}. See Figure $3(\mathrm{a})$. The pairs of D_{i} are $\left\{u_{1}, u_{3}\right\}$ and $\left\{u_{4}, u_{6}\right\}$.
2. Let D_{i} be a 1 -cell in \mathcal{D}_{2} and $u_{1} u_{2} \cdots u_{8} u_{1}$ be the 8 -cycle in D_{i}. See Figure 3(b). We define the pair of D_{i} by $\left\{u_{8}, u_{4}\right\}$.
3. For a 5 -cycle $D_{i}=u_{1} u_{2} \cdots u_{5} u_{1}$ in \mathcal{D}_{0}, the pair is defined by arbitrary two adjacent vertices in D_{i}, e.g., $\left\{u_{1}, u_{2}\right\}$. See Figure 3(c).
Let \mathcal{P}_{0} be the set of all the pairs for all $D_{l} \in \mathcal{D}_{1} \cup \mathcal{D}_{2} \cup \mathcal{D}_{0}$. For each pair $\left\{u_{i}, u_{j}\right\} \in \mathcal{P}_{0}$, let $E_{u_{i}, u_{j}}=\partial\left(\left\{u_{i}, u_{j}\right\}\right) \cap \partial D_{l}$, where $\left\{u_{i}, u_{j}\right\} \subset D_{l} \in \mathcal{D}_{1} \cup \mathcal{D}_{2} \cup \mathcal{D}_{0}$. Obviously $0 \leq\left|E_{u_{i}, u_{j}}\right| \leq 2$. Let

$$
\mathcal{P}=\left\{\left\{u_{i}, u_{j}\right\} \in \mathcal{P}_{0}:\left|E_{u_{i}, u_{j}}\right|=2\right\} \text { and } \mathcal{Q}=\bigcup_{\left\{u_{i}, u_{j}\right\} \in \mathcal{P}} E_{u_{i}, u_{j}}
$$

We define a bipartite graph H on the partite sets \mathcal{P} and \mathcal{Q} by defining the adjacency relation so that $\left\{u_{i}, u_{j}\right\} \in \mathcal{P}$ and $e \in \mathcal{Q}$ are adjacent if and only if $e \in E_{u_{i}, u_{j}}$. Since each element in \mathcal{Q} is adjacent to at most two pairs in \mathcal{P}, for any $\mathcal{S} \subset \mathcal{P}$,

$$
2|\mathcal{S}|=\left|E_{H}(\mathcal{S}, N(\mathcal{S}))\right| \leq\left|E_{H}(N(\mathcal{S}), \mathcal{P})\right| \leq 2|N(\mathcal{S})|
$$

Thus by Hall's theorem, there is a matching M in H covering \mathcal{P}. Let $\varphi: \mathcal{P} \rightarrow \mathcal{Q}$ be the injection defined by M, i.e., for each $\left\{u_{i}, u_{j}\right\} \in \mathcal{P}$, the pair is adjacent to $\varphi\left(\left\{u_{i}, u_{j}\right\}\right) \in \mathcal{Q}$ by M. Let

$$
R^{*}=\left\{u_{k}: u_{k} \in\left\{u_{i}, u_{j}\right\} \text { is the end of the edge } \varphi\left(\left\{u_{i}, u_{j}\right\}\right) \text { for some }\left\{u_{i}, u_{j}\right\} \in \mathcal{P}\right\}
$$

Notice that there are no edges connecting two vertices in R^{*}, except for those connecting u_{1} and u_{6} or connecting u_{3} and u_{4} for some 2 -cell in \mathcal{D}_{1}.

Let

$$
\mathcal{D}_{3}=\left\{D_{p+q+1}, D_{p+q+2}, \ldots, D_{p+q+r}\right\} \subset \mathcal{D}_{0}
$$

be a maximal subset of \mathcal{D}_{0} such that for $p+q \leq i \leq p+q+r-1$,

1. D_{i+1} is bad in G_{i}, where $u_{i} \in R^{*} \cap D_{i}$, and $G_{i}=\left.G_{i-1}\right|_{u_{i}} D_{i}$, and
2. D_{i+1} intersects neither the 3 -cycle nor the 4 -cycle in G_{i}.

If there is no such 5-cycle, then we define $\mathcal{D}_{3}=\emptyset$ and $r=0$. We denote by D_{i}^{\prime} the subgraph in G_{i} corresponding to $D_{i} \in \mathcal{D}_{3}$. Notice that each D_{i} has no chord since D_{i} is bad in G_{i-1} and each G_{i} is 3-edge-connected for any $p+q \leq i \leq p+q+r$ by Fact 2.2.

Claim 3.3. If there exist $0 \leq j \leq r-1$ and $i \in\{2,1,0\}$ such that $G_{p+q+j}-$ $\bigcup_{l \leq p+q+j} D_{l}^{\prime}-D_{p+q+j+1}$ contains an i-cell C which is good in G_{p+q+j}, then C is good in $G_{p+q+j+1}$ also.

Proof. Since C is good in G_{p+q+j}, there exist an essential 3-cut T of G_{p+q+j} and a 5-cycle C_{1} in C such that $\left|T \cap \partial C_{1}\right| \geq 2$. Let H_{1} and H_{2} be the two components in $G_{p+q+j}-T$. Since $C \subset G_{p+q+j}-\bigcup_{i \leq p+q+j} D_{i}^{\prime}-D_{p+q+j+1}$, the 5 -cycle $D_{p+q+j+1}$ is contained in $H_{1}-C$ or $H_{2}-C$, and so both T and C exist in $G_{p+q+r+1}$ also. Thus C is good in $G_{p+q+r+1}$.

Claim 3.4.

1. If $G_{p+q+j}-\bigcup_{i \leq p+q+j} D_{i}^{\prime}$ has a bad 5-cycle, then the 5-cycle is bad in G_{p+q} also.
2. There is neither a 2- nor a 1-cell C in $G_{p+q+j}-\bigcup_{i \leq p+q+j} D_{i}^{\prime}$ which is bad in G_{p+q+j} for any $0 \leq j \leq r$.
Proof. Claim 3.3 implies the first statement immediately. By Claim 3.3, if there is $0 \leq j \leq r$ such that $G_{p+q+j}-\bigcup_{i \leq p+q+j} D_{i}^{\prime}$ contains a 2 - or 1-cell C which is bad in G_{p+q+j}, then C is bad in $G_{p+q+j-1}$, and so C is bad in G_{p+q}. This contradicts Claim 3.2.

