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ABSTRACT

We propose a novel example-based approach for road network synthesis relying on Generative Adversarial Net-
works (GANSs), a recently introduced deep learning technique. In a pre-processing step, we first convert a given
representation of a road network patch into a binary image where pixel intensities encode the presence or absence
of streets. We then train a GAN that is able to automatically synthesize a multitude of arbitrary sized street net-
works that faithfully reproduce the style of the original patch. In a post-processing step, we extract a graph-based
representation from the generated images. In contrast to other methods, our approach does neither require domain-
specific expert knowledge, nor is it restricted to a limited number of street network templates. We demonstrate the
general feasibility of our approach by synthesizing street networks of largely varying style and evaluate the results
in terms of visual similarity as well as statistical similarity based on road network similarity measures.
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1 INTRODUCTION In this work, we propose a novel example-based ap-

proach for road network generation that leverages the
High-quality productions such as video games, sim- potential of modern deep learning techniques. The in-
ulations or movies rely on high-quality content in- put for our method is a road network patch extracted
cluding detailed virtual environments, buildings and from OpenStreetMap (OSM). As the data is publicly
realistic road networks. However, the manual design available and maintained by a large community no fur-
and modeling of such content from scratch is a time- ther domain-specific expert knowledge for data prepa-
consuming and tedious task. Therefore, the automa- ration and/or annotation is required. Our method com-
tion of high-quality content production has become an prises three major components. The first component
active line of research in recent years. Automatic con- prepares and converts an input road network into a
tent generation has been addressed using various ap- binary image, where the pixel intensities encode the
proaches that follow the concepts of procedural mod- presence or absence of roads. The second component
eling, inverse-procedural modeling or example-based trains a generative adversarial network (GAN) [14] on
modeling. While procedural approaches rely on man- image patches extracted from the prepared road net-
ually designed grammar snippets and rule sets to de- work image. The third step utilizes the GAN to syn-
rive geometric representations of buildings, plants or thesize arbitrary sized images that contain a rastered
road networks, inverse procedural approaches try to road network. In order to use the produced road net-
infer the production rules from a given set of existing work encoded in the image in GIS applications such
examples. In contrast, example-based approaches in- as CityEngine[8], we extract the road graph and post-
spect small real-world examples and decompose them process it in a final step. The results shown in Section
into a set of building blocks in an offline step. Novel 5 illustrate that our approach is able to synthesize road
content is then generated by custom tailored algo- networks that are visually similar when compared to

rithms that reshuffle, recombine, and bend the con-
tent in order to statistically and perceptually match the

style present in the examples. Furthermore, the poten-
tial of deep learning techniques for procedural content
generation [23, 15, 32] has been investigated. These
techniques based on convolutional neural networks
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the original road networks. Moreover, they also faith-
fully reproduce road network properties like city block
area, compactness and block aspect ratio (see Sec-
tion 5.2). The statistical evaluation furthermore shows
that the major characteristics and the style of the road
network present in the original networks can also be
found in the synthesized results.

To the best of our knowledge, no other method for
road network generation using a GAN approach has
been published so far. However, we believe that this
technique is particularly well-suited for the envisioned
task, as due to their nature GANs try to learn the
distributions that underlie a set of training images or
patches. This might overcome the need for manual
definition of rule sets and parameter tuning for proce-
dural algorithms which can be tedious for non-expert
users. In addition, such a technique might boost the
expressiveness of custom-tailored example-based syn-
thesis algorithms that is typically limited by the varia-
tion found within the input template.

2 RELATED WORK

The first part of this section reviews procedural and
example-based approaches with a strong focus on road
network generation. In the second part, we briefly re-
view content generation approaches that leverage the
power of deep learning techniques. As no approach
for road network generation that leverages deep learn-
ing techniques has been presented so far, we instead
review approaches that combine CNNs with procedu-
ral and data-driven content generation algorithms.

