
Reasoning about graph algorithm visualization
Dmitry S. Gordeev

A.P. Ershov Institute of Informatics Systems,
Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia
gds@iis.nsk.su

ABSTRACT

A method of graph algorithm visualization based on an implicit visual effect generation approach is described. The
approach develops an idea to establish an algorithm as an input as well as input graph. Visualization of algorithms is
carried out by means of a set of configurable visual effects. We consider a class of hierarchical graphs as a class of
input graphs. This allows using wide set of input graphs and presenting additional data appearing during the
algorithm work as part of a single visualized graph model. Described approach is be used both in research and
education.

Keywords:
Graph, hierarchical graph, algorithm, visualization, visual effect.

INTRODUCTION
Algorithm visualization is a recurring subject in

the field of data visualization. Researchers mostly use
them in order to build some educational courses in
computer science field [1, 2]. According to review
papers a lot of algorithm visualization works are
focused on construction new visualization for specific
algorithm or for very limited number of ones, and also
have different characteristics of effectiveness of
visualization. It’s remarked in reviews that it’s quite
difficult to create effective algorithm visualization.
Thus most of works have low quality and often it’s
hard to find working samples for demonstration in
education class.

Most of these visualizations cover simple cases of
algorithms and data structures. The review paper [2]
remarks that there is need for visualization working
with more complex data structures like B-trees or NP-
hardness. It does make sense in order to familiarize
students with more complex concepts of computer
science. Often authors of review makes conclusion
that there is need for estimation of algorithm
visualization effectiveness. Usually they estimate
effectiveness in context of time required to understand
concept, which visualization presents. Also review
authors mark that effectiveness of visualizations is
better if students are involved into a process of
construction of algorithm visualization. If students
have opportunity to interact with visualization then it
produces more denotable effect in education.

Permission to make digital or hard copies of all part
of this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and
that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

This paper introduces the approach to construction
of algorithm visualization constrained for graph
algorithms. It’s noted in paper [2] that constrains with
domains allow to make corresponding assumption
which lead to improvement of expressiveness and
effectiveness of algorithm visualizations. We consider
only graph algorithms. It means that a text of an
algorithm is written on terms of the graph theory.

RELATED WORK
There are many tools to create algorithm

visualization. Most of them focus on creation one-time
visualization of particular algorithm which can be
stored as video record or number of pictures, and later
can be demonstrated in education class. Also there are
several tools of software visualization field which
show work of some program written with
programming language. In this approach state of
memory is been visualized [5,6,8,9,11]. Also there are
approaches using static images in order to show
dynamic process [4]. Also there are works which
proceed with limited fix set of algorithms [12].

This does not allow user to change input
algorithms what would be high degree of freedom in
interaction with algorithm visualization. According to
reviews [2] it would be useful to have opportunity to
interact with visualization process for education
purposes.

VISUALIZATION
In this work we consider approach in which we

limit only graph algorithms instead of general
algorithms. It means that we consider algorithm
working only with graphs. It allows us to select events
expressed in terms of graphs. For example adding of
vertex, remove edge from subgraph or change
attribute value of tree node or enumerate nodes
incident to given one. And we can describe graph

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 75 ISBN 978-80-86943-67-1

mailto:gds@iis.nsk.su

algorithms in such terms with using some
programming language [10]. In this form algorithm
can be compiled into executable program. The result
of the program execution is information which is to be
used in creation of the underlying algorithm
visualization. An example of such instruction can be
adding an edge or a change in the attributes of
vertices. The following example shows the breadth-
first search algorithm for any graph. In the given case,
Get(...) and Set(...) instructions are used for reading
and changing the graph element's attribute values.
These instructions have formats Get(vertex,
attributename) and Set(vertex, attributename,
attributevalue), respectively. Here is we have the first
aspect of visualization interactivity. We change
algorithm text and get a visualization with another
properties without additional efforts. To construct a
visualization of the breadth-first search algorithm, the
state attribute is appointed to each graph vertex. The
value of the state attribute reflects whether the vertex
was visited during a traversal of a graph.