Let

$$
S_{0}=\emptyset \text { and } S_{i}=\bigcup_{1 \leq l \leq i} D_{l}^{\prime}
$$

for $1 \leq i \leq p+q+r$. We call a vertex in S_{i} a yellow vertex.
We extend R^{*}. Let $D_{i} \in \mathcal{D}_{1}$ and $u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{1}$ be the 6 -cycle. See Figure $3(\mathrm{a})$. We define $R\left(D_{i}\right)=\left\{u_{2}, u_{5}\right\}$. Let $D_{i} \in \mathcal{D}_{2}$ and $u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{7} u_{8} u_{1}$ be the 8 -cycle. See Figure 3(b). We define $R\left(D_{i}\right)=\left\{u_{2}, u_{6}\right\}$. Let

$$
R_{0}=R^{*} \cup \bigcup_{1 \leq l \leq p+q} R\left(D_{l}\right)(\subset V(G))
$$

and

$$
R_{i}=R_{0}-\bigcup_{1 \leq l \leq i} V\left(D_{l}\right)\left(\subset V\left(G_{i}\right)\right)
$$

for $1 \leq i \leq p+q+r$. We call a vertex in R_{i} a red vertex. By the definition of S_{i} and R_{i}, there is no vertex in G_{i} which is both red and yellow. Notice that

$$
R_{i}= \begin{cases}R_{i+1} \cup\left(R^{*} \cap D_{i+1}\right) \cup R\left(D_{i+1}\right) & \text { for } 0 \leq i \leq p+q-1 \tag{1}\\ R_{i+1} \cup\left(R^{*} \cap D_{i+1}\right) & \text { for } p+q \leq i \leq p+q+r-1\end{cases}
$$

For Theorem 1.1, it is enough to show that for all $0 \leq i \leq p+q+r, G_{i}$ has an even subgraph F_{i} such that the following hold:

1. F_{i} intersects all essential 3 -cuts in G_{i}.
2. Every component of F_{i} contains at least five vertices. Especially if a 5 -cycle C is a component of F_{i}, then C contains a yellow vertex, i.e., $C \cap S_{i} \neq \emptyset$.
3. Every vertex in $G_{i}-F_{i}$ is red, i.e., $G_{i}-F_{i} \subset R_{i}$, and $\left|D_{l}-F_{i}\right| \leq 1$ for $i+1 \leq l \leq p+q+r$.
Indeed by the second condition, any component in F_{0} contains at least six vertices as $S_{0}=\emptyset$. Although $\left(R^{*} \cap V\left(D_{i}\right)\right) \cup R\left(D_{i}\right) \subset R_{0}(1 \leq i \leq p)$ and $R\left(D_{i}\right) \subset R_{0}$ $(p+1 \leq i \leq p+q)$ may not be independent, since $\left|D_{l}-F_{0}\right| \leq 1$ for all $1 \leq l \leq p+q+r$,
we have $G_{0}-F_{0}\left(\subset R_{0}\right)$ is independent, i.e., F_{0} is dominating $G=G_{0}$. Therefore F_{0} is a desired even subgraph.

We construct F_{i} inductively. First we show the existence of F_{p+q+r}. Notice that G_{i} is 3-edge-connected for every $0 \leq i \leq p+q+r$ by Fact 2.2 as we reduced bad cells.

Claim 3.5. There is a 2 -factor F_{p+q+r} in G_{p+q+r} such that

1. F_{p+q+r} intersects all 3 -cuts and 4-cuts in G_{p+q+r} and
2. each 5-cycle C in F_{p+q+r} contains a yellow vertex, i.e., $C \cap S_{p+q+r} \neq \emptyset$.

Proof. Since G_{p+q+r} is a 3 -edge-connected cubic graph, by Corollary C, G_{p+q+r} has a 2 -factor F_{p+q+r} which intersects all 3 -cuts and 4 -cuts. We choose F_{p+q+r} such that the number of components is as small as possible.

Suppose F_{p+q+r} contains a 5 -cycle C without a yellow vertex. If C is good in G_{p+q+r}, then there is an essential 3 -cut T such that $|T \cap \partial C| \geq 2$, and F_{p+q+r} does not intersect the 3 -cut T, a contradiction. Therefore C is bad in G_{p+q+r}. Since C has no yellow vertex, $C \subset G_{p+q+r}-S_{p+q+r}$, and so the 5 -cycle C exists in G_{p+q} and, by Claim 3.4, C is bad in G_{p+q} also.

Suppose $C \notin \mathcal{D}_{0}$. By the maximality of \mathcal{D}_{0}, there is a bad 5 -cycle $D \in \mathcal{D}_{0}$ intersecting C. If $|E(C \cap D)| \leq 2$, then $C \cup D$ is a 2 - or 1-cell in G_{p+q}. Since both C and D are bad in $G_{p+q}, C \cup D$ is bad in G_{p+q}. This contradicts Claim 3.2.

If $|E(C \cap D)|=3$, then D is a 5 -cycle in G_{p+q+r} also. However, F_{p+q+r} does not contain the vertex in $D-C$ as C is a component of F_{p+q+r}. This is a contradiction.

Therefore $C \in \mathcal{D}_{0}$. Since C is bad in G_{p+q+r} and $C \notin \mathcal{D}_{3}, C$ intersects a 3- or a 4-cycle C_{1} in G_{p+q+r}. Since C is bad, C has no chord, and so $C_{1}-C \neq \emptyset$. If $C_{1}-C$ is a vertex w, then w is not contained in F_{p+q+r} as C is a component of the 2 -factor F_{p+q+r}. This is a contradiction.