Procedural approaches: In a comprehensive survey
on procedural and inverse procedural modeling, Sme-
lik et al. [29] discuss different approaches and appli-
cations. In general, procedural methods rely on the
use of manually defined or automatically determined
rule sets for content generation. Such approaches have
e.g. been followed by Parish and Miiller [25], where
Open L-Systems are used to procedurally grow road
networks from an initial seed point. Galin et al. [10]
generate procedural roads between two end points by
computing the anisotropic shortest path incorporating
the underlying terrain and user defined environmen-
tal cost functions. In Galin et al. [9], the focus is
on generating road networks for inter-city connection.
Benes et al. [2] grow street networks from multiple
seed points. Each seed points represents an individual
city, that is expanded by guiding the growth process
with a virtual traffic simulation. The controllability
of procedural road networks was improved by Chen
et al. [4] using tensor and direction fields to guide
the road network generator. Emilien et al. [6] focus
on procedural generation of villages on arbitrary ter-
rain. Their road network generator is custom tailored
to courses of streets found in small villages.
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Example-based approaches: In contrast to procedu-
ral approaches, example-based methods do not require
an underlying rule set to generate content. Instead,
they rely on analyzing the data such as the road net-
work or a city layout in a pre-processing step to extract
templates and/or statistical information. In Aliaga
et al. [1], intersections are enriched with attributes
such as intersection degree, street level, etc. A novel
network is generated by employing a random walk
using the attributes stored at junctions as guidance.
Yang et al. [31] focus on the synthesis of suburban
areas and districts. Starting from an empty domain
they apply a recursive splitting technique based on ei-
ther template matching followed by deformation, or
streamline-based splitting using a crossfield. Emilien
et al. [7] learn distributions from small patches of gen-
erated or manually modeled 3D content. The learned
distributions are applied in a brushed-based modeling
metaphor in order to steer the underlying procedural
content generators that produce roads, foliage, trees
or buildings. Nishida et al. [22] extract road patches
from real road networks. From an initial seed point
a road network is grown by attaching road patches to
connector streets taking the terrain into account. In
cases where no example-based growth is possible, sta-
tistical growing similar to [1] is employed.

Learning-based approaches: Emerging deep
learning techniques have been used for procedural
and data-driven content generation. In Yumer et
al. [32], a low-dimensional generative model from
high-dimensional procedural models incorporating
shape features is learned. Novel models can then
be generated by interpolating between points in a
low-dimensional latent space enabling faster and
more intuitive modeling of shape variations. Huang
et al. [15] present a sketch-modeling system using
CNNs. CNNs are trained on synthetic line drawings
produced by procedural models with varying parame-
ters. Novel shapes can then be generated by regressing
the parameters according to a user provided sketch
depicting the desired output. A similar approach was
proposed by Nishida et al. [23] focusing on interactive
modeling of buildings. The authors train CNNs for
classifying the type of a rule snippet as well as for
regressing their parameter sets from synthetic line
renderings of the rule snippets. The user iteratively
sketches building mass, roof, etc., and the CNNs are
used to classify the resulting shapes and to infer their
parameters. Ritchie et al. [27] focus on controlling
procedural algorithms using neural networks. In par-
ticular, the neural network manipulates the next steps
of the algorithm based on the content generated so far.
Apart from the approaches that require the existence
of procedural models/algorithms, pure image-based
algorithms have been investigated for controlled
content generation. Isola et al. [16] investigate GANs
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Figure 1: Our system is composed of two components. In an offline step, a road network patch taken from a real-
world city is rastered into an image. The rastered road network is used to train a GAN and the generator weights

are stored. In an online step, the trained model, i.e. the g

enerator weights, are used to synthesize road network

variations from images containing uniformly sampled noise. A clean graph is extracted from the produced image

ready to use in GIS applications.

for transfer learning, i.e. they learn a mapping from
one object representation into another such as urban
map to aerial image or sketch to image. The authors
show that GANSs can be used to learn such a mapping
without custom feature engineering. More recently, a
texture synthesis approach utilizing GANs has been
proposed by Jetchev et al. [17]. With their framework,
they are able to synthesize textures of arbitrary size
from spatial noise. This technique called Spatial GAN
(SGAN), a specialized GAN technique, serves as basis
for our approach.

