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FRACTIONAL COVERS AND MATCHINGS IN FAMILIES

OF WEIGHTED d-INTERVALS

RON AHARONI, TOMÁŠ KAISER, AND SHIRA ZERBIB

Abstract. A d-interval is a union of at most d disjoint closed intervals
on a fixed line. Tardos [9] and the second author [6] used topological
tools to bound the transversal number τ of a family H of d-intervals in
terms of d and the matching number ν ofH . We investigate the weighted
and fractional versions of this problem and prove upper bounds that are
tight up to constant factors. We apply both the topological method and
an approach of Alon [1]. For the use of the latter, we prove a weighted
version of Turán’s theorem. We also provide a proof of the upper bound
of [6] that is more direct than the original proof.

1. Introduction

A d-interval is the union of at most d disjoint closed intervals on a fixed
line. The j-th component of a d-interval h, counted from the left to right,
will be denoted by hj .

We call a d-interval h separated if its intersection with each interval (i, i+
1), where 0 ≤ i < d, is either empty or coincides with one component of
h. For our purposes, we can equivalently picture a separated d-interval
as the union of d possibly empty intervals, one on each of d fixed parallel
lines (which is the definition used in [10]). We shall also consider discrete
d-intervals where the lines are replaced by finite linearly ordered sets. All
results and conjectures below are easily seen to be equivalent to their discrete
versions, and sometimes we shall switch to the discrete versions without
further argument. We shall assume that our hypergraphs are finite.

We will be interested in properties of hypergraphs whose vertex sets are
the points of the lines considered above, and whose edges are d-intervals.
We call them hypergraphs of d-intervals.

A matching in a hypergraph H = (V,E) with vertex set V and edge set
E is a set of disjoint edges. A cover is a subset of V meeting all edges.
The matching number ν(H) is the maximal size of a matching, and the
covering number, or transversal number τ(H) is the minimal size of a cover.
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Foundation.
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The fractional relaxations of ν and τ are denoted, as usual, by ν∗ and τ∗,
respectively. By Linear Programming duality, ν∗ = τ∗.

An old result of Gallai is that if H is a hypergraph of (1-)intervals, then
τ(H) = ν(H). In [4, 5] the authors raised the problem of the best bound
on the ratio τ

ν
in hypergraphs of 2-intervals, with the natural conjecture

being that the answer is 2. This was proved by Tardos [9], using algebraic
topology. A simpler proof was then found by the second author [6], who
also extended the theorem to hypergraphs consisting of d-intervals:

Theorem 1.1. For a hypergraph H of d-intervals,

τ(H)

ν(H)
≤ d2 − d+ 1.

In the separated case, the upper bound improves to d2 − d.

Matoušek [8] showed that this bound is not far from the truth: there
are examples of intersecting hypergraphs of d-intervals in which τ = τ

ν
=

Ω( d2

log d ). The proof of Theorem 1.1 in [6] relies on reducing the problem

to a discrete problem on d-uniform hypergraphs and the fact that in such
hypergraphs τ∗ ≤ dν.

Another approach was taken by Alon [1] who proved a slightly weaker
upper bound for the non-separated case, namely τ

ν
≤ 2d2. Like in [6], there

is a central role in this proof to fractional versions. Alon breaks his bound
into the following two results:

Theorem 1.2. τ∗ ≤ 2dν.

Theorem 1.3. τ ≤ dτ∗.

Theorem 1.3 follows by a relatively simple sampling argument. (As will
be shown below, it also follows from the arguments in [6].) The bound in
Theorem 1.2 is proved using Turán’s theorem.

As noted, both approaches use fractional parameters. This makes finding
the right relations between them and the integral parameters of interest. In
particular, the following conjecture is appealing:

Conjecture 1.4. In a hypergraph of separated d-intervals, τ∗ ≤ dν.

The conjecture is not true in the non-separated case, as shown by an
intersecting family of 2-intervals with τ∗ ≥ 11

4 constructed by Gyárfás [3,
p. 45]. An open question in [3] is whether τ∗ < 3 for intersecting families of
(non-separated) 2-intervals.

Besides the fractional parameters, we shall study also the weighted ver-
sions of the matching and covering numbers, as defined below. For a real
valued function f on a set T , we let f [T ] denote the sum

∑
t∈T f(t).

Definition 1.5. Given a hypergraph H, a weight system on E(H) is a
function w : E(H) → N. A function g : V (H) → N is called a w-cover if∑

v∈e g(v) ≥ w(e) for all e ∈ E(H). Let νw(H) be the maximum of w[F ]
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over all matchings F in H, and let τw(H) be the minimum of g[V ] over all
w-covers g.

It is likely that the bounds (conjectured as well as proved) that are true
in the non-weighted case are true also in the weighted case.

Conjecture 1.6. Let H be a hypergraph of separated d-intervals and w a
weight system on E(H). Then τ∗w(H) ≤ dνw(H).

