
Validity of Metaphors and Views
of Software Visualization for Parallel Computing

Vladimir L. Averbukh1,2

1IMM UrB RAS,
2IMCS UrFU

averbukh@imm.uran.ru

Mikhail O. Bakhterev1,2

1IMM UrB RAS,
2IMCS UrFU

m.bakhterev@imm.uran.ru

Dmitriy V. Manakov
IMM UrB RAS

manakov@imm.uran.ru

ABSTRACT
In this paper approaches to the evaluation of Software Visualization for Parallel Computing are considered on the
examples of representation of call graphs and execution traces of parallel programs. The concept of visualization
metaphor is described. The visualization metaphors using to depict call graphs and execution traces are surveyed.
The validity of visualization techniques is considered on basis of analysis of metaphor properties, Shneiderman’s
scheme and other approaches to the evaluation of metaphors and views.

Keywords
Software Visualization, Parallel Computing, call graphs, execution traces, visualization metaphors, Shneiderman’s
scheme

1 INTRODUCTION

Software Visualization (SV) systems were actively de-
veloped as late as the 80th and the 90th years of the
XX century. Much part of these systems is visual sys-
tems for performance tuning and program debugging
in the field of parallel computing. But later it can be
observed a certain recession in this domain. The rea-
sons of the recession are connected with a number of
problems in particular connected with perception, anal-
ysis, and interpretation of images depicted huge vol-
umes of data. At the very beginning of Software Visual-
ization evolution, when volumes of data were compar-
atively inconsiderable, designers used standard "Nodes
and Arcs" approaches. However, as early as the 80s
more sophisticated views were used. These views were
based on one or another metaphors or they were built
on the basis of the figurativeness of applications under
consideration. In some cases Software Visualization
systems were provided with tools of design and draw-
ing so that their users-programmers themselves can de-
velop views for their needs. Ideas of performance tun-
ing are based on the representation of statistics of par-
allel program executions. For these purposes statistical
graphics, first of all, Gantt charts and Kiviat diagrams
and their modifications are used. Note that complex
views using various modifications of statistical charts
to this day are the main most in the "industrial" systems
of performance tuning and performance debugging [1],
despite the obvious limitations when dealing with real
high-performance programs. It appears that in the 90th
the designers of visual debugging systems focused on
the problems of capture of data in the frameworks (and
under restrictions) of the then existing parallel comput-
ers. However, other problems exist, for example, the

problems associated with visualization – how to choose
and how to show entities of parallel programs, as well
as to analyze and interpret them. In the case of parallel
computation, the very definition of the program entities
associated with its "erroneous" states is the tricky prob-
lem. The set and the essence of the analyzed software
objects strongly depend on used parallel programming
paradigm. In the case of performance tuning there is
also a lot of problems, because the entities appropri-
ated for analysis are hard to choose. Further in 2000th
and 2010th years visualization metaphors were actively
used. However use of interesting metaphors was not al-
ways clear as users often need the simple picture repre-
sentation which could be accurately interpreted. In this
regard, the important issue is the choice and the eval-
uation of visualization techniques, the analysis of their
applicability to those or other cases. Designers need
to evaluate visualization techniques basing both on the
qualitative analysis and some formalization. There are
various parallel program entities that are subjects of
study, analysis and visualization. But in this paper, only
the program execution traces and call graphs are consid-
ered, although they are not the only software analysis
techniques.

2 VISUALIZATION OF EXECUTION
TRACES AND CALL GRAPHS

From the beginning of the development of Software Vi-
sualization the question of how to graphically repre-
sent program entities came up. System designers re-
lied on the standard ("paper") approaches to software
visualization (for example control-flow diagrams, etc.)
or shifted the task to users-programmers, providing a
graphical toolkit. There are serious problems of scal-

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Poster's Proceedings 53 ISBN 978-80-86943-59-6