3 REVIEW OF GENERATIVE AD-
VERSARIAL NETWORKS

Before outlining our approach in Section 4, we pro-
vide a brief overview about generative adversarial net-
works (GANs) that we apply to generate road net-
works. GANs are a technique to learn a generative
model based on concepts from game theory. The key
ingredients of GANs are given by two players, a gen-
erator G and a discriminator D. The generator is a
function Gy (z) : RY — RY*#*€ that takes as input a
vector z € R? sampled from a d-dimensional prior dis-
tribution p,(z) such as a uniform distribution and uses
the parameters 6% to transform it into a sample im-
age x’. The fabricated sample x' = G(z) is an image
x € R*wxe where w and h denote its width and its
height and ¢ denotes its channels. In contrast, the dis-
criminator D is a function Dgp (x) : R">**¢ — R that
takes as input either an image patch x from the train-
ing set or a fabricated image x’, and uses its parameters
6(P) to produce a scalar that represents the probabil-
ity that the investigated sample is a example x from
training set, or a fabrication x’ produced by G. The
discriminator cost is accordingly given by

Full Papers Proceedings 135

JPOP),00) = —TE, .. lo(D(x)
g

) log(1—D(x'))

which is the standard cross-entropy for a binary classi-
fication problem. The discriminator tries to minimize
JP)(6(P) 9(G)) while it controls only 8), however,
it also depends on the parameters 6(%) of the gener-
ator. The term, E,_, . [log(D(x)], measures the
skill of D to distinguish fabricated samples x’ from
real ones x that are produced by the data-generating
distribution pyu,. In contrast, E,, ,)[log(1 —D(x')]
measures the skill of G to fabricate examples, that
are misclassified by D and thus considered as real ex-
amples. In the previous terms, E represents the ex-
pectation value of the log-probability, which in prac-
tice boils down to the arithmetic mean of the log-
probabilities computed using the samples of the cur-
rent training iteration. The cost function of G is given
by J(@(8P) @)y = —jP)(9(P) 9(G)) and its goal
is to maximize D’s error on the fabricated examples
x'. As both cost functions follow different goals and
compete against each other, the underlying problem is
described as a game between the two players [13, 12].
One strategy to solve the described problem is in terms
of a zero-sum game also called minimax game. The
game is accordingly described by the objective

argmin max —J®)(6(P) 9(%))
9(G) g(D)

where —J(P)(6(P) 9(9)) represents the discrimina-
tor’s pay-off. The overall goal of such a game is to
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minimize the possible loss for a worst case maximum
loss. In particular, this is realized by performing a
minimization in an outer loop, while performing a
maximization in an inner loop. We refer the reader
to a recent tutorial by Goodfellow [12] for additional
details.

In practice, G and D are represented as neural net-
works and training them is similar to finding the Nash
equilibrium of the described minimax game played
by G and D. A Nash equilibrium in such a context
can be described as a parameter state (6(), 0()) that
is a local minimum of J®) and a local minimum of
J(G . In order to keep the problem tractable, G and
D are trained in an alternating fashion instead of us-
ing the nested loops as described above. Further-
more, G’s cost function J(¢)(0(°) 9(9)) is changed to
*%]Ewpz(z) log(D(x')). The term in the original cost
function —%EZN[,Z(Z) log(1—D(x)) would lead to van-
ishing gradients during the training, when D success-
fully rejects examples fabricated by G. Instead of pre-
viously minimizing the log-probability that the sam-
ple X’ is classified as fabricated, the new goal of the
generator G is now to maximize the /og-probability
that D performs a wrong classification. As noted in
[12], that change enables both G and D to produce
strong gradients during the final training.