If $C_{1}-C$ contains an edge $w w^{\prime}$, then there is a component C_{2} in F_{p+q+r} containing the edge $w w^{\prime}$. Since the symmetric difference $\widetilde{C}=C \triangle C_{1} \triangle C_{2}$ is a cycle, the subgraph $\left(F_{p+q+r}-C \cup C_{2}\right) \cup \widetilde{C}$ is a 2-factor of G_{p+q+r} in which the number of components is less than F_{p+q+r}. This contradicts the choice of F_{p+q+r}. Thus C contains a yellow vertex.

Suppose G_{i+1} has a desired even subgraph F_{i+1} for $1 \leq i+1 \leq p+q+r$. Since G_{i+1} has no vertex which is both yellow and red and F_{i+1} contains every vertex which is not red in G_{i+1}, we have $\bigcup_{l \leq i+1} D_{l}^{\prime} \subset F_{i+1}$.

Claim 3.6. If F_{i} is an even subgraph of G_{i} obtained from F_{i+1} by replacing edges in D_{i+1}^{\prime} with edges in D_{i+1}, i.e.,

$$
E\left(F_{i+1}\right)-E\left(D_{i+1}^{\prime}\right)=E\left(F_{i}\right)-E\left(D_{i+1}\right)
$$

then the following holds:

1. F_{i} intersects all essential 3-cuts in G_{i}.
2. Every component C of F_{i} intersecting no edge of D_{i+1} contains at least five vertices. Especially if C is a 5-cycle, then C contains a yellow vertex, i.e., $C \cap S_{i} \neq \emptyset$.
3. Every vertex in $G_{i}-F_{i}-D_{i+1}$ is red, i.e., $G_{i}-F_{i}-D_{i+1} \subset R_{i}$, and $\left|D_{j}-F_{i}\right| \leq$ 1 for $j \geq i+2$.

Proof.

1. Let T be any essential 3-cut of G_{i}. Since D_{i+1} is bad in $G_{i}, T \cap E\left(D_{i+1}\right)=\emptyset$ by Lemma 2.3. This implies T is an essential 3-cut of G_{i+1} and $T \cap E\left(D_{i+1}^{\prime}\right)=\emptyset$. Thus $F_{i+1}-E\left(D_{i+1}^{\prime}\right)=F_{i}-E\left(D_{i+1}\right)$ intersects T.
2. Obviously C is a component of F_{i+1} also. Thus $|C| \geq 5$ and C contains a yellow vertex in $S_{i+1}-V\left(D_{i+1}^{\prime}\right)=S_{i}$ if $|C|=5$.
3. Since $G_{i}-D_{i+1}=G_{i+1}-D_{i+1}^{\prime}$, we have $G_{i}-D_{i+1}-F_{i}=G_{i+1}-D_{i+1}^{\prime}-F_{i+1} \subset$ $R_{i+1} \subset R_{i}$ by (1). For $j \geq i+2$,

$$
D_{j}-F_{i}=D_{j}-F_{i+1}
$$

and so we have $\left|D_{j}-F_{i}\right|=\left|D_{j}-F_{i+1}\right| \leq 1$.
In the remaining part of this paper, we will construct a desired even subgraph F_{i} of G_{i} from F_{i+1} by replacing edges in D_{i+1}^{\prime} with edges in D_{i+1}. From the above claim, it is enough to show that F_{i} satisfies the following:

A1. Every component C containing an edge of D_{i+1} in F_{i} contains at least five vertices. Especially if C is a 5 -cycle, then C contains a yellow vertex, i.e., $C \cap S_{i} \neq \emptyset$.
A2. A vertex in $D_{i+1}-F_{i}$ is red, i.e., $D_{i+1}-F_{i} \subset R_{i}$, and $\left|D_{i+1}-F_{i}\right| \leq 1$.
We divide our argument into the following three cases:

1. $0 \leq i \leq p-1$.
2. $p+q \leq i \leq p+q+r-1$.
3. $p \leq i \leq p+q-1$.

The first case is easier than the other cases. If there is a vertex in $G_{i}-D_{i+1}$ which is adjacent to $u \in D_{i+1}$, then we denote the vertex by u^{\prime}.

1. $0 \leq i \leq p-1$, i.e., $D_{i+1} \in \mathcal{D}_{1}$.

Since $V\left(D_{i+1}^{\prime}\right) \subset F_{i+1}$ and F_{i+1} is an even subgraph, $\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|$ is 2 or 4. If the subgraph induced by $V\left(D_{i+1}\right)$ contains an edge that is not in $E\left(D_{i+1}\right)$, then $\left|\partial D_{i+1}\right|=3$. This implies D_{i+1} contains a good 5-cycle, i.e., D_{i+1} is good in G_{i}. This contradicts our assumption. Therefore, both $\left\{u_{1}, u_{3}\right\}$ and $\left\{u_{4}, u_{6}\right\}$ contain a red vertex.

Case 1. $\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|=4$.
Since $D_{i+1}^{\prime} \subset F_{i+1}$, by symmetry, we may suppose

$$
F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{1} u_{6}^{\prime}, u_{1} u_{1}^{\prime}, u_{2} w^{\prime}, u_{3} u_{3}^{\prime}\right\}
$$

and then F_{i+1} contains the edge $u_{2} u_{3}$. See Figure 8. Let F_{i} be the even subgraph obtained from F_{i+1} by replacing

$$
u_{1}^{\prime} u_{1} u_{6}^{\prime} \text { and } w^{\prime} u_{2} u_{3} u_{3}^{\prime} \text { by } u_{1}^{\prime} u_{1} u_{6} u_{6}^{\prime} \text { and } w^{\prime} w u_{5} u_{4} u_{3} u_{3}^{\prime}
$$

Since every component C containing an edge of D_{i+1} in F_{i} contains at least six vertices, A1 holds. Since $u_{2} \in R\left(D_{i+1}\right) \subset R_{i}$, A2 holds.

Case 2. $\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|=2$.

Fig. 8.

Fig. 9.