VertexQueue.Enqueue(Graph.Vertices[0]);
while (VertexQueue.Count > 0)
{
 Vertex v = VertexQueue.Dequeue();
 Set(v, "state", "visited");
 foreach(Edge e in v.Edges)
 {
 Vertex t = e.PortTo.Owner;
 string c = Get(t, "state");
 if(c != "visited")
 {
 Set(t, "state", "visited");
 VertexQueue.Enqueue(t);
 }
 }
}
VertexQueue.Clear();

Each instruction of the algorithm generates one
or more images of the current state of the graph
model. The graph model is a hierarchical marked
graph. The hierarchical graph H is a tuple of two
elements: the first is a graph G and the second is a tree
of fragments. Each fragment is a subgraph of the
graph G. For any two fragments U and V, only one of
the following properties holds: U is a subgraph of V, V
is a subgraph of U, or U equals V [3]. It is useful to
highlight the current executing instruction in each
image because it allows a user to keep attention on
valuable events at this moment. To solve the problem
of highlighting the current executing instruction in the
image, the following approach is used. Each text line
has a numeric index in all text lines. So that order
value is added to arguments of the function
corresponding to the text line. This additional
parameter is the number of the current executing
algorithm instruction. After this transformation, the
text of the breadth-first search algorithm from the
above example looks like this:

VertexQueue.Enqueue(Graph.Vertices[0]);
while (WhileCondition(2, VertexQueue.Count > 0))
{
 Vertex v = VertexQueue.Dequeue(4);

 Set(5, v.ID, "state", "visited");
 foreach(Edge e in ForCollection(6, v.InEdges))
 {
 Vertex t = e.PortFrom.Owner;
 string c = Get(9, t, "state");
 if(IfCondition(10, c != "visited"))
 {
 Set(12, t, "state", "visited");
 VertexQueue.Enqueue(13, t);
 }
 }
}
VertexQueue.Clear();

The above example shows changes in the
attributes of the graph elements, too. This is a typical
situation for algorithms implementing only traversal
of a graph – a method when all graph vertices are
visited one by one. For example, the Pruefer encoding
algorithm constructs a sequence of numbers by the
given tree graph. During the coding process, the
vertices of the graph are removed one by one. To
perform this operation, the RemoveVertex(...)
instruction should be used, which leads to generation
of a visual effect of the corresponding vertex
disappearing. Here is an example of the Pruefer
encoding algorithm, how it can be formulated as a
parameter of the graph algorithm visualization system:

int i=0;
List<Vertex> Leafs = new List<Vertex>();
int n = Graph.Vertices.Count;
while(i++ <= n-2)
{
 Leafs.Clear();
 foreach(Vertex v in Graph.Vertices)
 if(v.OutEdges.Count == 0) Leafs.Add(v);
 Vertex codeItem =
 Leafs[0].InEdges[0].PortFrom.Owner;
 Output.Add(codeItem);
 RemoveVertex(Leafs[0]);
}

Each algorithm instruction generates some
information during execution of the transformed text
of the original algorithm. This information describes
the number of the current instruction, the name of an
attribute of a graph element, the previous value of the
attribute, a new value of the attribute and the identifier
of the graph element. This information allows us to
get the full history of operations executed over graph
elements. This operation history contains the detailed
information on the state of the graph model during the
algorithm running. Further the history of operations,
the input graph and the original text of the algorithm
are used to generate the algorithm visualization. Each
operation history element corresponds to some
graphical effect over visual representation of graph
elements. The simplest example of the visual effect for
the breadth-first search algorithm is to change the
color of the graph vertex representation when a state
attribute of the vertex has been changed and to change
the color of the text of the corresponding instruction.
Here is the second aspect of visualization interactivity.
We changes an assignment any particular visual effect
and get changed.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 76 ISBN 978-80-86943-67-1

EXPERIMENTS
A system of graph algorithm visualization has

been constructed based on suggested approach. This
system consists of several components: an algorithm
execution module, a graph editor and a graph
algorithm visualizer. It can be assumed without loss of
generality that data are passed between components in
a text form. This is useful if the components are
implemented on different platforms and with different
tools. The purpose of the algorithm execution module
is to generate the execution history. The algorithm
running is separated from its visualization. This allows
performing the algorithm once and after that the
operation history can be used to visualize and refine
the visualization as many times as needed. This can be
useful when computationally-intensive algorithms are
visualized since the second cycle of execution of the
algorithm is complex in such cases. To provide correct
work of the algorithm execution module, it is
necessary to meet a significant condition related to the
algorithmic complexity. It is reasonable to visualize
only efficient algorithms, because it will take much
time to build the operation history of execution of an
inefficient algorithm. Efficient algorithm means that
an algorithm of polynomial complexity. We can use a
small input graph for this case. This assumption
allows constructing of visualization for a reasonable
time.