For the modified game and its training this particu-
larly means that in one iteration D is trained, while in
the next iteration G is trained. As we search a local
minimum for D and G, the parameters of current com-
ponent are updated in each iteration using stochastic
gradient descent. When G is trained, its parameters
are tuned towards the production of samples x’ that
are indistinguishable from the real training data and
thus to fool the discriminator D. In contrast, when D
is trained its parameters are tuned to improve D’s skill
to discriminate the fabricated samples x’ from the real
samples x. For additional details about the theoretic
background we refer the interested reader to [12, 17].

So far, when the GAN is trained using neural net-
works, no well-founded theory about the determina-
tion of the success of training procedure of a GAN
can be found in literature. Therefore, it is necessary
to visually check generated samples and to capture
the weights 8¢ of G that fabricate visually pleasing
outputs. Note, there is no need to capture 6” be-
cause after the training D can be omitted and only
the generator G is necessary to produce new samples
[13, 12, 17].

4 ROAD NETWORK SYNTHESIS US-
ING GAN

In this Section, we outline our street network genera-
tion approach by providing an brief description of its
major components.
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4.1 Pipeline Overview

In order to successfully apply a GAN model to street
network data in vector representation as provided by
OpenStreetMap (OSM), we developed three compo-
nents to approach this task (see Figure 1). In an of-
fline step, a sample map from OSM is used to create
an image that contains a raster representation of the
street network (see Section 4.2). The produced im-
age is used to extract a set of randomly chosen image
patches of size n x n. These patches contain subparts
of the initial road network and are used to train the
GAN (see Section 4.3). Afterwards, novel road net-
work patches can be generated from a d-dimensional
z with samples drawn from p,(z). z serve as input for
the generator network G that maps them to a grayscale
image x € R"*"*! representing a rastered road net-
work. The resulting road network is encoded by pixel
intensities (cf. Section 4.4) and the discrete represen-
tation is transformed into a graph-based one in a post-
processing step.

4.2 Road Network Preparation

We use publicly available community mapping data
from OpenStreetMap (OSM) [24] datasets in which
road networks are represented as piecewise-linear
polylines, that are attached a highway label in order to
distinguish them from other structures like buildings,
rivers, and parks. Among other polylines in an OSM
dataset roads can be identified by the label highway
attached them. Each road is assigned a specific
highway type representing its category. For all our
examples, we extract roads from the OSM dataset
that have one of the following highway-categories:
motorway, primary, secondary, tertiary, resi-
dential, living_street, pedestrian. The raw road
network extracted from OSM is represented as vector
data in geo-coordinates. As well-established CNN
pipelines require images as input, we transform the
road network into a raster representation. First, we
project the geo-coordinates to WGS84, which is a
well-established coordinate projection that transforms
geo-coordinates given in Latitude/Longitude to me-
ters. Next, we scale the road network that each pixel
in the rastered representation represents an area of
3 x 3 meters. Finally, we raster the road segments
as lines with a width of 15 pixels using the line
rasterization routine of OpenCV [3] to produce a
binary image, in which white pixels now represent
the presence of roads while black pixels represent the
absence of roads. Please note that we inverted the
colors in the Figures shown in the paper.

4.3 Training Procedure

We train the GAN on images patches with fixed size
of n x n pixels extracted from the image containing the
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rastered road network. In order to provide a suitable
large training set and to enable the network to capture
the local statistics well, we perform the training on im-
ages patches. A well-established approach for training
GAN:S is an iterative and alternating training proce-
dure. This means that G and D are trained in an alter-
nating fashion every second iteration. In the step when
G is trained, it takes as input a set Z = {zo,...,2x}. As
described in Jetchev et al. [17], that serves as basis
for our training, each z; is a tensor z; € R"™**¢ where
at each spatial location a d-dimensional vector drawn
from p, it used. The z; and is then transformed by G
into a grayscale image x; = G(z;) of size x} € R™"*1,
When D is trained, a set X = {xo,...,x;} of k image
patches x; € R™"*! and the set X' = {x{,...,x,} gen-
erated by G in the previous step serve as input. The
samples x € X are extracted from random locations
inside the training image. We refer the reader to the
work by Jetchev et al. [17] for additional details about
the training procedure. Please note that we use only
a single image, that provides patches for the training
procedure, but using multiple different images would
be possible and would increase the examples in the
training set.