ing the views based on one or the other diagram and
charts. The next step in Software Visualization may be
associated with metaphor using. But using the original
metaphor was not always justified because of the need
of simple but clearly interpretable presentation meth-
ods. "Graph-based" metaphors have significant limi-
tations in this regard also. Execution traces and call
graphs are used in one form or another by many de-
bugging systems to describe the dynamics of the pro-
grams. Execution traces (also the term "Event Traces"
is used) map the dynamics of the certain program ex-
ecutions. Visualization and "replaying" of execution
traces are an important element of debugging systems.
The visual presentations of the call graph are widely
used in the systems parallel program performance tun-
ing systems. In debugging systems realized in the 80s-
90s of XX century methods based on charts or dia-
grams were used. Accordingly, traces are visualized in
the form of dynamic "jumping" on the diagrams/charts.
There was also the use of "passage" (or "running") on
the text of a program highlighting the current position.
In the case of high-performance computing, such visu-
alization techniques are hardly suitable. Call Graphs
also were represented as very complex and convoluted
schemes. Now visualization metaphors were actively
used. The metaphor essence consists in interpretation
and experience the phenomena of one sort in terms
of the phenomena of other sort. Metaphorization is
based on interaction structures of source and target do-
mains. During process of metaphorization some ob-
jects of target domain are structured on an example
of objects of target domain and there is a metaphori-
cal mapping (projection) of one domain onto another.
That is the metaphor can be understood as a map from
source domain onto target domain, and this map is
strongly structured. There are many interesting exam-
ples of metaphor using for visualization of execution
traces call graphs in parallel programs. For example
such metaphors are used as Building metaphor [2], City
and Landscape metaphors [3, 4], Dynamic Systems
metaphor, [5], Molecule metaphor [2] metaphor. Also
less customary metaphors for example Brain Metaphor
[6] and Circular Bundle metaphor [7, 8] were sug-
gested.

Views are designed on the basis of the metaphors. A
view includes a description of possible visualization ob-
jects, their relative positions on the screen, as well as
the possible interaction with them. The consideration
of specific tasks of debugging and analysis is needed
during the phase of the view development. Views are
designed on the basis of the metaphors. A view includes
a description of possible visualization objects, their rel-
ative positions on the screen, as well as the possible in-
teraction with them. The consideration of specific tasks
of debugging and analysis is needed during the phase
of the view development.

3 PROPERTIES OF VISUALIZATION
METAPHORS

The success or failure of debugging and performance
tuning systems depends on many factors. Of course,
the important factors are the comprehension of corre-
spondence to system specifications and the system re-
liability. However at the design stage, an important
task is the choice of methods of visual representation
of objects and entities to be considered during debug-
ging. One approach to the evaluation of visualization
involves the examination of properties of visualization
metaphors. We analyze the properties to consider the
possibility of metaphor using for specific applications
of Software Visualization. It is important to under-
stand what objects may be represented with one or an-
other metaphor. We need to analyze the possibility
of the visualization metaphors (more precisely – the
views based on the visualization metaphors) to repre-
sent a large and huge volumes of data and details re-
quired to understanding the program’s operations. The
positive effects of a 3D display and virtual and aug-
mented reality environments are possible in these cases.
Therefore it is important to analyze possible applica-
tions of metaphors in the frameworks of visualization
systems using modern computer graphics environment,
in particular the virtual reality environment. For all
this, we need to describe how to verify the suitabil-
ity of metaphor for solving problems under consider-
ation. Note on such metaphor properties as "ability
to contain any objects inside itself", "restriction of a
perception context", "closeness", "inclusion in struc-
ture", "presence a structure inside", "naturalness of
a metaphor". In the cases of popular in Software Visu-
alization systems City Metaphor and similar Landscape
Metaphor one may consider the following properties as:

Unlimited context. The user context isn’t artificially
limited in City Metaphor and Landscape Metaphor.
When visualization of large volumes of data is needed,
unlimited context allows to have a look-see round the
whole picture and to select the key places quickly.

Naturalness. It is known that naturalness of a metaphor
reduces efforts on the resultant image interpretation. In
the cases of City and Landscape metaphors not only
naturalness of spatial orientation, but naturalness of
navigation takes place also. In case of a city metaphor
the method of navigation is defined by the metaphor it-
self.

Organization of inner structure. Metaphors suggest
the existence of an inner structure. In case of a City
metaphor this structure is dictated by the metaphor it-
self, and it is defined rather rigidly – there are build-
ings, quarters, streets, districts. In Landscape metaphor
a structure choice is nondedicated. In this case one may
say about landscape nesting.

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Poster's Proceedings 54 ISBN 978-80-86943-59-6



Key elements. Metaphors suggest a representation
of large volume of information, and in most cases
this information is rather homogeneous in visual
sense. Users need the key elements to interpret this
information. If we want to use a metaphor to reveal
specific features and/or exceptions (for example bugs
in programs), these elements have to be depicted by
easy distinguished image-keys. One may design some
key elements in frameworks of City or Landscape
metaphors. In these cases some forms of guidance
signs or markers may be used as key elements.

Resistance to scaling. These metaphors are stable in
the case of increase in information volumes. Moreover,
applications of City and Landscape metaphors are rea-
sonable only in the cases of large information volumes.

