
A COM-based Toolkit for Real Time Visualization

Stefan Maas

Westfälische Hochschule Gelsenkirchen
Medical Engineering Laboratory

Neidenburger Straße 43
 45877 Gelsenkirchen, Germany

stefan.maas@w-hs.de

Heinrich Martin Overhoff

Westfälische Hochschule Gelsenkirchen
Medical Engineering Laboratory

Neidenburger Straße 43
45877 Gelsenkirchen, Germany

heinrich-martin.overhoff@w-hs.de

ABSTRACT
Collaborative software development in different languages is not unusual, but leads to minor resource utilization

during collaboration as a result of porting or reprogramming needs. Additionally in cooperative projects,

frequently legal and market economic issues prohibit an exchange of source code between the project partners.

Combining modules from different languages is possible using the Component Object Model (COM).

Additionally COM offers an efficient way to combine modules from several development teams.

To solve the common issues of collaborative software development and to fulfil the needs of a real time

visualization toolkit, “RTVCOM” was designed and realized. To demonstrate the capability of this approach an

example client was developed that combines COM components written in OpenCL C, OpenGLSL, C++ and C#.

It that processes 3D+t ultrasound data at 45.2 MB/s reconstructs the associated volume data and visualizes them

in real time. The visualization is fully interactive, and different pre- and post-processing filters can be applied.

Keywords
Collaborative software development, COM, GPU, real time rendering

1. INTRODUCTION
Collaborative software development in different

languages is not unusual. But this leads to minor

resource utilization as a result of porting or

reprogramming needs. Additionally in cooperative

projects frequently legal and market economy issues

prohibit an exchange of source code between the

project partners. The Component Object Model

(COM) [Mic15a] was designed to support

development of software using different languages

and offers an efficient way to combine modules from

several development teams. COM enables inter-

process communication and applications with loose

coupling and high cohesion.

Using graphics processing units (GPUs) in real time

visualization applications is state of the art. While

GPU host programs are implemented in languages

like OpenGLSL or OpenCL C, clients on central

processing units (CPUs) are written in languages like

C++ or C#.

To facilitate collaborative development of real time

visualization software in cooperative projects the

toolkit “RTVCOM” (“Real Time Visualization using

the Component Object Model”) was designed and

realized. RTVCOM allows the implementation of

clients in different CPU- and GPU-languages to gain

a great variety of application possibilities.

To evaluate the capabilities of RTVCOM an example

client was created that processes 3D+t ultrasound

data at 45.2 MB/s in real time. Volume rendering

including pre and post-processing filtering contribute

to a complex functionality of this client.

2. RECENT SOLUTIONS
The open source “Visualization Toolkit” (VTK)

[Kit15a] and the “Insight Segmentation and

Registration Toolkit” (ITK) [Kit15b] are widely

spread in the medical visualization community. Other

toolkits like the “Medical Interaction Toolkit”

(MITK) [Ger15a] and frameworks like “MeVisLab”

[Mev15a] are built upon VTK and ITK or integrate

them. The advantage of these toolkits and

frameworks is the immense range of functions and

the acceptance in the community. But these toolkits

are not fully realized for GPU execution and hence

the algorithms are too slow for 3D+t volume

visualization in real time.

[Gob08a] created a pure GPU ray casting framework

for massive volumetric datasets. The algorithms of

that framework would be fast enough in principle.

But it is only laid out for handling static volumes.

Some GPU frameworks as presented in [Sch11a],

[Mem11a] or [Chu10a] are dealing with medical

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 41 ISBN 978-80-86943-67-1

Table 1. Overview of RTVCOM categories

image segmentation or reconstruction, but not with

continuous volume data.

Therefore, all of these toolkits and frameworks are

incapable of visualizing volume data at rates

mentioned above.

Simulator X [Lat12] is an example for software that

is based on the actor model. It is fast enough to allow

real time visualization with low coupling and high

cohesion. But as the toolkits/frameworks above the

actor model is not laid out to fulfil the needs of

collaborative software development in different

languages. Also the mentioned legal and market

issues in cooperative projects are not regarded.

3. PROPOSED SOLUTIONS
RTVCOM was designed and realized to solve the

issues mentioned in the previous section. While

RTVCOM was primary implemented for visualizing

medical image data it was laid out to include all kind

of real time data in principle. RTVCOM was

developed as a modular system consisting of COM

components as “In-process-Servers” with defined

interfaces. Clients are not part of the toolkit and can

be implemented arbitrary.