4.4 Road Network Post-Processing

In order to use the resulting road network in GIS
applications or in a road network analysis task, we
need to transform grayscale image intensities to a road
network graph. For this purpose, we apply a post-
processing to the synthesized images.

Image post-processing: The grayscale images pro-
duced by the generator network contain pixel intensi-
ties in the range [0,255] (see Figure 4). In a first step,
we threshold the gray values at 127 in order to pro-
duce a binary image where pixels set to true represent
the presence and non-set pixels represent the absence
of road. Applying the threshold might produce unde-
sirable isolated pixels and also small cusps along road
regions. In order to get rid of these artifacts, we ap-
ply a morphological erosion operation. However, the
produced result might still contain small holes or road
regions that do not touch within a radius of up to five
pixels. In order to close such small gaps, we apply five
steps of morphological dilation. For all morphological
operations, we use a 3 x 3 structuring element with the
shape of a cross. The obtained initial road network,
however, contains road regions that are too thick to
extract an initial road graph. Therefore, we thin out
the result to extract a skeleton from the cleaned binary
image using the algorithm from Zhang et al. [33].

Road graph construction: We utilize the pixel-
skeleton from the previous step to construct an initial
graph ¥ = (¥, &) representation of the synthesized
road network, where ¥ are its vertices and & are its
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Figure 2: Block artifacts resulting from graph con-
struction

edges. In order to construct ¢, we add a node V; to
¥ for each of the skeleton pixels. Next, we examine
the 8-neighborhood of each V; in the image. For each
skeleton pixel V; inside the 8-neighborhood of V;, we
add an edge E;; = (Vi,V;).

Cityblock cleanup: The graph construction from the
pixel skeleton produces regions within the road net-
work that have a very small area of 0.5 square pix-
els (see Figure 2), which are removed in a first step.
The regions within a road network graph are typically
called city blocks. Strictly speaking, a city block is
a region within the graph ¢, that is enclosed by a set
of road segments and might contain dead-end street
segments. In order to identify these small regions,
we first compute all the city blocks of the graph. As
the graph is a directed graph and embedded in R?, the
city blocks can be computed by determining the mini-
mal cycles of the graph by computing loops of edges.
Next, we filter out blocks with an area of 0.5 pixels.
These artifact blocks can be removed by identifying
and removing their longest edge, which has a length

of \/E

Road courses smoothing: Another artifact produced
by constructing ¢ from the image raster are jagged
edges. In order to smooth these in the final graph, we
extract a set of street chains § = {S;} from the graph.
Each S; = {V,...,V,} consists of n nodes, while the
degrees of Vj and V), are constrained by deg(Vp) # 2
and deg(V,) # 2. From each of the S;, a polyline
P,={po,...,pn} withn positions is built. A smoothed
version of the positions can be obtained by applying
5 steps of local averaging p; = %pi,l + %p,- + %p,-ﬂ
to the p;’s with i € [1,n — 1], and replacing the orig-
inal p;’s with their smoothed version p;. Finally, we
additionally straighten the road courses, by removing
superfluous nodes using the Douglas Peucker simpli-
fication [5]. We allow to remove nodes that deviate up
to 3 meters from a straight line. The last step removes
short dead-end street chains with an total length of less
than 25 meters.
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S CASE STUDY: ROAD NETWORK
TYPES

In order to showcase the versatility of our road net-
work synthesis approach, we evaluate our approach on
a set of challenging test cases. We composed a collec-
tion of real-world as well as synthetic road network
examples (see Figure 3 a)-d)). The real-world exam-
ples were taken from OSM, while the synthetic ones
were taken from [21]. For all the examples shown in
here, we used a patch size of 321 x 321 (cf. Figure 9)
pixel during the training procedure, because that size
captures the local structures found in the our test road
networks. Furthermore, we used only a single road
network image from which patches were extracted.
We synthesized two examples for each road network
shown in Figure 3 a)-d). In our evaluation, we investi-
gate the visual appearance of the generated results and
analyse the similarity in terms of road networks mea-
sures such as area, compactness and aspect ratio of the
city blocks by comparing the resulting distributions.

