
IGFTT: towards an efficient alternative to SIFT and SURF

Ícaro Oliveira de Oliveira
Federal Technological
University of Paraná

Brazil
icaroo@utfpr.edu.br

Keiko Veronica Ono
Fonseca

Federal Technological
University of Paraná

Brazil
keiko@utfpr.edu.br

Eduardo Todt
VRI Research Group,
Federal University of

Paraná
Brazil

todt@inf.ufpr.br

ABSTRACT
The invariant feature detectors are essential components in many computer vision applications, such as
tracking, simultaneous localization and mapping (SLAM), image search, machine vision, object recognition, 3D
reconstruction from multiple images, augmented reality, stereo vision, and others. However, it is very challenging
to detect high quality features while maintaining a low computational cost. Scale-Invariant Feature Transform
(SIFT) and Speeded-Up Robust Features (SURF) algorithms exhibit great performance under a variety of image
transformations, however these methods rely on costly keypoint’s detection. Recently, fast and efficient variants
such as Binary Robust Invariant Scalable Keypoints (BRISK) and Oriented Fast and Rotated BRIEF (ORB) were
developed to offset the computational burden of these traditional detectors.
In this paper, we propose to improve the Good Features to Track (GFTT) detector, coined IGFTT. It approximates
or even outperforms the state-of-art detectors with respect to repeatability, distinctiveness, and robustness, yet can
be computed much faster than Maximally Stable Extremal Regions (MSER), SIFT, BRISK, KAZE, Accelerated
KAZE (AKAZE) and SURF. This is achieved by using the search of maximal-minimum eigenvalue in the image
on scale-space and a new orientation extraction method based on eigenvectors.
A comprehensive evaluation on standard datasets shows that IGFTT achieves quite a high performance with a
computation time comparable to state-of-the-art real-time features. The proposed method shows exceptionally
good performance compared to SURF, ORB, GFTT, MSER, Star, SIFT, KAZE, AKAZE and BRISK.
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1 INTRODUCTION
Feature detectors have become an essential component
in contemporary computer vision research. The
main goal is to find salient image keypoints that
can be repeatedly detected under various image
transformations and then construct distinctive and
robust representations for them.

This paper aims to tackle this problem by developing
an improvement on the well-known GFTT keypoint
detector [21]. This technique is attractive because of
its good performance. For feature detection, scale
invariant and stable keypoints are selected in the scale
space according to maximal-minimum eigenvalues
responses. Furthermore, it was built a fast accurate
orientation estimation by the eigenvector’s orientation.
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full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

We have validated the IGFTT detector whose precision,
recall and the execution time figures. The experiments
show that IGFTT achieves quite a high performance
with a computation time comparable to state of the
art, e.g. ORB and it is more efficient in terms of
repeatability than KAZE, BRISK, SURF and SIFT.
Also, the orientation extraction method developed in
this paper presented less errors than other methods. The
rest of this paper is organized as follows: First, an
overview of related work is given in Section 2. Section
3 describes a review about GFTT detector. Section 4
describes the improvement to GFTT developed here.
The experimental evaluation is carried out in Section
5, and finally Section 6 presents the discussion and
conclusions.

2 BACKGROUND
2.1 Feature Detection
Corners are points in an image where two lines meet
perpendicularly [10]. They can be any points between
two lines with different directions or between two
points with strong image gradients. Corners are
particularly important since they can be used to locate
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and make the registration of objects and to provide
measures of their dimensions, for example, knowledge
about orientation will be vital for a robot finds the
best way of picking up an object, inspection and other
applications [8].
Thereby, corners are interesting for identifying parts
of an image, efficient to match image to image and
have great relevance to the accuracy and efficiency
of machine vision. The corners with local maximum
or minimum intensity are called interest points or
keypoints.
SIFT [12] is a pioneering method which produces high
quality features based in gradients and requires high
computational effort. SURF [5] detects keypoints faster
than the original SIFT, without loss in performance and,
recently, other methods were proposed improving either
processing time or repeatability, e.g. ORB [20], KAZE
[4] and BRISK [23].
SIFT [12], SURF [5], BRISK [23] and ORB [20] have
the same structure: they detect best keypoints in a
scale pyramid type like shown in Figure 1 and extract
orientation using the directed gradients or moments.