The algorithm execution module takes the given
algorithm text written down with a programming
language, executes it and returns the log of operations
generated during the algorithm run on a particular
graph. The log of executed operations contains
information about all changed attributes of graph
elements and other events related to input graph
elements during the execution. Further this
information is used to generate graphical
representation of process.

Another component of the visualization system is
the visualizer itself. This component receives the
algorithm text, the graph, the history of operations and
additional graphical options. A history information
item is added by special instructions created at the
stage of preparation of the algorithm text. For
example, these special instructions are the functions:
Set(...), Get(...), IfCondition(...), WhileCondition(...)
and ForeachCollection(...). Their first argument is the
number of the corresponding text line. IfCondition(...)
and WhileCondition(...) do not perform any changes in
the graph model state but at least allow making a
visual selection of the text line where it was inserted.
ForeachCollection(...) is to be used to generate
information which allows highlighting a set of vertices
before they will be actually enumerated. To add these
functions into appropriate places of the original text of
the algorithm, it is sufficient to use a contextual
replacement. The purpose of the preparation stage is to
eliminate the need for declarative structures, which
have no relation to the actual nature of the algorithm.
A history item may also contain information about the

value of an attribute of a graph element. A graph
element is a vertex, an edge or a port. If there is a
vertex with its incident edge, then a port is a point
where the edge enters the vertex. When rendering, it
can be useful that the points are allocated for these
additional objects. Ports simplify calculation of
coordinates of graphical primitives which represent
the edge elements. Strictly mathematically, it is
possible to simulate a port with a labeled vertex. So
the class of graphs with ports is isomorphic to the
class of all graphs. An attribute of a vertex, an edge or
a port can have a string name and a string value. The
history of operations stores the previous value of the
attribute for a particular graph element. This
information is also useful for building the
visualization, since it is possible to make a smooth
visual effect from a previous value of an attribute to
its new value. It is not obvious how to bind
information from a history element to the visual effect.
In this case, a user needs to interfere in order to set an
explicit binding between the set of attributes in the
text of the algorithm and the desired visual effects. For
example, if the operation of a log item is about
changing the coordinates of the graph
element reflected with the use of the attribute
"position", then it is reasonable to bind the attribute
with the visual effect, which leads to a shift of the
graph element. Another user example is to bind all log
items to the effect of a color mark of a current graph
element under processing. It can be a current vertex
visited in the algorithm of deep-first search or in any
other graph traversal. In this aspect the suggested
approach is close to the interesting events approach,
where an algorithm instruction is an interesting event.
The figure below shows an example of visualization
of the deep-first search algorithm on the graph, which
is actually a binary tree graph. The figure is one of the
screenshots taken during the process of visualization
of the deep-first search algorithm. The left side of the
figure displays the text of the algorithm formulated in
terms of graphs. The attribute of a graph vertex state
indicates the fact that the vertex has already been
visited during the process of the graph traversal. A line
of the algorithm text has one of the following states:
dark thin, light thin and thick. The first state means
that the instruction has been executed at least once.
The second state means that the current image and the
last shown visual effect is the result of this instruction.
The last state means that the instruction has not been
executed yet. The right part of the figure displays the
graph model, which is a hierarchical graph with
attributes. Only if this attribute is set, the
corresponding attribute will be created during
visualization. In this example, the visited vertices get
the state attribute that changes the color of a vertex.
Also, this attribute's value corresponds to the increase
of line width showing the graph vertex circle. Vertices
shown in a thin line has not been visited yet.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 77 ISBN 978-80-86943-67-1

Fig. 1. Visualization of the deep-first search
algorithm. This is one of intermediate images.

Displaying of additional data structures can be used
to improve understanding of visualization of a graph
algorithm. For example, the deep-first search
algorithm uses a stack and the breadth-first search
algorithm visualization uses a queue. The content of a
stack or a queue can be represented as a graph. Since
the visualization system allows us to use the
hierarchical graphs, a stack graph or a queue graph
can be included into a graph model for a particular
visualization. So the working graph model consists of
a graph with two vertices. The first vertex contains a
stack graph and the second contains an input graph.
Such graph model can be visualized with the created
module of the system of graph algorithm visualization.
The queue or stack size is changed during execution of
the given algorithm and the corresponding vertices are
added or removed from the stack graph. Hierarchical
graphs are helpful for this purpose. If there is no stack
or queue, then a tree of fragments only consists of one
fragment, the input graph. For a stack the graph model
consists of three fragments: a root and two children.
The first child is the input graph and the second is a
graph representation of the stack. So, if the given
algorithm uses an input graph and N additional
structures, then the tree of fragments contains N+2
elements. It is a root element and its N+1 children, one
of which is the input graph and others are graph
representations of additional data structures.