In Section 3 we shall prove a weighted and directed version of Turán’s
theorem, and in Section 4 we shall use it to prove:

Theorem 1.7. If H is a hypergraph of d-intervals and w a weight system
on E(H), then τ∗w(H) ≤ 2dνw(H).

A straightforward generalization of the proof of Theorem 1.3 will yield:

Theorem 1.8. If H is a hypergraph of d-intervals and w a weight system
on E(H), then τw(H) ≤ dτ∗w(H).

Combining the two results, we have:

Corollary 1.9. If H is a hypergraph of d-intervals and w a weight system
on E(H), then τw(H) ≤ 2d2νw(H).

By Theorem 1.8, Conjecture 1.6, if true, would imply the separated case
of the following:

Conjecture 1.10. In a hypergraph of d-intervals τw ≤ d2νw.

This conjecture is true for intersecting hypergraphs, since by Theorem 1.1,
there exists a cover of size at most d2−d+1, and putting weight maxh∈H w(h) =
νw on each of its points constitutes a weighted cover.

In Section 5 we shall show that the case of the weight of each d-interval
being its length has a special stature, namely that in order to prove an upper
bound of αd2 on τw

νw
, it is enough to prove that in every hypergraph H of

d-intervals
τ∗ℓ
νℓ

≤ αd,

where ℓ(h) is the length of h ∈ H. The proof uses the KKMS (Knaster-
Kuratowski-Mazurkewitz-Shapley) theorem. In Section 6 we shall use the
same theorem, and a generalization of it due to Komiya, to provide a sim-
plified proof of Theorem 1.1. In Section 7 we shall use the KKMS theorem
to prove an upper bound of 4d on τ∗

ν
. This result is weaker than Theorem

1.2, but we think it is still worth presenting, since an improved topological
approach may well be the right tool for finding the right bound.

2. Examples for sharpness

If true, then Conjectures 1.4 and 1.6 are sharp for all d. In the next
example ν = 1 and τ∗ = d:
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Example 2.1. It is known that the edge set of K2d is decomposable into d
Hamiltonian paths P1, . . . , Pd (see [12]). Let V (K2d) = [2d]. Each path Pj

can be viewed as a permutation πj on [2d]. Let H = {e1, . . . , e2d}, where ei
is the separated interval whose j-th component is eji = [π−1

j (i), π−1
j (i) + 1].

For every k, ℓ ∈ [2d] the edge (k, ℓ) of K2d belongs to some path Pj , namely
k = πj(i), ℓ = πj(i + 1) or ℓ = πj(i), k = πj(i + 1) for some i. This
implies that ek and eℓ meet in the j-th line. Thus ν(H) = 1. Putting
weight 1

2 on each ei yields a fractional matching of size d. The set of points
{2k | 1 ≤ k ≤ d} on the first line constitutes a cover of H of size d. This
proves that τ(H) = τ∗(H) = d.

The bound given in Theorem 1.3 is also sharp, at least asymptotically,
even for separated d-intervals. This is shown by the following example. Let
n be an integer, let [0, 1]∪d denote the union of d disjoint copies of the unit
interval, and takeH to be the set of d-intervals e ⊆ [0, 1]∪d satisfying |e| > 1

n
,

where |f | denotes the total length of a d-interval f , namely the sum of the
lengths of its components.

Assertion 2.2. τ(H) ≥ nd2 − d.

Proof. Let C be a cover for H. Let Ci be obtained from the intersection of
C with the i-th line by the addition of 0 and 1, and let ℓi be the longest
distance between two consecutive points of Ci. Then, clearly,

∑
i≤d ℓi ≤

1
n
,

and the intersection of C with the i-th line contains at least 1
ℓi
−1 points from

C. The latter means that |C| ≥
∑

i≤d
1
ℓi
− d. By the harmonic-arithmetic

average inequality,
∑

i≤d
1
ℓi

≥ d2∑
i≤d

ℓi
≥ nd2, and hence |C| ≥ nd2 − d. �

Assertion 2.3. ν∗(H) ≤ nd.

Proof. Let α be a fractional matching in H. Denoting the value of α on an
edge e by αe, and the characteristic function of e by Ie, we have

d = |[0, 1]∪d| ≥

∫ ∑
αeIe =

∑
αe

∫
Ie =

∑
αe|e|,

where the integration is over [0, 1]∪d. Since |e| > 1
n
for all e ∈ H it follows

that
∑

αe < nd. Alternatively, the constant function n constitutes a ‘con-
tinuous fractional cover’ of H of size nd, and it can be approximated by
discrete fractional covers as well as we please. �

By the above, for every n there exists a d-interval hypergraph with τ
ν∗

≥

d− 1
n
.