Figure 1: Image Pyramid [9]

Each detector applies an algorithm to detect stable
keypoints in each scale level. For example, SIFT [12]
detects in a Difference of Gaussians applied in each
level, SURF [5] detects in wavelet and integral images,
BRISK [23] detects in a scale space with interpolation
and ORB [20] detects in a simple pyramid scales. Other
detectors like AGAST [13], FAST [18] and SUSAN
[22] detect stable keypoints in an unique image and
don’t use scale pyramids or extract orientation.
SIFT [12] extracts scale-invariant features through
detecting local extremas of the Difference-of-Gaussian
(DoG) over scale space applied in the image. The DoG
is a faster approximation of Laplacian of Gaussian
(LoG). SURF [5] proposes the Fast-Hessian detector.
This method approximates the second order Gaussian
derivatives of Hessian matrix from rectangle filters.
Futhermore, the Fast-Hessian detector works with

integral images to compute 3 times faster than DoG.
Recently, Features from Accelerated Segment Test
(FAST) [18] detector is based on the SUSAN corner
detector [22]. The circular area center is used to
determine brighter and darker neighboring pixels
on the circle describing the segment. FAST uses a
Bresenham’s circle [18] of diameter 3.4 pixels as test
mask. Thus, for a full accelerated segment test, 16
pixels have to be compared to obtain the value of
the nucleus. In the sequence, FAST selects the 9 top
segments (FAST-9) that get high repeatability between
16 pixels. For each keypoint, the FAST calculates a
sum of the differences between each 9 circular pattern’s
pixels and the nucleus’ pixel and selects the keypoint
with a sum lower than a threshold. This parameter
controls the sensitivity of the corner response. A large
t-value results in few but therefore only strong corners,
while a small t-value yields also corners with smoother
gradients. The alternative FAST-ER [19] generalizes
FAST by allowing it to learn the 9 top segments with
the best repeatability and small loss of efficiency for
any scene.

AGAST [13] improves FAST performance by
combining specialized decision trees. Since these
FAST-based detectors do not deal with scale change,
BRISK [23] takes AGAST to detect feature candidates
and searches for the maximum FAST score over scale
space to achieve scale invariance. KAZE [4] proposes
an automatic feature detection in nonlinear scale
spaces using efficient AOS techniques and variable
conductance diffusion. Next, AKAZE [17] proposes
to use recent numerical schemes called Fast Explicit
Diffusion (FED) embedded in a pyramidal framework
to dramatically speed-up feature detection in nonlinear
scale spaces. The STAR [2] keypoint detector uses
an approximation that allows to preserve rotational
invariance applied in scale space formed by a bi-level
approximation of the Laplacian of Gaussians (LoG)
filter. ORB [20] detects FAST features filtered by
Harris at each level in the scale pyramid of the image
and calculates a new fast and accurate orientation
component to FAST. A Maximally Stable Extremal
Region (MSER) [14] is a connected component of an
appropriately thresholded image. The word ’extremal’
refers to the property that all pixels inside the MSER
have either higher (bright extremal regions) or lower
(dark extremal regions) intensity than all the pixels on
its outer boundary. The ’maximally stable’ in MSER
describes the property optimized in the threshold
selection process.

