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ABSTRACT 
In this paper, a method for analyzing transversal plane images from computer tomography scans is presented. 

This method allows not only the approximation of ribs-bounded contour but also the evaluation of patient rota-

tion around the vertical axis during a scan. A mathematical model that describes the ribs-bounded contour was 

created and the problem of approximation is solved by finding out the optimal parameters of the mathematical 

model using least-squares.  
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1. INTRODUCTION 
In medicine, more and more decisions are made via 

analysis of images. Image data comes from medical 

diagnostic techniques such as radiology, echoscopy, 

magnetic resonance, thermovision, tomography, etc.  

Computed tomography (CT) is a technology allowing 

the inside of objects to be spatially viewed using 

computer-processed X-rays. It is very important in 

medical diagnostics because it shows human internal 

organs without cutting, e.g. brain, liver [Nug08], 

prostate [Che11]. CT scans are 3D images – a collec-

tion of 2D images (slices), representing slices by 

transversal plane. This paper deals with the finding 

the ribs-bounded contour. This is important for inter-

nal organ localization. In liver localization, the liver 

tissue looks very similar to intercostal muscles, 

which are separated by thin and almost invisible con-

tours (where liver touches ribs). So, the ribs bounded 

contour restricts the region of location of internals in 

the slice. Internal organ localization is particularly 

important for the comparison of patient health state 

or to evaluate disease processes. Here the image reg-

istration problem arises (see e.g. [Tre08]).  

CT scans show tissues of different electron density; 

bones have the highest density [Nug08] so bone tis-

sue has the highest intensity in the CT image. The 

goal of our paper is to define the ribs-bounded con-

tour by some mathematical model and to propose a 

way to evaluate the parameters of this model from 

the CT image. In this paper, we are restricting the 

slices to ones where ribs are visible, but this does not 

lessen the significance of our work, because many 

important internal organs are located here: liver, 

heart, stomach, pancreas, lung, etc. 

2. DATA TO BE ANALYZED 
Example of CT scan slices is shown in Fig. 1. De-

pending on the slice, the heart, lungs, stomach, or 

liver can be seen. In all the cases of Fig. 1 internal 

organs are bounded by ribs. Fig. 1 was obtained after 

the patient was given a radiocontrast agent injection. 

In this image, the heart and aorta as well as all blood 

vessels are bright. We are investigating two dimen-

sional images of size 512 × 512.  

3. METHOD 
In this section a method of analysis of CT scan slice 

(through transversal plane) is proposed. This method 

allows us not only to find the ribs-bounded contour 

but also to evaluate patient rotation around the verti-

cal axis during the scan.  

We notice a symmetry of the ribs by the human sagit-

tal plane, body rotation in respect to bed, aorta near 

spine, high grayscale intensity of bones, bed, heart 

and blood vessels (if the radiocontrast agent was in-

jected to the patient). All these must be considered 

when building a method. 

Our method consists of two steps: (a) extracting the 

bone tissue from image; (b) approximating the ribs-

bounded contour with a mathematical function. 
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Figure 1. Examples of the CT image slices. 

Body tissue extraction 
Because bone tissue is naturally brighter than any 

other tissue, an image can be thresholded – extracting 

pixels with a value higher than 150 if the whole CT 

scan is linearly normalized between 0 and 255. This 

threshold is chosen after the discussion below.  

In [Hen02], the electron density of internal organs is 

evaluated. The densities are given in Table 1. We see 

that the maximal electron density is of bone, at 5.29 ∙
1023, and the minimal electron density of bone is 

3.72 ∙ 1023. The lung has the minimal possible densi-

ty among internal organs with 0.83 ∙ 1023. In CT 

scan slices, lung tissue is purely black. Therefore, the 

problem is to transform the interval [0.83 ∙
1023; 5.29 ∙ 1023] into the interval [0; 255] and to 

find the point of the last interval corresponding to 

3.72 ∙ 1023. After such conversion, we get the 

brightness 165 corresponding to the minimal electron 

density of the bone. Leaving some reserve, we fixed 

the threshold at 150.  