3. A weighted version of Turán’s theorem

In this section we prove a weighted version of Turán’s theorem. Let G =
(V,E) be a graph. Recalling notation defined above, for a set X of vertices
w[X] is

∑
x∈X w(x). For a set F of edges let w̃[F ] =

∑
uv∈F (w(u)+w(v)). If

G is directed, given disjoint subsets A and B of V , we write E(A,B) = {xy |
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x ∈ A, y ∈ B}, where xy is an edge directed from x to y. If v ∈ V \ A we
write E(v,A) and E(A, v) for E({v}, A) and E(A, {v}), respectively. The
set of neighbors of a vertex v is N(v) = {u | uv ∈ E or vu ∈ E}. We let
αw(G) denote the maximal sum of weights on an independent set in V .

Theorem 3.1. Let G = (V,E) be a graph and let w : V → N
+ be a weight

function on its vertices. Let W = w[V ] and K = αw(G). Then

(1) w̃[E] ≥
W 2

K
−W.

Note that if all weights are 1, this is just Turán’s theorem. We will
actually need a result about directed graphs that implies Theorem 3.1 as an
easy corollary, upon replacing every edge in G by two oppositely directed
edges:

Theorem 3.2. Let D be a directed graph in which every pair of adjacent
vertices is connected by at least two directed edges, not necessarily in the
same direction. Let w be a weight function on V = V (D), and write W =
w[V ] and K = αw(D). Then

∑
xy∈E(D)

w(x) ≥
W 2

K
−W.

Proof. Choose an independent set A of total weight K. Write B = V \ A.
By the induction hypothesis

(2)
∑

xy∈E(D[B])

w(x) ≥
w[B]2

K
−w[B].

Let v be a vertex not in A. By the maximality property of A, we have

(3)
∑

{w(u) | u ∈ A ∩N(v)} ≥ w(v),

for otherwise the sum of weights in A \N(v) + v would be larger than in A.
In particular, note that |A ∩N(v)| ≥ 1.

We claim that

(4)
∑

uv∈E(A,v)

w(u) +
∑

vu∈E(v,A)

w(v) ≥ 2w(v).

Indeed, if all A − v edges are directed from A to v, this follows from (3).
If there exist two (possibly parallel) edges directed from v to A then (4) is
obvious. So, there remains the case that there is precisely one A − v edge,
say va, directed from v to A. Then∑
uv∈E(A,v)

w(u)+
∑

vu∈E(v,A)

w(v) = 2
∑

{w(u) | u ∈ A∩N(v)}−w(a) +w(v).
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Therefore if w(a) ≤ w(v) then (4) is proved by (3). Else we have∑
uv∈E(A,v)

w(u) +
∑

vu∈E(v,A)

w(v) ≥ w(v) + w(a) > 2w(v),

as claimed.
Hence

(5)
∑

uv∈E(A,B)

w(u) +
∑

vu∈E(B,A)

w(v) ≥ 2w[B].

Using (2) and (5), we get:

(6)
∑

xy∈E(D)

w(x) ≥
w[B]2

K
− w[B] + 2w[B] =

w[B]2

K
+ w[B].

Since W = w[A] + w[B] and w[A] = K, we have

W 2

K
−W =

w[A]2 + 2w[A]w[B] + w[B]2

K
−w[A] − w[B]

=
w[B]2

K
+ w[B].

Together with (6) this proves the desired inequality.
�

4. Weighted matchings

In this section we prove Theorems 1.7 and 1.8. But before that, here is
some motivation to the study of the weighted case: a (well known) connec-
tion to edge-colorings. The edge chromatic number χe(H) of a hypergraph
H is the minimal number of matchings needed to cover all edges of the hy-
pergraph. A fractional edge coloring is a non-negative function f on the set
M of matchings in H, satisfying the condition that

∑
e∈M∈M f(M) ≥ 1 for

all e ∈ E(H). The fractional edge chromatic number χ∗
e(H) is the minimum,

over all fractional edge colorings f of H, of f [M]. (It is easy to see that this
minimum exists.)

Lemma 4.1. For any hypergraph H = (V,E), if τ∗w(H) ≤ ανw(H) for every
weight system w on E(H) then χ∗

e(H) ≤ α∆(H).

Proof. Write q for χ∗
e(H). By LP duality, q = maxw[E], where the max-

imum is over all weight functions w on E satisfying the condition that
w[M ] ≤ 1 for every matching M in H. Taking w for which this maxi-
mum is attained, we have νw(H) = 1, and hence by the assumption of the
lemma, τ∗w(H) ≤ α. But since every vertex participates in at most ∆(H)

edges in a fractional w-covering of the edges, τ∗w ≥ w[E]
∆(H) =

q
∆(H) . Combining

these inequalities yields q ≤ α∆(H), as desired. �
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In [5] the conjecture was raised that in a hypergraph H of 2-intervals
χe(H) does not exceed 2 times the maximal size of an intersecting subhy-
pergraph. The following conjecture strengthens this, and generalizes it to
all d:

Conjecture 4.2. If H is a hypergraph of d-intervals, and the maximum
degree of a point on any line is ∆, then χe(H) ≤ d∆.