2.2 Feature Description
SIFT [12] creates a histogram of local gradient
orientations and locations, where the gradient
orientations are quantized into 8 orientation bins
and the space locations are quantized into a 4x4 grid.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 74 ISBN 978-80-86943-65-7



SURF [5] works with the Haar wavelet responses as
the local features. Since the above gradient-based
descriptors can only deal with linear illumination
changes, some other methods have been proposed to
tackle more general illumination changes by using
relative intensity orders of pixels rather than the
original intensities. BRIEF [7] uses a relatively small
number of binary tests between pixels to represent the
local patch as a binary string. ORB [20] develops a
rotation invariant by the intensity centroid that extends
the descriptor BRIEF, and it is more discriminative
by learning a good subset of binary tests than BRIEF
original. BRISK [23] introduces a Gaussian weighted
pattern for sampling the neighborhood of keypoints.
The long-distance pairs are used to estimate the
local dominant orientation and the short-distance
pairs are used to build a binary descriptor. FREAK
[1] proposes a retinal sampling pattern based on
the human visual system, and computes the binary
descriptor by comparing image intensities over the
retinal patterns. KAZE [4] uses the M-SURF descriptor
adapted to a nonlinear scale space framework. AKAZE
[17] introduces a Modified-Local Difference Binary
(M-LDB) descriptor that is highly efficient, exploits
gradient information from the nonlinear scale space,
is scale and rotation invariant and has low storage
requirements.
In practice, it is very challenging to obtain a high
quality feature whilst maintaining a low computational
cost on several transformations. Therefore, this work
aims to improve the GFTT detector developing a novel
orientation estimation and creating by simple scale
pyramid to GFTT detector.

3 GOOD FEATURES TO TRACK: RE-
VIEW

In this section the Good Features to Track [21] will be
briefly described. Consider an image sequence I(x, t),
with x = [u,v]T where u and v are the coordinates
of an image point. If a point of time sampling t is
substantially high, then the points of the image I are
displaced, however their intensities remain unchanged:

I(x, t) = I(δ (x), t + τ) (1)

where δ (·) is the motion field that specifies the
transformation applied to image points. The authors
approximate the transformation to a translation
through the fast-sampling hypothesis, in other words,
δ (x) = x + d , where d is a displacement vector.
Variable d is used to search keypoints in the frame’s
sequences. The image motion model can keep some
noises becoming not perfect, so the problem is to find
d which minimizes the Sum of Squared Differences
(SSD) to find the displacement d residuals, from this
the equation below is computed:

mind(∑
W

[I(x+d, t + τ)− I(x, t)]2) (2)

where W is an image window around the keypoint and t
is the frame in t time. If we apply first-order Taylor
expansion of I(x + d, t + τ) into (2) we can obtain a
simple linear system formed by

Gd = e (3)

where

G = ∑
w

[
I2
u IuIv

IuIv I2
v

]
, e =−τ ∑

w
It [Iu Iv]

T

with [Iu Iv] = ∇I = [ ∂ I
∂u

∂ I
∂v ] and It = ∂ I

∂u . From Eq.
(3): d is the solution of (3), that is, d = G−1e, and is
used to predict a new (registered) frame. This method
is iterated through of the Newton-Raphson scheme to
converge the displacement d. So, assuming that λ1 and
λ2 are the eigenvalues of G, the feature is detected if
min(λ1,λ2) > λ ; where λ is an user-defined threshold.

Thereafter, it is assuming the image I and next image
J. If I and J are dissimilar images then the feature is
dropped. The dissimilarity images I and J is measured
by the equation

sum(I− J)> threshold (4)

Between consecutive frames a translation model is
sufficient for tracking, however an affine model is
necessary when frames are far.

It is more expensive to calculate an affine model for
each frame than use a simple model, for example, a
scale model. In this case, the IGFTT used a simple
scale model and obtains better results related to
precision than SIFT, SURF, AKAZE, KAZE, FAST,
ORB, MSER, STAR and GFTT.

4 IMPROVE GOOD FEATURES TO
TRACK (IGFTT)

Focusing on computation efficiency, our detection
methodology is inspired by the work of Shi Tomasi et
al. [21] for detecting keypoints in the image. Aiming
the achievement of invariance to scale which is crucial
for high-quality keypoints, we go a step further by
searching for keypoint not only in the image plane, but
also in scale-space.