Since $D_{i+1}^{\prime} \subset F_{i+1}, F_{i+1} \cap \partial D_{i+1}^{\prime}$ does not contain the edge $u_{2} w^{\prime}$. Thus by symmetry, we may suppose

$$
F_{i+1} \cap \partial D_{i+1}^{\prime} \text { is }\left\{u_{1} u_{6}^{\prime}, u_{3} u_{3}^{\prime}\right\} \text { or }\left\{u_{1} u_{6}^{\prime}, u_{3} u_{4}^{\prime}\right\} .
$$

See Figure 9. If the intersection is $\left\{u_{1} u_{6}^{\prime}, u_{3} u_{3}^{\prime}\right\}$, then the even subgraph F_{i} obtained from F_{i+1} by replacing

$$
u_{1} u_{2} u_{3} \text { by } u_{6} u_{1} u_{2} w u_{5} u_{4} u_{3}
$$

is a desired even subgraph because both A 1 and A 2 hold as $V\left(D_{i+1}\right) \subset F_{i}$.
Suppose $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{1} u_{6}^{\prime}, u_{3} u_{4}^{\prime}\right\}$. For the pair $\left\{u_{1}, u_{3}\right\}$, if u_{3} is red, i.e., $u_{3} \in R_{i}$, then the even subgraph F_{i} obtained from F_{i+1} by replacing

$$
u_{6}^{\prime} u_{1} u_{2} u_{3} u_{3}^{\prime} \text { by } u_{6}^{\prime} u_{6} u_{1} u_{2} w u_{5} u_{4} u_{4}^{\prime}
$$

is a desired even subgraph because both A1 and A2 hold. Similarly if $u_{1} \in R_{i}$, then the even subgraph F_{i} obtained from F_{i+1} by replacing

$$
u_{6}^{\prime} u_{1} u_{2} u_{3} u_{4}^{\prime} \text { by } u_{6}^{\prime} u_{6} u_{5} w u_{2} u_{3} u_{4} u_{4}^{\prime}
$$

is a desired even subgraph.
2. $p+q \leq i \leq p+q+r-1$, i.e., $D_{i+1} \in \mathcal{D}_{3}$.

In this case, $D_{i+1}=u_{1} u_{2} \cdots u_{5} u_{1}$ is a 5 -cycle. By symmetry, we may suppose u_{2} is red, i.e., $u_{2} \in R_{i}$. Since $V\left(D_{i+1}^{\prime}\right) \subset F_{i+1},\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|$ is 2 or 4 .

Case 1. $\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|=2$.
Notice that $F_{i+1} \cap \partial D_{i+1}^{\prime}$ does not contain $u_{2} u_{2}^{\prime}$ because $V\left(D_{i+1}^{\prime}\right) \subset F_{i+1}$. Hence by symmetry, we have the following three cases:

$$
F_{i+1} \cap \partial D_{i+1}^{\prime} \text { is }\left\{u_{1} u_{4}^{\prime}, u_{3} u_{5}^{\prime}\right\},\left\{u_{1} u_{4}^{\prime}, u_{3} u_{3}^{\prime}\right\} \text { or }\left\{u_{1} u_{1}^{\prime}, u_{3} u_{3}^{\prime}\right\} .
$$

(i) Suppose $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{1} u_{4}^{\prime}, u_{3} u_{5}^{\prime}\right\}$. See Figure 10(a). As $V\left(D_{i+1}^{\prime}\right) \subset F_{i+1}$, F_{i+1} contains the path $u_{4}^{\prime} u_{1} u_{2} u_{3} u_{5}^{\prime}$. Let F_{i} be the even subgraph in G_{i} which is obtained from F_{i+1} by replacing

$$
u_{4}^{\prime} u_{1} u_{2} u_{3} u_{5}^{\prime} \text { by } u_{4}^{\prime} u_{4} u_{3} u_{2} u_{1} u_{5} u_{5}^{\prime}
$$

Obviously A1 holds. Since $V\left(D_{i+1}\right) \subset F_{i}$, A2 holds.
(ii) Suppose $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{1} u_{4}^{\prime}, u_{3} u_{3}^{\prime}\right\}$. See Figure $10(\mathrm{~b})$. Then F_{i+1} contains the path $u_{4}^{\prime} u_{1} u_{2} u_{3} u_{3}^{\prime}$ as $V\left(D_{i+1}^{\prime}\right) \subset F_{i+1}$. Let F_{i} be the even subgraph in G_{i} which is obtained from F_{i+1} by replacing

$$
u_{4}^{\prime} u_{1} u_{2} u_{3} u_{3}^{\prime} \text { by } u_{4}^{\prime} u_{4} u_{5} u_{1} u_{2} u_{3} u_{3}^{\prime}
$$

Obviously both A1 and A2 hold.
(iii) Suppose $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{1} u_{1}^{\prime}, u_{3} u_{3}^{\prime}\right\}$. See Figure 10(c). Let F_{i} be the even subgraph in G_{i} which is obtained from F_{i+1} by replacing

Fig. 10
(a)

(b)

(c)

Fig. 11.

$$
u_{1}^{\prime} u_{1} u_{2} u_{3} u_{3}^{\prime} \text { by } u_{1}^{\prime} u_{1} u_{5} u_{4} u_{3} u_{3}^{\prime}
$$

Since the component in F_{i} containing an edge in D_{i+1} contains at least six vertices, A1 holds. As $D_{i+1}-F_{i}=\left\{u_{2}\right\} \subset R_{i}$, A2 holds.
Case 2. $\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|=4$.
As $V\left(D_{i+1}^{\prime}\right) \subset F_{i+1}, F_{i+1} \cap \partial D_{i+1}^{\prime}$ is not $\left\{u_{1} u_{4}^{\prime}, u_{1} u_{1}^{\prime}, u_{3} u_{3}^{\prime}, u_{3} u_{5}^{\prime}\right\}$. Thus by symmetry, we have two cases.
(i) Suppose

$$
F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{1} u_{4}^{\prime}, u_{1} u_{1}^{\prime}, u_{2} u_{2}^{\prime}, u_{3} u_{3}^{\prime}\right\}
$$

and then $u_{2} u_{3} \in F_{i+1}$. See Figure 11(a). Let F_{i} be the even subgraph in G_{i} which is obtained from F_{i+1} by replacing

$$
u_{4}^{\prime} u_{1} u_{1}^{\prime} \text { by } u_{4}^{\prime} u_{4} u_{5} u_{1} u_{1}^{\prime}
$$