If true, then this is sharp by Example 2.1. There ∆ = 2, and since ν = 1
we have χe = |E| = 2d.

As noted already in [5], relaxing the problem by a factor of 2 brings
Conjecture 4.2 within easy reach:

Theorem 4.3. Under the assumptions of Conjecture 4.2, χe(H) ≤ 2d(∆−
1).

Proof. Let D be a digraph whose vertex set is E(H), and in which e sends
an arrow to f if an endpoint of some interval component of e belongs to f .
Then the outdegree of every vertex of D (=edge of H) is at most 2d(∆−1),
and hence the number of directed edges is at most 2d(∆− 1)|V |. As is easy
to realize, for every pair of vertices of D, if there is an edge between them
then there are two, hence the number of edges in the underlying undirected
graph G is at most d(∆ − 1)|V |, so the average degree in G is at most
2d(∆ − 1). Since the same is true for any induced subgraph of G, the
theorem follows by successively removing vertices of minimum degree and
coloring them greedily in the reverse order. �

By Lemma 4.1, Conjecture 1.6 would imply the fractional version of Con-
jecture 4.2, namely χ∗

e(H) ≤ d∆(H), for separated d-intervals.

The proof of Theorem 1.8 is almost identical to the proof in the non-
weighted case:

Proof of Theorem 1.8. Let g be a rational valued fractional w-cover of H
of minimal size, and let |g| = p

q
. By duplicating points we may assume that

g has value 1
q
on each point belonging to a set P of p points, and that d|q.

Write m = q
d
. Let Q be a set obtained by taking every m-th point in P , in

the left to right order on the line. Every e ∈ H satisfies |P ∩e| ≥ qw(e), and

hence has a component containing qw(e)
d

points from P . This component

contains then at least qw(e)
dm

= w(e) points from Q. Thus Q is a w-cover, and

its size is p
m

= pd
q
= dτ∗w. �

Proof of Theorem 1.7. Write K = νw(H). We need to show that ν∗w(H) ≤
2dK, meaning that for every fractional matching f we have

∑
e∈H w(e)f(e) ≤

2dK. Multiplying by a common denominator, removing edges on which
f = 0 and duplicating edges if necessary, we can assume that f(e) = 1

q
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for all e ∈ H, for some natural number q. We write W for w[H]. In this
terminology, we have to show that

(7)
W

q
≤ 2dK.

Let D be a digraph obtained from the line graph L = L(H) by duplicating
each edge in E(L), and directing the two copies of each edge according to
the following rule. Suppose that two edges e1 and e2 in H meet, namely
e1e2 ∈ E(L). Choose an interval component c1 of e1 that meets an interval
component c2 of e2. It is now possible to choose two pairs (x, ci), where x is
an endpoint of c3−i, and belongs to ci. For each choice of such a pair direct
a copy of the edge e1e2 from e3−i to ei (namely, from the piercing edge to
the pierced one).

Let D̃ beD with all loops ee added. By Theorem 3.2,
∑

e∈H w(e)deg+D(e) ≥
W (W −K)/K (here deg+ denotes the outdegree). Dividing both sides by
W gives that the weighted average of deg+D(e) (weighted by w(e)) is at least
W
K

− 1, and hence the weighted average of deg+
D̃
(e) is W

K
. Hence there is an

edge a ∈ H with deg+D(a) ≥ W
K

− 1, and considering a as adjacent also to

itself, its outdegree in D̃ is at least W
K
. That is, it pierces by its endpoints at

least this many edges. Since a has at most 2d endpoints, it has an endpoint
x meeting at least W

2dK edges. Since
∑

e∈H, x∈e f(e) ≤ 1, it follows that

W/(2dKq) ≤ 1, proving (7). �

5. KKMS and the special role of lengths

A natural weight on a d-interval is its total length. In this section we
show that in some sense, to be specified below, this is the general case. The
tool showing this is the KKMS theorem (to be given below).

For a hypergraph H define a weight function ℓ = |h| for every h ∈ H. Call
1.6L the special case of Conjecture 1.6 in which w = ℓ. Call a hypergraph
H = (V,E) balanced if it has a perfect fractional matching, namely a weight
system on E such that for each vertex v, the weights of the edges containing
v sum up to 1.

Lemma 5.1. If a hypergraph H on a vertex set [k] is balanced and τ∗ℓ (H) ≤

ανℓ(H) then H contains a matching M such that
∑

m∈M |m| ≥ k
α
.

Proof. Let f be a perfect fractional matching on H, then∑
h∈H

f(h)|h| = k.