The IGFTT has the same GFTT’s parameters
like minDistance, qualityLevel, blockSize and
N. minDistance filters the keypoints with
maxima-minimal eigenvalues lower than the
minDistance.
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Variable qualityLevel is used to threshold the minimum
eigenvalues. In other words, the maximum global
eigenvalue is multiplied by the variable qualityLevel.
We select the eigenvalues smaller than qualityLevel.
Variable blockSize is the block’s length used to
calculate the minimum eigenvalues in the image.
Variable N is maxima amount of detected keypoints.
Further, we add the variables scaleLevels and
scaleFactor to generate the scale space. Variable
scaleLevels is the amount of levels in the scale space
and variable scaleFactor is the applied factor in the
image at each level of the scale space.

In the literature, there are three scale-space types:
wavelet, gaussian pyramid and simple pyramid.
The wavelet is linear scale space representation that
analyzes the signal from scale and resolution. A
Gaussian pyramid is a scale-space that creates a set
of images scaled down from a image. Each image
is also weighted by a Gaussian blur. This pyramid
is used to create a scale space with blur invariant,
however the eigenvalues already are blur invariants.
The simple pyramid is a scale-space that creates a set
of scaled down images from an original image. In
this case, we used the simple pyramid to make easier
implementation.

Data: the pyramid scale space from images with
various scales

Result: KeyPoints
initialization;
foreach image in pyramid do

calculate gradient matrix;
calculate the covariance in the gradient matrix;
extract eigenvectors and eigenvalues in the
directions x and y;
select the minimal eigenvalues between directions
x and y and the eigenvector for each pixel;
calculate the maximum eigenvalue local;
select the keypoints with eigenvalues bigger than
maximum value local * qualityLevel;
sort the selected keypoints by the eigenvalue;
foreach point in keypoints do

if total_KeyPoints == N then
break;

end
if distance between point and all keypoints <
minDistance then

KeyPoints.add(point);
total_KeyPoints = total_KeyPoints + 1;

end
end

end
Algorithm 1: IGFTT

4.1 Fast Orientation by Eigenvector
Our approach uses a simple but effective measure of
corner orientation, based on the eigenvector, because
the eigenvector represents the direction preserved by
a linear transformation applied in the gradient matrix.
From min(λ1,λ2) we selected the eigenvector of G
with the minimal eigenvalue. The coordinates (x,y)
of the eigenvector are used to extract the interest point
orientation.

angle = atan2(y,x); (5)

where atan2 is the quadrant-aware version of arctan.

4.2 Descriptor
We use the FREAK descriptor applied in each scale
space. For a detected keypoint k at scale σi, the
FREAK descriptor extracts the pattern formed by
Difference-of-Gaussians inspired in the retinal pattern
of the eye. Furthermore, FREAK extracts this pattern
in various scales and orientations. the FREAK has
integral images to accelerate the description process.
Finally, the descriptor is interpolated and normalized.

5 EXPERIMENTS
We have evaluated our method on the standard
Oxford dataset [15] and on two new datasets [24, 11]
with geometric and photometric transformations
like rotation, scale, viewpoint, image blur, JPEG
compression and illumination. The implementations
for all detectors came from OpenCV 3.0 beta [6].

5.1 Detector evaluation
We compare IGFTT detector with SURF, ORB,
GFTT, MSER, STAR, SIFT, KAZE, AKAZE
and BRISK detectors. We test the precision and
recall scores of different detectors for gradually
increasing transformation. In these experiments we
set minDistance = 1. Through repeatability criterion
introduced in [16], we analyze the overlap error of two
correspond regions in various transformations. This
error is defined as

1−
Rµa ∩RHT µbH

Rµa ∪RHT µbH
(6)

where Rµ represents the elliptic region defined by
xT µx = 1. H is the homography between the two
images. The intersection of the regions is Rµa ∩RHT µbH
and Rµa ∪ RHT µbH is their union. The intersection of
the regions must be greater than 0. The area of these
regions are computed numerically. The repeatability
score for a given pair of images is defined as
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true keypoints
detected keypoints