Since $V\left(D_{i+1}\right) \subset F_{i}$, A2 holds.
The component continuing $u_{4}^{\prime} u_{4} u_{5} u_{1} u_{1}^{\prime}$ of F_{i} contains at least six vertices. Suppose $C=u_{2} u_{3} u_{3}^{\prime} w u_{2}^{\prime} u_{2}$ is a 5 -cycle and $C \cap S_{i}=\emptyset$. See Figure 11(b). Then $\widetilde{C}=C \cup D_{i+1}$ is a 1-cell in $G_{i}-\bigcup_{j \leq i} D_{j}^{\prime}$. Since $D_{i+1} \in \mathcal{D}_{3}, D_{i+1}$ is bad in G_{i}. Suppose that C is good and let \bar{T} be an essential 3-cut such that

Fig. 12.
$|T \cap \partial C| \geq 2$. Since D_{i+1} is bad, $T \cap \partial C \subset \partial C-\left\{u_{2} u_{1}, u_{3} u_{4}\right\}$ by Lemma 2.3. Since T is an essential 3-cut of G_{i+1} also and F_{i+1} contains C as a component, F_{i+1} does not intersect $\underset{\sim}{T}$, a contradiction. See Figure 11(c). Thus both D_{i+1} and C are bad, and so \widetilde{C} is a bad 1-cell in G_{i}. This contradicts Claim 3.4.
(ii) Suppose

$$
F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{1} u_{4}^{\prime}, u_{1} u_{1}^{\prime}, u_{2} u_{2}^{\prime}, u_{3} u_{5}^{\prime}\right\}
$$

and then $u_{2} u_{3} \in F_{i+1}$. See Figure 12(a).
Let F_{i} be the even subgraph in G_{i} which is obtained from F_{i+1} by replacing

$$
u_{4}^{\prime} u_{1} u_{1}^{\prime} \text { and } u_{2}^{\prime} u_{2} u_{3} u_{5}^{\prime} \text { by } u_{4}^{\prime} u_{4} u_{3} u_{2} u_{2}^{\prime} \text { and } u_{1}^{\prime} u_{1} u_{5} u_{5}^{\prime}
$$

Since $V\left(D_{i+1}\right) \subset F_{i}$, A2 holds.
Let C_{1} and C_{2} be the components in F_{i} containing $u_{1} u_{5}$ and $u_{2} u_{3} u_{4}$, respectively. Suppose C_{1} or C_{2} contains at most five vertices, and then $C_{1} \neq C_{2}$. Since D_{i+1} intersects neither the 3 -cycle nor the 4 -cycle, C_{1} or C_{2} is a 5 -cycle.

Suppose $C_{1}=u_{1} u_{5} u_{5}^{\prime} w u_{1}^{\prime} u_{1}$ is a 5 -cycle and $C_{1} \cap S_{i}=\emptyset$. See Figure 12(b). Then $\widetilde{C_{1}}=C_{1} \cup D_{i+1}$ is a 1-cell in G_{i}. By Claim 3.4, $\widetilde{C_{1}}$ is good. Since D_{i+1} is bad, C_{1} is good, and so there is an essential 3-cut T in G_{i} such that $\left|T \cap \partial C_{1}\right| \geq 2$, and by Lemma 2.3 $T \cap \partial C_{1} \subset \partial C_{1}-\left\{u_{1} u_{2}, u_{5} u_{4}\right\}$. Thus T is an essential 3-cut of G_{i+1}. Since F_{i+1} contains the path $u_{1} u_{1}^{\prime} w u_{5}^{\prime} u_{3}, F_{i+1}$ does not intersect T, a contradiction. See Figure 12(c).

Suppose $C_{2}=u_{2} u_{3} u_{4} u_{4}^{\prime} u_{2}^{\prime} u_{2}$ is a 5 -cycle and $C_{2} \cap S_{i}=\emptyset$. See Figure $12(\mathrm{~d})$. Then $\widetilde{C_{2}}=C_{2} \cup D_{i+1}$ is a 2-cell in G_{i}. By Claim 3.4, $\widetilde{C_{2}}$ is good, and so, as in the above case, G_{i} has an essential 3-cut T such that $\left|T \cap \partial C_{2}\right| \geq 2$, and $T \cap \partial C_{2} \subset \partial C_{2}-\left\{u_{1} u_{2}, u_{4} u_{5}\right\}$. Hence T is an essential 3 -cut of G_{i+1}. Since F_{i+1} contains the path $u_{5}^{\prime} u_{3} u_{2} u_{2}^{\prime} u_{4}^{\prime} u_{1}$, F_{i+1} does not intersect T, a contradiction. See Figure 12(e).
3. $p \leq i \leq p+q-1$, i.e., $D_{i+1} \in \mathcal{D}_{2}$.

Since $V\left(D_{i+1}^{\prime}\right) \subset F_{i+1},\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|$ is $0,2,4$, or 6 .
Case 1. $\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|=0$.
In this case, the 6 -cycle $u_{1} u_{3} u_{4} u_{5} u_{7} u_{8}$ is contained in F_{i+1}, and replacing it with the 8 -cycle $u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{7} u_{8}$, we obtain the even subgraph F_{i} in G_{i}. Obviously, both A1 and A2 hold.

Case 2. $\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|=2$.

Fig. 13.

Fig. 14.

Since $V\left(D_{i+1}^{\prime}\right) \subset F_{i+1}$ and F_{i+1} is an even subgraph, by symmetry we have two cases. If $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{7} u_{7}^{\prime}, u_{8} u_{8}^{\prime}\right\}$, then F_{i+1} contains the path $u_{8} u_{1} u_{3} u_{4} u_{5} u_{7}$. See Figure 13(a). Then the even subgraph F_{i} obtained from F_{i+1} by replacing

$$
u_{8}^{\prime} u_{8} u_{1} u_{3} u_{4} u_{5} u_{7} u_{7}^{\prime} \text { by } u_{8}^{\prime} u_{8} u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{7} u_{7}^{\prime}
$$

is a desired even subgraph because both A1 and A2 hold. Similarly, we can show the case of $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{7} u_{7}^{\prime}, u_{5} u_{5}^{\prime}\right\}$ since $u_{6} \in R\left(D_{i+1}\right) \subset R_{i}$. See Figure $13(\mathrm{~b})$.