Therefore, ∑
h∈H

f(h)ℓ(h) = k,

which implies that τ∗ℓ = ν∗ℓ (H) ≥ k. Thus we have νℓ(H) ≥ k
α
, which proves

the lemma. �
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Therefore, by Theorem 1.7 we have the following:

Corollary 5.2. In a balanced discrete hypergraph of d-intervals on [k] there
exists a matching of total size k

2d . If the d-intervals are separated and Con-

jecture 1.6L is true, then there exists a matching of total size k
d
.

In the continuous case, for a d-intervals hypergraph to be balanced it
has to consist of intervals that are half closed (say at the left) and half
open (at the right). Assuming this, here is an appealing special case of
Conjecture 1.6L: A balanced hypergraph of separated d-intervals in [0, 1]∪d

has a matching of total length 1. By the first part of the observation, there
exists in such a hypergraph a matching of total length 1

2 .

Theorem 5.3. Let α be such that for every hypergraph of d-intervals τ∗ℓ ≤
αdνℓ. Then for every hypergraph of d-intervals and for every weight function
w, τw ≤ αd2νw.

The simplex ∆k is the set of all points ~x = (x1, x2, . . . , xk+1) ∈ R
k+1
+

satisfying
∑

i≤k+1 xi = 1. For S ⊆ [k + 1] let F (S) be the face of ∆k

consisting of the points ~x satisfying xi = 0 for all i 6∈ S.

Theorem 5.4 (KKMS). Suppose that with every subset T of [k + 1] there
is associated a subset BT of ∆k, so that all BT are closed or all of them
are open, and F (R) ⊆

⋃
T⊆R BT for every R ⊆ [k + 1]. Then there exists a

balanced set T of subsets of [k + 1], satisfying
⋂

T∈T BT 6= ∅.

This is a generalization, by Shapley [11], of the famous KKM (Knaster-
Kuratowski-Mazurkiewicz) theorem, which is the case where the only nonempty
BT ’s are B{i} for singletons {i} ⊂ [k + 1].

Proof of Theorem 5.3. We may assume that all edges of H are contained
in (0, 1). Assume that τw(H) > k. The theorem will follow if we show that
νw(H) > k

αd2
. The assumption that τw(H) > k implies that for every point

~x = (x1, x2, . . . , xk+1) in P = ∆k, the points p~x(m) =
∑

i≤m xi, 1 ≤ m ≤ k

do not constitute a weighted cover for H. Note that the points p~x(m) are
taken with multiplicity, namely if such a point repeats q times, it is given
weight q. The above can be stated as:

Assertion 5.5. For each ~x ∈ ∆k there exists h ∈ H that contains fewer
than w(h) points p~x(m) (counted with multiplicity).

Given ~x ∈ P , let p~x(0) = 0 and p~x(k + 1) = 1. For T ⊆ [k + 1], define
L(T, ~x) =

⋃
t∈T [p~x(t− 1), p~x(t)]. Let c(T, ~x) be the number of connected

components of L(T, ~x). For X ⊆ [0, 1] let np(X,~x) be the number of points
p~x(m) (counted with multiplicity) in X. Note that np(int(L(T, ~x)), ~x) ≥
|T | − c(T, ~x) (int(X) is the interior of X).

We want now to define sets BT , towards an application of the KKMS the-
orem. A definition that almost works is this: ~x ∈ BT if there exists an edge
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h ∈ H that is contained in int(L(T, ~x)) and w(h) ≥ np(int(L(T, ~x)), ~x) + 1.
The problem is that with this definition BT is not necessarily open (and ob-
viously also not necessarily closed). For example, let T = {1, 3}, and let ~x be
such that x2 = 0. It is possible that there exists h ∈ H properly contained
in L(T, ~x)) = [x′0, x

′
1]∪ [x′1+x′2, x

′
1 +x′2+x′3] = [x0, x1+x2+x3], so ~x ∈ BT

by this definition, but for points ~x′ arbitrarily close to ~x, in which x′2 > 0,
there is no h ∈ H contained in L(T, ~x′) = [x′0, x

′
1] ∪ [x′1 + x′2, x

′
1 + x′2 + x′3],

and so ~x′ /∈ BT . For this reason, the definition of BT will be a bit more
involved.

Let AT (> ε) (resp. AT (≥ ε)) be the set of those points ~x for which the
following hold:

• c(T, ~x) ≤ d,
• there exists an edge h ∈ H contained in int(L(T, ~x)), satisfying
w(h) ≥ np(int(L(T, ~x)), ~x) + 1, and

• dist(h, ∂(L(T, ~x)) > ε (resp. dist(h, ∂(L(T, ~x)) ≥ ε.

(Here ∂(X) denotes the boundary of X, and dist stands for “distance”.)

Assertion 5.6. F (S) ⊆
⋃

ε>0

⋃
T⊆S AT (> ε) for every subset S of [k + 1].