(7)

where the amount of keypoints with overlap error < εt
is represented by true keypoints. Detected keypoints
is the amount of keypoints detected and the overlap
error threshold represented by εt is 40%. We take into
account only the regions located in scene’s parts present
in both images. In this case, the repeatability represents
the recall score. The precision score is

true keypoints
matched keypoints

(8)

where matched keypoints are the amount of the
keypoints with intersection of the regions greater than
0. The true keypoints are based in putative matches,
in other words, a putative match is formed by a single
pairing of keypoints, where a keypoint cannot be
matched to more than one other. IGFTT detector
consistently outperforms SURF, ORB, GFTT, MSER,
STAR, SIFT, KAZE, and BRISK in most cases, which
can be attributed for the minimal eigenvalues features
used by the detector like shown in Figure 2 and
Figure 3.

In this section, we compare the computation times of
IGFTT to SURF, ORB, GFTT, HARRIS, MSER, Star,
SIFT, KAZE, and BRISK. The experiments are carried
out on desktop Intel Ivy Bridge Core i5-3450 3.10GHz
CPU and 16GB DRAM, using the first image of the
each dataset’s sequence compared with other images.
The results are averaged on 1000 experiments runs.

In general presented the IGFTT better averages than
other detectors using minimal eigenvalues to select
keypoints in each level of the scale-space. Furthermore,
this feature, applied in each scale space level, is faster
than the corresponding algorithms applied by the
SURF, MSER, SIFT, AKAZE or KAZE. We used
the average of the precision, recall and execution
time compared to those obtained from the reference
detectors [17, 4, 12, 5, 14, 3, 20, 23, 21].

The SIFT exhibits lower averages on precision
(67.69% vs 93.21%) and recall (55.00% vs 81.78%),
but more execution time (209.794ms vs 57.52ms)
than IGFTT. The IGFTT eigenvalues and keypoints
selection methods are faster and more repeatedly
than Difference-of-Gaussian used by SIFT. The
Difference-of-Gaussian used by SIFT did not detect the
same keypoints of the first image in the other images
from the various transformations in all datasets.

The SURF exhibits lower average on precision (85.13%
vs 93.21%) and on recall (71.74% vs 81.78%) than
IGFTT. The Hessian Matrix used by SURF, it did not
detect the same keypoints of the first image in the other
images from various transformations. In some cases,

the SURF shows better invariance than IGFTT in the
datasets trees (blur) and venice (zoom), because of
the Frobenius score and the box filter used by SURF.
The Hessian Matrix applied in the integral images and
Wavelet show more time values (83.61ms vs 57.52ms)
than IGFTT, due to the complexity of both algorithms.
The KAZE shows lower average on precision (78.34%
vs 93.21%) and on recall (69.57% vs 81.78%) than
IGFTT. The nonlinear diffusion filtering did not detect
the same keypoints of the first image in the other images
with various transformations. Furthermore, KAZE is
more complex than IGFTT, the KAZE showing a more
average time (409.64ms vs 57.52ms) than IGFTT.
The AKAZE shows lower average on precision lower
(78.52% vs 93.21%) and on recall (65.16% vs 81.78%)
than IGFTT. The Fast Explicit Diffusion filtering
did not detect the same keypoints of the first image
in the other images from various transformations.
Furthermore, the AKAZE is more complex than
IGFTT, showing more average time (119.08ms vs
57.52ms) than IGFTT.
The BRISK shows lower average on precision (78.95%
vs 93.21%) and on recall (58.21% vs 81.78%) than
IGFTT. The pyramid with octave levels and octave
in-between levels did not detect the same keypoints
of the first image in the other images from various
transformations. But, BRISK is faster (23.15ms vs
57.52ms) than IGFTT in average of the execution time,
because it has AGAST detector that is more efficient
than GFTT.
The ORB presents lower average on precision (88.30%
vs 93.21%) and on recall (78.46% vs 81.78%) than
IGFTT. The Harris score used by ORB did not detect
the same keypoints of the first image in the other images
from various transformations. In some cases ORB
shows better invariance than IGFTT in the Reichstag
(various transformations) and ubc (jpeg compression)
datasets, due to the Harris score. But, the ORB is faster
(16.58ms vs 57.52ms) than IGFTT in average of the
time, because the FAST detector is more efficient than
GFTT detector.
The GFTT shows lower average on precision (74.71%
vs 93.21%) and on recall (55.81% vs 81.78%) than
IGFTT. The GFTT detector is not invariant scale,
viewpoint, rotation and zoom. In other words, the
GFTT detector did not detect the same keypoints
of the first image in the other images with various
transformations. But, the GFTT is faster (19.38ms vs
57.52ms) than IGFTT in average time.
The STAR shows lower average on precision (71.90%
vs 93.21%) and on recall (53.80% vs 81.78%) than
IGFTT. The Star detector is not fully invariant to
scale, viewpoint, rotation and zoom. In other words,
the STAR detector did not detect the same keypoints
of the first image in the other images with various
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Figure 2: The precision of the detectors on various datasets with affine transformations.