5.1 Visual Evaluation

Irregular: Synthetic As a first test case, we con-
sidered a synthetic road network (see Figure 3a).
The major characteristics of this road network are
blocks of different sizes with and without dead-ends,
and similar sized blocks, that form small groups.
Nearly all blocks have a rectangular shape except
for a few exceptions. Figure 4 (a) and (b) show road
networks generated by GAN model after passing
our post-processing pipeline. It can be noticed, that
the generated results contain blocks similar in shape
and size when compared to the original network.
Notice, that the results even contain the small groups
of nearly square shaped blocks that are present in the
original network. Larger road courses are present in
the examples, although they have a curvature different
to that in the original network.

Irregular: San Marco Next, we evaluated a street
network patch from a village in Italy (see Figure 3b).
A major characteristic of that network is its large
amount of small city blocks in comparison to only a
few larger ones. Generated samples of this network
type are depicted in Figure 4c and 4d. Both samples
contain a significant number of small blocks when
compared to the number of medium sized and large
city blocks. It is also noticeable that smaller blocks
are located next to each other. Furthermore, the result
contains large scale structure such as connected road
courses that separate groups of smaller blocks. An-
other produced sample visualized using CityEngine
can be seen in Figure 12.

Irregular: Berlin In contrast to the previous example,
the next network shown in Figure 3c is composed of a
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significant amount of larger, mainly square or rectan-
gular shaped blocks. Only a few blocks are irregularly
shaped and contain dead-ends. The generated samples
shown in Figure 4e and 4f contain a significant amount
of nearly square shaped blocks and rectangular shaped
blocks. It can be recognized that the generated net-
works also contain irregularly shaped blocks and even
L-shaped blocks not being present in the examples.

Suburban: Synthetic Next we show results generated
from a synthetic network of a suburban region with
structures mainly found in suburban regions of the US
(see Figure 3d). A major property of such network
types is the presence of curved road courses. Our pro-
duced results shown in Figure 4g and 4h contain these
typical curved roads shapes.

5.2 Statistical Evaluation

Apart from the visual comparison of the results, we
performed an evaluation of graph measures computed
on the synthesized road networks and the original road
networks. These considered measures include the
cityblock area, the compactness, i.e. the ratio between
block area and its minimal bounding box, and the city
block aspect ratio, i.e. the ratio between the shorter
and the longer side of the minimal bounding box.

Irregular: Synthetic Figure 5 compares the graph
measures between the synthetic irregular network
shown in Figure 3a with the ones obtained from our
synthesized results. While the distributions of the
block area and the compactness have a similar shape,
the aspect ratio distribution varies as the generated
result contains much more variation of rectangular
shaped blocks than the original road network.

Irregular: San Marco In this result (see Figure 3b),
the distributions of block area, aspect ratio and com-
pactness are similar (see Figure 6). The resulting net-
work mostly consists of small city blocks as illus-
trated by the block area distribution. Both the origi-
nal and the generated road network contain a signif-
icant amount of nearly rectangular blocks (see com-
pactness). As the aspect ratios within the generated
network are also similar, thus, learned model has cap-
tured the properties of the original network.

Irregular: Berlin In Figure 7, we illustrate the dis-
tributions for the Berlin example shown in Figure 3c.
While the block area and the aspect ratio of the blocks
found in the generated example tend to be similar,
the compactness varies more than in the previous ex-
amples. As the streets in the produced network are
not perfectly straight anymore, the compactness of the
blocks deviates from being nearly 1.0.