Proof. If ~x ∈ F (S) then by Assertion 5.5 there exists h ∈ H that is covered
by fewer than w(h) points p~x(m). Since h has at most d interval components,
this means that there exists some R ⊆ [k + 1] such that h ⊂ int(L(R,~x),
w(h) > np(int(L(R,~x)), ~x), and c(R,~x) ≤ d. Let T = R ∩ S. Since xi = 0
for i /∈ S we have int(L(R,~x)) = int(L(T, ~x)). Taking small enough ε, we
have then ~x ∈ AT (> ε). This proves the assertion. �

Since F (S) is compact there exists ε(S) > 0 such that F (S) ⊆
⋃

T⊆S AT (>

ε(S)). Let δ = 1
2 min{ε(S) | S ⊆ [k + 1]} and for T ⊆ [k + 1] define

BT = AT (≥ δ). Then F (S) ⊆
⋃

T⊆S BT for all S ⊆ [k + 1].

Assertion 5.7. The sets BT are closed.

Proof. Let ~x be a limit point of the sequence ~xn ∈ BT . For every n let hn be
an edge witnessing the fact that ~xn ∈ BT . Since H is finite, there is an edge
h ∈ H such that hn = h for infinitely many values of n. Then h ⊆ L(T, ~x),
and its distance from the boundary of L(T, ~x) is at least δ, meaning that
~x ∈ BT . �

We have shown that the sets BT satisfy the conditions of the KKMS
theorem, so by this theorem there exists a balanced collection T of discrete
d-intervals in [k+1] such that

⋂
T∈T BT 6= ∅. Then τ∗ℓ (T ) ≤ αdνℓ(T ), and by

Lemma 5.1 there is a matching M ∈ T with
∑

m∈M |m| ≥ k+1
αd

. Therefore,

(8)
∑
m∈M

(|m| − c(M,~x) + 1) ≥
∑
m∈M

|m|

c(M,~x)
≥

1

d

∑
m∈M

|m| ≥
k + 1

αd2
.

Choose a point ~x ∈
⋂

T∈T BT . For every T ∈ T , the fact that ~x ∈
BT means that there exists h(T ) ∈ H such that h(T ) ⊂ int(L(T, ~x)) and
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w(h(T )) ≥ np(int(L(T, ~x)), ~x) + 1 ≥ |T | − c(T, ~x) + 1. Therefore by (8) the
proof of the theorem will be complete if we show that for disjoint T1, T2 ∈ T
the edges h(T1) and h(T2) are disjoint. If they do meet, then any point
z ∈ h(T1) ∩ h(T2) lies in the interior of a connected component of L(T1, ~x)
and in the interior of a connected component of L(T2, ~x). There exists then t
such that xt 6= 0, and z ∈ [p~x(t− 1), p~x(t)]. Then t ∈ T1∩T2, a contradiction.
This concludes the proof of the theorem.

6. A proof of Theorem 1.1 using KKMS

In this section we use the KKMS theorem to give a short proof of Theo-
rem 1.1. In [6], a certain version of Borsuk’s theorem was used. The KKMS
theorem and its generalizations get to the point more directly.

We shall also use (as is done in [6]) a theorem of Füredi [2]:

Theorem 6.1. If all edges of a hypergraph H are of size at most d, then

ν(H) ≥ ν∗(H)

d−1+ 1

d

. If, in addition, d > 2 and H does not contain a copy of the

d-uniform projective plane then ν(H) ≥ ν∗(H)
d−1 .

The first half of the following theorem just restates the non-separated
part of Theorem 1.1:

Theorem 6.2. [6] If H is a hypergraph of d-intervals then:

(1) τ(H) ≤ (d2 − d+ 1)ν(H), and
(2) τ(H) ≤ dν∗(H).

Proof. Like before, we assume that all edges of H are contained in (0, 1).
Our aim is to show that if τ(H) > k then ν(H) > k

d2−d+1
. Every point

~x = (x1, x2, . . . , xk+1) in P = ∆k corresponds to a distribution of k points
p~x(m) =

∑
i≤m xi, 1 ≤ m ≤ k on L. Set p~x(0) = 0 and p~x(k + 1) = 1.

For a subset I of [k + 1] let BI consist of all vectors ~x ∈ ∆k for which
there exists an edge h ∈ H satisfying: (a) h does not contain any point
p~x(m), and (b) for each i ∈ I there exists at least one j ≤ d such that
hj ⊆ (p~x(i− 1), p~x(i)). Note that if BI 6= ∅ then |I| ≤ d.

Clearly, the sets BI are open. By the assumption that τ > k, for every
~x ∈ P the points p~x(m), 1 ≤ m ≤ k, do not cover H, meaning that there
exists h ∈ H not containing any p~x(m). This, in turn, means that ~x ∈ BI

for some I ⊆ [k + 1]. We have thus shown that P =
⋃

BI .
Let F = F (J) be a face of ∆k. If ~x ∈ F (J) then (p~x(i− 1), p~x(i)) = ∅

for i /∈ J , and hence it it impossible to have hj ⊆ (p~x(i− 1), p~x(i)). Thus
~x ∈ BI for some I ⊆ J . This proves that F ⊆

⋃
I⊆J BI .