Tissue Electron Density (electrons/cm3) 

Water 3.35 ∙ 1023 

Bone 3.72 − 5.29 ∙ 1023 

Spleen 3.52 ∙ 1023 

Liver 3.52 ∙ 1023 

Heart 3.46 ∙ 1023 

Muscle 3.44 ∙ 1023 

Kidney 3.42 ∙ 1023 

Pancreas 3.40 ∙ 1023 

Fat 3.07 ∙ 1023 

Lung 0.83 ∙ 1023 

Table 1. Electron density of body area [Hen02] 

After thresholding, undesirable regions can be se-

lected: lateral objects like the bed or metal implants, 

and everything that contains blood with radiocontrast 

agent – heart and vessels. These regions can be re-

moved with morphological operations [Rus11]. 

To extract the bone tissue, we suggest the algorithm: 

1. image=CTScan.Threshold(150); 

2. for each slice in image 

  slice=slice.FillIsolatedBlobs; 

3. image=image.MorphologicalOpen(2); 

4. spine=image.MorphologicalOpen(14); 

5. for z from 0 to image.SliceCount 

 image[z]=image[z]-

((spine[z].Dilate(4)-spine[z])&& 

   Rectangle((0, 0)- 

   (512,spine.GravityCenter.Y))); 

6. convexHullPoints={}; 

7. for each slice in image 

convexHullPoints= convexHullPoints ∪ 
     slice.ConvexHull; 

8. image= 

  image.FilterConnectedComponents 

    (convexHullPoints); 

In the pseudo code, CTScan is the CT scan image, 

and the function Threshold(th) transforms the 

grayscale image into the binary one. Image is the 

3D binary image. FillIsolatedBlobs fills with 

white the isolated black blobs that are on larger white 

ones, MorphologicalOpen(𝑥) and Dilate(𝑥) are 

morphological open and dilate operators respectively 

with round kernel of diameter 2𝑥 + 1. Function 

Rectangle((x0, y0) – (x1, y1)) makes a binary 

image with a white filled rectangle at specified coor-

dinates, and && is pixel-wise binary AND operator. 

The binary image subtraction 𝑋 − 𝑌 compares each 

pixel and returns the nonimplication. Gravity-

Center changes a binary blob to its center of gravity, 

FilterConnectedComponents(seeds) leaves bi-

liver gullet spine aorta bed spleen 

ribs breastbone heart lungs ribs 
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nary blobs that are connected to seeds only. 

ConvexHull returns a set of points of the convex 

hull of all white pixels in the binary slice. A set 

convexHullPoints joins such convex hulls points 

of all slices of the CT scan. FillIsolatedBlobs is 

necessary because inner rib tissue may appear in 

black after the binarization using the threshold. 

Spine[z].Dilate(4)-spine[z] analyzes the slice 

z and gives the 4 pixels thickness ring around the 

spine. Its top part (intersection with rectangle) is sub-

tracted from the image to separate aorta from spine 

where they touch each other. Then convex hull of 

slice is actually a convex hull of ribs – bone tissue is 

blobs that are connected to ribs.  

As a result of the bone tissue extraction above, we 

get binary images – see the example in Fig. 2. 

 

Figure 2. Pixels representing bone tissue. 

Denote 𝐵 = {(𝑏1𝑖 , 𝑏2𝑖), 𝑖 = 1,𝑚̅̅ ̅̅ ̅̅ } the set of coordi-

nates of bone pixels obtained during analysis of CT 

image slices, 𝑚 is the number of bone pixels. 

Ribs-bounded contour approximation 
The ribs form a shape similar to cardioid (see Fig. 1): 

𝜌 = 1 + 𝑐𝑜𝑠(𝜑 − 𝜋 2⁄ ) ,  𝜑 ∈ [− 𝜋 2⁄ ; 3𝜋 2⁄ ) (1) 

Here 𝜌 is the radius and 𝜑 is the polar angle. The 

shape of (1) is depicted in Fig. 3 (blue curve). It 

looks similar, because it features a cave which could 

be used to approximate ribs cave near spine. 𝜋 2⁄  is 

introduced in (1) because the standard cardioid is 

rotated by 90° as compared with Fig. 3 and the ribs-

bounded contour in the images should be oriented 

like ribs depicted in Fig. 1. 