Suburban: Synthetic For suburban networks such as
the one shown in Figure 3d, the distributions of block
area and aspect ratio differ, while especially the as-
pect ratios within the generated network have a few
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(a) (b) (©) (d) (e)

Figure 3: Overview of the different road network styles used in our case study: (a) Synthetic irregular, (b) Cellino
San Marco irregular, (c) Berlin irregular, (d) Synthetic suburban, (e) Portland with highway ramps

® (h)
Figure 4: Different samples fabricated by the generator learned from the synthetic irregular example shown in

Figure 3. Synthetic irregular (a) and (b), Cellino San Marco (c) and (d), Berlin irregular (e) and (f), Synthetic
suburban (g) and (h). The results are discussed in detail in Section 5.
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spikes (cf. Figure 8). However, at a larger scale the
overall shape of the distribution is similar. As this
road network type contains large-scale structures such
as curved roads that pass through the whole network
the chosen context size cannot capture these, thus,
the generated network will suffer from these missing
global properties. This leads to a structurally differ-
ent generated road network which is reflected by the
distributions of the different graph measures.
.{]-l.—-H L+

e ET

original image

T =
synthesized image

Figure 9: Illustration of the context size using during

the training stage. Left: Original image with overlaid

extent of the training image. Right: Generated sample
with an overlay of the training image size.

5.3 Limitations

Large-scale structures and ramps. We noticed that
our approach cannot successfully handle road network
patches that contain highway ramps and networks that
contain street lanes that are located very close to each
other, as illustrated in the road network example taken
from Portland (see Figure 3e). When the road net-
work is rastered nearby lanes will be merged with and
form even thicker lanes. If highway ramps are present,
additional pixel blobs are introduced as illustrated in
the synthesized example shown in Figure 10. It can
be noticed that the grid-like road pattern is faithfully
reproduced. However, due to the thick lanes and the
limited context size (see Figure 9) the highway struc-
tures present in the training data cannot be recovered
successfully. Instead, thick road structures occur on
the left border (cf. green arrows) and blob shaped ar-
tifacts are scattered over the synthesized example (cf.
region surrounded by green ellipses). When the post-
processing is applied, these artifacts will be alleviated,
however, irregularly shaped blocks will be present in
the final road network.

Deadend roads. All the synthesized examples con-
tain much more dead-ends when compared with the
number of dead-ends present in their corresponding
original road network. This might be due to the patch-
based training procedure. Each patch that is used for
training typically contains virtual dead-end street seg-
ments that abruptly end at the patch boundary.
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Figure 10: In case of nearby located highway lanes
and highway ramps, the GAN fails to capture these
properties. This leads to blob-like artifacts in the gen-
erated samples.

5.4 Street Network Generation with Tex-
ture Synthesis Techniques

We complete our case study with a brief evaluation
of texture synthesis algorithms for street network gen-
eration. In particular, we synthesize road networks
with patch-based texture synthesis algorithms such as
method of Portilla and Simoncelli [26] and Kwatra et
al. [19]. Furthermore, we evaluate recent CNN based
texture synthesis algorithms, specifically the method
of Gatys et al. [11] and the Generative ConvNet tech-
nique proposed by Xie et al. [30] for road network
generation. Figure 11la illustrates results from Por-
tilla and Simoncelli on the left-hand side and results
from the method of Kwatra on the right-hand side. For
both algorithms a variation of the irregular road net-
work shown in Figure 3a was synthesized. As it can
be clearly noticed, these methods are not able to pro-
duce large scale structures such as city blocks. Fur-
thermore, both algorithms have problems in consis-
tently producing connected road courses. CNN-based
algorithms are able to produce large scale structure as
illustrated in Figure 11b. The road network produced
by Gatys et al. [11], however, lacks visual similarity to
the original network. In contrast, the approach by Xie
et al. [30] is able to produce a visual similar road net-
work and captures that properties found in the original
road network.