By Theorem 5.4 there exists a balanced set I of subsets of [k+1], satifying:

(1)
⋂

I∈I BI 6= ∅, and
(2) |I| ≤ d for all I ∈ I.

Since I is balanced, (2) implies that ν∗(I) ≥ k+1
d

. By Theorem 6.1,

ν(I) ≥ ν∗(I)

d−1+ 1

d

≥ k+1
d(d−1+ 1

d
)
> k

d2−d+1 .
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Let M be a matching in I of size at least m = ⌈ k
d2−d+1

⌉.

Let ~x be a point in
⋂

I∈I BI . For every I ∈ I let h(I) be the edge of
H witnessing the fact that ~x ∈ BI . Then the edges h(I), I ∈ M form a
matching of size m in H, proving the lower bound on ν.

To prove (2), let f : I → R
+ be the fractional matching of size at least

k+1
d

whose existence we have just proved. Then the function f̃ : H → R
+

defined by f̃(h) = f(I) if h = h(I) and f̃(h) = 0 otherwise, is a fractional
matching of size at least k+1

d
in H. �

For the convenience of the reader, we restate also the separated case of
Theorem 1.1:

Theorem 6.3. In a hypergraph H of separated d-intervals, τ(H) ≤ (d2 −
d)ν(H).

To prove this we use the following extension of the KKMS theorem proved
by Komiya [7]:

Theorem 6.4. Let P be a polytope, and let a point q(F ) ∈ F be chosen for
every face F of P . Let also BF be a an assignment of an open subset of
P to every face F , satisfying the condition that every face G is contained
in

⋃
F⊆GBF . Then there exists a collection F of faces such that q(P ) ∈

conv{q(F ) | F ∈ F} and
⋂

F∈F BF 6= ∅.

The theorem is true also if all BF are closed. The KKMS theorem is the
case in which P = ∆k and each q(F ) is the center of the face F .

Proof of Theorem 6.3. It clearly suffices to prove that if H is a hypergraph
of d-intervals satisfying τ(H) > kd then ν(H) ≥ k+1

d−1 . We may assume that

the ground set of H is the d-fold product (0, 1) × . . . × (0, 1). We apply
Komiya’s theorem to P = ∆k × ∆k × . . . × ∆k, the d-fold product of the
k-dimensional simplex ∆k by itself. A point in P has the form:

~x = ((x11, x
1
2, . . . , x

1
k+1), (x

2
1, x

2
2, . . . , x

2
k+1), . . . , (x

d
1, x

d
2, . . . , x

d
k+1))

where xji ≥ 0 and
∑k+1

i=1 xji = 1 for every j. For ~x ∈ P let p~x(i, j) =
∑

a≤i x
j
a.

Let V be the set of all pairs {(i, j) | 1 ≤ i ≤ k + 1, 1 ≤ j ≤ d}. A vertex
~t of P corresponds to a d-tuple (i1, 1), (i2, 2), . . . , (id, d) of vertices in V , by
the rule tab = 1 if b = ia and tab = 0 otherwise (here we are using with respect

to ~t the same notation we used for points in P denoted by ~x, namely tab
is the b coordinate of ~t in the a-th copy of (0, 1)). To any such vertex we
can assign an edge e~t = {(i1, 1), (i2, 2), . . . , (id, d)} in the complete d-partite

hypergraph with vertex set V and sides V j = {(i, j) | 1 ≤ i ≤ k + 1}. Let
B~t be the set of all points ~x ∈ P for which there exists h ∈ H satisfying

hj ⊆ (p~x(i
j − 1, j), p~x(i

j , j)) for all j. Let also q(~t) = ~t (the only possible
choice). For all other faces F of P let BF = ∅. Let q(P ) be the uniformly
all 1

k+1 vector. The points q(F ) for all other faces F do not come into play,
so we do not define them.
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By our assumption, for no ~x ∈ P is the set of all points p~x(i, j) (1 ≤ i ≤ k,
1 ≤ j ≤ d) a cover for H. Hence

⋃
B~t = P , where the union is over all

vertices ~t of P . As in the previous proof, it is also easy to see that for every
face F = conv(T ) (where T is a set of vertices) F ⊆

⋃
{B~t | ~t ∈ T}. By

Theorem 6.4, there exists a set Q of vertices, such that q(P ) ∈ conv(q(~t) |
~t ∈ Q) and

⋂
~t∈QB~t 6= ∅.