Case 3. $\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|=4$.
By symmetry, we have four cases:
(i) $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{7} u_{7}^{\prime}, u_{8} u_{8}^{\prime}, u_{1} u_{1}^{\prime}, u_{3} u_{3}^{\prime}\right\}$.

Since $V\left(D_{i+1}^{\prime}\right) \subset F_{i+1}, F_{i+1}$ contains the paths $u_{8} u_{1}$ and $u_{3} u_{4} u_{5} u_{7}$. See Figure 14(a). Let P_{1} and P_{2} be the two paths obtained from the cycles in F_{i+1} intersecting D_{i+1}^{\prime} by removing edges in $E\left(D_{i+1}^{\prime}\right)$ and isolated vertices. By symmetry, we may suppose $u_{3} \in P_{1}$. If $u_{7} \in P_{1}$ or $u_{8} \in P_{1}$, then the even subgraph F_{i} obtained from F_{i+1} by replacing

$$
u_{1}^{\prime} u_{1} u_{8} u_{8}^{\prime} \text { and } u_{3}^{\prime} u_{3} u_{4} u_{5} u_{7} u_{7}^{\prime} \text { by } u_{7}^{\prime} u_{7} u_{8} u_{8}^{\prime} \text { and } u_{3}^{\prime} u_{3} u_{4} u_{5} u_{6} u_{2} u_{1} u_{1}^{\prime}
$$

is a desired even subgraph because both A1 and A2 hold. See Figure 14(a). In the case of $u_{1} \in P_{1}$, let F_{i} be the even subgraph obtained from F_{i+1} by replacing

$$
u_{3}^{\prime} u_{3} u_{4} u_{5} u_{7} u_{7}^{\prime} \text { by } u_{3}^{\prime} u_{3} u_{4} u_{5} u_{6} u_{7} u_{7}^{\prime}
$$

Obviously A1 holds. Since $u_{2} \in R\left(D_{i+1}\right) \subset R_{i}$, A2 holds.

Fig. 15.
(ii) $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{7} u_{7}^{\prime}, u_{8} u_{8}^{\prime}, u_{3} u_{3}^{\prime}, u_{4} u_{4}^{\prime}\right\}$.

Then F_{i+1} contains the paths $u_{8} u_{1} u_{3}$ and $u_{4} u_{5} u_{7}$. See Figure 14(b). Then the even subgraph F_{i} obtained from F_{i+1} by replacing

$$
u_{8}^{\prime} u_{8} u_{1} u_{3} u_{3}^{\prime} \text { and } u_{4}^{\prime} u_{4} u_{5} u_{7} u_{7}^{\prime} \text { by } u_{8}^{\prime} u_{8} u_{1} u_{2} u_{3} u_{3}^{\prime} \text { and } u_{4}^{\prime} u_{4} u_{5} u_{6} u_{7} u_{7}^{\prime}
$$

is a desired even subgraph because both A1 and A2 hold.
(iii) Similarly we can show the case that $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{7} u_{7}^{\prime}, u_{8} u_{8}^{\prime}, u_{4} u_{4}^{\prime}, u_{5} u_{5}^{\prime}\right\}$. See Figure 14(c).
(iv) $F_{i+1} \cap \partial D_{i+1}^{\prime}=\left\{u_{7} u_{7}^{\prime}, u_{1} u_{1}^{\prime}, u_{3} u_{3}^{\prime}, u_{5} u_{5}^{\prime}\right\}$.

Suppose first that $u_{4} u_{8} \in E(G)$. Then, F_{i+1} contains either the paths $u_{7} u_{8} u_{1}$ and $u_{3} u_{4} u_{5}$, or the paths $u_{1} u_{8} u_{4} u_{3}$ and $u_{5} u_{7}$, or $u_{1} u_{3}$ and $u_{5} u_{4} u_{8} u_{7}$. See Figure 15 for the case of the paths $u_{7} u_{8} u_{1}$ and $u_{3} u_{4} u_{5}$. Let P_{1} and P_{2} be the two paths obtained from the cycles in F_{i+1} intersecting D_{i+1}^{\prime} by removing edges in $E\left(D_{i+1}^{\prime}\right)$ and isolated vertices. By symmetry, we may suppose $u_{3} \in$ P_{1}. If $u_{1} \in P_{1}$ or $u_{5} \in P_{1}$, then the even subgraph F_{i} obtained from F_{i+1} by replacing the paths inside D_{i+1}^{\prime}

$$
\text { by } u_{7} u_{8} u_{4} u_{3} \text { and } u_{1} u_{2} u_{6} u_{5}
$$

is a desired even subgraph because both A1 and A2 hold. See Figure 15(a).
In the case of $u_{7} \in P_{1}$, let F_{i} be the even subgraph obtained from F_{i+1} by replacing the paths inside D_{i+1}^{\prime}

$$
\text { by } u_{1} u_{8} u_{4} u_{3} \text { and } u_{7} u_{6} u_{5}
$$

See Figure 15 (b). Obviously A1 holds. Since $u_{2} \in R\left(D_{i+1}\right) \subset R_{i}$, A2 holds.
Therefore, we may assume that $u_{4} u_{8} \notin E(G)$. Since there are components in F_{i+1} containing $u_{7} u_{8} u_{1}$ and $u_{3} u_{4} u_{5}$, both u_{4}^{\prime} and u_{8}^{\prime} exist. Thus $\left|E_{u_{4}, u_{8}}\right|=2$, and so one of u_{4} and u_{8} is in R_{i}. By symmetry, we may suppose $u_{4} \in R_{i}$. Let F_{i} be the even subgraph obtained from F_{i+1} by replacing

$$
u_{3}^{\prime} u_{3} u_{4} u_{5} u_{5}^{\prime} \text { by } u_{3}^{\prime} u_{3} u_{2} u_{6} u_{5} u_{5}^{\prime}
$$