Our research showed that a ribs-bounded contour is 

more condensed vertically than the standard cardioid 

curve. Therefore, we suggest to add optimizable pa-

rameter – power 𝑠: 

 𝜌 = (1 + 𝑐𝑜𝑠(𝜑 − 𝜋 2⁄ ))𝑠 (2) 

The (2) curve with different 𝑠 is depicted in Fig. 3. 

As we see in Fig. 1, the rib-bounded contour has 

some rotation in respect to the bed. Therefore, we 

should introduce the angle 𝜃 of such rotation. Param-

eter 𝑠 influences not only the vertical scale of the 

curve (1), but the form of the curve, too (see Fig. 3 

for curves with different values of 𝑠).  

 

Figure 3. Blue – standard cardioid (1), red and 

green – (2) curve with 𝒔 = 𝟎. 𝟓 and 𝒔 = 𝟎. 𝟑. 

In the CT scan slice (Figure 1), we see a cave influ-

enced by the breastbone. Curve (2) is convex in this 

region. Therefore, we need to complement the model 

(2) redefining 𝜌 with additional member 𝜌′ whose 

form may vary depending on the cave: 

 𝜌 = (1 + 𝑐𝑜𝑠(𝜑 − 𝜋 2⁄ ))𝑠 − 𝜌′ (3) 

This member realizes the cave by subtraction of 

some value from the right side of (2) starting from  

𝜑 = 𝜋 2⁄ − 𝛽 till 𝜑 = 𝜋 2⁄ + 𝛽. The member 𝜌′ de-

pends on 𝜑 and has special properties. It must (a) be 

unimodal non-negative function on 𝜑, (b) achieve the 

maximal value as 𝜑 = 𝜋 2⁄ , (c) be symmetrical func-

tion in respect of 𝜑 = 𝜋 2⁄ , (d) be equal to 0 when 

𝜑 = 𝜋 2⁄ − 𝛽 and 𝜑 = 𝜋 2⁄ + 𝛽, (e) have zero first 

and second derivatives on 𝜑 when 𝜑 = 𝜋 2⁄ − 𝛽 and 

𝜑 = 𝜋 2⁄ + 𝛽. Function 𝜌′ may be as follows: 

 𝜌′ =

{
 

 𝑐 sin𝑙 (
𝜋(𝜑 − 𝜋 2⁄ + 𝛽)

2𝛽
) ,

            if  𝛽 ≥ |𝜑 − 𝜋 2⁄ |  
0, else

 (4) 

In (4), we have three control parameters for which 

optimal values need to be found: 𝛽 is an angle, defin-

ing the region of subtraction, c defines the maximal 

value of subtraction, l defines the steepness of curve 

describing the cave (𝑙 ≥ 2). Example of 𝜌′ is pre-

sented in Fig. 4 for different values of 𝛽, 𝑐, 𝑙. More-

over, we need some additional parameters 𝑎 and 𝑏 

that define the horizontal and vertical scales of the 

curve that approximates the rib-bounded contour, 

respectively. The curve (3) should be fitted among 

ribs in the picture of bone tissue. For this reason, we 

need the optimal place of the point of (3) cor-

responding to 𝜌 = 0 in the picture; denote coor-

dinates of this point by (𝑥0, 𝑦0). 

If the values of 𝑠, 𝜃, 𝑎, 𝑏, 𝑥0, 𝑦0, 𝛽, 𝑐, 𝑙 are fixed, we 

can draw some parametric curve (𝑥, 𝑦) = (𝑥(𝜑),
𝑦(𝜑)) approximating the rib-bounded contour:  

𝑥 = 𝑥0 + 𝑎𝜌 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠𝜃 − 𝑏𝜌 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜃 

y = 𝑦0 + 𝑎𝜌 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛𝜃 + 𝑏𝜌 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 
(5) 
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where 𝜌 is defined by (3). If 𝜑 runs through the in-

terval [−𝜋 2⁄ ; 3𝜋 2⁄ ) with a step 2𝜋/𝑛, we get from 

(5) a sequence of points 𝐶𝑗 = (𝑥𝑗 , 𝑦𝑗), 𝑗 = 1, 𝑛̅̅ ̅̅̅ of the 

curve. In our experiments, 𝑛 = 180. 