6 IMPLEMENTATION DETAILS

Our algorithms are implemented in Python and we
used the GAN implementation of [17] as a basis for
learning the different road network models. However,
we changed the original implementation in order to
consistently support single channel images. The GAN
model for the different road networks is trained on a
single NVidia TitanX (Pascal). Each epoch takes 100
iterations with a batch size of 64 and takes about 90
seconds to compute. We trained all the models for
at least 100 epochs and decided from a visual exam-
ination of samples taken from various epochs which
model to choose. The overall training is done in
an offline step that takes up to 3 hours. The single
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Xie et al.
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Figure 11: Evaluation of texture synthesis algorithms using the irregular road network illustrated in Figure 3a. In
11a the result of patch-based synthesis algorithms i.e. the approach of Portilla and Simoncelli and the method of
Kwatra et al. are illustrated. These methods suffer from producing larger scale structures such as city blocks and
connected road structures. In contrast 11b illustrates result from modern CNN based methods, i.e. the algorithm
Gatys et al. and the method Xie et al. are able to reproduce connected structure and even city blocks, however,
they are only able to produce images of fixed that need additional resizing.
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Figure 12: The resulting road network is directly us-
able in urban planning tools such as CityEngine.

steps of the online synthesis steps takes up to a few
seconds. In more detail, the generation of a sam-
ple of size 769 x 769 pixels produced from a tensor
7 € R¥*25x100 sampled from p,(z), takes on average
0.08 seconds on a single NVidia TitanX (Pascal). The
post-processing steps are performed on a Intel Core-
i7 5820K, with only a single core in use. Each step
takes: for graph construction: 1.5s, for block compu-
tation: 1.6s, for simplification: 2.0s and for deadend
removal: 0.02s in average.

7 CONCLUSION

We have investigated the suitability of GANSs for road
network synthesis. In order to make it possible to
train GAN on road network data we developed a pre-
processing step. A post-processing step enabled us to
extract a graph-based representation. Our results have
demonstrated that GANs are able to produce novel
road network patches, that are structurally sound and
visually similar, when compared to the input network.
Furthermore, we substantiated our results by a statisti-
cal evaluation of different road network measures such
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as city block area, city block compactness, and city
block aspect ratio.

During the evaluation of our pipeline, we identified
several limitations. First, structures like roundabouts,
highway ramps and also roads that are very close to
each other are not sufficiently captured during the
training. This means that roundabouts or highway
ramps cannot be successfully synthesized with our ap-
proach. Second, currently we consider all highway
categories as part of the same street level. We did
not succeed in learning models for different street lev-
els, thus, we decided to perform the experiments us-
ing only a single street level (cf. Section 4.2). Typ-
ically, a road network naturally splits into multiple
street levels such as major and minor roads. Thus,
it is necessary to perform an in-depth evaluation of
multiple street levels in future work. Furthermore,
large-scale road courses are typically present in ev-
ery road network. Although, these structures are rudi-
mentary present in the synthesized examples shown
in Section 5, our post-processing step lacks an ad-
ditional step to consistently enforce such large-scale
structures. One possibility to address this issue, would
be fitting curves to road individual courses and enforc-
ing global constraints such as parallelism. Another
limitation is that we have only limited control over the
output of the generator. In real road networks the road
courses are specifically planned to fulfil specific re-
quirements regarding landuse or terrain. Furthermore,
the urban planner might also incorporate existing ob-
jects into its road design decisions. As our approach
is a very first step towards using GANs for road net-
work generation, we did not incorporate such external
constraints. However, such constrains are necessary to
steer the output of the generator G and leave this for
future work as it would exceed the scope of the paper.

There are several interesting directions for future
work. First, we would like to add attribute layers
e.g. density maps, landuse maps, terrain maps etc.
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in order to condition the learning process. This
would make it possible to improve controllability
of the generator network. Second, we would like to
investigate further steps in order to train a GAN model
that is able to synthesize multiple street levels. The
post-processing needs to be extended to reproduce
large-scale structures so that a fair comparison to
existing example-based or procedural algorithms for
road network generation can be given. Third, we
would like to extend our approach and investigate the
suitability of GANs to generate building footprints
given a predefined city block shape. Finally, we
would like to extend the road network generation in
terms of a growing based road generation system.
Apart from using GANSs for urban structures we might
also investigate their use for feature map generation
for texture synthesis algorithms such as [28, 18].
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