See Figure 14(d). Obviously A2 holds.
Suppose the component C_{1} of F_{i} containing $u_{7} u_{8} u_{1}$ is a 5 -cycle and $C_{1} \cap S_{i}=\emptyset$. Let $C_{1}=u_{1} u_{8} u_{7} u_{7}^{\prime} u_{1}^{\prime} u_{1}$ and $C_{2}=u_{1} u_{2} u_{6} u_{7} u_{8} u_{1}$. See Figure 16(a). Then $C=C_{1} \cup C_{2}$ is a 2 -cell in G_{i}. By Claim 3.2, C is good in G_{i}. Since D_{i+1} is bad, C_{2} is bad, and so C_{1} is good. Thus there is an essential 3-cut T such that $\left|T \cap \partial C_{1}\right| \geq 2$. Since C_{2} is bad, $T \cap \partial C_{1} \subset \partial C_{1}-\left\{u_{1} u_{2}, u_{7} u_{6}\right\}$. Hence T is an essential 3-cut of G_{i+1}. Since F_{i+1} contains C_{1} as a component, F_{i+1} does not intersect T, a contradiction. See Figure 16(b).

Case 4. $\left|F_{i+1} \cap \partial D_{i+1}^{\prime}\right|=6$.

Fig. 16.

Fig. 17.

In this case, F_{i+1} contains all the edges in $\partial D_{i+1}^{\prime}$. Let P_{1}, P_{2}, and P_{3} be the three paths obtained from the cycles in F_{i+1} intersecting D_{i+1}^{\prime} by removing edges in $E\left(D_{i+1}^{\prime}\right)$. By symmetry, we may suppose $u_{7} \in P_{1}$. It is easy to confirm that for all the following cases, both A1 and A2 hold.
(i) The ends of P_{1} are u_{7} and u_{8}.
(a) If the ends of P_{2} are u_{1} and u_{3}, then let F_{i} be the even subgraph obtained from F_{i+1} by replacing the cycles in F_{i+1} intersecting D_{i+1}^{\prime} with the cycle

$$
u_{7} P_{1} u_{8} u_{1} P_{2} u_{3} u_{4} P_{3} u_{5} u_{6} u_{7}
$$

See Figure 17(a).
(b) If the ends of P_{2} are u_{1} and u_{4}, then let F_{i} be the even subgraph obtained from F_{i+1} by replacing the cycles in F_{i+1} intersecting D_{i+1}^{\prime} with the cycle

$$
u_{7} P_{1} u_{8} u_{1} P_{2} u_{4} u_{3} P_{3} u_{5} u_{6} u_{7}
$$

See Figure 17(b).
(c) If the ends of P_{2} are u_{1} and u_{5}, then let F_{i} be the even subgraph obtained from F_{i+1} by replacing the cycles in F_{i+1} intersecting D_{i+1}^{\prime} with the cycle

$$
u_{7} P_{1} u_{8} u_{1} P_{2} u_{5} u_{4} P_{3} u_{3} u_{2} u_{6} u_{7}
$$

See Figure 17(c).

Notice that by symmetry, we finished showing all the cases where there is a path joining u_{i} and u_{i+1} for any i by the case (i).
(ii) The ends of P_{1} are u_{7} and u_{1}.

In this case, the ends of P_{2} are u_{8} and u_{4}; otherwise there is a path joining u_{i} and u_{i+1} for some i. Let F_{i} be the even subgraph obtained from F_{i+1} by replacing the cycles in F_{i+1} intersecting D_{i+1}^{\prime} with the cycle

$$
u_{7} P_{1} u_{1} u_{8} P_{2} u_{4} u_{5} P_{3} u_{3} u_{2} u_{6} u_{7}
$$

See Figure 17(d).
(iii) The ends of P_{1} are u_{7} and u_{3}.

If the ends of P_{2} are u_{8} and u_{4}, then let F_{i} be the even subgraph obtained from F_{i+1} by replacing the cycles in F_{i+1} intersecting D_{i+1}^{\prime} with the cycle

$$
u_{7} P_{1} u_{3} u_{2} u_{1} P_{3} u_{5} u_{4} P_{2} u_{8} u_{7}
$$

See Figure 17(e).
If the ends of P_{2} are u_{8} and u_{5}, then let F_{i} be the even subgraph obtained from F_{i+1} by replacing the cycles in F_{i+1} intersecting D_{i+1}^{\prime} with the cycle

$$
u_{7} P_{1} u_{3} u_{2} u_{1} P_{3} u_{4} u_{5} P_{2} u_{8} u_{7}
$$

See Figure 17(f).
(iv) The ends of P_{1} are u_{7} and u_{4}.

If the ends of P_{2} are u_{8} and u_{5}, then let F_{i} be the even subgraph obtained from F_{i+1} by replacing the cycles in F_{i+1} intersecting D_{i+1}^{\prime} with the cycle

$$
u_{7} P_{1} u_{4} u_{5} P_{2} u_{8} u_{1} P_{3} u_{3} u_{2} u_{6} u_{7}
$$

See Figure $17(\mathrm{~g})$. The case that the ends of P_{2} are u_{8} and u_{3} is the same as case (iii). See Figure 17(f).
(v) The ends of P_{1} are u_{7} and u_{5}.

If the ends of P_{2} are u_{8} and u_{4}, then let F_{i} be the even subgraph obtained from F_{i+1} by replacing the cycles in F_{i+1} intersecting D_{i+1}^{\prime} with the cycle

$$
u_{7} P_{1} u_{5} u_{4} P_{2} u_{8} u_{1} P_{3} u_{3} u_{2} u_{6} u_{7}
$$

See Figure $17(\mathrm{~h})$. The case that the ends of P_{2} are u_{8} and u_{3} is the same as case (iv). See Figure 17 (g).
Now we completed the proof.
4. Closing remarks. The traveling salesman problem (TSP) is used to find a spanning closed walk of short length in a given graph. The typical method for TSP on 3-edge-connected cubic graphs is as follows. First, we find a 2-factor F in a given 3-edge-connected cubic graph G and take a certain connected graph T (e.g., a spanning tree) in the graph G / F obtained from G by contracting all components in F, and then we obtain a connected subgraph $F \cup T$ of G. By modifying it suitably, we can get a spanning closed walk whose length is a certain function on $|E(T)|$. Since T must be a connected subgraph of $G / F,|E(T)|$ is at least the number of components of F minus one, and so the lower number of components in F gives the better bounds.