Figure 3: The recall of the detectors on various datasets with affine transformations.

transformations. But, the STAR is faster (18.52ms vs
57.52ms) than IGFTT in average time.
The MSER shows lower average on precision (71.14%
vs 93.21%) and on recall (60.51% vs 81.78%) than
IGFTT. The MSER methods to detect regions are
based on extremal regions did not detect the same
keypoints of the first image in the other images with
various transformations, although the detector been
fully invariant to these transformations. Furthermore,
the MSER was more complex than IGFTT, the MSER
was more average time (89.88ms vs 57.52ms) than
IGFTT.
The FAST shows lower average on precision (92.71%
vs 93.21%) and on recall (61.34% vs 81.78%) than
IGFTT. The FAST detector is not invariant to scale,
viewpoint, rotation and zoom. In other words, the
FAST detector did not detect the same keypoints
of the first image in the other images with various
transformations. But, the FAST is faster (4.73ms vs
57.52ms) than IGFTT in average time.

5.2 Descriptor evaluation
We compare IGFTT detector combined with SURF,
ORB, SIFT, FREAK, BRIEF and BRISK descriptors
with SURF, ORB, SIFT, KAZE and BRISK.
Furthermore, we used the brute-force matching
developed in OPENCV 3.0 to make the matching
between the images. We used the precision and recall

scores. The overlap error threshold represented by εt is
50%. We take into account only the regions located in
the part of the scene present in both images. This way,
the recall score for a given pair of images is defined as

true keypoints
visible keypoints

(9)

where the amount of keypoints with overlap error < εt
is represented by true keypoints, visible keypoints is the
amount of keypoints in the part of the scene present in
both images and the overlap error threshold represented
by εt is 50%. In this case, the repeatability represents
the recall score. The precision score is 8 where matched
keypoints are the amount of the keypoints matched
between the images pair. The true keypoints are based
in putative matches, in other words, a putative match
is formed by a single pairing of keypoints, where a
keypoint cannot be matched to more than one other.
In this section, we compare the computation times
between IGFTT combined with various descriptors
SURF, ORB, SIFT, KAZE, and BRISK. The
experiments are performed on desktop Intel Ivy
Bridge Core i5-3450 3.10GHz CPU and 16GB DRAM,
using the first image of the each dataset’s sequence
compared with other images. The results are averaged
on 1000 experiments runs. We used the average of the
precision, recall and execution time to compare the all
detectors and descriptors used here.
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Figure 4: The precision of the detectors combined with descriptors on various datasets with affine transformations.

Figure 5: The recall of the detectors combined with descriptors on various datasets with affine transformations.