 

Figure 4. Dependencies of function 𝝆′ on 𝝋. 𝒄 = 𝟏. 

Optimization problem 
The model of ribs-bounded contour has nine parame-

ters whose values can be varied seeking to find the 

best approximation of the contour: 𝑠, 𝜃, 𝑎, 𝑏, 𝑥0, 𝑦0, 

𝛽, 𝑐, 𝑙. The optimal values of these parameters must 

be defined by the set 𝐵 of coordinates of bone pixels 

obtained during the analysis of CT image slices. The 

optimization problem to find optimal 𝑠, 𝜃, 𝑎, 𝑏, 𝑥0, 

𝑦0, 𝛽, 𝑐, 𝑙  is formulated as a least square one: 

 𝑚𝑖𝑛
𝑠,𝜃,𝑎,𝑏,𝑥0,𝑦0,𝛽,𝑐,𝑙

𝑓(𝑠, 𝜃, 𝑎, 𝑏, 𝑥0, 𝑦0, 𝛽, 𝑐, 𝑙 )  (6) 

𝑓(∙) =∑ ‖𝐵𝑖 − 𝐶𝑘𝑖‖
2𝑚

𝑖
,   𝑘𝑖 = argmin

𝑗
‖𝐵𝑖 − 𝐶𝑗‖ 

The optimization method to solve (6) may be any 

local minimization one. We use the Matlab realiza-

tion of the quasi-Newton method [Unc15].  

4. RESULTS 
The performance and efficiency of the proposed 

method is illustrated in Figure 5. Approximation of 

the ribs-bounded contour is put on the image in red. 

The optimization results are as follows: min 𝑓(∙) =
212611, 𝑚 = 5403, 𝑎 = 160.51, 𝑏 = 217.01, 𝜃 =
0.076, 𝑠 = 0.35, 𝑥0 = 265.2, 𝑦0 = 296.52, 𝛽 =
6.25, 𝑐 = 0.71, and 𝑙 = 28.375. The average distan-

ce from points from 𝐵 to the curve approximating the 

ribs-bounded contour is 4.95 pixels. Both 𝜃 and 𝛽 

mean radians. Note, that the value of angle 𝛽 is 

greater than 𝜋. This is acceptable because the values 

of function 𝜌′ are close to zero at the boundaries of 𝜑 

domain [−𝜋 2⁄ ; 3𝜋 2⁄ ) when 𝑙 is large (see Fig. 4). 

5. CONCLUSIONS 
In this paper, a method for the analysis of transversal 

plane images of computer tomography scans is pre-

sented. This method allows us not only to find the 

approximation of the ribs-bounded contour but also 

to evaluate the patient rotation around vertical axis 

during scans.  

The experiments showed that the number m of bone 

pixels depends on the CT scan slice and is large. The 

angle 𝜃 of patient rotation around vertical axis during 

the scan is about 4° in the analyzed data. This angle 

is not large, but its optimal estimate allowed more 

precise approximation of the rib-bounded contour. 

Power 𝑠 in (2) and (3) is less than 1. The angle 𝛽, 

defining the region of subtraction, is greater than 𝜋. 

This means that the subtraction is performed for all 𝜌 

in entire domain of 𝜑. The steepness l of curve de-

scribing the cave is very large. The combination of 

values of angle 𝛽 and steepness 𝑙 allows us to de-

scribe various forms of cave influenced by the 

breastbone.  

The proposed approximation defines the rib-bounded 

contour exactly. The model may be applied to any 

2D slice where the ribs are visible. Defining the area 

of internal organs from the ribs-bounded contour 

restricts essentially the search area, where these or-

gans are located, and may serve as the effective start 

for the detailed localization of particular organ.   

 

Figure 5. The ribs-bounded contour. 
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