In the cases of City and Industrial Landscape metaphor
transport corridors help to design software visualiza-
tion systems. Transport corridors may be used as means
to represent control flows, data flows, and other rela-
tions between program constructions or parts of pro-
gram complex.

Note that unlike in the case of Landscape metaphor, the
choice of City metaphor strongly limits the set of pos-
sible views.

Thus City and Landscape metaphors may form base to
represent considerable volumes of the structured infor-
mation with identifications of specific interest cases that
is necessary in the systems for performance tuning and
program debugging for parallel computing.

Additionally possibility to fly over a city/landscape
creates prerequisites to easy navigation. Flight with
changes of height allows to carry out scaling and
zooming. Interpretation of the graphical displays based
on these metaphors seems to be simple.

4 VIEW EVALUATIONS
A number of papers are devoted to evaluation of
views used in Computer Visualization Most of these
researches are linked with Information Visualization.
The paper [9] contains the outline of visualization
analysis based on Visual Information-Seeking Mantra
(so called Shneiderman’s Mantra). B. Shneiderman
presents seven high level user needs that an infor-
mation visualization application should support [10].
In [11] these needs were refined to evaluate views
of three-dimensional information visualization. Let’s
cite the outline of visualization analysis following
[9]: Overview; Zoom; Filter; Details-on-demand;
Relate; History; Extract.
It is supposed that if the system supports this set of
operations, it may be used for Information and Soft-
ware Visualization. In [7, 8] the criterion based on
an expanded Schneiderman’s mantra is applied to the
analysis of visualization of execution traces constructed

on the basis of two synchronized views 1) a circular
bundle view for displaying the structural elements and
bundling their call relationships, and 2) a massive se-
quence view that provides an interactive overview. The
summary table of how the two synchronized views sat-
isfy each of these seven criteria is provided. In general
these views correspond to the chosen criterion.

Let’s analyze now from a perspective "Shneiderman’s
Mantra" the possibilities of visualizations based on City
and Landscape metaphors.

Overview task may be realized by the flight over the
city or landscape. Zoom task is implemented easily by
lowering or lifting during the flight. The idea of the
realization Filter task may be borrowed from cartogra-
phy (and Information Visualization based on cartogra-
phy techniques). There is the method of filtration on
maps presented geographical data – to eliminate some
types of information from the overall picture as for ex-
ample human settlements may be eliminated from the
map presented ground reliefs. The analogy of cartog-
raphy shows that Landscape metaphor is preferred then
City metaphor in the case of Filter task. Details-on-
demand task, as well as Relate task may be imple-
mented within the framework of the extended Room-
Building-City metaphor by means "passing" down the
street and "inputs" inside buildings and rooms. History
and Extract tasks may realized naturally in frameworks
of City and Landscape metaphors.

Schneiderman’s scheme may be applied to evaluate
Software Visualization in cases when corresponding
systems are destined to be analyzed large volumes of
abstract data similar to Information Visualization sys-
tems. In other cases these scheme is not applicable.
Schneiderman’s criterion is based on check of neces-
sary, but not ampleness conditions of quality of Infor-
mation Visualization. The use of the Schneiderman’s
scheme presupposes the existence of large structured
data volumes. But in this case the resulted visualization
has to be a manageable size. More importantly it is as-
sumed that the user either knows what she/he searches
or at least she/he is able to recognize it. In the case of
"circular bundle" the new complicated abstract visual-
ization technique (based on the new metaphor) is used.
The user should always correlate the images with non-
obvious representations of interesting data.

Similarly the visualization techniques based on using
different charts and diagrams in many cases generate
abstract and nontrivial representations. In the case of
high-performance computing the methods of visualiza-
tion for execution traces may be ineffective, due to
the complexity of both the analysis of codes execu-
tion, and large data volumes. Such considerations can
be applied for many new abstract methods (visualiza-
tion metaphors) for complex data representation. The
views using modification of statistical diagrams and

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Poster's Proceedings 55 ISBN 978-80-86943-59-6



charts scale insufficiently. They can’t map the execu-
tion of hundreds and thousands of parallel processes.
Also let’s state a remark about "natural" metaphors us-
ing. Interpretation of graphical displays implemented
in the framework of the "natural" metaphors, for ex-
ample, interesting "animation" Brain metaphor, often is
not obvious. The naturalness of imagery in the cases of
City and Landscape metaphors can sometimes distract
users. Also, there are problems of perception and in-
terpretation of large and huge data volumes. For exam-
ple, the the flickering and blinking animation displays
observation may be unusual and unpleasant. Users of
systems based on virtual reality can have discomfort in
the form of dizziness and so forth. There is the problem
of selecting the objects to be visualized in the debug-
ging process. In the case of parallel computation the
definition of program objects associated with its "bug"
states is a difficult task. Set and the essence of the an-
alyzed program objects differ markedly in the various
paradigms of parallelism. The execution trace is only
one of possible entities subjected to analysis and, as a
consequence, to visualization. In the case of perfor-
mance tuning there is also no clarity with selection of
entities which can help to improve performance.