In some cases the IGFTT with FREAK descriptor
(called IGFTT.FREAK) has better averages in
precision and recall than SIFT, SURF and BRISK.
Furthermore, IGFTT.FREAK is faster than SIFT,
SURF, KAZE, AKAZE and BRISK.

The SIFT exhibits lower average on precision (40.02%
vs 51.85%) and on recall (43.57% vs 52.34%),
furthermore it is greater time average (957.85ms vs
64.77ms) than IGFTT.FREAK. The FREAK descriptor
using retinal binary pattern describes very well the
regions around the keypoints detected by the IGFTT
and this combination show better results than the
Difference-of-Gaussian and the descriptor based
in gradients’ orientations. Furthermore, in [1] the
descriptor FREAK generate a binary string formed
by a sequence of one-bit Difference-of-Gaussians. In
other words, this descriptor is more discriminant than
SIFT descriptor.

The SURF exhibits lower average on precision (39.66%
vs 51.85%) and on recall (43.44% vs 52.34%) than
IGFTT. The FREAK descriptor is faster and robust than
SURF descriptor through cascade of binary strings. The
Hessian Matrix applied in the integral images, Wavelet
and shows more time average (657.60ms vs 64.77ms)
than IGFTT.

The KAZE shows greater average on precision
(53.31% vs 51.85%) and on recall (56.21% vs 52.34%)
than IGFTT. The nonlinear diffusion filtering extracts
some features more discriminant than the FREAK
descriptor like shown in bark, boat, ceiling, graf, rome,
semper and wall datasets. However, the KAZE is more
complex than IGFTT, the KAZE shows more time
average (629.55ms vs 64.77ms) than IGFTT.

The AKAZE shows lower average on precision
(52.81% vs 51.85%) and on recall (54.82% vs 52.34%)
than IGFTT. The Fast Explicit Diffusion filtering
extracts some features more discriminant than the
FREAK descriptor like shown in bark, bikes, boat,
ceiling, graf, rome, semper, venice and wall datasets.
However, the AKAZE is more complex than IGFTT,
the AKAZE shows more time average (331.06ms vs
64.77ms) than IGFTT.

The BRISK shows lower average on precision (21.47%
vs 51.85%) and on recall (22.75% vs 52.34%) than
IGFTT. The descriptor BRISK based in a bit-string
descriptor from intensity comparisons is lower
discriminant than the retinal binary pattern used in the
FREAK descriptor. Furthermore, BRISK was more
complex than IGFTT, the BRISK shows more time
average (74.33ms vs 64.77ms) than IGFTT.

The ORB results in greater average on precision
(57.51% vs 51.85%) and on recall (59.59% vs 52.34%)
than IGFTT. The Oriented BRIEF descriptor and the
ORB detector are more discriminant in some cases than
IGFTT with FREAK descriptor. The ORB shows a
better invariance than IGFTT in the bark, boat, ceiling,
day_night, graf, iguazu, rome, semper and venice
datasets. Furthermore, the ORB is faster (24.05ms
vs 64.77ms) than IGFTT in time average, the FAST
detector used in the ORB is faster than IGFTT detector.

6 CONCLUSIONS
We have presented a novel method named IGFTT,
which tackles the classic Computer Vision problem of
detecting image keypoints for cases without sufficient
a priori knowledge on the scene, camera poses
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and transformation. In contrast to well-established
algorithms with proven high performance, such as SIFT
and SURF, the method at hand offers a dramatically
faster alternative at comparable precision performance
- a statement which we base on an extensive evaluation
using an established framework.

IGFTT relies on an easily configurable, the unique
properties of IGFTT can be useful for a wide spectrum
of applications, in particular for tasks with hard
real-time constraints or limited computation power:
IGFTT finally offers the quality of high-end keypoints
in such time-demanding applications.

Amongst avenues for further research into IGFTT,
we aim to explore alternatives to the GFTT search
to yield higher repeatability whilst maintaining or
improve the speed. Furthermore, we aim at analyzing
both theoretically and experimentally other efficient
detectors applied in the scale space or other filters like
ORB applied.
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