3.1 Component Categories
RTVCOM includes components from six categories

(Table 1), which were implemented by the authors

and three different project partners in two

collaborative projects:

 Reader

The category “Reader” contains interfaces to (raw)

data providers like ultrasound devices or other

devices with continuous 2D+t or 3D+t raw or image

data streaming.

For prior recorded data support this category also

contains readers for different file formats like

DICOM or Insight Meta Image (.mha, .mhd).

Components in this category are usually written in

CPU languages.

 Preprocessor

COM-components for raw data processing or for

processing image data before visualization belong to

the category “Preprocessor”. This category consists

of two subcategories:

o “GPU”

Real time processing filters can be found in

subcategory “GPU”. These filters are written in

OpenCL C or OpenGLSL and are used before

the visualization process. For example the

conversion of raw data to image data can be

found in this category.

o “CPU”

During development time it can be reasonable to

write filters using CPU languages first. For

example to examine the quality of a serial filter

in C++ before parallelizing it using OpenCL C.

These filters belong to subcategory “CPU”.

 Viewer

 “Viewer” contains all graphical COM-components

that were built to visualize data. This category is

divided in two subcategories: “2D(+t)” and “3D(+t)”.

Currently all viewer-components use OpenGLSL

vertex and fragment shaders.

 Postprocessor

It is often useful to enhance visualizations with post

processing algorithms (“filters”). This category is

divided in the same subcategories that are used in

“Preprocessors” for the same reasons.

 Helper

This category contains all components that support

the visualization indirectly like e.g. a GUI element

for manipulating the opacity transfer function of

volume visualizations. (The opacity transfer function

itself is part of “Viewer” components.) Components

in this category are usually written in CPU

languages.

 Import/Export

Import/Export components are used to include

functionality from third party products like

MATLAB. The “MLApp”-COM server allows

external applications to use MATLAB-functions.

Since MATLAB is to slow for real time processing,

this component is only used during the first phase of

filter development. In the second phase promising

filters are usually ported to OpenCL C or

OpenGLSL.

3.2 Interfaces
The interfaces of the components are standardized.

This simplifies the data exchange between the

components on the client side. It is possible to

convert data from OpenCL C to OpenGL shaders and

vice versa without leaving the host. To minimize

memory consumption and to enable fast data transfer,

generally memory addresses or pointers are

exchanged over the interfaces.

Category Reader Preprocessor Viewer Postprocessor Helper Import/Export

CPU X X X X X

GPU X X X

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 42 ISBN 978-80-86943-67-1

Figure 2. Example for a jointly created client

regarding processing location

Figure 1. Example for a jointly created client

regarding developers

3.3 Sharing Components
Sharing RTVCOM components is currently realized

by a Microsoft Team Foundation Server 2010. This

server is part of a Microsoft SharePoint Server 2010.

These servers are the base of the quality management

system used for developing RTVCOM.

Depending on the settings of an integrated rights

management system the developed components can

be shared, for example, with project partners without

revealing internal knowledge. Also jointly created

clients are possible, where each partner can use the

COM components of the other partners. Source code

access is only possible for developers with rights in

accordance to the rights management system.

3.4 Client Creation
Clients can be built by assembling components from

the given categories. While the usage of “Reader”-

and “Viewer” components is mandatory, components

from other categories can be used optionally in type

and numbers.

A client, that was created by the authors and one

industrial partner during a jointly project, is shown in

Figure 1. In this client the industry partner (“A”)

provides an ultrasound device including software

components of category “Reader” and “Viewer”.

This software allows only a conventional view on

ultrasound images. The authors “B” integrated

components from category “Preprocessor”,

“Postprocessor” and “Helper”. During development

“B” is able to use the components from “A” but

cannot access their source code due to missing access

rights. After the project ends “B” can provide “A”

with the developed components without revealing

any knowledge.

A different view on this example client (see Figure 2)

illustrates that the use of RTVCOM enables both

partners to create GPU and CPU components and

merge them in a joint client.

4. EXPERIMENTAL RESULTS
To demonstrate the capability of RTVCOM an

example client was developed that combines COM

components written in OpenCL C, OpenGLSL, C++

and C#. It acquires raw data streams at 45.2 MB/s

and 50 Hz from an ultrasound device, reconstructs

the associated volume data and visualizes the data in

real time.

The used hardware consists of an Intel Core2Duo,

2.6 MHz CPU, PC with an NVIDIA Geforce 760

GTX. On this system the visualization is fully

interactive, and different post processing filters can

be applied without losing the real time capability.