5 CONCLUSION
In this paper approaches to the evaluation of Software
Visualization for Parallel Computing are considered on
the examples of execution traces and call graphs of par-
allel programs. The validity of visualization techniques
was evaluated on basis of Shneiderman’s scheme. Ad-
ditionally cognitive approaches to the analysis of visu-
alization and to the evaluation of the implementation
efforts were considered. In the pre-design analysis the
consideration of whole range of evaluations is neces-
sary. Contradictions between representation opportuni-
ties and visualization perception, analysis and interpre-
tation abilities of the users exist. Interesting metaphors
can give pictures difficult to interpret or demand big ef-
forts when developing. Scaling problem remains un-
solved for many techniques of Software Visualization
for Parallel Computing. This problem is related to fun-
damental limitations on placing "big pictures" on the
screen, and the user perception and interpretation of
"big data" generated by debugging and performance
tuning systems.

6 REFERENCES
[1] Mohr, B., 2014. Scalable parallel performance

measurement and analysis tools - state-of-the-
art and future challenges. In Supercomputing
frontiers and innovations. Volume 1. Number 2
(2014). Pp. 108-123.

[2] Averbukh, V.L., Baydalin, A.U., Ismagilov D.R.„
Kazantsev, A.U., Timoshpolskiy, S.P., 2004. Uti-

lizing 3D Visualization Methophors. In Proceed-
ings of 14 International Conference "Graphicon".
2004, Moscow, Russia. Pp. 295-298.

[3] Fittkau, F., Waller, J., Wulf, Ch., Hasselbring, W.,
2013. Live trace visualization for comprehend-
ing large software landscapes: The ExplorViz
approach. In Proceedings of the 1st Working Con-
ference on Software Visualization (VISSOFT),
IEEE Computer Society, 2013. 4 pp.

[4] Waller, J., Wulf, Ch., Fittkau, F., Dohring, Ph.,
Hasselbring, W., 2013. SynchroVis: 3D Visual-
ization of Monitoring Traces in the City Metaphor
for Analyzing Concurrency. In First IEEE Work-
ing Conference on Software Visualization (VIS-
SOFT), 2013. 4 pp.

[5] Osawa, N., 1998. An Enhanced 3-D Animation
Tool for Performance Tuning of Parallel Programs
Based on Dynamic Models. In SPDP 98 Welches
Or. USA. pp.72-80.

[6] Palepu, V.K., Jones, J.A., 2013. Visualizing con-
stituent behaviors within executions. In Proceed-
ings of the 1st Working Conference on Software
Visualization (VISSOFT), IEEE Computer Soci-
ety, 2013. 4 pp.

[7] Cornelissen, B., Holten, D., Zaidman, A., Moo-
nen, L., van Wijk, J.J., van Deursen, A., 2007.
Understanding execution traces using massive se-
quence and circular bundle views. In Proc. of the
15th IEEE Int. Conf. on Program Comprehension.
IEEE, 2007, pp. 49-58.

[8] Cornelissen, B., Zaidman, A., Holten, D., Moo-
nen, L., van Deursen, A., van Wijk, J.J., 2008.
Execution Trace Analysis through Massive Se-
quence and Circular

[9] Maletic, J.I., Marcus, A., Collard, M.L., 2002. A
task oriented view of software visualization. In
International Workshop on Visualizing Software
for Understanding and Analysis. 2002. Pp. 32-40.

[10] Shneiderman, B., 1996. The Eyes Have It: A Task
by Data Type Taxonomy for Information Visual-
izations. In Proceedings of the IEEE Conference
on Visual Languages, September 3-6, 1996. Pp.
336-343.

[11] Wiss U., Carr, D., Jonsson, H., 1998. Evaluat-
ing Three-Dimensional Information Visualization
Designs. A Case Study of Three Designs. In Pro-
ceedings of International Conference on Informa-
tion Visualisation, London, England, July 29-31.
1998. Pp. 137-144.

ISSN 2464-4617 (print)
ISSN 2464-4625 (CD-ROM)

WSCG 2016 - 24th Conference on Computer Graphics, Visualization and Computer Vision 2016

Poster's Proceedings 56 ISBN 978-80-86943-59-6