ACKNOWLEDGMENT
This work was supported in part by the Russian

Foundation for Basic Research under grant N 15-07-
02029.

CONCLUSIONS AND FUTURE WORK
This paper describes the approach of visualization

of graph algorithms, providing the capability to build
visualization with the help of a flexible system of
visual effects and using the algorithm as an input
parameter.

The system of graph algorithm visualization has
been created in order to test proposed approach. The
system uses runtime information of algorithm
execution in order to construct corresponding visual
effects. Visual effects are used to reflect intermediate
states of graph model during algorithm execution.

Interactivity of visualization is supported by the
capability to configure visual effects, to change the
text of the algorithm and to build visualization once
again. The implemented system allows us to observe
the performed changes after restart of execution.
Simple hierarchical graphs are considered to be a
parameter for the visualization system. The class of
algorithms admissible for the system is a subject for
further research.

At present, the described method is used for
construction of a visualization subsystem of a cloud
parallel programming system being under
development at Institute of Informatics Systems in
Novosibirsk.

REFERENCES
[1] Christopher D. Hundhausen, Sarah A. Douglas,
John T. Stasko, A Meta-Study of Algorithm
Visualization Effectiveness // Journal of Visual
Languages & Computing, - Volume 13, Issue 3, - June
2002, - pp. 259-290.
[2] Clifford A. Shaffer, Matthew L. Cooper, Alexander
Joel D. Alon, Monika Akbar, Michael Stewart, Sean
Ponce, and Stephen H. Edwards. 2010. // Algorithm
Visualization: The State of the Field.Trans. Comput.
Educ. - 10, 3, Article 9, - 22 pp.
[3] Kasyanov V. N., Yevstigneyev V. A. Graphs in
programming: processing, visualization and
application.- SPb. BHV-Petersburg, 2003. – 1104
with. silt. ISBN 5- 94157-184-4.
[4] Sorting algorithm visualizations [electronic
source]. Available from
http://sortvis.org/visualisations.html (accessed
01.05.2015).
[5] Lisitsyn I.A., Kasyanov V.N. Higres - visualization
system for clustered graphs and graph algorithms //
Proc. of Graph Drawing 99. – Berlin a.o.: Springer
Verlag, 1999. - P. 82-89. - (Lect. Notes in Comput.
Sci.; Vol. 1731).
[6] Higres graph drawing system [electronic source].
Available from http://pcosrv.iis.nsk.su/higres/
(accessed 01.05.2015).
[7] Demetrescu C., Finocchi I., Stasko J. T.,
Specifying Algorithm Visualizations: Interesting
Events or State Mapping? // In Proc. of Dagstuhl
Seminar on Software Visualization - Lect. Notes in
Comput. Sci. - 2001. - P. 16-30.
[8] C. Demetrescu and I.Finocchi, A general-purpose
logic-based visualization framework, Proceedings of
the 7th International Conference in Central Europe on
Computer Graphics, Visualization and Interactive
Digital Media (WSCG'99), pp. 55-62, Plzen, Czech
Republic, February 1999.
[9] Leonardo programming environment [electronic
source]. Available from
http://www.dis.uniroma1.it/~demetres/Leonardo/
(accessed 01.05.2015).
[10] Gordeev D.S. Model of interactive visualization
of graph algorithms. // Works of KIS 2011 /

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 78 ISBN 978-80-86943-67-1

http://www.dis.uniroma1.it/~demetres/Leonardo/
http://pcosrv.iis.nsk.su/higres/
http://sortvis.org/visualisations.html

Workshop: The knowledge-intensive software. -
Novosibirsk: IIS SB RAS, 2011. - pp. 58-62.
[11] Moreno A., Sutinen E., Joy M. Defining and
evaluating conflictive animations for programming
education: the case of jeliot ConAn. // Proceedings of
the 45th ACM technical symposium on Computer
science education. - 2014. - pp. 629-634.

[12] Naps, T. L., Rößling G JHAVÉ–More Visualizers
(and Visualizations) Needed. // Electronic Notes in
Theoretical Computer Science. - 2007. - V.178, I. 0 –
pp. 33-41.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Poster Proceedings 79 ISBN 978-80-86943-67-1