Let E = {e~t | ~t ∈ Q}. Then the hypergraph D = (V,E) is d-partite, and

the fact that q(F ) ∈ conv(q(~t) | ~t ∈ Q) means that D is balanced. This
in turn implies that ν∗(D) is k + 1 (the size of one side of D). Since D is

d-partite, by Theorem 6.1 ν(D) ≥ ν∗(D)
d−1 ≥ k+1

d−1 (for d = 2 we are using here

König’s theorem, rather than Füredi’s theorem). Let M be a matching in
D with |M | ≥ k+1

d−1 . Let ~x be a point in
⋂

~t∈QB~t. By the definition of the

sets B~t , for every edge e = {(i1, 1), (i2, 2), . . . , (id, d)} ∈ M there exists an

edge h = h(e) ∈ H with hj ⊆ (p~x(i
j − 1, j), p~x(i

j , j)). Clearly, the edges
h(e), e ∈ M are disjoint, proving that ν(H) ≥ k+1

d−1 , as desired. �

7. Bounding the ratio τ∗

ν
using topology

As already mentioned, it is likely that in order to find the right upper
bound on τ∗

ν
a topological method will be needed. In this section we describe

an approach that yields the bound 4d.

Theorem 7.1. If H is a hypergraph of d-intervals then τ∗(H) ≤ (4d − 6 +
3
d
)ν(H).

Proof. As before, we assume that all edges are contained in (0, 1). We will
show that if τ∗(H) > α then ν(H) > α

4d−6+ 3

d

. Let k = ⌊αd⌋. The as-

sumption that τ∗(H) > α implies that for every point ~x = (x1, x2, . . . , xk+1)
in P = ∆k, putting weights 1

d
on each of the points p~x(m) =

∑
i≤m xi,

1 ≤ m ≤ k, does not constitute a fractional cover for H. Note that the
points p~x(m) are taken with multiplicity, namely if such a point repeats q
times, it is given weight q

d
. Therefore, for each ~x ∈ ∆k there exists h ∈ H

that contains fewer than d points p~x(m) (counted with multiplicity). This
implies the following:

Assertion 7.2. For each ~x ∈ ∆k there exists h ∈ H that meets at most
2d− 1 intervals of the form [p~x(m), p~x(m+ 1)].

Proof. Let h ∈ H be a d-interval that contains fewer than d points p~x(m).
For each interval component hj of h, the number of intervals [p~x(i), p~x(i+1)]
that hj meets is equal to the number of points p~x(i) it contains, plus 1.
Since h has at most d interval components, it follows that the total number
of intervals [p~x(i), p~x(i+ 1)] that h meets is at most d− 1 + d = 2d− 1. �

Given ~x ∈ P , let p~x(0) = 0 and p~x(k + 1) = 1. For T ⊆ [k + 1] define
L(T, ~x) =

⋃
t∈T [p~x(t− 1), p~x(t)]. We want now to define sets BT , towards

an application of the KKMS theorem. Similarly to the case in the proof of
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Theorem 5.3, in order to make sure that the sets are closed we will use a
compactness argument.

If |T | ≥ 2d we let BT be the empty set.
Suppose that |T | ≤ 2d − 1. Let AT (> ε) (resp. AT (≥ ε)) be the set of

those points ~x for which there exists an edge h ∈ H contained in int(L(T, ~x))
and satisfying dist(h, ∂(L(T, ~x))) > ε (resp. dist(h, ∂(L(T, ~x))) ≥ ε.

Assertion 7.3. F (S) ⊆
⋃

ε>0

⋃
T⊆S AT (> ε) for every subset S of [k + 1].

Proof. Let ~x be a point in F (S). By Assertion 7.2 there exist h ∈ H and
R ⊆ [k + 1] such that h ⊆ int(L(R,~x)) and |R| ≤ 2d − 1. Let T = R ∩ S.
Since xi = 0 for i /∈ S we have int(L(R,~x)) = int(L(T, ~x)). Taking small
enough ε, we have then ~x ∈ AT (> ε). This proves the assertion. �

As in the proof of Theorem 5.3, define BT = AT (≥ δ) for small enough
δ. Then F (S) ⊆

⋃
T⊆S BT for all S ⊆ [k + 1].

The sets BT are closed and satisfy the conditions of the KKMS theorem.
Hence there exists a balanced collection T of subsets of [k + 1] such that⋂

T∈T BT 6= ∅. Let f : T → R
+ be a perfect fractional matching. Since

|T | ≤ 2d− 1 for all T ∈ T , it follows that ν∗(T ) ≥ |V (T )|
2d−1 = k+1

2d−1 . Therefore

by Theorem 6.1 ν(T ) ≥ k+1
(2d−1)(2d−2+ 1

2d−1
)
> α

4d−6+ 3

d

, namely there exists a

matching M of size larger than α

4d−6+ 3

d

in T .

Choose a point ~x ∈
⋂

T∈T BT . For every T ∈ T let h(T ) be an edge
of H witnessing ~x ∈ BT , a fact entailing h(T ) ⊆ int(L(T, ~x)). Using the
same argument as in the proof of Theorem 5.3 we have that for disjoint
T1, T2 ∈ T the edges h(T1) and h(T2) are disjoint, which completes the
proof of the theorem.

�
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