Aggarwal, Garg, and Gupta [1] used Theorem A to begin with a 2-factor having at most $n / 5$ components and showed the existence of a spanning closed walk of length
at most $4 n / 3$ in a 3 -edge-connected cubic graph of order n. This result was further improved to 2-edge connected or connected cubic graphs, graphs of maximum degree at most 3 , or better bounds than $4 n / 3$; see $[6,8,9]$.

Because of the above reasons, several researchers have been interested in a 2 -factor in cubic graphs such that the number of 5 -cycles is small; see [7]. Instead of using a 2 -factor, we can use an even subgraph satisfying certain conditions on the order of each component. In fact, such structures have appeared in $[8,9]$ as intermediate products, which is called an R-factor in [8]. For those intermediate products, it is not necessarily dominating, but the dominating property may help us to obtain good bounds, i.e., we expect that Theorem 1.1 has a potential application to the TSP.

Acknowledgments. The authors would like to thank the referees for valuable suggestions and comments.

REFERENCES

[1] N. Aggarwal, N. Garg, and S. Gupta, A 4/3-Approximation for TSP on Cubic 3-EdgeConnected Graphs, arXiv:1101.5586v1, 2011.
[2] B. R. Alspach and C. D. Godsil, eds., Cycles in Graphs, Ann. Discrete Math. 27, NorthHolland, Amsterdam, 1985.
[3] P. Ash and B. Jackson, Dominating cycles in bipartite graphs, in Progress in Graph Theory, A. Bondy and U. S. R. Murty, eds., Academic Press, New York, 1984, pp. 81-87.
[4] J. C. Bermond and C. Thomassen, Cycles in digraphs - a survey, J. Graph Theory, 5 (1981), pp. 1-43.
[5] J. A. Bondy and U. S. R. Murty, Graph Theory, Grad. Texts in Math. 244, Springer, New York, 2008.
[6] S. Boyd, R. Sitters, S. van der Ster, and L. Stougie, The traveling salesman problem on cubic and subcubic graphs, Math. Program., 144 (2014), pp. 227-245.
[7] B. Candráková and R. Lukot'ka, Avoiding 5-circuits in 2-factors of cubic graphs, SIAM J. Discrete Math., 29 (2015), pp. 1387-1405.
[8] B. Candrákoví and R. Lukot'ka, Cubic TSP—a 1.3-Approximation, arXiv:1506.06369v1, 2015.
[9] J. Correa, O. Larré, and A. Soto, TSP tours in cubic graphs: Beyond 4/3, SIAM J. Discrete Math., 29 (2015), pp. 915-939.
[10] H. Fleischner, Spanning Eulerian subgraphs, the splitting lemma, and Petersen's theorem, Discrete Math., 101 (1992), pp. 33-37.
[11] H. Fleischner and B. Jackson, A note concerning some conjectures on cyclically 4-edgeconnected 3-regular graphs, in Graph Theory in Memory of G. A. Dirac, L. D. Andersen, I. T. Jakobsen, C. Thomassen, B. Toft, P. D. Vestergaard, eds., Ann. Discrete Math. 41, North-Holland, Amsterdam, 1988, pp. 171-177.
[12] D. Gamarnik, M. Lewenstein, and M. Sviridenko, An improved upper bound for the TSP in cubic 3-edge-connected graphs, Oper. Res. Lett., 33 (2005), pp. 467-474.
[13] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line graphs, Discrete Math., 307 (2007), pp. 2775-2785.
[14] B. Jackson and K. Yoshimoto, Spanning even subgraphs of 3-edge-connected graphs, J. Graph Theory, 62 (2009), pp. 37-47.
[15] T. Kaiser and R. Škrekovski, Cycles intersecting edge-cuts of prescribed sizes, SIAM J. Discrete Math., 22 (2008), pp. 861-874.
[16] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}-$ free graphs, J. Graph Theory, 8 (1984), pp. 139-146.
[17] J. Petersen, Die Theorie der regulären Graphs, Acta Math., 15 (1891), pp. 193-220.
[18] Z. RyjáČek, On a closure concept in claw-free graphs, J. Combin. Theory. Ser. B, 70 (1997), pp. 217-224.
[19] C. Thomassen, Reflections on graph theory, J. Graph Theory, 10 (1986), pp. 309-324.

[^0]: *Received by the editors March 18, 2016; accepted for publication (in revised form) January 9, 2017; published electronically May 18, 2017.
 http://www.siam.org/journals/sidma/31-2/M106662.html
 Funding: The first author's research was partly supported by the project P202/12/G061 of the Czech Science Foundation and by the project LO1506 of the Czech Ministry of Education, Youth and Sports. The second author's work was supported by JSPS KAKENHI grants 26400187 and 26800083. The third author's work was in part supported by JSPS KAKENHI grant 25871053, by Grant for Basic Science Research Projects from the Sumitomo Foundation and by JST ERATO grant JPMJER1305, Japan. The fourth author's work was supported by JSPS KAKENHI grant 26400190.
 ${ }^{\dagger}$ Department of Mathematics, University of West Bohemia, Univerzitni 8, 30614 Pilsen, Czech Republic, Centre of Excellence IT, Institute for Theoretical Computer Science, Charles University, 11636 Prague 1, Czech Republic, and European Centre of Excellence NTIS, New Technologies for the Information Society, Technicka 8, 30100 Pilsen, Czech Republic (cadar@kma.zcu.cz).
 ${ }^{\ddagger}$ Kumamoto University, Kumamoto 860-8555, Japan (schiba@kumamoto-u.ac.jp).
 §Yokohama National University, Yokohama 240-8501, Japan (ozeki-kenta-xr@ynu.ac.jp).
 『 Nihon University, Tokyo 101-8308, Japan (yoshimoto@math.cst.nihon-u.ac.jp).