4.1 Client Details
The data acquisition, data flow and visualization

process of this C#-based client (see also Figure 1) in

detail:

1. The first component (“Reader”; written in C++)

starts the data acquisition from the ultrasound

device. Raw data (short values, 8 bit) are

transferred at 50 Hz as 2D+t slices from the

ultrasound device via a network card to the

visualization computer.

2. Within the second component (“Preprocessor”;

written in C++ and OpenCL C) the short values

are uploaded to the GPU. Due to a better float

value support of GPUs the short values are

converted to float values in the first OpenCL

kernel. In the next step the volume data are

recalculated from the raw data using four

different OpenCL kernels.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 43 ISBN 978-80-86943-67-1

Figure 1. Schematic overview of example client

3. The next component (“Viewer”; written in C#

and OpenGLSL vertex and fragment shaders)

visualize the reconstructed volume using a

raycasting technique. This 3D+t volume is

updated every incoming slice resulting in an

update rate of 50 Hz.

4. Three filter components (“Postprocessor“;

written in C# and OpenGLSL compute shaders)

were added for enhancing image quality. These

filters can be activated/deactivated interactively.

5. Additionally the visualization of the volume can

be optimized by manipulating the opacity and

grayscale transfer functions using another

component (“Helper”; written in C#).

4.2 Comparison
Before the example client was implemented, the

visualization was realized by a single main program.

This data and control flow was exactly like in the

example client but without any COM components.

Because COM is said to be slow regarding data

transfer, a performance comparison between both

implementations were implemented. It revealed no

measurable difference. Both implementations were

able to visualize the 3D+t data at 45.2 MB/s.

5. CONCLUSION
It has been demonstrated that RTVCOM and

RTVCOM-based clients can solve the common

issues of collaborative software development and to

fulfil the needs of a real time visualization toolkit:

 Support of collaborative software development

in different CPU and GPU languages

 Enabling development of jointly created clients

in cooperative projects regarding legal and

market economy issues

 Visualization in real time

The advantage as well as disadvantage is the fact that

RTVCOM is not laid out to reveal source code. So

this approach cannot directly be used for open source

projects.

Future works will extend RTVCOM to support the

Distributed Component Object Model (DCOM). This

will simplify the exchange and replacement of COM

objects and make the Team Foundation Server

obsolete for this purpose. Additionally the number of

filters will be enlarged to increase visualization

quality for specific applications. Furthermore readers

for other types of data like real time image data from

magnetic resonance tomography (MRT) will be

implemented.

6. REFERENCES
[Chu10a] Chunlan, X., and Anyuan Z., and Liu, D.C.

Optimized GPU Framework for Ultrasound B-

Mode Imaging. Bioinformatics and Biomedical

Engineering (iCBBE) 2010, pp. 1-4, 2010.

[Ger15a] German Cancer Research Center. MITK.

http://mitk.org/wiki/MITK.

[Gob08a] Gobbetti, E., and Marton F., and Iglesias

Guitián, J.A. A single-pass GPU ray casting

framework. The Visual Computer, pp. 797-806,

2008.

[Kit15a] Kitware, Inc. VTK. http://www.vtk.org.

[Kit15b] Kitware, Inc. ITK. http://www.itk.org.

[Lat12a] Latoschik, M.E. and Tramberend, H. A

Scala-Based Actor-Entity Architecture for

Intelligent Interactive Simulations. Software

Engineering and Architectures for Realtime

Inteactive System (SEARIS) 2012. 5th Workshop

on, pp. 9-17, 2012.

[Mem11a] Membarth, R., and Hannig F., and Teich

J., and Körner M., and Eckert W. Frameworks for

GPU Accelerators: A Comprehensive Evaluation

using 2D/3D Image Registration. 2011 IEEE 9th

Symposium on Application Specific Processors

(SASP), pp. 78-81, 2011.

[Mev15a] MeVis Medical Solutions AG. MeVisLab.

http://www.mevislab.de.

[Mic15a] Microsoft Corporation. Microsoft COM.

https://www.microsoft.com/com/default.msp.

[Sch11a] Schmid, J and Iglesias Guitián, J.A., and

Gobbetti, E., and Magnenat-Thalmann, N. A

GPU framework for parallel segmentation of

volumetric images using discrete deformable

models, The Visual Computer, pp 85-95, 2011.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 44 ISBN 978-80-86943-67-1

